

ABSTRACT

Title of Document: EMPIRICAL STUDIES BASED ON

HONEYPOTS FOR CHARACTERIZING
ATTACKERS BEHAVIOR

Bertrand Sobesto, Doctor of Philosophy, 2015

Directed By: Associate Professor Michel Cukier

Reliability Engineering Program

The cybersecurity community has made substantial efforts to understand and mitigate

security flaws in information systems. Oftentimes when a compromise is discovered,

it is difficult to identify the actions performed by an attacker.

In this study, we explore the compromise phase, i.e., when an attacker exploits the

host he/she gained access to using a vulnerability exposed by an information system.

More specifically, we look at the main actions performed during the compromise and

the factors deterring the attackers from exploiting the compromised systems.

Because of the lack of security datasets on compromised systems, we need to deploy

systems to more adequately study attackers and the different techniques they employ

to compromise computer. Security researchers employ target computers, called

honeypots, that are not used by normal or authorized users.

In this study we first describe the distributed honeypot network architecture deployed

at the University of Maryland and the different honeypot-based experiments enabling

the data collection required to conduct the studies on attackers’ behavior.

In a first experiment we explore the attackers’ skill levels and the purpose of the

malicious software installed on the honeypots. We determined the relative skill levels

of the attackers and classified the different software installed.

We then focused on the crimes committed by the attackers, i.e., the attacks launched

from the honeypots by the attackers. We defined the different computer crimes

observed (e.g., brute-force attacks and denial of service attacks) and their

characteristics (whether they were coordinated and/or destructive). We looked at the

impact of computer resources restrictions on the crimes and then, at the deterrent

effect of warning and surveillance. Lastly, we used different metrics related to the

attack sessions to investigate the impact of surveillance on the attackers based on

their country of origin.

During attacks, we found that attackers mainly installed IRC-based bot tools and

sometimes shared their honeypot access. From the analysis on crimes, it appears that

deterrence does not work; we showed attackers seem to favor certain computer

resources. Lastly, we observed that the presence of surveillance had no significant

impact on the attack sessions, however surveillance altered the behavior originating

from a few countries.

EMPIRICAL STUDIES BASED ON HONEYPOTS FOR CHARACTERIZING
ATTACKERS BEHAVIOR

By

Bertrand Sobesto

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Associate Professor Michel Cukier, Chair
Associate Professor Atif Memon, Dean’s Representative
Associate Professor Jeffrey W. Herrmann
Assistant Professor Monifa Vaughn-Cooke
Assistant Professor Tudor Dumitras

© Copyright by
Bertrand Sobesto

2015

 ii

Acknowledgment

I have met many incredible people over the past six years who have contributed to

this significant personal and professional achievement, and I would like to thank all

of them.

First, I would like to thank my committee members Monifa Vaughn-Cooke, Tudor

Dumitras, Jeffrey Herrmann, and Atif Memon for their insightful and valuable

feedback.

I am very thankful to my advisor, Michel Cukier, who gave me the opportunity to

study and teach at the University of Maryland. This dissertation would not have been

possible without his guidance and tutelage. I am also grateful to Paige Smith for all of

the time spent revising and offering extremely valuable suggestions to improve this

work.

I had the opportunity to collaborate with several different research teams over the

course of my graduate studies. I would like to thank Gregg Vesonder, Dave Kormann

and Matti Hiltunen from AT&T Labs Research. Working at Florham Park was a great

experience. It was also a great opportunity to work with Ilir Gashi from the City

University in London.

I would like to express my gratitude to Gerry Sneeringer, our fearless leader, and the

IT Security group: Amy, Erin, Huifang, Lauren, Avery, Jonas, Kevin, Rob, and Steve,

thank you for the great and varied conversations. I am really excited to start a new

chapter of my life working with all of you.

 iii

On a more personal note, moving to a foreign country was not always easy, but I was

lucky to build many great friendships along the way: Amy, Dr. Jan, Chaitrali, Cristel,

Danielle, Melanie, Nanci, Jamie, Angelo, Asgeir, Colin, Cory, John, Sean, Robin,

Sébastien, Teddy and Vivien.

I am also grateful for the support I have received from my friends back in France. For

that, I would like to recognize Audrey, Agnès & Xavier, Réjane & Guillaume,

Valentine & Matthieu, Fabrice, Guillaume, Renaud and Vincent.

I would like to thank Denise, Mary Anne and Paul for the great conversations over

Thanksgiving dinner, their advice and their encouragements.

This journey would not have been possible without the support of my family,

especially my mother, Fanny. You have always been there when I needed you. I

admire how strong you are; you taught me to never give up, and it is thanks to you

that I have made it to where I am now.

 iv

Table of Contents

	

