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 Intensity- modulated radiation therapy is a form of cancer treatment that directs high 

energy x-rays to irradiate a tumor volume. In order to minimize the damage to surround-

ing tissue the radiation is delivered from multiple angles. The selection of angles is an 

NP-hard problem and is currently done manually in most hospitals. We use previously 

evaluated treatment plans to train a machine learning model to sort potential treatment 

plans. By sorting potential treatment plans we can find better solutions while only evalu-

ating a fifth as many plans. We then construct a genetic algorithm and use our machine 

learning models to search the space of all potential treatment plans to suggest a potential 

best plan. Using the genetic algorithm we are able to find plans 2% better on average than 

the previously best known plans. 

 Proton therapy is a new form of radiation therapy. We simulated a proton therapy 

treatment center in order to optimize patient throughput and minimize patient wait time. 

We are able to schedule patients reducing wait times between 20% and 35% depending 

on patient tardiness and absenteeism. 

 Finally, we analyzed the impact of operations research on the treatment of pros-

tate cancer.  We reviewed the work that has been published in both operations research 

and medical journals, seeing how it has impacted policy and doctor recommendations.  
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1 INTRODUCTION 

 

In 2012, the United States spent 17.9% of its GDP on healthcare, more than any other 

nation (OBP 2014). With healthcare costs representing such a major part of the economy, 

there has been a great deal of research devoted to improving not only the treatment of 

patients, but the efficiency of healthcare delivery. The Agency for Healthcare Research 

and Quality (AHRQ) is tasked with producing evidence and guidelines to make 

healthcare safer, higher quality, more accessible, equitable, and affordable. It has repeat-

edly called for the use of operations research to increase the efficiency of healthcare de-

livery, reducing the cost, and improving the outcomes of patients (AHRQ 2011). The im-

portance of operations research in healthcare extends beyond improving the efficiency of 

healthcare systems and to the treatment of patients themselves. Increasingly sophisticated 

treatments in medicine require optimization of everything from drug plans for cancer pa-

tients to imaging of computed tomography scanners. 

In 2014, there are expected to be more than 1.6 million new cases of cancer diag-

nosed in the United States, with over half a million cancer deaths (ACS 2014). In 2009, 

the United States spent $86.6 billion on medical treatments directly related to cancer, but 

indirect mortality costs raised the total cost of cancer to an estimated $216.6 billion (ACS 

2014). The treatment of cancer represents an important part of the healthcare industry, 

with specialized doctors, hospitals, facilities, and other resources dedicated to its treat-

ment. This dissertation focuses on how operations research can be used to improve cancer 

treatment, from planning external beam radiation therapy to the efficiency of treatment 

delivery to patients. There are three parts to the research: improving the delivery of radia-
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tion to tumors in intensity-modulated radiation therapy (IMRT), scheduling patients for 

treatment at a proton therapy treatment center, and analyzing the impact of operations 

research on the treatment of prostate cancer. 

Currently, nearly two thirds of all cancer patients in the United States receive some 

form of radiotherapy (NIH 2012). IMRT is currently the most common form of external 

beam radiation therapy (Smith et al. 2011). IMRT, like all forms of radiotherapy, has side 

effects from radiation being delivered to healthy tissue surrounding the tumor and treat-

ment volume. Improving treatment plans can reduce the incident radiation to healthy tis-

sue, decreasing both acute and long term side effects. The importance of a good treatment 

plan leads to longer planning times. A good portion of the cost of IMRT is the planning 

time it takes to design each patient’s treatment plan; IMRT takes radiation oncologists 

between 30% and 88% longer than other treatment types (Van de Werf et al. 2012). The 

planning cost per patient has been estimated to be ₤484 or about $780 (Ploquin and 

Duscombe 2008). Treatment planning consists of identifying the important structures, 

deciding the beam angles, and optimizing delivery over those beam angles. The step of 

beam angle selection is currently manually performed at most hospitals with the final step 

of optimization being performed by commercial software. The manual search of beam 

angles is a time intensive iterative process. We develop a tool for sorting beam angle sets 

by potential plan quality that finds better plans while searching one fifth the number of 

plans. Such a tool could vastly decrease the time spent manually searching for angle sets 

in treatment planning. We extend this work by constructing a genetic algorithm that will 

search the space of beam angle sets for the plan it predicts will perform best. These tools 
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have the potential to improve both the treatment of the patient and to reduce the burden of 

treatment planning. 

Proton therapy is a promising new form of external beam radiation therapy. Protons 

have the ability to better pinpoint the delivery of radiation by scattering less than x-rays 

and delivering almost no radiation to the tissue behind the treatment volume. Currently, 

the size and nature of the equipment needed for proton therapy necessitates a specialized 

facility be built. The cost of such a facility and equipment runs in excess of one hundred 

million dollars. The widespread adoption of proton therapy has been greatly limited by 

this high cost. There are currently only 40 facilities worldwide. When presented with a 

treatment that is both scarce and in high demand it is important to ensure that facilities 

are designed to see as many patients as possible and that all equipment is being optimally 

used. A proton therapy treatment center is a complex system with many patients able to 

be treated in parallel, each with stochastic treatment times and multiple treatment steps. 

Furthermore, even though some steps of treatment can be done in parallel, the cyclotron 

delivering the high energy protons can supply only one treatment room at a time, mean-

ing that only one patient can receive radiation at a time. We show the throughput increase 

of having multiple treatment rooms and the diminishing returns of having too many. We 

show that when having multiple rooms relying on a common resource, scheduling pa-

tients with respect to their demand on that resource is important. We go further to analyze 

system failures and special needs of patients. We show how to maintain throughput and 

reduce patient wait times in the presence of high uncertainty in patient arrival. 

Prostate cancer is the most common form of cancer in men, with one in seven devel-

oping prostate cancer within their lifetime (SEER 2012). It has been shown that early 
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detection of prostate cancer leads to improved treatment outcomes. In an effort to detect 

prostate cancer in its early stages it has been common practice to measure the prostate 

specific antigen of men over forty. However, screening with prostate specific antigen 

leads to a large number of false positive detections, resulting in unnecessary biopsies. 

Biopsies are intrusive and carry a risk of infection. Operation researchers have simulated 

policies in order maximize the welfare gain from early detection and minimize unneces-

sary procedures. Researchers are looking for better screening alternatives including 

MRIs. The data from MRIs is complex and humans do a poor job of analyzing the images 

for prostate cancer detection. Using machine learning, however, the accuracy of detection 

can be improved well beyond that of PSA screening and human interpretation of MRI. 

Optimization techniques have also been applied to the treatment of prostate cancer 

through seed placement in brachytherapy and the decision of when to start treatment. 

From screening to post-operative monitoring, operations research has had a significant 

impact on the treatment of prostate cancer. 

 The dissertation is ordered as follows. The first section focuses on using data mining 

and genetic algorithms to improve IMRT treatment plans. The second section is on the 

optimization of beam angle selection through genetic algorithms. The third section is on 

simulating a proton therapy treatment center to test scheduling procedures. Finally, the 

fourth section is an effort to measure the impact that operations research has had on the 

treatment of prostate cancer. Each section begins with its own introduction and literature 

review, followed by results.  
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ABSTRACT 

 

 The beam angle optimization problem for Intensity-Modulate Radiation Therapy 

(IMRT) has been well studied. Previous research has focused on developing optimization 

approaches to obtain a single high quality angle set for each patient. In this research, we 

propose a population-based method to aid the beam angle selection process with the goal 

of significantly improving the efficiency of the process while identifying high-quality 

angles. We used a database of 2,700 IMRT treatment plans for 10 patients with locally 

advanced head and neck cancer. We used machine learning to rank beam angle sets to 

determine those most likely to be of high quality. Logistic regression, neural network, 

and k-nearest neighbor algorithms were used with different parameters and feature sets. 

The ranking algorithms are able to find better angle sets by evaluating just three plans 

than would be found by randomly searching five times as many.  
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2.1 Introduction 

Over the last 10 years, intensity-modulated radiation therapy (IMRT) has become 

one of the dominant forms of external beam radiation therapy. IMRT replaced 3D con-

formal radiation therapy for treating many types of cancer because it is better able to 

spare the surrounding healthy tissue while maintaining the prescription dose to the tumor. 

This increased precision in delivering radiation is particularly important in tumors sur-

rounded by vulnerable tissue, such as cancer in an advanced stage. This increased preci-

sion comes with increased complexity, making the IMRT planning problem NP-hard 

(Saher and Sultan 2010). Current IMRT planning procedures have yet to use the vast 

amount of information collected from the optimizing of treatment plans for the tens of 

thousands of patients who undergo IMRT every year. 

An oncologist and a medical physicist collaborate on producing plans for the 

IMRT planning problem (we refer to them as the planners). There are three primary stag-

es in solving the planning problem. During the first stage, organs at risk (OARs) and the 

tumor are delineated on the CT scan (X-ray computed tomography). The tumor and tissue 

immediately adjacent to it are referred to as the planning target volume (PTV). The PTV 

and nodal volumes are assigned varying levels of radiation to ensure that the malignant 

cells are destroyed. An isocenter is selected and the radiation source (a linear accelerator 

in the case of X-ray IMRT) is pivoted on a gantry arm around the isocenter. Typically, 

the isocenter is chosen to be the center of mass of the tumor and varies from patient to 

patient. The isocenter may vary, to a lesser degree, over the course of treatment. 

The second stage of the planning process involves the selection of beam angles to 

deliver the radiation relative to the patient’s anatomy. First, the planners must decide how 

many beam angles to use. Research has shown that while more beam angles might spread 
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out the radiation, ensuring no individual organ receives too high a dose, there are dimin-

ishing returns for too many angles (Mohan and Ling 1995; Narayanan et al. 2012; Söder-

ström and Brahme 1995; Stein et al. 1997). In addition, there are practical limitations. For 

example, each additional angle increases the amount of time needed to deliver the radia-

tion, which can cause complications for very sick patients. Wu et al. (2010) suggested 

that the dosimetric quality of plans is dependent on the number of beam apertures used. 

No matter how many angles are used, a minimum number of aperatures is required to 

ensure adequate plan quality. 

After deciding on the number of angles to use, the values of the angles are chosen. 

Angle selection is usually done manually, despite research showing that intelligent beam 

angle selection can further reduce radiation to the OARs (Aleman et al. 2008, 2009; Pu-

gachev et al. 2001). Much of the literature on optimizing beam angles focuses on beam 

view methods (Cho et al. 1999; Goitein et al. 1983; Myrianthopoulos et al. 1992; Puga-

chev and Xing 2001a, 2001b, 2002). These methods evaluate one beam plan at regular 

intervals and create a vector of radiation delivered to both the tumor and the OARs. A set 

of angles is then constructed based on the performance of the individual beam plans. 

Methods of optimizing using the beam view method include simulated annealing (Ale-

man et al. 2008), mixed integer programming (D’Souza et al. 2004; Lee et al. 2006; Lim 

et al. 2008; Wang et al. 2003), genetic algorithms (Li et al. 2004; Schreibmann et al. 

2004), clustering (Bangert and Oelfke 2010) and heuristic approaches (Aleman et al. 

2008; Bertsimas et al. 2013; Cao et al. 2012; Craft 2007; D’Souza et al. 2008; Lim and 

Cao 2012; Misic et al. 2010; Potrebko et al. 2007).  
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Artificial neural networks have been applied to the beam angle selection problem. 

In Rowbottom, et al. (1999), neural networks were trained with a single angle set for each 

patient. The angle set was generated using a heuristic that was previously shown to pro-

duce good angle sets (Rowbottom et al. 1998). By using only a single angle set for each 

patient, the information gained from the multiple sets that are typically evaluated during 

planning is lost. The authors used the neural network to generate an angle set given input 

parameters, instead of evaluating a beam angle set.  

In the third stage, after the beam angles have been selected, beam intensity pro-

files are computed for each angle. The objective function for this stage ensures that the 

tumor receives the prescription dose, while minimizing the radiation to the surrounding 

tissue. There are many ways to model these objectives. Linear and quadratic forms are 

used to penalize delivering radiation to healthy tissue or delivering an insufficient dose of 

radiation to the treatment area. The penalty weights for the PTV and OARs are specified 

by the planners for a patient. The planners often adjust the penalty score equation as a 

way of modifying computer optimized plans without changing beam angles. From each 

angle, the intensity profile of the beam is divided into pixels or beamlets as variables to 

be optimized, which gives a flexible control of radiation dose delivered to a patient. This 

level of control is especially useful for concave and oddly shaped tumors. A comprehen-

sive discussion of the IMRT planning problem can be found in four review papers (Bort-

feld 2006; Hunt and Burman 2003; Romeijn and Dempsey 2008; Webb 2003). 

In practice, for a given beam angle set, the beam intensity profiles are optimized 

using commercial software. Typically, the selection of beam angles is constructed manu-

ally and is based on the experience of the planners designing the plan. The optimization 
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of beam intensity profiles for a given set of beam angles is computationally expensive, 

taking up to 30 minutes per plan using the planning software. In current clinical practice, 

IMRT treatment planning is an iterative process. After the computationally expensive 

plan generation process is performed by clinicians, treatment plans are presented to phy-

sicians for approval. Frequently, physicians would like the clinicians to improve the plan 

quality by balancing the doses to different structures. This iterative process to achieve the 

final plan is even more time-consuming. The goal of this paper is to develop a model for 

sorting potential beam angle sets in order to identify those that are high quality, so that 

the number of plan evaluations can be limited during the computationally expensive third 

step of optimization. With the help of our method, top ranked plans that have different 

dose distributions to different OARs (but have similar overall quality) could provide phy-

sicians with more flexibility in plan selection and eliminate the time-consuming iterative 

process. A patient population-based method utilizing data mining tools is proposed in 

order to identify quality beam angles for a new incoming patient. Using the results of 

previously evaluated beam angle sets to aid in the selection of which sets to evaluate al-

lows us to use the thousands of hours of computer processing that have already been 

spent optimizing plans for cancer patients. The purpose of this new tool is not to find the 

best of all possible plans, but to take advantage of prior knowledge to identify the most 

promising angle sets for full evaluation. It can be used along with any beam angle opti-

mizers in order to speed up the process. In Section 2, we discuss the data used for the de-

velopment of the data mining models. In Section 3, we fine tune the model parameters 

and present the results of each model. In Section 4, we provide concluding remarks and 

suggestions for future research. 
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2.2 Methods 

Our population is built from 2709 evaluated treatment plans of 10 locally ad-

vanced head and neck cancer patients. Each plan has seven coplanar beam angles. Each 

patient has between 252 and 282 evaluated plans, 11 of which are rotations of seven 

evenly spaced angles rounded to the nearest five degrees. The remainder of the plans are 

randomly generated. The patients have different isocenters and tumor geometries, but all 

share the same set of OARs. The OARs includes the right and left parotid (salivary 

glands), oral mucosa, spinal cord, and brainstem. The treatment targets include primary 

PTV, high risk nodal volumes (high risk PTV), and low risk nodal volumes (low risk 

PTV). 

2.2.1 Penalty Score to evaluate plan quality 

The penalty score formula, which is widely used in the literature (Cao et al. 2012; 

Misic et al. 2010; Romeijin and Dempsey 2012), is consistent across the 10 patients. 

Scores are weighted sums of violations of the desired dose values for both the OARs and 

the PTVs. A lower score corresponds to a better plan. Specifically, a score is given by 





PTVi

iii

PTVOARi

iii AddAS )0,max()0,max(  ,                                                                                  

where αi is the penalty associated with delivering excess radiation to OAR and PTV in 

the score calculation, which reflects the priority of satisfying the corresponding constraint 

of the OAR or the PTV during the planning process. Similarly, i  is the penalty associat-

ed with failing to deliver sufficient radiation to the PTV. The specified desired dose val-

ue, measured in Grays (Gy), for each OAR and PTV (di) is listed in Table 2-1 (note that 

multiple values can be specified for each OAR and PTV). Ai represents the actual dose 

achieved by the treatment plan at a percentage volume of the OAR or PTV. For the 
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OARs, the goal is to deliver as little radiation as possible. The most sensitive tissues, such 

as the spinal cord and brain stem, have a limit as to the maximum amount of absorbed 

dose that can be received by any part of the tissue. For these OARs, the di is measured in 

maximum Grays received. Before calculating the penalty score, the treatment plan is 

normalized so that the primary PTV receives the prescription dose (70 Gy) to ensure that 

enough dose is being delivered to the tumor. In Figure 2-1, we show a cross section of 

one patient demonstrating the difficulty of the cases considered. The three treatment tar-

gets were surrounded by OARs, and the spinal cord was sitting within the concavity of 

the targets.  

Constraint di αi, βi 

Less than 66% of the left parotid receiving 26 Gy 3 

Less than 33% of the left parotid receiving 32 Gy 3 

Less than 66% of the right parotid receiving 26 Gy 3 

Less than 33% of the right parotid receiving 32 Gy 3 

Less than 90% of the oral mucosa receiving 30 Gy 8 

Less than 30% of the oral mucosa receiving 40 Gy 8 

Maximum spinal cord dose  45 Gy 15 

Maximum brain stem dose 54 Gy 15 

More than 95% of the low-risk PTV receiving 54 Gy 6 

Less than 5% of the low-risk PTV receiving 59.4 Gy 6 

More than 95% of the high-risk PTV receiving 59.4 Gy 6 

Less than 5% of the high-risk PTV receiving 70 Gy 6 

Table 2-1: Summary of dose and dose-volume constraints for locally advanced head and 

neck cases 
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Figure 2-1: A cross section of a CT for a patient depicting the PTV and OARs. 

 

2.2.2 Angle Set Evaluation 

The associated beam intensity profiles were optimized using P
3
 IMRT, part of the 

Pinnacle
3
® Planning system by Phillips (2013). P

3
 IMRT optimizes the dosage to the 

specified OAR and PTV using a sequential quadratic programming algorithm for solving 

general nonlinear optimization problems. There are 1,000 to 10,000 variables, and the 

process of optimizing the intensity profiles for a set of beam angles can take between 5 

and 30 minutes. Each angle set had seven coplanar angles which is consistent with previ-

ous research (Bortfeld and Schlegel 1993; Liu et al. 2006; Takamiya et al. 2007) that has 

explored the trade-offs involved in using more beam angles. Also, in accordance with 

practice, no two beam angles were spaced less than 30 degrees apart or opposite between 

170 and 190 degrees of another.  

2.2.3 Models 

Three different methods were compared: linear regression, neural networks 

(Haykin 1994), and k-nearest neighbor (Aha 1991). Each method used fully evaluated 
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beam angle sets with penalty score as observations, and was tested by predicting the pen-

alty score of beam angle sets on which it had not been trained.  

Linear regression allows for an interpretable model with no predetermined model 

parameters. The linear regression models were constructed using the R software package 

(R Core Team 2013). Both the linear regression and neural network models used the pa-

tient ID, normalized angle sets, normalized product of each pair of angles, and normal-

ized cube of each angle as feature sets. Patient ID identifies the patient whose penalty 

score was evaluated from the beam angle set. The patient ID allows for patient fixed ef-

fects to be captured using nine dummy variables that allow for the identification of the 10 

patients. 

Neural networks require several model parameters to be specified prior to train-

ing, including activation functions, network topology, and a learning algorithm. A hyper-

bolic tangent activation function (a common activation function) is used for all nodes in 

the network. A neural network has an input layer, hidden layer, and output layer. We 

have to decide on the number of hidden layers and the number of neurons in the hidden 

layers. Too many neurons in the hidden layer will result in overfitting and long computa-

tion times. Too few neurons will result in underfitting. The network has one hidden layer 

with a number of nodes equal to one more than half the size of the feature set. The hidden 

layer is fully connected to both the input and output layers. Backpropagation is the learn-

ing algorithm. There are several parameters associated with backpropagation including a 

learning parameter and momentum. We set the learning parameter value at 0.01 and mo-

mentum at 0.90. MATLAB release 2012b and the Neural Networks Toolbox (MATLAB 

2012) were used to construct and test the neural network models.  
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Finally, k-nearest neighbor is an instance-based learner that uses the Euclidean 

distance between the angle set being evaluated and the angle sets in the training set to 

determine the k nearest instances. The penalty score is then estimated, giving more 

weight to the penalty scores of the closer instances. The k-nearest neighbor algorithm 

requires no training time. Weka 3.6 (Hall et al. 2009) was used to run the k-nearest 

neighbor algorithm with k set to seven (based on predictive performance on test set) and 

the distance weight set to the inverse of the Euclidean distance between angle sets. The k-

nearest neighbor algorithm used only the patient ID and normalized angle set as features. 

2.3 Results 

 Models were generated using 5-fold cross-validation on the 2,709 beam angle sets. 

Four folds are used as training data, with the fifth fold being withheld for testing. The 

data mining algorithms were trained to predict the penalty score for each beam angle set. 

For each patient, the plans were then sorted by their predicted penalty score and this rank-

ing was compared to the actual ordering of the plans. For each 5-fold cross-validation, 

this process results in 50 ordered lists (5 folds each with 10 patients). Each list has be-

tween 50 and 56 beam angle plans for a specific patient. We used 5-fold cross-validation 

rather than the more common 10-fold cross-validation to allow for a larger test set. This 

results in an average list of 54 plans for each of the 10 patients to be sorted (10-fold 

cross-validation would have an average list size of only 27 plans). By using fewer folds, 

we double the size of the test set for each run, but reduce the size of the training set by 

less than 12%. 

 The model predictions correlate well with the actual penalty scores. The correlation 

coefficients are 0.85 for the linear regression model, 0.83 for the neural network model, 
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and 0.90 for the k-nearest neighbor model. To estimate time savings and performance 

improvements, however, we need to know how well the models predict the order of the 

lists they are sorting. In Table 2-2, we see that all the data mining methods outperform 

the baseline of taking the same number of elements from an unsorted list. 

