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Leaf Area Index (LAI) and Vertical Foliage Profile (VFP) are among the most 

important forest structural parameters, and characterization of those parameters in 

high biomass forests remains a major challenge in passive remote sensing due to 

signal saturation problem. Recently an active remote sensing technology, light 

detection and ranging (lidar), has shown a great promise in this task recognizing its 

accuracy in measuring aboveground biomass and canopy height. This dissertation 

further expands current application of lidar on ecosystem monitoring, and explores 

the capacity of deriving LAI and VFP from lidar data in particular.  

The overall goal of this study is to derive large scale forest LAI and VFP 

using data from the Geoscience Laser Altimeter System (GLAS) on board of ICESat, 

and provide a framework of validating such LAI products from plot level to global 

scale. To achieve this goal, a physically based Geometry Optical and Radiative 

Transfer (GORT) model was first developed using high quality airborne waveform 



  

lidar data over a tropical rainforest in La Selva, Costa Rica. The excellent agreement 

between lidar data and field destructively sampled data demonstrated the 

effectiveness of the Lidar-LAI model and suggested large footprint waveform lidar 

can provide accurate vertical LAI profile estimates that do not saturate even at the 

highest possible LAI levels. 

Next, an intercomparative study of ground-based, airborne and spaceborne 

retrievals of total LAI was conducted over the conifer-dominated forests of Sierra 

Nevada in California. Good relationships were discovered in their comparisons, 

following a scaling-up validation strategy where ground-based LAI observations were 

related to aircraft observations of LAI, which in turn were used to validate GLAS 

LAI derived from coincident data. Successful implementation of this strategy can 

pave the way for the future recovery of vertical LAI profiles globally. 

LAI and VFP products were then derived over both the entire state of 

California and Contiguous United States as an efficacy demonstration of the method. 

These products were the first ever attempts to obtain large scale estimates of LAI and 

VFP from lidar observations. Such forest structural measurement can be used not 

only to quantify carbon stock and flux of terrestrial ecosystem, but also to provide 

spatial information of specie abundance in biodiversity. Results from this study can 

also greatly help broaden scientific applications of future spaceborne lidar missions 

(e.g. ICESat-2 and GEDI).  
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Chapter 1 An Overview of Current Measurement Methods of 

LAI and VFP 

1.1 Motivation 

Forests play an important role in both human social activities and 

environmental systems. Not only do they provide raw material of food, medicine and 

fuel, but also shelters for endangered species according to Millennium Ecosystem 

Assessment (2005). Forests are also major sinks for anthropogenic carbon emissions 

and help mitigate the effects of climate change. All these functions of forests 

fundamentally rely on the development of canopy structure at individual leaf level, 

where photosynthesis takes place. A detailed quantitative measurement of canopy 

structural attributes is among the top priorities in terrestrial ecology, biodiversity and 

carbon cycle studies. This involves the measurement and derivation of many 

biophysical parameters for current ecosystem experiments and models. Among them 

are Leaf Area Index (LAI) and Vertical Foliage Profile (VFP). 

LAI, defined as one half of the total leaf area projected per unit horizontal 

surface (Chen et al. 1997), has been widely applied in ecology and remote sensing 

community in describing biosphere-atmosphere interactions of carbon dioxide, water 

and energy. It has already been proven to be an efficient representative of canopy 

foliage content and crown structure, and has been widely applied to estimate radiation 

attenuation, plant photosynthesis and respiration with considerable accuracy (Gower 

and Norman 1991). Large scale LAI measurements are typically required in 
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ecological, hydrological and climate models. For example, LAI is a major input 

parameter driving ecosystem models to simulate ecological responses at regions with 

limited field measurements in particular (Hurtt et al. 2004). Hydrological models 

require estimates of LAI to simulate terrestrial evapotranspiration (ET), which plays a 

key role in regional water and energy balance. Accurate LAI measurements also help 

establish and improve the relationship between Gross Primary Production (GPP) and 

remote sensing spectral reflectance observations to reduce the uncertainty of 

terrestrial carbon fluxes (Turner et al. 2006). 

VFP (vertical foliage profile or vertical LAI profile) is essentially the vertical 

variation of LAI closely related to foliage-height profiles (Aber 1979), and an 

integration of VFP through canopy will get the LAI value. Compared with LAI, it is a 

more realistic representation of 3D canopy structure and determined to be among the 

most critical determinants of energy and material flows in ecosystems (Parker et al. 

2001; Stark et al. 2012). A significant improvement in terrestrial carbon and ET 

estimate should be expected with further application and incorporation of VFP into 

current models rather than LAI alone. This is because foliage at different height 

intervals contribute differently towards total photosynthesis and canopy carbon 

storage (Ellsworth and Reich 1993). Previous work has indicated that the use of a 

uniform foliage distribution instead of the actual LAI profile could result in an 

underestimated GPP value (up to 50%) under diffuse radiation condition (Chen et al. 

1999; Kotchenova et al. 2004). VFP have also been widely applied in biodiversity 

conservation and proven to be important metrics in studies of breeding bird survey 

(Bradbury et al. 2005; Goetz et al. 2007; Hyde et al. 2006; Swatantran et al. 2012). 
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These studies indicate that further application of VFP has the potential to better refine 

current carbon and ecological models. 

Large scale LAI and VFP measurements are among basic requirements in 

studies of global environmental change acknowledging their importance in ecosystem 

modeling. However direct measurements of LAI and VFP are spatially limited at field 

campaigns largely due to both complexity of natural environment and limitation of 

costs. And an alternative solution is to derive those ecosystem structural parameters 

based on their relationship spectral signatures derived from remote sensing images. 

Tremendous efforts from the remote sensing community have been made to derive 

LAI products at different spatial and temporal scales since the 1980s, focusing largely 

on the use of passive remote sensing data. To date there have been a large number of 

regional to global scale LAI data sets available, including MODIS (Myneni et al. 

2002), LANDSAT (Ganguly et al. 2008), CYCLOPES (Baret et al. 2007) and many 

others. These products have been widely used in studies of terrestrial ecosystems and 

have greatly improved our knowledge and understanding of global environment and 

climate change (Fang et al. 2013; Mu et al. 2007; Myneni 2001; Zhao et al. 2005). 

However, three key issues remain unsolved despite such great progress and successes 

with passive remote sensing: first, spectral signals of satellite images saturate over 

high LAI areas; secondly, LAI products from different sensors are inconsistent 

(Abuelgasim et al. 2006); and finally, vertical foliage structure or VFP products are 

not available. While these problems have long been discovered, they cannot be easily 

solved within the regime of traditional remote sensing technology. 

In the past decade, LiDAR (Light Detection and Ranging) has emerged as a 
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new remote sensing technology to derive different forest characteristics (e.g. canopy 

height and aboveground biomass) with unprecedented accuracy (Drake 2002a; Hyde 

et al. 2005; Lefsky 1999a). The penetration ability of active laser energy emitted from 

the lidar sensor allows a 3D measurement of entire canopy structure that is impossible 

from traditional passive remote sensing data. As a result, deriving highly accurate 

LAI and VFP products from lidar remote sensing is a promising field with many 

efforts being made by different groups (Morsdorf et al. 2006; Ni-Meister et al. 2001; 

Strahler et al. 2008). Spaceborne lidar missions, such as the Ice, Cloud, and land 

Elevation Satellite (ICESat) or the upcoming Global Ecosystem Dynamics 

Investigation (GEDI), provide a unique opportunity for exploring the efficacy of 

deriving LAI and VFP at continental to global scale. Large scale LAI and VFP 

products, once derived and validated appropriately from such spaceborne lidar, can 

greatly help improve our understandings of ecosystem structure and dynamics and 

address current science priorities endorsed in NRC Decadal Survey (NRC 2007). 

The overall goal of my dissertation is to develop an approach to map forest 

LAI and VFP at large scale using data from the Geoscience Laser Altimeter System 

(GLAS) on board of ICESat. In particular, the following objectives will be addressed: 

1) Derive LAI and vertical foliage profile from waveform lidar using a 

physically based model. 

2) Develop a robust Lidar-LAI model and validation framework for deriving LAI 

and vertical foliage profile from GLAS. 

3) Derive and validate GLAS LAI products at different scales across major forest 
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types. 

1.2 Background  

1.2.1 Relevance of LAI and VFP to carbon cycle science 

Carbon emissions from human activities have been continuing to change 

climate system for the past decades, leading to a significant increase of globally 

averaged temperature and sea level (IPCC 2007, 2013). In particular, fossil fuel use, 

forest deforestation and land-use change are determined to be the major sources of 

increased carbon in atmosphere with an annual rate of 4.1 ± 0.1 GtC (IPCC 2013). 

However, large measurement uncertainties (> 50%) remain in current estimates of 

land-to-atmosphere flux (-0.9 ± 0.6 GtC) and carbon stocks in terrestrial forests 

(Houghton 2007). This leads to an imbalance of more than 1 GtC within global 

carbon cycle known as "missing carbon" (DeFries et al. 2002; Houghton et al. 1998; 

Schindler 1999). Significant efforts have been made to reduce the unbalance and 

uncertainty in carbon cycles. For example, recent reports from long-term forest 

inventory data suggest an annual carbon sink of 2.4 ± 0.4 GtC in global forests from 

1990 to 2007 (Pan et al. 2011). Although such field estimates are approaching the 

equivalent magnitude of inversion model (deduced from fossil fuel emissions and 

land-use change sources minus ocean and atmospheric sources), there remains a large 

uncertainty, in tropical forests particularly, regarding the sparse sampling at local 

scales and subsequent up-scaling estimates. Additionally, deployments of these field 

campaigns are highly costly and usually take a long time to complete the mission. As 

a result there are critical requirements for higher density supplemental data products 
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for ground sampling and more accurate terrestrial carbon stock estimates over large 

scale. Those requirements may be achieved through either direct products from 

remote sensing data or indirect estimates from ecosystem models (Hurtt et al. 2004), 

both of which would require an accurate characterization of ecosystem parameters. 

Canopy height, LAI and vertical foliage profile are among the most important 

biophysical parameters closely related to the terrestrial carbon stocks and 

aboveground biomass based on allometric equations (Drake 2002a; Dubayah and 

Drake 2000; Lefsky et al. 2002). They have been widely used to derive national level 

or continental scale aboveground biomass products (Baccini et al. 2012; Kellndorfer 

et al. 2012; Saatchi et al. 2011). 

1.2.2 Relevance of LAI and VFP to terrestrial ecology 

Terrestrial ecosystems are sensitive towards climate change due to their low 

tolerance and vulnerability towards environmental change (Bonan 2008). Since an 

increase in temperature, CO2 concentration and nitrogen (N) deposition as well as 

changes in precipitation pattern will be expected under current scenario (IPCC 2013), 

it is thus critical to understand how forests respond to the ongoing climate change. 

Factors associated with climate change and variability have different impacts on 

terrestrial ecosystems, and can lead to both a long-term effect on changing forest 

structure and function as well as a short-term effect characterized by disturbance 

regimes, mainly including fire risk, insect infestation and drought (Dale et al. 2001; 

Lindner et al. 2010; Vose et al. 2012). However, adaptations of terrestrial ecosystems 

towards the changing climate system have not been fully understood yet. For 



 

 

7 

 

example, increase of atmospheric carbon dioxide could enhance forest productivity 

known as carbon fertilization effect, but this effect can be largely offset by the 

increased temperature and drought. Debates arise whether tropical forests play as 

carbon sources or sinks under changing climate and there has been no clear answer 

yet (Clark 2004; Lewis et al. 2009). The exact mechanism is still under further 

examination and requires a considerable effort considering the complex interactions 

among ecosystem, atmosphere and human activities (Bonan 2008; Cramer et al. 

2001). Two fundamental requirements will be needed to achieve such goal, including 

1) coupling of human and environmental systems, and 2) consistent measurements 

and monitoring of system parameters. Biophysical variables including LAI and VFP 

are such important parameters in terrestrial ecosystems (Arora and Boer 2005; 

Randerson et al. 2009; Running et al. 1999). For example, they are the key parameters 

used to estimate fraction of absorbed PAR, GPP/NPP and ET across different biomes 

and provide a great knowledge of global carbon, water and energy fluxes between 

biosphere and atmosphere (Knyazikhin et al. 1998c; Mu et al. 2007; Myneni et al. 

2002; Zhao et al. 2005). 

1.2.3 Relevance of LAI and VFP to biodiversity 

Global biodiversity has been under consistent threats primarily from 

anthropogenic land use change and climate change (Sala et al. 2000). The speed of 

biotic diversity loss does not slow down in the new millennium; instead it continues 

at an alarming speed of about 50,000 species according to the Millennium Ecosystem 

Assessment (2005). The massive loss of biodiversity will lead to the reduction and 
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simplification of biological heterogeneity and ecological complexity from individuals 

to regions, and ultimately jeopardize the function and stability of ecosystems and 

human society (Adams et al. 2004; Walker 1992). It is therefore of critical importance 

to monitor the biodiversity of wild species and their associated living environments. 

Because biodiversity is not evenly distributed with some areas far richer than the 

others, hotspots where most serve threats happen, in tropics particularly, should be set 

higher conservation priorities (Mittermeier et al. 1998). Identification and mapping of 

these hotspots are hence imperative in biodiversity and conservation studies. Remote 

sensing systems are highly suitable for this task acknowledging their high spatial and 

temporal mapping capabilities. Existing studies of species distribution using remote 

sensing data can essentially be categorized into following three types: 1) direct 

mapping of individuals, 2) predictions based on habitat requirements and 3) pattern 

explorations between field observations and remote sensing data (Nagendra 2001). It 

is not until recently that vertical canopy structure information was adopted into the 

observation framework of essential biodiversity variables due to the development of 

lidar remote sensing (Goetz et al. 2007; Pereira et al. 2013; Turner et al. 2003). In 

particular, canopy height, vertical foliage profiles and associated 3d measurements 

derived from lidar remote sensing have been demonstrated as important stratification 

indicators for forest bird species (Hyde et al. 2006; Swatantran et al. 2012). 

1.3 Quantifying forest LAI  

1.3.1 From field methods 

The most accurate LAI values can be obtained by collecting and measuring 
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leaves with planimetric or gravimetric (Gobron and Verstraete 2009). Such direct LAI 

measurements, traditionally by either destructive sampling or leaf litter collection, are 

labor-intensive and time-costing. As a result, LAI data collected from those direct 

methods usually are at limited sites but of great scientific values. Alternative indirect 

methods have been developed to improve the efficiency of field measurement while 

maintaining its accuracy. Among them, the most popular indirect methods are based 

on the relationship between radiation transmission and foliage amount in canopy 

layers discovered by Monsi and Saeki (1953). Various field instruments have been 

developed and commercially available, such as LAI-2000 Plant Canopy Analyzer (Li-

Cor, Inc.), hemispherical photos and TRAC (Tracing Radiation and Architecture of 

Canopies) (Jonckheere et al. 2004). Nowadays the indirect methods are becoming the 

primary in situ LAI measurements at plot or site scale considering a balance between 

efficiency and accuracy. A large amount of LAI data have been acquired across all 

major biomes in the past decade. These data are both important in landscape 

ecological studies, and serve as the most critical ground verification data for satellites 

products as well. In order to monitor global terrestrial ecosystem and the changing 

climate, many national and international observation networks and programs (e.g. 

FLUXNET and BigFoot) have also been deployed to conduct field LAI 

measurements using both direct and indirect methods. 

1.3.2 From passive remote sensing 

Remote sensing could provide large spatial and multi-temporal scale LAI 

products, and has played an important role in studies of terrestrial ecosystem and 



 

 

10 

 

climate change. The earliest work could trace back to Tucker's (1979) method of 

combing red and photographic infrared channels into vegetation index for vegetation 

monitoring, which was later famously known as NDVI. An explosive amount of 

research followed up then with a great advance in both data quality of satellite images 

as well as method development. Nowadays there have been a large number of global 

and regional LAI products available from various sensors including MODIS, Landsat, 

CYCLOPES, ECOCLIMAP and others. Methods of deriving LAI from those satellite 

images fall into three main categories: 1) empirical methods which builds 

relationships between field measured LAI and satellite vegetation indices (Chen and 

Cihlar 1995; Chen et al. 1997; Cohen et al. 2003; Morisette et al. 2006); 2) canopy 

radiative transfer modeling and physical model inversion (Ganguly et al. 2008; 

Knyazikhin et al. 1998a; Knyazikhin et al. 1998b; Koetz et al. 2005; Myneni et al. 

2002); and 3) hybrid methods combining the previous two methods (Fang and Liang 

2003; Walthall et al. 2004). However, LAI products from different sensors are not 

quite consistent with each other, and a detailed assessment of these products suggests 

a considerable spatial variation in their accuracies (Abuelgasim et al. 2006). It is 

particularly true over high biomass and closed canopy forests, such as tropical rain 

forests where satellite signal saturates quickly and becomes insensitive to canopy 

structural changes (Steininger 1996). In addition, most of the algorithms only make 

empirical assumptions about the actual distribution of vertical canopy structural. This 

simplification could contribute a large error and uncertainty in deriving LAI products 

considering the heterogeneity of natural forests. All these errors and uncertainties in 

remote sensing based LAI products should be carefully studied to assess their 
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propagation effects on the accuracy of the higher level analysis and simulations in 

terrestrial ecosystems research. Consequently, it is imperative for the community to 

derive both highly accurate LAI products as evaluation benchmarks as well as vertical 

LAI distribution for ecosystem modelers. 

1.4 Lidar remote sensing of LAI 

Lidar is an active remote sensing technology and it calculates the distance 

between a target and the sensor by measuring the roundtrip traveling time of emitted 

laser pulse. According to the type of information collected from the return signal, 

lidar can be broadly classified as discrete-return systems or waveform-recording 

systems. Discrete-return lidar records one or a small number of height metrics by 

identifying major peaks in the return signal while waveform lidar measures the 

complete height distribution of illuminated objects by recording the entire returned 

signal (Lefsky et al. 2002). Lidar systems can also be classified as terrestrial, airborne 

and spaceborne lidar depending on the type of platform, and all the three types will be 

used in this study.  

Terrestrial laser scanning (TLS) or terrestrial lidar system quickly becomes a 

popular 3D measurement tool in earth sciences. At each survey plot, they could 

provide a rapid, complete and precise documentation of geometric properties of 

natural surfaces including forest structure information (Brodu and Lague 2012). 

Typically terrestrial lidar systems have demonstrated the capability of accurately 

measuring canopy height, diameter at breast height (DBH), LAI and VFP (Cote et al. 

2009; Douglas et al. 2012; Strahler et al. 2008; Zheng and Moskal 2012). The 



 

 

12 

 

Echidna Validation Instrument (EVI) is one such example of conducting field 

measurement and validation for airborne/spaceborne mapping. EVI is a ground-

based, up-ward-scanning, full-waveform-digitizing lidar, built by CSIRO Australia 

(Jupp et al. 2009). The rotation design allows a scanning of the entire upper 

hemisphere and a significant portion of the lower hemisphere of the instrument 

(Strahler et al. 2008). Echidna has been applied to retrieve different forest stand 

structural parameters, including LAI, vertical foliage profile and clumping index 

(Yang et al. 2013; Zhao et al. 2012; Zhao et al. 2011). 

Airborne lidar systems play the most important role in 3D measurements of 

terrestrial ecosystems. The commercialized discrete return airborne lidar systems (e.g. 

ALTM and RIEGL) have been widely used in generating high quality canopy height 

and topographical DEM data (Asner et al. 2005; Naesset 1997, 2002; Nilsson 1996; 

Popescu 2007; Sorin et al. 2004). However, there is a potential drawback of the 

conflicts in data-processing algorithm and sensor configuration between specific 

scientific objects and commercial usage (Lefsky et al. 2002). For example, airborne 

lidar usually fly during leaf-off seasons to generate more accurate DEM while leaf-on 

data is more desirable for ecological and carbon cycle studies (Sexton et al. 2009). Its 

emitted laser could miss the top of canopy occasionally leading to an underestimated 

measurement of forest height. In contrast, the waveform-recording lidar systems have 

the advantage of enhanced canopy penetration capability, full scanning of entire 

vertical structure and larger mapping coverage (Lefsky et al. 2002). The Laser 

Vegetation Imaging Sensor (LVIS) is one such example of waveform-recording lidar 
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systems. LVIS is an airborne medium footprint (~25 m) lidar designed and developed 

at NASA's Goddard Space Flight Center (GSFC) (Blair 1999). It has been 

demonstrated highly suitable for the studies of vegetation structure with different 

ecosystem structure parameters (e.g. canopy height, aboveground biomass, VFP and 

LAI) derived from its canopy height metrics (Drake 2002a; Hyde et al. 2005; 

Swatantran et al. 2011). 

Spaceborne lidar systems provide unique observations of terrestrial ecosystem 

structure at global scale. Measurements from these systems can greatly deepen 

current understanding of ecosystem dynamics and global environmental change. The 

Geosciecen Laser Altimeter System (GLAS) on board of Ice Cloud and Elevation 

Satellite (ICESat) was previously the only spaceborne lidar providing global 3D 

measurements of ecosystem structure from 2003 to 2009. There have been several 

global canopy height products available derived from GLAS data in recent years 

(Lefsky 2010; Los et al. 2012; Simard et al. 2011). A descendant mission ICESat-2, 

equipped of a photon-counting lidar system ATLAS, is planned to launch in 2015 but 

with a primary focus on global ice sheet observation (Abdalati et al. 2009). A 

DESDynI mission was originally designed for the ecosystem monitoring in parallel to 

ICESat-2 but terminated due to budget sequestration of NASA (Hall et al. 2011). 