List of Tables ... ix	

List of Figures .. xi	

Chapter 1 – Introduction ... 1	

1.1	
 Research Goals and Questions ... 2	

1.1.1	
 Experiment 1: An empirical study on attacks and attackers 3	

1.1.2	
 Experiment 2: Are Computer Focused Crimes Impacted by System

Configuration .. 5	

1.1.3	
 Experiment 3: Are Computer Focused Crimes Impacted by Surveillance 7	

1.1.4	
 Experiment 4: Effects of Banners on the Commands Typed by Attackers:

A Study of Differences across Countries .. 8	

1.2	
 Approach and Structure ... 9	

Chapter 2 – Background ... 12	

2.1	
 Honeypot-based Experiments .. 12	

2.1.1	
 Attackers’ Behavior .. 13	

2.1.2	
 Binary Analysis ... 13	

2.1.3	
 Keystroke Analysis ... 14	

2.1.4	
 Country of Origin .. 14	

2.1.5	
 Cybercrime .. 15	

2.2	
 Honeypot Background ... 16	

2.2.1	
 Problem Statement .. 16	

2.2.2	
 Low Interaction Honeypots ... 17	

 v

2.2.3	
 High Interaction Honeypots .. 18	

2.2.4	
 Honeypot Networks .. 19	

Chapter 3 – Experimental Testbed ... 20	

3.1	
 UMD Honeynet .. 20	

3.1.1	
 Introduction ... 20	

3.1.2	
 Network Architecture .. 22	

3.1.3	
 Datasets ... 26	

3.1.4	
 Security and Deployment Policy .. 29	

3.2	
 Cybercrime Framework ... 32	

3.2.1	
 Introduction ... 32	

3.2.2	
 Framework Design .. 34	

3.3	
 Initial Cybercrime Experiment .. 42	

3.4	
 Design Limitations of the Testbed ... 45	

3.4.1	
 Honeynet ... 45	

3.4.2	
 Cybercrime framework ... 45	

3.5	
 Human Subjects Research .. 46	

Chapter 4 – An Empirical Study to Analyze Attacks and Attackers 47	

4.1	
 Introduction .. 47	

4.2	
 Research Questions and Hypotheses ... 47	

4.3	
 Method ... 49	

4.3.1	
 Attackers and Crimes Identification ... 50	

4.4	
 Results and Analysis .. 58	

4.4.1	
 Results ... 58	

 vi

4.4.2	
 Attackers’ Origin .. 59	

4.4.3	
 Attackers’ Characteristics ... 60	

4.4.4	
 Compromise Purpose .. 67	

4.5	
 Limitations ... 71	

4.6	
 Conclusions .. 72	

Chapter 5 – Are Computer Focused Crimes Impacted by System Configurations? . 74	

5.1	
 Introduction .. 74	

5.2	
 Research Questions and Hypotheses ... 75	

5.3	
 Experimental Design .. 78	

5.4	
 Results .. 79	

5.4.1	
 Analysis of Number of Crimes per Honeypot Type 80	

5.4.2	
 Classification of Observed Crimes ... 82	

5.4.3	
 Destructiveness ... 84	

5.4.4	
 Target of Choice or Opportunity ... 85	

5.4.5	
 Coordinated/Non-Coordinated Attack .. 86	

5.5	
 Warning Banner Impact Analysis .. 86	

5.5.1	
 Does the Warning Banner Impact Whether the Crime is Destructive or

Not? ... 87	

5.5.2	
 Does the Warning Banner Impact Whether the Target is of Choice or

Opportunity? ... 87	

5.5.3	
 Does the Warning Banner Impact Whether the Attack is Coordinated or

Not? ... 88	

5.6	
 Computer Resources Impact Analysis ... 89	

 vii

5.6.1	
 Do The Computer Resources Impact Whether the Crime is Destructive or

Not? ... 89	

5.6.2	
 Does The Computer Configuration Impact Whether the Target is of

Choice or Opportunity? ... 90	

5.6.3	
 Does The Computer Configuration Impact Whether The Attack is

Coordinated or Not? .. 91	

5.7	
 Discussion .. 92	

5.8	
 Limitations ... 93	

5.9	
 Conclusions .. 94	

Chapter 6 – Are Computer Focused Crimes Impacted By Surveillance Warning

Banners or Surveillance Tools? ... 96	

6.1	
 Introduction .. 96	

6.2	
 Research Question and Hypothesis .. 96	

6.3	
 Experimental Design .. 98	

6.4	
 Results and Analysis .. 100	

6.4.1	
 Results ... 100	

6.4.2	
 Combined Crimes Committed .. 101	

6.4.3	
 Classification of Observed Crimes ... 111	

6.5	
 Discussion .. 117	

6.6	
 Limitations ... 119	

6.7	
 Conclusions .. 121	

Chapter 7 – Effects of a Banner on the Commands Typed by Attackers: Differences

across Countries .. 122	

 viii

7.1	
 Introduction .. 122	

7.2	
 Research Questions and Hypotheses ... 122	

7.3	
 Experimental Design .. 124	

7.4	
 Results and Analysis .. 126	

7.4.1	
 Results ... 126	

7.4.2	
 Analysis... 127	

7.5	
 Limitations ... 133	

7.6	
 Conclusions .. 134	

Chapter 8 – Conclusions .. 136	

8.1	
 Summary .. 136	

8.2	
 Contributions ... 138	

8.2.1	
 Technical Contributions .. 138	

8.2.2	
 University of Maryland Security .. 139	

8.2.3	
 Science of Cybersecurity .. 140	

8.3	
 Limitations ... 140	

8.4	
 Future Work ... 141	

8.5	
 Conclusion ... 142	

Appendix A: CyQLNet .. 143	

Appendix B: UMD Honeynet .. 162	

Appendix C: Cybercrime Framework ... 175	

Bibliography ... 211	

 ix

List of Tables

Table 1. UMD Honeynet Global Security Policy ... 29

Table 3. Distribution of Session per Honeypot Type ... 59

Table 4. Table of average keystroke delays .. 62

Table 5. Type of file or rogue software used by attackers .. 67

Table 6. Rogue software groups per honeypot types .. 69

Table 7. Honeypots Configuration .. 78

Table 9. Characterization of Observed Crimes ... 86

Table 10. Computer Configuration vs. Level of Destructiveness 87

Table 11. Computer Configuration vs. Target of Choice/Opportunity 88

Table 12. Computer Configuration vs. Coordinated/Non-Coordinated Attack 88

Table 13. Computer Configuration vs. Level of Destructiveness 89

Table 14. Computer Configuration vs. Target of Choice/Opportunity 90

Table 15. Computer Configuration vs. Coordinated/Non-Coordinated Attack 91

Table 16. Honeypot Configuration Types .. 99

Table 17. Crime Rates (With Outlier) ... 105

Table 18. Crime Rates (Without Outlier) ... 106

Table 19. Crime Ratio ... 107

Table 20. Malicious Activity Ratio ... 108

Table 21. Committed Crimes .. 109

Table 23. Reconnaissance Attacks Rates (With Outlier) .. 113

Table 24. Reconnaissance Attacks Rates (Without Outlier) 113

 x

Table 25. DoS Attacks Rates .. 115

Table 26. Brute Force Attacks Rates .. 116

Table 27. Honeypot Configuration Types .. 125

Table 28. Number of Sessions per Country (Top 5) ... 127

Table 29. All Sessions ... 128

Table 30. All Session with Keystrokes ... 129

Table 31. First Sessions with Keystrokes ... 131

Table 32. All Sessions with System Activity Commands .. 132

Table 33. First Sessions with System Activity Commands 133

Table 34. AVW-GW Access Control List .. 148

Table 35. Virtual LAN Definition .. 150

Table 36. Hypervisors Network Configuration .. 158

Table 37. Storage RAID Levels .. 160

Table 38. Keystrokes Commands with “normal” multiple PIDs 195

Table 39. Keystroke Session Duplicate .. 196

Table 40. Keystroke Session Partial Duplicate ... 196

 xi

List of Figures

Figure 1. Honeynet Architecture ... 22

Figure 2. Open ports in Dionaea ... 24

Figure 3. SSH brute force attempts logs ... 26

Figure 4. Network Flow Records Collection Architecture ... 28

Figure 5. Experiment Design .. 35

Figure 6. Sebek Filter Keystrokes Output ... 42

Figure 7. Sebek Filter Commands Output .. 42

Figure 8. Initial Testbed Design .. 43

Figure 9. Attack Session Commands .. 50

Figure 10. IP Addresses (a) and ASN (b) Distributions of Attackers 60

Figure 11. Time Intervals between Keystrokes for a Sample of Matching Pairs 61

Figure 12. Distribution of attackers by skill levels ... 63

Figure 13. Percentages of Attackers Fulfilling Skill Criteria 64

Figure 14. Percentages of Copied/Pasted Commands per Skill Level 65

Figure 15. Distributions of Attackers per Skill Level Specific Actions 66

Figure 16. Number of Downloaded Files per Category and Honeypot Type 68

Figure 17. Average Time between Sessions and Number of Honeypots 70

Figure 18. Timeline of Attacker Access to the Shared Honeypots 71

Figure 19. Banner Displayed .. 79

Figure 20. Number of Deployed Honeypots ... 80

Figure 21. Number of Honeypots and Number of Crimes .. 81

 xii

Figure 22. Number of Crimes per Honeypot Type ... 81

Figure 23. Surveillance Banner Displayed ... 99

Figure 24. Result of the ps ax command ... 99

Figure 25. Number of Honeypots Deployed over Time ... 100

Figure 26. Number of Honeypots Deployed over Time by Honeypot Type 101

Figure 27. Number of Honeypots and Number of Crimes .. 102