 The probability of finding the best of the potential plans in a list is more than 

doubled at all levels by using simple machine learning methods. Evaluating the top three 

ranked plans by k-nearest neighbor produces better results, on average, than evaluating 15 

plans from an unsorted list. If we were to evaluate only six plans, the average rank of the 

best plan found using a k-nearest neighbor sorted list is less than a quarter of that found 

by randomly evaluating six plans. The best plan is found 54% of the time, almost five 

times as often when evaluating six random plans. A top three plan is found 86% of the 

time (almost three times as often as evaluating six random plans) and a top five plan is 

found 94% of the time (over twice as often).  
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Plans 

searched from 

machine sort-

ed list 

 

Average 

rank of best 

plan found  

(out of 54) 

Probability 

of finding 

best plan 

 

Probability 

of finding a 

top 3 plan 

 

Probability 

of finding a 

top 5 plan 

 

Rank of bottom 

10th percentile 

of best plan 

found 

(out of 54) 

Baseline      

 

Random 3 13.8 5.6 16.0 25.7 30 

Random 6 7.9 11.1 30.3 45.9 18 

Random 9 5.5 16.7 42.8 61.4 13 

Random 12 4.2 22.2 53.7 73.1 10 

Random 15 3.4 27.8 63.2 81.8 8 

 

Linear Re-

gression      

 

Top 3 7.4 14 34 46 17 

Top 6 3.8 22 56 80 8 

Top 9 3.2 26 62 86 6 

Top 12 2.5 38 74 94 4 

Top 15 2.0 50 88 98 4 

 

Neural Net-

work      

 

Top 3 7.1 16 40 52 15 

Top 6 3.7 32 64 84 10 

Top 9 2.9 38 74 90 5 

Top 12 2.4 50 78 94 5 

Top 15 2.0 56 86 98 4 

 

k-Nearest 

Neighbor      

 

Top 3 3.0 34 76 92 5 

Top 6 2.2 54 86 94 4 

Top 9 2.0 62 90 94 3 

Top 12 1.9 68 92 94 3 

Top 15 1.6 70 96 98 2 

Table 2-2: Performance of linear regression, neural network, and k-nearest neighbor algo-

rithms over a 5-fold cross-validation resulting in 50 ordered lists with an average of 54 

elements per list. This is compared with the baseline performance of a randomly ordered 

list of 54 elements. All rankings are ordinal; each has a distinct integer rank (no ties). 
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 In Figures 2-2 to 2-5, we see that k-nearest neighbor strictly dominates both linear 

regression and neural network models, both of which dominate a randomly sorted list. 

However, k-nearest neighbor is more sensitive to the number of dimensions used (Beyer 

et al. 1999). If the dimensionality is too high, the performance declines. This property 

might limit the ability of k-nearest neighbor models to explicitly handle large numbers of 

patient variables found in larger databases (our models use dummy variables for each 

patient). Neural network and linear regression models both can effectively use a larger 

feature set than the k-nearest neighbor, so long as the number of instances is sufficiently 

large. 

 In Figure 2-5, we see that, by searching just six plans using k-nearest neighbor, on 

average, the penalty score of the best plan found is less than five percent above that for 

the best plan in the list. This result compared to a penalty score over 20% above that for 

the best plan using an unsorted list. Even searching 15 plans with an unsorted list still 

yields a penalty score that is over 10% above that for the best plan in the list. Given that 

the ultimate goal of any sorting or optimization technique is to improve the quality of the 

plans being used, we see that, by sorting the list prior to evaluation, we can evaluate far 

fewer plans and still find high-quality plans. 

 The penalty score of the top ranked plan from each of the 50 lists of plans averages 

between 4% and 5% less than the plan used in clinical experience for both linear regres-

sion and neural networks. The k-nearest neighbor algorithm achieves a 17% reduction. 

Similarly, when comparing the penalty score of the average top ranked plan in each list 

with the results of commercial software, we find an 11% reduction for the linear regres-

sion and neural network models, and a 22% reduction for k-nearest neighbor model.  
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Figure 2-2: The average rank of the best plan found by evaluating a fixed number of plans 

from a list of 54 elements. 

 

 

Figure 2-3: The probability of finding the best plan in a list of 54 elements by evaluating 

a fixed number of plans. 
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Figure 2-4: The probability of finding one of the three best plans in a list of 54 elements 

by evaluating a fixed number of plans. 

 

 

Figure 2-5: The percent difference between the penalty score of the actual best plan of a 

list of 54 and the best plan found having evaluated a fixed number. 
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Figure 2-6: A comparison of the DVHs for one patient comparing plans based on clinical 

experience (red), commercial software (blue), and a sample run using the top ranked plan 

from a list sorted using linear regression. The OARs and PTVs are separated for presenta-

tion purposes. 

The overall beam angle quality obtained using either clinical experience, com-

mercial software, or the top plan from a list sorted using data mining is demonstrated us-

ing the dose-volume histograms (DVHs) in Figure 2-6. The DVH presents the fractional 

volume of each OAR or PTV that receives at least a certain absorbed dose (in Gy) of ra-

diation. All three approaches provided the required coverage for PTVs (primary, high risk 

(HR) and low risk (LR)). However, the data mining approach obtained the most uniform 
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dose for all three PTVs. The bigger differences were achieved for spinal cord, oral muco-

sa, and brain stem. At least a 10% improvement (reduction in maximum dose) was 

achieved by the data mining approach for sparing of the spinal cord compared to the oth-

er methods. A 15% improvement of oral mucosa sparing was achieved as well. We can 

see that data mining successfully identified beam angle sets that yielded significantly im-

proved treatment plans relative to clinical plans and commercially implemented optimiza-

tion techniques. Appendix 2-1 gives an example of an alternate plan (with slight changes 

to the beam angles) developed using k-nearest neighbor that improves upon the plan 

based on clinical experience with respect to penalty score. 

In Table 2-3, we compare the performance of the three data mining algorithms 

(linear regression, neural network, k-nearest neighbor) to the plans produced by clinical 

experience, the Eclipse treatment planning system (Varian 2013), and a nested partitions 

optimization algorithm (D’Souza et al. 2008). The optimization algorithm has been 

benchmarked against other methods found in the literature (Lim et al. 2012). The 

achieved dose (in Gy) at each constraint setting level is listed in the table, which were 

averaged for the 10 patients. The plans for the data mining methods are based on the best 

of the top three ranked plans in the fold, from 5-fold cross validation, where the test set 

contained the best-known plan for that patient. The linear regression model reduced the 

penalty from 90% of the oral mucosa receiving more than 30 Gy by 12% compared to 

clinical and more than 15% compared to the Eclipse system. Each data mining method 

reduced the delivery to the brain stem compared to the clinical and Eclipse plans, reduc-

ing the penalty by 6% to 9%. The top-ranked plans from our data mining methods per-

formed well compared to angle sets from a good angle selection optimizer. The plan from 
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Constraint 

 

Clinical 

Experience 

Eclipse 

System 

Linear 

Regression 

Neural 

Network 

k-Nearest 

Neighbor 

Nested  

Partitions 

More than 95% of 

the high-risk PTV 

receiving 59.4 Gy 

61.6 61.6 60.4 61.1 60.7 60.6 

Less than 5% of 

the high-risk PTV 

receiving 70.0 Gy 

69.1 69.3 68.0 68.2 68.0 68.6 

More than 95% of 

the low-risk PTV 

receiving 54.0 Gy 

56.5 56.2 55.0 55.4 54.9 55.2 

Less than 5% of 

the low-risk PTV 

receiving 59.4 Gy 

62.4 62.8 61.5 61.7 61.4 62.1 

Maximum spinal 

cord dose 

45.0 Gy 

49.3 51.0 48.7 48.1 47.9 48.5 

Less than 66% of 

the left parotid 

receiving 26.0 Gy 

17.0 18.2 17.4 17.8 17.4 17.5 

Less than 33% of 

the left parotid 

receiving 32.0 Gy 

42.2 42.1 40.0 42.0 40.0 41.1 

Less than 66% of 

the right parotid 

receiving 26.0 Gy 

18.6 18.7 18.4 18.3 18.3 19.0 

Less than 33% of 

the right parotid 

receiving 32.0 Gy 

44.4 44.6 43.8 44.2 44.1 44.0 

Maximum brain 

stem dose 

54.0 Gy 

38.2 38.1 35.1 34.6 35.8 36.3 

Less than 90% of 

the oral mucosa 

receiving 30.0 Gy 

17.5 18.2 15.4 17.0 16.9 16.5 

Less than 30% of 

the oral mucosa 

receiving 40.0 Gy 

45.7 45.2 43.1 43.6 43.0 43.6 

Table 2-3: The actual dose (in Gy, averaged over the 10 patients) achieved at each con-

straint setting level for plans produced by clinical experience, the Eclipse system, linear 

regression, neural network, k-nearest neighbor, and nested partitions. 
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the optimizer was consistently ranked among the top five plans of at least one data min-

ing method. 

As the length of the list being sorted grows, we cannot say for certain how per-

formance will scale. Due to the approximate limit of 270 plans per patient that we have to 

work with, we cannot test the performance on lists of arbitrary lengths. Once trained, 

both linear regression and neural network models can be run quickly to evaluate many 

potential treatment plans. To evaluate each new plan simply requires a few matrix multi-

plications. The k-nearest neighbor algorithm requires no training time, which would be an 

advantage when selecting a training set that most closely resembles a patient. 

2.4 Discussion 

 This research has the potential to use the vast amount of information that is gathered 

during the IMRT planning process. Every plan that was evaluated for the thousands of 

patients undergoing treatment each year could potentially be used. As the population da-

tabase grows, it will become possible to include more patient specific variables such as 

tumor geometry and location, information that models trained on a small number of pa-

tients cannot utilize. 

 Alternatively, a subset of patients with similar conditions could be selected as the 

training set for each new patient, thereby eliminating the need of adding new variables to 

the model. A repository of tumor shapes and anatomies of patients for each disease site, 

along with all plans calculated during a patient’s treatment planning phase, could serve as 

the training set for new patients with the same disease site. Although there are databases 

of medical imaging of tumors that are currently available, they do not include treatment 

information. When a new patient considers treatment, we could, with our tools, identify 
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potential high-quality beam angle sets. Treatment information could easily be attached to 

such a database and previous tumors could be simulated for treatment plans as well. 

Research (Dink et al. 2012) has shown that using multiple beam angle sets over a 

series of treatments has the potential to improve outcomes. Unlike previous work that 

focused on finding a single best angle set, by sorting, we can find multiple good angle 

sets; these would allow for a greater distribution of angles to be used with time-varying 

plans. Appendix 2-2 gives an example of two plans (obtained from linear regression) with 

disparate angle sets that have a similar penalty score and spare different OARs. This also 

gives the physician more flexibility to choose a treatment plan based on the trade-offs 

between the OARs. 

Our research has similar implications for use with adaptive treatment planning. 

Current treatment plans are static throughout the treatment process. Adaptive treatment 

seeks to anticipate response to treatment and adjust accordingly. Given that the tumor 

will likely change slowly over the course of the treatment, plans developed for preceding 

stages could serve as training instances for screening future sets and distinct angle sets 

could be found to better distribute the radiation. 

In future work, we will incorporate patient specific anatomical features (Chanya-

navich et al. 2011; Magome et al. 2013) to improve the prediction of the penalty score 

and ranking accuracy. After improving the accuracy, we will incorporate the data mining 

models within an optimization method to identify the optimal angle set with limited qual-

ity evaluations. 

In conclusion, we have shown that previously evaluated beam angle sets can be 

used to help identify the potential of new angle sets. Sorting plans shows great promise in 
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speeding the search for good angle sets by helping find plans with low penalty scores 

first. Future models might recommend how many plans should be evaluated based on the 

relative performance of the new plans to the existing training plans. This would allow for 

fewer plans to be evaluated if their predicted penalty score was higher than the plans that 

have already been evaluated. 
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Appendix 2-1 

 

Figure 2-7: A comparison of the DVHs for one patient comparing plans based on clinical 

experience (black) and a sample run using the top ranked plan from a list sorted using k-

nearest neighbor (blue). The OARs and PTVs are separated for presentation purposes. 

The k-nearest neighbor model was able to identify a plan similar to the one used 

in clinical practice, that differed by more than five degrees on only two angles, that im-

proved the penalty score by 24%. In Figure 2-7, we see that while the clinical plan deliv-

ers less radiation to the oral mucosa, the k-nearest neighbor plan reduces radiation deliv-

ered to the left parotid and delivers a high dose to a smaller fraction of the brain stem. 

The plans have similar characteristics for the brain stem, right parotid, and primary PTV. 
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Appendix 2-2 

 

The top two plans from a list sorted using a linear regression model were com-

pared. The plans penalty score differed by less than 1%, but four of the angles used dif-

fered by at least 15 degrees. Figure 2-8 shows similar dosing for the brain stem, left and 

right parotid, and PTV. One plan spares the spinal cord, the other spares the oral mucosa. 

Having multiple plans with the same penalty score allows for plans to be compared using 

objectives not included in the penalty score.  

 

 

Figure 2-8: A comparison of the DVHs for one patient comparing two top ranked plans 

found using linear regression. The OARs and PTVs are separated for presentation pur-

poses.  
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Abstract: Developing treatment plans for intensity-modulated radiation therapy (IMRT) 

involves first selecting beam angles and then optimizing the delivery of radiation from 

those angles. Optimizing the delivery of radiation for a set of beam angles is a time inten-

sive process and finding the beam angles from which to best deliver the radiation is an 

NP-hard problem. We use machine learning to construct models to quickly estimate the 

quality of optimized plans for new angle sets. These models are used as objective/fitness 

functions in a genetic algorithm (GA) that searches the space of feasible beam angle sets. 

Our GA quickly finds solutions for new patients based on the models trained on previous-

ly evaluated treatment plans for other patients. The solutions found are more than 2% 

better than the previously best known solutions for patients. 
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3.1 Introduction 

 Intensity-modulated radiation therapy (IMRT) is a form of external beam radiation 

therapy that uses x-rays to irradiate a tumor. Since the radiation also affects the healthy 

tissue surrounding the tumor, the x-rays are projected from multiple angles with the tu-

mor at the center. A linear accelerator is used to generate the x-rays and is mounted on a 

gantry arm that can be rotated to deliver the radiation from multiple angles. Using multi-

ple angles allows the radiation to be delivered in multiple doses, distributing the dose to 

healthy tissue to minimize damage, while delivering a concentrated lethal dose to cancer-

ous tissue. A multi-leaf collimator is used to control the precise delivery of radiation. The 

collimator can be moved while the radiation is being delivered, blocking the x-rays for a 

period of time to control the exposure. This further minimizes damage to healthy tissue, 

by controlling the amount of radiation being delivered to each pixel from each angle to 

ensure lower dosage to areas with more sensitive tissue. 

 Constructing a treatment plan for a patient is a three stage process. In the first stage, 

the patient is imaged so that all important tissue in the treatment area can be identified. 

An oncologist identifies the tumor and tissue at risk of cancer, the planned treatment vol-

ume (PTV), and prescribes radiation levels for these areas that will kill the cancerous tis-

sue. Next, the organs at risk (OAR) of damage from radiation are assigned thresholds of 

radiation, below which, damage from radiation is considered acceptable. Plans are evalu-

ated using an objective function that penalizes plans for delivering either too little radia-

tion to the PTV or too much radiation to the OAR. 
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 The second stage involves selecting angles from which to deliver the radiation. Using 

multiple angles allows for the radiation to be distributed and these angles can be chosen 

to avoid delivering radiation to more sensitive tissue. The beam angle selection problem 

has been shown to be NP-hard (Saher and Sultan 2010). Using more angles has diminish-

ing returns and leads to longer treatment times. The selection of angles for treatment is 

still primarily done manually by trial and error. 

 The third stage of the planning process is to decide the precise way in which to deliv-

er the radiation from each angle. The PTV creates a cross section when viewed from each 

angle. The cross section is divided into pixels. Using multi-leaf collimators, the delivery 

of radiation can be precisely controlled to each pixel of the cross section. Given the large 

number of pixels and the interaction between their deliveries, the optimization of this 

planning phase is done using commercial optimization software. The software can take 

up to 20 minutes to optimize the delivery of radiation for an angle set. For a more in 

depth discussion of IMRT and the treatment planning process, literature reviews are 

available (Bortfeld 2006; Hunt and Burman 2003; Romeijn and Dempsey 2008; Webb 

2003). 

 IMRT is currently the most popular form of external beam radiation therapy in the 

United States. Each year thousands of treatment plans are developed for patients under-

going IMRT. These treatment plans have the potential to form the basis of a database that 

can be used to guide future treatment plan construction. Previous work (Price et al. 2014) 

has shown that using machine learning to sort potential beam angle sets could aid treat-

ment planners in deciding which angle sets to examine. However, sorting or evaluating 

all possible angle sets is infeasible. An efficient way to search the space of angle sets is 



31 

 

needed in order to generate good solutions. Dias et al. (2014) use neural networks trained 

for individual patients to serve as the fitness function for a beam angle search procedure, 

but such a method requires that new neural networks be trained for each patient and mul-

tiple beam angle sets be evaluated for these patients to train the neural networks. Our 

work aims to use a genetic algorithm (GA) to search the space of potential beam angle 

sets for the set of angles, which when radiation delivery from these angles has been opti-

mized, will minimize the objective function value, thus minimizing damage to OAR and 

delivering an appropriate level of radiation to the PTV. Instead of optimizing the radia-

tion delivery for each angle set, we use machine learning trained on previous patients to 

develop models that predict the objective function value of optimized beam angle sets. 

Our GA is able to improve upon the best known solutions by more than 2%.  

 The paper is organized as follows. Section 2 explores the methods used by the ma-

chine learning models and Section 3 describes the details of the GA. Section 4 presents 

the results of the plans identified by the GA using the different fitness functions from the 

machine learning algorithms. Section 5 provides conclusions. 

3.2 Methodology 

  This section covers the steps taken in constructing the GA. First, we discuss the 

penalty function used to optimize the plans. Our work is applied to head and neck cancer 

patients and a customized penalty function is used. Next, we examine the data used to 

train the machine learning algorithms. For this data set, the beam angle sets are evaluated 

for patients using commercial software. This data is then used to make models to predict 

the penalty score using machine learning. Finally, the machine learning models are part 

of a genetic algorithm used to search the space of beam angles. 
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3.2.1    Penalty Function 

We use a linear penalty score formula commonly used in the literature (Cao et al. 

2012; Misic et al. 2010; Romeijin and Dempsey 2012). The penalty score evaluates the 

relative quality of the treatment plans based on how they deviate from a series of OAR 

and PTV target values. The penalty score is a weighted sum of violations from the de-

sired dose values for both the OARs and the PTVs. Better plans have fewer violations 

resulting in lower penalty scores. The score is given by 





PTVi

iii

PTVOARi

ii AddAS )0,max()0,max(i  , 

where αi  and i  are the weights associated with each OAR and PTV in the score calcula-

tion. The weights reflect the seriousness of violating the constraint of the OAR or the 

PTV during the planning process, with more important structures receiving higher 

weights. Table 3-1 lists the desired dose values (di), measured in Grays (Gy), for each 

OAR and PTV. OARs more sensitive to radiation will have lower desired dose levels, 

while the PTV at highest risk will have larger desired dose levels. There can also be mul-

tiple constraints each OAR or PTV. Ai represents the actual dose achieved by the treat-

ment plan at a percentage volume of the OAR or PTV. For the OARs, the goal is to de-

liver as little radiation as possible. The most sensitive tissues, such as the spinal cord and 

brain stem, have a limit on the maximum amount of absorbed dose that can be received. 

For these OARs, the di is measured in maximum Grays received. The treatment plan is 

normalized so that the primary PTV receives the prescription dose (70 Gy) prior to calcu-

lating the penalty score to ensure that an adequate dose is being delivered to the tumor.  
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Constraint di αi, βi 

Less than 66% of the left parotid receiving 26 Gy 3 

Less than 33% of the left parotid receiving 32 Gy 3 

Less than 66% of the right parotid receiving 26 Gy 3 

Less than 33% of the right parotid receiving 32 Gy 3 

Less than 90% of the oral mucosa receiving 30 Gy 8 

Less than 30% of the oral mucosa receiving 40 Gy 8 

Maximum spinal cord dose  45 Gy 15 

Maximum brain stem dose 54 Gy 15 

More than 95% of the low-risk PTV receiving 54 Gy 6 

Less than 5% of the low-risk PTV receiving 59.4 Gy 6 

More than 95% of the high-risk PTV receiving 59.4 Gy 6 

Less than 5% of the high-risk PTV receiving 70 Gy 6 

Table 3-1: Summary of dose and dose-volume constraints for locally advanced head and 

neck cases  

 

3.2.2    Data 

The associated beam intensity profiles were optimized using P
3
 IMRT, part of the 

Pinnacle
3
® Planning system by Phillips (2013). P

3
 IMRT optimizes the dosage to the 

specified OAR and PTV using a sequential quadratic programming algorithm for solving 

general nonlinear optimization problems. There are 1,000 to 10,000 variables, and the 

process of optimizing the intensity profiles for a set of beam angles can take between 5 

and 30 minutes. Each angle set had seven coplanar angles which is consistent with previ-

ous research (Bortfeld and Schlegel 1993; Liu et al. 2006; Takamiya et al. 2007) that has 

explored the trade-offs involved in using more beam angles. Also, in accordance with 

practice, no two beam angles were spaced less than 30 degrees apart or opposite (between 

170 and 190 degrees of one another).  

 We use two populations to train our machine learning algorithms. The first popu-

lation is a set of treatment plans that deliver radiation from five beam angles. The set 
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consists of 1,740 treatment plans evaluated for 10 locally advanced head and neck cancer 

patients. A total of 174 plans are evaluated for each patient with 160 of them being ran-

domly generated and 14 representing equally spaced angle sets. The average penalty 

score of the plans is 303, while the average of the best plan known for each patient is 179. 

Five angle plans take less time to deliver the radiation than seven angle plans. This allows 

for faster treatment times for patients, meaning less time immobilized for their daily 

treatments. 

 Our second population is built from 2,709 evaluated treatment plans of 10 locally ad-

vanced head and neck cancer patients. Each plan has seven coplanar beam angles. Each 

patient has between 252 and 282 evaluated plans, 11 of which are rotations of seven 

evenly spaced angles rounded to the nearest five degrees. The remainder of the plans are 

randomly generated. The average penalty score of the plans is 266, while the average of 

the best plan known for each patient is 163. These scores reflect the fact that seven beam 

plans can better spread the radiation across healthy tissue, allowing for better penalty 

scores than the five beam plans, about 10% on average. The patients have different iso-

centers and tumor geometries, but all share the same set of OARs. The OARs includes 

the right and left parotid (salivary glands), oral mucosa, spinal cord, and brainstem. The 

treatment targets include primary PTV, high risk nodal volumes (high risk PTV), and low 

risk nodal volumes (low risk PTV). 

3.2.3    Machine Learning 

 The penalty function for evaluating plan quality is based on the levels of radiation 

being delivered to the OAR and PTV of the patient. The radiation being delivered is 

based on the optimal plan arrived at by P
3
 IMRT planning software, which was optimized 
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over a set of beam angles. It is reasonable to assume that arbitrarily small changes in 

beam angle will bound the magnitude of the changes in the penalty function. We assume 

that the penalty score of the optimized treatment plan for a patient is a continuous func-

tion of the beam angles used in the plan. To estimate the shape of this function, we use 

machine learning and regression methods based on previously optimized beam angle sets 

for each patient. To begin, we use a variety of basic techniques and then use combina-

tions of these techniques to improve performance. Techniques used include regression, 

neural networks, radial basis functions, and k-nearest neighbors. 

 Assuming that the penalty function is a continuous function of the beam angles im-

plies that the function can be approximated with any desired level of accuracy by a suffi-

ciently high order polynomial. Unfortunately, the number of coefficients that needs to be 

estimated for higher dimension polynomials proliferate quickly with an increase in the 

dimensionality. Starting with a feature set that includes the beam angles, first order inter-

action terms, the square of beam angles, and the cubes, stepwise regression is used to se-

lect features with high predictive value. Four stepwise regressions are run; forward re-

gression starting with no features and adding those with high predictive value, backward 

stepwise regression starting with all features and removing those with little predictive 

value, and stepwise regression with both forward and backward movements beginning 

from the empty and full feature sets. 