Fortunately, a new spaceborne Global Ecosystem Dynamics Investigation (GEDI) 

lidar will be developed for the International Space Station (ISS) to obtain a 3D view 

of the Earth’s vegetated ecosystems (Dubayah et al. 2014). By then end of the 

mission, billions of vertical forest profiles will have been measured to further 
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understand ecosystem dynamics and its effect on climate change and biodiversity 

resources. 

Lidar remote sensing provides an unprecedented 3D measurement capability 

of structural characteristics of ecosystem, and has demonstrated its potential of 

deriving highly accurate LAI and vertical forest structure products. Previous 

researches focus on deriving LAI from airborne discrete return lidar (Farid et al. 

2008; Jensen et al. 2008; Morsdorf et al. 2006; Richardson et al. 2009; Solberg et al. 

2009). In most of the studies, empirical relationships between field measured LAI 

values and predictor variables derived from different lidar metrics were explored 

through regression analysis. It was not until more recently that physical models based 

on the gap fraction method were developed to calculate LAI and VFP from both 

airborne and terrestrial lidar systems (Morsdorf et al. 2006; Ni-Meister et al. 2001; 

Zhao et al. 2011). Such physical models have the potential to derive LAI and VFP 

products at global scale from spaceborne lidar mission (ICESat/ ICESat-2 and GEDI) 

to help better address the most critical environmental problems through balancing the 

carbon cycle and investigating biodiversity abundance.  

1.5 Dissertation Outline 

 This central objective of the dissertation is to derive large scale LAI and VFP 

products from the spaceborne waveform lidar GLAS on board of ICESat. In Chapter 

2, a theoretical physical lidar-LAI model is developed and validated in a tropical 

rainforest. In Chapter 3, an inter-comparison study of ground-based, airborne and 

spaceborne retrievals of LAI is conducted over the conifer-dominated forests of 
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Sierra Nevada in California. The encountered effectiveness of these relationships 

allows the implementation of a scaling-up strategy where ground-based LAI 

observations are related to aircraft observations of LAI, which in turn are used to 

validate GLAS LAI derived from coincident data. In Chapter 4, the potential of large 

scale retrieval of LAI and VFP from GLAS observations are demonstrated with the 

implementation of the developed physically based method over the entire state of 

California. In Chapter 5, a GLAS LAI and VFP product is derived over Contiguous 

United States and examined by data sets from airborne lidar at major forest types. The 

final chapter summarizes this dissertation and discusses its potential linkage and 

guidance towards future spaceborne lidar missions. 

 

 

 

 

 



 

 

16 

 

Chapter 2 Retrieval of Vertical LAI Profiles over Tropical Rain 

Forests using Waveform Lidar at La Selva, Costa Rica 

2.1 Introduction 

Tropical forests store 13% of the global carbon and play an important role in 

terrestrial carbon dynamics and other ecosystem processes (Clark and Clark 2000).  

Leaf Area index (LAI), commonly defined as the maximum projected leaf area per 

unit ground surface (Chen et al. 1997),  is an important ecosystem model parameter 

strongly linked to plant respiration and photosynthesis (Gower and Norman 1991). In 

addition, LAI is often used to parameterize surface energy balance and hydrological 

models for effects such as radiation attenuation and precipitation interception.  

The vertical variation in LAI is related to foliage-height profiles (Aber 1979) 

which have been shown to be important determinants of energy, water and nutrient 

flows (Parker et al. 2001). This is because foliage at different height intervals 

contribute differently towards total photosynthesis and canopy carbon storage 

(Ellsworth and Reich 1993). The vertical distribution of leaf material may also play a 

role in determining habitat suitability and species abundance and diversity 

(Swatantran et al. 2011). 

The importance of LAI has thus led to considerable efforts by the remote 

sensing community to map its distribution over a variety of spatial and temporal 

scales. Passive remote sensing data have been used to derive LAI using empirical 

relationships between reflectance and field measured LAI (Chen and Cihlar 1995; 
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Chen et al. 1997; Cohen et al. 2003; Morisette et al. 2006), and using physically-

based radiative transfer modeling (Koetz et al. 2005). However, results from different 

sensors are not consistent. Their accuracies vary considerably (Abuelgasim et al. 

2006) and drop significantly in dense tropical forests where LAI is high. In addition, 

passive remote sensing systems do not adequately capture vertical variation in LAI.  

In contrast, lidar (light detection and ranging) potentially provides this vertical 

dimension information.  

Lidar has been successfully used to derive forest structural characteristics such 

as canopy height, forest structure and aboveground biomass in different forest types 

(Drake 2002a; Hyde et al. 2005; Lefsky 1999a). Recent studies have used lidar data to 

derive LAI (Farid et al. 2008; Jensen et al. 2008; Morsdorf et al. 2006; Richardson et 

al. 2009; Solberg et al. 2009). Predictor variables (often called “lidar metrics”) are 

generally derived from discrete return or waveform-based small footprint lidar data 

(e.g. canopy height) to perform regression analysis in these studies. Zhao and 

Popescu (2009) combined lidar data and other optical remote sensing metrics (e.g. 

NDVI) but found adding such metrics did not improve LAI estimates significantly. 

Riano (2004) compared LAI values from both airborne lidar and hemispherical 

photography in central Spain, and found that LAI was better estimated using a radius 

size of lidar sampling scale from 7.5 - 12.5 m. Their results suggested LAI could be 

better predicted using a medium footprint lidar. However, there has been little 

research using lidar data to estimate LAI in tropical rain forests, where the saturation 

problem for passive remote sensing is significant (Abuelgasim et al. 2006). 

Furthermore, the use of medium to large footprint waveforms to derive LAI, such as 
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those from the airborne Laser Vegetation Imaging Sensor (LVIS) has not been 

explored.  

Our research goal is to study the spatial and vertical distribution of LAI over 

the La Selva Biological Station in Costa Rica using the airborne scanning waveform 

lidar from LVIS. We first derive vertical LAI profiles from LVIS waveforms using 

the physically-based Geometric Optical and Radiative Transfer (GORT) model (Ni-

Meister et al. 2001). Next, we validate the vertical LAI profiles derived from lidar 

with field-based measurements of destructively sampled LAI at towers and then map 

LAI spatially across the landscape. Finally, we assess the accuracies and sensitivity of 

LAI retrieval from lidar waveforms and discuss their implications for large-scale 

mapping.  

2.2 Study Area & Data 

2.2.1 Study area 

La Selva Biological Station is located in the Atlantic lowlands of Costa Rica. 

It is one of the most extensively studied field sites in tropical forests, with a well-

documented history of its biological data sets. The area receives an annual rainfall of 

4000 mm and has a mean temperature of 26 °C. The topography of this study site is 

relatively low (<150m), but there are some areas with slopes exceeding 30 degrees. 

The station has a mixture of old growth and secondary lowland tropical wet forests 

along with remnant plantations and various agroforestry treatments. Most canopy 

trees here are evergreen or only briefly deciduous. Detailed site characteristics can be 

found in Clark et al. (2008) and Dubayah et al. (2010). 
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2.2.2 Field data 

LAI was measured in a 515 ha section of upland tropical wet forest at the La 

Selva Biological Station by Clark et al. (2008). A modular walk-up tower was built to 

harvest all leaves and branches in 55 vertical transects from ground to canopy top 

(Fig. 2-1). The tower footprint was 1.30 m × 1.86 m for the first four transects (June - 

August 2003) and it was expanded to 2.45 m × 1.86 m for the next 51 transects 

(August 2003 - March 2005). Because data from the two configurations did not differ 

significantly in LAI or forest height, they were processed together. The tower 

locations were selected by strict stratified random sampling. The landscape was 

divided in 9 classes of cells based on high, medium and low GIS-predicted 

phosphorus and high, medium and low GIS-predicted slope. 10 x 10 m cells were 

selected at random (with predetermined constraints such as no streams) with each of 

the 9 classes. An additional 10 low canopy sites were selected with a different semi-

random protocol. Tower sites were geolocated using differential GPS and the La 

Selva base station.  Nominal geolocation accuracy with differential correction was < 

1 m. Tower sites were separated by an average of 153 m from their nearest neighbor, 

so they represented independent samples of forest conditions within a given forest 

type. Leaf areas of all species were measured at each height section (1.86 m per 

section) in laboratory after destructive sampling (discussed below).   
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Fig. 2-1 Land use map of La Selva Biological Station, Costa Rica. 55 LAI 

measurement towers were constructed across different forest areas, but mainly 

focused on old-growth forest. 

2.2.3 Lidar data 

LVIS is a medium footprint (~25 m), waveform digitizing, scanning laser 

altimeter focusing on the study of surface topography and vegetation structure (Blair 

1999). LVIS digitizes the entire outgoing and return signal to provide a waveform 

from which attributes such as ground elevation, canopy height, canopy cover and 

canopy height profiles can be derived. Standard products from LVIS include both 

fully digitized waveforms as well as height metrics at different waveform energy 

returns (Hofton 2002; Hofton et al. 2000). Many studies have shown the ability of 
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LVIS in mapping forest structure and habitat characteristics in tropical and temperate 

forests (Drake 2002b; Hyde et al. 2005), but direct derivation of  LAI from LVIS 

waveforms has not been attempted. The LVIS instrument was flown over the entire 

La Selva in both 1998 and. The swath width in 2005 was 2 km and nominal footprint 

diameter was 25 m. In this study, we used only the 2005 LVIS waveform data to 

derive LAI in contemporaneous with the field data collection. We did not consider the 

temporal lags or seasonal discrepancy between field and lidar data because wet 

tropical forests are evergreen or only briefly deciduous and LAI values at tall sites 

(>21 m) did not differ between sites sampled in the dry season (January–May) or in 

the wet season (P > 0.51, n = 10, 28) for the 2003–2005 sample period (Clark et al. 

2008).  

2.3 Methods 

We derived cumulative LAI profiles from both destructive sampling and LVIS 

data and then compared them at the same vertical and spatial scales. Areas of 

collected leaves from the ground to a particular height were integrated to ascertain 

tower-cumulative LAI, which could then be compared to LVIS-cumulative LAI 

derived from GORT model. The derived LVIS LAI profiles were adjusted to better 

match the scale of the LAI tower measurements, as the latter has a far smaller area 

than an LVIS footprint. Lastly we filtered tower locations as a function of their 

distance from the center of the nearest LVIS footprint to explore the degree to which 

their non-coincidence affects LAI retrieval accuracy. 
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2.3.1 Cumulative LAI from tower measurements 

Leaves harvested at each section of tower height were measured in the 

laboratory according to different plant functional groups: Pentaclethra (dominant 

trees), other trees, palms, lianas, herbaceous climbers, herbs, ferns, non-woody 

epiphytes and woody epiphytes (Clark et al. 2008). A LI-COR-3100 leaf area meter 

was used to measure the one-sided leaf area. LAI for a certain height section was 

quantified through the measurement of total leaf area present within that tower sector. 

Cumulative LAI profiles were then calculated with an integration of LAI per height 

sector from the ground to a particular height section. There were a total of 546 tower-

cumulative LAI values at different heights from all 55 towers (i.e. each tower 

provided multiple cumulative LAI estimates, one every 1.86 meters from the ground 

to the top of the canopy). However, because not all towers were sufficiently co-

located with LVIS footprints, some were removed from the validation data set 

(discussed below). 

2.3.2 Cumulative LAI profiles from LVIS waveforms 

In this section, we derive cumulative LAI profiles from lidar waveforms using 

gap theory (Chen and Cihlar 1995; Chen et al. 1997; Gower and Norman 1991; Miller 

1967; Nilson 1971, 1999) which quantifies the relationship between LAI and the gap 

frequency for horizontally homogenous canopy layers according to the general 

formula: 

       Eq. 1 

where  is the gap probability within canopy with a view zenith angle of  
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and is the projection coefficient representing unit leaf area on the canopy layer 

perpendicular to the view direction. For LVIS we assume the viewing zenith angle is 

constant at 0, and hence we only need information of gap probability and projection 

coefficient to obtain LAI. 

Ni-Meister et al. (2001) developed a method to derive gap probability and 

canopy cover from lidar waveforms. The basic assumption of the model is that gap 

probability is the reverse of the vertical canopy profile as laser energy can only 

penetrate into the lower canopy layer or ground through gaps (including both within-

crown gaps and between-crown gaps). Using this relationship, canopy closure is 

calculated using the cumulative laser energy return for a known ratio of canopy and 

ground reflectance as follows:  

      Eq. 2 

 represent the gap probability and canopy cover 

percentage above a particular height  within canopy respectively. The terms 

,  and  are the integrated laser energy returns from the canopy top to 

height , from canopy top to canopy bottom, and from the ground return individually. 

The canopy and ground reflectance are ,  respectively. This model in general 

measures Plant Area Index, not Leaf Area Index, since branches and trunks also 

reflect laser energy. But we did not explicitly consider the difference between the two 

in this research as the large majority of energy (93%) reflected back towards the 

sensor comes from the leaves with only 7% from other areas of the plant (Note: both 
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leaf and plant area data were destructively sampled to determine this ratio, but the 

plant area data are not published and are unavailable). 

We applied a similar approach to the LVIS data to get gap probability and 

canopy cover at La Selva. Mean signal noise level was first subtracted from raw 

waveforms to reduce noise. We then applied Gaussian decomposition of waveforms 

to separate  and  (Hofton et al. 2000). This method may not accurately provide a 

separation if topographic slopes are present and we examine this effect using a 

sensitivity analysis as described in the discussion section. The quantity of  was 

calculated from ASD FieldSpec spectrometer (Analytical Spectral Devices, Boulder, 

CO, USA) measurement of soil and leaves in our study area by Clark et al. (2005). 

The ground reflectance  was calculated as an average value of 0.14 (SD = 0.03) for 

19 soil reflectance samples at 1064 nm. For , we only considered the dominant 

species, Pentaclethra. Only 4 ASD measurements of Pentaclethra were available 

(0.31, 0.34, 0.38 and 0.51 at 1064 nm). The 0.51 value was too large for single leaf 

reflectance and hence was not accurate, possibly because of multiple scattering (Clark 

et al. 2005). As a result, we calculated the average (0.34) of the first three values. 

Then we obtained the value of 2.5 at 1064 nm and used it as the mean value for 

the whole study area. With the relevant information regarding canopy and ground 

energy separation as well as , the cumulative gap probability and canopy cover 

was then calculated using Eq. 2.  

Finally we calculated the apparent foliage profiles and cumulative LAI 

profiles based on the derived gap probability. The apparent foliage profile was 
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defined by the following equation: 

        Eq. 3 

The log transformation of gap probability follows MacArthur and Horn 

(1969): the density of foliage may be estimated from the distribution of first leaf 

distance. Note that it is actually a transformation of Eq. 1. The cumulative LAI profile 

was then calculated through the actual foliage profile (or foliage area volume 

density), which is a projection adjustment of  (Ni-Meister et al. 2001) using 

the following equation: 

    Eq. 4 

where is the cumulative LAI as a function of height  and   is the 

height location of the canopy bottom. The term  is the foliage area volume 

density with units of m
2
/m

3
 and  is the projection coefficient used to adjust the 

apparent foliage profile to . Assuming a random foliage distribution 

within the canopy, we set the projection coefficient G to be 0.5 (Ni-Meister et al. 

2001). Clumping index  is another important parameter which adjusts the linear 

relationship between effective LAI and true LAI (Chen et al. 1997). Chen et al. 

(2005) derived global foliage clumping indices from multi-angular satellite POLDER 

data and we chose the mean clumping index value of 1.58 for broadleaf & evergreen 

forest.  

2.3.3 Scale adjusted cumulative LAI from LVIS waveform 

LAI estimates from lidar and measurements from field towers have different 
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footprint areas (~ 500 m
2
 for LVIS vs. less than 5 m

2
 for tower). A direct comparison 

between these two datasets may be problematic, especially in areas with low canopy 

cover or high canopy cover variability. For example, the LAI value from LVIS would 

be smaller than from a tower because tower footprints include only trees whereas 

LVIS footprints cover both trees and gaps. Therefore, it is necessary to convert 

cumulative LAI derived from LVIS to the same scale of tower measurement by 

adjusting for these footprint discrepancies.  

We performed a scale adjustment from LVIS LAI to tower using LVIS 

canopy cover (Eq. 5).  

  Eq. 5 

The adjustment is based on the assumption that foliage distribution within the 

tower is the same as all other canopy-covered areas within an LVIS footprint. We 

divided LVIS LAI by the canopy cover to approximate the same foliage distribution 

as the tower LAI. This has the effect of excluding between-tree gap areas in the 

calculation of LAI in an LVIS footprint. Total canopy cover (fcover) was calculated 

using Eq. 2. Note that canopy cover derived here is only an approximation because 

we cannot separate within-crown gaps and between-crown gaps directly. LVIS LAI 

has also been integrated from original vertical resolution (about 0.3 m) to tower 

section height (1.86 m). 

Total LAI for an LVIS footprint was directly calculated by setting the height 

variable  to the maximum canopy height in . It can also be calculated in 

Eq. 6 after solving the differential lidar equations of Eq. 3 and Eq. 4.  
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       Eq. 6 

This total LAI value is at LVIS footprint scale and is unadjusted for scale 

differences with the towers (i.e. not divided by total canopy cover). Landscape scale 

LAI was then mapped using the total LAI derived in Eq. 6.  

2.3.4 Distance of tower from lidar footprint center 

Not all towers may be suitable for validating LVIS LAI because they may be 

too far away from the centers of the laser footprints (i.e. not coincident). The distance 

between LAI towers and laser shot center may also have a significant effect on 

canopy height measurement and the accuracy of LAI retrieval. The canopy height 

retrieval accuracy may drop significantly when the distance between field 

measurement and laser pointing center is greater than about 5 m (Blair and Hofton 

1999; Frazer et al. 2010; Hyde et al. 2005). We thus examined results after filtering 

out those towers farther than 5 m. This resulted in the removal of 16 towers and 

reduced the total validation points from N = 546 to 185.  

2.4 Results 

2.4.1 Comparison of lidar and tower LAI  

Representative examples of cumulative LAI are shown in Fig. 2-2. The 

vertical resolution of cumulative profiles from LVIS is 1.86 m to match that of the 

towers. Cumulative LAI profiles from towers and LVIS generally showed the same 

trend for all types of LAI distribution (e.g. in Fig. 2-2 with low LAI ≈ 3, medium LAI 

≈ 6 and high LAI ≈ 10). Cumulative LAI values generally increase as canopy height 
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increase within a profile, but there can be a large difference of total LAI values for 

the same canopy height level (as it is the case for medium LAI ≈ 6 and high LAI ≈ 10 

in Fig. 2-2). 

 

Fig. 2-2 Examples of cumulative LAI profile from tower measurements and derived 

from LVIS.  

 

Both original GORT derived cumulative LAI and scale-adjusted cumulative 

LAI were plotted against the tower measured cumulative LAI (Fig. 2-3). The original 

GORT model explains about 42% of the total variance with a bias of -0.32 and root 

mean square error (RMSE) of 1.91. The scale-adjusted model slightly improves this 

result explaining about 50% of total variance with a bias of 0.27 and RMSE of 1.79.  

Results further improved upon filtering out towers more than 5 m away from laser 
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pointing center (Fig. 2-4). After adjustment for both scale and coincidence, our model 

explained about 63% of the total variance with a bias of 0.00 and RMSE of 1.36.  

 

Table 2-1 Total LAI from different land cover and land use areas 

Land Cover 
LVIS 

shots 

MEAN 

(m
2
/m

2
) 

STD 

(m
2
/m

2
) 

Open Pasture 3228 1.74 2.72 

Secondary Forests 13919 5.20 3.20 

Successional Plots 77 2.31 3.29 

Selectively-logged Forests 7068 5.41 2.82 

Old-growth Forests 35842 5.62 2.99 

Abandoned Agroforestry 1415 4.13 2.81 
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Fig. 2-3 Cumulative LAI estimated from LVIS data against all 55 cumulative LAI 

measurement towers. The total sampling number is 546, which is the number of total 

tower bins used to collect leaves. Note that after scale adjustment, many of the value 

that were underpredicted by LVIS rise. 
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Fig. 2-4 Cumulative LAI estimated from LVIS against cumulative LAI for towers 

with a distance less than 5 m from the laser pointing center. Cumulative LAI values 

from 16 towers are marked with different symbols.  

2.4.2 Landscape LAI variability 

We mapped spatial variations of total LAI (Fig. 2-5), as well as vertical LAI 

integrations from 0~5m, 5~10m, 10~20m and 20m~top canopy (Fig. 2-6) over the 

entire landscape. LAI values show great spatial variability both within and between 

land cover types at the scale of LVIS footprints (25 m).  Total LAI distributions over 

different land cover and land use areas are summarized in Table 2-1 Total LAI from 

different land cover and land use areas and Fig. 2-7. We found that the lowest LAI 

values were over open pastures (mean = 1.74, s.d. = 2.72). LAI of successional plots 
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were somewhat higher (mean = 2.31, s.d. = 3.29).  

Regeneration forests from selective-logging had much higher LAI values 

(mean = 5.41, s.d. = 2.82). Secondary forests showed variability in LAI as a function 

of forest age (ranging from 6 years to 39 years), but also considerable variability of 

LAI within successional stages (Fig. 2-7). In general, LAI increases rapidly at early 

successional stages from about 6 years to 22 years, reaching a maximum at about 30 

to 34 years before tapering off as stands mature. This is consistent with the concept of 

gap development as forests age (Kellner et al. 2011). The mean LAI value of all 

secondary forests was 5.20, close to the mean LAI value of old-growth forests (5.62). 