Figure 28. Number of Crimes over Time (With Outlier) .. 103

Figure 29. Number of Crimes over Time (Without Outlier) 103

Figure 30. Number of Crimes per Honeypot Type over Time (With Outlier) 104

Figure 31. Number of Crimes per Honeypot Type over Time (Without Outlier) 105

Figure 32. Surveillance Banner Displayed ... 125

Figure 33. Result of the ps ax command ... 125

Figure 34. CyQL Network Architecture ... 143

Figure 35. Datacenter Server Rack ... 144

Figure 36. Honeygate Architecture ... 163

Figure 37. Honeymole Architecture ... 165

Figure 38. UMD Honeynet Database .. 166

Figure 39. DarkNOC Web Interface ... 169

Figure 40. Honeynet Traffic bits per second .. 171

Figure 41. Honeynet Traffic packets per second .. 171

Figure 42. Experiment Design .. 175

Figure 43. Experiment Syslog Configuration ... 183

Figure 44. Syslog Filter .. 184

 xiii

Figure 45. Syslog Table Structure .. 184

Figure 46. Sebek Filter Keystrokes Output ... 187

Figure 47. Sebek Filter Commands Output .. 187

Figure 48. Cybercrime Database Schema ... 188

Figure 49. Secure Shell Accepted Password Message .. 192

Figure 50. Secure Shell Session Closed Message ... 193

Figure 51. Data Extraction Online Form .. 200

Figure 53. Honeypot Lifecycle ... 203

Figure 54. Brute Force Attack Attempt .. 204

Figure 55. Honeypot Deployment Process ... 206

Figure 56. OVZ Containers Recycling Process Part 1 .. 207

Figure 57. OVZ Containers Recycling Process Part 2 .. 208

Figure 58. Cybercrime Framework ... 210

 1

Chapter 1 – Introduction

Whether we like it or not, parts of our everyday lives are stored on computer systems

somewhere on the Internet. Today’s society heavily relies on information systems and

the Internet. Interconnecting computer networks removed country-boundaries and

made worldwide communications faster.

Information Technology (IT) is omnipresent, a wide variety of so called “smart”

devices and “smart” appliances are now connected to the Internet and offer new

services designed to make our lives easier. Owners of connected cars are able, for

example, to get real-time traffic information and remotely access some of the car’s

functions such as starting the engine. Connected cars can also automatically call

rescue services in case of an accident. Our homes are also connected, thus allowing us

to monitor them when at work, turn on the air conditioning or lights remotely, or

alerting us in case of flood or break-in. We are in the era of the technologically

connected life.

The increased integration of computer systems into our lives and the respective data

they store make information systems extremely valuable. Any disruption to these

systems can cause financial loss and have dramatic consequences for society at large.

Further, these information systems are becoming more complex and more exposed,

thus increasing their vulnerability. Their value and inherent vulnerability make

information systems advantageous targets for attackers. They have become the victim

of computer-focused crimes [FUR02].

To more adequately secure computer systems from external threats, security

researchers aim to understand attackers and the different techniques they employ to

 2

compromise computers and to achieve their goals. One fruitful approach is to use a

target computer --called a honeypot-- that is not used by normal or authorized users.

As general users do not access these computers, all activity towards them can be

identified as malicious.

1.1 Research Goals and Questions

The cybersecurity community has made extensive efforts to identify and mitigate

security flaws in information systems. Companies such as Microsoft or Google offer

a variety of monetary rewards to anyone who identifies security flaws in their

software and websites. Once a compromise is discovered, it is often difficult to

identify the actions performed by an attacker on a system mostly because of a lack of

monitoring.

The main goal of this dissertation is to study the attackers’ behavior during the

compromise phase, i.e., when an attacker has already exploited a security flaw and

gained access to a computer system. The overarching research questions are:

1) What are the main actions performed during the compromise phase?

We hypothesize that an attacker will want to exploit the resources offered by the

compromised system to engage in criminal activities on the Internet. We believe an

attacker will install an attack tool and launch crimes from a compromised system.

2) Are there factors deterring the attackers from exploiting the compromised

systems?

We believe that the attackers will want to maintain their access to compromised

systems by hiding their attack sessions. Therefore actively monitored systems will be

less likely to be exploited.

 3

To answer these research questions, we need to be able to identify 1) when the

compromise occurs, 2) the different actions performed by the attacker during the

different attack sessions, i.e., when an attacker connects to the compromised system

to exploit it, and 3) the different criminal activities launched from the compromised

system.

We could analyze existing security information on compromised systems from an

organization such as the University of Maryland, but often these datasets are not

always available because of privacy concerns as well as capacity issues. Systems are

not monitored as closely we need them to be in order to conduct analyzes.

Another issue with institutional security datasets are the non-homegeneous nature of

the computing environment. Different operating systems (OS) can be deployed,

different software packages and services can be installed from one computer to

another. As a consequence different populations of attackers can exploit different

vulnerabilities and interfere with the factors being investigated.

In order to conduct studies on attacker behavior during the compromise phase, we

need to design a homogeneous, and controlled environment. This environment

enables the required experiments designed to collect the required datasets.

To address the two global research questions, we designed three experiments, each

building on the lessons learned from the previous experiments.

1.1.1 Experiment 1: An empirical study on attacks and attackers

In the first experiment, described in Chapter 4, we needed to understand the nature of

attackers’ skills, if we could differentiate attackers using a compromised honeypot,

identify the purpose of the attack and determine if attackers share their access to

 4

compromised honeypot with other attackers. In other words, the research questions

associated with the first experiment are:

a) How can we differentiate attackers on a compromised honeypot?

b) How skilled are the attackers based on the observations of attack sessions?

c) What is the purpose of the compromise?

d) Do attackers share the access to their honeypots?

Question a: While determining who launches a cyber-crime is challenging, once an

attacker logs into a compromised honeypot, the keystrokes and attack types can be

used to characterize the crimes. This information can be used to determine identify if

attackers who gain entry via brute force attacks are the same as those who log in by

matching the IP addresses. In addition, we can determine if a single attacker uses

several IP addresses to log-in or if multiple attackers are sharing a single

compromised honeypot.

Question b: Attackers may structure their attack such that they can control the

compromised system remotely. They may connect to an Internet Relay Chat or they

may create a backdoor port to create the remote access. We hypothesize that in either

scenario skilled attackers will attempt to remove network restrictions. Therefore if we

add network restrictions to our honeypots, we will attract skilled attackers.