 Neural networks are a form of machine learning that can be trained to identify com-

plex, non-linear patterns. A neural network is defined by its topology, activation function, 

and learning algorithm. We use a three layer system composed of input, hidden, and out-

put layers. Each layer is fully connected with the next. An inverse arctangent activation 
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function is used, having been shown to work well with the resilient propagation (RPROP) 

learning algorithm (Riedmiller 1993). RPROP is an adaptive form of back-propagation 

that adjusts learning parameters in response to the error function during the training 

phase. After it has been trained, a neural network can be run quite quickly. 

 Radial basis function networks are a special type of neural networks that use radial 

basis functions as activation functions. The basis function centers are chosen as a random 

sample of the training set. Radial basis function networks are a popular method for func-

tion interpolation. 

 Finally, k-nearest neighbor is an instance based method that requires no training. The 

k closest neighbors in the training set to a new instance are found and a weighted sum of 

their penalty score is used to predict the penalty score of the new instance. While no 

training is required, it requires that the distance to each observation in the training set is 

calculated for each new instance. Based on the performance of using different numbers of 

neighbors, we use seven neighbors weighted by the inverse distance to the new instance. 

Nearest neighbor is a popular method for multidimensional interpolation, but can be slow 

as the training set grows.    

 A shortcoming of using an interpolation method like k-Nearest Neighbor (kNN) 

to predict the value of a new beam angle set is that the predicted value of any beam angle 

set is bounded by the maximum and minimum values in the training set. Therefore, when 

using kNN to search the space of all beam angle sets, the predicted optimum would be an 

extreme point from the training set. Extrapolation methods, on the other hand, are vulner-

able to extreme predictions, well outside anything in the training set, especially when 

searching a large space. For example, regressions with polynomial terms of second or 
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third order can have extreme values at the boundary of the space. This can result in pre-

dicted values which are several standard deviations from anything seen in the training set. 

 To balance the shortcomings of the two methods, we propose a method of com-

bining predictions that gives greater weight to interpolation methods when extrapolation 

methods have values many standard deviations from the norm of the training set. Let μ be 

the mean of the training set and σ be the standard deviation. Letting Φ(x) represent the 

inverse function of the normal distribution. Then for k(a) being the kNN prediction for an 

angle set, a, and E(a) being the extrapolation prediction for the same angle set then 

𝛷(
|𝐸(𝑎)−𝜇|

𝜎
)𝐸(𝑎) + (1 − 𝛷(

|𝐸(𝑎)−𝜇|

𝜎
)) 𝑘(𝑎). 

Note that when the predicted value of the extrapolation is too many standard devia-

tions from the norm, the more stable interpolation term dominates the extreme extrapola-

tion term. Appendix 3-1 justifies the use of the inverse normal distribution. 

 There are multiple methods for combining machine learning models. Methods that 

use a simple or arbitrary rule decided a priori, such as weighting the models equally or 

weighting based on predictive accuracy in the training set, can use a single training set 

without overestimating the predictive value. If, however, one wishes to learn how best to 

combine multiple machine learning models, it is important to use two training sets. The 

first training set is used to train each of the basic model methods (in our case kNN, RBF, 

Linear Regression, Neural Networks). The second training set is used to learn how to 

combine the predictions of each of the machine learning methods to better predict the 

penalty score. This is particularly important to avoid overfitting. We use multiple meth-

ods to combine methods including the previously mentioned probabilistic method, equal 

weight, and proportional weight.  
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3.2.4    Tumor Geometry 

 An important piece of information that our earlier data mining methods (Price et 

al. 2014) did not include is tumor geometry. When mining plans are performed on a sin-

gle patient, tumor geometry is unimportant because the geometry information is constant 

across all the beam angle sets. Since we are working with a small number of patients, but 

a large number of evaluated plans for each patient, we used fixed effects. Fixed effects 

capture that the geometry is the same within a patient, but different between patients. 

Fixed effects, however, have limited use in capturing any similarities or differences be-

tween patients that might affect beam angle performance and improve the machine learn-

ing models predictive performance on new patients. Figure 3-1 shows how the geometry 

as seen from each beam angle is different, this allows for different geometric data to be 

included for each beam angle set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1.Picture illustrating a beam’s eye view of patient specific geometry from two angles.  

The tumor (red) and lymph nodes (yellow) are part of the PTV, while the brain stem (dark blue), 

spinal cord (green), oral mucosa (light blue), and parotids (beige and olive) are the OARs. The 

exact size, shape, and location of each patients OARs and PTV will be unique. 
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  The ten patients in our data set have locally advanced stage III and IV tumors. 

These tumors have grown quite large and are irregularly shaped. The number of variables 

to fully encode the information on the tumors size, shape, and location relative to the 

OARs exceeds the number of patients we have in our data set. Because there are more 

geometry variables than patients, attempts to explicitly describe the tumor will fail to 

have statistical meaning. We developed a method for encoding the geometric data from 

the beam angles used for each patient. 

  To integrate some geometric data into our angle sets, we use a method described 

in D'Souza et al. (2004). For each of the 72 beam angles that can be a part of a beam an-

gle set, a fixed dose of 2 Gy of radiation was simulated firing at the entire area of the 

beam's eye-view projection of the PTV. The radiation delivered to each of the OAR is 

recorded and the mean organ dose (MOD) is calculated. In this way, coarse geometric 

information is included by capturing the overlap of the projections of the OAR and PTV 

when viewed from each angle. The MODs, however, fail to capture all the geometric in-

formation and present a worst case scenario, since the radiation delivery from each beam 

angle can be modulated to further reduce the radiation received. The beam angle sets can 

now be viewed as a set of MOD vectors that hint at how each angle in the set will con-

tribute to the final penalty score. For example Figure 3-1 shows the tumor in red, when 

delivering a fixed dose of radiation from the angle depicted on the left, the unobstructed 

PTV (red and yellow) to the right parotid (olive) receives a MOD of 69.7. Delivering the 

same dose to the obstructed parotid from the second angle (right), it receives a MOD of 

274.2. 
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3.2.4    Results on Training Set  

 Table 3-2 presents the results of the basic models using ten-fold cross validation. 

The correlation coefficient is the most important metric for purposes of searching the 

space for optimal values as keeping the relative order of the solutions is necessary for 

identifying the proper minimum. The other metrics hint at how far the model differs from 

the actual value on average (mean absolute error, MAE, and relative absolute error, RAE) 

or weighting large variations more (root mean square error, RMSE, and relative root 

square error, RRSE). All methods are dominated by k-nearest neighbors, with linear re-

gression coming in second. Neural networks perform similarly to linear regression in 

maintaining correlation but have larger MAE and RMSE values, implying that neural 

networks result in more extreme solutions.  

 

 

Correlation 

Coefficient MAE RMSE RAE RRSE 

Linear Regres-

sion 0.8468 39.6027 55.7426 46.6201 54.728 

 

kNN 0.8978 31.0624 45.0694 36.5665 44.249 

 

Neural Network 0.8285 44.6507 64.5706 52.1623 62.7801 

Radial Basis 

Function 0.7962 46.9434 66.082 54.8407 64.2496 

 

Table 3-2: The correlation coefficient, mean absolute error (MAE), root mean square er-

ror (RMSE), relative absolute error (RAE), and relative root square error (RRSE) of the 

basic methods from ten-fold cross validation. 
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 Table 3-3 shows the correlation between the error terms of the basic models. The 

error terms are positively correlated which limits the potential of strictly additive meth-

ods. As we can see in Table 3-4, the performance of the hybrid methods offer marginal 

improvements for most metrics. Our proposed probability blended method has the best 

performance, outperforming the simple additive methods and the best of the basic mod-

els. 

 

RBF NN LR kNN 

RBF 1 0.39815 0.67373 0.5572 

NN 0.39815 1 0.54376 0.5924 

LR 0.67373 0.54376 1 0.6654 

kNN 0.5572 0.5924 0.6654 1 

 

Table 3-3: The correlation of the error terms of the different methods. The positive corre-

lation of the errors implies that simply additive methods will not necessarily outperform 

the base methods. 

 

 

 

 

Correlation 

Coefficient MAE RMSE RAE RRSE 

 

Equal Weights 0.8894 32.3872 47.6961 37.5603 45.428 

Proportionally 

Weighted 0.8938 31.4654 45.9395 36.9264 44.747 

Probability 

Weighting  0.9098 28.3979 42.9551 33.1753 41.764 

 

Table 3-4: The correlation coefficient, mean absolute error (MAE), root mean square er-

ror (RMSE), relative absolute error (RAE), and relative root square error (RRSE) of the 

combined methods from ten-fold cross validation. 
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3.2.5    Geometric Results 

 Using the geometric data described in Section 2.3.1 may encourage methods that 

will better adapt to new patients, requiring no plans to be evaluated prior to searching 

with the GA. Table 3-5 shows that using only aggregate MOD data, without using fixed 

effects for patients or angle data, we are able to perform comparably to models that use 

fixed effects and several angle based variables. Since no fixed effects are used for pa-

tients, the expected accuracy on new patients should be the same as the results from the 

10-fold cross validation. Expanding the feature set to include angle variables and interac-

tion terms further improves the accuracy as seen in Table 3-6. Linear regression, radial 

basis functions, and neural networks all have similar results with k-nearest neighbor out 

performing all other methods. The k-nearest neighbor algorithm performed best when run 

with the sine and cosine functions of the beam angles and the sum of the MOD values. 

 

  

 

Correlation 

Coefficient MAE RMSE RAE RRSE 

Linear Regres-

sion 0.6588 59.0513 77.3239 68.9852 75.1797 

 

kNN 0.8775 33.5294 49.5358 39.1701 48.1622 

 

Neural Network 0.7768 50.3131 65.5260 58.7773 63.7089 

Radial Basis 

Function 0.8307 41.1039 57.2227 48.0188 55.6359 

Table 3-5: The correlation coefficient, mean absolute error (MAE), root mean square er-

ror (RMSE), relative absolute error (RAE), and relative root square error (RRSE) of the 

basic methods using only MOD from ten-fold cross validation. 
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Correlation 

Coefficient MAE RMSE RAE RRSE 

Linear Regres-

sion 0.8447 39.5234 55.0196 46.1724 53.4939 

 

kNN 0.9124 28.0211 42.3556 32.7351 41.1807 

 

Neural Network 0.8402 41.4411 56.3871 48.4128 54.8235 

Radial Basis 

Function 0.8428 39.5441 55.3516 46.1966 53.8168 

Table 3-6: The correlation coefficient, mean absolute error (MAE), root mean square er-

ror (RMSE), relative absolute error (RAE), and relative root square error (RRSE) of the 

basic methods using full feature set from ten-fold cross validation. 

3.3 Genetic Algorithm  

 Genetic algorithms are a meta-heuristic used to search for optimal solutions to 

combinatorial optimization problems. Genetic algorithms maintain a population of poten-

tial solutions and generate new solutions over successive generations in order to search 

for an optimal solution. Solutions to the optimization problem are represented as chromo-

somes. We use the ordered beam angle set as a chromosome. The fitness function is used 

to judge the quality of each chromosome; it determines which chromosomes are passed 

from one generation to the next. To generate new solutions, mutations, crossovers, and 

other search techniques can be employed. Finally, stopping criteria are set to determine 

when to terminate the search. 

3.3.1    Population Size and Stopping Criteria  

 The running time of a genetic algorithm is proportional to the population of solu-

tions that are evaluated each generation and the number of generations. Small populations 

have a higher likelihood of crossover between any two chromosomes in the population 

and quickly discard low performing solutions. Small populations, however, have the po-
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tential of being stuck at locally optimum solutions if the population becomes too homog-

enous. Larger populations are slower to become homogenous. They also may store an 

excessive numbers of solutions with little promise of leading to the optimal solution. To 

test which would be most appropriate to search the space of beam angles, the perfor-

mance of combinations of population size and generations were used to evaluate ideal 

population size and stopping criteria. Table 3-7 shows the population size and generation 

counts used to determine the stopping criteria. 

 A polynomial objective function with multiple local optimums was used to cali-

brate a set of parameters used for all the machine learning objective functions in the ge-

netic algorithm. While running very quickly, compared to the other machine learning fit-

ness functions, the polynomial objective function can be used to calibrate the GA to 

search the space. Figure 3-2 shows the average convergence of the different population 

sizes to the optimal solution. For each population size, the GA was run 1,000 times and 

the results were averaged. Every run of the GA converged to the optimal solution of the 

polynomial. As expected, larger population sizes converge more quickly. Figure 3-3 

shows the generation in which the optimal solution was found for each of the 1,000 runs. 

This information can be used to determine how many runs would have failed to find the 

optimal solution had the termination criteria been set lower. The goal is to determine the 

population size that minimizes the total number of chromosomes evaluated by calculating 

the product of max generation size and population size. 
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Population Size Maximum Generations 

10 1000 

20 500 

50 200 

100 100 

Table 3-7: All experiments evaluated a total of approximately 20,000 chromosomes and 

took on average 1.7 seconds to run on an Intel® Core ™ i5 CPU with 2.4 GHz and 6 GB 

of RAM. 

 

 

 

 
 

Figure 3-2: Plot of percentage of best solution found by nth generation. Each population 

was averaged over 1,000 runs of the genetic algorithm. 
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Figure 3-3: Histogram of which generation the best plan was found during. If the total 

number of generations was set to less than any of these numbers, then all runs in which 

the best generation was found to the right would not find the optimal solution. 

 

Figure 3-4: Percent of runs that would converge to best solution if the run were truncated 

at a given generation. 
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Figure 3-5: Percent of runs that would find optimal solution if the run were set to termi-

nate after a fixed number of generations with the same best solution.  

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

t 
w

it
h

 O
p

ti
m

a
l 
S

o
lu

ti
o

n
 

Generations with Same Best 

100

50

20

10



48 

 

Population 

Size 

95
th

 Percentile of 

Best Solution 

Solutions 

Evaluated 

Maximum Genera-

tion Best Solution 

Found 

Solutions 

Evaluated 

10 263 5,260 641 12,820 

20 129 5,160 277 11,080 

50 76 7,600 158 15,800 

100 54 10,800 84 16,800 

 

Table 3-8: The total runtime of the Genetic Algorithm (GA) is proportional to the number 

of solutions evaluated. A population size of 20 had a minimum maximum number of so-

lutions evaluated. 

 In addition to stopping after a fixed number of generations, many GAs have a 

secondary stopping criteria based on when the best solution found has been the same for 

many generations. This is used to terminate in case the search is stuck in a local optimum. 

To determine where to set this stopping criteria, we calculated the length of every streak 

of the same best solution, prior to finding the actual best solution. If the stopping criteria 

was set too low, the optimal solution would not be found as the search would have been 

terminated prematurely.  

 
 

Figure 3-6: Plot of the length of consecutive generations with same best solution, prior to 

finding new best solution. If the stopping criteria had been set shorter than a streak of a 
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given length, then all runs with streaks longer would have not found the optimal solution. 

Zero was excluded from the figure as the number of cases that new best solutions were 

found consecutively was an order of magnitude greater due to local search. 

3.3.2 Mutation, Crossover, and Local Search 

A mutation function takes a single angle set and mutates it to return a new valid 

angle set. A crossover function takes two different angle sets and returns a single new 

valid angle set that somehow combines the two. Mutations help to maintain population 

diversity, while crossovers help to blend solutions to combine the best features of each. 

Table 3-9 shows the mutation and crossover functions that were used by our GA. The 

second chromosome for crossover functions can either be chosen randomly with uniform 

probability from the population, selected randomly with probability proportional to the 

fitness function value, or the chromosome with the best known fitness function value. We 

used a roulette system which favored higher ranked chromosomes for crossover. 

 

Title Description of Function 

Mutation 1 Replaces a random angle from an angle set with a new angle to create a 

new valid angle set 

Mutation 2 Each angle is shifted by either -5, 0, or 5 degrees 

Mutation 3 Rotates all angles by the same amount 

Mutation 4 Replaces a random angle with the angle 180 degrees from that angle 

Crossover 1 Replaces a random angle from the first chromosome with one from the 

second chromosome 

Crossover 2 Replace a random angle from the first chromosome with one between it 

and the nearest angle from the second chromosome (including end 

points)  

Crossover 3 Shifts all ordered angles in chromosome one in the direction of the same 

ordered angle in chromosome two 

Table 3-9: A list of the five mutation and three crossover functions tried as part of our 

genetic algorithm. Algorithms are detailed in Table 3-10. 
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Mutation 1: 

 Step 1:  Randomly select a beam angle from the beam angle set. 

 Step 2: Replace with angle from the set of angles valid with respect to other an-

gles in set. 

 Step 3: Order new angle set from smallest to largest. 

 

Mutation 2: 

 Step 1: Randomly add -5, 0, or 5 to each angle. 

 Step 2: If the resulting beam angle set is valid accept, else return to Step 1. 

 

Mutation 3: 

 Step 1: Randomly select an angle at 5 degree intervals from 5 to 355 and shift all 

angles in the angle set by this amount. 

 Step 2: Take all angles Mod 360 and order new angle set from smallest to largest. 

 

Mutation 4: 

 Step 1: Randomly order the beam angle set into a list. 

  Step 2: Replace the next angle in the list with the angle 180 from the original an-

gle. If the angle set is invalid replace with original set, and repeat Step 2. 

 Step 3: Take all angles Mod 360 and order new angle set from smallest to largest. 

 

Crossover 1: 

 Step 1: Randomly order Chromosome A and Chromosome B. 

 Step 2: Replace first angle in Chromosome A with the first from Chromosome B, 

if valid accept, else take the next from Chromosome B. If no valid replace-

ments for first angle in Chromosome A found, then repeat process for next 

angle in Chromosome A. 

 Step 3: Order new angle set from smallest to largest. 

 

Crossover 2: 

 Step 1: Choose a random angle from Chromosome A. 

  Step 2: Create a set of angles valid with the remaining angles in Chromosome A 

between the chosen angle and the corresponding angle from Chromosome B. 

Replace angle with randomly selected angle from the list. 

 

Crossover 3: 

 Step 1: Pair each angle in Chromosomes A and B. Randomly order pairs. 

  Step 2: For each angle pair; If corresponding angle in Chromosome B is larger, 

then add 5 degrees to angle from Chromosome A. If the corresponding angle 

in Chromosome B is smaller, then subtract 5 degrees to the angle from Chro-

mosome A. If the resulting angle set is valid, accept change, otherwise reject. 
 

Table 3-10: Outline of algorithms 
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 In addition to mutation and crossover functions, a local search was implemented. 

The local search was performed each time a new best solution was found, examining all 

angle sets within 5 degrees of the new best solution. 

 Prior to optimizing the probability of each mutation and crossover function, we 

examined which mutation, crossover, and search procedures were contributing to finding 

the best solution. Starting with the random construction of chromosomes in the first gen-

eration, every new solution generated records the methods used to generate its parent and 

adds the method used to generate it. Each mutation, crossover, and local search is coded 

with a unique letter. Figure 3-7 compares the distribution of crossovers and mutations 

used to generate the best solutions for population sizes of 10 and 100 chromosomes. For a 

population size of 100, an average of 19.7 steps were used to generate the optimal solu-

tion compared to 34.5 steps for a population size of 10.  

 

Figure 3-7: Corresponding to the methods in Table 3-9 shows the average number of mu-

tations, crossovers, and local searches involved in finding the optimal solution for popu-

lations of 10 and 100. 
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 Larger populations are typically associated with lower crossover and mutation 

probabilities and smaller populations with higher probabilities (Srinivas and Patnaik 

1994). This corresponds with the need to keep small populations diverse in order to pre-

vent getting stuck at a local optimum. Experiments were done to determine the best com-

bination of mutation and crossover functions to use with each fitness functions. Each mu-

tation and crossover function has a probability of occurring and parameter optimization 

was used to choose the best parameters for each fitness function. The steps of the parame-

ter optimization are listed in Table 3-11. The performance of each set of parameters in 

step 2 will be determined by averaging the results of 1,000 runs of the GA.  

 

Step 1 Initialize with all mutations and crossovers having an equal probability  

Step 2 Compare the performance of raising the probability of each mutation or cross-

over by the step size, while reducing the probability of all others by step size / 

(number of mutation/crossover -1) 

Step 3 If performance improves,  then choose the step that results in maximum im-

provement and repeat step 2,  

Else If the step size has reached stopping criteria, then end  

        Else reduce step size by half and repeat step 2 

 

Table 3-11: List of steps when optimizing mutation/crossover parameters for GA 

3.4 Results 

The genetic algorithm was run 100 times for each of the machine learning models, for 

each of the patients. Each unique solution was then evaluated using the Pinnacle Planning 

software. The average results were calculated by weighting the penalty score by the num-

ber of times the genetic algorithm returned each solution. Table 3-12 shows the results of 

the different machine learning methods normalized to k-nearest neighbor, which returns 

the best known solution for each patient from the observation set. The entire set of obser-

vations was used to train each of the models. 
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Method Average Best Average 

Runtime 

Linear Regression 117.4 117.4 9.4s 

Radial Basis Function 110.3 102.2 14.5s 

Neural Network 105.8 98.3 13.2s 

k-nearest neighbor 100.0 100.0 328.7s 

Equal Weights 99.6 97.5 342.3s 

Probability Weighted 97.9 96.1 356.8s 

Table 3-12. Performance of GA results with respect to the previously best known plan. 

Lower scores are better. Runtimes of the GA on an Intel® Core ™ i5 CPU with 2.4 GHz 

and 6 GB of RAM. Bold indicates the best performance in each column.  

As seen in Table 3-12, the basic methods did not tend to return solutions that were better 

than the known solutions. By using combinations of the basic machine learning methods, 

we were able to improve upon the best known solution. Some methods such as linear 

regression and k-nearest neighbor converged to a single solution in all runs of the GA. 

Other methods had less consistent results, sometimes finding better solutions and 

othertimes failing to match the best known solution. Table 3-12 also shows the runtime of 

the different methods in finding a solution. As can be seen, the methods that do not call 

on k-nearest neighbor have a significantly faster runtime. To improve the runtime of 

methods that call on k-nearest neighbor, we could limit calls to evaluate k-nearest 

neighbor to when the other machine learning models predicted an angle set that was of 

very high quality. 

3.5 Conclusions  

The improvement in the treatment plan quality by 2% over the best known plan implies 

that using models developed by machine learning to evaluate potential treatment plans is 

a viable method for beam angle selection. The quality of the predictions can be expected 
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to improve as the number of plans and patients in the training set increases. For methods 

that include k-nearest neighbor, this might result in unacceptably long search times when 

using the full training set. Given that similarities in tumor geometry and location are in-

ferred based on the MOD of the 72 beam angles, identifying patients with similar tumors 

is simply a matter of checking the distance between vectors of MOD instead of a com-

plex image analysis problem.  Using a subset of patients with similar tumor geometries 

would likely speed the search and further improve the results. Methods that incorporate 

multiple machine learning methods performed the best in our research, but as the set of 

observations grows, it is likely that the volatility of extrapolation techniques will de-

crease. 
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APPENDIX 3-1 

 
Figure 3-8: Plot of probability density function of the penalty scores for the seven beam 

plans. 