A t-test performed between the total LAI of old-growth and that of all the secondary 

forests combined resulted in a p-value <0.05, indicating the difference was 

significant. Vertical LAI distributions also exhibit differences across different land 

cover types (Fig. 2-6). For example, integrated layer LAI for the top-most layer (20 m 

and above) tended to be much smaller than for old-growth forests (panel 4, Fig. 2-6). 
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Fig. 2-5 Total LAI mapped across La Selva as derived from LVIS. Regenerating 

pastures have the lowest LAI values. Old growth forests have the highest mean LAI 

value and secondary forests are somewhat lower. 
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Fig. 2-6 Vertical LAI integration maps from 0 to 5m, 5 to 10m, 10 to 20m and above 

20m. 
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Fig. 2-7 Box plot of total LAI distribution over different forest successional types. 

The median LAI value is lowest for earlier succession stages and a reaches maximum 

value for 30-34 year-old secondary forests. Central lines give the median and boxes 

above and below the line give the interquartile range. Dashed lines give the 5% and 

95% ranges. Non-overlapping median notches indicate significant differences 

between those medians at roughly a 95% confidence interval. 

2.5 Discussion 

Both vertical LAI and total LAI were derived from LVIS waveforms with the 

GORT model (Ni-Meister et al. 2001). Our results demonstrate that vertical LAI 

distributions may be derived from lidar waveforms, in addition to total LAI. We 

stress here that these results are entirely based on physical derivation of LAI, not 

statistically based regression methods, as is commonly done. Our methodology thus 

provides a potential pathway for measuring LAI profiles without the need for field-
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measured LAI values to develop model relationships, though ancillary data (or 

assumptions) are required to parameterize our model (e.g. the ratio of vegetation to 

ground reflectance). 

There were differences between the LVIS-derived cumulative LAI profiles 

and field measurements with about 37% of the total variance unexplained by our 

model. Even so, our results are comparable to results found in temperate and boreal 

needle forests using small footprint lidar (Jensen et al. 2008; Morsdorf et al. 2006). 

These results are encouraging considering the spatial and vertical heterogeneity of 

tropical rainforests and their high LAI values.  

One source of unexplained variance in our model may be the large differences 

of footprint sizes between the towers and LVIS data. Even though we attempted to 

adjust for these differences, our method was only an approximation and thus could 

lead to errors in validation. Another source of error compounded with the difference 

in footprint size may be related to the non-coincidence of LVIS footprint centers with 

tower centers. While we tried to minimize this effect by including only those towers 

within 5 m of an LVIS footprint, errors may still be present. Consider shifting a 2 m x 

2 m column a few meters in a tropical forest, the forest structure captured in the 

column may change considerably even under a small shift. Note that geolocation of 

either the towers or the footprint was done with high accuracies (< 1 m) and is not 

considered as a significant source of error. 

Another source of error may be the use of incorrect input parameters in our 

model (i.e. model error in contrast to the errors just discussed). To assess this, we 

analyzed model sensitivity to variations in one key parameter in the model known to 
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affect canopy cover retrieval and LAI: leaf/soil reflectance ratio.   

The spatial variation of leaf/soil reflectance ratio could have a large 

impact on the model performance. The  value often varies for different sites or 

even within sites due to different environmental conditions. It may also vary 

temporally as well: foliage has different spectral responses and structural distribution 

in different growing periods, and the ground reflectance also varies according to the 

water content and ground cover. We applied a mean value of 2.5 to the whole study 

area, and this may have introduced errors into the model. The relative high soil 

moisture in La Selva decreases the soil reflectance and gives a relatively high leaf/soil 

reflectance ratio (Monteith and Unsworth 2008; Stoner and Baumgardner 1981). Ni-

Meister et al.(2001) found that a smaller ratio value would lead to a smaller gap 

probability. Morsdorf et al. (2006) did not take the variation of leaf reflectance into 

consideration because their study area was considered to be homogenous for both 

canopy and understory.  

We varied from about 1 to 3 to evaluate its effect on LAI (Fig. 2-8). We 

found that for a moderate LAI (about 4) the range would be about less than 1 (varying 

from 3.3 to 4.2). Recall our model results had RMSE values that ranged from about 1-

2; thus, it is possible much of our average error may be explained by spatial variation 

in . Unfortunately, without detailed measurements of this value it is impossible 

to further assess its impact relative to other sources of error. 
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Fig. 2-8 An example of LAI profiles derived from LVIS with different values of 

. As the leaf/soil reflectance ratio increases, the LAI value decreases and the 

profiles shift towards lower values of LAI. The sensitivity of LAI to the ratio changes 

is about 1. 

The ratio of ground return energy in total reflected energy  

is another key element in the LAI retrieval model. This ratio is not a parameter, per 

se, because it is derived from the waveform itself. However, it is highly sensitive to 

signal noise in certain situations. A high ratio of ground return energy is caused by 

low vegetation cover and a low total LAI value. But the relationship is nonlinear, and 

theoretically retrieved LAI does not saturate with decreasing ground energy ratio. 

However the LAI value becomes quite sensitive to the fluctuation of ground energy 

ratio when the ground energy ratio becomes small. A small change in  will 



 

 

39 

 

change the derived LAI value significantly. As canopy cover (and LAI) increases the 

ground energy necessarily becomes smaller. If noise values increase, or if 

topographic slopes are present (reducing returned ground energy) (Harding 2005; 

Lefsky et al. 2007; Pang et al. 2006) then errors may occur.  

 

Fig. 2-9 Different sensitivity of moderate LAI (~ 4) (a) and high LAI (~ 8) (b) to 

different ground noise levels. Ground noise is added to waveforms manually and the 

total noise value is shown in the legend, ranging from 25% to 100% of the peak value 

of return energy. The same noise levels have different levels of impact for low and 

high LAI. 

We applied different levels of noise into the ground portion of waveforms to 

analyze the sensitivity of LAI to . We found that for moderate and lower 

LAI (about 4) there was little sensitivity to noise (Fig. 2-9a). In contrast, for high LAI 

(about 8) (Fig. 2-9b) LAI values could be reduced by about 1.5 when the same level 
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of noise was introduced. This is then another possible source for the scatter in c. One 

implication of this sensitivity is that our LAI retrieval method may be less accurate 

over densely vegetated areas on steep slopes (and these occur at La Selva). There is 

no easy solution to this problem. If laser energy is increased to enable canopy 

penetration for dense forests, there is a subsequent risk of saturation for less dense 

areas, either from the canopy portion of the waveform or the ground return. Next 

generation waveform lidars may use dual channels (one low gain and one high gain) 

to avoid this issue.  

Considering again Fig. 2-4, based on our discussion above, we would expect 

errors to increase starting around LAI values of 4 or so. There is no clear relationship 

between error and LAI however in this figure, although some heteroscedasticity 

appears around LAI values greater than 2. The great decrease in scatter from Fig. 2-3 

to Fig. 2-4 is based on removing non-coincident comparisons, and the decreased bias 

and RMSE show how strong this effect is. The remainder of the scatter in Fig. 2-4 is 

thus a combination of any remaining non-coincidence (which may be as large as 5 

m), variations in the ground to canopy reflectance ratio, and signal noise induced by 

topography and/or high canopy cover. Without knowing the true variability of these 

factors it is difficult to partition errors between these remaining sources. We note only 

that the resulting RMSE value of 1.36 m is consistent with and bounded by our 

sensitivity analyses. 

Landscape level mapping of LAI may help to distinguish between some 

successional forest types and degraded forests. Differentiating among these over 

tropical areas has been difficult using optical remote sensing (Asner 2005). While 
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total LAI shows some ability to classify successional states (Fig. 2-7), it ignores the 

vertical distribution of LAI which may help better distinguish between classes. For 

example, consider Fig. 2-6 which shows the vertical LAI distribution of La Selva that 

incorporates all land cover types. LAI integration values at different height 

stratification layers suggest that the vertical structure of the canopy varies by land 

cover types and successional states: it is a function not just of total LAI, but of how 

the LAI is arranged vertically. In particular, distinguishing between older secondary 

forests and old-growth forests, while difficult using canopy height alone, may be 

possible using vertical canopy information from lidar. The efficacy of such an 

approach remains to be tested and is beyond our scope here, but has significance for 

efforts to map and monitor successional forests and degraded areas (for example, as 

part of REDD+ activities (Edwards et al. 2010)). 

2.6 Conclusion 

The vertical distribution of foliar material, as represented by LAI, has been 

hypothesized as a critical variable for many biophysical processes, yet it has been 

largely unattainable at landscape scales. As a result, our ability to understand vertical 

canopy organization and assess its importance in a variety of theoretical and applied 

domains has been severely limited at all but the most local scales. Our research is one 

of the few attempts to derive LAI profiles using lidar data based on physical model 

retrieval rather than through empirical methods. Our study has shown that large 

footprint waveform lidar can provide estimates of vertical LAI distribution in a 

tropical rainforest, even under conditions of high canopy cover. Further research is 
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required to assess the efficacy of our methods across varying landscapes and biomes. 

The validation of our approach was greatly aided by having actual, destructively 

sampled LAI measurements. Such data sets are rare indeed but their value is well 

worth the effort involved in obtaining them as they allow for direct comparison of 

models with reality. Ground-based lidar holds great promise for providing detailed 

LAI observations and may be an attractive alternative to destructive sampling 

(Strahler et al. 2008). The increased use of airborne lidar for forestry and carbon 

surveys, as well as the potential of retrieving these observations from space, 

underscores the urgency of continued model development. If successful this may lead 

to vastly improved data sets of LAI profiles across large areas and provide inputs for 

a variety of ecological, hydrological and climatological models that currently often 

use indirect and inaccurate parameterizations of this important attribute. 
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Chapter 3 Deriving and Validating Leaf Area Index (LAI) at 

Multiple Spatial Scales through Lidar Remote Sensing  

3.1 Introduction 

3.1.1 LAI using remote sensing 

Leaf area index (LAI), defined as one half of the total leaf area projected per 

unit horizontal ground area, is an important biophysical parameter within ecosystem 

models due to its impact on energy and mass transfer between the canopy and the 

atmosphere (Chen et al. 1997). LAI has been proven to be representative of canopy 

foliage content and crown structure (Gower and Norman 1991) and has been widely 

used for the estimation of radiation attenuation, plant photosynthesis, and 

precipitation interception among others.  

Large-scale (wide-area) LAI estimates are typically required to drive such 

ecosystem and other distributed models (Hurtt et al. 2004) with efforts to derive LAI 

products at different spatial and temporal scales using passive optical remote sensing 

data ongoing since the 1980s. At present there are a large number of global and 

regional LAI products available from different sensors, such as MODIS (Myneni et 

al. 2002), LANDSAT (Ganguly et al. 2008), CYCLOPES (Baret et al. 2007). 

Methods of deriving LAI using remote sensing mainly fall into two categories: 1) 

building empirical relationships between ground based LAI measurements and 

satellite vegetation indices (Chen and Cihlar 1995; Chen et al. 1997; Cohen et al. 

2003; Morisette et al. 2006); and, 2) inversion methods based on canopy radiative 
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transfer modeling (Ganguly et al. 2008; Koetz et al. 2005). Hybrid methods also exist 

that combine both (Fang and Liang 2003).  

While these efforts have been largely successful, the accuracy and consistency 

of regional and global products have been limited by saturation over canopies with 

high LAI, and variability introduced by the use of different satellite sensors 

(Abuelgasim et al. 2006). The problem is exacerbated by the lack of independent 

datasets for validation and product intercomparison. Passive remote sensing retrievals 

of LAI used for validation will themselves saturate in high LAI conditions. Ground-

based derivations provide an alternative, though such methods by their very nature 

will be spatially limited and are often time consuming to implement. For example, 

two common ground-based methods of validation are hemispherical photography and 

optical LAI estimation using a sensor such as the LAI-2000. These in turn have their 

own limitations: most notably that they are highly sensitive to exposure and solar 

illumination conditions (Jonckheere et al. 2004)). The most accurate retrieval, 

destructive sampling, is rarely performed given its cost and impracticality. 

Active optical methods, in particular lidar remote sensing, have seen 

increasingly widespread use for quantifying vertical and horizontal canopy structure, 

including aspects of canopy height, canopy cover and biomass (Dubayah et al. 2010; 

Lefsky 2010; Ni-Meister et al. 2010; Saatchi et al. 2011). Of particular interest is the 

ability to derive canopy (foliar and branch) profiles from waveform and discrete 

return lidar. This has led to efforts to derive LAI from airborne lidar datasets as well 

as through terrestrial scanning lidar systems (e.g. see (Jensen et al. 2008; Riano 2004; 

Solberg et al. 2009; Zhao and Popescu 2009).  
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In the majority of lidar LAI studies, empirical relationships between ground 

based measured values and predictor variables derived from lidar metrics have been 

related through statistical (mainly regression) analysis. More recently gap fraction 

based physical models and radiative transfer models have been incorporated to derive 

LAI and vertical foliage profiles using both airborne and terrestrial lidar systems 

(Morsdorf et al. 2006; Ni-Meister et al. 2001; Tang et al. 2012; Zhao et al. 2011). The 

ability to derive LAI from such physically-based modeling opens the door to large-

scale LAI mapping using lidar, as it frees these efforts from the requirement for 

associated field data to develop statistically-based lidar/LAI relationships of a 

spatially non-stationary nature (i.e. the relationships vary with location, species, 

canopy structure and the like). 

While airborne lidar data are increasingly widespread, they are not availably 

globally. Thus, it is of interest to develop and test methods of deriving LAI from 

space-based lidar where global coverage is possible, both for data set generation as 

well as for independent validation of existing global LAI products generated from 

passive optical sensors. The only existing set of such lidar data were obtained by the 

GLAS instrument on-board ICESAT (Abshire et al. 2005).  GLAS data have been 

used to generate several global height products (Lefsky 2010; Los et al. 2012; Simard 

et al. 2011), and have been integrated with other data for pan-tropical biomass 

estimation (Baccini et al. 2012; Saatchi et al. 2011). While GLAS observations were 

not optimized for the vegetation measurement there remain millions of waveforms 

obtained across every biome. They thus represent an attractive and potentially 

powerful source of validation data for total LAI values. Importantly they may also be 
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used to estimate the LAI profile through the canopy. A global compendium of LAI 

profiles from GLAS, even given its observational constraints, would provide an 

unprecedented data set on a key component of canopy structure. These profiles could 

then be used to initialize ecosystem model parameterizations of leaf area profiles, or 

serve to validate existing parameterizations.   

3.1.2 Proposal for multi spatial scale LAI validation 

The development of a physically based method to derive LAI and LAI vertical 

profiles (Tang et al. 2012) from waveform lidar suggests a potential pathway for 

obtaining global LAI data from GLAS. Tang et al. (2012) found excellent agreement 

between LAI derived from the Laser Vegetation Imaging Sensor, LVIS (Blair et al., 

1999), an airborne waveform lidar, and destructively-sampled LAI profiles. The 

success of this effort has led us to examine the feasibility of applying such an 

algorithm globally using GLAS data. An effort of this scale is complicated by the 

lack of ground validation data sets that are coincident with GLAS footprints. A 

potentially attractive alternative exploits the fact that airborne lidar datasets, while 

geographically spatially limited, are generally continuous (that is wall-to-wall within 

the flight area). This then allows a scaling-up strategy to be implemented where 

ground-based LAI observations are related to aircraft observations of LAI, which in 

turn are used to validate LAI derived from GLAS tracks that intersect the aircraft 

coverage. 

There is a considerable level of uncertainty regarding the efficacy of such an 

approach. First, ground-based LAI derivations from photos, LAI sensors, and 
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terrestrial scanning lidar may be inconsistent amongst themselves. Second, the 

algorithm of Tang et al. (2012) has not been validated outside of its initial application 

for tropical forests in Costa Rica, nor for the different instrument parameters of 

GLAS in comparison to LVIS. Third, these different data sources have varying spatial 

footprints and viewing geometries that may complicate intercomparisons. Thus, a 

necessary first step is a scale-based comparison of LAI derived from ground, LVIS 

and GLAS, and is the primary focus of this paper. Such a study should inform 

eventual efforts to derive a global LAI and LAI-profile data set from GLAS, while 

also illuminating the utility of aircraft and space-based lidar observations for the 

validation of passive optical retrievals of LAI. 

In this paper we present the results of a study comparing ground-based, LVIS 

and GLAS retrievals of total LAI over conifer-dominated forests of the Sierra Nevada 

in California. We first describe our study area and data sources. We use three 

different forms of ground estimates, hemispherical photography, LAI-2000 

measurements, and a terrestrial scanning lidar, along with airborne and spaceborne 

waveform data from LVIS and GLAS. We next present our methods for retrieving 

LAI from the three ground-based sources, and briefly review the LVIS algorithm 

presented in Tang et al. (2012). Implementation of this algorithm for GLAS requires a 

recursive method to separate ground and canopy returns, a result of the larger 

footprint size of GLAS, and is described in detail. Our results are organized around a 

series of comparisons that focus on relating LVIS-derived LAI maps with the 

different ground-based LAI estimates, and those from GLAS. We next illustrate how 

our methods may be used to validate LAI estimates from MODIS at much larger 
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scales. Lastly, we discuss the limitations of our approach and comment on its 

potential application towards the generation of space-based LAI estimates from 

GLAS, and the utility of lidar in general as a validation source for passive optical LAI 

products. 

3.2 Study Area and data 

The study area is located in Sierra National Forest, California, USA and 

covers an area of approximately 20,000 ha. Being a mountainous area ground 

elevations are variable, ranging from approximately 1000 to 2500m. The major forest 

types include Red Fir (Abies magnifica), White Fir (Abies concolor), Ponderosa Pine 

(Pinus ponderosa), Giant Sequoia (Sequoiadendron giganteum), and California Black 

Oak (Quercus kellogi) (Hunsaker et al. 2002). 

 

Table 3-1 Site characteristics from ground based data collection at Sierra National 

Forest, CA, July, 2008 (Zhao et al. 2012).  

Site No. Stem density (tree/ha) Dominant species 

305 ~248 Red Fir 

301 ~231 Red Fir 

801 ~125 White fir 

406 ~256 White fir, Incense cedar, Sugar pine 

23 ~110 Jeffery pine, Black oak 

168 ~570 Red fir 
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3.2.1 Ground based data: hemispherical photography, LAI-2000 and terrestrial 

lidar 

LAI data were acquired from 6 conifer sites comprising varied species and 

densities within the Sierra National Forest (Table 3-1), using EVI (Strahler et al. 

2008), hemispherical photographs, and the LAI-2000. Within each site, 5 plots of 20 

to 25 m radius were delineated for the purpose of measuring tree characteristics, 

acquiring an EVI scan, and observing LAI using hemispherical photos and the LAI-

2000 instrument. LAI retrievals from these instruments are discussed in the Methods 

in Section 3.  

3.2.2 Airborne lidar data: LVIS 

LVIS (Blair 1999) is an airborne, medium footprint (~25 m) full waveform 

scanning lidar system designed and developed at NASA's Goddard Space Flight 

Center (GSFC). LVIS emits laser pulses of 5 mJ with a 1064 nm wavelength at 10 ns 

bursts with repetition rates of up to 500 Hz. It operates at altitudes of up to 10 km 

above ground level with a 7° field-of-view (FOV). Standard LVIS products include 

fully digitized emitting and return waveforms, and ground DEMs, as well as canopy 

height metrics described at quartile energy returns derived from Gaussian 

decomposition methods (Hofton et al. 2000). Ecosystem structure parameters such as 

canopy height, aboveground biomass, vertical foliage profile and LAI have been 

derived across different biomes using metrics derived from LVIS waveforms (Drake 

2002a; Hyde et al. 2005; Swatantran et al. 2011; Tang et al. 2012). LVIS was flown 
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over the western slope of Sierra National Forest in the summer of 2008. LVIS 

footprints were collected along and across track to enable a contiguous dataset. The 

actual footprint density on the ground varied somewhat, based on flight line and 

swath overlap.   

3.2.3 Spaceborne lidar data: GLAS 

The Geoscience Laser Altimeter System (GLAS) is a spaceborne lidar 

developed for the Ice, Cloud and land Elevation Satellite (ICESat) mission (Abshire 

et al. 2005). GLAS operated at a wavelength of 1064 nm and 40 Hz recording the 

returned energy from a footprint ~65 m in diameter with a centroid separation of 

~165 m (Neuenschwander, 2008). The GLAS footprint follows an elliptical energy 

distribution of 1/e
2 

with its size varying throughout the mission with computed sizes 

of about 110, 90 and 55m for laser campaigns 1, 2, and 3) (Abshire et al. 2005; 

Schutz et al. 2005). Canopy height, aboveground biomass and LAI have been 

estimated using GLA01 waveform products or GLA14 Land/Canopy Elevation 

products at different scales (Garcia et al. 2012; Lefsky 2010; Lefsky et al. 2005; Los 

et al. 2012; Simard et al. 2011). GLA01 waveform products typically include 544 

bins providing vertical resolution of 1 ns or 15 cm for land surface products. GLA14 

products include surface elevation, footprint centroid coordinates and fits of the 

GLA01 waveform using up to 6 Gaussian peaks (Harding 2005). The GLAS system 

operated with a 33-day sub-repeat and 91-day full repeat cycle with the intensity of 

the laser energy emitted from the sensor known to have decreased significantly after 

2007, marking an obvious degradation in the sensor’s capabilities and leading to a 
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shorter than expected system lifetime. To compensate for the annual LAI differences 

from ground based measurements and sensor degradation problems we selected 

GLAS shots only from Laser 2C, 3C, and 3F campaigns (May ~ Sep. of 2004, 2005 

and 2006). GLAS data were filtered to overlay the study area based on geographic 

coordinates from GLA14 products. Products of GLA01 and GLA14 were also merged 

based on the record index and shot number. Shots with saturated waveforms were 

excluded. Following pre-processing a total of 145 valid GLAS shots were available 

for this study. 

