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Many different disease states are characterized by mitochondrial dysfunction, 

which results in excessive reactive oxygen species (ROS) production.  In contrast 

muscle contraction induces ROS generation suggesting there is an optimal range of 

ROS production necessary for proper cell function. It is unclear if ROS production is 

influenced by metabolic substrate flux as a result of the energetic demand of 

contraction.  The purpose of this study was to determine the rate and source of ROS 

production in contracting single muscle fibers (SMF) cultured with different 

metabolic substrates.  ROS production was assessed in SMF isolated from adult male 

mice exposed to different stimulation conditions and/or different sources of metabolic 

substrate. Mitochondrial membrane potential was also assessed in SMF under similar 

conditions.  The results of this study demonstrate ROS generation is significantly 

influenced by metabolic substrate and larges increases in ROS do not affect 

mitochondrial membrane potential in intact SMF. 
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Introduction 

Regular physical activity prevents non-communicable diseases, such as 

cardiovascular disease, obesity, and type 2 diabetes (T2D).  During physical activity 

or muscle contraction, there is a high demand for energy in the form of adenosine 

triphosphate (ATP), especially from the skeletal muscle.  To meet this demand, 

skeletal muscle converts macromolecules, such as glucose and fatty acids, into usable 

ATP by using two processes, glycolysis and oxidative phosphorylation.  The process 

of glycolysis occurs in the cytosol of the cell, where using a series of enzymatic 

reactions, glucose is converted into pyruvate resulting in ATP production.  In 

contrast, oxidative phosphorylation, which is localized to the mitochondria, utilizes 

both fatty acids and glucose to produce ATP.  In skeletal muscle, the mitochondria 

are responsible for the majority of ATP produced in the resting state (i.e. no 

contraction), with aerobic metabolism being responsible for nearly 100% of ATP 

production (Powers and Howley 2009). 

Due to the importance of bioenergetics to overall cell function, proper 

mitochondrial function is essential to the muscle cell.  Many disease states 

demonstrate mitochondrial dysfunction, including T2D, neuromuscular diseases, 

cardiomyopathies, and obesity, among others (Davis and Williams, 2012). Regular 

exercise training has been shown to improve mitochondrial quality and quantity, and 

thus may be beneficial in treating these disease states.  For example, Taivassalo and 

Haller (2005) found that individuals with mitochondrial disease who are exposed to 

endurance training exhibit enhanced mitochondrial function, thus improving 
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functional capacity. Therefore, understanding mitochondrial function is critical for 

understanding skeletal muscle function and possible dysfunction in a variety of 

disease states.  Mitochondrial function is largely based on the ability to utilize 

metabolic substrates and oxygen to produce critical ATP.  However mitochondria are 

capable of producing reactive oxygen species (ROS) when substrate flux into 

mitochondria exceeds the demand for ATP production.  Mitochondrial ROS 

production is largely the result of low ATP demand coupled with increased flux of 

NADH and/or FADH into complex I or complex II of the electron transport chain, 

respectively (Murphy 2009).  Although in most cases ROS production is needed for 

appropriate signaling responses, in certain disease conditions, ROS production 

exceeds optimal production, leading to cellular dysfunction. 

Previous research has suggested that onset of diseases such as T2D and 

various neuromuscular diseases is thought to be in part due to excessive ROS 

production or a failure to adequately buffer the ROS accumulation.  ROS are 

considered a form of free radical, which is defined as an atom or molecule in which 

there is one or more unpaired electron (Powers and Jackson 2008).  Two types of free 

radicals that are formed are reactive nitrogen species (RNS) and ROS.  Superoxide 

(O2•
-
) and nitric oxide (NO) are the primary free radicals generated in cells, and due 

to their reactivity, lead to the formation of other ROS and RNS.  These include 

hydrogen peroxide (H2O2), hydroxyl radicals (OH•), singlet oxygen, peroxynitrite, 

and hyperchlorite (Powers and Jackson 2008).  

Recent evidence has surprisingly found that acute bouts of exercise or muscle 

contraction induce free radical or ROS generation in muscle (Davies et al 1982; 
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Jackson et al 1985; Reid et al 1992).  It is thought that ROS generation is required for 

contraction-induced physiological adaptation; however excessive ROS production 

during contraction can also lead to oxidative damage to different cellular organelles 

(Davies et al 1982; Jackson et al 1985; Reid et al 1992).  This suggests that there is an 

optimal range of ROS concentrations that contribute to the function of skeletal 

muscle, while excess ROS exposure leads to dysfunction of the muscle cell.  Thus, 

understanding the mechanisms that regulate ROS production and buffering in skeletal 

muscle will be critical in developing a more comprehensive understanding of skeletal 

muscle function.  

 With excessive ROS and RNS and production, normal cell function can be 

hindered by the disruption of signaling pathways and damaging of organelles due to 

oxidative stress.  The first definition of oxidative stress was “a disturbance in the pro-

oxidant-antioxidant balance in favor of the former” (Sies 1985).  Parameters used to 

characterize oxidative stress include increased formation of radicals and other 

oxidants, a decrease in small molecular weight or lipid-soluble anti-oxidants, 

disruptions in cellular redox balance, and oxidative damage to cellular constituents 

(Powers and Jackson 2008).  Excessive oxidative stress has a role in the development 

of muscle fatigue, with many studies showing that the use of ROS antioxidants and 

scavengers delay the onset of muscular fatigue during submaximal contractions 

(Anzueto et al 1992; Khawli et al 1994; Reid et al 1992, Supinski et al 1997).   

Oxidative stress can also impact skeletal muscle force production by disrupting 

various pathways and mechanisms. For example, inhibition of SR calcium ATPase 

(SERCA) as a result of high ROS content induces interference with the ATP binding 
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site and uncoupling of calcium uptake from ATP hydrolysis (Xu et al 1997).  Further, 

high levels of NO reduces SERCA activity through thiol oxidation (Viner et al 1997) 

and the nitration of tyrosine residues within protein (Viner et al 2000).  Moreover, 

ROS accumulation has negative effects on myofilaments.  For example, excessive 

ROS can alter myofilament structure (Callahan et al 2001), decrease calcium 

sensitivity (Andrade et al 2001), alter cross-bridge kinetics (Andrade et al 2001), and 

increase the likelihood of muscle fatigue (Moopanar and Allen 2005). 

 Although excessive ROS can have negative effects on muscle function, ROS 

have also been shown to be an important part of different cell signaling pathways.  

Over a short period of time, small increases in ROS production can lead to the 

activation of cellular signaling pathways that result in cell adaptation and protection 

against future stresses (Powers et al 2009).  In skeletal muscle, exogenous H2O2 has 

been shown to increase glucose transport (Cartee and Holloszy 1990; Sorensen et al 

1980).  Although the exact mechanism of this ROS-mediated increase is unknown, 

possible explanations are increases in AMP-activated protein kinase (AMPK) or 

protein kinase B (Akt) activity.  For example, H2O2 increases Akt phosphorylation, 

which is a critical mediator for glucose transporter type 4 (GLUT4) translocation 

(Higaki et al 2008; Jensen et al 2008). Oxidative stress also activates various 

mitogen-activated protein kinases (MAPK), which contribute to cellular regulation.  

These MAPK include activation of extracellular signal-regulated kinases (ERK1/2) 

which are necessary for cell survival (Chen et al 2001).  In addition, activation of p38 

is critical for the cellular response to osmotic stress and endotoxins (Chen et al 2001), 

and c-Jun N-terminal kinase (JNK) activation which regulates the dynamic activation 
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of apoptosis (Shen and Liu 2006).  One other signaling pathway activated by 

increased ROS is the NF-κB pathway (Kabe et al 2005), which is thought to influence 

interleukin 6 (IL-6) production by skeletal muscle during exercise (Spangenburg et al 

2006). Thus, understanding the mechanism and localization that mediates ROS 

production is critical for understanding skeletal muscle adaptability and susceptibility 

to disease. 

 For many years, many believed that the largest producer of ROS in skeletal 

muscle was the mitochondria.  However, a number of recent experiments found that 

skeletal muscle produces superoxide via multiple intracellular sources, leading to the 

formation of other secondary ROS molecules (Reid et al 1992; McArdle et al 2001). 

Initial studies reported that between 2% and 5% of the total oxygen consumption by 

mitochondria resulted in a one-electron reduction of oxygen, leading to the generation 

of high amounts of superoxide (Boveris and Chance 1973; Loschen et al 1974). This 

finding by Britton Chance indicated that it was possible to induce a 50 to 100 fold 

increase in superoxide generation by skeletal muscle during aerobic contractions as a 

result of increased oxygen consumption by the mitochondria (Kanter 1994; Urso and 

Clarkson 2003).  In fact, recent evidence suggests that ROS production during 

contraction is mostly derived from cytosolic sources and not the mitochondria (Xia et 

al 2003; Gong et al 2006), with the studies showing that the amount of superoxide 

created within the mitochondria may not be as large as once believed.  For example, 

at least one study has suggested that the proportion of the electron flow giving rise to 

ROS during contraction was overestimated (St-Pierre et al 2002).  In support of this 

finding, Michaelson and colleagues (2010) showed no change in mitochondrial redox 
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potential during contraction of muscle fibers, indicating a lack of mitochondrial ROS 

production.  Studies using specific mitochondrial complex and channel inhibitors 

have also supported this result by showing no effect on the contraction induced 

increases in cytosolic superoxide (Sakellariou et al 2013).  Through the use of 

MitoSOX red, a fluorescent dye specific to mitochondrial superoxide production 

(Aydin et al 2009; Grundtman et al 2010) investigators have found no increase in 

mitochondrial ROS production after bouts of tetanic stimulation.  Thus, at this point it 

is unclear if the mitochondria are significant contributors to ROS production during 

repetitive muscle contraction.  Much of the recent evidence utilized ex vivo imaging 

approaches with isolated single skeletal muscle fibers placed in culture dishes.  