 

 
Figure 3-9: Plot matching the sample quantile values with those of a normal distribution. The 

figure shows the deviations from normal distirubtion of the penalty scores for the seven beam 

plans. Note that the  quantiles closely resemble normal for plan with lower than median penalty 

score. This implies that good plans resemble the first half of the normal distribution, while the 

underperforming plans are skewed right. 
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Figure 3-10: Plot of probability density function of the penalty scores for the five 

beam plans. 
 

 
Figure 3-11: Plot matching the sample quantile values with those of a normal distri-

bution. The figure shows the deviations from normal distribution of the penalty scores for 

the five beam plans. 
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 Figures 3-8 to 3-11 show that the distribution of penalty scores follows a right 

skewed normal distribution. The close fit of the distribution for values below the median 

penalty score implies that the formula for weighting multiple machine learning methods, 

𝛷(
|𝐸(𝑎)−𝜇|

𝜎
)𝐸(𝑎) + (1 − 𝛷(

|𝐸(𝑎)−𝜇|

𝜎
)) 𝑘(𝑎), 

is valid for use for low penalty score methods. Given that we are searching for plans 

that have penalty scores at the left tail of the distribution, the formula should be valid for 

competitive plans. The right skew of the distribution implies that there will be an over-

correction that underestimates the penalty score of the worst performing plans. 
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ABSTRACT 

 Proton therapy is a form of radiation therapy with the potential to reduce the amount 

of radiation exposure received by healthy tissue during the course of cancer treatment. 

This leads fewer acute and long-term side effects. Due to the costs involved in construct-

ing a proton therapy facility, there are only 10 facilities operating in the United States 

currently. These facilities need to treat as many patients as possible, while minimizing the 

time a patient spends waiting in the system. There are stochastic elements in the treat-

ment time, and planners need to take into account all relevant patient information in con-

structing a schedule. Important information that is known prior to scheduling includes the 

design of the treatment plan, residential status of the patient, and special needs of the pa-

tient. We simulate the operations of a proton therapy treatment center in order to generate 

rules to help produce efficient and robust schedules.  
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4.1 Introduction 

 The Maryland Proton Treatment Center involves an investment of more than $200 

million to build a proton therapy treatment center that includes imaging equipment, offic-

es, and accommodations for patients (Roylance 2010). This large initial investment is 

what makes proton therapy so expensive for patients.  Due to the large initial investment, 

only 10 proton therapy treatment centers are operating in the United States currently 

(there are more than 10,000 linear accelerators used for x-ray intensity modulated radia-

tion therapy (IMRT) worldwide) with eight more in development (National Association 

for Proton Therapy 2013). A cyclotron is needed to accelerate protons to the speed re-

quired for treatment. It is a much larger piece of equipment than the linear accelerators 

used for photons in x-ray IMRT. Typically, a new facility is built to house the equipment 

needed for PT, whereas linear accelerators can be installed in existing hospitals. When 

building an entirely new facility, there are few limitations that are imposed on placing the 

equipment. A wide array of layouts and configurations of the equipment can be consid-

ered. Our goal is to optimize the layout for patient throughput, while maintaining reason-

able patient wait times. First, we need to determine how many gantry and imaging rooms 

are needed to ensure the cyclotron is used at full capacity. Second, we need to determine 

if the imaging rooms are fully connected to the gantry rooms or are there dedicated imag-

ing rooms. Third, given a layout that can utilize the cyclotron at or near capacity, we need 

to determine whether or not the patient arrival rate affects patient wait time and machine 

idle time. Finally, we need to examine the effect of patient tardiness and absenteeism on 

patient wait time and machine idle time. 
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 Patients undergoing proton therapy typically receive treatment five days a week for 

four to five weeks. Daily treatments take less than an hour and do not typically require 

anesthesia or other drugs that might affect a patient’s daily routine. Some patients will 

come from out of town for treatment and will have an extended stay. The small number 

of side effects allows for local patients to continue working while receiving treatment. 

Tardiness of outpatients has been observed in other settings (Alexopoulos et al. 2008) and 

is likely to occur among local patients. 

 In Figure 4-1, we show the flow of patients through the treatment center. Patients en-

ter the center and proceed to a waiting room where they wait for an available imaging 

room to begin treatment. Each daily treatment begins with a detailed imaging process to 

ensure the radiation is delivered to the precise treatment location. The biggest advantage 

of PT over IMRT is its ability to deliver a precise, highly concentrated dose of radiation. 

When accurately delivered, this results in less damage to the surrounding tissue and fewer 

side effects (Lundkvist et al. 2005). Accurate delivery is important because the higher 

radiation levels delivered by PT will easily destroy healthy tissue if accidentally irradiat-

ed (Schulz-Ertner and Tsujii 2007). Errors in imaging and patient immobilization have 

been cited as the cause of adverse reactions in the treatment of prostate cancer (Wroe, 

Rosenfeld, and Schulte 2007). In remote positioning, the patient is positioned in the im-

aging room and moves between rooms immobilized on a transporter. Upon entering the 

imaging room, the patient rests on the transporter and is immobilized and prepared for 

imaging. A computer tomography (CT) scanner is used to identify the planned treatment 

volume. Marks are made on the patient’s skin that will later help align the proton beam. 

The transporter with the patient is undocked from the CT scanner and moved to the gan-
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try room. The transporter is docked with the gantry arm and aligned in preparation for 

treatment. The patient receives radiation from one, two, or three different beam angles. 

For each beam angle, the radiation is delivered over the cross section of the planned 

treatment volume from that angle and divided into pixels. Each pixel receives a different 

dose of radiation. After the patient has been treated, technicians dismount the patient 

from the transporter and return the transporter to the imaging room. The patient is dis-

charged.  

 

Figure 4-1: Patient flow through a PT treatment center. Patients may have to wait be-

tween rooms. 

 There is very little published research on the scheduling and operations of PT treat-

ment centers. The Paul Scherrer Institute (PSI) in Switzerland was the first to use remote 

patient positioning for proton therapy. The process used by PSI is described in the paper 

by Bolsi et al. (2008). The authors showed that remote positioning provided fast patient 

transport and maintained high accuracy in the delivery of radiation. The benefits of re-

mote patient positioning when compared to traditional in-room positioning in PT treat-

ment centers was examined in a follow-up paper based on simulations using data gath-

ered from PSI (Fava et al. 2012). The authors ran simulations to compare patient 
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throughput of remote and in-room positioning with a variety of transport speeds, imaging 

times, and beam delivery times. The authors imposed a strict three-minute waiting time 

limit for patients, so that a limited range of gantry and imaging room configurations were 

considered. 

 In this paper, we compare the performance of dedicating an imaging room to each 

gantry room to fully connecting imaging rooms to gantry rooms. We examine the rela-

tionship of patient inter-arrival rate (total daily throughput) to patient wait time  and ma-

chine idle time. 

4.2 Simulation Model 

We built our model using NetLogo 5.0.3, a specialized agent-based simulation language 

(Wilensky 1999).  We chose NetLogo because it has all the capabilities that we require 

for this project and it is available to the public at no charge. In addition, using an agent-

based modeling language, such as NetLogo, will allow the simulation to be extended to 

include more complex patient, facility, and personnel interactions in future versions of 

our model. Currently only patient and facility (i.e., the cyclotron) agents are implement-

ed. Our model is run in discrete time with each tick representing five seconds. The treat-

ment times that are used in our model come from an analysis of a PT treatment center 

using remote positioning due to Fava et al. (2012). The treatment steps and times are 

shown in Table 4-1. Treatment times for each step are drawn from a symmetric triangular 

distribution and are rounded to the nearest tick. A symmetric triangular distribution is 

used to ensure that all times are bounded and positive. A symmetric triangular distribu-

tion provides a clear peak and a wide range of values. 
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Table 4-1: Mean time and standard deviation of the steps used in our model based on 

treatment sessions at the Paul Scherrer Institute (taken from Fava et al. (2012)). Step 2 

occurs in the CT scanning room while steps 4 through 10 take place in the gantry room. 

Beam delivery time based on manufacturer estimate. 

 In our simulation runs, a patient is randomly assigned a treatment plan with one, two, 

or three beam angles. For each patient, we record the amount of time waiting for entry 

into the imaging room and gantry room, and the amount of time waiting in the gantry 

room for the cyclotron. 

 The waiting room is where a patient enters the system at the scheduled arrival time. If 

all imaging rooms are in use, then a count is recorded of the time a patient spends in the 

waiting room. Otherwise, the patient passes immediately into an available imaging room. 

For experiments that include a distribution of arrival times about a patient’s scheduled 

appointment time, the wait time only includes time spent in the waiting room after the 

time of the scheduled appointment. 

Treatment Steps Mean 

Time 

(minutes) 

Range of Values 

[min, max] 

(1)   Patient enters the facility                                                                   0.00 [0.00] 

(2)   Imaging                                                    16.83 [8.50, 25.17] 

(3)   Move to gantry room 1.33 [1.33] 

(4)   Prepare for beam angles 6.67 [4.25, 9.08] 

(5)   First beam angle 1.25 [1.25] 

(6)   Move gantry arm 1.50 [1.50] 

(7)   Second beam angle 1.25 [1.25] 

(8)   Move gantry arm 1.50 [1.50] 

(9)   Third beam angle 1.25 [1.25] 

(10) Discharge patient and reset gantry room 4.83 [2.83, 6.83] 
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 Each imaging room can service only one patient at a time. The patient undergoes a 

series of procedures in the imaging room. These procedures are the same for each patient 

and each room. The amount of time taken for each step of the imaging process is drawn 

from a triangular distribution and uses the means and ranges listed in Table 4-1. For each 

imaging room, we record the time spent without a patient and the time spent with a pa-

tient waiting to transfer to a gantry room. 

 Each gantry room can service only one patient at a time. Radiation is delivered to 

each patient from one, two, or three different beam angles. In addition to the time taken 

to deliver the radiation from each angle, the gantry arm must be repositioned between 

each angle. The time spent to rotate the gantry arm and treat a beam angle is fixed at 90 

and 75 seconds, respectively, as these are purely automated steps. Treatment steps 4 and 

10 are performed in the gantry room and their times are drawn from triangular distribu-

tions. For each beam angle, the gantry room must determine if the cyclotron is ready to 

fire. For each room, we record the time spent empty and the time spent waiting for the 

cyclotron. 

 The cyclotron provides protons for the gantry rooms. In addition to the 75 seconds a 

cyclotron spends treating a beam angle, it must wait an additional 45 seconds before ser-

vicing a different gantry room. When several rooms have requests for protons, they are 

serviced first come, first served. For the cyclotron, we record total time spent idle and 

time spent with one or more outstanding requests for protons. 

 All runs of our model have one cyclotron. The number of gantry and imaging rooms 

varies from run to run. Patients arrive at regular intervals that vary from run to run. Imag-
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ing rooms were either dedicated to specific gantry rooms or were fully connected to all 

gantry rooms as shown in Figure 4-2. 

 

Figure 4-2: Configurations with dedicated imaging rooms (top) versus shared imaging 

rooms (bottom). 

4.3 Simulation Results 

 In order to determine the steady-state throughput, we ran simulations for 250,000 

ticks (about 340 hours of simulated operation), where the first 50,000 ticks were treated 

as a burn-in period. The simulations ran with patients arriving whenever an imaging room 

became available (this could be thought of as an infinite waiting room scenario). The re-

sulting throughput (expressed in patients per hour) provides an upper bound on through-

put for one to seven gantry rooms because there is always a patient ready to enter the 

gantry room.  In Figure 4-3, we see a 26% increase in throughput by adding a fourth 
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room, another 14% for a fifth room, but only 6% for a sixth room. With six rooms, the 

cyclotron is idle less than 2% of the time. Therefore, additional rooms can do little to in-

crease throughput and only result in longer patient wait times in the gantry room. 

 
 

Figure 4-3: Average patients per hour, excess time in a gantry room (minutes), and per-

cent of time that the cyclotron is idle as a function of the number of gantry rooms for a 

one cyclotron system. In this system, there is always a patient ready to enter an available 

gantry room. 

 

 The average excess time spent in the gantry room is an aggregate measure. We need 

to look at the distribution of wait times. From Figure 4-3, for four gantry rooms, there is 

an average of 2.46 minutes of excess time spent in the gantry room at maximum capacity. 

In Figure 4-4, we see that, under these same conditions, many patients still spend more 

than three minutes waiting for the cyclotron in the gantry room. As the number of gantry 

rooms increases, both the mean and variance of wait time increase. The increased 

variance makes it difficult to bring maximum wait time below three minutes, since the 

maximum wait time grows faster than average wait time (see Figure 4-4). 
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Figure 4-4: Percentage of patients experiencing various wait times for 10,000 patients. 

 

 The remaining experiments are performed on 100 days of simulated facility 

performance. Including daily startup effects is more realistic than using only steady-state 

behavior. In Table 4-2, we see that, by decreasing the arrival rate (given by patients per 

hour), we can reduce the wait times of patients. For example, by increasing the time 

between patient arrivals in a four gantry room and five imaging room system from 300 

seconds (12.00 patients per hour) to 320 seconds (11.25 patients per hour), we reduce the 

average total wait time by over 55%. In Figure 4-5, we see that, even when operating 

below maximum throughput and having an average wait time of 2.72 minutes, 47% of the 

patients have wait times longer than three minutes in the gantry room.  

 There are long wait times in the gantry room; in contrast, 80% of patients spend 

no time waiting in the waiting room, 56% spend no time waiting in the imaging room, 

and 1.2% spend no time waiting in the gantry room. The multi-modal nature of the time 

spent in the gantry room (see Figure 4-5) is a result of the different treatment plans (one, 

two, or three beam angles) for patients. We constructed Figure 4-5 with patients arriving 

randomly and not taking into account the number of beam angles in the treatment plan. 
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Number of Rooms Number of Patients Time Spent (minutes) 

Gantry Imaging Per Hour Per Day Waiting Imaging Gantry Total 

4 4 11.25 157.50 0.51 1.33 1.87 3.71 

4 5 11.25 157.50 0.03 1.42 1.83 3.28 

4 5 12.00 168.00 1.39 3.78 2.21 7.38 

5 5 12.00 168.00 0.00 0.40 2.63 3.03 

5 5 13.33 186.67 0.68 1.72 3.33 5.73 

 

Table 4-2: The average wait time by room for six combinations of arrival rates, gantry 

rooms, and imaging rooms for 100 simulated days of operation.  

 

 

Figure 4-5: Percent of patients experiencing wait times for a system with five gantry 

rooms and five imaging rooms using an arrival rate of 13.33 patients per hour (given in 

Table 4-2) for 100 simulated days. 

When scheduling patients, it would be important to distribute patients of each type 

throughout the day, because more beam angles means a longer time in the gantry room on 

average. For five imaging and gantry rooms, by simply alternating among the three plan 
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the gantry room by 37 seconds. The percent of patients spending more than three minutes 

in the gantry room falls from 47% to 39%. The multi-modal nature of the distribution has 

not changed in Figure 4-6, but the long tail from consecutive three beam plans (which 

take more time in the gantry room) now falls off much more quickly. 

 It is important to determine the sensitivity of waiting times to real-world factors such 

as patient tardiness and absenteeism. Both of these factors play important roles in sched-

uling outpatient procedures (Liu, Ziya, and Kulkarni 2010). The arrival times for patients 

not staying at the facility are modeled by a symmetric triangular distribution centered on 

the patient’s scheduled arrival time and is 18 minutes in either direction. The 18-minute 

triangular distribution is an approximation of the fitted distribution found in the empirical 

study by Liu, Ziya, and Kulkarni (2010). Absenteeism rates are set at 5% for patients not 

staying at the facility. Half of the patients are estimated to stay at the facility and thus 

would be far less likely to be absent or tardy. 

 In Figure 4-7, we see that the distribution of waiting times look very similar. Despite 

seeing 2.5% fewer patients due to absenteeism, the wait times are longer in each part of 

the system when patient tardiness is included in the model. There is a 10% increase in 

waiting time in the gantry room and a 27% increase in the total time spent waiting in the 

system. To address the problem of patient tardiness, we note that patients staying at the 

treatment center will have greater flexibility in scheduling their treatment time. Patients 

not staying at the treatment center could be scheduled first, allowing them to choose 

times when they would be less likely to arrive late. Given that many patients actually ar-

rive early for their appointments in outpatient settings (Liu, Ziya, and Kulkarni 2010), a 

queue might be created based on patient arrival time instead of patient appointment time. 
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Figure 4-6: Percent of patients experiencing wait times for a system with five gantry 

rooms and five imaging rooms with an arrival rate of 13.33 patients per hour for 100 

simulated days of patients with alternating treatment plans. 

 

Figure 4-7: Percent of patients experiencing wait times for a system with five gantry 

rooms and five imaging rooms with an arrival rate of 13.33 patients per hour for 100 

simulated days of patients with alternating treatment plans and late arrivals. 
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4.4 Extending the Simulation 

We extend the work of Price et al. (2013) by adding patients with different treatment time 

distributions, late arrival distributions, and waiting room prioritization. The treatment 

times are based on the estimates from Fava et al. (2012) and manufacturer estimates have 

been updated reducing the beam delivery time and gantry arm rotation time. Treatment 

times are modeled using a symmetric triangular distribution with mean time and range 

given in Table 4-3. A symmetric triangular distribution has a single peak and wide range 

of values while ensuring that all times are bounded and positive. 

 

Table 4-3: Mean time and range of values for the steps used in our model based on treat-

ment sessions at the Paul Scherrer Institute (taken from Fava et al. (2012)). Step 2 occurs 

in the CT scanning room while steps 4 through 10 take place in the gantry room. The de-

livery time and rotation between each of the beam angles is based on manufacturer esti-

mate. 

 

Patients have three basic characteristics: inpatient status, treatment plan, and sched-

uled arrival time. Inpatient status determines a patient’s probability of late arrival or ab-

senteeism. We assume that an inpatient arrives on time and needs to be transported by 

Treatment Steps Mean Time 

(minutes) 

Range of Values 

[min, max] 

(1)   Patient enters the facility                                                                   0.00 [0.00] 

(2)   Imaging                                                    16.83 [8.50, 25.17] 

(3)   Move to gantry room 1.33 [1.33] 

(4)   Prepare for beam angles 6.67 [4.25, 9.08] 

(5)   First beam angle 1.00 [1.00] 

(6)   Move gantry arm 1.00 [1.00] 

(7)   Second beam angle 1.00 [1.00] 

(8)   Move gantry arm 1.00 [1.00] 

(9)   Third beam angle 1.00 [1.00] 

(10) Discharge patient and reset gantry room 4.83 [2.83, 6.83] 
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hospital staff. An outpatient is assumed to have a 5% chance of absenteeism. The arrival 

time of an outpatient is distributed within 18 minutes on either side of the patient’s 

scheduled arrival time (Alexopoulos et al. 2008). Each patient is assigned a treatment 

plan that requires protons to be delivered from one, two, or three beam angles. Each 

treatment plan occurs with the same frequency. Finally, each patient has a scheduled arri-

val time, which may be based on the patient’s inpatient status or treatment plan. 

Upon arriving, a patient enters any available imaging room. If an imaging room is not 

available, the patient stays in the waiting room and waits for an imaging room to become 

available (Step 1 from Table 4-3). The priority of waiting-room patients to enter an imag-

ing room varies between experiments. The default is first come, first served (FCFS). The 

center contains five imaging rooms which are attached to exactly one of the five gantry 

rooms. In the imaging room, the patient is loaded onto a patient transporter, immobilized, 

and receives a CT scan. Upon completion of the tasks in the imaging room (Step 2), if the 

gantry room associated with the imaging room is available, the patient is transported to 

the gantry room (Step 3). Otherwise the patient waits in the imaging room for the gantry 

room to become available. 

 When arriving in the gantry room, the patient transporter docks with the gantry 

arm in preparation for delivery of the proton beams (Step 4). After finishing the delivery 

of protons, there is a 60-second delay before the cyclotron is able to deliver protons to a 

new room. If no rooms require the cyclotron, the beam can be switched to a room in an-

ticipation of the next patient to receive protons. If the cyclotron is busy or the beam needs 

to be switched to deliver the protons, a wait time is incurred in the gantry room. Between 

the delivery of protons from each prescribed angle (Steps 5, 7, 9), the gantry arm must 
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rotate (Steps 6, 8). One-beam plans omit Steps 6 through 9 and two-beam plans omit 

Steps 8 and 9. After receiving the protons, the patient dismounts the transporter and 

leaves the gantry room (Step 10). The room is prepared for the next patient. For each 

scheduling procedure, patient mix, and traffic mix, 100 days of arrivals were simulated. 

  Some experiments used a different distribution of late arrivals to simulate high 

congestion due to the urban location of the center. In 2012, Baltimore had the 17
th

 worst 

congestion in the nation according to INRIX, a traffic data service (Thomson 2013). The 

average commuter spent 25.7 hours in traffic over the course of the year. The Maryland 

Proton Treatment Center is located near downtown and would be exposed to some of the 

worst traffic conditions in the city. During peak rush hour commutes (8am to 9am and 

5pm to 6pm) the median commute time for highly traveled sections is between 2.4 and 

2.7 times that of off-peak hours according to the 2012 Maryland State Highway Mobility 

Report (2012). Between 18% and 29% of highway miles traveled during peak hours are 

done in moderate congestion (taking greater than 30% more time than under normal con-

ditions). During the worst 5% of days the commute can be between 5.6 and 6.8 times as 

long for some sections. The increased congestion and variability of traffic time leads to 

greater uncertainty in the arrival of outpatients scheduled during these hours. The patient 

arrival distribution is likely to be skewed late in addition to the greater variability of arri-

val time. Patients will be traveling from different locations and adjust for traffic different-

ly in making their own decisions for commuting. 

To model the effects of periods of high congestion, outpatients scheduled during peak 

traffic hours (8am to 9am and 5pm to 6pm) have a uniformly distributed variable between 

0 and 10 minutes added to their arrival time to represent the effect of traffic under normal 



74 

 

weekday conditions. This uniform variable is in addition to the triangular late and early 

arrival distribution which allowed for patients to arrive during an eighteen minute win-

dow to either side of their scheduled time. Every twentieth day had an additional 10 mi-

nute delay added to all outpatients scheduled during peak traffic hours, these ten minutes 

represent an abnormally high traffic day (usually caused by an accident or construction 

which would affect all drivers on a stretch of road). The hours immediately preceding and 

following peak traffic hours had a uniformly distributed variable between 0 and 5 

minutes added to their arrival time to better represent the traffic that leads up to and fol-

lows peak traffic. 