3.3 Methods 

While previous work by Tang et al. (2012) has shown the potential for LAI 

profile derivation, our focus here is only on an intercomparison of total (integrated) 

LAI to help inform the viability of a validation framework incorporating ground, 

airborne, and spaceborne LAI estimates. The establishment of such a multi-scale 

validation framework using total LAI is a first step towards vertical LAI profile 

estimation using spaceborne lidar. 

Note that we do not explicitly consider the difference between LAI and PAI 

(Plant Area Index). Plant Area Index is the variable derived from LVIS and GLAS as 

they cannot distinguish between leaves and branches. It is assumed throughout that 

the two values differ insignificantly, as suggested by Dufrene & Breda (1995), Gower 

et al. (1999) and Tang et al. (2012). 

The comparison procedure progresses across scales from local field-level 

ground LAI measurements to regional airborne lidar LAI to the LAI products derived 
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from GLAS (Fig. 3-1). We add a further step to compare our LVIS and GLAS LAI 

estimates to those from MODIS to assess the ability of lidar to serve as a large scale 

validation for global, passive optical LAI retrievals.  

 

Fig. 3-1 Deriving and validating LAI products at multiple-scales. Regional-scale lidar 

mapping (e.g. LVIS) can bridge the gap between sparsely measured field data and 

satellite observations. 

3.3.1 LAI from Ground Based Measurements 

Ground measurements of LAI were acquired from 3 independent sources 

described below. There is no assertion that any of these are ground "truth". Rather 

each represents, per se, an established method of observation that may reasonably be 

used for characterization of canopy structure, and therefore as validation of remotely 

sensed retrievals. That said, the limitations in each method have been noted 
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elsewhere, and arise from differences in measurement approach, spatial scale, 

viewing geometry and underlying model assumptions. These same limitations are 

manifest in comparisons with remotely sensed LAI, with the added complication that 

airborne and space borne sensors look down from above the canopy, while most 

ground-based characterizations look-up from below. We thus expect a priori, to find 

some discrepancies among all of the methods and accept this as a limitation of any 

intercomparison, including our own. That said there is considerable value in 

quantifying the degree of divergence or convergence in results, and in seeking to 

understand the mechanisms behind these.  

Hemispherical Photography and LAI-2000 

Hemispherical photographs and data from the LAI-2000 Plant Canopy 

Analyzer are collected from two conventionally adopted instruments that use optical 

techniques for LAI estimation (Jonckheere et al. 2004).  In this study hemispherical 

photographs were processed using Digital Hemispherical Photography (DHP) 

software to estimate LAI retrievals (Leblanc et al. 2005). Each photograph was 

divided into 10 azimuthal rings of constant zenith angle range, thus each ring has a 9° 

range. Each ring was analyzed separately to determine two thresholds, represented by 

gap fraction, and LAI estimation.  

The LAI-2000 Plant Canopy Analyzer, operated in single-instrument mode, 

calculates LAI using radiation measurements made with a “fish-eye” optical sensor. 

Measurements were made at 5 angles below the canopy determining light 

interception. LAI was then computed using a radiative transfer model as part of the 
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FV2000 software (Li-Cor). Multiple below-canopy readings were taken, following a 

set spatial sampling procedure, to characterize LAI throughout the plot. 

Measurements were made starting and ending with reference readings of unobstructed 

skylight that were linearly scaled with time to match under-canopy readings. This 

method of LAI retrieval has been employed in studies such as Stenberg et al. (1994) 

and Zhao et al. (2011).  

Echidna terrestrial scanning lidar 

The Echidna Validation Instrument is a ground-based, upward scanning, full-

waveform-digitizing hemispherical lidar, built by CSIRO, Australia. It emits a pulse 

of laser energy for which the intensity of return is recorded as a function of distance 

from the sensor. Scans are completed over the full hemisphere above the instrument 

with waveforms recorded for every direction within the hemisphere. It has been 

previously used to provide effective foliage profile, stand height and other forest 

structural parameters (Jupp et al. 2009; Strahler et al. 2008). It shows relatively 

consistent LAI retrievals to those obtained from both hemispherical photography and 

the LAI-2000 Plant Canopy Analyzer (Zhao et al. 2012; Zhao et al. 2011). In this 

study, methods proposed by Jupp et al. (2009) were followed in calculating LAI from 

Echidna waveform retrievals.  

3.3.2 LAI from LVIS 

Tang et al. (2012) implemented a methodology to derive total LAI and 

vertical LAI profiles using waveform lidar from LVIS. The accuracies found 

suggested that LVIS could potentially produce more accurate LAI profiles than that 
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associated with conventional, non-destructive ground measurements. Total LAI 

values are derived from canopy gap probability while vertical LAI profiles are 

estimated by taking the inverse of the vertical gap probability distribution as a 

function of height (Chen et al. 1997). Vertical gap probability is calculated from lidar 

waveforms using the geometric optical and radiative transfer (GORT) model (Ni-

Meister et al. 2001), which is also applicable for derivation of total LAI and vertical 

LAI profiles. These are obtained from LVIS waveforms through consideration of 

foliage projection coefficients and the canopy clumping indices. LAI and canopy 

foliage profiles derived from this method have been validated using destructively 

sampled data in the La Selva Biological Station, Costa Rica (Tang et al. 2012).  

The effective LAI at the LVIS footprint scale was derived using the following 

equation: 

  (1) 

where  and  are the integrated laser energy returns from the canopy, 

and ground respectively. The default LVIS Gaussian decomposition method (Hofton 

et al. 2000) is then applied to the waveform to separate the individual energy 

contributions of canopy and ground. The parameters of  represent the 

canopy and ground reflectance. The ratio of canopy to ground reflectance was 

set to be 1.6 for the Sierra site, a value estimated empirically using high spatial 

resolution Quickbird imagery (Hyde et al. 2005). The projection coefficient G is 

typically set to 0.5 when assuming a random foliage distribution within the canopy 

crown. This spherical foliage orientation allows an adequate representation of many 
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real canopy types and assumes a constant projected foliage surface with respect to 

inclination angle (Olthof et al. 2003).  

As noted in Tang et al. (2012) this algorithm is sensitive to slope when LAI 

values are large. Therefore, values of effective LAI > 5 were removed where terrain 

slopes exceeded 40°. Slope data was calculated from ground elevations derived from 

LVIS. 

Vertical gap probability and effective cumulative LAI profile 

were calculated using the following equations where  is the height 

location of the canopy bottom (Ni-Meister et al. 2001; Tang et al. 2012). 

   (2) 

  (3) 

The LAI values from individual LVIS footprints could then be aggregated to 

achieve various spatial mappings appropriate for comparison with ground, GLAS and 

MODIS estimates of LAI. The number of LVIS footprints incident within ground plot 

boundaries varied from 3 to 9 with an average of 6 shots, and those intersecting 

GLAS footprints varied from < 5 up to 50 shots with an average of 14.  

3.3.3 LAI from GLAS 

LAI products can be estimated from GLAS data through separation of canopy 

and ground energy using the same model as that applied to the LVIS waveforms (Eq. 

1). Consideration of several factors must precede this process. The default 6-

Gaussian-curves fit applied as part of the LVIS LAI estimation process may fail to 
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correctly distinguish between canopy and ground return energy in the presence of 

complex topography or highly heterogeneous vegetation cover when using GLAS 

(Duncanson et al. 2010). Large errors may occur if direct use is made of the first (or 

second) Gaussian fit as a representation of the ground return. This could lead to a 

consistent overestimation of canopy height and therefore LAI as the Gaussian 

decomposition method would be influenced by multiple-scattering delays incorrectly 

identified as ground. This would be especially true for situations where the incident 

energy reaching the ground is low because of turbid atmospherics, degraded GLAS 

laser energy outputs (which occurred through time), and other factors related to slope 

and canopy cover (Los et al. 2012). Previous studies only applied empirical cutoff 

thresholds (e.g. 2 m above the first Gaussian peak center) to separate the ground 

energy from the canopy return (Garcia et al. 2012; Los et al. 2012). However the 

reliability of such empirical methods is uncertain.  

For this study, a recursive analysis method was developed to facilitate the 

separation of canopy and ground return energy from GLAS waveforms. Prior 

knowledge of the LAI distribution (e.g. maximum potential LAI value) obtained from 

field knowledge or independent data sources (e.g. MODIS LAI) can be used to refine 

the LAI estimate. The method incorporates 3 major steps. The prior LAI estimates are 

not required to be exact, but are rather used as inputs into a fuzzy logic system to 

refute false LAI predictions: 

Step 1: Initial estimate of LAI. Both total LAI and vertical LAI profile can be 

calculated using Eq. 1 and Eq. 3. The ground return energy is calculated as the first 

Gaussian curve fit from GLA14. The canopy return waveform is calculated as the 
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difference between original GLA01 waveform and the fitted ground Gaussian curve. 

Step 2:  Inspection of LAI estimate. The initial LAI estimates must satisfy 

both of the following prior conditions to be set as the final estimate. The first 

condition is that the LAI estimate does not exceed the upper limit of total LAI. The 

upper limit is calculated at 1 km scale using the maximum values of MODIS LAI 

from 2004~2006. Note that MODIS LAI value (already corrected from clumping 

effect) is considered to be consistently greater than effective GLAS LAI estimates, 

and hence can appropriately serve as the upper limit threshold. The second condition 

is that no anomaly value is detected in the vertical LAI profile. Assuming vertical 

LAI profile values (not the shape) follow a normal distribution, the maximum value 

of LAI profile is expected to be less than τ = μ + 3δ with a probability of 99.7% (μ 

and δ are mean and standard deviation of the LAI profile values). Any derived LAI 

profile value greater than τ is defined as an anomaly value.  

Step 3: If the estimates from the second step fail to satisfy both of the above 

conditions, it is marked as a "false" estimate and the algorithm will return to Step 1. 

The LAI calculation process will restart by taking the next Gaussian fit as the 

representation of the ground return. 

 This 3-step process as visualized in Fig. 3-2 will continue until one or more 

of the following situations occur: 1) the conditions of step 2 are satisfied and the 

"true" LAI estimate is found; or, 2) the applied ground Gaussian fit possesses the 

largest amplitude among all fits. The second scenario guarantees that the algorithm 

will not miss the major signal as it is assumed that the strongest Gaussian curve is a 

result of interaction either with the canopy or the ground.  
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All 145 GLAS shots were processed using the recursive method, and only 

GLAS footprints intersected by  > 10 LVIS shots were selected for LAI comparison 

to ensure data quality (number of corresponding footprints, 99). 
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Fig. 3-2 Recursive estimation of LAI from GLAS waveform data. LAI estimate from 

GLAS data must satisfy the processing conditions defined by independent but inexact 

LAI sources. 

3.4 Results   

In this section we present LAI data from the multiple sources featured in this 

study. These include maps and data comparisons. The results are presented in 3 

comparison sections exploring the link between LVIS LAI and LAI values collected 

from ground-based observation, GLAS and MODIS.  

3.4.1 LVIS LAI  

Effective LVIS LAI values were averaged over 30 m grids and mapped over 

the landscape (Fig. 3-3). The 30m LVIS LAI map captures the spatial variation of 

LAI over all low, medium and high LAI areas. These low LAI areas are dominated by 
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non-vegetated area such as rocks and bare ground. Medium and high LAI areas are 

covered by sparsely distributed tree stands and high stand density forests respectively. 

The Landscape LAI shows a Poisson distribution of LAI values, with a mean value of 

1.00 and a standard deviation of 0.98 (Fig. 3-4).  Such Poisson distribution and low 

mean LAI values are expected in the discontinuous distributed conifer forests in our 

study area. 

 

Fig. 3-3 Landscape map of effective LAI generated from LVIS, showing large spatial 

variation of LAI at 30 m scale. The forests in Sierra follow a spatially discontinuous 

Low 

LAI 

Medium 

LAI 

High 

LAI 
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distribution, leaving large gaps of bare ground and rocks between conifer canopies. 

 

 

Fig. 3-4 Frequency distribution of effective LAI from LVIS data over the entire Sierra 

National Forest area. 

3.4.2 LVIS LAI vs. Ground Based LAI 

LVIS LAI was next compared to the three ground based sources of LAI (Fig. 

3-5). Averaged LVIS derived LAI was highly correlated with data from 

hemispherical photographs (r
2 

= 0.80), LAI-2000 (r
2 

=0.85), and Echidna LAI for 

which both regression LAI (r
2 
=0.76), and hinge LAI (r

2 
=0.77) were calculated. Both 
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bias and root mean square error (RMSE) were low (bias = 0.46, RMSE = 0.55 for 

hemispherical photographs, and bias = 0.46, RMSE = 0.56 for LAI-2000). The 

regression analysis between Echidna LAI (regression and hinge) and LVIS LAI also 

shows low residual errors of 0.54 and 0.63, but LAI estimates from LVIS are 

consistently biased lower relative to the Echidna data (bias = 1.07, RMSE =1.24 for 

regression Echidna, and bias = 1.39, RMSE =1.58 for hinge Echidna).  

 

 

Fig. 3-5 Plot-level averaged LVIS effective LAI against plot-level LAI estimates 

from a) Hemispherical photos, b) LAI-2000, c) Echidna regression LAI and d) 

Echidna hinge angle LAI. While there are strong relationships, LVIS is biased low, 

especially with regards to Echidna. 

 



 

 

63 

 

3.4.3 LVIS LAI vs. GLAS LAI  

There is a moderate agreement between averaged LVIS LAI and GLAS LAI 

for each GLAS footprint (r
2 
=0.53, bias = -0.09 and RMSE = 0.52) (Fig. 3-6). Most of 

the GLAS and averaged LVIS LAI data values fall within an LAI range of [0-1.5]. 

These lower values are expected given that the larger aggregation area includes more 

gaps. There are some areas of large disagreement and some heteroscedastic behavior, 

but little bias.  

  

Fig. 3-6 a) GLAS LAI derived from non-recursive method; b) GLAS LAI derived 

from recursive method. The x-axis is averaged LVIS effective LAI and the y-axis is 

derived GLAS LAI. 
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Tang et al. (2012) performed a sensitivity analysis of LAI retrieval from 

waveform lidar that found slope to impact LAI retrieval accuracy. We examined both 

the RMSE and r
2
 as functions of slope for each LVIS/GLAS comparison (Fig. 3-7). 

The RMSE remains low until a slope threshold value of α ≈ 20° before then rapidly 

rising. At approximately the same threshold value (α ≈ 18°) the r
2
 drops as expected. 

These data suggest an optimum slope threshold is located approximately about 20°. 

When comparisons are limited to slopes less than this r
2 

and RMSE values are 

comparable to those seen between LVIS and the ground-based LAI values  

To minimize slope-induced error, GLAS footprints were filtered with a cutoff 

slope threshold of 20, reducing the total number of GLAS footprints from 99 to 39. 

Through this process the comparative result between LVIS and GLAS was improved 

significantly, as shown in Fig. 3-8, with an increase in r
2 
to 0.69 in comparison to the 

previous 0.53, evident prior to filtering (Fig. 3-6 ). The filtered data displays a bias = -

0.05 and RMSE = 0.33. Apart from a few outlying results underestimating the GLAS 

LAI data points, almost all data are closely distributed around the 1:1 line, indicating 

a good agreement between GLAS and LVIS LAI.  
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Fig. 3-7 Correlation statistics of RMSE and r
2
 calculated upon comparison of all 

LVIS LAI and GLAS LAI values as a function of slope threshold (x). For a given 

slope threshold α, the y-axis represents the RMSE (or r
2
) of all GLAS shots with 

slope < α.  
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Fig. 3-8 Averaged LVIS effective LAI against GLAS LAI at the GLAS footprint 

level for GLAS shots with an average slope < 20°.  

 

3.4.4 LVIS LAI vs. MODIS LAI  

Fig. 3-9 shows a weak relationship between the averaged LVIS LAI with 

MODIS 1 km pixels using the MODIS LAI 8-day composite product. LVIS derived 

total LAI was calculated from averaged effective LAI multiplied by a clumping index 

of 1.8 (Chen et al. 2005) at each MODIS pixel. Despite a low bias (-0.16) and low 

RMSE (0.67), the comparison between LVIS LAI and MODIS LAI has the lowest r
2 
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(0.20) among all comparison results (Table 3-2). 

 
Fig. 3-9 Averaged LVIS total LAI against MODIS LAI at each MODIS 1 km pixel 

level.  

 

Table 3-2 Summary of comparison results with LVIS LAI 

 

Hemi-

photo 

EVI-

regression 

EVI-

hinge 

LAI-

2000 

GLAS 

(all) 

GLAS 

(low slope 

only) 

MODIS 

r
2
 0.80 0.76 0.75 0.85 0.53 0.69 0.20 

RMSE 0.55 1.24 1.39 0.56 0.52 0.33 0.67 

bias 0.46 1.07 1.58 0.46 -0.09 -0.05 -0.16 
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3.5 Discussion 

This study demonstrates the feasibility of deriving LAI products from 

spaceborne waveform lidar and the potential to validate these products using ground 

validated airborne lidar data. This capability is examined using comparative LAI 

values obtained from ground based, airborne and spaceborne measurements with 

airborne lidar acting as the control dataset. Agreements are good between LVIS and 

all other LAI products studied in this work with the exception of MODIS (as shown 

in Table 3-2).  

Ground-based LAI estimates (hemispherical photo and LAI-2000) are 

observed to show the most agreement with LVIS LAI data, specifically the highest r
2
 

and lowest RMSE. However, a consistent positive bias in the comparison indicates 

either an overestimate of ground-based LAI or an underestimate using LVIS. The 

main cause of this discrepancy is likely attributable to the use of different scanning 

angles: the nadir scanning of lidar observes more gaps within a canopy and hence 

produces relatively lower LAI values when compared with the ground hemispherical 

scanning method. In addition, this discrepancy can be exacerbated by the different 

viewing direction: satellites are downward looking, whereas ground measurements 

look up (Demarez et al. 2008). Without the gold standard of destructively sampled 

LAI data the validity of the approaches presented in this study remain unconfirmed 

and will require further investigation across multiple biomes to enable conclusive 

validation. In spite of this limitation the high coefficient of determination (r
2
 > 0.80) 

exhibited between LVIS and ground-based measurements suggests that a feasible 
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correction of systematic biases is possible which may allow interchangeable LAI data 

sets for the purpose of validation. 

Despite the high r
2
 (~0.75) values, Echidna overestimates LAI in comparison 

to LVIS as well as other ground measurements (LAI-2000 and hemispherical photos). 

This occurrence is observed as a result of the effects of spectral scanning differences 

(near-infrared for Echidna vs. blue band for hemi), lower image sampling resolution 

(640 pixels for Echidna vs. 1520 pixels for hemi) and a mismatch in gap threshold 

setting (Zhao et al. 2012). A new generation Dual-Wavelength Echidna Lidar 

(DWEL) is proposed to extend and improve the ability of the current Echidna version 

to retrieve forest structural parameters, and hence help address this overestimation 

(Douglas et al. 2012). 

MODIS LAI is observed to have the least agreement with LVIS LAI. The 

relatively low r
2
 value indicates that MODIS LAI could have a large uncertainty 

within a 1 km pixel with this uncertainty likely due to the following two reasons. 

Principally, MODIS cannot describe the spatial structural heterogeneity of the forest 

within a 1 km pixel. LVIS, on the other hand, can fully capture the LAI spatial 

variability at ~ 30 m resolution. It may be the case that MODIS is able to provide 

similar estimates as LVIS over more homogenous forests but less accurate over 

forests of high heterogeneity. Secondly, MODIS LAI does not represent true LAI, but 

rather the mathematical expectation of LAI over an estimated LAI distribution 

function (Knyazikhin et al. 1998c). The default algorithm calculates the LAI 

distribution function by measuring probabilities of various LAI values given the 

spectral bands of a certain pixel. The probability-based LAI prediction can describe 
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the general trend but does not appear accurate at pixel level. These limitations explain 

the low r
2
 but also the low bias as seen through our comparisons.  

Our results also indicate that LAI can be accurately derived from GLAS data 

but only under desirable topographic conditions. The detrimental effect of slope is 

believed to be threefold. Slope may serve to increase the data variance, lower the 

signal amplitude of the ground Gaussian fit, and blur the separation between ground 

and canopy energy in a waveform signal. Such slope effects, coupled with low 

emitting laser energy and multiple scattering effects, comprise the major 

measurement errors existing in canopy height and LAI calculations using lidar remote 

sensing (Lefsky et al. 2005; Tang et al. 2012). For large footprint sizes the slope 

effect becomes more significant as the complexity and heterogeneity of topography 

increases relative to the mean footprint scale, as shown in Fig. 3-6 and Fig. 3-7. As a 

result, GLAS may not be suited to predicting LAI values over mountainous areas with 

large slopes. 