However, most of these approaches utilize conditions that would likely encourage 

minimal activation of the mitochondria.  For example, high stimulation frequencies 

coupled with media that does not contain metabolic substrates that would flux into the 

mitochondria.  Thus, at this time the role of ROS production from the mitochondria 

during contraction is unclear. 

 Besides mitochondria, another potential source of ROS production is from 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity.  NADPH 

oxidase is an enzyme complex that can induce ROS production from molecular 

oxygen by using NADPH as an electron donor (Chan et al 2009).  NADPH oxidase is 

found in various cell types, and is critical to processes such as cell proliferation and 

tissue repair (Chan et al 2009).  In skeletal muscle, NADPH oxidase is localized to 

the sarcolemma, sarcoplasmic reticulum, T-tubules, and the mitochondria in skeletal 

muscle (Jackson 2013).  Using dichlorofluorescein (DCF), a fluorescent ROS 
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indicator, coupled with repeated bouts of contraction, Michaelson and colleagues 

found that contraction increases ROS production in single muscle fibers through 

increases in NADPH oxidase activity (Michaelson et al 2010).  In electrically 

stimulated myotubes, treatment with a nonspecific NADPH oxidase inhibitor, 

diphenyleneiodonium (DPI) was able to reduce the release of extracellular superoxide 

(Pattwell et al 2004).  Phospholipase A2, an enzyme which can induce ROS 

generation (Gong et al 2006; Zuo et al 2004),  has also been shown to stimulate 

NADPH oxidase (Zhao et al 2002).  Current thinking has suggested that during 

contraction, the transfer of electrons from cytosolic NADPH to the plasma membrane 

via different pathways leads to the generation of superoxide at the cell surface 

(Powers and Jackson 2008). 

Recent advances in the ability to isolate, culture, and stimulate single muscle 

fibers have afforded investigators an improved ability to assess ROS production and 

localization under a variety of conditions.  As previously stated, the majority of 

experiments conducted have examined ROS content in optimized buffered conditions 

that provide the single muscle fibers only with glucose or no exogenous metabolic 

substrate source.  A weakness in this method is that cells will primarily use glycolysis 

for ATP production when only glucose is available; thus, mitochondrial activation 

potential would remain low.  However, it is unclear if the source of ROS would still 

be largely cytosolic if the cultured single muscle fibers were provided a source of 

fatty acids during the contractile activity, since fatty acids must be channeled through 

the mitochondria for ATP synthesis.  It has been shown for many years that during 

contraction or exercise, fatty acids are a critical source of ATP replenishment for 
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meeting the energetic demand of muscle (Hurley et al 1986).  Thus, the purpose of 

these experiments is to determine the source of ROS production in single muscle 

fibers cultured with different metabolic substrates.  

 

Specific aim 1: To determine if exposure to extracellular metabolic substrate 

affects intracellular ROS production during repetitive contraction in isolated 

single muscle fibers 

  

Hypothesis 1a: In contracting single muscle fibers, the presence of physiologically 

relevant levels of extracellular glucose will result in increased ROS production 

compared to single muscle fibers exposed to no glucose 

  

Hypothesis 1b:  In contracting single muscle fibers, the presence of physiologically 

relevant levels of extracellular free fatty acids will result in increased ROS production 

compared to single muscle fibers exposed to no free fatty acids 

 

-Note: During the course of data collection, it was determined that the originally 

proposed methodological approaches in Specific Aim 2 were not feasible for multiple 

reasons.  A portion of the data demonstrating the issues encountered with the original 

approaches will be presented.  Thus, Specific Aim 2 and corresponding hypotheses 

were adjusted to address the original goal of the Specific Aim with a different 

methodological approach.  The revised Aim with the new methodological approach is 

consistent with my overall research question.  
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Original Specific aim 2: Originally, Specific Aim 2 sought to determine the 

intracellular source of ROS production in contracting single muscle fibers in the 

presence of different metabolic substrates.   

Original Hypothesis 2a: Inhibition of NADPH oxidase will attenuate ROS production 

in contracting single muscle fibers only in the presence of glucose and not in the 

presence of extracellular free fatty acids  

Original Hypothesis 2b: Exposure of single muscle fibers to a mitochondrial specific 

antioxidant will attenuate ROS accumulation in single muscle fibers in the presence 

of physiologically relevant levels of free fatty acids, but not in the presence of 

glucose 

 

Revised Specific Aim 2: To determine if repetitive contraction in isolated single 

muscle fibers affects mitochondrial membrane potential in the presence of a 

metabolic substrate that contributes to ROS production. 

Revised Hypothesis 2: Single muscle fibers exposed to physiologically relevant levels 

of extracellular palmitate will exhibit a collapse of the  mitochondrial membrane 

potential without exposure to repetitive contraction. 

 

Methods 

Fiber Isolation: Adult male C57Bl/6 mice between 8 to 10 weeks in age were used for 

fiber isolation (n=21).  Mice were placed in an anesthetizing box with 4% isoflurane.  

After the mouse was anesthetized, it was removed from the box and placed in a 
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rodent face mask to maintain anesthesia.  The hind limbs were removed and placed in 

chilled Krebs-Ringer solution  (KRB) (pH 7.2, 115mM NaCl, 2.5mM KCl, 1.8mM 

CaCl2, 2.15mM Na2HPO4, 0.85mM NaH2PO4)., and the mouse was euthanized.  The 

hind limb was then pinned down to cork board, and the flexor digitorum brevis 

muscle (FDB) was surgically removed.  The muscle was placed in a 6-well plate of 

2ml of dissociation media containing DMEM (ATCC, Manassas, VA) and 

collagenase A (Roche Diagnostics, Mannheim, Germany) (4mg/ml), and was 

incubated at 37°C, 5% CO2 for 2 hours.  The muscle was then triturated with a 3ml 

transfer pipette until it had dissociated, yielding single muscle fibers, and the isolated 

fibers were placed in media with no collagenase overnight at 37°C, 5% CO2. After 

overnight incubation, the muscle fibers were moved to a subsequent well in the 6-well 

plate containing 2ml of one of the following: KRB, 5mM glucose in KRB, 30μM 

palmitate (prepared as bovine serum albumin conjugated palmitate) in KRB, or 100 

μM Mito-TEMPO (Enzo Life Sciences, Inc, Farmingdale, NY), a mitochondria-

targeted antioxidant, in KRB. Fibers were incubated at room temperature for 2 hours. 

For the Mito-TEMPO condition, fibers were first incubated in KRB for 1 hour and 30 

minutes, and then incubated with 100μM Mito-TEMPO for 30 minutes, for a total 

incubation time of 2 hours. 

Fiber Stimulation:  

DCF: Two-hundred and fifty microliters of solution containing single muscle fibers 

was transferred to a custom-built perfusion/electrical stimulation chamber (Fig. 1) 

(Four Hour Day Foundation, Towson, Maryland; thanks to Dr. R. Lovering for use of 

the chamber) with 250μl of KRB at room temperature.  One microliter of 10mM DCF 
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(Life Technologies) was added to the stimulation chamber to yield a DCF 

concentration of 10μM, and fibers were incubated in the dark for 10 minutes.  Fibers 

were stimulated using the S48 Stimulator (Grass Technologies) with pulses at a 

frequency of 80Hz, 400ms train duration of 2ms pulses, as previously described 

(Michaelson et al 2010).  Prior to capturing images, fibers were observed to ensure 

that they were responding to stimulation.  Once contraction in the fiber had been seen, 

image capturing began.  In total, images were captured for 12 fibers per condition. 

 

 

MitoSOX Red: Four microliters of 5mM MitoSOX Red (Invitrogen, Life 

Technologies) was added to the 6 well plate containing single muscle fibers to yield a 

MitoSOX Red concentration of 5μM, and fibers were incubated in the dark for 10 

minutes.  Two-hundred and fifty microliters of solution containing single muscle 

fibers was transferred to the stimulation chamber with 250μl of KRB at room 

Figure 1: Custom-built perfusion/electrical stimulation chamber (Four Hour Day Foundation, Towson, 
Maryland) 
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temperature.  Fibers were stimulated using the S48 Stimulator with pulses at a 

frequency of 80Hz, 400ms train duration of 2ms pulses.  Prior to capturing images, 

fibers were observed to ensure that they were responding to stimulation.  Once 

contraction in the fiber had been seen, image capturing began.  Images were captured 

for 8 fibers per condition. 

TMRE: Ten microliters of 10μM tetramethylrhodamine, ethyl ester (TMRE) was 

added to the 6 well plate containing single muscle fibers to yield a TMRE 

concentration of 50nM, and fibers were incubated in the dark for 10 minutes.  Two-

hundred and fifty microliters of solution containing single muscle fibers was 

transferred to the stimulation chamber with 250μl of KRB at room temperature.  