4.5 Extended Simulation Results 

4.5.1 Mixtures of in-patients and out-patients 

In previous work (Price et al. 2013), we produced a large decrease in patient wait time by 

ordering patients based on the number of beam angles used in their treatment plans. Our 

work showed that the near maximum throughput for a five imaging room and five gantry 

room facility was 13.33 patients per hour. The patients were sequentially ordered, begin-

ning with a one beam angle plan, followed by a two, then a three beam angle plan, repeat-

ing this ordering throughout the day. Since the cyclotron is the limiting resource of the 

facility, this schedule distributes patients who require more beam angles evenly. These 

patients arrived at the same uniform rate, but experienced only 70% the wait time of un-

ordered patients. Further analysis of patient wait times showed that not all patients had 

the same experience. In Table 4-4, we see that patients with one beam treatment plan 

(who follow three beam treatment plans in this scheduling scheme) have longer treatment 
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times than two and three beam treatment plans. The longer wait time is due to the amount 

of time the cyclotron is occupied delivering protons to the prior patient.  

 

 

Treatment Plan 

 

Waiting Room 

(minutes) 

Imaging Room 

(minutes) 

Gantry Room 

(minutes) 

Total 

(minutes) 

1 Beam 0.04 0.52 3.25 3.81 

2 Beam 0.05 0.47 2.38 2.90 

3 Beam 0.04 0.41 1.72 2.17 

All Patients 0.04 0.46 2.45 2.96 

 

Table 4-4: Mean wait time of patients by number of beams used in treatment plan for se-

quential ordering schedule with evenly spaced arrivals at a rate of 13.33 patients per hour. 

All patients arrive at their scheduled time. 

 

The different wait times based on the treatment plan suggests that the time between 

arrivals should be adjusted based on the treatment plan of the preceding patient. An ad-

justed spacing was used to more evenly distribute the wait times among patients being 

treated with each of three types of treatment plans.  Adjusted spacing means a new pa-

tient will arrive more quickly after a patient who requires only a single beam angle and 

later after a patient requiring three beam angles. In Table 4-5, we show the results of 

schedules that use combinations of adjusting the arrival spacing and arrival ordering. 

While ordering patients by treatment plan and adjusting the spacing order have large ef-

fects on total wait times, taken together they show little improvement in waiting time 

over sequential ordering alone. Though using both adjusted spacing and sequential order-

ing does reduce the difference in wait times experienced between patients with different 

treatment plans. 
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Despite all patients arriving at their scheduled appointment time, the stochastic nature 

of the treatment time causes about 38% of patients to complete treatment in a different 

order than they arrived. When early and late arrivals are included in the model the differ-

ences between the schedule and actual treatment order only increase. 

 

 

 

Waiting 

Room 

Imaging 

Room 

Gantry 

Room 

Total Standard 

Deviation 

Even Spacing  

Random Order 

 

0.10 

 

0.94 

 

3.20 

 

4.24 

 

4.11 

 

Adjusted Spacing  

Random Order 

 

0.56 

 

0.62 

 

2.46 

 

3.65 

 

3.35 

 

Even Spacing  

Sequential Order 

 

0.04 

 

0.46 

 

2.45 

 

2.96 

 

2.86 

 

Adjusted Spacing  

Sequential Order 
0.07 0.47 2.41 2.94 2.78 

 

Table 4-5: Mean waiting time of patients scheduled without regard to treatment plan 

(random order) and scheduled sequentially according to treatment plan (sequential order) 

using evenly spaced arrivals (even spacing) and adjusted arrival times based on treatment 

plan of preceding patient (adjusted spacing). All schedules have an average  arrival rate 

of 13.33 patients per hour. 

 

Figure 4-8 shows how waiting times for the four schedules increase as the proportion 

of outpatients increases. Outpatients increase wait times by not arriving at their scheduled 

time, but can reduce waiting time too, due to absenteeism. The uncertainty in patient arri-

val time of outpatients increases the wait times more for sequential schedules (adding 

more than 90 seconds of waiting time), than for non-sequential schedules (less than 50 
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seconds for evenly spaced patients). By evenly distributing outpatients throughout the 

day, one might expect to improve performance by having a more uniform experience. 

Scheduling with respect to outpatient status does not, in general, reduce patient wait time 

very much. As can be seen in Figures 4-9, there is little difference in total wait times 

when compared to Figure 4-8. Only the “adjusted and random” curve was slightly im-

proved by taking into account outpatient status.  

 
 

Figure 4-8:  Total patient wait time as a function of percentage of outpatients randomly 

distributed through schedule. 
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Figure 4-9: Total patient wait time as a function of percentage of outpatients evenly dis-

tributed through schedule. 

4.5.2 Block Scheduling 

We are now interested in determining the effects of block scheduling. By scheduling 

several patients to arrive simultaneously, the disruption to the system of any one of them 

arriving late is reduced. We schedule patients to arrive on the quarter hour in groups of 

three or four (maintaining an average hourly throughput of 13.33 patients). Figure 4-10 

shows that the ordering patients by treatment plan is still important for decreasing total 

patient waiting time. This leads to more patients in the waiting room at the same time, 

especially when there is a high percentage of inpatients. In Table 4-6, we see that perfor-

mance actually improves with the introduction of outpatients (and by extension early and 

late arrivals). Note that while exact scheduling  outperforms block scheduling for every 

combination of inpatients and outpatients tested, exact scheduling sees a 66% increase in 

total wait time switching from all inpatients to all outpatients (Figure 4-9). Block sched-
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uling has only a 12% difference between its shortest wait time and its longest. When 

treating 100% outpatients there is only a 2.5% difference between exact and block sched-

uling. 

 

Percentage 

of 

Outpatients 

Waiting 

Room 

Imaging 

Room 

Gantry 

Room 

Total 

 

0 1.15 0.71 2.78 4.63 

25 0.83 0.75 2.89 4.48 

50 0.77 0.81 3.01 4.59 

75 0.79 0.86 3.07 4.71 

100 0.91 0.94 3.14 4.99 

 

Table 4-6: Average wait times for varying percentage of outpatients with 15 minute 

blocks, with an average arrival rate of 13.33 patients per hour. 

 
 

Figure 4-10: Ordering patients by treatment plan results in between 10% improvement 

(for 100% outpatients) and a 20% improvement (for 0% outpatients) in total wait time 

experienced by patients under block scheduling. 
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We compared three decision algorithms to determine which patient is first to be ad-

mitted to an imaging room. First come, first served gives the baseline performance. In 

Table 4-7, we see that patients who arrive late have a shorter wait time than those who 

arrive on time. This is due to a shorter wait time in the waiting room, which occurs when 

multiple on-time arrivals do not find enough imaging rooms available. 

 

 

Waiting 

Room 

Imaging 

Room 

Gantry 

Room 

Total 

 

Early 0.65 0.90 3.24 4.79 

On 

Time 0.88 0.82 2.91 4.61 

Late 0.68 0.78 3.06 4.52 

 

Table 4-7: Wait time for patients who arrive early, on time, and late when given first 

come, first served priority in 15 minute blocks with average arrival rate of 13.33 patients 

per hour. 

 

Taking into account that late arrivals should not be rewarded for their tardiness, we 

implement an ordering of admittances (Table 4-8) from the waiting room to an imaging 

room. In Table 4-9, we see that by applying the priority ordering the wait times are redis-

tributed, thereby reducing the wait times of early and on time patients. The priority order-

ing ensures that late arrivals have the longest wait time of any group. We next tried to 

determine if it is possible to reduce the wait time of block scheduling by admitting pa-

tients in a smarter order. By admitting patients to an imaging room based on their treat-

ment plan, a 4% improvement in wait times can be achieved over simple first come, first 

served. This is equivalent to the improvement for the early and on-time arrivals in the 

priority ordering from Table 4-8. 
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Order Description 

1. Early/On Time Ar-

rivals from Previous 

Block 

First priority is given to patients, who arrived early or on time, 

still waiting for treatment from previous blocks. 

2. Early/On Time Ar-

rivals from Current 

Block 

Following the completion of early and on time patients from 

the previous block, patients from the current block arriving 

early or on time are treated FCFS. 

3. Late Arrivals After all patients arriving early or on time from all previous 

blocks and the current block are treated, late arrivals are seen 

FCFS. 

4. Early Arrivals from 

Next Block 

Finally, after all patients in the waiting room from previous 

blocks and the current block have been assigned to an imaging 

room, early arrivals from the next block can be seen. 

 

Table 4-8: List of priority groups when admitting to an imaging room. Within each group, 

patients are given priority by arrival order. 

 

 

 

Waiting 

Room 

Imaging 

Room 

Gantry 

Room 

Total 

 

Early 0.59 0.83 3.18 4.60 

On-

Time 0.79 0.79 2.92 4.50 

Late 0.80 0.81 3.07 4.68 

 

Table 4-9: Wait time experienced by patients who arrive early, on-time, and late when 

served using priority listed in Table 4-6 with 15 minute blocks with average arrival rate 

of 13.33 patients per hour. 

 

 The major strength of block scheduling is its resilience to high uncertainty of arrival 

times. Due to the traffic conditions around the site of the treatment center we wished to 

test performance of block scheduling with greater variability of arrival time. Given the 

increased variability of outpatient arrival time during rush hour it is reasonable to want to 
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schedule inpatients during this time window to reduce the commute time of outpatients 

coming for treatment and to minimize any disruption caused by their potentially in-

creased tardiness. As seen in Table 4-10, however, block scheduling is robust, having less 

than 4% longer wait times over the course of the day. It should be noted that while 

scheduling inpatients for treatment during high traffic hours may be more convenient for 

patients, it does not significantly affect their wait times.  

 

Waiting 

Room 

Imaging 

Room 

Gantry 

Room 

Total 

 

Normal  

Conditions 0.79 0.86 3.07 4.71 

High Traffic 

(even mix) 0.84 0.92 3.13 4.89 

High Traffic 

(inpatients) 0.93 0.88 3.10 4.90 

 

Table 4-10: Wait time experienced by patients with 15 minute blocks with average arrival 

rate of 13.33 patients per hour with a 75% outpatient mix. Simulated days include either a 

constant late arrival function (Normal Conditions) or include increased traffic for rush 

hour periods (High Traffic). Under high traffic conditions the patient mix either remained 

the same as the rest of the day (even mix) or switched to treating only inpatients (main-

taining a daily average of 75% outpatients). 

Thirty seven and one half percent of outpatients will be affected by the high traffic 

conditions when out patients remain uniformly mixed with inpatients throughout the day. 

These outpatients experience an increased probability of late arrival and a greater vari-

ance of arrival times. Despite these changes less than a 4% increase in average wait time 

is experienced. Similar to using block arrivals with only inpatients, we see an increase in 
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waiting room time when inpatients are scheduled to arrive during the hours of peak traf-

fic. 

4.5.3 Equipment Failures 

The facility layout uses remote positioning of patients to help transfer patients from 

the imaging room to the gantry room. Each imaging room is associated with a single gan-

try room and vice versa. When an imaging room or gantry room is out of operation, the 

facility changes from a five imaging and five gantry room facility to a four imaging and 

four gantry room facility. If there is an equipment failure, it is important that patients still 

receive their scheduled treatment.  Price et al. (2013) explored the differences in through-

put of multiple facility configurations. They found that there is a decreasing return in 

throughput for each additional gantry room. Thus, closing a gantry or imaging room will 

not reduce throughput by 20%. In fact, a fifth gantry room allows for only 5.7% greater 

throughput. The patients seen in 15 hours of operation of the five gantry room system, 

would take four gantry rooms an additional 50 minutes. If patients are not rescheduled, 

this translates to an extra four minutes in the waiting room for each hour a gantry room is 

closed. Taking into account patient absenteeism, about one patient per 90 minutes needs 

to be rescheduled in order to maintain short wait times. Thus, an inpatient can be selected 

to be rescheduled in order to minimize the inconvenience to  
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Figure 4-11: Accumulation of wait time throughout day with one gantry room closed, 

75% outpatient, and rescheduling one patient every 90 minutes. 

 

commuting patients. Figure 4-11 shows the average wait time of 100 simulated days for a 

mixture of 75% outpatients. 

4.5.4 Special Needs 

Pediatric patients have been shown to receive some of the greatest marginal benefits 

of proton therapy when compared to traditional IMRT (Mirabell et al. 2002, St Clair et al. 

2004). The benefit of being able to deliver a radiation dose to a precise location with little 

incident radiation to surrounding tissue is contingent upon the radiation being delivered 

to the correct location. This is why an image is taken before treatment and why patients 

are immobilized. Pediatric patients require anesthesia in order to minimize movement 

during the imaging and treatment processes. The anesthesia is applied before patient im-

mobilization in the imaging room. The patient remains anesthetized until he/she leaves 
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the gantry room to enter a recovery room. The anesthesiology team follows the patient 

from the imaging room, to the gantry room, to recovery, where a nurse stays with the pa-

tient until fully recovered. The bulk of the team’s work is done in the imaging room, add-

ing an extra five minutes to the preparation time. There is an extra two minutes of time in 

the gantry room, though beam delivery and gantry arm rotation times remain unchanged. 

As noted previously, a five gantry room facility has extra capacity. Despite the extra time 

required in the imaging room and the gantry room a single anesthesiology team does not 

affect throughput, while two teams will have a slowing effect of less than 2%. A single 

anesthesiology team with equipment in a single imaging room and gantry room is able to 

treat 8.5% of patients (or about 1.13 patients per hour). In order to minimize the amount 

of time a gantry room is unoccupied, the patient preceding pediatric patients should have 

long (three beam) treatment plans. 

4.6 Conclusions 

Due to the excess capacity of a five gantry room facility, adjusting for equipment failures 

requires the rescheduling of one out of 20 patients. This excess capacity, allows for pa-

tients with special needs to be treated without affecting throughput. We show that, while 

it is important to take into account all prior knowledge when scheduling a patient, waiting 

time improvements from doing so are reduced somewhat by the reality of patient tardi-

ness and absenteeism. There is little extra wait time added (about 6%), in switching from 

individually scheduled arrivals to block scheduling in the presence of early and late pa-

tient arrivals. 
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ABSTRACT 

 

 Each year over 900,000 men worldwide are diagnosed with prostate cancer. In the 

United States alone, we spend almost $12 billion in treatment. With so many men im-

pacted by the disease and so many resources being spent on treatment operations research 

has an opportunity to make a big impact in many ways. Operations research techniques 

have been applied to screening with prostate specific antigen, detection of the disease 

through MRI, and treatment of the disease. We analyze the research done using opera-

tions research techniques and seek to quantify the impact it has had on the treatment of 

prostate cancer.   
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5.1 INTRODUCTION 

 Based on 2008-2010 data, approximately 15.3% of men will be diagnosed with pros-

tate cancer during their lifetime. In 2014, about 233,000 men in the United States will be 

diagnosed with prostate cancer making it the most common form of cancer among men. 

In 2011, more than 2.7 million men in the United States were estimated to be living with 

prostate cancer. Prostate cancer is the second leading cause of cancer deaths among men 

with more than 29,000 deaths projected in the United States for 2014. All of the preced-

ing numbers are taken from the Surveillance, Epidemiology, and End Results (SEER) 

program in the United States [17]. 

 About $11.85 billion is spent annually in the United States on the screening, detec-

tion, and treatment of prostate cancer (Mariotto et al. [13]). Clearly, improving the 

screening, detection, and treatment of prostate cancer has the potential to increase the 

lifespan and improve the quality of life for thousands of men.  

 Over the years, the battle against prostate cancer has been joined by researchers and 

practitioners who have used a wide variety of operations research (OR) models and 

methods to help screen, detect, and treat the disease. Specifically, a search on the Web of 

Knowledge using “prostate/prostatic and operations research method” revealed 402 pub-

lished papers in 13 categories over the past 15 years or so (see Table 5-1). The citation 

count by year for these 402 papers is given in Figure 5-1. Clearly, this group of papers 

has been cited thousands of times since 2000. 

In order to convey the importance and impact of OR methods and models in prostate 

cancer research, we annotate a representative set of 49 papers (selected from the 402 pub-

lished papers). These papers were chosen because they deal with prostate specific  
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 OR Model/Method            Number of Papers 

 Machine learning           125 

 Markov model                              102 

 Markov chain    58 

 Integer programming   25 

 Linear programming   22 

 Optimal control   17 

 Microsimulation   17 

 Markov decision   16 

 Discrete event simulation    7 

 Dynamic programming    5 

 Analytic hierarchy process    5 

 Agent-based model     2    

 Multi-attribute utility model    1   

 _______________________________________ 

 Total              402 

 

Table 5-1:Count of OR papers in prostate cancer research on the Web of Knowledge 

(2000-2014). 

 

antigen screening (quantifying the effects of screening, predicting prostate cancer, screen-

ing policy), detecting tumors (improving biopsies, using magnetic resonance imaging to 

detect prostate cancer), and treatment (staging, active surveillance, hormone therapy and 

tumor size, brachytherapy, patient choice, recurrence, costs). They use almost all of the 

models and methods listed in Table 5-1 and some techniques that are not (e.g., nomo-

grams). A categorization along these lines is given in Table 5-2. These papers are well 

cited (more than 1,900 citations in the Web of Knowledge as of April 24, 2014), interest-

ing, and diverse in their applications. 

In Sections 2, 3, and 4, we discuss OR models and methods for screening, detection, 

and treatment, respectively. Annotated papers listed in the bibliography are cited with ( ), 

while papers not appropriate for the bibliography are cited with [ ] and listed in the refer-
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ences. In each section the annotations are given in reverse chronological order, starting 

with the most recent paper. We provide conclusions in Section 5. 

 

 
          

Figure 5-1: Number of citations by year for 402 papers using OR methods and models on 

prostate cancer research from the Web of Knowledge  search (April 24, 2014). 

 

Table 5-2: OR models and methods used in prostate cancer research. 

 
   Paper Number   

Area   in Bibliography               Model/Method 

Data Mining  1    KNN  

   4    GA, KNN, PCA, SVM 

   6    CL 

   7    SVM 

   8    RPART, RT 

   17    CART, RT 

   20    QUEST, RT 

   24    ICA, NMF, PCA, PLS, SVM 

   26    ANN 

   30    ANN 

   33    ANN, SVM 

   37    ANN, NOM 

   38    ANN, FKNN 

   39    ANN, FKNN 

   40    ANN, NOM, CART, RT 

   44    CART, RT 
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Table 5-2. (continued) 

 

Decision Aiding/  3    DT 

Analysis   5    MAU 

   11    MM 

   29    AHP 

   41    MAU 

    

Mathematical  15    GA 

Programming  16    GA 

   27    MIP 

   28    MIP 

 

Simulation  9    MIC, MM 

   10    MC 

   12    MIC, MM 

   13    MIC, MM 

   14    MIC, MM 

   18    MIC, MM 

   19    MIC 

   21    MC 

   36    MC, MM 

   42    TDS 

   46    MX 

   47    MIC, MM 

   48    MDP 

   49    MDP 

 

Statistics  2    LR 

   22    NOM 

   23    NOM 

   25    KF 

   31    LR    

   32    NOM 

   34    TSLS 

    35    LR 

   43    NOM 

    45    LR 

_____________________________________________________________________ 
AHP Analytic Hierarchy Process  MIP Mixed Integer Program 

ANN Artificial Neural Network   MM Markov Model 

CART Classification and Regression Tree  MX Mixture Model 

CL Clustering    NMF Nonnegative Matrix Factorization   

DT  Decision Tree    NOM Nomogram 

FKNN Fuzzy K-Nearest Neighbor  PCA Principal Components Analysis 

GA Genetic Algorithm   PLS Partial Least Squares 

ICA Independent Component Analysis  QUEST Quick, Unbiased, and Efficient Statistical Tree 

KF Kalman Filter    RPART Recursive Partitioning and Regression Tree 

KNN K-Nearest Neighbor   RT Regression Tree 

LR Logistic Regression   SVM Support Vector Machine 

MAU Multi-Attribute Utility   TDS Three Dimensional Simulation 

MC Monte Carlo Simulation   TSLS  Two Stage Least Squares 

MDP Markov Decision Process    

MIC Microsimulation 
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5.2 Prostate Specific Antigen Screening 

 Since the FDA approved the PSA test for prostate cancer in 1994, millions of men 

have been tested. In the 2010 census, there were over 67 million American men over the 

age of 40 (Howden and Meyer [10]) whose screening decisions might be affected by 

screening recommendations. In 1980, prior to PSA screening, there were 106.0 new cases 

of prostate cancer per 100,000 men (SEER [17]). By 2000, after PSA screening was in-

troduced, the rate jumped to 183.1, an increase of 72% [17]. Screening accounts for 89% 

of new prostate cancer diagnoses, with screen detected tumors being more clinically lo-

calized than clinically detected tumors (tumors detected due to the onset of other symp-

toms) (Hoffman et al. [9]). In 2009, Medicare spent an estimated $447 million on PSA 

screening (Ma et al. [12]). However, the benefits of screening are unclear. In 2012, the 

U.S. Preventive Service Task Force (Moyer [14]) recommended against PSA screening in 

men of average risk due to its limited benefit and potential harm from unnecessary treat-

ment. There are three important questions that the field of operations research has helped 

address with respect to prostate cancer screening. What are the effects of prostate cancer 

screening? How can the use of the PSA test in detecting prostate cancer be improved? 

What should be the policy for PSA screening? 

5.2.1 Quantifying the Effects of PSA Screening 

The benefit of PSA screening is the early diagnosis of prostate cancer. The time 

between when the cancer is diagnosed by screening and when it would have presented 

clinically in the absence of screening is the lead time. The lead time is important because 

early treatment of the cancer can help improve outcomes.  
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Typically, prostate cancer is slow growing with a low mortality rate. Many men 

diagnosed with prostate cancer due to screening may never have been affected by pros-

tate cancer within their lifetimes if the cancer had gone undetected. Men who are diag-

nosed due to screening and would not have presented the clinical symptoms within their 

lifetimes are referred to as having been overdiagnosed. Overdiagnosis can lead to over-

treatment, i.e., treatment of a likely indolent cancer, resulting in some men unnecessarily 

living with the side effects of surgery or radiation therapy, with potential negative effects 

such as urinary and bowel dysfunction, erectile dysfunction, and loss of fertility. An im-

portant question is: Do the benefits from early diagnosis outweigh the risks of overdiag-

nosis? 

There have been two major clinical trials focused on the effect of PSA screening 

on mortality rates from prostate cancer. The European Randomized Study of Screening 

for Prostate Cancer (Schröder et al. [16]) found a 20% decline in mortality due to prostate 

cancer as a result of screening. The U.S. Prostate, Lung, Colorectal, and Ovarian Cancer 

Screening Trial (Andriole et al. [2]) found that screening had no statistically significant 

effect on reducing mortality. These conflicting results have contributed to the controversy 

over the benefits and harms of prostate cancer screening. These contradictory results have 

been attributed to a number of causes of bias, such as contamination of the control arms 

by men who received screening.    

 The failure of clinical trials to provide definitive answers about the merit of PSA 

screening provides motivation for the use of OR models to answer these questions. We 

summarize six papers that used statistics, Markov modeling, and simulation to estimate 

the effects of PSA screening on mortality, quality of life, and lead time. 
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________________________________________________________________________ 

 

Gulati et al. (19) used a simulated population to build a nomogram for estimating the 

probability that a screen-detected prostate cancer would not have been diagnosed within 

the patient’s lifetime. Overdiagnosis rates in the United States are estimated to be be-

tween 23% and 42% for screen-detected prostate cancer. This high rate of overdiagnosis 

leads to overtreatment which can be detrimental to a patient’s health and happiness. 