To assess attacker skill, we developed a skills-based profile based on ten criteria. We

will explore the connection between the attacker’s skills based on the demonstrated

execution of these ten criteria. We will then explore the relationship between the

demonstrated skills and the acker’s ability to successfully launch an attack to commit

crimes.

 5

Question c: In order to understand why attacks are launched, we categorized them

into different types of attacks based on the type of rogue software that is installed and

the nature of the exploitation that results. We hypothesize that the honeypots will

become a bot and join a botnet, a network of compromised hosts. The most

commonly used protocol to control each bot is the Internet Relay Chat protocol (IRC)

[RAT13]. We expect the attackers to install IRC-based bot tools.

Question d: The authors in [FRA07] showed the existence of an underground market

for compromised hosts. We expect the initial attacker who found the correct

username and password of the honeypots, to share the credentials. We hypothesize

that some of our honeypots will be accessed by different attackers.

1.1.2 Experiment 2: Are Computer Focused Crimes Impacted by System

Configuration

In Chapter 4 we realized that an attacker’s reaction to honeypot configuration is an

important aspect of better understanding an attacker. In the second experiment,

described in Chapter 5, we provide several honeypot configurations to assess the

attacker’s reaction to various configurations.

The research questions for the second experiment focus on the nature of the crime as

they related to various honeypot configurations:

a) Does the presence of a warning banner effectively deter attackers from

launching an attack from a compromised computer?

b) Does the computer configuration impact whether the crime is destructive or

not?

 6

c) Does the computer configuration impact whether the target is of choice or

opportunity?

d) Does the computer configuration impact whether the attack is coordinated or

not?

This study will only include attackers who gain access to the honeypots. We will

focus on three specific dimensions of computer crimes: destructiveness, nature of the

target, and level of coordination. These aspects will be considered while we test the

usefulness of a banner as a deterrence mechanism and if the configuration of the

computer is related to the type of crime committed.

Question a: Because human attackers have rational decision-making processes that

could prevent them from engaging in criminal online activities [PNG09], we

hypothesize that attackers will be deterred by a banner and as a consequence there

will be fewer crimes launched from honeypots that have a warning banner.

Question b-c: The various computer configurations that may be more or less

attractive to an attacker are memory, disk space and bandwidth. We hypothesize that

attackers will launch different attacks based on the available resources; with more

attacks expected from configurations with high levels of resources (large memory and

disk space and high bandwidth). Specifically we expect large memory space, large

disk space and high bandwidth:

• to be associated with destructive activity;

• to be associated with targets of choice; and

• to be associated with coordinated attacks.

 7

1.1.3 Experiment 3: Are Computer Focused Crimes Impacted by Surveillance

In Chapter 6, we build on the work of the second experiment to add surveillance as a

deterrence system. In the third experiment, we manipulated two aspects of

surveillance: the presence of a warning banning announcing the presence of a

surveillance system (banner present/not present) and embedded surveillance tools on

the computer (present/not present).

The research questions for the third experiment is:

Question: Are computer focused crimes (after an attacker gains unauthorized

access to a computer and uses the computer to launch an attack towards an

external target) impacted by a surveillance warning banner and/or surveillance

tools?

The security community consistently claims that deterrence does not work on the

Internet. This claim is rarely accompanied by empirical data to support it. This

presents an opportunity to investigate of the claim directly by focusing on the

announcement and existence of surveillance mechanisms on a compromised

computer system. A more focused study on employee awareness of surveillance on

their work computer reduced the intent of system misuse by those employees

[ARC09]. Based on this result, we hypothesize that a banner announcing surveillance

and a surveillance tool will discourage attackers from using the compromised system

to launch crimes.

 8

1.1.4 Experiment 4: Effects of Banners on the Commands Typed by Attackers:

A Study of Differences across Countries

In Chapter 7, we build on the work of the second and third experiments studying the

effectiveness of banners to look at the differences in commands that are typed based

on the attacker’s country of origin.

In the fourth study we will empirically study the following research questions:

a) Is there a variation in the probability that an attacker will enter commands

depending on the country of origin from which an attack is launched?

b) In the presence of a surveillance banner will attackers vary in their use of

system activity commands based on their country of origin (as identified by

the IP address)?

Question a: Attackers from different countries may respond differently to a

surveillance banner as factors such as cultural differences existing across nations, as

well as differential assessments regarding the likelihood of punishment may result in

varying responses to a particular sanction threat. While in one country, the presence

of a surveillance banner may be a valid signal of a threat, and accordingly, attackers

originating from that country would internalize a heightened risk of apprehension and

punishment, reducing their adverse behavior in response. However, in other countries

the attackers may be aware that no punishment is actually associated with an attack.

Furthermore, in other countries, the insinuation of a threat made via a banner may

elicit defiance, thus increasing the likelihood of an attack. Therefore we hypothesize

that we will see differences in the subsequent actions of an attacker based on their

country of origin in the presence of a surveillance banner.

 9

Question b: Despites the anonymity offered by the Internet, human attackers exhibit a

rational decision-making process [PNG09]. They will attempt to maximize rewards

while minimizing the risks of being detected. We hypothesize that U.S. attackers,

which are more easily identifiable and prosecutable, will be deterred by surveillance.

More specifically, U.S. attackers understanding a surveillance announcement banner

would look for effective surveillance cues including monitoring tools. Therefore the

actions after seeing a banner will be related to searching for surveillance cues before

moving on to actions related to other aspects of criminal activity.

1.2 Approach and Structure

This dissertation addresses the questions described in Section 1.1 Chapter 2 provides

the background literature review which motivated the research questions and

hypotheses. Chapter 3 introduces the testbed built to collect the data required for

empirical studies based on honeypots. More specifically we describe:

1) the distributed honeypot network architecture deployed at the University of

Maryland (UMD), which includes how data is being collected, and how this

architecture is being monitored.

2) the framework allowing the deployment of large numbers of honeypots.

The honeypot-based framework, introduced in Chapter 3 was developed to support

different honeypot-based experiments, aimed at understanding the attackers’ behavior

on a system following a compromise. These experiments contributed toward

characterizing the attackers’ behavior and respective attacks launched against

honeypots.

 10

In Chapter 4, we determine the relative skill levels of the attackers according to a set

of ten criteria (e.g., the ability to hide their malicious activity, the appropriateness of

the command typed, and the familiarity with the rogue software installed). We also

classify the different malicious software uploaded and installed on the compromised

honeypots according to the software’s identified purpose.

Chapters 5 and 6 are more focused on the crimes committed by the honeypots

following a “successful” compromise. We define the different computer crimes

observed (e.g., brute-force attacks and denial of service attacks) and their

characteristics (whether they were coordinated and/or destructive). Different stimuli

such as a banner, surveillance processes, and pertinent system configurations were

systematically modified within a randomized controlled trial to evaluate each

stimulus’ impact on the crimes launched by the respective honeypots.

The last empirical study presented in Chapter 7 focuses on the differences in

attackers’ response to one aspect of deterrence based on their country of origin.