Fibers were stimulated using the S48 Stimulator with pulses at a frequency of 80Hz, 

400ms train duration of 2ms pulses.  Prior to capturing images, fibers were observed 

to ensure that they were responding to stimulation.  Once contraction in the fiber had 

been seen, image capturing began.  Images were captured for 17 fibers per condition. 

As positive control, for TMRE function, single muscle fibers were exposed to 

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) (Enzo Life Sciences, 

Inc, Farmingdale, NY).  FCCP is known to induce uncoupling of the mitochondria 

and loss of mitochondrial membrane potential. Ten microliters of 10μM TMRE was 

added to the 6 well plate containing single muscle fibers to yield a TMRE 

concentration of 50nM, and fibers were incubated in the dark for 10 minutes.  Two-

hundred and fifty microliters of solution containing single muscle fibers was 

transferred to the stimulation chamber with 250μl of KRB at room temperature.  

Fibers were imaged at baseline, incubated in 200nm FCCP for 10 minutes, and 
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imaged again. Prior to capturing images, fibers were observed to ensure that they 

were responding to stimulation.  Once contraction in the fiber had been seen, image 

capturing began.  Images were captured for 7 fibers per condition. 

Fiber Imaging and Analysis:  Fibers were observed using the Axio Observer Z.1 

epifluorescence microscope (Zeiss).  Fluorescence was captured at baseline and every 

2 minutes during contractile activity for 10 minutes. Minimum and maximum 

fluorescence was established by loading fibers with 10mM dithiothreitol (DTT) for a 

fully reduced condition, and 1mM H2O2 for a fully oxidized condition (n=3 fibers per 

condition).  The intensity of fluorescence was measured using ImageJ, and compared 

to the baseline conditions.  The total area of the muscle fiber was selected free hand 

and both area and integrated density were measured.  This was repeated twice for 

each fiber.  The same measurements were then made for the background of the image.  

Intensity of fluorescence was determined by calculating the corrected total cell 

fluorescence (CTCF) for each image.  CTCF is calculated in the following way: 

integrated density – (area of fiber x mean fluorescence of background reading).  

CTCF at each time point was then compared to CTCF at baseline. 

Statistics: Statistical Analysis System (SAS) software was used to for data analysis.  

For both Specific Aim 1 and Specific Aim 2, statistical significance was determined 

using a two-way repeated measures ANOVA.  When an interaction was found, the 

test was followed by a Student Neuman-Keuls test for post-hoc analysis.  A p value  

of <0.05 was considered significant.   
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Results 

Krebs-Ringer: 

DCF fluorescence was measured in single muscle fibers after incubation in KRB.  

DCF fluorescence is presented as percent increase from baseline, with and without 

electrical field stimulation.  Significant increases in DCF fluorescence from the 0 

time point was observed at 6 and 10 minutes after the initiation of the electrical 

stimulation (Fig. 3).  No significant differences were found in the unstimulated 

conditions at any time point (Fig. 3).  However, significant differences were detected 

between the stimulated and unstimulated conditions at the 10 minute time point. 

 

 

 

Figure 2: Single muscle fibers isolated from the FDB muscle imaged using brightfield microscopy and the 
fluorescent probe DCF 



15 
 

 

 

 

 

Glucose: 

DCF fluorescence was measured in single muscle fibers after incubation in KRB 

supplemented with 5mM glucose, with and without electrical field stimulation.  

Significant differences in DCF were detected between the 0 min time point and the 10 

min time point in the unstimulated condition (Fig. 4).  No significant differences over 

time were detected in the stimulated condition.  No significant differences were seen 

between the stimulated and unstimulated conditions. 

0

100

200

300

400

500

600

700

0 4 6 8 10

P
e

rc
e

n
t 

In
cr

e
as

e
 F

ro
m

 B
as

e
lin

e
 

Time (minutes) 

Stim

Unstim

Krebs-Ringer 

Figure 3: DCF fluorescence measured in single muscle fibers after incubation in 

Krebs-Ringer.  No significant differences in percent increase from baseline were 

observed at any time point between the stimulated (n=10) or unstimulated (n=9) 

groups.  Bars represent means ± SEM. * indicates significantly different from 0 time 

point for Stim group only (p<0.05), # indicates significantly difference between Stim 
and Unstim groups (p<0.05). 
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Palmitate: 

DCF fluorescence was measured in single muscle fibers after incubation in KRB 

supplemented with 30µM palmitate with or without electrical field stimulation.  

Significant differences in DCF fluorescence from the 0 time point were observed at 6, 

8, and 10 minutes in both the stimulated and unstimulated conditions (Fig. 5).  No 

significant differences were seen between the stimulated and unstimulated conditions. 

 

0

100

200

300

400

500

600

700

0 4 6 8 10

P
e

rc
e

n
t 

In
cr

e
as

e
 F

ro
m

 B
as

e
lin

e
 

Time (minutes) 

Stim

Unstim

Glucose 

Figure 4: DCF fluorescence measured in single muscle fibers after incubation in 

glucose.  No significant differences in percent increase from baseline were observed 

at any time point between the stimulated (n=11) or unstimulated (n=12) groups.  Bars 
represent means ± SEM.  $ indicates significantly different from 0 time point for 

Unstim group only (p<0.05). 
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Mito-TEMPO: 

In order to assess the origin of ROS production during contraction, DCF fluorescence 

was measured in single muscle fibers after incubation in KRB supplemented with the 

mitochondria-targeted antioxidant Mito-TEMPO with or without electrical field 

stimulation. Surprisingly, DCF fluorescence increased with the Mito-TEMPO 

treatment (Fig. 6) at 4 and 6 minutes in the stimulated and at 4, 6, 8, and 10 minutes 

in the unstimulated conditions.  The increase induced by the Mito-TEMPO exposure 

was not a result of the dilution vehicle (data not shown).  No significant differences 

were observed between the stimulated or unstimulated conditions (Fig. 6).  In 

addition, a surprisingly high number of fibers treated with Mito-TEMPO and exposed 

0

100

200

300

400

500

600

700

0 4 6 8 10

P
e

rc
e

n
t 

In
cr

e
as

e
 F

ro
m

 B
as

e
lin

e
 

Time (minutes) 

Stim

Unstim

Palmitate 

Figure 5: DCF fluorescence measured in single muscle fibers after incubation in 

palmitate.  No significant differences in percent increase from baseline were observed 

at any time point between the stimulated (n=10) or unstimulated (n=10) groups.  Bars 
represent means ± SEM.  . * indicates significantly different from 0 time point for 

Stim group only (p<0.05),  $ indicates significantly different from 0 time point for 

Unstim group only (p<0.05). 
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to electrical stimulation died during experiment (4 out of 8).  In contrast, no fibers in 

the unstimulated condition died.  No significant differences were seen between the 

stimulated and unstimulated conditions at any time point. 

 

 

 

MitoSOX Red:  To assess mitochondria-specific ROS production, MitoSOX red 

fluorescence was measured in singe muscle fibers after incubation in KRB 

supplemented with the mitochondria-targeted antioxidant Mito-TEMPO, with or 

without electrical field stimulation.  Interestingly, MitoSOX fluorescence was found 

to be localized in the nuclei.  Upon further research, it was discovered that the use of 

a filter with excitation at 396nm and emission greater than 560nm was needed to 

observe mitochondria-specific fluorescence with MitoSOX red (Pearson et al 2014).  

The microscope used for our experiment only had a filter wit excitation at 525nm, 

resulting in non-specific fluorescence. 
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Figure 6: DCF fluorescence measured in single muscle fibers after incubation in 

Krebs-Ringer and Mito-TEMPO.  No significant differences in percent increase from 
baseline were observed at any time point between the stimulated (n=8) or 

unstimulated (n=8) groups.  Bars represent means ± SEM. 
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TMRE: 

To determine if the increased ROS production leads to an alteration in mitochondrial 

membrane potential, single muscle fibers were loaded with TMRE.  Numerous pieces 

of literature have hypothesized that excess mitochondrial ROS production results in 

mitochondrial uncoupling and leads to membrane potential collapse.  Our results 

demonstrated that exposure of the single muscle fibers to palmitate led to high ROS 

production, thus these experiments were completed with palmitate exposure.  TMRE 

fluorescence was measured in single muscle fibers after incubation in KRB 

supplemented with 30µmM palmitate, as percent change from baseline, with and 

without electrical field stimulation.  No significant differences were observed 

between the stimulated or unstimulated conditions (Fig. 7).  No significant 

differences were seen with time in both the stimulated and unstimulated conditions.  

As a positive control, TMRE loaded single muscle fibers were treated with FCCP, a 

mitochondrial uncoupler, which resulted in a significant 25% decrease in TMRE 

fluorescence (data not shown).   
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Discussion 

 In this study, the results demonstrate that ROS production was influenced by 

alterations in extracellular metabolic substrate exposure.  The largest increases in 

ROS generation were seen when muscle fibers were cultured with physiological 

concentrations of extracellular palmitate, with significant increases found over time 

with and without contraction.  However, no significant differences were seen over 10 

minutes between contracting and non-contracting fibers.  Modest increases in ROS 

generation were found when the muscle cells were exposed to glucose, suggesting 

that extracellular substrate exposure influences ROS production.  Mitochondrial 

membrane potential was determined with TMRE exposure.  The results found no 

changes in TMRE, indicating the large increases in ROS production do not always 

result in alterations to mitochondrial membrane potential.  Further, the results 
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Figure 7: TMRE fluorescence measured in single muscle fibers after incubation in 

palmitate.  No significant differences in percent change from baseline were observed 

at any time point between the stimulated (n=17) or unstimulated (n=17) groups.  Bars 

represent means ± SEM. 
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demonstrate that increasing energetic demand on the cell through active muscle 

contraction does not result in reduced ROS production when single muscle fibers are 

exposed to extracellular palmitate.  Likewise, no significant differences in 

mitochondrial membrane potential were observed between the contracting and non-

contracting muscle fibers.  The results provide novel insight into the importance of 

considering metabolic flux when assessing ROS dynamics in skeletal muscle cells. 