Overdiagnosis is not directly observable. After an individual has screen-detected prostate 

cancer and has been treated, we do not know if the cancer would have been diagnosed 

within the individual’s lifetime without screening.  Using a microsimulation model of the 

progression of the disease, a population of 10,000 simulated prostate cancers was devel-

oped to train a logistic regression model indicating if a patient was overdiagnosed. Patient 

age, cancer Gleason score, and PSA level were used to predict if the patient had been 

overdiagnosed. The probability of overdiagnosis increased with age, decreased with PSA 

level, and decreased if the Gleason score was greater than or equal to seven. The nomo-

gram had an area under the ROC curve (AUC) of 0.75. 

 

Estimates of lead time and overdiagnosis due to PSA screening varies widely in the lit-

erature. Draisma et al. (9) used three independently developed models to compare pre-

dicted results for lead time and overdiagnosis of prostate cancer. The lead time can be 

interpreted three ways: lead time for non-overdiagnosed cancers only, censored lead 

times for both non-overdiagnosed and overdiagnosed cancers with lead time for overdi-

agnosed patients stopping at death, and uncensored lead times (for overdiagnosed pa-

tients, these continue until the patients would have been clinically diagnosed). The au-
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thors used two microsimulation models from the literature and a statistical mixed model 

(Tsodikov, Szabo, and Wegelin (46)) to compare the estimates of lead times and overdi-

agnosis. A microsimulation model simulates the health outcomes for each patient of the 

population. The overdiagnosis estimates varied from 23% to 42% of all screen-detected 

cancers, which is consistent with population-based trial estimates. The non-

overdiagnosed lead times ranged from 5.4 to 6.9 years, which allows for treatment to 

begin at an earlier stage, thereby improving outcomes. The censored lead time ranged 

from 5.7 to 7.8 years (this includes the time that patients who would die from other caus-

es are diagnosed with prostate cancer). The uncensored lead time ranged from 7.2 to 10 

years (this includes the time that patients who die from other causes would gain before 

diagnosis without PSA levels). 

 

Etzioni et al. (13) used the microsimulation model to measure the effect of PSA screening 

on advanced stage prostate cancer and prostate cancer mortality. In 1986, PSA screening 

started in the United States. From 1990 to 1999, there was a 21% decline in observed 

mortality from prostate cancer. The model compared outcomes with and without PSA 

screening (with some percentage of men receiving biopsies based on PSA level). PSA 

screening accounted for 80% of the observed drop in the incidence of advanced prostate 

cancer. PSA screening only accounted for two-thirds of the 21% drop in mortality from 

prostate cancer. 
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Schröder and Kattan (37) analyzed the results of 36 nomograms and ANNs from the lit-

erature to compare their efficacy against using PSA level alone. The authors reviewed 23 

papers that used three or more variables for risk assessment in the form of a nomogram or 

ANN. Model accuracy was compared using the AUC when available; otherwise sensitivi-

ty and specificity were used. The studies drew from different populations, with some in-

cluding referred patients and those participating in screening studies. The populations 

ranged in size from 151 to 8,851 patients. The models considered a variety of input vari-

ables, depending on available information. Age, family history, and PSA velocity often 

lacked significance and were not included in the final models. Model validation on exter-

nal populations is an important step in arguing generalizability. Ten of the 36 models 

were externally validated on a total of 16 external populations. In 13 external validations, 

the AUC decreased, in two it increased, and in one it stayed the same. In general, the 

models improved the AUC over PSA alone by approximately 0.10. The authors raised 

important questions about the independence of the input variables, some of which, like 

age, prostate volume, and PSA level, have relationships that are well understood. 

 

Tsodikov, Szabo, and Wegelin (46) constructed a statistical model to estimate lead time, 

overdiagnosis, and other relevant characteristics of prostate cancer screening. The authors 

used a three-stage model of the natural history of the disease (disease-free stage, pre-

clinical stage, clinical stage). Overdiagnosis was defined as the fraction of screening de-

tected cancers that would not be detected in the absence of screening. Lead time was de-

fined only for non-overdiagnosed patients. The study was limited to men over 50, since 

the probability of prostate cancer is small for men under 50. Data on 350,000 cases of 
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prostate cancer were taken from the Survey and Surveillance, Epidemiology and End Re-

sults (SEER) database and population counts for the relevant areas of diagnosis. To simu-

late PSA testing schedules to be used by the statistical model, a simulator for PSA sched-

ules from the National Cancer Institute’s Statistical Research and Applications Branch 

based on data from the National Health Interview Survey and SEER was used. The statis-

tical model estimated a 6-year mean lead time and 25% overdiagnosis among detected 

patients. 

 

Etzioni et al. (14) applied a microsimulation of PSA screening and prostate cancer devel-

opment to estimate the rate of overdiagnosis in a hypothetical cohort of men.  A hypo-

thetical cohort based on census data of two million men between 60 and 84 years old in 

1988 was used. The simulation was run on the group with and without screening. Testing 

and detection rates for the model varied by year, age, and race. The model used three, 

five, or seven years mean lead time to estimate how long before the cancer would have 

been clinically detected without screening. Overdiagnosis was estimated at 28.8% for 

white men and 43.8% for black men using five-year and seven-year lead time estimates, 

respectively. The overdiagnosis rate was sensitive to the mean lead time provided by 

screening, but not to the relative frequency of screen-detection. When the lead time was 

reduced to three years, the overdiagnosis rate dropped to 17.7% for white men and 20.3% 

for black men. 

________________________________________________________________________ 



97 

 

5.2.2 Predicting Prostate Cancer from the PSA Level 

When the FDA approved the use of PSA level to test for prostate cancer in 1994, 

a threshold of 4 ng/mL was used as the upper limit for a normal PSA level (FDA [7]). 

Using a PSA threshold of >4ng/mL to indicate a need for a biopsy, about 20% of prostate 

cancers would be detected and 30-40% of patients without prostate cancer would be 

above this threshold (Greene et al. [8]). In 2009, the American Urological Association 

(AUA) recommended against using a single threshold level, and advocated the use of 

additional information to improve detection (Greene et al. [8]). For example, PSA level 

changes with age. 

Improving the predictive value of PSA screening means fewer unnecessary biop-

sies which carry the potential for infection, temporary erectile dysfunction, and lingering 

urinary problems. In the eight papers summarized, researchers applied machine learning 

and statistical methods to improve the prediction of prostate cancer by increasing sensi-

tivity (probability of correctly identifying prostate cancer) and, in some cases, identifying 

only clinically significant prostate cancer (having Gleason Score greater than six). 
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________________________________________________________________________ 

Prostate biopsies can have one of five outcomes: benign, atypical small acinar prolifera-

tion (ASAP), high-grade prostatic intraepithelial neoplasia (PIN), non-significant prostate 

cancer, or clinically significant prostate cancer. Benign means that the biopsy was non-

cancerous. ASAP means the biopsy result was indeterminate and could not be classified 

as benign or malignant. PIN is thought to be a precursor of a malignant tumor.  Non-

significant prostate cancer is considered not life threatening, while clinically significant 

prostate cancer typically requires treatment. Lawrentschuk et al. (26) constructed a poly-

chotomous logistic regression model and an artificial neural network model to predict 

biopsy results. Age, PSA level, DRE, presence of hypoechoic lesion (a visible abnormali-

ty) during transrectal ultrasound (TRUS), and TRUS prostate volume for 3,025 men with 

PSA level less than 10 ng/mL who underwent a TRUS-guided biopsy were used to con-

struct the models. The models were trained on two-thirds of the data and tested on the 

remaining one-third. The regression and neural network models correctly identified be-

nign tumors 86% and 88% of the time, respectively and clinically significant prostate 

cancer 65% and 66% of the time, respectively. Neither model correctly identified any 

ASAP/PIN outcome. Both models predicted only 2% of non-significant prostate cancer 

correctly. Prostate volume and a positive TRUS lesion were the most significant in cor-

rectly identifying patients with clinically significant prostate cancer from benign biopsy 

results with odds ratios of .19 and 5.2, respectively. The authors concluded that additional 

predictors would be necessary to correctly distinguish among the five outcomes. 

 

Many predictive models for prostate cancer biopsy results are developed using a popula-

tion of patients referred for early cancer detection or urinary tract symptoms. Therefore, 



99 

 

these models may not generalize to all men being screened for prostate cancer. Sooria-

kumaran et al. (43) used a population of screened patients to construct two predictive 

models in order to reduce unnecessary biopsies. The authors began with 3,838 men from 

the Tyrol Prostate Cancer Screening Study. They removed patients missing total PSA 

(tPSA) level, DRE, prostate volume, or percent free PSA (fPSA), leaving 2,271 patients. 

The authors used a urologically referred population of 599 patients, from the Weill Cor-

nell Medical College, for external validation. Multivariate logistic regression models 

were constructed where Model 1 used age, DRE, and tPSA, and Model 2 added percent 

fPSA. Nonlinear relationships between the features and the outcome were evaluated us-

ing a multiple fractional polynomial method. A bootstrap method with 200 bootstrap 

samples was used during internal validation. The AUC for the two models were .691 and 

.710, respectively.  The authors then constructed nomograms based on the two models. If 

patients with a 10%  or greater risk of cancer were biopsied, then 30 biopsies (1.3%) 

would be avoided and two cancers (.3%) would be missed by Model 1 applied to the Ty-

rol sample. Model 2 avoided 95 biopsies (4.2%) and missed six cancers (.9%). When ap-

plied to the urologically referred population for patients with 20% or greater risk of can-

cer, Model 1 avoided 126 biopsies (21.0%) and missed 18 cancers (9.8%). Model 2 

avoided 169 biopsies (28.2%) and missed 19 cancers (10.3%). The authors concluded 

that their models had sufficient predictive power to aid in clinical decision making re-

garding the need to biopsy. 
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Gülkesen et al. (20) developed a decision tree to classify the risk level of prostate cancer 

for 750 patients with serum fPSA and PSA levels less than or equal to 10 ng/mL who 

underwent prostate biopsy at the Urology Department of Akdeniz University Hospital. 

Age, PSA level, free PSA level, percent-free PSA, DRE 1 (with three possible outcomes 

for prostate cancer: negative, suspicious, or positive), and DRE 2 (with two possible out-

comes for prostate cancer: negative or not negative) were used to construct the model. 

The QUEST algorithm (quick, unbiased, and efficient statistical tree) produced a model 

using a training set of 562 patients. The algorithm classified the patients into five groups 

with the risk of cancer ranging from 0% to 25%. The AUC was .62 compared to .68 for 

logistic regression using the same features. The lowest risk group, with no prostate cancer 

in either the training or testing sets, identified by the decision tree had patients with a 

PSA level less than or equal to 5.98, a negative DRE, and an fPSA level greater than .81.  

 

Nam et al. (32) constructed a nomogram to assess the risk of a patient having prostate 

cancer with a Gleason score greater than or equal to seven. In a data set of 3,010 men 

with PSA levels greater than 4.0 ng/mL or abnormal DREs referred to the Prostate Cen-

ters of the University of Toronto, 2,700 had PSA levels less than 50 ng/mL, were able to 

provide complete information including family history of prostate cancer, and consented 

to participate in the study. An additional 408 men with a PSA level less than or equal to 

4.0 ng/mL agreed to undergo a biopsy and were added to the study. Age, ethnicity, family 

history, symptom score, PSA level, ratio of free PSA to total PSA, and DRE were used as 

predictor variables. A model to predict the probability of no cancer, low-grade cancer 

(Gleason score less than or equal to six), and high-grade cancer (Gleason score greater 

than or equal to seven) was constructed using ordinal logistic regression. The logistic re-
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gression model used data from 2,108 patients and was tested on 1,000 patients. A nomo-

gram was designed using the results of the logistic regression model.  The AUC for pre-

dicting any prostate cancer was .74 based on the nomogram. The total AUC for predict-

ing high-grade cancer was .77 based on the nomogram. The logistic regression model 

with the full set of predictor variables performed much better than the model based only 

on PSA levels and DRE results, which had an AUC of .59. 

 

Aggressive prostate cancer, defined as having a Gleason score greater than or equal to 

seven, benefits from early detection and treatment. Spurgeon et al. (44) developed a clas-

sification and regression tree (CART) model to predict the presence of aggressive pros-

tate cancer in patients. Age, PSA level, PSAD, DRE, race, family history, vasectomy, 

transrectal ultrasound (TRUS) findings, and prostate volume for 1,563 consecutively re-

ferred men from the Portland Veterans Administration Hospital were used in the training 

and testing of the CART model.  The authors used 1,067 patients for training and 492 

patients for testing. Their model identified 43 of the 47 cancer patients with aggressive 

prostate cancer (91.5% sensitivity) and 149 of the 445 patients with Gleason score less 

than seven (31.9% specificity). When their model predicted a Gleason score greater than 

or equal to seven (i.e., aggressive prostate cancer), it was correct only 12.7% of the time. 

When their model predicted a Gleason score below seven, it was correct 97.4% of the 

time. 
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Thompson et al. (45) used a logistic regression model based on data from the Prostate 

Cancer Prevention Trial to create an online risk calculator based on data for 5,519 men in 

the control arm of the trial. The statistically significant model risk factors were race, age, 

family history, PSA level, digital rectal exam result, and whether the patient had a prior 

biopsy or not. The AUC for out of sample data, based on 4-fold cross validation, was ap-

proximately 70%, indicating satisfactory discrimination. A more recent revision of the 

model in 2012, referred to as PCPTRC 2.0, adds the ability to estimate the likelihood of 

low- and high-grade cancers (Ankerst et al. (2)). Statistics about the risk calculator web-

site indicate hundreds of thousands of visits in the last 48 months, suggesting the calcula-

tor is commonly used by physicians and/or patients.  

 

Garzotto et al. (17) developed a decision tree using classification and regression tree 

analysis (CART) to improve the accuracy of PSA tests. The authors trained their model 

using 1,433 consecutive referred patients who underwent an initial prostate biopsy proce-

dure. They used 5-fold cross validation with the cost of misclassifying cancer as normal 

three times more than the cost of classifying a normal prostate as potentially cancerous. 

They mirrored the medical decision process used by physicians by first creating a deci-

sion tree using only PSA and DRE data. Then they added demographic data and family 

history to identify patients at high risk of prostate cancer. Their model identified 278 of 

the 291 cancer patients (95.5% sensitivity) and 334 of the 882 noncancerous patients 

(37.9% specificity). If their model predicted a cancerous biopsy, it was correct 33.7% of 

the time. If their model predicted a negative biopsy, it was correct 96.3% of the time. Fur-

thermore, of the 15 cancer patients missed by the CART model, 14 had Gleason scores 

less than or equal to six. 
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________________________________________________________________________ 

 

5.2.3 PSA Screening Policy 

 Researchers have tried to improve screening policies for men in the United States by 

analyzing when to start screening, how often to screen, and at what PSA level to receive a 

biopsy. In 2009, the AUA recommended that screening start as early as age 40 (Greene et 

al. [8]). In 2013, the AUA updated their guidelines and recommended against screening 

men at average risk of prostate cancer between the ages of 40 and 54 (Carter et al. [4]). In 

the six papers summarized, researchers used optimization and simulation to compare the 

effects of different screening policies on mortality, quality-adjusted life years (QALYs), 

overtreatment, and lead time. 

5.3 Detecting Tumors 

PSA screening is relatively inexpensive, costing between $17 and $62 (Ma et al. 

[12]). However, it is not a definitive test, because its sensitivity is too low to justify 

treatment for a patient. A biopsy is necessary for definitive diagnosis of prostate cancer. 

Typically, a biopsy involves taking 12 samples of the prostate using hollow core needles. 

The results are reviewed by a pathologist to provide an assessment which includes the 

Gleason grade of the cancer and other clinical factors associated with patient health out-

comes.  

In some cases, additional diagnostic tests may be used to provide information 

about the size, grade, and/or location of a tumor. These may include magnetic resonance 

imaging (MRI), or the use of additional biomarkers. There are a number of new bi-

omarkers that have been discovered, and some have recently received FDA approval, 
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such as the urine based PROGENSA prostate cancer antigen 3 (PCA3) test. Similar to 

PSA, the PCA3 test provides a score that can be used to predict the presence and grade of 

cancer (Filella et al. [6]).  

________________________________________________________________________ 

Gulati, Gore, and Etzioni (18) used a microsimulation model of prostate cancer to com-

pare 35 screening policies based on lives saved, overdiagnoses, and mean time of life 

saved. A microsimulation model simulates at the unit of individual patients. This model 

simulated the PSA growth and disease progression of 100 million men. Thirty-two 

screening strategies that used starting age (40 or 50 years), stop age (69 or 74 years), 

screening intervals (annual or biennial), and biopsy referral conditions (PSA level of 4 

ng/mL, PSA level of 2.4 ng/mL, PSA level of 4 ng/mL or PSA velocity of 0.35 ng/mL 

per year, or PSA level greater than 95
th

 percentile for age) were compared. The authors 

evaluated screening policies recommended by the American Cancer Society (ACS), the 

National Comprehensive Cancer Network (NCCN), and the medical literature. They 

compared results to a base plan of annual screening from age 50 to 74 with biopsy 

threshold set at 4.0 ng/mL. The NCCN plan had the greatest improvement on reducing 

cancer deaths and increased the mean time of life saved from 0.86 month to 1 month. 

However, the NCCN plan doubled the number of false negatives and increased the prob-

ability of over diagnosis from 3.3% to 6%. The ACS plan performed the same as the base 

strategy for lives saved and overdiagnoses, but reduced the number of tests conducted by 

nearly a quarter. Using age-specific PSA thresholds for biopsy referral reduced false 

positives by 25%, overdiagnoses by 30%, and lives saved by 17%. 

 



105 

 

Underwood et al. (47) constructed a simulation, based on a non-stationary, finite horizon 

Markov process, to model various PSA-based screening policies. Each screening policy 

was represented as a set of PSA thresholds for biopsy referral by age. They optimized 

these policies using a genetic algorithm and compared their results to policies presented 

in the literature. The simulation used 51,294 PSA levels from 11,872 men from Olmsted 

County, MN and age-specific death and incidence data from a variety of other sources. 

The authors judged the policies in terms of quality-adjusted life years (QALYs), giving a 

one-time penalty for unnecessary biopsies. The genetic algorithm converged on a plan 

that had less than annual screening between the ages of 54 and 76, with the threshold for 

a biopsy based on a PSA level set lower than the current standard. The optimized policy 

slightly improved the results of the best policy given in the literature, and indicated the 

maximum number of QALYs that screening policies could provide. Underwood et al. 

suggested that screening over a shorter time period, with lower PSA thresholds, might do 

the most to improve QALYs. 

 

Zhang et al. (48) constructed a partially observable Markov decision process to examine 

the benefits PSA screening to patients and society. Patients progress through health states 

(no cancer and cancer are not directly observable; treated, metastasis, and death are con-

sidered known) and observable PSA intervals. Each year a decision is made to perform a 

biopsy or defer the decision until the next time period. The objective was to maximize 

QALYs for a patient. Detriments to the quality of life were occurrence of biopsy, treat-

ment upon detection of cancer, long-term complications resulting from treatment, and 

symptoms from metastasis and its treatment. A secondary objective, from the societal 
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perspective, is to maximize the expected monetary value of the QALYs minus the costs 

of screening, biopsies, and treatments. Prostate cancer probabilities   conditional on PSA 

level were estimated using 11,872 patients from Olmsted County, Minnesota. A finite 

fixed-grid method was used to obtain the optimal policies for patients and society. The 

optimal policy from a patients perspective (maximizes QALYs) had screening stop at 76 

and improved QALYs by 0.131 over no screening and 0.165 over current policy (note 

that current policy underperforms no screening. The optimal policy from a societal view-

point stops screening at age 71 and improved QALYs by 0.110 over no screening and 

0.161 over traditional guidelines. 

 

Zhang et al. (49) used the partially observable Markov decision process model to exam-

ine prostate biopsy referral decisions. The optimal policy often took the form of a con-

trol-limit type policy, that is, a biopsy is performed only when the belief state for cancer 

exceeds a threshold value. There were three conditions for a control-limit type policy: 

annual probability of prostate cancer incidence is less than or equal to a multiple of the 

probability of treated patients developing metastasis, the annual probability of death from 

other causes is non-decreasing, and the annual probability of death from metastatic pros-

tate cancer is non-increasing. There exist conditions when it is optimal to discontinue 

biopsy referral at a specific age. The optimal policy was estimated to improve the Ameri-

can Urological Association’s age-adjusted guidelines by .115 QALYs (.306%). The au-

thors noted that personalized utility assessment, consideration of comorbidity, and family 

history of prostate cancer might be added to the model in the future.  
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Prostate cancer screening strategies that use a PSA score vary in the age a patient begins 

screening, the threshold result from a PSA test to recommend a biopsy, and the time in-

tervals to receive screening. It is impractical to run randomized screening trials for all 

possible screening strategies. Ross et al. (36) constructed a Monte-Carlo simulation that 

tested a range of screening policies based on the number of prostate cancer deaths pre-

vented. They tracked the number of PSA tests and biopsies per 1,000 men taken over the 

entire run of the simulation. The simulation was based on a Markov model that transi-

tioned between no prostate cancer, three levels of cancer, and mortality due to prostate 

cancer and other causes. They simulated populations of one million men starting at 40 

years of age for 40 years. Eight policies (including a baseline of no screening) with dif-

ferent PSA thresholds, screening frequency, and age recommendations were tested. The 

medical standard at the time called for annual PSA testing from age 50 to 75 with a PSA 

score above 4 ng/mL requiring a biopsy. The authors constructed a policy of screening at 

ages 40, 45, and 50, and then every two years until 75 with the PSA level at  4 ng/mL. 

Their new plan reduced the lifetime biopsies per 1,000 men from 600 to 450 and the av-

erage number of PSA tests in a lifetime from 10.5 to 7.5. Prevented deaths increased to 

3.3 per 1,000 men from 3.2. 

 

Etzioni et al. (12) constructed a computer model to measure the effect of PSA screening 

strategies on years of life saved, PSA tests performed, false-positive PSA tests, and rate 

of over diagnosis. The authors constructed a simulation model of prostate cancer and its 

progression in the population using real-world data from the surveillance epidemiology 

and end result (SEER) registry. A Markov model simulated the disease progression of 

five-year birth cohorts. The mortality rates for all causes of death other than prostate can-



108 

 

cer and deaths due to prostate cancer were computed for each cohort. Clinical histories 

were developed for the patients that included date of clinical diagnosis of prostate cancer 

(in the absence of screening) and date of death not due to prostate cancer. Not all men 

develop prostate cancer. If the clinical diagnosis of prostate cancer was made before 

death from other causes, a history of disease progression was needed. Using the simulat-

ed progression of prostate cancer, natural histories were constructed for patients that in-

cluded dates for disease onset and progression of the cancer. PSA levels that resulted 

from screening were simulated and grew at different rates based on the health state of the 

prostate. Five screening strategies were tested: annual PSA screening with age-specific 

biopsy thresholds, biannual PSA screening with age-specific biopsy thresholds, annual 

PSA screening with >4ng/mL threshold, biannual screening with >4ng/mL threshold, and 

screening every five years with threshold of >4ng/mL. Biannual screening results in 

about half the total number of screenings and number of false-positive screenings, and 

captures 95% of the cases that would have been caught with annual screenings.  Using 

age specific PSA levels reduces false positives by 13.7%, but reduces the percentage of 

patients that are clinically detected from 63% to 54.8%. 