Attackers were randomly assigned four different configurations combining a banner

announcing the presence of a surveillance system and surveillance processes. By

studying the country of origin we draw the focus on the possibility that attackers may

respond differently to deterrence cues because of their cultural background but also

because of the punishment likelihood that varies from one country to another.

Attackers’ differential responses were characterized by comparing several metrics

including the total number of sessions, the number of sessions with keystrokes, the

number of first sessions with keystrokes, the duration of sessions with keystrokes, and

the system activity commands in any sessions and in the first session.

 11

Chapter 8 concludes this dissertation with the limitations, future directions and a

review of the main contributions of this work.

 12

Chapter 2 – Background

Very few studies have been conducted in the area of computer security quantification

and characterization. This section provides a literature review that motivates the

research questions and the associated hypotheses for this research. Furthermore, this

section provides an overview on honeypots, the testbed designed for the experiments

used to answer our research questions.

2.1 Honeypot-based Experiments

Lance Spitzner defines honeypots as a security tool whose value lies in being probed,

attacked, or compromised [SPI02]. In other words, these are highly monitored

computer systems meant to attract attackers, analyze their modus operandi and profile

attackers [RAM07]. Placed in production environments, honeypots take an active part

in the security of a network by providing information on attacker and attack patterns.

Niels Provos introduces two types of honeypots [PRO07]: high interaction honeypots

(HIH) that involve the deployment of real operating systems (OSs) on real or virtual

machines, and low interaction honeypots (LIH) that are computer software emulating

OSs and services.

It is important to understand that the traffic observed on honeypots is not legitimate

and can thus be considered to be malicious. Levine et al. showed the usefulness of

deploying honeypots across large enterprise networks [LEV03]. In their study, Snort

[ROE99] was used to detect compromised computers across Georgia Tech’s network.

DarkNOC [SOB11], a honeypot-monitoring tool, performs a similar detection using

network flow records [NFD15] data on the University of Maryland’s network.

 13

Over the past several years, honeypot-based experiments have significantly

contributed to a better understanding of the threat landscape.

2.1.1 Attackers’ Behavior

In [ALA06] and [BER09] the analyses primarily focused on the attackers’ behavior

after compromise of the honeypots. Both studies leveraged high interaction honeypots

using Secure Shell (SSH) as a point of entry. In both studies, simplistic passwords

with a high probability of being guessed were implemented to facilitate the attackers’

access. In [ALA06], the authors collected the data from 38 SSH intrusions over a

period of 131 days. Preliminary attack behaviors were observed, but the testbed in

place did not permit outbound connections from the target device, which limited the

attackers’ pool of available actions. In [RAM07], the authors built a similar testbed,

but permitted outgoing traffic from the target device. The authors created a state-

machine of the attackers’ behavior based upon observations of data pertaining to the

824 attacks collected. The honeypots were re-imaged every 24 hours during this

experiment. In [BER09], the authors conducted a more extensive study wherein 1,171

attacks sessions and 250 rogue software elements were collected over a data

collection period of eight months.

2.1.2 Binary Analysis

Regarding binary analysis, [ABU06] leveraged the SGNET honeypot project to

conduct in-depth analysis of polymorphic malware. The authors introduced clustering

techniques based on static and behavioral characteristics analysis.

On the dynamic analysis of rogue software, [BAY06] introduced a tool for

dynamically analyzing the behavior of Windows executable files. This tool is

 14

available through an online service for analyzing malware [ANU15]. However, only

Windows binaries can be submitted for analysis. The same limitation applies to

CWSandbox [CWS14] that uses another automated dynamic analysis tool that was

introduced by its authors in [WILL07].

2.1.3 Keystroke Analysis

Regarding keystroke analysis, [ABU06] considers the case of guessing typed text in

an SSH connection by analyzing only the inter-arrival time of network packets. The

authors showed that network latency has little influence on the results. The tools

Chaos Reader [CHA15] along with SSH Analysis [SSH15] implement a recognition

of commands typed through SSH interactive session using keystroke intervals

collected previously from a telnet session. Identification by keystroke analysis is

tackled more broadly in [ILO03, MON97, JOY89], where the authors present

different algorithms to perform keystroke recognition of users through an analysis of

delays between keystroke and keystroke duration. Their approach consists of

grouping keystrokes into pairs and observing the time interval between these pairs.

2.1.4 Country of Origin

On the country of origin for the attack, [KAA06] and [VIS11] use the data collected

from low interaction honeypots where the malicious activities are limited to port

scans and requests sent to fake services. [VIS11] shows the country of the attackers

targeting their low interaction honeypots on a map using GeoPlot. In [KAA06], the

authors studied the correlation of the country of origin of the attackers with the

number of attacks per unit of time.

 15

The authors in [STU12] collected and analyzed data from four distributed honeypots

presenting a weak SSH configuration. The authors showed the countries of origin

from the most observed attacks on the honeypots. They also introduced IP

specialization by showing that the origin country of the initial brute force attack is

different from the origin country of the subsequent attack sessions.

In [PAU14] the authors presented RASSH, an emulation-based SSH honeypot

capable of learning new behaviors during its interaction with attackers. The country

of origin of the attackers is used when RASSH chooses an “insult action” to send a

message to the attacker’s shell in his or her native language.

The authors of [MAI15] studied the origin of attackers on two different Secure Shell

honeypot networks located in two different research sites in China and Israel. More

specifically, they looked at the attackers’ region (Europe, Asia, North/South America,

and Middle East) for the initial brute-force attack and the first attack session. They

compared the temporal trend of both attacks against both Chinese and Israeli target

computers. The study revealed the geographical proximity of the attacker during the

first attack session, i.e., Chinese honeypots were more likely to be accessed by

attackers in Asia.

2.1.5 Cybercrime

Research has also been published in the field of criminology [KIT03, HUNT09] that

focuses on defining the different categories of cybercrimes. These studyies are mainly

based on anecdotal and other qualitative evidence as opposed to empirical studies

directly testing the impact of a theoretically derived honeypot configuration upon

subsequent behavior.

 16

2.2 Honeypot Background

2.2.1 Problem Statement

The Internet is composed of about 232 Internet Protocol (IP) addresses designating a

network device, such as computers, on the public network. Each IP address does not

receive the same attacks and is not targeted by the same attackers using the same

technics.

Individual honeypots or networks of honeypots, called honeynets, have been used to

conduct various studies of attackers [ALM08, CUR04] and cybercrimes such as

unsolicited electronic mails, phishing [DHA06], identity theft and denial of service

attacks. In their current design, distributed honeypots are often built upon a low

interaction tool such as honeyd [PRO03]. The distant locations only have to maintain

a sensor that will send its logs to a central server.

Another limitation is the number of honeypots that can possibly be deployed. Each

honeypot requires one public IP in order to be a target on the Internet. The current

version of the Internet Protocol has a limited number of available IP addresses for the

whole world. Because of the omnipresence of the Internet in almost every aspect of

our lives, more and more devices are connected to the public network. As a

consequence, the pool of unallocated IP addresses is getting close to exhaustion.