Many studies have shown that with contraction, ROS production is increased 

in single muscle fibers (Sakellariou et al 2013, Michaelson et al 2010, Pearson et al 

2014).  A number of these studies have implicated NADPH oxidase as a major source 

of ROS production during contraction, and downplayed the contributions of the 

mitochondria (Sakellariou et al 2013, Michaelson et al 2010).  However, in these 

experiments, single muscle fibers were cultured and exposed to electrical stimulation 

in the presence of glucose or no metabolic substrate at all.  The fact that muscle fibers 

were in the presence of glucose or no metabolic substrate is an important factor to 

consider in the interpretation of the results, as ATP production would be primarily 

derived from glycolysis due to lower activation of the mitochondria.  Thus, it is not 

surprising that low levels of ROS are generated from the mitochondria during 

contraction under these conditions.  Mitochondrial activation is largely driven by 

metabolic flux and in order to ensure activation of the mitochondria, the culture 

conditions would likely need to provide substrates that are specifically catabolized by 

the mitochondria (i.e. fatty acids).   

To my knowledge, this is the first study in which ROS production was 

measured in contracting single muscle fibers in the presence of a fatty acid 
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(palmitate).  In previous studies, incubation of resting (i.e. non-contracting) skeletal 

muscle with physiological concentrations of palmitate resulted in increased ROS 

production attributed to the mitochondria and NADPH oxidase. (Lambertucci et al 

2008).  Indeed I found high levels of ROS production measured by DCF fluorescence 

with palmitate incubation, regardless if the fibers were exposed to contraction.  

Surprisingly, the introduction of contraction induced by electric field stimulation did 

not reduce the amount of ROS produced when the fibers were exposed to palmitate.  

Anderson and colleagues have hypothesized that an excess flux of lipid into skeletal 

muscle will cause a surplus of reducing agents and an elevation of the redox state of 

complex I of the mitochondria, because the energetic demand of the muscle does not 

match the rate of metabolic flux into the mitochondria (Anderson et al 2009).  

Specifically, it was proposed that at rest, the rate of electron leak from complex I is 

highly sensitive to the redox state, meaning the excess of reducing agents would lead 

to an increase in ROS production from the mitochondria in muscle (Anderson et al 

2009).  However in contrast, with contraction, the increase in energetic demand 

would be expected to mitigate the oxidative stress on the mitochondria in the 

presence of palmitate due to enhanced coupling of mitochondria.  Mitochondria 

uncoupling occurs when substrate flux exceeds energetic demand; thus, mitochondria 

must release pressure on the membrane potential by allowing for ROS production.  

However, our results show the same increase in ROS production occurred with 

repetitive contraction in the presence of palmitate.  Further, no decreases in TMRE 

signal was detected under either condition, suggesting the mitochondrial membrane 

potential was maintained in the face of high ROS production.  It should be noted that 
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treatment of the fibers with FCCP (a mitochondrial uncoupler) resulted in a 

significant loss in TMRE signal, confirming that TMRE conditions were appropriate.  

Current dogma suggests that repetitive contraction should decrease the surplus of 

reducing agents due to increases in energetic demand; however, our data are in 

conflict with this interpretation.  My results would suggest that a direct relationship 

between energetic demand and the generation of ROS production might not exist in 

skeletal muscle.  

 Our data likely conflicts with the current dogma because the dogma was 

established by inducing state 4 respiration in the muscle cells.  State 4 respiration is a 

direct measure of mitochondrial oxygen under conditions of zero to low ATP 

demand.  State 4 respiration is typically achieved by exposing the mitochondria or 

cells to oligomycin, a potent ATP synthase inhibitor.  State 4 respiration is a non-

physiological state of the cell that investigators use to assess minimal oxygen 

respiration kinetics of the mitochondria.  In previous studies using oligomycin to 

induce state 4 respiration, there have been substantial increases in ROS generation by 

the mitochondria (Tan et al 1998, Roy et al 2008).  In most studies of skeletal muscle, 

state 4 respiration was induced by oligomycin in permeabilized muscle fibers 

(Anderson et al 2009, Larsen et al 2012) or isolated mitochondria (Hoeks et al 2012, 

Adjeitey et al 2013).  In my study, single muscle fibers were kept intact and cultured; 

thus, the fibers would have a basal energetic demand and would not exist in state 4 

respiration by definition.  My results indicate that increasing energetic demand with 

contraction does not significantly affect ROS generation in the presence of palmitate.  

Thus, my data do not collectively support the concepts of enhanced ROS production 
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due to increased pressure on the mitochondria as a result of increased substrate flux.  

This is likely due to investigators use of an artificial state 4 respiration approach.  

Another aim of this study was to determine the primary source of ROS 

generation under rest and contracting conditions.  Based on previous literature, both 

the mitochondria and NADPH oxidase have been implicated in ROS generation 

during contraction (Muller et al 2004, Barja 1999, Michaelson et al 2010, Pearson et 

al 2014).  To determine which of these sources contributed to ROS generation during 

contraction, I pre-treated my cells with Mito-TEMPO, a mitochondrial-targeted 

antioxidant.  However, during the course of data collection with Mito-TEMPO, I 

continually found large increases in ROS generation when using DCF.  Although 

initially surprising to us, the finding is actually quite important.  Mito-TEMPO is a 

mitochondrial specific chemical superoxide dismutase (SOD) mimetic that converts 

mitochondrial O2
-
 into H2O2, and because DCF fluorescence is a non-specific ROS 

indicator, the rise in DCF signal likely means increased ROS generation from the 

mitochondria.  Specifically, it appears that mitochondria are in fact producing O2
-
 in 

response to muscle contraction.  Another interesting observation, but one that we did 

not assess statistically, was that fibers exposed to Mito-TEMPO and contraction often 

died, suggesting that enhanced O2
-
 buffering in the mitochondria is harmful to the 

muscle cell.  Because of the non-specificity of DCF, a new approach was taken to 

determine the source of ROS generation.  Instead of DCF, MitoSOX Red was used, 

which is described as a specific indicator of mitochondrial O2
-
 production.  In 

previous studies of contracting skeletal muscle, MitoSOX Red has been used 

successfully as probe for mitochondrial ROS generation (Pouvreau 2010, Pearson et 
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al 2014).  However, when used in this study, fluorescence was not observed in the 

mitochondria, but instead the signal was prominently found in the myonuclei.  

MitoSOX Red is described as a specific indicator of O2
-
 produced by the 

mitochondria (Mukhopadhyay et al 2007); however, using a detailed literature search, 

I have found literature that suggests MitoSOX Red does not always specifically react 

to mitochondrial O2
-
.  

 MitoSOX Red, also known as Mito-HE, is supposed have increased 

localization to the mitochondria compared to its counterpart hydroethidine, or HE.  

However, if a cellular compartment has a more negative membrane potential, 

MitoSOX Red can co-localize in this location as well (Kalyanaraman et al 2014).  In 

my experiments, fluorescence from MitoSOX Red was strongest in the nuclei (data 

not shown).  Also, when using MitoSOX Red fluorescence, multiple products can be 

formed that have similar emission spectra. When HE and Mito-HE react with O2
-
, a 

red fluorescent product, 2-hydroxyethidium (2-OH-E
+
) is formed (Zielonka and 

Kalyanaraman 2010).  In a system where only O2
-
 is being generated, this would be 

the only expected product of the reaction, but inside of the skeletal muscle fiber, there 

are other compounds and metals that are present that can react with MitoSOX Red to 

produce ethidium (E
+
) (Kalyanaraman et al 2014).  Unfortunately, E

+
 also is a red 

fluorescent product with an overlapping spectra to 2-OH-E
+
, with previous studies 

showing about a ten-fold higher level of E
+
 formation compared to 2-OH-E

+
 

formation (Zhao et al 2005, Zielonka and Kalyanaraman 2010).  This means that any 

changes in 2-OH-E
+
 levels due to the reaction between Mito-HE and O2

-
 would likely 

be masked by the fluorescence of E
+
, making it difficult to properly interpret the 
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results of my study.  It was recently discovered that MitoSOX Red can be specific to 

mitochondrial O2
-
, but only when excited at a wavelength between 385-405nm, which 

is not consistent with the product insert.  Unfortunately, due to limitations of our 

microscope, it is not possible to excite at this wavelength and emit in the red 

wavelength.  Thus, we concluded that data derived from the use of MitoSOX Red was 

likely non-specific to mitochondrial O2
-
, and we did not continue with the MitoSOX 

Red work as planned. 