________________________________________________________________________ 
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5.3.1 Improving Biopsies 

 Each year, approximately one million prostate biopsies are performed in the United 

States (Welch et al. [19]). Studies have shown that the standard sextant transrectal ultra-

sound-guided needle biopsy has a false negative diagnosis rate over 20% (Bankhead [3], 

Rabbani et al. [15]). Since the sensitivity of the standard biopsy is less than 80%, multiple 

biopsies may be needed to confirm prostate cancer. A biopsy is a painful, invasive proce-

dure that has a risk of infection, with 4% of patients developing an infection. Within 30 

days of a prostate biopsy, 6.9% of patients are admitted to the hospital (Loeb et al. [11]). 

To prevent the need for multiple biopsies, it is important to raise the accuracy of a biopsy. 

In the paper summarized, the authors tried to reduce the false negative rate by analyzing 

tumor locations and developing an optimal biopsy procedure. 

________________________________________________________________________ 
 

Sofer, Zeng, and Mun (42) developed optimal biopsy procedures for fixed numbers of 

needles. The authors used 301 surgically removed prostates to generate a 3D statistical 

distribution of cancer occurrence in the prostate. The prostate was divided into 48 zones 

and 6,000 subzones. A biopsy protocol specified the number of samples to take and the 

zones where the samples are taken. There is variability as to the exact position and angle 

the physician aligns the needle for the biopsy. The authors optimized the biopsy protocols 

to maximize the probability of detecting cancer. Using their 3D model, they estimated the 

detection rate for the current sextant method at 67.3%. The optimized detection rate for a 

biopsy with six needles confined to the posterior of the prostate was 78.8%. By increas-

ing the number of samples taken (to as high as 12), the authors showed that the detection 

rate could be as high as 85.5%. Biopsy procedures were developed for small and large 
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prostates that had better detection rates than the current sextant procedure. Further work 

will examine the possibility of alternate protocols based on age, race, and PSA level.  

________________________________________________________________________ 

 
 

5.3.2 Using an MRI to Detect Prostate Cancer 

Using an MRI to detect prostate cancer has been shown to reduce the number of 

men needing a biopsy by 51%, lower the false negative rate, and identify low-risk tumors 

(Thompson et al. [18]). Each year, unnecessary biopsies are estimated to cost $2 billion. 

An MRI could help prevent unnecessary biopsies, thereby reducing this cost (Ahmed et 

al. [1]). An MRI does not carry the same risks as a biopsy such as infection, bleeding at 

the biopsy site, and painful urination. Therefore, it seems reasonable to have an MRI and 

analyze the results before deciding to have a biopsy. In the four papers, the authors ana-

lyzed the MRI data of patients who had a tumor removed (the procedure is known as a 

prostatectomy) and used machine learning to automate the detection of tumors.  
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________________________________________________________________________ 
 

Proton magnetic resonance spectroscopic imaging (MRSI) allows for the detection and 

quantification of biochemical markers within the prostate and has been shown to be an 

improvement over conventional magnetic resonance imaging (MRI). A 3D grid divides 

the prostate into voxels (a voxel is a volumetric element that serves as the unit of analy-

sis). Each voxel has its own spectra data from the MRSI. Matulewicz et al. (30) con-

structed an artificial neural network (ANN) model to automatically detect cancerous 

voxels in the prostate using MRSI data. MRSI data from 18 patients with positive biop-

sies for prostate cancer who later underwent radical prostatectomy was used to construct 

the model. A total of 5,308 voxels were used. One hundred forty eight voxels were la-

beled suspicious by an experienced spectroscopist, and 129 of the 148 voxels were con-

firmed to have cancer following the radical prostatectomy. Only voxels identified as can-

cerous by both histopathological maps and the spectroscopist were labeled as cancerous. 

The ANN model had input, hidden, and output layers, each with a single node. Two types 

of models were constructed. The first model had 256 variables based on the spectra. The 

second model added the percentage of the voxel that was in the peripheral zone, transi-

tion zone, periurethral region, and outside the prostate. Seventy percent of the data was 

used as a training set, 15% as a test set to prevent overtraining, and 15% as a validation 

set to measure performance. Since there is a random element in the generation of the 

ANN model, 100 models of each of the two types were applied to the same training and 

test sets. The model of each type that performed best on the test set was selected, and 

their performances on the validation set were compared. The AUC was .949 for model 1 

and .968 for model 2. The sensitivity on the validation set for model 1 was 50% (identify-
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ing 8 of 16 cancerous voxels) and 62.5% for model 2 (identifying 10 of 16 cancerous 

voxels). The specificity on the validation set for model 1 was 98.7% (identifying 770 of 

780 noncancerous voxels) and 99.0% for model 2 (identifying 772 of 780 noncancerous 

voxels). 

 

Anderson et al. (1) constructed logistic regression, nearest neighbor, and hybrid classifi-

ers to predict the risk of prostate cancer using MRI data. Multi-parametric images from 

dynamic contrast MRI, diffusion weighted MRI, and MRSI were used to generate fea-

tures (apparent diffusion coefficient, volume transfer constant, conventional average of 

T2 values, and spectroscopy scores) for 223 slices of prostates from 28 patients who had 

a radical prostatectomy (all of the prostate gland is removed). Gleason scores were as-

signed to each slice by an experienced radiologist. Leave-one-out cross-validation was 

used to separate the data into training and test sets. The models were trained to classify a 

slice as having a Gleason score between 0 and 4 or between 5 and 8. Logistic regression 

had an accuracy of 64.6% and an AUC of 0.66, and KNN had an accuracy of 74%. A 

hybrid approach was developed using linear regression with the number of cancerous 

neighbors from KNN. The hybrid approach had an accuracy of 77% and an AUC of 0.85. 

The hybrid approach identified the most aggressive cancers (Gleason score of 7 or 8) 

with an accuracy of 82% and an AUC of 0.86. 

 

Parfait et al. (33) constructed a support vector machine (SVM) and a multilayer percep-

tron to classify magnetic resonance spectra (MRS) of prostates as healthy or pathological. 

MRS data from 22 patients with positive biopsies for prostate cancer were used. There 

were a total of 2,464 spectra, with 1,062 spectra localized in the peripheral zone where 
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the majority of prostate cancer lesions are typically found. The peripheral zone spectra 

were manually classified as undetermined (286), healthy (636), or pathological (140). A 

variety of preprocessing algorithms could be applied including phase correction, baseline 

correction, and normalization. Nine combinations of preprocessing algorithms and classi-

fication method were compared. The best average performance using 5-fold cross valida-

tion was SVM with preprocessing using phase correction and baseline correction. This 

combination correctly classified 82.2% of undetermined, 94.3% of healthy, and 75.0% of 

pathological spectra. When restricted to the healthy and pathological classifications, 4.5% 

are misclassified with 83.6% sensitivity and 98.1% specificity.  

 

Kelm et al. (24) compared the use of quantitative and subspace feature extraction meth-

ods in linear and nonlinear machine learning classifiers for identifying prostate tumors 

with MRSI. A subspace method projects higher dimensional data onto a lower dimen-

sional subspace. Two quantitative feature extraction methods from the MRS literature 

and a new quantitative method were compared to four subspace feature extraction meth-

ods– principal components analysis (PCA), partial least squares (PLS), independent com-

ponent analysis (ICA), and nonnegative matrix factorization (NMF). These features were 

then used in either a linear classifier (logistic regression, generalized PLS, P-spline signal 

regression) or a nonlinear classifier (a random forest method that uses multiple decision 

trees, SVM, Gaussian processes). MRSI data from 24 patients were used to construct the 

models. Using published guidelines, 4,188 voxels were identified as healthy, undecided, 

or having a tumor. Cross-validation was performed by training on 23 patients and testing 

on the one remaining patient. None of the classifiers using quantification features outper-

formed a conventional ratio feature used by clinicians. Subspace methods improved the 
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performance of the classifiers, particularly the nonlinear classifiers. There was little dif-

ference among the performances of the four subspace methods. 

________________________________________________________________________ 
 

5.4 Prostate Cancer Treatment 

 There have been great advances in the treatment of prostate cancer in the past 30 

years. In 1985, the five-year survival rate was 75%; in 2006, it was 99.6% (SEER [17]). 

This increase is due to better treatments and earlier detection due to PSA screening. Sur-

gery (prostatectomy) has long been the primary form of treatment. Surgery carries a risk 

of pain, bleeding, infection, and death. There is also a chance of incontinence and erectile 

dysfunction.  

 Other treatment options include external beam radiation therapy, brachytherapy, and 

hormone therapy. Often treatments are used in tandem. For example, hormone therapy is 

used to shrink a tumor before radiation treatment. Because prostate cancer can be slow 

growing, a patient with a low risk cancer (e.g., Gleason Score ≤ 6, PSA < 10) may forgo 

immediate treatment and elect to monitor the progression of the cancer (known as active 

surveillance) through regular clinical exams, PSA testing, and surveillance biopsies.  

 Operations research models have been used to improve the delivery of treatment, 

compare treatment options, and help patients make treatment selections. 

5.4.1 Staging 

 Staging describes the classification of a cancer. This is important information when 

making a treatment decision. Prostate cancer can be slow growing, posing little risk to the 

life of some patients who have low risk based on clinical factors. Unnecessary treatment 

can result in worse health outcomes. Identifying a low-risk tumor can prevent unneces-
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sary treatment, while identifying a high-risk tumor can encourage a more aggressive 

treatment strategy. We summarize four papers that used data mining to identify the type 

or severity of the prostate cancer. 

________________________________________________________________________ 

Chandana, Leung, and Trpkov (4) constructed models with different combinations of au-

tomatic feature selection, sampling, and classifier to predict the stage of prostate cancer. 

Age, primary Gleason grade, secondary Gleason grade, PSA level, PSAD, DRE, TRUS, 

gland volume, positive biopsy core, total percent of cores involvement, and total cancer 

length in mm for 1,054 patients were used in the models. The prostate cancer was organ-

confined in 934 patients. There was an extra prostatic extension in 120 patients. The au-

thors generated 18 models with combinations of automatic feature selection (rough set 

features, PCA, GA-based continuous feature selection), sampling (under-sampling, syn-

thetic minority over-sampling technique (SMOTE), combined under-sampling and 

SMOTE), and classifier (SVM, KNN). SMOTE generated synthetic examples of extra 

prostatic extension patients, based on those in the data set, that were used in training. 

Dempster-Shafer fusion produced classification probabilities based on the classification 

probabilities from multiple classifiers and generated new classifiers from combinations of 

the 18 models. A GA identified the best set of classifiers for fusion. SVM with rough set 

for feature selection and under-sampling had the best performance of the 18 models with 

an AUC of .8376. A Dempster-Schafer fusion of four models had a total accuracy of 

90.1% and AUC of .8626.   

 

Kattan et al. (22) developed a statistical model to predict the probability that prostate 

cancer is indolent or in need of treatment. Kattan et al. used data from 1,022 patients 
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treated with retropubic radical prostatectomy. Patients with a PSA level greater than 20, 

Gleason grade four or five, greater than 50% biopsy cores positive, total cancer in biopsy 

greater than 20 mm, or total benign tissue in all cores less than 40 mm were excluded as 

being unlikely to have indolent cancer. This left 409 patients. The authors constructed 

three statistical models. The base model used PSA level, clinical stage, and primary and 

secondary biopsy Gleason grades. The medium model added percent of cores that were 

positive, and ultrasound prostate volume to the features of the base model. The full model 

replaced percent of cores that were positive with millimeters of cancerous and noncan-

cerous tissue. Bootstrapping was used to build the model and leave-one-out analysis was 

used to examine the predictive probabilities. The three models had AUC values of 0.64, 

0.74, and 0.79, respectively. The full model predicted too many indolent cancers (17% 

too high). The authors then translated their statistical models into nomograms. A nomo-

gram is a diagram that is used to calculate the probability of indolent cancer predicted by 

a specific model. 

 

Bone scan and CT imaging are commonly used to detect metastatic cancer by identifying 

bone metastases and enlarged lymph nodes, respectively. This is important in determin-

ing whether treatment with curative intent, such as surgery, is appropriate. Merdan et al. 

(31) and Risko et al. (35) developed logistic regression models based on data from more 

than 80% of community urology practices in Michigan to estimate the probability of a 

positive bone scan and a positive CT scan, respectively. The models were found to pro-

vide very good discrimination, based on estimates of AUC greater than 80%. Further-

more, the models were used to estimate efficiency and effectiveness of proposed guide-

lines for determining which patients should receive imaging tests. Criteria of Gleason 
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Score > 7 or PSA > 20 (for bone scan guidelines) and Gleason Score > 20, PSA > 20, 

Clinical State > T2a (for CT guidelines) were estimated to result in fewer than 1% of pa-

tients having missed positive results. Implementation of these guidelines was estimated to 

substantially reduce the number of negative imaging results and the total number of im-

aging studies overall. The latter results are particularly important given the high cost of 

imaging. 

________________________________________________________________________ 

 

5.4.2 Active Surveillance 

 Active surveillance has become a viable alternative to treatment. Active surveillance 

involves close observation of a patient with frequent visits to a doctor for a DRE, a PSA 

test, and possibly a biopsy. If there is a change in the tumor, a patient may need to decide 

on a treatment. Active surveillance allows a patient to delay treatment, thereby avoiding 

any side effects. The two papers summarized compared active surveillance to different 

treatment options. 

____________________________________________________________________________ 

Eldefrawy et al. (11) compared the cost of active surveillance to common treatment op-

tions (radical retropubic prostatectomy, robotic assisted radical prostatectomy, external 

beam radiation therapy, brachytherapy) for low-risk prostate cancer. Screening for pros-

tate cancer has led to an increase in diagnosis, particularly in early stage prostate cancer. 

Though 17% to 20% of men will be diagnosed with prostate cancer within their lifetime, 

only 3% will die from prostate cancer. Overtreatment can have a negative impact on pa-

tient quality of life due to treatment side effects such as erectile dysfunction and inconti-

nence. Active surveillance delays treatment, while having the patient undergo surveil-
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lance involving DRE, PSA testing, and biopsies. Procedure cost, professional fees, and 

inpatient costs were estimated based on Medicare reimbursement levels in the Miami area 

and the costs for a Miami area hospital for 2010. The authors estimated costs for treating 

low-risk prostate cancer over a 10-year period using a Markov model. The model consid-

ered the probabilities of various complications and recurrence from treatment options and 

the resulting costs. For example, each TRUS guided biopsy had a 1% chance of causing 

sepsis. Robotic assisted radical prostatectomy, the most commonly performed procedure 

for prostate cancer in the United States, had the second highest costs with a one-year cost 

of $17,824 and a 10-year cost of $22,762. Active surveillance had the lowest costs with a 

one-year cost of $1,154 and a 10-year cost of $13,116.  

 

Hayes et al. (21) used a simulation model to compare the QALYs for men with low-risk 

prostate cancer associated with active surveillance and initial treatment (brachytherapy, 

IMRT, radical prostatectomy). Active surveillance involves regular PSA testing, DRE, 

and biopsies. Active surveillance delays treatment until the prostate cancer progresses or 

the patient chooses to begin treatment. In the United States, 16% to 40% of newly diag-

nosed prostate cancer patients meet the criteria for active surveillance. The authors con-

structed a state transition model that they analyzed using Monte Carlo simulation. The 

model considered probabilities of side effects associated with brachytherapy, IMRT, and 

radical prostatectomy and with the disease in general. Probabilities were estimated based 

on a systematic literature review. Patient utilities were estimated by asking men not diag-

nosed with prostate cancer using the time-trade-off method. A hypothetical cohort of 65-

year-old men with newly diagnosed, clinically localized, low-risk prostate cancer was 

used as the patient population. Patients undergoing active surveillance had the best                                                         
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performance with 11.07 QALYs, compared to 10.57 QALYs for brachytherapy, 10.51 

QALYs for IMRT, and 10.23 QALYs for radical prostatectomy. Active surveillance had 

a higher risk of death from prostate cancer (11% compared to 9% for initial treatment). 

For those men undergoing active surveillance, 61% received treatment (brachytherapy, 

IMRT, radical prostatectomy) having been under active surveillance for a median of 8.5 

years.  

________________________________________________________________________ 

5.4.3 Hormone Therapy 

Hormone therapy can be used to shrink a cancerous tumor in the prostate before it 

is treated with radiation. Hormone therapy shrinks a tumor to a minimum size, after 

which the therapy loses effectiveness and the tumor starts growing. Less radiation needs 

to be delivered when a tumor is at its smallest, thereby reducing the side effects from the 

treatment. The paper summarized tried to identify when a tumor has reached its minimum 

size.  
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________________________________________________________________________ 

Lavieri et al. (25) used a dynamic Kalman filter model to predict when to begin radiation 

therapy. A Kalman filter is a recursive procedure that computes the optimal estimator of 

the state vector at each time period based on a series of noisy measurements. Since it is 

believed that the PSA level is lowest at the same time that the tumor’s size is at a mini-

mum, PSA level is used in lieu of tumor size. PSA level over time is modeled using a log 

quadratic curve, which has an average R
2
 of 0.9 for the 163 patients in the study. The au-

thors estimated the prior distribution of the curve parameters, then the distribution of the 

estimated time of the nadir.  A Kalman filter is used to update the estimates of the curve 

parameters. Finally, clustering was used to identify subgroups of patients with similar 

responses to hormone therapy. Protocol in British Columbia required that radiation thera-

py begin if the PSA level started to rise, if after four months the PSA level was below 

0.05 ng/mL, or eight months after beginning the therapy. Four new policies were pro-

posed that used the predictive model to determine if the nadir had a threshold probability 

of being reached within a fixed time period of PSA tests. Two of these policies outper-

formed the current policy; beginning treatment if the nadir is predicted to occur before 

the next PSA test or beginning treatment if the nadir is likely to occur within one month 

of the next PSA test. The mean absolute difference between the time of the nadir to the 

beginning of radiation therapy is 45 days for the current policy, but only 29 or 36 days for 

the two new policies. 

________________________________________________________________________ 
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5.4.4 Brachytherapy 

 Brachytherapy places radioactive seeds inside the prostate. The placement of the 

seeds affects the amount of radiation received by the tumor and other parts of the pros-

tate. When developing a treatment plan, the objective is to deliver an appropriate amount 

of radiation to the tumor and to the tissue identified as at risk of cancer, while sparing 

healthy tissue. Brachytherapy carries risks including urinary problems and erectile dys-

function. We summarize five papers that used mathematical models to optimize the 

placement of the seeds and needles and analyzed the risks of underestimating the Gleason 

score when treating with brachytherapy. 

________________________________________________________________________ 

Ferrari et al. (15) proposed a mathematical model that allowed for the simultaneous opti-

mization of seeds and needles in brachytherapy planning. The model took into account 

the prostate, urethra, rectum, and bladder. The volume was divided into discrete points 

where the radioactive seeds could be placed. Several quality metrics were used including 

the percentage of each tissue type receiving given dose levels, dose non-uniformity ratio, 

and percent of treatment volume achieving the prescribed dose. The dose for each point 

was calculated based on the sum of the radiation received from the seeds (inversely relat-

ed to the distance from the seed). Each seed is delivered by a needle and the needle can 

only deliver a finite number of seeds in a straight line that meet certain spacing criteria. 

The model minimized the number of needles and seeds, while maximizing the percentage 

of treatment volume above the prescribed dose and healthy tissue below a certain dose 

threshold. The authors developed a genetic algorithm to find good solutions to the math-

ematical model. The GA used a two-dimensional chromosome of integers that corre-

sponded to the seed placement and needles. The GA was used to develop plans for 11 test 
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patients. The authors established criteria for acceptable plan performance based on how 

well the plan matched the prescribed dose. The GA took an average of 20 minutes and 

found acceptable solutions in 10 of 11 cases. 

 

Lee and Zaider (28) devised optimization models and computational techniques for real-

time intraoperative 3D treatment planning in brachytherapy. Traditionally, treatment 

plans had been constructed several days or weeks prior to the implantation of the radioac-

tive seeds, following an ultrasound or computerized tomography scan of the prostate. The 

manual construction of a treatment plan is a lengthy process and can take several itera-

tions, and the images used to construct the treatment plan are often different from the im-

ages obtained when it is time to insert the seeds. This is in part because the prostate vol-

ume measured at the first imaging is often different from the volume observed in the op-

erating room. Discrepancies between the original imaging and the imaging during im-

plantation can increase the chance of undesirable side effects. Lee and Zaider formulated 

a mixed integer program (MIP) to optimize the placement of the seeds throughout the 

prostate. Constraints included dosimetric constraints for the tumor and critical structures. 

Constraints desired by the physicians, such as limiting the number of seeds, can also be 

included. In order to solve the MIP in real time, various techniques, including matrix re-

duction and a branch-and-cut environment, were used. The resulting plans delivered the 

prescribed dose to 98% of the prostate, reduced the number of seeds implanted by 20-

30%, and reduced urethra dose by 23-28% compared to other computerized techniques.  

 

Cambio et al. (3) used the probability of each outcome and the cost of each decision to 

assess the cost-benefit and outcome of recommending brachytherapy to men with a pros-
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tate biopsy Gleason score of six. The Gleason score from a sextant biopsy agrees with the 

Gleason score from a prostatectomy 46% to 63% of the time. An extended core biopsy 

(10 or more cores) agrees 76% of the time. A Gleason score of six is considered low risk 

of biochemical recurrence of prostate cancer, while seven is considered intermediate risk. 

Brachytherapy is considered an appropriate standalone treatment for a patient with a 

Gleason score six or lower, though it is not recommended by itself for a patient with a 

Gleason score of seven or higher. The authors estimated the treatment cost and quality of 

life changes of brachytherapy from previous research. A group of 60-year old patients 

with a prostate biopsy Gleason score of six were used for the analysis. Patients either had 

a true Gleason score of six or they had been undergraded and had a Gleason score of ei-

ther seven or eight to 10. Depending on the true state of the cancer, there were different 

probabilities that brachytherapy would successfully prevent biochemical failure (a rise in 

PSA levels after treatment considered to signal the recurrence of prostate cancer) within 

five years. A variety of biopsy accuracies were evaluated. For example, raising the 

agreement of the biopsy and prostatectomy Gleason score from 60% to 80% reduced av-

erage costs of treatment and recurrence from $63,780 to $62,929 per patient.   