Nowadays, it is difficult and expensive to obtain IP ranges to either expand existing

networks or add new ones, and an IP allocated to a honeypot is an IP not allocated to

a legitimate Internet service. As a consequence it is difficult to dedicate IPs to

honeypots. Furthermore, running high-interaction honeypots is resource consuming.

 17

There is no all-in-one distributed honeypot solution allowing for the deployment of

mixed and large environments of low and high interaction honeypots, centralized data

collection and provision of safety mechanisms to maintain attack containment.

To design a honeypot architecture that would meet the data collection requirements,

we studied the state of the art of honeypots and honeypots networks. More

specifically we looked at the existing architecture and software solutions for LIHs,

HIHs, and distributed honeypots networks.

2.2.2 Low Interaction Honeypots

Several tools have been developed to emulate different OSs, services and networks.

One of the most popular tools is Honeyd [PRO03]. Honeyd provides a simple way to

emulate services, computers with specific OSs and networks of computers. Ad hoc

scripts written by hand handle the interactions with the attackers. Authors in [LEI05]

propose a method to automatically generate scripts for Honeyd.

Other low interaction honeypots focus on specific services, e.g. Kippo [KIP15],

Glastopf [GLA15] and Conpot [CON15]. The Kippo tool emulates a Secure Shell

Server that records usernames and passwords attempted and can even provide a fake

shell prompt along with a fake file system when an attacker successfully finds the

predefined “successful” credentials. Glastopf emulates numerous vulnerabilities to

collect data on attacks targeting web applications. Conpot collects data on attacks

targeting industrial control systems. Honeypots are usually servers collecting attacks

against Internet services whereas honey-clients collect malicious code provided by

malicious services and executed on the client side. Thug [THU15] and PhoneyC

[PHO15] are example of honey-clients. They browse the Internet collecting malicious

 18

content from malicious web pages. Some other LIH tools such as Dionaea [DIO15]

and Amun [AMU15] focus on collecting malware by emulating vulnerable services.

Honeydrive [HON15] is a Linux distribution dedicated to running low interaction

honeypots solutions such as Dionaea, Honeyd or Glastopf. About a dozen low

interaction tools are pre-installed along with a full suite of security and network tools.

2.2.3 High Interaction Honeypots

Despite their ease of deployment LIHs suffer from their limited fidelity to the real

service they emulate, which makes them easy to detect. Numerous studies have used

HIHs, but because of the hardware and time resources they require HIHs are often

designed to serve a specific purpose: collect the data necessary to answer a research

question. In [ALA06, BER09, RAM07, SAL11, STU12] the HIHs expose SSH

Servers with either weak passwords [ALA06, BER09, RAM07, STU12] or other

vulnerabilities facilitating the attacker access to the honeypot [SAL11]. In [ALA06,

STU12] the kernel was patched to collect the keystrokes and specific system calls. In

other studies, keystrokes loggers and system call tracers were employed to collect

attackers’ keystrokes and track their actions [BER09, RAM07].

In [VRA05], the honeypot architecture used Linux lightweight virtualization to

deploy HIHs at a large scale. The downside of this method is the constraints on the

guest OS: it has to be a modified Linux OS. As a consequence it is not possible to run

various types of OSs. On the other end, in [JIA06] presents Collapsar, a honeypot

architecture based on full hardware virtualization that allows the deployment of HIHs

of various types.

 19

2.2.4 Honeypot Networks

Companies and researchers currently deploy honeypot networks at different scales.

Also known as honeynets or also called honeyfarms, these honeypot networks can be

limited to a few IP addresses on the local network or distributed systems in several

locations such as the Leurre.com project [POU05], the Internet Motion Sensor

[BAI05], SGNET [LEI08a, LEI08b], Collapsar [JIA06] or the honeynet initiative

from CAIDA [VRA05].

Visoottiviseth et al. present a distributed honeypot framework using low interaction

honeypots [VIS11] running the Honeyd daemon [PRO03]. More specifically, they de-

scribe the working of the Honeyd logs centralization and their analysis [VIS11]. The

framework only works with Honeyd log files. The level of interaction of our

framework is also different since we are running LIHs in addition to HIHs.

There are limited software solutions to deploy, maintain and manage networks of

honeypots employing different levels of interactions. The main honeynet management

solution is Honeywall [CHA04] developed by the Honeynet Project. Honeywall is a

bootable CD-Rom that installs a Linux-based network gateway to manage and control

honeypots as well as visualize and analyze honeynet logs. It is an all-in-one solution

for small-scale honeypot networks. It provides routing, capture and analysis

capabilities.

Bifrozt [BIF15] is also a Linux-based firewall and network gateway configured to act

as a transparent Secure Shell proxy allowing the capture of all the attackers

interactions with the honeypot Secure Shell Server while blocking potential malicious

outgoing traffic. Bifrozt only works with one honeypot running Secure Shell.

 20

Chapter 3 – Experimental Testbed

3.1 UMD Honeynet

3.1.1 Introduction

The honeynpot network hosted at the University of Maryland (called UMD

Honeynet) was initially built in 2004 with unused IP addresses from the campus

network. More recently, other organizations joined the initiative:

• AT&T Labs, U.S.A.

• The University of Illinois at Urbana Champaign (UIUC), U.S.A.

• The Laboratoire d’Analyse d’Architecture des Systèmes (LAAS) in Toulouse,

France

• The Ecole Nationale des Sciences Appliquées (ENSA) in Marrakech,

Morocco

• The Technische Universität in Dresden (TUD), Germany

• PJM Interconnection (PJM), U.S.A.

Each organization contributes to the UMD Honeynet by providing ranges of public IP

addresses. These IP ranges are routed transparently to the honeypot network hosted at

UMD.

3.1.1.1 Objectives

The objective of the UMD Honeynet is to provide an infrastructure to support

honeypot-based experiments. The network features centralized data collection and

guarantees a realistic, but controlled and flexible environment to safely deploy

experiments. The advantages of the present architecture are numerous:

 21

• A single monitoring server collects and stores the Snort events, the flow data

and the network traffic, providing visibility across a range of exposed

networks.

• The experiments are easy to deploy without the need to create tunnels or to

setup specific network configurations.

• The UMD Honeynet is scalable; new organizations can join the project by

providing a range of IP addresses.

• The centralization of the honeynet in one location guarantees a uniform

configuration of the honeypots.

In addition to the central data collection, ease of honeypot deployment and scalability,

the UMD Honeynet presents a range of safety features, such as bandwidth limitation

and firewall, which assist the containment of attacks launched by potentially

compromised honeypots.

3.1.1.2 History

We are currently running the fourth generation of UMD Honeynet. The first version

was deployed in November 2004 and had been used until the end of 2006. It was

essentially built upon several chunks of the UMD Institute for Systems Research IP

space. Most of the honeypots were high interaction systems running on physical

hosts.

The second generation was propelled by the growing interest in honeypots from the

University of Maryland’s Division of Information Technology. The security and

network teams helped to expand the size of our honeypot network: several entire

unused subnets were made available to deploy low interaction honeypots.