When using GLAS for deriving LAI, the recursive method shows significant 

improvement compared with the non-recursive. As discussed in section 3.3, large LAI 

prediction errors occur when using the first Gaussian fit only (Fig. 3-6a). The 

recursive method can partially correct for slope and multiple-scattering effects but 

requires a priori information. This information is usually available from external and 

independent sources and need not be extremely accurate. For the case described in 

this study we used maximum summer MODIS LAI. As MODIS LAI serves as the 

upper limit constraint, its value is expected to be consistently greater than GLAS LAI 

(before clumping correction). However, the a priori guess may occasionally be 
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incorrect and MODIS at times may underestimate LAI (at GLAS scale, not the entire 

1km MODIS pixel), particularly over mixed land cover types. This would lead to an 

underestimated prediction of GLAS LAI. As an example consider a MODIS 1 km 

pixel (LAI = 2) consisting of savannas (LAI = 0.5) and forests (LAI = 4). If the 

GLAS footprint were to fall over the savannas, the recursive algorithm works 

seamlessly. However, if the footprint falls over forests, the algorithm will set the LAI 

upper limit to 2 and not the actual maximum of 4. To minimize such an effect, 

accurate land classification maps or finer resolution LAI maps (e.g. from Landsat) 

will be helpful. Further work is planned to address this problem. Although the 

efficacy of such an algorithm remains largely untested, results in Sierra National 

Forest increase our confidence of deriving LAI products from GLAS. 

Our GLAS LAI algorithm also benefits from additional environmental 

information, namely the leaf/soil reflectance ratio. The leaf/soil reflectance ratio is 

primarily applied to normalize the laser waveform energy between the canopy and 

ground components. Failure to incorporate the ratio into the LAI model increases the 

error and uncertainty, particularly over high LAI areas. Previous studies have used 

constant values obtained from either empirical or field sources (Lefsky 1999b; Tang 

et al. 2012). Armston et al. (2013) improved a model originally published by Ni-

Meister (2010) to estimate the ratio value using waveform lidar. Their results suggest 

the possibility of retrieving robust leaf/soil ratio estimates at site level. This method 

has the potential to refine GLAS LAI products over large areas but will require 

additional developmental efforts.  

Results of the inter-comparison of LAI values with respect to LVIS derived 
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values provide encouragement for the wider use of the outlined validation approach 

and indicate that 1) LVIS can be used to derive high accuracy effective LAI maps at 

~20 m resolution as validated by all ground measurements (hemispherical photo/LAI-

2000/Echidna) at plot scale, and 2) LVIS can be used to validate LAI products from 

spaceborne remote sensing (e.g. GLAS and MODIS). Our results highlight the 

feasibility of using airborne lidar as a validation intermediary between ground based 

field and spaceborne LAI measurements but it is expected that a direct comparison 

between field and spaceborne measurements may remain problematic due to 

differences in spatial coverage, ground heterogeneity and sampling density, in 

addition to sensor and algorithm complexity. The lack of coincident field plots with 

the footprints of GLAS data makes this an even more difficult achievement. As a 

consequence it is beneficial to facilitate validation and calibration activities at 

multiple scales when analyzing such varied data. This includes analysis of the varying 

ground based techniques featured in this study. Such consideration will help address 

the necessity to satisfy the accepted Global Terrestrial Observing System LAI 

mapping requirement of ±15% uncertainty at the pixel scale (Abuelgasim et al. 2006).  

In the near future, our work will focus on improving the current method 

presented in this study, principally by incorporating more testing across the large 

gradient of biomes found in North America. We also intend to assess the accuracy of 

GLAS derived LAI profiles, potentially validated by LVIS and Echidna. Ultimately, 

these studies are intended to aid in the derivation of a continental scale LAI profile 

product using GLAS data linked to ground-based measurements, and aircraft and 

spaceborne observations through a similar validation framework to that presented in 
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this study. This will be one of the first attempts to investigate forest structural 

information on this large scale, and is of great importance in deepening our 

understanding of forest dynamics and terrestrial carbon flux. 

3.6 Conclusion 

This study has shown that LVIS airborne lidar can accurately estimate the 

spatial variability of total LAI exhibited in ground measurements. This has been 

shown for data collected at the Sierra National Forest. Direct comparison of results 

between LVIS LAI and ground measurements (bias ≈ 0.50 and RMSE ≈ 0.50 for 

hemispherical photographs/LAI-2000 and a significant overestimate in both statistics 

for Echidna) indicate the existence of a systematic bias in ground measurements of 

total LAI in comparison to LVIS data. This is mainly due to existing differences in 

scanning mechanism and data processing methods. However, the high coefficient of 

determination (r
2 ≈ 0.80) exhibited between those datasets suggests that a feasible 

correction of the systematic bias is feasible and can be applied to create 

interchangeable data. Due to known flaws in ground based LAI acquisition and 

evidence from previous LVIS LAI studies, involving destructive sampling, it is 

reasonable to assume that LVIS may present a more accurate representation of true 

LAI. Significantly this allows a similar or greater confidence to be placed on the data 

obtained from airborne systems, and allows robust LAI maps to be constructed on a 

much greater scale and at a faster rate than currently possible.  

Where LVIS data is available the high level of correlation acts as a validation 

for its use in providing an independent LAI dataset, offering an alternative product 
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with a high level of potential. This correlation between LVIS and ground 

measurements also suggests that LVIS data can be used as an intermediary link 

between ground and spaceborne measurements, bridging the gap between the vastly 

different spatial scales at which LAI data is available. This approach to GLAS 

validation fills a gap existing in the capability of spaceborne lidar interpretation as 

presently insufficient ground-based measurements are available for this purpose. 

Hence the vast global GLAS dataset is significantly underutilized. 

GLAS LAI products should be viewed as a complementary source of LAI 

estimation to passive optical sources such as MODIS, which can also provide LAI 

data on a global scale. It is emphasized that GLAS LAI estimation offers several 

advantages and disadvantages in comparison to MODIS and the prospective use of 

the data together in some form of data fusion is bound to be beneficial to future 

studies. The advantages offered by GLAS not only include the relatively higher 

observed correlation with LVIS waveform data, but more significantly the potential to 

estimate vertical distribution of LAI, previously shown for LVIS waveform data. This 

of course suggests a more accurate link between the spatial extremes offered by 

ground and spaceborne measurements. It is believed that successful development of 

the large GLAS dataset independently or in fusion with passive optical methods has 

potentially huge ramifications for ecosystem modeling. In light of this the provision 

of a mid-scale validation method to maintain a direct link between large scale remote 

sensing and the plot level forest inventory is seen as a vital component to unlocking 

the full potential of GLAS data and the continued success of MODIS products. The 

evidence presented here acknowledges the efficacy of fulfilling this role with LVIS 
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LAI data and ultimately of improving global LAI coverage. 

It is likely in the next decade that more active systems will be launched into 

space including ICESAT2. Future systems will potentially offer swath mapping lidar, 

and similar technological advances. The results of this study then hold the future 

promise of retrieving robust global estimations of leaf area index profiles with even 

greater coverage and accuracy than predicted here. This would create a remarkable 

dataset that could be used to revolutionize models that predict energy and mass 

exchange between the atmosphere and biosphere. 
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Chapter 4 Large-scale Retrieval of Leaf Area Index and Vertical 

Foliage Profile from the Spaceborne Waveform Lidar 

(GLAS/ICESat) 

4.1 Introduction 

Leaf Area Index (LAI) and vertical foliage profile (VFP, or foliage height 

profile) are important biophysical variables in terrestrial ecosystems (Aber 1979; 

Gower and Norman 1991; Parker et al. 2001; Stark et al. 2012). Recent studies have 

reviewed the importance and potential applications of LAI and VFP derived from 

large footprint waveform lidar (Tang et al. 2014; Tang et al. 2012) and have shown 

the efficacy of a physical model to derive these profiles from waveform lidar data 

when compared to destructively sampled profiles in a tropical rain forest (Tang et al. 

2012). This model was then transferred to the montane forests of the Sierra Nevada 

using GLAS sensor on board of ICESat. The comparison between GLAS-derived LAI 

data and airborne lidar data (r
2
 = 0.69, bias = -0.05 and RMSE = 0.33) demonstrated 

the more general capability of our algorithm to provide total LAI and LAI profiles 

across biomes (Tang et al. 2014). The logical extension of these efforts is a further 

application of our methods over much larger areas, and is the goal of our work 

presented here.  

Large scale derivation of GLAS LAI and VFP products have the potential to 

serve as a source of validation data for passive optical data sets, as well as providing 

needed canopy information that may be used within ecosystem and other models. 
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While observations from airborne lidar sensors have been used to derive both LAI 

and VFP, these data are limited spatially. Demonstration of the viability of using 

space-based retrievals of these from lidar over large areas opens the possibility of 

enhanced descriptions of the vertical organization of canopy elements that play large 

roles in the transfer of energy and mass between the surface and atmosphere in 

ecosystem models. For example, there currently exists no regional data set of the LAI 

profiles, let alone for areas as large as states and beyond. Providing such data would 

improve our understanding of LAI structure and dynamics, its role in terrestrial gross 

primary production (GPP) (Kotchenova et al. 2004), and global carbon cycling 

(Houghton 2007). Furthermore, foliar profiles have long been postulated to have an 

impact on habitat quality, species richness and abundance (Goetz et al. 2007). A 

global data set of such profiles would be exceptionally useful for clarifying the roles 

of LAI and VFP in these areas, as well as providing the means to explore the impact 

of climatic, edaphic, and human impacts on their magnitudes and variability.  

The overall goal of this paper is to demonstrate large-scale LAI and VFP 

retrievals using GLAS data for the entire state of California. First, we describe the 

utilized inputs, including data from GLAS, MODIS and Landsat. We next briefly 

review details of our algorithm for deriving LAI and VFP from GLAS, initially 

presented in Tang et al. (2012) and implement our method to create footprint level 

LAI and VFP estimates from GLAS data over California. Our results include 

statistical analysis of GLAS LAI across environmental gradients (e.g. land cover type 

and elevation) and comparative analysis of GLAS and Landsat LAI retrievals for 

California.  
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4.2  Data and Methods 

4.2.1 GLAS 

 

Fig. 4-1 Location of ICESat ground tracks over California, USA. ICESat did not 

provide a wall-to-wall coverage but rather data along transects separated by relatively 

long distances across track at mid-latitudes.  

To this day GLAS has been one of the few operational spaceborne lidar 

instruments intended for global observations of the Earth. The GLAS system was 

developed for the ICESat mission and operated between 2003 and 2009. The primary 

objective of GLAS was to measure polar ice-sheet dynamics with the mission scope 

then extended to measure the height of vegetation canopies (Harding 2005). The 

GLAS laser sensor emits energy with wavelength of 1064 nm at a frequency of 40 
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Hz, and records the returned waveform from a ~65 m footprint (Abshire et al. 2005). 

Rather than providing wall-to-wall observation, GLAS yields individual footprint 

data with a centroid separation distance of ~165 m (Neuenschwander et al. 2008).  

Considering that the ICESat satellite primarily targeted polar regions, data acquired 

over global terrestrial ecosystems are quite sparse with large distances across track at 

equatorial and mid-latitudes. The GLAS data have been used to produce several 

global canopy height products (Lefsky 2010; Los et al. 2012; Simard et al. 2011).  

The GLA01 and GLA14 data campaigns within the entire state of California 

from 2003 to 2007 were used in this study. GLA01 typically includes a 544-bin 

recorded waveform at a vertical resolution of 1 ns (15 cm) for land surface products. 

GLA14 products are accurate fits of the GLA01 waveform using up to 6 Gaussian 

peaks to represent the data, in addition to providing surface elevation and footprint 

centroid coordinates (Harding 2005). We did not use data associated with the 

campaigns Laser 1A or 2A due to an acknowledged signal truncation problem 

(Harding 2005). Low energy shots (waveform peak energy < 0.5 Volt) were filtered 

from the studied data to ensure the best retrieval quality. 

4.2.2 Ancillary Input Data 

In our retrieval approach terrestrial vegetation (excluding grasslands and 

croplands) was classified into nine types based on the MODIS Land Cover Type 

product (MCD12Q1) at 500 m resolution. The nine types were evergreen needleleaf 

forest, evergreen broadleaf forest, deciduous needleleaf forest, deciduous broadleaf 

forest, mixed forest, closed shrubland, open shrubland, woody savanna, and savanna. 
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This categorization followed the IGBP scheme of the MODIS land-cover map 

(MCD12). The overall accuracy of MODIS Collection 5 Global Land-cover data 

classification was estimated to be about 75% globally (Friedl et al. 2010).  

Effective LAI derived from single angle looking remote sensing, such as from 

GLAS, should be corrected to true LAI using vegetation foliage clumping 

information. Such clumping effects could be ecologically significant and can be 

quantified using a biophysical parameter known as clumping index (Chen and Black 

1992). The lidar-derived effective LAI can then be corrected into true LAI by 

dividing by the clumping index. We built a clumping look-up table by assigning each 

land cover class an average clumping index from multi-angular satellite POLDER 

(Chen et al. 2005).  

For the retrieval procedure presented in this study, MODIS LAI (Myneni et al. 

2002) was used as a filter to refine our GLAS LAI estimates by assessing the validity 

of each GLAS LAI retrieval (more details can be found in Section 2.4 and in Tang et 

al. 2014). The MODIS data used for this purpose were obtained from the MCD15A2 

Collection 5 data set acquired during summer (July and August) from 2004 to 2007 

and excluded cloud contaminated or low quality pixels based on associated QA data 

(Zhao et al. 2005). The maximum values of the temporal LAI series at each 1 km 

pixel were then calculated to represent the potential maximum LAI thresholds. Since 

MODIS LAI data may not represent the true maximum value (at GLAS footprint 

scale) within a 1 km pixel, pixels with maximum LAI values less than 1 were 

assigned the mean LAI value of its vegetation type (according to the MCD12 land 

cover map). Pixels with a LAI value greater than 6 were also re-assigned a value of 
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12 to correct the MODIS saturation domain (Myneni et al. 2002). These processes 

will ensure a proper upper boundary to filter GLAS LAI estimates. 

4.2.3 LAI Derived from Landsat 

We used a 30 m Landsat LAI map over California as a comparative data set. 

This map was produced from Landsat surface reflectance data based on canopy 

spectral invariants theory (Ganguly et al. 2012). The orthorectified Landsat data were 

acquired from the Global Land Survey (GLS) 2005 with core acquisition dates from 

2005 to 2006 (Gutman et al. 2008). Surface reflectance data were then generated 

through the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

after applying radiance calibration and atmospheric correction (Masek et al. 2006). 

LAI at each 30 m pixel was retrieved based on a look-up table method, in accordance 

with MODIS LAI algorithms (Ganguly et al. 2008; Myneni et al. 2002; Yang et al. 

2006). A comparison of Landsat-derived LAI with MODIS LAI showed reasonable 

agreement (Ganguly et al. 2012). 

4.2.4 LAI Retrieval Algorithm 

LAI and VFP can be derived from the vertical gap probability distribution as a 

function of height based on the MacArthur-Horn method (Chen et al. 1997; 

MacArthur and Horn 1969; Nilson 1971). This technique is essentially the optical 

point-quadrat sampling and computes vertical distribution of Leaf Area Density 

(LAD, unit: m
2
/m

3
), which is the density of foliage at discrete height layers within the 

canopy. The vertical arrangement of LAD constitutes VFP and an integration of LAD 

at all canopy layers gives the total leaf area, or total LAI.  
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Note that we do not specifically distinguish between PAI (Plant Area Index) 

and LAI here for several reasons. First, differences between LAI and PAI are 

generally small. For example, as shown in our previous work over a tropical forest in 

Costa Rica (Tang et al. 2012), destructively sampled stem-area was vastly smaller 

than leaf-area, with LAI comprising 93% of total Plant Area index and LAI derived 

from LVIS waveforms agreed well with these profiles. Additionally, our comparison 

with ground-based methods of LAI derivation in the Sierra Nevada, California, such 

as terrestrial scanning lidar and optical methods, again showed good agreement (Tang 

et al. 2014). Lastly, we expect the great majority of reflected laser energy from near-

nadir looking NIR lidar comes from leaves, not branches, and Monte-Carlo 

simulation results support this contention (Hancock et al. 2012).  

We estimated the vertical gap probability from lidar waveforms using the 

Geometric Optical and Radiative Transfer (GORT) model (Ni-Meister et al. 2001; 

Tang et al. 2012). This method was successfully implemented at multiple sites to 

derive landscape level LAI and VFP data using the airborne lidar system LVIS (Laser 

Vegetation Imaging Sensor) (Blair et al. 1999; Tang et al. 2012). Comparisons using 

different ground measurements (including destructively sampled data, hemispherical 

photos, LAI-2000 and terrestrial lidar) demonstrated that waveform lidar can provide 

accurate LAI and VFP estimates even in the presence of high LAI levels such as 

those expected in tropical rain forests (Tang et al. 2012; Zhao et al. 2011). Efforts 

were also made using similar methods to derive LAI from GLAS data. When using 

these models satisfactory results were achieved when comparing LAI-2000 or LAI 

estimates with those obtained from airborne lidar (Garcia et al. 2012; Luo et al. 
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2013). However these studies were limited to small and flat study areas featuring no 

significant topographic variation, which was found to have a significant impact on the 

accuracy of GLAS measurement (Pang et al. 2006; Simard et al. 2011). 

In this study, we incorporated a 3-step recursive method developed by Tang et 

al. (2014) to retrieve LAI and VFP from GLAS data. This method was specifically 

designed to facilitate the separation of canopy and ground energy in GLAS 

waveforms. By incorporating prior knowledge of the LAI distribution (e.g. maximum 

potential LAI value of certain biomes), initial GLAS LAI estimates obtained from the 

GORT model can be refined. Pre-processed MODIS LAI was applied as the 

maximum potential LAI threshold. The method begins with the identification of the 

first Gaussian fit, assumed to be the ground return and used to calculate LAI and 

VFP. This estimate is then judged to be valid or invalid using the available prior 

knowledge. If considered invalid, the method iterates using the next feasible Gaussian 

fit until threshold conditions are met.  

Canopy height predicted by the lidar waveform was calculated as the distance 

between the beginning of the waveform signal, the first return above the noise 

threshold (3.5 ×standard deviation of identified noise), and the center of the chosen 

Gaussian fit. Our previous work showed that using this recursive method, GLAS 

could provide accurate LAI estimates under favorable topographic conditions, while a 

moderate level of accuracy could be achieved even over steep slopes (Tang et al., 

2014). We extended this method by doubling the number of Gaussian fits to the 

GLAS waveform associated with the GLA14 data to 12 through a Gaussian 

decomposition method (Hofton et al. 2000). The default 6-Gaussian-curve fit, in 
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certain instances, could fail to capture the true ground position in the presence of 

complex topography or highly vegetated areas (Duncanson et al. 2010). 

Within the outlined methodology an additional model was included to 

improve GLAS LAI estimates through accounting for spatial variability in the 

soil/leaf reflectance ratio. This ratio value, a required input parameter in the GORT 

model, was primarily applied to normalize the reflected canopy return and ground 

components in a GLAS waveform. Lefsky (1999) initially suggested a constant value 

of 2.0 for such a ratio while Ni-Meister et al. (2010) developed a method to estimate 

its value directly using waveform lidar data. The latter method was based on the 

assumption that this value did not change at local scales. Armston et al. (2013) further 

improved Ni-Meister's model by building a simple linear regression model between 

canopy energy and ground return with the slope of the regression taking on the value 

of the leaf/soil reflectance ratio. In this study we applied Armston's method at 

quarter-degree scale (~20 km) to calculate this parameter and its variability, assuming 

that the ratio value did not vary significantly over a homogenous forest or over 

similar land cover types. In keeping with Lefsky (1999) a default value of 2.0 was 

assigned to quarter-degree cells with different land cover types or those with poor 

regression estimates (r
2
 < 0.2 and N < 10). 

Finally, we performed three other analyses. First, estimates of true LAI at the 

footprint scale were derived from the effective GLAS LAI values using the clumping-

biome look-up table, noting that true LAI should be consistently greater than effective 

LAI (Chen et al. 2005). Secondly, we compared total LAI values derived from GLAS 

with Landsat LAI data. This was not a validation, per se, but rather a means to 
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explore how the magnitude and variability of lidar-derived LAI compared with a 

commonly used passive optical product at fine scales. Lastly, much of California is 

mountainous. It was therefore of interest to explore if differences in GLAS vs. 

Landsat LAI were a function of topography as derived from the void-filled 90 m 

resolution SRTM DEM data (Reuter et al. 2007), as both products would be affected 

by topography, but in different ways.  

 

 

Fig. 4-2 Algorithm flowchart of retrieving LAI and VFP from GLAS data. 

Parallelograms are input data sets. The recursive method part (within the dash-dotted 

rectangle) is adapted from Tang et al. (2014). 

 

4.3  Results 

 We derived a total of 16529 GLAS LAI and VFP observations. Using the 
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method of Armston et al. (2013), 42% of the GLAS footprints had a derived soil/leaf 

reflectance ratio different from the default of 2.0 (58%).  

4.3.1 GLAS LAI 

  

Fig. 4-3 GLAS LAI estimates over California. The majority of GLAS footprints had a 

LAI value less than 2 but there were also footprints with values greater than 8. The 

solid line shows the cumulative frequency. 

The distribution of GLAS LAI over California (Fig. 4-3) was highly skewed 

towards lower values of LAI with more than 50% of the footprints less than 2 (the 
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median value was 1.76). This result was reasonable given that there were a large 

number of GLAS footprints occurring over land cover with expected low LAI values, 

such as savanna and shrubland.  