 

Fu, Yu, and Liu (16) developed a genetic algorithm for planning of prostate brachythera-

py prior to the beginning of surgery, and replanning after some of the radioactive seeds 

have been placed. During brachytherapy surgery, needles can be deflected, changing the 

placement of radioactive seeds. Dynamic intraoperative treatment planning adjusts the 

placement of the remaining seeds based on the actual placement of the seeds already in-

serted into the prostate. The authors developed a genetic algorithm that first optimized the 

needle pattern (assuming one of a few seed spacing rules) and then optimized the seed 
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spacing. An original plan was constructed for a patient. Needles were randomly deflect-

ed, and seeds delivered as planned along the deflected needle. After one-quarter of the 

needles were delivered, the actual positions were known through imaging, and a new plan 

was constructed. After one-third of the needles in the second plan were delivered, a third 

plan was constructed. After one-half of the needles in the third plan were delivered, a 

fourth plan was constructed. After all the needles in the fourth plan were delivered, a fifth 

plan was constructed to ensure the tumor had received the necessary radiation. The quali-

ty of the reoptimized plans was compared to the original plan based on the number of 

seeds used, maximum urethral dose, and maximum rectal dose. The performance was 

based on three simulated runs for each of 10 patients using two different types of radioac-

tive seeds, iodine-125 with a prescription dose of 145GY and palladium-103 with a pre-

scription dose of 115Gy. Reoptimization led to a 10% to 20% increase in the number of 

seeds used, depending on the type of seed used. The deflections led to a 17% to 28% in-

crease in maximum urethral dose and 16% to 42% increase in maximum rectal dose, de-

pending on the type of seed.   

 

Lee and Zaider (27) formulated a mixed integer program (MIP) to optimize the place-

ment of the seeds throughout the prostate. A grid is placed over the potential seed loca-

tions in the prostate and binary variables were used to indicate whether a seed is placed at 

each location. The seed locations contribute to the radiation dosage at every point, and 

constraints include upper and lower bounds of radiation dosage at each point. Since it is 

not always possible to simultaneously meet all dose constraints two models are construct-

ed that either maximize the number of points meeting these constraints or minimize the 
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weighted sum of the deviations from the dose bounds. Constraints included dosimetric 

constraints for the tumor and critical structures. Constraints desired by the physicians, 

such as limiting the number of seeds, can also be included. Computational strategies in-

cluded matrix reduction, perturbation, and a penalty-based adaptive primal heuristic pro-

cedure. The MIP solver was able to solve sample problems within 15 CPU minutes and 

improve over the computer aided planning methods available. The MIP solver improved 

by using fewer seeds and needles, and providing better coverage and conformity. 

_______________________________________________________________________ 

 

5.4.5 Patient Choice 

 Men who receive an early prostate cancer diagnosis and are aggressively treated have 

a higher survival rate than those diagnosed with later stages of the disease. However, 

there is concern that screening can lead to unnecessary treatment, particularly for men 

with low-risk disease. When deciding on the best treatment for prostate cancer, a patient 

needs to consider two key factors: (1) the risk of prostate cancer progression and mortali-

ty and (2) the potential side effects of the various treatment options. We summarize three 

papers that developed models to help a patient select a course of treatment.   

  

___________________________________________________________________________ 

Simon (41) constructed a multiattribute utility model to help a patient consider five 

treatment alternatives: surgery (radical prostatectomy), external radiation, seed radiation, 

dual radiation, and no treatment. In the first part of the model, the life expectancy of a 

patient and the probability of death from prostate cancer were determined. The probabili-

ties of three side effects (impotence, incontinence, toxicity) that depend on the type of 
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treatment and factors specific to a patient were developed. In the second part of the mod-

el, a patient’s preferences were analyzed. For the three side effects, a patient needed to 

determine what percentage of remaining life he would be willing to forego to avoid a par-

ticular side effect (this is known as the emotional weight). Simon expressed the possibil-

ity of each side effect in terms of a reduction in life span. For a patient, a life score was 

developed that took into account the length and quality of life. It provided a patient with a 

weighted average utility for a specific treatment. For example, a life score of 95 for seed 

radiation would be preferred to a life score of 85 for surgery. Simon ran the model on 

different patient profiles and found some interesting results. Younger men who did not 

have an aversion to side effects had the highest life score for surgery. Older men had high 

life scores for treatments that were less aggressive than surgery. One result was contro-

versial: external radiation was used too often. Simon implemented a web-based version 

of this model that had an average of 400 hits per week in 2007. 

 

Liberatore et al. (29) developed a decision counseling method, based on the Analytic Hi-

erarchy Process (AHP), to help men make informed decisions about whether to screen for 

prostate cancer. AHP is a technique for analyzing complex decisions that takes into ac-

count the factors affecting the final decision. As part of a randomized controlled trial, the 

authors scheduled sessions for 129 men with a trained health educator to discuss prostate 

cancer screening. They used AHP to process a participant’s three top decision factors as 

identified by the participant during the session and to generate a preference score that 

reflected a participant’s preference to screen. The score was computed during the session 

using a calculator and was then given to the participant prior to the scheduling decision. 

The preference score was a statistically significant predictor of a participant’s decision to 
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schedule a screening exam. An analysis of the preference score showed affective decision 

factors (emotional factors), such as fear of getting cancer, were the most influential in a 

patient’s decision to be screened. Liberatore et al. concluded that AHP was successful in 

eliciting decision factors. They supported its implementation as part of decision counsel-

ing in the future. 

 

Chapman et al. (5) constructed a multi-attribute utility (MAU) model to examine the 

trade-offs between different treatment options for prostate cancer patients, with the goal 

of aiding patients in making treatment decisions. The authors considered five health at-

tributes that can be affected by patient treatment: pain, mood, sexual function, bladder 

and bowel function, and fatigue and energy. Their study had 57 patients from two Chica-

go Veterans Administration health clinics with either localized or metastasized prostate 

cancer. The patients’ preferences were measured using time trade off (TTO) judgments. 

The participants were asked how many years of full health were equivalent to 10 years in 

one of three levels for each health attribute. The patients then divided 100 points between 

the five health attributes to indicate their relative importance. Patients tended to place the 

most weight on pain followed by bladder and bowel function. The MAU model was 

compared to a global TTO preference assessment. The result of the comparison indicated 

that the MAU model may be useful in aiding patient decision making. 

________________________________________________________________________ 
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5.4.6 Recurrence 

 There are many forms of treatment available for prostate cancer.  Younger patients, 

who are healthy, are often encouraged to receive a radical prostatectomy. Older patients 

who are not good candidates for surgery are more often steered away from a radical pros-

tatectomy towards other forms of treatment such as external beam radiation therapy or 

brachytherapy. Regardless of the treatment selected there is the potential for recurrence 

following treatment.   

 If a patient’s PSA level rises above 0.1 ng per mL following a radical prostatectomy, 

the patient is considered to be at risk that his cancer persists. According to Catalona [5], 

the five-year probability of nonprogression after a radical retropubic prostatectomy for 

prostate cancer is 78%. We summarize seven papers that used data mining to identify 

patients at risk of prostate cancer recurrence. 

________________________________________________________________________ 

Dancea et al. (7) developed a support vector machine (SVM) model to divide patients 

into risk classes prior to a radical prostatectomy to aid in surgical decisions. They used a 

data set with 14 medical attributes for 399 patients: classification of malignant tumors, 

Gleason score, presence of median endo-vesical lobe, prostate volume, pre-operative 

PSA level, international index of erectile function, quality of life, abort operation, surgery 

technique, nerve sparing, surgery time, postoperatory hospital time, complications, and 

risk class. They trained their SVM model on 369 patients and tested on 30.The SVM 

model correctly classified 93% of the test set; it correctly classified all low-risk and high-

risk patients. 
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Shariat et al. (40) reviewed the literature to compare nomograms, risk groupings, artifi-

cial neural networks, probability tables, and regression trees to determine their effective-

ness in predicting the risk of cancer recurrence. The published studies evaluated models 

on predictive accuracy, performance characteristics according to risk level, generalizabil-

ity, and level of complexity. The studies that were examined by the authors applied nom-

ograms and another model to a common external data set with known patient outcomes. 

Nomograms had superior predictive accuracy to risk groupings and probability tables. 

Regression trees constructed with CART analyses were easy to use and offered greater 

model-fitting flexibility than nomograms. In a head-to-head study, predictive accuracy 

was 70% for CART models and 84% for nomograms. ANNs have a high level of com-

plexity and are typically used as a black box method, but they can fit very complex pat-

terns.  In a study that applied nomograms and ANNs to an external data set, predictive 

accuracy was 70.6% and 67%, respectively.  

 

Androgen deprivation therapy is a common treatment for recurrent prostate cancer, but 

androgen-independent prostate cancer will eventually develop. NOXA and PUMA are 

two proteins whose presence may affect prostate cancer recurrence. Diallo et al. (8) gen-

erated recursive partitioning and regression tree (RPART) models with NOXA and 

PUMA to predict biochemical recurrence in prostate cancer patients. RPART models use 

a two-stage procedure to produce binary decision trees. The study had 43 patients with 

healthy prostate tissues, 62 patients presenting primary prostate cancer tissues, and 30 

patients with hormone-refractory prostate cancer. The authors constructed RPART mod-

els using NOXA and/or PUMA with combinations of preoperative PSA level, Gleason 
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score, pathologic stage, and resection margin status (the presence of cancer in the surgical 

margin that surrounded the designated tumor removed during the radical prostatectomy). 

The RPART model with the best performance was based on NOXA, PUMA, and the re-

section margin status. Nine of the top 10 models included NOXA to predict biochemical 

recurrence, while only three of the top 10 included PUMA. 

 

Biochemical failure-free survival (bFFS) refers to the probability that a patient’s PSA 

level does not rise for three consecutive tests following external beam radiotherapy for 

prostate cancer. If a patient’s PSA level rises for three consecutive tests following treat-

ment, this is a strong indicator of recurrent cancer. In order to determine a patient’s risk 

of relapse, Churilov et al. (6) applied clustering techniques to a set of post-treatment pa-

tients who had received external beam radiation therapy. The data set had Gleason score, 

tumor stage, PSA level at diagnosis, and age for 258 patients treated at the William Buck-

land Radiotherapy Center (WBRC) in Melbourne, Australia. The PSA level of each pa-

tient was taken at three-month intervals for the first year following the start of treatment, 

six-month intervals the next year, and then annually. Churilov et al. applied an optimiza-

tion algorithm for clustering based on earlier work. The clustering algorithm grouped the 

patients into 10 clusters. WBRC used a rule-based method with seven clusters. In each 

cluster, a patient was identified as low, intermediate, or high risk of having a biochemical 

failure in the five years following treatment. The WBRC method assigned 51.2% of all 

patients to an intermediate-risk category and 8.2% to a low-risk category. The clustering 

algorithm developed by Churilov et al. assigned 26% to low risk and 34% to intermediate 

risk, while maintaining a similar probability of bFFS for the categories as the WBRC 
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method. Those defined as low-risk by the clustering method had a 71.6% of five-year 

bFFS, compared to 76.2% for those classified by the WBRC method. Patient’s classified 

as intermediate-risk had a 53.1% and a 53.4% five-year bFFS for the clustering method 

and WBRC method, respectively. Churilov et al. improved the classification of patient’s 

risk, allowing doctors to make better decisions regarding post-treatment care. 

 

Seker et al. (38) constructed a Fuzzy K-Nearest Neighbors (FK-NN) classifier to predict 

the outcome of prostate cancer treatments for patients. Data from 41 men with histologi-

cally proven prostate cancer was used to construct FK-NN, linear regression, and artifi-

cial neural network models. Four conventional indicators of prostate cancer (tumor stage, 

skeletal metastasis, Gleason score, serum PSA level) and two experimental indicators 

(p53 immunostaining, bcl-2 immunostaining) were used to predict a patient’s response to 

hormonal treatment, radical surgery, or observation. Response to treatment was classified 

as either having no response to any type of treatment, complete response to treatment (no 

tumor progression for patients undergoing observation), or relapse following successful 

start (tumor progression for patients undergoing observation). Each model was trained 

using a leave-one-out method. Each model achieved a best predictive accuracy using a 

different subset of the indicators. Serum PSA and treatment type were the best indicators 

of patient outcome. The logistic regression model had a predictive accuracy of 41.46%. 

The artificial neural network model had a predictive accuracy of 53.66%. The FK-NN 

model had a predictive accuracy of 60.98% if the number of nearest neighbors was set to 

1 and 63.42% if it was set to 2 or 3. 
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Seker et al. (39) extended their work by constructing a hybrid neuro-fuzzy rule-based 

system to predict the treatment outcome of a prostate cancer patient. A set of rules was 

generated to determine the classification of a patient. Each rule had a premise (a set of 

variables and conditions on which the rule was based) and a consequence (the classifica-

tion based on the premise). A neural network computed the parameters of the premise for 

each rule. Singular value decomposition selected the most and least important rules gen-

erated by using a k-means clustering method. The hybrid approach achieved a predictive 

accuracy of 63.42%. 

 

Kattan, Wheeler, and Scardino (23) developed a nomogram to predict the progression of 

prostate cancer in men treated with radical prostatectomy. Pretreatment PSA level, 

Gleason sum from the surgical specimen, prostatic capsular invasion (the presence of 

cancer cells in the capsule around the tumor), surgical margin status (the presence of can-

cer cells in the expected healthy tissue removed with the tumor), seminal vesicle invasion 

(the presence of cancer cells in muscular wall of the seminal vesicle), and lymph node 

status (the presence of cancer cells in the lymph nodes) for 996 men who underwent radi-

cal prostatectomy were used in the development and testing of the nomogram. Progres-

sion of prostate cancer was defined as PSA levels rising to 0.4 ng/ml or higher, a second 

PSA test that was higher than the first by any amount, or treatment with radiation or hor-

mone therapy within seven years of surgery. The nomogram had an AUC of .88, imply-

ing that for 88% of pairs of patients, the patient with the larger score will relapse first. If 

variables whose values were known only after the radical prostatectomy were removed, 

the AUC would be reduced to .74. 

________________________________________________________________________ 
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5.4.7 Costs 

 With an aging population and a current expenditure of $11.8 billion for prostate can-

cer treatment in the United States (SEER [17]), it is important to understand where mon-

ey is being spent and what costs are likely to be in the future. Since many of those affect-

ed by prostate cancer are above the age of 65, Medicare pays for much of the screening 

and treatment. Accurately predicting future Medicare expenditures is important in long-

term planning. The two papers that are summarized explored the financial costs of pros-

tate cancer with one paper examining the costs prior to treatment and the other predicting 

future Medicare costs. 

________________________________________________________________________ 
 

Ekwueme, Stroud, and Chen (10) conducted a systematic review of published cost data 

for prostate cancer treatment in the United States and other industrialized countries, and 

then performed a statistical analysis of the data. The authors identified 262 articles pub-

lished between 1980 and 2003 whose title or abstract implied cost information on pros-

tate cancer treatment. From these, 28 (15 from the United States and 13 from other indus-

trialized countries) were available in full text, written in English, contained original re-

source cost data, and included screening, diagnosing, and staging costs. All costs were 

converted to 2003 U.S. dollars using the consumer price index (for the country of origin) 

and exchange rates. A weighted mean for the cost per man screened was taken, weighted 

by the number of men screened in each study. A Monte Carlo simulation method was 

used to determine uncertainty in the pooled resource costs. For the United States, the cost  

for PSA screening was $37.23 ($30.92 internationally) and DRE was $31.77 ($33.54 in-

ternationally). In the United States, costs have decreased for biopsies and PSA screening, 

while they have increased for clinical staging, pathologic or histologic analysis, TRUS, 
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urology consultation, and DRE. Internationally, resource costs associated with biopsies, 

PSA screening, pathologic or histologic analysis, TRUS, urology consultation, and DRE 

have decreased over time (over the course of one or more of the published studies). 

 

Penberthy et al. (34) analyzed the factors that predict Medicare expenditures in patients 

with breast, colorectal, lung, or prostate cancer. The authors combined data from the Vir-

ginia Cancer Registry, Medicare Provider Analysis and Review files, Medicare Automat-

ed Data Retrieval System, Medicare Health Insurance Master file, Medicare Annual De-

mographic files, Area Resource File, and 1990 Census Data for Zip Code Level infor-

mation. Expenditures were analyzed for one year following diagnosis, with cost being 

defined as the amount the Health Care Financing Administration reimbursed the health 

care provider. The data set had 1,952 breast, 2,563 colorectal, 3,331 lung, and 3,179 pros-

tate cancer patients. Treatments for prostate cancer were categorized as definitive surgery 

(287 patients), nonsurgical treatment (1,827 patients), surgery plus nonsurgical therapy 

(70 patients), and no treatment (995 patients). A two-stage least squares analysis was per-

formed to predict costs. The R squared value for prostate cancer was 0.38. The mean cost 

for prostate cancers was $14,361 for Virginia (1985-1988). Treatments that involved sur-

gery tended to cost more as did treatment for patients with any comorbidity. Predicted 

cost increased with income of the patient.  Patients who did not survive one year follow-

ing diagnosis were found to cost 80% more than those who survived their first year.  

_______________________________________________________________________ 
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5.5 Conclusions 

 Over the past 15 years, OR models and methods have been applied to diverse prob-

lems in the screening, detection, and treatment of prostate cancer. The results of these 

efforts have been impactful and important.  

 We expect that the use of OR will grow significantly in the next decade, not only in 

prostate cancer research, but also in more general research on healthcare problems. We 

hope that our bibliography and the attendant annotations will serve as a useful guidepost 

to help those conducting research on new problems in the near future. 
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6 CONCLUSIONS 

IMRT would not be possible as a treatment without the use of operations research 

techniques such as mixed integer programming and simulated annealing. IMRT has 

a three stage treatment planning process: identification of the tumor and organs at 

risk, selection of beam angles for delivery of radiation, and optimization of radiation 

delivery from those angles. Without methods to optimize the delivery of radiation to 

each of the hundreds of pixels from each angle, IMRT would not be able to reduce 

the amount of radiation being delivered to the healthy tissue of patients because of 

the size and complexity involved in planning. These patients would suffer more 

acute side effects from their treatment due to damage to their organs from radiation 

and they would have greater long term risk of developing new tumors. But the op-

timization of treatment planning for IMRT is incomplete, because most institutions 

still manually choose beam angles. By creating a decision support tool to aid in the 

selection of beam angle sets, we have found better solutions in a fifth of the time of 

traditional search. By using machine learning models trained on previously evaluat-

ed beam angle plans, we were able to sort potential beam angle plans, without the 

time intensive step of fully evaluating them we sort in seconds a list that would take 

almost a day to evaluate. Evaluating just the top three plans from a list sorted using 

k-nearest neighbors yielded better results than evaluating 15 plans from an unsorted 

list. All machine learning models had significantly better results than unsorted lists, 

allowing for treatment planners to find better plans faster. Decision support tools of 

this manner provide an intermediary step allowing treatment planners to still play a 

role in beam angle selection by suggesting potential beam angle lists. Such an in-
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termediary step, while perhaps not strictly necessary, could help the transition to 

completely automated beam angle optimization procedures. 

Next, we created a tool that searches all potential beam angles. This tool has the 

ability to find even better solutions than those proposed by the treatment planner. 

We used the models developed by the machine learning algorithms as the fitness 

functions for a genetic algorithm that searched the space of feasible beam angle sets. 

We incorporated patient tumor geometry into our machine learning models, both 

improving performance and increasing the applicability to new patients without ne-

cessitating any time intensive evaluation of multiple treatment plans. Our method 

was able to improve upon the best known solutions by more than 2% and yet still 

run in about six minutes. Our genetic algorithm works in a fraction of the time it 

takes to evaluate a single beam angle set. We are not only saving the time a radia-

tion oncologist would spend planning, but we are improving the quality of the 

treatment plans being generated.  

In addition to our work improving the quality of the treatment plans for radiation 

therapy, we used simulation to aid in the design of proton therapy treatment centers 

and decrease patient wait times. Given the large capital investments and the unique 

interactions between system resources, it is crucial that the facility is efficiently de-

signed and patients are scheduled intelligently. Our simulation showed the decreas-

ing returns of adding additional gantry rooms, from a 26% increase in throughput 

for a fourth gantry room, to a 14% increase for the fifth, a 6% increase for the sixth, 

and no increase for further gantry rooms. The cyclotron is fully utilized at six gantry 

rooms, identifying the cyclotron as the limiting resource of the facility. We generat-
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ed schedules that by ordering patients using treatment plans, reduced the average 

time spent waiting by over 30%, reduced the variance of the total wait time by 30%, 

and reduced the number of patients waiting longer than 10 minutes by 80%. As an 

outpatient procedure, patient’s arrival time is highly uncertain. Outpatients have 

high probabilities of both absenteeism and tardiness. Such uncertainty increases pa-

tient wait times of the most precise schedules by up to 60%. In the presence of such 

uncertainty, simpler schedules such as block scheduling become competitive. Even 

using block schedules, it is still important to schedule patients based on treatment 

plan. When using block schedules, the even distribution of treatment plans through 

the day reduces patient wait time by 20%. Furthermore, simulation can prepare 

planners for patients with special needs and for equipment failures. 

Finally, we have analyzed the impact of operations management on the treatment 

of prostate cancer. Operations management techniques have been applied to every 

stage of prostate cancer, from detection to postoperative monitoring. Machine learn-

ing methods have been applied to improve detection using both PSA and MRI. 

Large scale simulations have had an impact on policies surrounding PSA screening. 

Integer and linear programs have been used to improve the dose distribution of radi-

ation during brachytherapy. Markov models have been used to aid in treatment 

choice decisions. This research has impacted both the recommendations of doctors 

and the design of the way they treat their patients. It has impacted policy and budg-

ets.  

Operations management has already had a significant impact on the delivery of 

healthcare in the United States. Its importance, in improving the efficacy and effi-
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ciency of healthcare treatment, will continue to grow as demand for healthcare 

grows, with more people having access to healthcare, and advanced new treatments 

are developed. Along with the efficient delivery and utilization of medical re-

sources, techniques that can harness the vast amounts of data being generated will 

play an increasingly important role. Using machine learning to find patterns in the 

treatments and outcomes of patients has the potential to quickly find adverse drug 

interactions, identify the best treatments for patients, identify risk factors in disease 

development, and to search for patterns in patient outcomes. As new treatments are 

developed for patients, simulation becomes important for determining throughput 

and designing workflow. Simulation can be used, prior to building new facilities, to 

aid in the intelligent design of schedules for patients, nurses, and doctors. Simula-

tion can help insure the efficient use of equipment, which might otherwise become a 

bottleneck in the system. We have applied our models from system level decisions, 

about facility design and patient scheduling, to treatment level decisions, optimizing 

the radiation delivery to minimize damage to healthy tissue. We have seen how op-

erations research models have affected the treatment of prostate cancer. The poten-

tial of operation research to improve healthcare delivery is only limited by 

healthcare practitioners’ willingness to implement recommended changes. In order 

to have the greatest impact, researchers need to work to communicate not only the 

potential benefits but also the models and methods. 
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