 22

Deployed in 2008, the third generation of the UMD Honeynet started to support the

redirection of Internet traffic from a remote location to the UMD network. This

feature has allowed external entities to join the dark network: AT&T has been a part

of the UMD Honeynet since 2008, UIUC since 2009, LAAS since 2010, and more

recently ENSA, PJM and TUD since 2012.

With the increasing number of public IP addresses, the UMD Honeynet became

larger and more complex. The fourth generation, deployed in September 2009,

completely revamped the architecture in order to face new challenges such as

providing better protection, centralization and stronger reliability of data collection,

and easier experiment deployment.

3.1.2 Network Architecture

Figure 1. Honeynet Architecture

The current generation of the Honeynet provides a secure network architecture with

about 2,000 public IP addresses, a core network at one gigabit per second, a

bandwidth of one gigabit per second to the campus network and fifty-two terabytes of

Network Area Storage for the data collection. Each organization contributing to the

Honeynet provides a range of public IP addresses also called a subnet.

 23

As shown in Figure 1, the Honeynet network architecture is composed mainly of a

gateway, a data sensor and data repository.

3.1.2.1 Honeynet Main Router

The Honeygate is the Honeynet main router. This host is in charge of routing or

bridging the incoming and outgoing Honeynet traffic. This device is also responsible

for enforcing the Honeynet security policy by filtering the outgoing traffic. This

policy protects the UMD network and the Internet against potentially compromised

honeypots.

3.1.2.2 Data Collector

The host called Spy is responsible for the data collection from the entire Honeynet

framework. Spy acts as a passive sensor; it collects data without interacting with the

systems it monitors.

3.1.2.3 Low Interaction Honeypots

UMD Honeynet is currently hosting about 2,000 IP addresses. It is practically

impossible to use all of these IP addresses in experiments. When an IP address is not

in use, it is re-allocated to the farm of low interaction honeypots. Each subnet has its

own low interaction honeypot (LIH) host to facilitate the configuration of the LIH

tools and the log processing. Each LIH host is a virtual machine that runs Dionaea

and a fake Secure Shell Server on top of a Linux OS.

Dionaea

Dionaea, a LIH tool used to emulate common vulnerable services, has been deployed

on the different LIH hosts present on the honeypot network architecture. Dionaea

captures a malicious payload submitted by attackers during the exploitation of

exposed network services. Dionaea presents several advantages compared to a high

 24

interaction honeypot (HIH): 1) it emulates many well-known vulnerabilities and

protocols, 2) it is easier to maintain than a HIH, and 3) the level of interaction is

sufficient to allow successful malicious payload injections.

As shown in Figure 2, Dionaea’s default configuration exposes several well-known

vulnerabilities of common Internet services such as http, ftp, smtp, MS SQL, MySQL,

as well as Microsoft Windows and VOIP protocols. Because of the nature of the

exposed vulnerabilities, Dionaea essentially captures Windows Portable Executable

(PE) files [PEF15], the executable file format used on Windows platforms.

Starting	
 Nmap	
 5.21	
 (http://nmap.org)	
 at	
 2012-­‐11-­‐12	
 22:24	
 EST	

Nmap	
 scan	
 report	
 for	
 XXX.XXX.XXX.XXX	

Host	
 is	
 up	
 (0.039s	
 latency).	

Not	
 shown:	
 986	
 closed	
 ports	

PORT	
 	
 	
 	
 	
 STATE	
 	
 	
 	
 SERVICE	

21/tcp	
 	
 	
 open	
 	
 	
 	
 	
 ftp	

25/tcp	
 	
 	
 filtered	
 smtp	

42/tcp	
 	
 	
 open	
 	
 	
 	
 	
 nameserver	

80/tcp	
 	
 	
 open	
 	
 	
 	
 	
 http	

135/tcp	
 	
 open	
 	
 	
 	
 	
 msrpc	

443/tcp	
 	
 open	
 	
 	
 	
 	
 https	

445/tcp	
 	
 open	
 	
 	
 	
 	
 microsoft-­‐ds	

554/tcp	
 	
 open	
 	
 	
 	
 	
 rtsp	

1433/tcp	
 open	
 	
 	
 	
 	
 ms-­‐sql-­‐s	

2222/tcp	
 filtered	
 unknown	

3306/tcp	
 open	
 	
 	
 	
 	
 mysql	

5060/tcp	
 open	
 	
 	
 	
 	
 sip	

5061/tcp	
 open	
 	
 	
 	
 	
 sip-­‐tls	

7070/tcp	
 open	
 	
 	
 	
 	
 realserver	

Nmap	
 done:	
 1	
 IP	
 address	
 (1	
 host	
 up)	
 scanned	
 in	
 9.18	
 seconds	

Figure 2. Open ports in Dionaea

Dionaea waits for attackers to inject malicious payloads known as shellcodes by

exploiting one of the service’s vulnerabilities. The shellcodes are evaluated using

libemu, a C library able to detect and execute shellcodes using the GetPC heuristics

[POL10]. The shellcode profiling allows Dionaea to act upon three possible

intentions: 1) providing a remote shell to the attacker by opening a network socket on

the targeted system, 2) downloading a file from a remote location using ftp, http or

 25

SMB protocols, or 3) executing an existing binary file on the local file system of the

target host. Dionaea executes multi-staged shellcodes in a virtual machine using

libemu to infer their final intent.

Binary files can be captured in different ways: ftp and http downloads, and downloads

occurring during the shellcode executions. They can have different formats. The

UNIX command file [FIL15] allows the file format to be identified. Empty and ASCII

files are automatically removed from the repository as well as the data format that

describes unknown binary files. Dionaea names captured binary files after their MD5

hashes and logs the submitted malware into a SQLite database. Each entry of the

submission database contains:

• The MD5 hash of the binary,

• A capture timestamp,

• The source and destination IP addresses,

• The source and destination ports,

• The protocol exploited,

• The transport protocol (TCP or UDP), and

• The URL used to download the binary file.

We observed that the same binary file can be submitted several times by different

originating hosts.

Fake Secure Shell Server

Secure Shell (SSH) is a network protocol used to access the shell (or command line

interface) of a remote computer through a secure channel. This remote access service

is often the target of attackers trying to guess usernames and passwords.

 26

The fake Secure Shell server is a C program emulating the authentication phase of a

SSH server. The attackers can connect to the fake SSH server and try different

combinations of usernames and passwords. This LIH tool is designed to reject all

authentication attempts. As shown in Figure 3, each attempted login name and

password are logged along with the offender IP address and a timestamp.

umd-­‐1;2014-­‐04-­‐09	
 23:56:51;117.27.158.102;X.Y.Z.Z;root;jiahuo1111111	

umd-­‐1;2014-­‐04-­‐09	
 23:56:52;117.27.158.102;X.Y.Z.Z;root;gks	

umd-­‐1;2014-­‐04-­‐09	
 23:56:49;117.27.158.102;X.Y.Z.Z;root;!@#$%^&*(

umd-­‐1;2014-­‐04-­‐09	
 23:56:49;117.27.158.102;X.Y.Z.Z;root;rootrootroot	

umd-­‐1;2014-­‐04-­‐09	
 23:56:51;117.27.158.102;X.Y.Z.Z;root;110120	

Figure 3. SSH brute force attempts logs

3.1.2.4 Honeymole Servers Farm

Honeymole [HON15] is a tunneling program that creates a secure communication

bridge between a Honeymole client and server. This tool allows us to forward the

honeypot traffic from the external organizations to the UMD Honeynet.