The GLAS LAI values were grouped by land cover type according to our 

biome map (Fig. 4-4). Evergreen needle leaf forest and woody savanna comprised the 

highest frequency of GLAS observation numbers. Mixed forest showed the highest 

median LAI value (3.20) against all other biomes, followed by evergreen needle leaf 

forest (2.62). Woody savanna was observed to have a higher LAI value (1.23) than 

shrubland (1.05 for closed and 0.75 for open) and savanna (0.91) (and these 

differences were significant at P < 0.001). Evergreen broadleaf forest, deciduous 

needleleaf forest and deciduous broadleaf forest did not have sufficient observation 

numbers to perform a robust statistic analysis (results of all paired T-tests are given in 

Supplementary Table 1).  
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Fig. 4-4 GLAS LAI as a function of land-cover type. The width of the boxes is 

proportional to the number of observations for each type. Forest LAI (both evergreen 

needleleaf and mixed forest) are significantly larger than any other type. Note that 

difference between Evergreen needleleaf forest and mixed forest is also significant (P 

< 0.001). 
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Fig. 4-5 Boxplot of GLAS LAI distribution as a function of elevation stratification 

groups. A linear regression analysis (dotted line) of LAI values averaged by elevation 

groups (red cross) shows a decreasing trend (r
2
 = 0.91, P < 0.001).  

 GLAS LAI was also stratified by elevation (Fig. 4-5). The LAI values did not 

differ significantly in lower elevation groups (from 250 m to 1000 m) (all P > 0.1). A 

linear regression analysis showed that increasing altitude led to a significant (r
2
 = 

0.91, P < 0.001) but slow decrease in LAI values (ΔLAI = 0.91 per km elevation 

change) accompanied by a general reduction in frequency (results of paired T-test in 

Supplementary Table 2). 

4.3.2 GLAS Vertical Foliage Profiles (VFP) 
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Fig. 4-6 Left: VFP (vertical resolution of 2 m) averaged for all GLAS shots over 

California for different land cover types.  Each profile represents a single land cover 

type. Mean values are central lines within the color-filled 95% CI envelope. Note the 

low height of peak LAD is because of the averaging process over the land cover type. 

Individual profiles have much more variable shapes (see Right). Right: individual 

VFP examples with foliage density peak occurring at understory (<5 m), middle-story 

(~ 10 m) and up-story (>20 m). 

 Vertical foliage profiles were created by averaging GLAS shots for each 

different land cover type (Fig. 4-6). Here VFP were expressed as the vertical 

distribution of Leaf Area Density (LAD). These averaged profiles exhibited a peak of 

foliage density at approximately 5 m height for forest and values closer to ground 

level (2 m or lower) for savanna and shrubland. Foliage density of savanna and 

shrubland diminished quickly above heights of 10 m and dropped to almost 0 when 

reaching about 20 m on average. In the mid-story range (5 m ~ 10 m) differences 

between open shrubland, savanna and woody savanna were significant (P < 0.01). 
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Evergreen needleleaf and mixed forests had a similar vertical foliage distribution as 

would be expected if the mixed forest was heavily comprised of evergreen needleleaf 

(paired T-test results in Supplementary Table 3).  

 

 

Fig. 4-7 GLAS LAI stratified by canopy position. Note that differences between 

needleleaf forest and mixed forest were only significant at the 10~20 m layer and > 

20 m layer (P = 0.003 and P < 0.001 respectively). Note differing y-axis scales. 
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Fig. 4-8 Variability of GLAS LAI strata as a function of elevation for different 

canopy positions. The decreasing patterns were consistent in the 0-5 m, 5-10 m, 10-20 

m and >20 m groups with slightly different rates. Note differing y-axis scales. 

 Forest vertical strata were produced from the original GLAS VFP data (0.15 

m vertical resolution) through classification into four height groups: 0-5 m for 

understory, 5-10 m for lower mid-story, 10-20 m for upper mid-story, and > 20 m for 

upper-story (Table 4-1). Similar analysis to that shown in Section 3.1 was then 

performed on the forest strata to examine LAI variability as a function of land cover 

(Fig. 4-7). Differences between forest (needleleaf or mixed forest) and shrub (or 

savanna) were significant across all forest strata (all P < 0.001). There were also 

significant differences at the layer at 10-20 m (P = 0.01) and that above 20 m (P < 

0.001) between needleleaf forest and mixed forest. However, we could not identify 
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any significant difference in understory (0 m - 5m) or lower mid-story (5 m - 10 m) 

between those two forest types (P = 1.0 and P = 0.14 respectively).  

Canopy layers displayed a consistent decreasing trend of total LAI with elevation 

(Fig. 4-8), although the overall decreasing rates were slightly different for each layer 

(ΔLAI = 0.19, 0.23, 0.30 and 0.19 per 1 km elevation change respectively). Despite 

the general decreasing trend, median values of upper-storey LAI appeared to reach 

maximum values at an altitude of ~1000 m. However, the differences among this 

layer and those of the adjacent elevation strata (groups of 250, 500, 750 and 1000 m) 

were not significant (P > 0.05 for all six comparisons. See Supplementary Table 4).  
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Table 4-1 Statistics of GLAS LAI and LAI strata by biome type (ENF = Evergreen 

Needle Forest, EBF = Evergreen Broadleaf Forest, DNF = Deciduous Needleleaf 

Forest, DBF = Deciduous Broadleaf Forest). 

Biome Type N  Total LAI 

Mean 

(±SD) 

LAI 0-

5m 

Mean 

LAI 5-

10m 

Mean 

LAI 10-

20m 

Mean 

LAI >20m 

Mean 

ENF 9899 3.28±2.46 0.76 0.83 1.07 0.64 

EBF 22 2.94±1.58 0.97 0.91 0.76 0.31 

DNF 40 1.13±1.06 0.32 0.31 0.31 0.19 

DBF 8 1.33±1.41 0.48 0.41 0.33 0.11 

Mixed forest 615 3.66±2.38 0.80 0.90 1.19 0.78 

Closed shrub 147 1.26±1.03 0.47 0.39 0.31 0.09 

Open shrub 649 0.92±0.82 0.35 0.28 0.21 0.07 

Woody 

savanna 

3921 1.51±1.21 0.49 0.46 0.42 0.14 

Savanna 1228 1.14±0.89 0.43 0.39 0.26 0.06 
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4.3.3  GLAS vs. Landsat 

    

Fig. 4-9 Density scatter plot of Landsat LAI and GLAS LAI over California. The 

comparison reveals a fair agreement between the two data sets, but Landsat appears to 

saturate at about LAI = 5, and overestimates lower values relative to GLAS. Kernel 

density color bar refers to the distribution of LAI pairs with darker color indicating 

more clustered footprints. 

 There was a fair agreement between GLAS LAI and Landsat LAI at the 

GLAS footprint scale (Fig. 4-9), with r
2 
= 0.34, bias = 0.26, and a RMSD (Root Mean 

Square Difference) = 1.85. Compared with GLAS, Landsat LAI was larger at lower 

values of LAI (< 2) but then saturated quickly at around LAI = 5. The histogram of 

differences (Fig. 4-10) between GLAS and Landsat is skewed because of large 

positive differences at high LAI (a long tail to the right), but there is also a large 

number of overestimates of Landsat relative to GLAS in the lower LAI regions. 
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While the overall bias is small, this was mostly a serendipitous cancelling out of 

systematic overestimates and underestimates (saturation) (as opposed to random 

variations). An example of the fine scale variability of along-track GLAS LAI 

estimates and Landsat is shown in Fig. 4-11. 

  

Fig. 4-10 Histogram of LAI difference between GLAS and Landsat. The red dashed 

line gives the bias (0.26). However, this low bias does not reflect the systematic 

differences apparent in Fig. 4-9. 
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Fig. 4-11 An example of GLAS LAI and Landsat LAI at small scale. Overlaid GLAS 

LAI data is given by circles showing the sensor footprint to actual scale. 

4.3.4  Slope Analysis 

There are well-documented impacts of slope on large footprint lidar 

waveforms (Pang et al. 2006; Simard et al. 2011). We therefore analyzed the LAI 

differences between GLAS and Landsat as a function of slope to see what role, if any, 

slope might play in explaining them. We applied a linear regression model where 

ΔLAI = f (slope) but found no relationship (r
2 

= 0.01 and standard error (RSE) = 

1.76): 

  ΔLAI = 0.02 * Slope - 0.2 

We also grouped LAI differences into eight different slope ranges from 0 ~ 

40° with a 5° interval to examine the agreement of Landsat and GLAS LAI. The r
2
 

and RMSD were calculated within each slope range (Fig. 4-12). The r
2
 generally 
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decreased from 0.3 to about 0.2 as the slope increased up to 40°. The RMSD doubled 

from about 1 to a maximum value over 2 at slopes greater than 20°. 

 

Fig. 4-12 Correlation statistics of r
2
 and RMSD calculated upon comparison of GLAS 

LAI and Landsat LAI values by slope groups. Histogram gives distribution of slope 

groups. About 80% of the data had slopes less than 20°. 
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4.4 Discussion 

Lidar technology has been proven to provide accurate measurements of many 

ecosystem structural parameters. Regional mappings of canopy height, LAI and forest 

strata have been deployed across all major biomes using airborne lidar data (Asner et 

al. 2012; Morsdorf et al. 2006; Tang et al. 2012; Wulder et al. 2007; Zhao and 

Popescu 2009). However, large-scale measurements of three-dimensional forest 

structure remain a major challenge, and this difficulty is mainly because of the limited 

availability of observations. One possible solution is to measure structure from space-

based sensors. In this study we attempted to derive important biophysical structure in 

the form of LAI and VFP over a large region. 

Our previous work has shown strong relationships between GLAS LAI and 

LAI derived from airborne waveform lidar (Tang et al. 2014) but was based on 

unique validation data (in the form of destructively sampled canopy profiles), or 

ground-based optical methods that are exceptionally limited spatially. These previous 

studies gave us confidence in the theoretical basis and efficacy of our models. For our 

work here, across an entire state, a comparable set of validation data for assessing our 

derivations do not exist. We therefore were limited to assessing differences in total 

LAI using passive optical data from Landsat. We found an overall fair agreement 

between derived GLAS LAI and 30 m Landsat LAI map. Despite their fundamental 

differences in sensor design and retrieval algorithms, this is quite an encouraging 

result. However, compared with GLAS data, Landsat was observed to both 

underestimate (saturate) LAI values for high LAI (Fig. 4-9) and overestimate LAI for 
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lower values. There are variations between the methods of observation that could lead 

to differences in total LAI such as system design (passive vs. active) and pixel size 

(30 m pixel vs. ~65 m eclipse for GLAS). Note there was also a temporal discrepancy 

between the two data sets (2005 only vs. 2003-2007).  

Which is "correct", GLAS or Landsat? While we cannot answer this question 

definitively, saturation of LAI by passive optical sensors is well known (Shabanov et 

al. 2005; Yang et al. 2006). We further do not know of a plausible physical 

explanation that would lead us to suspect that GLAS observations for high LAI areas 

are overestimates. A plausible hypothesis could be passive optical sensor data do not 

detect energy from lower canopy portions or understory in dense forests. Progress in 

this area will depend on the availability of improved field data, coupled with 

terrestrial scanning and airborne lidar observations and radiative transfer simulation 

modeling.  

Comparisons with Landsat aside, there are several potential sources of error in 

our GLAS LAI algorithm. In particular there are two major input parameters involved 

in the GLAS-LAI algorithm: a clumping index based on MODIS land cover 

classification and the leaf/ground reflectance ratio. The use of such ancillary data is 

the essence of data fusion, but the impacts of errors in the parameters on LAI 

variations need to be assessed. In our algorithm, MODIS land cover classification 

provides the clumping information required for converting GLAS effective LAI to 

total LAI values. For any given effective LAI value, error in true LAI varies linearly 

with clumping index. For example, a 10% error in clumping index would generally 

lead to a 10% error of true LAI value but does not change the effective LAI value. 
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Errors in clumping index, in turn, are caused by errors in land cover classification, the 

spatial variability of clumping index within land cover types, and the accuracy of the 

fundamental derivations of the index itself. Here we do not account the spatial 

variability of clumping index within biomes because the variation of clumping index 

for any given biome is small (Chen et al. 2005).  

Leaf/ground ratio is the other important input parameter of our model. 

Methods have been developed to derive this value relying on lidar data themselves 

(Armston et al. 2013; Ni-Meister et al. 2010). However, this ratio cannot be obtained 

for all GLAS footprints because the mathematical solutions do not converge. In these 

cases we were left to assign a default value of 2.0. Sensitivity of LAI with respect to 

leaf/ground ratio value has been analyzed in our previous work (Tang et al. 2012). 

We found that the effect of the ratio on LAI is not large. For example, expected 

variations of the ratio would introduce an error of about ± 0.5 for LAI ≈ 4, and this 

impact decreases as LAI gets smaller. Uncertainty introduced from the ratio should 

constitute roughly 10% or less of total LAI given an average LAI value of ~ 2 in 

California. 

We discovered little relationship between LAI differences and slope with our 

regression analysis, while there was a trend of decreased r
2 

(and increased RMSD) 

with steeper slope ().  The relationship was not significant largely because of the 

distribution of GLAS-slope data: more than 80% of the data had a slope less than 20°. 

But when we grouped GLAS data by slope ranges, the slope effect on LAI difference 

is more evident. Steep slopes affect the lidar return by spreading the Gaussian ground 

return and blending canopy elements into the ground return. Thus, estimates of LAI 
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from GLAS near the ground (below 5 m) may sometimes be in error. Tang et al. 

(2014) showed that for the Sierra Nevada, differences between GLAS LAI and 

airborne waveform lidar LAI were minimized for slopes less than about 15°. This 

suggests that our iterative method of finding LAI overcomes impacts of slopes less 

than this magnitude, or effects of slope are overwhelmed by other sources of error or 

variation. 

Our analysis also revealed GLAS data captures spatial LAI variability across 

different environmental gradients. For example, we found a significant relationship 

between GLAS LAI distribution and elevation groups (Fig. 4-5). An increase of 1 km 

elevation would typically lead to a decrease of ~0.9 LAI unit. This result agrees with 

published findings from previous studies of LAI and altitude gradients (Luo et al. 

2004; Moser et al. 2007; Pfeifer et al. 2012). We also found a high variability of 

GLAS LAI values within and across different land cover types (Fig. 4-4).  

One of the most exciting aspects of our work is the ability to derive LAI 

profiles at the landscape scale to develop a better understanding of their differences 

across land cover types. For example, we found foliage density peaks increase in both 

height location and maximum value, starting from shrubland, savanna, woody 

savanna and going to forest (Fig. 4-6). This finding is also supported by the 

distribution of LAI within forest vertical strata (0-5 m, 5-10 m, 10-20 m, and > 20 m, 

as shown in Fig. 4-7). In particular, we concluded that total LAI difference between 

needleleaf and mixed forest was due to their difference in upper-story rather than 

understory (Fig. 4-4 and Fig. 4-6). Moreover, we discovered that LAI strata 

contribute differently towards the total LAI change across elevation gradients (Fig. 
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4-8). Our results suggest that such data should improve our ability to evaluate the 

impacts of climatic and edaphic factors, as well as disturbance on spatial and vertical 

organization of canopies by revealing the existence of generalizable relationships 

between canopy structural information and these factors.  

The availability of LAI profiles across large scales should be valuable for both 

the initialization and validation of ecological models by providing more robust and 

realistic representations of canopy structure. Previous studies suggest an 

underestimate of more than 50% of GPP when neglecting vertical foliage 

stratification (Aber 1979; Kotchenova et al. 2004; Sprintsin et al. 2012). A new 

canopy radiative transfer model (ISBA-A-gs) then recommends a minimum of 10 

canopy layers to better estimate FAPAR and GPP (Carrer et al. 2013). A fully derived 

and validated continental or global scale VFP product from GLAS, using a similar 

process to those developed in this study would therefore be of great interest.  

There is one note of caution considering the initialization of such models with 

lidar-derived profiles. If the models are run at a coarse modeling scale, e.g. say 50 km 

x 50 km as is typical of many carbon models, the use of an average profile for a land 

cover type would be misleading. As shown in Fig. 4-6, the average profiles show 

peaks very close to the ground partially due to the artifact of sampling. Hurtt et al. 

(2010) have shown that impact of spatial scale, either in the data through averaging, 

or in the model through coarse grid size cells, can have dramatic impacts on estimates 

of carbon flux, among others, between the canopy and the atmosphere when 

compared to the scale individual trees. Care must be taken to adequately represent the 

true vertical and spatial variability of the LAI profiles, either through shifts to finer 
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model resolutions or sub-grid scale parameterizations of LAI. For example, 

individual-based ecosystem models, such as the Ecosystem Demography model 

(Hurtt et al. 2010), have now been implemented at 1 ha spatial resolution. 

Furthermore, at coarser modeling scales, ED can potentially ingest the actual 

probability distribution (PDF) of LAI profiles for a grid scale, as observed from lidar. 

Thus, the great power of a remote sensing approach to LAI profile derivation is that it 

captures this PDF directly. If applied globally to GLAS data, our algorithm would 

provide the first data set of LAI profiles across biomes for use in modeling efforts. 

Similarly, such profiles also have the potential to help quantify habitat 

heterogeneity, a fundamental component of biodiversity studies. Relationship 

between habitat heterogeneity and vegetation structure from airborne lidar have been 

explored at local scales (Ferger et al. 2014; Goetz et al. 2007; Swatantran et al. 2012). 

Analyses using continental scale data sets, such as the Breeding Bird Survey (BBS) 

(Sauer et al. 2008), may be facilitated by the inclusion of GLAS LAI profiles in 

models of species richness and diversity (Culbert et al. 2013; Goetz et al. 2014). 

4.5 Conclusion 

In this study we have demonstrated the feasibility of deriving LAI and VFP 

from spaceborne waveform lidar over large areas. The state-level GLAS LAI product 

showed a fair correspondence with 30 m Landsat LAI maps produced over California, 

but also highlighted potential issues with the latter: namely, saturation at high LAI 

values relative to GLAS. This suggests that further analyses should be conducted to 

validate both data sets using other data, and from these, refinement of algorithms for 



 

 

105 

 

both active and passive optical remote sensing. 

While our previous validation studies have been limited to tropical and 

coniferous forests, our work here spanned a range of biomes, land cover types and 

environmental gradients. Because our modeling is based on physical principles, we 

are optimistic that future validation studies in different biomes will provide further 

support of the accuracy of our methods. Independent of these activities, our results 

here provide a unique and valuable data set on two key environmental variables that 

has been previously been unavailable over large areas, and thus provides the basis for 

a continental and global LAI data set from GLAS. It is our belief that such datasets, 

once available, will be of a great importance in deepening our understanding of the 

role spatial and vertical canopy structure plays in ecosystem processes, and the 

factors which impact that structure through time. 
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Chapter 5 Characterizing Leaf Area Index (LAI) and Vertical 

Foliage Profile (VFP) across the United States 

5.1 Introduction 

Accurate measurements of three-dimensional canopy structure and function 

play a key role in our understanding of global carbon dynamics, climate feedbacks as 

well as biodiversity studies (Cramer et al. 2001; Heimann and Reichstein 2008; 

Loreau et al. 2001; Schimel et al. 2001). Spatial variations of ecosystem structural 

information largely constitute the geographical patterns of ecological processes as 

well as species richness (Cramer et al. 2001; Goetz et al. 2007; Turner et al. 2003). 

These structural variables, including canopy height, leaf area index (LAI) and vertical 

foliage profile (VFP), have been identified as essential climate variables (ECV), 

essential biodiversity variables (EBV) or both (Aber 1979; Baret et al. 2013; Gower 

and Norman 1991; Pereira et al. 2013). Yet measurements of these canopy structural 

data are often limited at field sites, and their spatial distributions over broader 

geographical areas still remain under characterization due to heterogeneity of natural 

vegetation and inexact measuring techniques (Asner et al. 2013; Clark and Kellner 

2012). A spatially explicit characterization of LAI and VFP at large scale is therefore 

of great importance and interest to help reduce current measurement uncertainty in 

global carbon cycling and habitat heterogeneity (Houghton 2007; Sauer et al. 2008).   

Remote sensing offers global observations of terrestrial ecosystems, and the 

science community has produced several LAI products at continental or global scale 
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using passive remote sensing techniques (Baret et al. 2007; Deng et al. 2006; Ganguly 

et al. 2012; Myneni et al. 2002). Most of these techniques try to derive LAI through 

exploring the correlation between canopy foliage density and the total reflected 

intensity of electromagnetic radiation at multiple wavelengths. Applications of these 

LAI products have achieved great success with significant improvements in current 

observations of global terrestrial ecosystem dynamics and its interactions with 

atmosphere (Mu et al. 2007; Randerson et al. 2009; Zhao et al. 2005). However 

overall accuracy of these products still cannot fully satisfy the requirement of Global 

Terrestrial Observing System, and the most profound problem is the saturation of 

spectral signal over dense forests with high canopy covers (Abuelgasim et al. 2006; 

Shabanov et al. 2005; Yang et al. 2006). This is because solar radiation decreases 

exponentially as penetrating through canopy of high foliage density, and the majority 

of recorded signal comes from the upper canopy in the form of direct reflectance and 

multiple scattering. Such effect greatly limits their observation capabilities over 

vertical aspects of forest structure and leads to an underestimate of LAI values over 

high canopy cover areas as well. As a result, traditional methods have limited 

measurement capability of forest structural data and new technologies are required in 

expanding current studies of carbon cycle science and biodiversity change. 

Recent advance in Light Detection and Ranging (LiDAR), an active remote 

sensing technology, has proven as an effective measuring method of three-

dimensional canopy structural information (Lefsky et al. 2002). Lidar measures the 

distance between a target and the sensor by the roundtrip traveling time of an emitted 

laser pulse. It would then be able to determine the accurate 3-D position of canopy 
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structural components, including foliage, branch and trunk. Forest structural data, 

including canopy height and biomass, have been increasingly explored from regional 

to global scales with terrestrial, airborne and spaceborne lidar sensors (Asner et al. 