 Due to the ineffectiveness of MitoSOX Red as a fluorescent probe, the 

approach for Specific Aim 2 was changed to address the response of the 

mitochondrial membrane potential in contracting and non-contracting single muscle 

fibers under conditions of increased ROS production.  Based off of the results of 

palmitate incubation in Specific Aim 1, it was hypothesized that there would be a 

significant decrease in mitochondrial membrane potential in non-contracting single 

muscle fibers incubated in palmitate; however, no changes would be detected in 

contracting single muscle fibers incubated in palmitate. Surprisingly, no significant 

changes in mitochondrial membrane potential were observed in either contracting or 

non-contracting single muscle fibers.  The fact that no change in mitochondrial 

membrane potential was seen in non-contracting fibers is important because it 

demonstrates that mitochondrial function is not significantly altered in muscle cells ex 

vivo.  These results also suggest that while short term exposure to fatty acid may 

induce an increase in ROS generation in skeletal muscle, this increase in ROS 

production is not enough to compromise mitochondrial function.  To date, there has 

been little research done on assessing mitochondrial membrane potential in 
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contracting single muscle fibers.  In a study of contracting single muscle fibers 

monitoring mitochondrial Ca
2+

 uptake, it was shown that Ca
2+ 

localization was co-

localized with tetramethylrhodamine, methyl ester (TMRM), which is also used to 

assess mitochondrial membrane potential (Rudolf et al 2004).    However, only the 

change in Ca
2+

 uptake was assessed with contraction, with TMRM fluorescence only 

being assessed at baseline. One study has been done by Gandra and colleagues 

monitoring mitochondrial membrane potential in contracting single muscle fibers 

from Xenopus laevis.  This study found that with repetitive contraction, mitochondrial 

membrane potential initially decreases, but is quickly restored within the first minute 

of contractions to levels that are not significantly different from baseline (Gandra et al 

2012).  The results of my study are in agreement with these findings, with no 

significant difference seen in mitochondrial membrane potential over a 10 minute 

period of repetitive contraction. One possible approach to take in future studies would 

be perform a similar experiment with TMRE using skeletal muscle fibers from obese 

mice on a high fat diet.  In a study of mitochondria isolated from human skeletal 

muscle of lean and obese individuals, mitochondrial H2O2 emission was significantly 

higher in obese subjects than the lean subjects (Anderson et al 2009).  It was also 

found that mitochondria in permeabilized muscle fibers from lean individuals had 

increased mitochondrial H2O2 emission during state 4 respiration four hours after a 

high fat meal; however, it is unclear if this finding would be confirmed under more 

physiological conditions.  It would be interesting to use the same approach from 

Specific Aim 2 to see if there is also any difference in mitochondrial membrane 

potential between mitochondria of lean and obese individuals, while also examining if 
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there any differences in ROS generation.  Using the approach from Specific Aim 2 

would allow for an ex vivo analysis of mitochondrial function in intact skeletal 

muscle fibers, which would likely be a more accurate representation of in vivo 

mitochondrial function.  

 The results of this study show that ROS generation in both contracting and 

non-contracting single muscle fibers is influenced by extracellular metabolic substrate 

exposure.  In addition, the findings confirm that contraction does result in significant 

elevations in ROS; however, our data do indicate that that ROS generation is 

occurring in the mitochondria, which contradicts recent results (Sakellariou et al 

2013).  The largest increases in ROS generation were seen in muscle fibers incubated 

with palmitate.  However, the increases in ROS generation under these conditions 

were not enough to induce a decrease or collapse in mitochondrial membrane 

potential as one might predict.  This suggests that the acute increases in ROS 

generation and fatty acid exposure are not enough to cause mitochondrial 

dysfunction. In the future, it will be necessary to assess the effects of chronic lipid 

exposure to better understand their long-term effects on ROS generation and 

mitochondrial function, and their contributions to different diseases states.  Overall, 

the data collected in this thesis demonstrate the importance of considering metabolic 

substrate conditions in the media, and also provide preliminary evidence that the use 

of state 4 respiration approaches may be providing misleading results to the field 

concerning the induction of mitochondrial pressure by nutrient overload. 
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Review of Literature 

Skeletal muscle is a multi-function tissue 

 Skeletal muscle is a striated tissue composed of interconnected sarcomeres 

that contain organized bundles of myofibrils.  Skeletal muscle is required for 

movement, breathing, posture, heat production, and metabolic substrate storage.  

Skeletal muscle contraction. For movement to occur, skeletal muscle requires input 

from the nervous system via motor nerve.  Activation of the motor neuron induces 

acetylcholine release into neuromuscular junction resulting in the generation of an 

action potential on the sarcolemma of the skeletal muscle fiber.  The depolarization of 

the membrane signals Ca
2+

 to be released from the sarcoplasmic reticulum (SR), 

resulting in calcium binding to troponin and inducing a conformational shift in 

tropomyosin. This shift encourages strong binding of the myosin and actin filaments, 

resulting in force production by the muscle cell.  In order for force development to 

occur, all components of a motor unit (motor neurons and muscle fibers) need to be 

properly functioning. For example, contraction of the diaphragm ensures adequate 

respiration, with dysfunction of this muscle contributing to respiratory failure 

(Moxham et al 1981).  In degenerative diseases such as ALS and muscular 

dystrophies, dysfunction or weakness of the respiratory muscles can occur and 

potentially be fatal (Boillee et al 2006, Laghi and Tobin 2003).  Thus, understanding 

mechanisms that influence force production is important. 

When skeletal muscles contract, heat is produced as a result of ATP being 

hydrolyzed.  For example, it has been estimated that up to 85% of heat produced from 
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shivering comes from muscular contraction (Bell et al 1992), so it is important for 

skeletal muscle to be functioning properly to regulate body temperature. 

Metabolic substrate storage. Skeletal muscle is also used to store metabolic substrates 

such as glucose or free fatty acids in the form of glycogen or triglycerides, 

respectively.  Due to the volume of skeletal muscle in the body, the majority of 

glycogen is stored in skeletal muscle (approximately 500g).  Glycogen is a preferred 

substrate during repetitive contraction and can quickly be broken down into glucose 

and used to produce ATP during times of energetic stress (Jensen et al 2011).  

Triglycerides (TAG) are predominantly stored in lipid droplets that are found 

intramuscular and intermuscular regions contributing to energy production via the 

mitochondria during bouts of prolonged exercise (Gorski 1992).  With endurance 

exercise training, both glycogen storage (Greiwe et al 1999) and TAG storage (van 

Loon and Goodpaster 2006) increase demonstrating their importance for times of 

energetic demand.   

Secretory potential of skeletal muscle.  Skeletal muscle has the ability to release 

cytokines, known as myokines, into circulation.  These myokines include myostatin, 

IL-6, and insulin-like growth factor I (IGF-I), and can have autocrine, paracrine, and 

endocrine effects (Pedersen and Febbraio 2012).  Myostatin knockout mice exhibit 

significant muscle hypertrophy, showing that it plays a role in regulating skeletal 

muscle growth (McPherron et al 1997).  IL-6 released from skeletal muscle was 

shown to have an effect on the pancreas, increasing glucagon-like peptide-1 (GLP-1) 

secretion, and thus insulin secretion (Ellingsgaard et al 2011).  IGF-I is produced in 

skeletal muscle in response to mechanical loading (Turner et al 1988).  Receptors for 
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IGF-1 are localized to the periosteum at the muscle-bone interface, suggesting that 

muscle-derived IGF-1 contributes to bone growth and formation (Hamrick et al 

2010). 

 

Energy derived from ATP is critical for muscle function 

 Energy is required for many cellular processes in skeletal muscle, and this 

energy is released from the hydrolysis of ATP.  Force production by skeletal muscle 

is a result of active cross bridge cycling.  The cross-bridge cycle is an ATP dependent 

process.  The myosin ATPase localized in the S-1 head of myosin hydrolyzes ATP 

during the cycle (Sugi 1993) allowing for the detachment of myosin and actin 

(Huxley 1957).  ATP is also required for pumping Ca
2+

 ions back into the SR via 

SERCA located in the membrane of the SR.  SERCA activation has two important 

functions: lowering cytosolic Ca
2+

 concentration to cause muscle relaxation and 

restoration of the SR Ca
2+

 concentration to allow for a subsequent contraction to 

occur (Periasamy and Kalyanasundaram 2007).  For every one molecule of ATP that 

is hydrolyzed, two Ca
2+

 ions can be transported by SERCA back into the SR 

(Periasamy and Kalyanasundaram 2007).  Another cellular function that ATP is 

required for is the pumping of Na
+
 and K

+
 ions across the sarcolemma to allow for 

restoration of the membrane potential after the completion of an action potential.  Na-

K-ATPase is a transport protein expressed in many different cell types that hydrolyses 

ATP to transport Na
+
 and K

+
 ions across cell membranes.  Na-K-ATPase is critical 

for the maintenance of osmotic balance, resting membrane potential, and the excitable 

properties of muscle cells (Blanco and Mercer 1998).  One last cellular process that 
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requires ATP is glycolysis.  Glycolysis is metabolic pathway that allows catabolizes a 

glucose molecule to produce four molecules of ATP.  However, in order to 

completely catabolize glucose to pyruvate two molecules of ATP are required to 

convert glucose into glucose-6-phosphate and fructose-6-phosphate into fructose-1,6-

biphosphate (Kim and Dang  2005).  Thus, although four ATP molecules are yielded 

from glycolysis, two ATP molecules are first required to complete the pathway. 