2012; Baccini et al. 2012; Drake 2002a; Lefsky 2010; Los et al. 2012; Saatchi et al. 

2011; Simard et al. 2011; Strahler et al. 2008). Some Studies explored the capability 

of deriving LAI and VFP from lidar data but only at limited regional areas (Morsdorf 

et al. 2006; Tang et al. 2012; Zhao et al. 2013). There have been fewer efforts of 

trying to demonstrate the possibility of deriving LAI and VFP data across different 

landscapes from Geoscience Laser Altimeter System (GLAS) on board of Ice, Cloud 

and land Elevation Satellite (ICESat) (Garcia et al. 2012; Luo et al. 2013). These 

studies derived LAI and VFP from lidar waveforms based on biophysical and 

statistical models and their comparison results with field based measurements are 

very encouraging, suggesting the potential of further developing LAI and VFP 

product from GLAS.  

Tang et al. (2014a) demonstrated the capability of deriving LAI and VFP data 

from GLAS data using a physically based model rather than an empirical method. 

Further improvement of the model led to a GLAS LAI and VFP product over the 

entire state of California, USA (Tang et al. 2014b). However, there is still a need to 

further examine the relationship between vertical foliage distribution and lidar 

waveforms over even broader areas. Assessment of their relationship across different 

forest types and environmental gradients will not only strengthen our confidence in 

acquiring a potential global LAI and VFP measurement, but also provide important 

implications on design and science definition of future lidar missions such as the 
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Global Ecosystem Dynamics Investigation (GEDI). These global LAI and VFP 

products, once available, would revolutionize our current observing dimension of 

terrestrial ecosystems in together with all terrestrial and airborne lidar data. 

The objective of this study was to demonstrate the measurement capability of 

forest structure using GLAS data at near-continental scale. To achieve this goal, we 

quantified and analyzed LAI and VFP distributions throughout the Contiguous United 

States (CONUS). First, we implemented our algorithm at GLAS footprint level and 

compared the derived data with LAI and VFP products from existing airborne lidar at 

different forest types. Next we mapped the aggregated LAI and VFP product 

according to different ecoregions and land cover types over CONUS. Finally we 

analyzed the distribution of GLAS LAI across different environmental factors, 

including elevation and precipitation.  

5.2 Methods 

5.2.1 GLAS Data 

GLAS is a spaceborne waveform sampling lidar sensor with the working 

wavelength at near-infrared band (1064 nm). It emits laser pulses at a frequency of 40 

Hz and records the energy reflected from both the ground surface and canopy in an 

approximately 65 m footprint (Abshire et al. 2005). GLAS samples the Earth surface 

in transects with individual footprints separated by ~165 m from each other, and 

hence cannot provide a wall-to-wall observation of forests. Its spatial allocation of 

laser footprints cannot be appropriately labeled as either random or systematic 

sampling scheme, and would be better defined as a pseudo-systematic sampling or 
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cluster sampling strategy (Healey et al. 2012; Stahl et al. 2011). To obtain a spatially 

continuous estimate of LAI at continental scale, it is recommended either to 

extrapolate those lidar footprints with passive remote sensing images (Dubayah et al. 

2008; Lefsky 2010), or to upscale them to the spatially explicit ecoregions using 

statistical analysis.  

5.2.2 Retrieval of GLAS LAI and VFP 

 We collected a total of 1,100,498 cloud-free GLA01 and GLA14 data over 

Contiguous United States from 2003 to 2007. GLA01 included the complete recorded 

waveform at a vertical resolution of 15 cm for land surface products and GLA14 

products were comprised of geographical information and various parameters 

calculated from the waveform (Harding 2005). Low energy shots (peak energy < 0.5 

Volt) were excluded from data process for retrieval quality control because those 

waveforms were susceptible to noise contamination. Shots during leaf-off season 

(Nov. to Mar.) were also filtered out over deciduous forests and mixed forests. LAI 

and its profiles (0.15 m at vertical resolution) were calculated at GLAS footprint level 

using a recursive method (Tang et al. 2014a) based on a Geometric Optical and 

Radiative Transfer (GORT) model (Ni-Meister et al. 2001). Canopy VFP were 

calculated from integration of footprint level LAI profiles at height intervals of 0 - 5 

m, 5- 10 m, 10 - 15 m and 15 - 20 m.  

5.2.3 Comparison Data Set 

Here we chose LAI and VFP data sets from an airborne lidar system LVIS to 

validate GLAS products. LVIS is an airborne medium footprint (~ 25 m) waveform 
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scanning lidar system designed by NASA Goddard Space Flight Center (GSFC) 

(Blair et al. 1999). It can sample the terrestrial surface across a 2 km wide swath with 

more than 100 beams, and has been highly useful in mapping different forest 

structural parameters (e.g. canopy height, VFP and LAI) at regional scale (Drake 

2002a; Swatantran et al. 2012; Tang et al. 2012). We calculated both total LAI and 

VFP at 5 m height interval from existing LVIS campaigns using a well established 

LVIS-LAI model, which has previously been examined by field destructively 

sampling, LAI-2000 and hemispherical photos (Tang et al. 2014a; Tang et al. 2012; 

Zhao et al. 2013). LVIS data applied in this study included major forest types from 

eastern, central and western US, including Maine Forest (2003), Sierra National 

Forest in California (2008), mixed forests along Baltimore/Washington corridor 

(2003) and White River National Wildlife Refuge in Arkansas (2006). All these LVIS 

data were collected during leaf-on season. 

We also included a 30 m resolution Landsat LAI map to examine the spatial 

distribution of GLAS LAI. Landsat has the longest earth observation history at 

moderate resolution (30 m), and for decades, it has provided a consistent and unique 

measurement of terrestrial ecosystems. The applied Landsat LAI map was produced 

at NASA AMES using Global Land Survey (GLS) 2005 orthorectified Landsat data 

based on the canopy spectral invariants theory (Ganguly et al. 2012).  

5.2.4 Analysis 

The comparison between LVIS and GLAS was performed at GLAS footprint 

level. LVIS shots falling within a 32.5 m radius from GLAS shot center were 



 

 

112 

 

selected. We excluded GLAS footprints with LVIS intersection numbers less than 3 

to ensure the validity of comparison. Both LAI and the 5 m interval VFP of selected 

LVIS shots were averaged onto each coincident GLAS footprint for comparison. We 

also made a footprint level comparison between GLAS LAI and the Landsat LAI 

map. A 3 × 3 window was applied to each GLAS footprint center to extract the 

averaged Landsat LAI pixels. Pixels with invalid values (e.g. retrieval failure or non-

vegetation pixel) were excluded in the comparison. 

Next, we aggregated the footprint level GLAS data up to terrestrial ecoregions 

based on the WWF ecoregion map (Olson et al. 2001). Statistical analysis of total 

LAI and LAI strata (VFP aggregated at every10 m height interval) was performed 

subsequently at each ecoregion. We also analyzed the GLAS LAI and VFP 

distribution across different environmental gradients throughout CONUS. Each 

GLAS footprint was classified according to different environmental factors, including 

vegetation type, topographic data and annual precipitation measurement. The 

vegetation map was derived from the MODIS Land Cover Type product (MCD12Q1) 

at 500 m resolution following the IGBP scheme (Friedl et al. 2010). Elevation data 

was extracted from the void-filled 90 m resolution SRTM (Shuttle Radar Topography 

Mission) DEM data (Reuter et al. 2007). Precipitation information originated from 

the 800 m resolution 30-yr annual normal precipitation data developed by the PRISM 

Climate Group (PRISM 2013). All these data were combined to footprint level LAI 

and VFP data based on the geolocation coordinates of GLA14.  
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5.3 Results 

5.3.1  GLAS LAI and VFP Comparisons with LVIS and Landsat 

 The footprint level comparison between GLAS LAI and LVIS LAI level led 

to an overall r
2
 of 0.60, bias of -0.23, and RMSE (Root Mean Square Error) of 0.82 

(Error! Reference source not found.). Except for some outliers at the lower range 

of LAI, most of the comparison points were distributed along the 1:1 line suggesting 

no systematic difference between the two data sets. No significant bias was found 

across individual sites either. Overall, there was a good agreement between LVIS and 

GLAS derived LAI data. 
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Fig. 5-1 Comparison between LVIS LAI and GLAS LAI at different sites across US 

(N = 318). Each point represents a comparison at GLAS footprint while different 

colors indicate different sites. The comparison result (r
2
 = 0.60, bias = -0.23, and 

RMSE = 0.82) reveals a good agreement between the two data sets. 

 

 

Fig. 5-2 Comparison between LVIS VFP and GLAS VFP integrated at 5 m height 

interval over different sites in CONUS (N = 1272). The comparison result (r
2
 = 0.36, 

bias = -0.043, and RMSE = 0.26) has a relatively lower agreement than that of LAI. 

 The agreement of 5 m height interval VFP distribution between the two data 

sets was somehow lower than that of total LAI (Fig. 5-2). While most of the 

comparison points were distributed close to the 1:1 line, there were a few outliers 

well off the line. The comparison led to an r
2 
of 0.36 with a bias of -0.04 and RMSE 

of 0.26. Although there was no systematic bias observed across all sites either, 
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however, it was found that GLAS had a slight overestimate of understory LAI against 

LVIS (Fig. 5-3). It was also found that agreements of VFP at different height levels 

varied: agreement between LVIS and GLAS was lowest in the understory part (0 - 5 

m, r
2
 = 0.04, bias = 0.09, RMSE = 0.31), and increased significantly towards the 

middle canopy layers (5 - 10 m, r
2 
= 0.33, bias = -0.13, RMSE = 0.29; and 10 - 15 m, 

r
2
 = 0.53, bias = -0.08, RMSE = 0.22), and reached the maximum and equivalent 

accuracy level of total LAI at upper-story (15 - 20 m, r
2 

= 0.66, bias = -0.05, RMSE = 

0.20). 

 

Fig. 5-3 Comparison between LVIS and GLAS LAI density integrated at every 5 m 

height interval. Their agreements increase as the height interval moving upward: 1) 0 
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- 5 m: r
2
 = 0.04, bias = 0.09, RMSE = 0.31; 2) 5 - 10 m: r

2 
= 0.33, bias = -

0.13, RMSE = 0.29; 3) 10 - 15 m: r
2
 = 0.53, bias = -0.08, RMSE = 0.22; 4) 15 - 20 m, 

r
2 
= 0.66, bias = -0.05, RMSE = 0.20. 

 The comparison between Landsat LAI and GLAS LAI had a much lower 

agreement than that of LVIS with a r
2
 of 0.18, bias of 0.18 and RMSE of 2.02 (Fig. 

5-4). Even though the two data sets agreed well and exhibited the same distribution 

pattern at lower LAI values, Landsat overestimates LAI at the middle range (from 1 

to 3) and then appeared to saturate above a threshold of 4 against GLAS data.  

 

Fig. 5-4 Comparison between Landsat LAI and GLAS LAI over Contiguous US: a) 

density scatter plot of Landsat and GLAS LAI; b) histogram of LAI difference 

between Landsat and GLAS. Darker kernel density color refers to more clustered 

distribution of LAI pairs. Despite a low bias value of 0.18 (red dot-line in b), the 

comparison (r
2
= 0.18, RMSE = 2.02) reveals a relatively low level agreement 

between the two data sets. In particular, Landsat appears to saturate at about LAI = 4 

relative to GLAS. 
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5.3.2  Aggregated GLAS LAI and VFP at Ecoregions 

 

Fig. 5-5 GLAS LAI distributions by WWF ecoregions. LAI values decrease from 

eastern (or western) coast towards inner land. 

 Ecoregion-level GLAS LAI was mapped across CONUS and showed that 

GLAS LAI values decreased from both eastern and western coastal areas towards 

central plains (Fig. 5-5). Highest LAI values were found along northern Pacific Coast 

while lowest values occurred around Rocky Mountain areas and the majority of 

Nevada. In particular, Northern California coastal forests were found to have the 

highest mean LAI value of 5.24. In the east, Appalachian-Blue Ridge forests had the 

highest value of 3.95 while other ecogreions around north-south direction of 

Appalachian Mountains had similar LAI values around 3 ~ 4 (Table 1). 
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Table 5-1 Ecoregions with highest total LAI values 

Ecoregions Total LAI 

Mean(±SD) 

LAI 0-10m 

Mean(±SD) 

LAI 10-20m 

Mean(±SD) 

LAI >20m 

Mean(±SD) 

Northern California coastal forests 5.24±2.11 2.06±1.32 1.67±1.09 1.08±1.15 

Central Pacific coastal forests 5.00±2.14 1.52±1.61 1.10±1.16 0.84±1.25 

British Columbia mainland coastal forests 4.74±2.26 1.48±1.31 1.23±1.08 1.13±1.13 

Central and Southern Cascades forests 4.31±2.34 1.06±1.35 0.79±1.02 0.64±1.07 

Klamath-Siskiyou forests 4.31±2.31 1.26±1.30 0.99±1.07 0.73±0.99 

Willamette Valley forests 3.99±2.24 0.73±1.09 0.60±0.89 0.75±1.31 

Appalachian-Blue Ridge forests 3.95±2.03 1.04±1.27 0.82±0.99 0.47±0.82 

Puget lowland forests 3.91±2.25 0.98±1.39 0.71±1.08 0.40±0.81 

Appalachian mixed mesophytic forests 3.86±2.04 1.06±1.29 0.77±0.93 0.48±0.83 

North Central Rockies forests 3.67±2.27 1.61±1.55 0.84±0.89 0.47±0.72 
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Fig. 5-6 LAI strata distributions by WWF ecoregions. Despite similar total LAI 

values, the southeastern forests show different LAI values at stratified height intervals.  
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 LAI strata formed by VFP at each 10 m height interval were also averaged 

and mapped across CONUS at ecoregions (Fig. 5-6). Each strata exhibited similar 

spatial pattern as that of total LAI with the decreasing trend from coast to inner land, 

but the exact pattern of each LAI strata differed significantly. In general, 

northwestern forests were observed to have the highest total LAI values as well as 

LAI strata values. Northern California coastal forests exhibited the largest total LAI 

value as well as highest foliage density under 20 m height. However, British 

Columbia mainland coastal forests were found to exceed its foliage density in the 

upper canopy part (higher than 20 m). 

The distribution of GLAS total LAI and profiles were examined across 

different land cover types (Fig. 5-7 and Fig. 5-8). Deciduous broadleaf forests had the 

highest value of total LAI (mean value = 4.03) as well as that of middle and upper 

LAI strata (height > 10 m). Open shrubland showed the lowest total LAI values of 

0.77, followed by closed shrubland (mean value = 1.00). Vertical distribution of non-

forest vegetation had highly similar pattern, where foliage density was concentrated 

near the ground. Their peak values increased following the order of open shrubland, 

closed shrubland, savanna and woody savanna. All forest types had consistently 

larger LAI values than those of non-forest types. In particular, evergreen broadleaf 

forest had the highest understory VFP values approaching 0.6 m
2
/m

3
 unit. Evergreen 

needleleaf, evergreen broadleaf, and deciduous needleleaf forests showed a similar 

foliage distribution pattern of non-forest vegetation. Deciduous broadleaf forest 

exhibited a slightly different canopy mode — most of leaves were distributed at 
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middle-story level with a peak height at about 8 m and VFP values did not decrease 

significantly until reaching a height of 15 m. Mixed forest showed somehow a 

combined pattern of deciduous broadleaf forests and the other types as we expected.  

 

Fig. 5-7 Distribution of total LAI across different land cover types. The width of the 

boxes is proportional to the number of observations for each type. Notches show the 

95% confidence interval of median values. 
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Fig. 5-8 Averaged GLAS VFP for different land cover types across US: non-forest 

vegetation types (left) and forest types (right). Mean values are central lines within 

the color-filled 95% CI envelope. 

5.3.3  GLAS LAI Distributions by Environmental Factors 

 A linear regression analysis between GLAS LAI and SRTM DEM showed 

that increasing altitude would lead to an overall reduction in LAI values (r
2
 = 0.59, P 

< 0.01). However, we found that GLAS LAI did not exactly follow the decreasing 

trend with elevated topography (Fig. 5-9). GLAS LAI values increased with DEM at 

the elevation range from 0 to 750 m and 2000 to 3000 m. The variation in LAI-DEM 

relationship agreed well (r
2
 = 0.45, P < 0.01) with forest ratio of GLAS footprints, 

defined as the percentage of footprints classified as forests in total GLAS shots 

(forests and non-forest). A multiple linear regression analysis indicated the about 87% 

of total variance could be explained by a simple combination of elevation groups and 

forest ratio values: 
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 LAI = 2.59 × Forest Ratio - 0.595× Elevation (km) + 1.58 

 

Fig. 5-9 Distribution of GLAS LAI and forest ratio (GLAS shots over forest divided 

by total shot numbers) as a function of elevation stratification groups. Overall, there 

is a decreasing trend of LAI values as elevation increases (r
2
 = 0.59, adj- r

2
 = 0.56, P 

< 0.01) despite an observed variation. Such variation pattern of total LAI coincides 

with the distribution of forest ratio at elevation groups (r
2
 = 0.45, adj- r

2
 = 0.40, P < 

0.01). 
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Fig. 5-10 Distribution of GLAS LAI as a function of precipitation stratification 

groups. A linear regression analysis of LAI values averaged by precipitation groups 

shows a very significant increasing trend (1.84 unit per 1000 mm, r
2
 = 0.96, adj- r

2
 = 

0.95, P < 0.001) at areas with annual precipitation less than 2400 mm but almost no 

increase above that. 

 We also stratified and analyzed GLAS LAI by 30-year normal annual 

precipitation data using linear regression models (Fig. 5-10). It was observed that 

increasing precipitation significantly increased LAI values (ΔLAI = 1.84 per 1000 

mm precipitation increase) but only at low precipitation levels (< 2400 mm). It 

contributed little when exceeding that threshold, as we found no significant LAI 

increase among groups greater than 2400 mm using a bonferroni adjusted t-test. 

 LAI = 1.84 × precipitation (mm) ×1e-3 + 0.774  (r
2
 = 0.96, adj-r

2
 = 0.95) 
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 An example of combined environmental effects on distribution of LAI and 

VFP in northwestern US was shown in Fig. 5-11. Three parallel GLAS transects were 

selected from Western Cascade, Eastern Cascade and northern Rocky Mountain 

forests with averaged LAI values of 4.90, 2.75 and 3.99. Western Cascade forests 

exhibited the highest stands density followed by northern Rocky Mountain forests. 

Western Cascade forests had a variety of foliage density distribution patterns, while 

those in northern Rocky Mountain forests were mostly similar with foliage density 

peak concentrated close to the ground. For the three transects, the average 

precipitation values were 2360, 980, and 970 mm and the average elevation values 

were 570, 1080 and 1340 m respectively. The highest LAI forests, Western Cascade 

forests, had the lowest elevation and highest precipitation values. Northern Rocky 

Mountain forests, despite a lower precipitation and higher elevation value, were 

found to have a higher LAI value compared with Eastern Cascade forests.  
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Fig. 5-11 Example of a combined environmental effect on GLAS total LAI and VFP. 

GLAS transects selected from Western Cascade, Eastern Cascade and northern Rocky 

Mountain areas have averaged LAI values of 4.90, 2.75 and 3.99. Heights in the 

second and third rows are multiplied by 10 to show foliage distribution within canopy. 

   

5.4 Discussion 

 In this study we did not include any field data in recognition of two major 

difficulties in the direct footprint level comparison between GLAS and field data: 1) 

there was hardly any coincidence between the two, and 2) most field work did not 

measure VFP. Instead we adapted a bottom-up validation approach and chose those 

highly accurate LAI and VFP maps derived from various airborne systems as an 

alternative validation tool (Morisette et al. 2006; Tang et al. 2014a). LVIS is such a 
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good example for validation purposes which has demonstrated its excellence in LAI 

and VFP estimates as examined by destructively-sampled data in a dense tropical 

rainforest (Tang et al. 2012). Examination from LVIS at different forest types across 

CONUS shows that GLAS generally provides accurate LAI and VFP estimates at 

footprint level. Consider the temporal and spatial allocation differences between 

LVIS and GLAS, their overall agreements on LAI and VFP are reasonable (r
2
 = 0.60, 

bias = -0.23, and RMSE = 0.82; and r
2
 = 0.36, bias = -0.043, and RMSE = 0.26). We 

find no significant or systematic estimate bias across all LVIS campaigns. 

Comparison results further demonstrate the efficacy of our retrieval method at a much 

boarder scale, regardless of the variation of forest types and environmental factors.  

 Although the overall measurement of GLAS VFP was accurate, we found its 

VFP measurement accuracy appeared to decrease when penetrating down to the 

understory part. The r
2
 decreased from a peak value of 0.66 at upper-story (15 - 20 m) 

to 0.33 at middle-story (5 - 10 m), and bottomed at understory with a value of 0.04 (0 

- 5m). There could be multiple factors contributing to such trends. First, a slope effect 

could greatly reduce the LAI measurement accuracy of GLAS (Tang et al. 2014a). 

Despite efforts from different methods, this effect can still not be fully mitigated 

especially over steep slopes, and would consequently introduce errors and 

uncertainties into VFP estimates as well. Additionally, topographical effects can lead 

to the misalignment of VFP between LVIS and GLAS. GLAS measures the terrestrial 

surface at a much larger footprint with higher topographical variations, and a direct 

average of LVIS VFP can possibly result in a mismatch of vertical foliage 

distribution up to several meters. A vertical integration of VFP at longer height 
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interval could partially mitigate such effect but not fully, and this explains the higher 

agreement in total LAI comparison. Moreover, measurement of near-ground 

understory vegetation is approaching the observation limits of GLAS data. By default 

GLAS waveforms are processed by a Gaussian decomposition method to get an 

approximate fit comprised of a series of Gaussian functions where the last one usually 

represents the ground (Hofton et al. 2000). The upper tail of ground Gaussian peak 

could be mixed with signals from lower understory, and it is almost impossible to 

separate them given the specification of GLAS pulse width and scanning frequency. 

All these factors, plus the nature of high complexity and heterogeneity in canopy 

understory, lead to the lower agreement on understory VFP between LVIS and 

GLAS.  

 Comparison between GLAS and Landsat displayed a much lower agreement 

than that of LVIS. The r
2
 (0.18) was lower with a much larger RMSE (1.99) and a 

higher bias (0.33). We also observed a saturation trend of Landsat LAI relative to 

GLAS when exceeding a value around 4. On the low end of LAI spectrum, GLAS 

was found to have underestimated values against Landsat. It is because GLAS may 

not be able to adequately capture LAI values of short grassland with no discernible 

vertical structure, whereas Landsat could measure both tree and grass LAI based on 

their total spectral response. This difference would lead to an underestimated 

observation of GLAS LAI at low canopy cover levels. There are also other factors 

leading to their difference in LAI estimates such as sensor design (active vs. passive), 

observation scale (65 m vs. 30 m) and misclassifications of land cover types. But the 

overall low bias value still suggests a possible data fusion strategy between GLAS 
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and Landsat on forests with LAI less than 4.  

 Analysis of GLAS LAI and VFP across ecoregions displayed a reasonable 

geographical distribution and similar pattern when compared with existing LAI 

product (Deng et al. 2006; Myneni et al. 2002). More importantly, the LAI strata 

maps exhibited vertical canopy stratification of US terrestrial ecosystems for the first 

time. With these data it is possible to track not only the horizontal distribution of 

canopy structure but its vertical variations as well. In specific, one could identify the 

foliage concentration at understory, middle-story or up-story part at either fine 

resolution or ecoregions (Fig. 5-5, Fig. 5-6 and Table 1). Such large scale VFP data 

could possibly be the clue leading to stories hidden by the "Big-leaf" model, and 

would be a huge contribution towards continental scale ecological and biological 

studies of forest structure and dynamics.  

 LAI and VFP also varied across different landscapes represented by various 

land cover types. For example, we found both total LAI and maximum value of 

foliage density peaks significantly increase following the gradient of shrubland, 

savanna, woody savanna towards forests (Fig. 5-7 and Fig. 5-8). In particular, we 

found deciduous broadleaf forest showing a different pattern with its foliage more 

evenly distributed in understory and middle-story when compared with all other 

forests. Our results not only confirm the existence of canopy layers in concept, but 

more importantly, highlight the feasibility of quantifying those layers across 

landscapes. Once further developed and validated, these data would provide full 3-

dimensional measurement of terrestrial ecosystems and help update our knowledge 

about spatial distribution of vegetation structure over different forest species and 
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types. Such new knowledge would then be possibly adapted to help refine current 

empirical assumptions about vegetation structure of different land cover types in 

current LAI inversion algorithm (e.g. MODIS).  

 Different environmental factors were found to have a significant impact on 

LAI at different levels. For example, we found an increase of 1 km in elevation would 

generally cause a decrease of about 0.5 unit in GLAS LAI (r
2
 = 0.59, P < 0.01) (Fig. 

5-9). This decreasing trend is consistent with previous studies across different scales 

(Luo et al. 2004; Moser et al. 2007; Pfeifer et al. 2012). The variation of the overall 

trend could be largely explained by the vegetation type composition along the 

elevation gradient. A simple classification of GLAS shots between forest and non-

forest vegetation explained about 50% of the variation. A combination of the two 

factors (elevation groups and forest ratio) explained almost 90% variance of average 

LAI distribution. We also found a significant but nonlinear relationship between 

GLAS LAI and annual precipitation (Fig. 5-10). At relatively drier areas (annual 

precipitation < ~2000 mm), an increase of 1000 mm in annual precipitation would 

lead to a significant LAI increase of about 1.84 unit (r
2
 = 0.96, P < 0.001). The 

increasing trend diminished when annual precipitation reached a value of about 2400 

mm. This non-linear relationship agrees well with previous studies in the tropics 

(Pfeifer et al. 2014; Spracklen et al. 2012). Examples in Fig. 5-11 showed a combined 

environmental effect of elevation and precipitation on distributions of LAI values.  

 As a direct quantification of 3-D foliage distribution, GLAS LAI profiles are 

so far the best representations of terrestrial ecosystem structure over broad 

geographical areas. Further ecological applications of these profiles could be 
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important. First, they could refine current large-scale measurements of plant 

respiration and photosynthesis and consequently help identify the "missing 

carbon"(Houghton 2007). Previous studies reported a potential 50% underestimate of 

GPP values with no consideration of vertical foliage stratification (Kotchenova et al. 

2004; Sprintsin et al. 2012). A successful integration strategy may reduce current 

carbon uncertainty in biospheres. This could be achieved by either improving 

initialization of ecological models (Hurtt et al. 2004), or establishing the relationship 

with Gross Primary Production (GPP) in together with passive remote sensing data 

(Turner et al. 2006). Second, these profiles could also help describe species richness 

and habitat heterogeneity in biodiversity studies. Many studies have confirmed the 

general relationship between species richness, habitat heterogeneity and forest 

structural complexity across different landscapes (Ferger et al. 2014; Goetz et al. 

2010; Schut et al. 2014; Swatantran et al. 2012). The inclusion of LAI profiles 

provides spatially explicit vegetation structure data and may potentially improve 

current observations of species distribution at continental scale, such as the North 

American Breeding Bird Survey (Culbert et al. 2013; Sauer et al. 2008).    

5.5 Conclusion 

Lidar technology allows 3-D observations of forest structure but most of 

relevant studies only focus on regional or landscape scale. In this study we presented 

a demonstration of GLAS LAI and VFP product over Contiguous United States. This 

product shows reasonable footprint-level agreement with existing airborne lidar LAI 

and VFP data sets except for lower understory across different landscapes. The 



 

 

132 

 

comparison with 30 m Landsat data highlights the potential limits of passive optical 

remote sensing but also the power of fusion approaches. The derived GLAS LAI and 

VFP product may improve current climate and ecological models through more 

accurate parameterization of canopy structure. A similar but global-scale data set, 

once available, will be of a great interest in help better understanding of terrestrial 

ecosystem dynamics and global biodiversity hotspots. 
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Chapter 6 Conclusion 

This dissertation aimed at developing approaches to retrieve leaf area index 

and its vertical stratification through canopy using waveform lidar. My research 

demonstrated the accuracy of lidar on LAI measurements over dense canopy cover 

forests when compared with passive optical methods. The methods for deriving LAI 

and VFP developed in this dissertation are innovative and the products are among the 

best available representations of these attributes at continental scale, across the US. 

Methods developed in this study are not site-specific and are applicable in future lidar 

missions (e.g. ICESat-2 and GEDI) with a potential measurement of global LAI and 

VFP within every 500 m cell.  

The main findings of this dissertation are chapter specific and have been 

summarized in a compilation of different themes as follows. First, my research 

demonstrated a novel pathway of measuring LAI profiles directly without building 

statistical relationships between field-based LAI data and sensor signals. This was 

one of the few attempts to derive LAI and VFP from lidar data based on a Geometric 

Optical and Radiative Transfer (GORT) model retrieval rather than through empirical 

methods. I applied the GORT model to produce LAI and VFP directly from airborne 

lidar (LVIS) waveforms in Chapter 2 and Chapter 3. I also derived LAI and VFP 

from spaceborne GLAS data based on the same model in Chapter 3 to Chapter 5. 

These applications suggested that the relationship between vertical foliage 

distribution and lidar signals were not site-specific but universally applicable across 

vegetation types and lidar platforms.  
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Secondly, lidar based estimates of LAI and VFP were highly accurate when 

compared with different field measurements. By comparing modeled results with 

destructively sampled LAI measurements, I showed that large footprint waveform 

lidar can provide accurate estimates of LAI and vertical foliage stratification in a 

tropical rainforest, even under conditions of high canopy cover (> 95%). This finding 

was significant and proved that lidar based estimates do not saturate even when LAI 

values reaching a unit of 10, a range far exceeding current observation limits (around 

6 unit) of passive remote sensing. I also discovered good measuring agreements 

between LVIS and other widely accepted methods including hemispherical photo, 

LAI-2000 and terrestrial scanning lidar.  

Thirdly, identifications and corrections of spatial difference were of great 

importance in the validation process of lidar derived LAI and VFP. In Chapter 2, I 

found an improved agreement between LVIS and field LAI measurements after a 

scale adjustment. I also found a significant improvement after filtering LVIS 

footprints with center non-coincident to tower centers. In Chapter 3, I bridged the 

spatial mismatch between field and spaceborne measurements using LAI maps from 

airborne lidar. In Chapter 6, this multiple scale approach played an important role in 

validating GLAS LAI and VFP product across US given the sparse spatial allocation 

of GLAS footprints. My research suggests the ever-increasing number of regional 

airborne lidar campaigns should be integrated to build a national validation network 

for continental scale products of spaceborne lidar. 

In addition, the slope effect of large footprint lidar can be partially corrected 

in LAI retrievals. My initial experiments showed that algorithms developed for 
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medium footprint airborne lidar could not be directly applied to GLAS data as there 

were large errors during the execution. This was mainly because the LVIS algorithm 

failed to correctly separate vegetation information from the ground energy in the 

presence of complex topography. I therefore developed a recursive analysis method to 

facilitate the separation and found significant improvements in the results. Despite 

these improvements, the recursive methods could not fully mitigate the slope effect 

produced LAI with lower accuracy confidence over large slope areas with high 

heterogeneous vegetation distribution especially. I found an optimal slope threshold 

of about 20° for highest LAI retrieval quality, below which this r
2 
and RMSE values 

were comparable to those seen between LVIS and the ground-based measurements. 

Lastly, spaceborne lidar systems can well characterize horizontal and vertical 

canopy structure across broad geographical areas. Implementation of GORT model 

and recursive method led to the production of GLAS LAI and VFP over Contiguous 

US. Comparisons between GLAS and LVIS over different forest types suggested 

GLAS was able to provide accurate near continental scale measurements of both total 

LAI and vertical canopy stratification as well. The derived GLAS LAI and VFP 

product provided a first ever overview of both horizontal and vertical canopy 

structure distribution of North American ecosystems, and thereby set up a quantitative 

baseline for future monitoring. 

Despite the general success, limitations still exist, and there are three 

problems that need further work. The first is the topographic or slope effect. All 

results indicate that LAI can be accurately derived from GLAS data but only under 

desirable topographic conditions, namely with a slope of 20° or less. Existence of 
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high slopes can significantly decrease data quality and lower the confidence of 

retrieval accuracy when coupled with low incident laser energy, multiple scattering 

effect and geolocation error. It is more evident for larger footprint size lidar (GLAS in 

this case) considering the fact that complexity and heterogeneity of both topography 

and canopy structure increase significantly with enlarged scale. Although efforts have 

been made to mitigate such effect, it cannot be eradicated completely. A possible 

remedy relies on calibrations from external data sources, including DEMs from 

SRTM or Tandem-X. Prior knowledge of topographic information would be of huge 

help in modeling and correcting slope effect on individual waveform and hence can 

improve the accuracy of LAI and VFP estimates. Fortunately, future spaceborne lidar 

missions may be less affected by slope effect in ecosystem observations. The ATLAS 

sensor on board of ICESat-2 mission is a new generation photon-counting lidar 

system, which will collect photons at each 10 m radius footprint with an increment of 

70 cm along track. The GEDI instrument will collect waveforms at diameter of only 

15 - 20 m, similar to LVIS More accurate LAI and VFP products can be expected 

with a minimized slope effect from these future lidar datasets.  

The second problem is because of the interchangeable use of terms of LAI and 

Plant Area Index (PAI) in lidar observation. Strictly speaking, products derived from 

lidar waveform are actually PAI rather than LAI. The term of LAI is still preferred for 

several reasons: 1) the difference between LAI and PAI is small. Our study in La 

Selva with destructive sampled field data indicates that LAI covers 93% of total PAI 

with only 7% coming from stems and trunks in vertical projection. 2) Most of the 

reflected energy towards the sensor comes from the leaves for downward looking 
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lidar systems (including both airborne and spaceborne). Results from Monte Carlo 

Simulation (Hancock et al. 2012) have shown when seeing the canopy from the top, 

the viewed leaf area will be much larger than woody components. 3) Our long-term 

goal aims to apply these data onto initializations of ecosystem models, and "LAI" is 

the term commonly used by the ecological and remote sensing community. The 

passive optical products from Landsat or MODIS are also referred to as "LAI even 

though they include branches. There is no real difference between the lidar nadir 

observation and observation of LAI with the sun in the hotspot on these systems. At 

some point, we need to reconsider the definition and use of PAI and LAI and better 

understand the differences of products derived from active and passive remote 

sensing at a more fundamental theoretical level. 

Lastly, GLAS cannot directly provide a spatially continuous observation of 

forests. Unlike traditional passive remote sensing, spaceborne lidar systems sample 

the Earth in transects formed by a series of individual waveform footprints. It is 

fundamentally impossible for GLAS to provide a wall-to-wall observation, and 

greatly limits its broader ecological application particularly at landscape scale. A 

common solution to this problem relies on the extrapolation of footprint level lidar 

data in together with other remote sensing images, such as MODIS or Landsat. It 

basically applies machine learning algorithm to train spectral bands data with lidar 

observations and then to predict the rest areas. There have been several global and 

continental scale canopy height and aboveground biomass maps produced using this 

method (Baccini et al. 2012; Lefsky 2010; Simard et al. 2011). Another solution is 

based on sampling theory and spatial statistics. It is essentially an aggregation 
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strategy of upscaling footprint observations into tessellations with no spatial overlaps 

or gaps (Healey et al. 2012). A more promising method is to the fusion between lidar 

and InSAR data. Lidar and InSAR are both equipped with 3D observation capability 

and provide independent measurements of vertical canopy structure. Canopy height 

measurements from lidar data are mostly accurate and straightforward, and will be 

applied in calibrating InSAR estimates to obtain a broader observation scale. This 

technique has not yet been fully understood but its potential application is huge, given 

the overlapping timeline of future lidar and SAR missions deployed by NASA and 

ESA. 

Ultimately, what will greatly improve current climate and ecological models 

is the most realistic parameterization of foliage profile and leaf area distribution. This 

would require spatially continuous global estimates of LAI and VFP. Such products 

will also help achieve a better understanding of energy and mass exchange at the 

boundary layer between biosphere and atmosphere. Developing these maps would be 

a next step in this research. Deriving LAI and VFP at large scales using lidar is 

relatively new compared to efforts with passive remote sensing data. Despite 

encouraging results, progress has been limited because of the lack of 

continental/global lidar data and lack of efficient processing algorithms. This 

dissertation is among the pioneering efforts in deriving and validating large scale LAI 

and VFP from spaceborne lidar missions, both theoretically and practically. 

Applications of the study are not limited to GLAS products but also allow the 

generation and validation of products from future lidar missions such as ICESat-2 and 

GEDI. A full collection of these LAI products, once available and validated 
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appropriately, will be of a great importance in deepening our understanding of forest 

dynamics and better quantifying the magnitude of terrestrial carbon stock and flux. I 

hope that my research has provided useful algorithms and approaches towards this 

goal 

 



 

 

140 

 

Appendices 

Supplementary Table 1 p-values of pairwise T-test on total GLAS LAI by elevation 

Elevation 0 250 500 750 1000 1250 1500 

250 0 - - - - - - 

500 0 1 - - - - - 

750 0 1 1 - - - - 

1000 0 0.05 0.06 1 - - - 

1250 <1e-9 <1e-9 <1e-9 <1e-9 0 - - 

1500 <1e-9 <1e-9 <1e-9 <1e-9 <1e-9 0 - 

1750 <1e-9 <1e-9 <1e-9 <1e-9 <1e-9 0 0.003 

2000 <1e-9 <1e-9 <1e-9 <1e-9 <1e-9 0 0.675 

2250 <1e-9 <1e-9 <1e-9 <1e-9 <1e-9 0 0 

2500 <1e-9 <1e-9 <1e-9 <1e-9 <1e-9 0 0 

2750 <1e-9 <1e-9 <1e-9 <1e-9 <1e-9 0 0.001 

3000 0 0 0 0 0 0.022 0.533 

3250 0 0.002 0.001 0.005 0.013 0.961 1 

 

*Continue of Supplementary Table 1 

Elevation 1750 2000 2250 2500 2750 3000 

250 - - - - - - 

500 - - - - - - 

750 - - - - - - 

1000 - - - - - - 

1250 - - - - - - 

1500 - - - - - - 

1750 - - - - - - 

2000 1 - - - - - 

2250 0.101 0.035 - - - - 

2500 0.199 0.069 1 - - - 

2750 0.696 0.289 1 1 - - 

3000 1 1 1 1 1 - 

3250 1 1 1 1 1 1 
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Supplementary Table 2 p-values of pairwise T-test on total GLAS LAI by land cover 

types 

 ENF EBF DNF DBF Mixed 

forest 

Closed 

shrub-

land 

Open 

shrub-

land 

Woody 

savanna 

EBF 1.0 - - - - - - - 

DNF 0.0 0.032 - - - - - - 

DBF  0.176 1.0 1.0 - - - - - 

Mixed  

forest 

<1e-3 1.0 0.0 0.031 - - - - 

Closed 

shrub-

land 

<1e-9 0.013 1.0 1.0 <1e-9 - - - 

Open  

Shrub-

land 

<1e-9 <1e-3 1.0 1.0 <1e-9 1.0 - - 

Woody  

savanna 

<1e-9 0.040 1.0 1.0 <1e-9 1.0 0.0 - 

Savanna <1e-9 0.002 1.0 1.0 <1e-9 1.0 1.0 0.0 

 

Supplementary Table 3 p-values of pairwise T-test on GLAS LAI strata by land cover 

types 

0-5m ENF EBF DNF DBF  Mixed 

forest 

Closed 

shrubland 

Open 

shrubland 

Woody 

savanna 

EBF 1.0 - - - - - - - 

DNF 0.001 0.027 - - - - - - 

DBF  1.0 1.0 1.0 - - - - - 

Mixed  

forest 

1.0 1.0 0.0 1.0 - - - - 

Closed 

shrubland 

0.0 0.154 1.0 1.0 0.0 - - - 
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Open  

shrubland 

<1e-9 0.018 1.0 1.0 0.0 1.0 - - 

Woody  

savanna 

<1e-9 0.328 1.0 1.0 0.0 1.0 0.0 - 

Savanna <1e-9 0.028 1.0 1.0 0.0 1.0 1.0 0.0 

         

5-10m ENF EBF DNF DBF  Mixed 

forest 

Closed 

shrubland 

Open 

shrubland 

Woody 

savanna 

EBF 1.0 - - - - - - - 

DNF 0.0 0.163 - - - - - - 

DBF  1.0 1.0 1.0 - - - - - 

Mixed  

forest 

0.107 1.0 0.0 0.420 - - - - 

Closed 

shrubland 

<1e-9 0.188 1.0 1.0 0.0 - - - 

Open 

shrubland 

<1e-9 0.011 1.0 1.0 0.0 1.0 - - 

Woody 

 savanna 

<1e-9 1.0 1.0 1.0 0.0 0.590 0.0 - 

Savanna <1e-9 0.132 1.0 1.0 0.0 1.0 0.039 0.0 

         

10-20m ENF EBF DNF DBF  Mixed 
forest 

Closed 
shrubland 

Open 
shrubland 

Woody 
savanna 

EBF 0.952 - - - - - - - 

DNF 0.0 1.0 - - - - - - 

DBF  0.308 1.0 1.0 - - - - - 

Mixed  

forest 

0.003 0.119 0.0 0.076 - - - - 

Closed 

shrubland 

<1e-9 1.0 1.0 1.0 0.0 - - - 

Open  
shrubland 

<1e-9 0.363 1.0 1.0 0.0 1.0 - - 

Woody  

savanna 

<1e-9 1.0 1.0 1.0 0.0 1.0 0.0 - 

Savanna <1e-9 0.647 1.0 1.0 0.0 1.0 1.0 0.0 

         

> 20m ENF EBF DNF DBF  Mixed 

forest 

Closed 

shrubland 

Open 

shrubland 

Woody 

savanna 

EBF 1.0 - - -  - - - 

DNF 0.005 1.0 - -  - - - 

DBF  1.0 1.0 1.0 -  - - - 

Mixed  

forest 

0.0 0.896 0.0 0.332  - - - 

Closed 

shrubland 

<1e-9 1.0 1.0 1.0 0.0 - - - 

Open  

shrubland 

<1e-9 1.0 1.0 1.0 0.0 1.0 - - 

Woody  

savanna 

<1e-9 1.0 1.0 1.0 0.0 1.0 0.229 - 

Savanna <1e-9 1.0 1.0 1.0 0.0 1.0 1.0 0.032 
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ENF: Evergreen Needleleaf Forest 

EBF: Evergreen Broadleaf Forest 

DNF: Deciduous Broadleaf Forest 

DBF: Deciduous Broadleaf Forest 
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