  

Mitochondria are an important organelle for proper skeletal muscle function 

 In skeletal muscle, mitochondria are necessary for aerobic respiration, and 

produce a majority of the ATP needed for various cellular processes.  Mitochondrial 

dysfunction is often associated with reduced skeletal muscle function since the 

mitochondria is a critical buffer to various types of energetic stress.  Patients with 

T2D exhibit decreased peripheral insulin sensitivity (Pirola et al 2004), which is often 

associated with decreased mitochondrial function.  In patients with T2D, genes 

associated with oxidative phosphorylation, such as peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-

1) have been shown to be significantly decreased compared to healthy controls 

(Mootha et al 2003, Patti et al 2003).  Studies examining the offspring of people with 

T2D have seen reduced mitochondrial density, ATP production, and mitochondrial 

mRNA levels coupled with insulin resistance (Peterson et al 2004, Morino et al 2005, 

Morino et al 2012).  Another case where mitochondrial dysfunction may contribute to 

reduced skeletal muscle function is aging.  Although muscle mass and strength both 

decline with age, studies have shown that loss in strength precedes loss in muscle 
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mass (Metter et al 1999, Goodpaster et al 2006).  With aging, changes in 

mitochondria such as decreased total volume, oxidative capacity, and biogenesis are 

thought to contribute to decreased muscle quality (Peterson et al 2012).  Elderly 

adults with reduced mitochondrial activity have increased lipid accumulation and 

reduced glucose tolerance, supporting the idea of a reduction of muscle quality with 

aging (Johannsen et al 2012).  Another piece of evidence that mitochondrial 

dysfunction plays a role in skeletal muscle aging is the polymerase gamma mutator 

(PoIG) mouse model.  In this model, there is an accumulation in somatic mtDNA 

mutations and the development of symptoms of accelerated aging including alopecia, 

graying hair, weight loss, poor body conditions, and impaired mobility (Safdar et al 

2011).  These mice also exhibit increase oxidative damage to mitochondria protein 

and DNA and a reduction in skeletal muscle mass (Kolesar et al 2014) with a 

subsequent increase in muscle glycolysis and liver (Saleem et al 2015).  Interestingly 

endurance exercise training protected the mice from the age-related phenotypes 

(Safdar et al 2011). 

 

Mitochondrial function is necessary for exercise 

 With high intensity exercise, there is up to a 400 fold increase in energy 

turnover in skeletal muscle, and up to a 100 fold increase in muscle oxygen 

consumption (Tonkonogi and Sahlin 2002).  Although a portion of the ATP produced 

in skeletal muscle can come from the phosphocreatine or glycolytic pathways, up to 

90% comes from aerobic respiration in the mitochondria (Bo et al 2010).  Therefore, 

it is important that the mitochondria are functioning properly to maintain normal 
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muscle function, exercise capacity, and peripheral metabolic function.  Negative 

effects on exercise capacity have been shown with varying severity of mitochondrial 

dysfunction.  Taivassalo and colleagues found that subjects with mitochondrial 

dysfunction due to differing mutations in mtDNA had a significantly lower work 

capacity, VO2, and peak systemic a-vO2 difference during exercise compared to 

healthy control subjects.  Within the subjects with mitochondrial dysfunction, 

exercise capacity varied widely due to varying levels of oxidative capacity.  

Interestingly, while at rest, VO2, ventilation, and respiratory exchange ratio (RER) 

did not differ between groups.  Another study by Conley and colleagues (2007) 

examined the oxidative capacity of skeletal muscle from elderly and young adults.  It 

was found that elderly subjects had a reduced oxidative capacity, mitochondrial 

content, and lower oxidative phosphorylation capacity per mitochondrial content 

compared to younger adults.  This can have an effect on activities of daily living, like 

walking, which has been shown to have a 30% higher energetic cost in elderly 

subjects than in young subjects (Malatesta et al 2003).  These studies demonstrate the 

importance of proper mitochondrial function in different populations, and that 

mitochondrial dysfunction can be detrimental at a physiological level. 

 

Mitochondrial dysfunction leads to reactive oxygen species production 

 Although regularly produced in cells, excess ROS production can occur due 

uncoupling of mitochondrial flux compared to the energetic demand.  To generate 

ATP, mitochondria utilize electron transport chain (ETC).  The ETC is complex of 

proteins that work in unison to move electrons derived from donor molecules (NADH 
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or FADH) through the complexes. The movement of electrons allows for the 

development of a protein gradient within the inner membrane space of the 

mitochondria that creates the necessary potential energy necessary to drive ATP 

synthesis.  The transfer of the electrons through the complex requires oxygen to 

accept the electrons.  However, if the flux through the complexes is not met by an 

equal energetic demand it can lead to the production of ROS. Mitochondria have 

scavenging mechanisms to buffer ROS production; however under certain conditions 

ROS production can occur at a faster rate than the mitochondria scavenging capacity 

can buffer.  It has been estimated that this can result in about one to three percent of 

consumed oxygen being reduced prematurely resulting in ROS production (Boveris 

and Chance 1973).  The ROS molecules produced from this include O2
-
, H2O2, and 

OH•.  O2
-
 is mostly produced by electron chain transport (ETC) complexes I and III, 

which is then scavenged by manganese superoxide dismutase (MnSOD) to produce 

H2O2 (Turrens and Bovaris 1980, Turrens et al 1982).  The enzyme glutathione 

peroxidase (GPx) is then able to convert H2O2 to water, which detoxifies the ROS 

(Kirkinezos and Moraes 2001).  Excessive production of ROS is associated with the 

onset and/or exacerbation of a number of different chronic health conditions 

including insulin resistance, T2D, obesity, chronic inflammation, cardiovascular 

disease, hypertension, Alzheimer’s disease, and Parkinson’s disease (Alfaada and 

Sallam 2012, Brieger et al 2012). 
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Non-mitochondrial enzymes can increase reactive oxygen species production 

 Besides mitochondria, there are other organelles and cell processes 

responsible for producing ROS.  NADPH oxidase is known to produce ROS in a 

variety of cells and tissues.  There are various homologues of NADPH oxidase that 

have been identified, but they all are transmembrane proteins that transport electrons 

across membranes to reduce O2 to O2
-
 (Bedard and Krause 2007).  Other ROS such as 

H2O2 can be produced from O2
-
, and this ROS generation can then be used 

functionally for processes such as the induction of host defense genes, 

phosphorylation of kinases, activation of transcription factors, and the mobilization of 

ion transport systems (Touyz and Schiffrin 2004).  The NADPH oxidase complex has 

been observed in adipose tissue (Krieger-Brauer and Kather 1992), the testes, the 

spleen, lymph nodes (Banfi et al 2001), the prostate (Kikuchi et al 2000), the heart 

(Oudot et al 2003), the pancreas (Tsubouchi et al 2005), neurons (Tammariello et al 

2000, Vallet et al 2005), among many other tissues and organs.  Unlike other 

biological processes where ROS production occurs as a byproduct, ROS generation 

appears to be the primary function of the NADPH oxidase system.  Because of the 

ubiquitous nature of NADPH oxidase, its roles in specific cells and tissues, such as 

skeletal muscle, are still being examined.   

 Xanthine oxidase (XO) is another source of ROS production found throughout 

the body.  XO catalyzes the conversion of hypoxanthine into xanthine, and xanthine 

into uric acid, producing H2O2 in the process.  It is also able to produce O2
-
 (Kelley et 

al 2010).  Inhibition of XO with drugs like allopurinol are often used to treat gout 

(Dawson and Walters 2006), but may also be helpful in decreasing ROS production.  
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In hypoxia-reoxygenation-injured rat cardiomyocytes, XO inhibition using 

allopurinol was shown to decrease ROS production, along with decreased 

intracellular Ca
2+

 overload (Kang et al 2006).  In mice with diastolic dysfunction, 

treatment with allopurinol led to decreased myocardial oxidative stress accompanied 

with the prevention of pathological remodeling of the heart (Jia et al 2012).  These 

studies suggest targeting XO to help with treatment in cardiovascular patients may be 

viable. 

 Nitric oxide synthases (NOS) are another family of enzymes that are able to 

generate ROS.  NOS are responsible for producing NO, which is critical in the 

regulation of systemic blood pressure, intracellular Ca
2+

 levels, and vasorelaxation 

(Vasquez-Vivar et al 1998).  Endothelial NOS (eNOS) and neuronal NOS (nNOS) 

have both been shown to produce O2
-
 (Pou et al 1992, Vasquez-Vivar et al 1998).  

Although NO production is beneficial, eNOS dysfunction due to uncoupling can have 

negative physiological effects.  In this case, uncoupling of eNOS causes O2
-
 

production to increase, with decreased NO production (Yang et al 2009).  The 

increase in ROS due to eNOS uncoupling has been implicated in the contribution of 

multiple diseases states including hypertension, diabetes, atherosclerosis, ischemic 

heart disease, acute lung injury, and smoking related illnesses (Gielis et al 2011). 

 Cytochrome P450 monooxygenases (CYPs) are a family of enzymes that 

oxidize, peroxidize, or reduce many different types of chemical compounds 

throughout the body, including the liver, heart, vasculature, and lungs (Gottlieb 

2003).  As a byproduct of its reactions, CYPs produce both O2
-
 and H2O2.  Normally, 

these ROS react with the substrate of the reaction, but uncoupling of CYP can occur, 
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leading to excess ROS production (Lewis 2002).  CYPs have been shown to generate 

ROS in both the coronary arteries (Fleming et al 2001) and the heart (Granville et al 

2004), demonstrating their possible role in cardiovascular injury.   

 One other source of intracellular ROS is via endoplasmic reticulum (ER) 

stress.  In the ER, proteins are folded and assembled appropriately, and then 

transferred throughout the cell.  However, proteins can be misfolded or unfolded, and 

when accumulated, can cause ER stress (Oslowski and Urano 2011).  There are many 

consequences of ER stress, including excess ROS production.  It is estimated that 

approximately 25% of ROS produced by a cell originates from the formation of 

disulfide bonds in the ER (Tu and Weissman 2004).  During the formation of these 

disulfide bonds, ER oxioreductin (ERO1) and protein disulfide isomerase (PDI) 

catalyze these reactions, and generate ROS as a byproduct.  If proteins are misfolded, 

glutathione (GSH) is needed to reduce unstable disulfide bonds so they can again 

react with ERO1 and PDI.  It has been theorized that this cycle can lead to excess 

ROS due to both generating ROS and depleting GSH levels in the ER (Malhotra and 

Kaufman 2007) 

 

ROS are produced during contraction in skeletal muscle 

 During the late 1970’s, the first evidence that contracting muscle produces 

ROS was reported.  Dillard et al (1978) and Brady et al (1979) reported that during 

exercise in humans and rats, lipid peroxidation was increased.  Soon after, it was 

discovered that free radical concentrations were two to three times higher in skeletal 

muscle following exercise to exhaustion, along with markers of muscle tissue damage 



39 
 

(Davies et al 1982).  Jackson and colleagues (1982) found that after 30 minutes of 

contractile activity, free radical production in mammalian skeletal muscle was 

increased.  In diaphragm bundles from rats, repetitive contractions were also shown to 

induce both O2
-
 and H2O2 production and contribute to fatigue (Reid et al 1992).  

Treatment with antioxidants were then able to protect against fatigue at low 

frequencies, suggesting that contraction induced ROS production can contribute to 

muscular fatigue (Reid et al 1992).    

  

Source of ROS during contraction is likely multi-factoral 

 During contraction, ROS may be generated by different organelles and 

mitochondrial complexes in skeletal muscle.  In the mitochondria, O2
-
 is generated by 

both complex I and complex III (Muller et al 2004, Barja 1999).  Because contractile 

activity causes elevated oxygen consumption and increased mitochondrial activity, it 

has been assumed that there is a 50 to 100 fold increase in O2
-
 generation by skeletal 

muscle (Powers and Jackson 2008).  However, recent research suggests that the 

mitochondria may not play as large a role as previously believed.  In myotubes, a 

four-fold increase was seen in ROS generation during contraction, which is much 

lower than the 50 to 100 fold estimate (McArdle et al 2005).  In single muscle fibers, 

ROS generation was induced by contraction without a change in mitochondrial redox 

potential (Michaelson et al 2010), suggesting that ROS is being predominantly 

produced by another source during contraction.  More recently, contracting single 

muscle fibers were shown to have increased acute cystolic O2
-
 production with slower 

changes in mitochondrial O2
-
 production (Pearson et al 2014).  In these recent studies, 
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experiments were done without the presence of metabolic substrates since there is 

minimal substrate flux into the mitochondria under these condtions. So, more 

research needs to be done before ruling out mitochondria as a source of increased 

ROS generation during contraction.  NADPH oxidase is another possible source of 

ROS generation in contracting skeletal muscle.  In myotubes, ROS generation during 

contraction was significantly lowered with the administration of the NADPH oxidase 

inhibitor apocynin (Espinosa et al 2006).  Likewise, the use of apocynin on single 

muscle fibers produced similar results, with decreased ROS generation with 

contraction (Michaelson et al 2010).  The NADPH oxidase regulatory protein p40
phox

 

was shown to translocate from the cytosol to the sarcolemma in concurrence with 

ROS generation in contracting single muscle fibers, suggesting a link between p40
phox

 

and NADPH oxidase activation (Sakellariou et al 2013).  Other possible sources of 

ROS generation during contraction include phospholipase A2 (PLA2) and XO.  Ca
2+

-

independent PLA2 has been shown to modulate ROS generation in the cytosol of 

skeletal muscle (Gong et al 2006), while Ca
2+

-dependent PLA2 in the mitochondria 

has been shown to induce intracellular ROS generation during contraction (Nethery et 

al 1999).  XO has been shown to induce ROS generation in the cytosol of contracting 

rat skeletal muscle (Gomez-Cabrera et al 2005).  However, humans contain much less 

XO in their skeletal muscle compared to rats, so it’s unclear of XO is significantly 

contributing to ROS generation during contraction (Gomes-Cabrera et al 2003).  

Although both PLA2 and XO have been shown to induce ROS generation in skeletal 

muscle, more research needs to be done to fully understand how much of a role they 

actu 



41 
 

ROS are necessary signaling molecules 

 Under normal physiological conditions, ROS are needed as cell signaling 

molecules throughout the body for processes including cell proliferation, cell 

survival, and cell differentiation (Ray et al 2012).  ROS have been shown to activate 

many MAPK pathways in different cell types. For example, in mouse dendritic cells, 

ROS have been shown to activate the MAPK kinase kinase apoptosis signal-regulated 

kinase 1 (ASK1), which is needed for toll like receptor 4 (TLR4) mediated innate 

immunity (Matsuzawa et al 2005).  H2O2 has been shown to increase ASK1 levels in 

cardiac myoblasts, in turn stimulating p38 MAPK and inducing cell differentiation 

(Choi et al 2011).  Protein kinase A, which among other processes, plays a role in 

MAPK signaling, was shown to be activated by H2O2 in cardiomyocytes (Brennan et 

al 2006).  Another signaling pathway that can be regulated by ROS is the 

phosphoinositide 3-kinase (PI3K) pathway, which is involved in both cell 

proliferation and survival.  In cells overexpressing NADPH oxidase, H2O2 produced 

by the cells showed inactivation of phosphatase and tensin homolog (PTEN), a 

negative regulator of the PI3K pathway (Kwon et al 2004).  When treated with 

insulin, human neuroblastoma cells had increased PI3K activation due to PTEN 

oxidation from increased ROS production (Seo et al 2005).  ROS may also play a role 

in the regulation of cellular iron homeostasis through the iron-responsive element 

(IRE) iron regulatory protein (IRP) pathway.  With treatment with H2O2 in both 

human cells and mouse fibroblasts, IRP2 displayed increased binding to IRE, 

reducing its degradation (Hausmann et al 2011).  This suggests a protective effect of 

H2O2 for IRP2 with high intracellular iron levels.  
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In skeletal muscle, ROS produced from NADPH oxidase was shown to be 

coupled with Ca
2+

 release from the SR (Xia et al 2003).  Also with isometric 

contraction, increased activation of transcription factors such as nuclear factor κB 

(NFκB), activator protein-1 (AP-1) and heat shock factor (HSF) was seen with 

increased ROS generation (Vasilaki et al 2006).   The increase in these transcription 

factors then resulted in increased content of heat shock proteins (HSP), SOD, and 

catalase, which can all act as antioxidants. 

 ROS signaling is also involved in multiple cardiovascular pathways.  In 

endothelial cells, H2O2 has been shown to induce the release of neuregulin-1 (NRG-

1), which has anti-apoptotic effects and is necessary for proper development of the 

heart (Kuramochi et al 2004).  During chronic load-induced stress, NADPH oxidase 4 

was shown to enhance angiogenesis in mouse hearts.  Vascular endothelial grown 

factor (VEGF) signaling was increased in a gain of function mouse model, and was 

decreased in a loss of function model, suggesting a protective effect of NADPH 

oxidase 4 induced ROS generation (Zhang et al 2010).  Likewise, in NADPH oxidase 

4 knockout mice, NO formation and eNOS expression were both significantly 

reduced when compared to controls (Schroder et al 2012).  The fact that ROS are 

expressed and utilized as signaling molecules in a variety of different tissues and cell 

types shows their importance under normal physiological conditions.  However, this 

wide expression means that if unusually high levels of ROS are generated, these 

molecules can be implicated in contributing to disease or dysfunction. 
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Excessive ROS production can lead to oxidative stress 

 Although ROS act as signaling molecules in a plethora of cell types, excessive 

or uncontrolled production can lead to oxidative stress.  Oxidative stress can be 

defined as a disturbance in the balance between the production of pro-oxidants and 

antioxidants (Jones 2006).  When oxidative stress occurs, it can lead to damage such 

as lipid peroxidation, DNA damage, and protein peroxidation.  Lipid peroxidation is 

initiated by ROS, where a polyunsaturated fatty acid (PUFA) has a hydrogen atom 

stripped from the molecule resulting in the formation of a lipid radical.  This lipid 

radical can then react with O2 to form a lipid peroxyl radical, which can then react 

with another PUFA to form lipid peroxide.  Lipid peroxides can then undergo more 

reactions and become things like reactive aldehydes, alkanes, and isoprostanes (Miwa 

et al 2008).  Excessive lipid peroxidation results in cell toxicity.  Damaging effects of 

lipid peroxidation include decreased membrane fluidity and increased ionic 

permeability, which can cause depolarization of membrane potential and toxically 

high levels of intracellular Ca
2+

 (Stark 2005).  DNA oxidation events have been 

estimated to occur around 20,000 times daily in every cell of the human body (Foray 

et al 2003), with a significant portion of these due to ROS.  Hydroxyl radicals react 

with double bonds of DNA bases by addition, and the removal of a hydrogen atom 

from the methyl group of thymine and each C-H bond of 2’-deoxyribose (Cooke et al 

2005).  Damage to DNA can lead to genomic instability and mutations, contributing 

to carcinogenesis or cell death (Miwa et al 2008).  In single cell models, knockouts of 

antioxidants lead to mutagenesis (Gralla and Valentine 1991, Wong et al 2004).  

However, when these cells were grown in anaerobic conditions where ROS could not 
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be generated, mutagenesis was completely reversed (Gralla and Valentine 1991, Ragu 

et al 2007).  Proteins can be oxidized by ROS in numerous ways.  Initially, ROS 

remove a hydrogen atom from an amino acid residue, forming a carbon-centered 

radical and resulting in a chain reaction where side reactions occur with other amino 

acid residues to form new radicals (Berlett and Stadtman 1997).  Oxidative damage to 

proteins can cause inactivation of enzymatic function.  Examples of this include 

aconitase, GAPDH, carbonic anhydrase, and glutamine synthase (Gardner and 

Fridovich 1991, Woo et al 2005, Cabiscol and Levine 1995, Levine 1983). 

 

Skeletal muscle can be damaged by oxidative stress 

 Oxidative stress in skeletal muscle has been shown to have damaging effects 

on both insulin signaling and glucose transport.  In a study using rat soleus muscles, 

two hour exposure to approximately 90µM H2O2 caused a decrease in insulin 

stimulation of signaling elements like Akt and of glucose transport (Dokken et al 

2008).  Likewise, four hours exposure of the same concentration of H2O2 of the soleus 

led to loss of insulin receptor substrate 1 and 2 proteins (Archuleta et al 2009).  

Possible pathways in which oxidative stress may impair insulin signaling include 

MAPK pathway and JNK pathway.  ROS induced activation of these pathways has 

been shown to impair insulin signaling and glucose transport in skeletal muscle 

(Diamond-Stanic et al 2011, Santos et al 2012).  Oxidative stress may also contribute 

to muscle wasting in certain conditions.  In studies of both myotonic and Duchenne 

muscle dystrophy, levels of skeletal muscle ROS were shown to be elevated, while 

antioxidant levels were decreased (Toscano et al 2005, Rodriguez and Tarnopolsky 



45 
 

2003).  When lacking SOD1, chronic oxidative stress has been shown to contribute to 

muscle atrophy in aging mice, with decreases in myonuclei number and fiber 

diameter (Jang et al 2010).  Oxidative stress has also been shown to contribute to 

intracellular Ca
2+

 leak and muscle weakness associated with aging.  When oxidized, 

the ryanodine receptor (RyR) becomes leaky, causing reduced tetanic Ca
2+

, decreased 

muscle specific force, and decreased exercise capacity (Andersson et al 2011). 

 

Oxidative stress is present in many disease states 

 Because ROS are produced in various cells and tissues, oxidative stress 

contributes to several disease states.  In the lung, oxidative stress has been shown to 

contribute to the progression of chronic obstructive pulmonary disease (COPD).  

Sources of ROS in the lung include the mitochondria (van der Toorn et al 2009), 

NADPH oxidase, and xanthine oxidase, which have both been shown to be elevated 

in the bronchoalveolar lavage fluid of chronic obstructive pulmonary disease (COPD) 

patients (Pinamonti et al 1998, Aaron et al 2001).  Other negative effects of oxidative 

stress in COPD patients include airflow limitation via upregulation of NFκB 

(DiStefano et al 2002), and a reduced ability of corticosteroids to repress 

proinflammatory gene expression (Barnes et al 2005).   

Damage from oxidative stress is present in neurodegenerative diseases.  In 

Alzheimer’s disease (AD) oxidative stress is seen early on in its pathogenesis.  

Damage to neurons from AD patients is seen at its onset, with reductions in oxidative 

damage as the disease progresses (Nunomura et al 2001).  Increased markers of 

oxidative damage have been seen in cerebrospinal fluid, plasma, and urine of AD 
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patients, implying there may be oxidative damage of the brain prior to the 

development of dementia symptoms (Pratico et al 2002).  Parkinson’s disease (PD) is 

another neurodegenerative disease in which oxidative stress plays a role.  With PD, 

there is progressive loss of dopaminergic neurons in the substantia nigra in the brain, 

with aggregation of the protein α-synuclein (Gandhi and Abramov 2012).  

Dopaminergic neurons have been shown to have oxidative damage produced via 

NADPH oxidase in a PD rat model.  When NADPH oxidase was inhibited in these 

cells, cell death was reduced (Choi et al 2012).  Significantly higher levels of 

oxidative damage markers have been seen in PD patents compared to controls, 

suggesting that elevated oxidative stress in the periphery may contribute to the 

progression of the disease (Seet et al 2010). 

Oxidative stress has also been implicated in the progression of chronic kidney 

diseases.  In podocytes, ROS-induced oxidative stress led to activation of NFκB, 

which is involved in renal fibrosis (Greiber et al 2002).  p66shc is an adapter protein 

that is phosphorylated under conditions of oxidative stress, and translocates to the 

mitochondria.  In renal proximal tubule cells, it has been shown to cause Ca
2+

 

mediated mitochondrial damage and apoptosis (Arany et al 2010).  When the gene 

encoding for p66shc has been knocked out in mice, the animals were protected 

against oxidative damage to the glomerulus (Menini et al 2007). 

Although there are many variables in the progression of cardiovascular 

disease, oxidative stress is likely a major contributor.  In heart failure resulting from 

myocardial infarction (MI), oxidative stress was increased along with decreases in 

antioxidants (Hill and singal 1997).  Antioxidants like SOD and GPx have decreased 
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activity in patients with MI, suggesting there is the possibility of oxidative damage 

after injury (Scott et al 1991, Pasupathi et al 2009).  In the vasculature, O2
-
 production 

from NADPH oxidase was shown to be increased in people with systemic risk factors 

for atherosclerosis (Guzik et al 2000).  Hypertensive rats have been shown to have 

increased O2
-
, resulting in reduced levels of NO (Tanito et al 2004).  When this model 

is treated with antioxidants, vascular O2
-
 levels are reduced along with the slowing of 

hypertension development (Rodriguez-Iturbe et al 2003, Park et al 2002).   

Administration of angiotensin II has been shown to induce hypertension in rats, with 

increases in vascular O2
-
 (Rajagopalan et al 1996).  This increase in ROS activates 

various signaling molecules like JNK, Akt, and NFκB, which can induce vascular 

injury by way of expression of proinflammatory genes, production of extracellular 

matrix proteins, and contraction (Montezano et al 2014). 

 

Antioxidants can attenuate the effects of oxidative stress 

 To maintain redox balance and prevent oxidative stress, the body uses both 

enzymatic and non-enzymatic antioxidants.  Common enzymatic antioxidants include 

SOD, catalase, GPx, thioredoxin, peroxiredoxin, and glutathione transferase.  

Extracellular SOD was shown to reduce oxidative stress in mice injected with 

streptozotocin, which is used to induce type 1 diabetes mellitus (Call et al 2015).  As 

a result, these mice were protected against such things as cardiac hypertrophy, 

fibrosis, and dysfunction.  In rats overexpressing MnSOD, redox state was improved 

in skeletal muscle, and the animals were protected from insulin resistance induced by 

a high fat diet (Boden et al 2012).  GPx3 has been shown to mediate the antioxidant 
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effects of peroxisome proliferator-activated receptor γ (PPARγ) in skeletal muscle.  

With overexpression of GPx3, H2O2 levels were decreased and when PPARγ was 

knocked down, GPx3 expression was decreased with increased in H2O2 (Chung et al 

2009).  Mitochondrial GPx4 has been shown to reduce oxidative stress related cardiac 

injury.  Diabetic mice overexpressing GPx4 had attenuated ischemia/reperfusion 

associated cardiac dysfunction, along with significantly lower markers of oxidative 

stress (Dabowski et al 2008).  In addition to these enzymatic antioxidants, non-

enzymatic antioxidants are also used to reduce oxidative stress.  Examples of these 

include vitamin C, vitamin E, and β-carotene.  Vitamin C acts as an antioxidant by 

donating electrons and preventing other compounds from being oxidized and also acts 

as a reducing agent for ROS and RNS (Padayatty et al 2003).  Vitamin E functions as 

a scavenger of peroxyl radicals that terminate chain reactions (Traber et al 2007), 

while β-carotene can scavenge peroxyl, hydroxyl, and O2
-
 radicals (El-Agamey et al 

2004).  

 

Conclusions 

 Based on the current literature, it is apparent that maintaining proper cellular 

redox balance is critical in preventing disease and dysfunction.  Under normal 

physiological conditions, ROS can act as important signaling molecules that function 

throughout the body.  When ROS levels are increased or not properly buffered, it can 

lead to oxidative stress.  Chronic oxidative stress can contribute to a variety of disease 

states, so it is worth exploring ways to reduce oxidative stress and improve cellular 

redox balance.  By understanding the underlying mechanisms of ROS generation, 
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redox balance, and oxidative stress, it will hopefully allow for further improvement in 

treatment of diseases and dysfunction in which oxidative stress is a contributing 

factor. 
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