The client, hosted on the remote location network and the server, hosted on the UMD

network, captures the required traffic to port the external entity honeypot IP addresses

to the UMD Honeynet.

3.1.3 Datasets

The main switch used on the UMD Honeynet replicates the network traffic of the

whole framework on a special port called a mirroring port. One of Spy’s network

interfaces is connected to this mirroring port allowing it to collect data from the

whole architecture without interacting with the monitored systems.

Spy automatically collects and organizes the following data repositories for each

subnet:

• Raw network traffic

 27

• Network flow records

• Intrusion Detection System (IDS) alerts

In addition to these datasets, Spy maintains a repository of malware and centralizes

the logs of the Secure Shell login attempts. Both of these repositories are collected by

the LIHs introduced in Section 3.1.2.3 of Chapter 3.

3.1.3.1 Raw Network Traffic

Raw network traffic is collected with tcpdump [TCP15], a command line packet

analyzer that uses the libpcap [TCP15] to capture network traffic. A script launches

the tcpdump tool in the background to collect the network traffic in a temporary file.

Every hour, the script stops the network traffic collection, rotates the temporary file

and restarts tcpdump. The newly rotated file is then used to create a new file

containing the network traffic of each experiment deployed on the UMD Honeynet

and each subnet. The rotated file is then given a new name and moved to the network

traffic repository.

3.1.3.2 Network Flow Records

A network flow record summarizes the communication between two network end

points (defined by the IP addresses and port numbers of the end points). Included are

the time, duration, and numbers of bytes and packets, but not the payload information

(i.e., content of the messages transmitted). Figure 4 shows the different components

involved in the collection and storage of network flow records.

The flow exporter fprobe [FPR15] has been setup on Spy to export Netflow version 9

records. The exported flow records are then collected by a flow collector called

nfcapd. nfcapd is part of the nfdump [NFD15] tools, a set of tools that collects and

processes flow data.

 28

Figure 4. Network Flow Records Collection Architecture

The network flow repository is entirely managed by NFSen [NFS15] a web interface

for visualizing the network flow records. NFSen relies on the nfdump tools to

configure and automatically launch the flow collector to organize the repository. It

offers the ability to create profiles. These profiles are used to create different sets of

network flow record files for each subnet and deployed experiment.

3.1.3.3 Network Intrusion Detection System

Snort is a Network Intrusion Detection System (IDS) [ROE99] designed to detect

attacks by monitoring and analyzing the network traffic. IDSs use two methods to

detect malicious traffic: signature-based detection where known malicious behaviors

are described by a set of signatures and anomaly-based detection where heuristic

algorithms are used to determine normal versus anomalous network traffic.

Spy runs two instances of Snort. The live instance updates in real time a database of

Snort events. The second instance is executed every night against the network traffic

collected during the previous 24 hours. A text file of the alerts for each subnet is

generated and archived in a repository.

3.1.3.4 Malware and Secure Shell Repositories

Every night, Spy fetches the malware and the Secure Shell login attempts from the

different LIH hosts of the Honeynet. The malware repository is organized per subnet.

 29

3.1.4 Security and Deployment Policy

Because of the nature of the honeypots, operating them can be a risky activity. The

compromise phase can be part of the honeypot-based experiment design or an

unknown vulnerability can be exploited. An attacker can use one compromised

honeypot to attack some other host on the Internet from a UMD IP address. To

mitigate that risk, two policies ensure that good practices for honeypot deployment

and proper security mechanisms are in place to maintain the network isolation rule.

3.1.4.1 UMD Honeynet Global Security Policy

Table 1 shows the global UMD Honeynet security policy enforced by Honeygate and

the actions taken by the administrators to mitigate the risk of having one honeypot

launching attacks and compromising other systems.

Table 1. UMD Honeynet Global Security Policy

Interaction Likelihood Risk Mitigation Incident Response

Low Low

Physical host must be
hosted on a dedicated
honeypot management
network.

Physical host must use a
private IP within a
dedicated honeypot
management network.

Firewall must block
outgoing traffic from the
physical host IP address

Host Isolation (Block
IP on Honeygate)

Host restoration

High Medium

Outgoing traffic must be
rate limited to avoid
compromises of other
Campus computers and
Internet hosts

Host Isolation
Host restoration

All All

Bandwidth limitation
100Mbit/s
Honeypots cannot reach
UMD Network

Host Isolation
Host Restoration

 30

By default, the various firewalls set up on the main gateway allow all traffic to enter

the UMD Honeynet, but per the security policy, the outgoing traffic is filtered to

avoid network congestion and to block any communication initiated by the honeypots

targeting any network device on campus.

3.1.4.2 Deployment Policy

To maintain attack containment and UMD Honeynet isolation, the deployment policy

tasks the experiment designer with a list of recommendations to implement and

actions to execute before the launch of an experiment.

1) Determine the level of interaction and likelihood of compromise

The level of interaction will greatly influence the risk associated with the experiment.

LIHs are less likely to be compromised, and thus represent a lower risk to operate.

On the other hand, HIHs life cycle often includes a compromise phase where the

attacker gets control of the system. Also, the attackers may exploit a vulnerability in

the architecture and escape their containment area within high interaction honeypots.

2) Determine the risks associated with compromise (experiment-specific risks)

This step is consists of enumerating the possible problems associated with the

experiment and their likelihood of occurrence. For example, Linux computers are

often used to launch SSH brute-force attacks on the Internet after compromise. This

list may evolve over the course of the experiments.

3) Mitigation plan or experiment security policy

The mitigation plan aims to create an experiment-specific security policy to limit all

of the risks or problems previously identified. In the Secure Shell brute-force

example, we can add a firewall rule to limit the outgoing Secure Shell traffic to only

 31

five brute force attempts per minute per target. This would considerably limit the risk

of compromising another Internet host. The mitigation plan or experiment specific

security policy should be applied on both the Honeygate and at the experiment level.

Applying the security policy on Honeygate provides an additional layer of security in

case the protection mechanisms on the experiment are compromised or inactive.

4) Remote management interface

Each honeypot experiment should have a remote management interface connected to

the Honeynet Management network. This is to maintain network isolation and

separate malicious traffic and legitimate administration traffic.

5) Experiment data backup

The data collected by an experiment is considered to be critical and should be stored

in a more secure server separated from the UMD Honeynet.

6) Experiment kill-switch

The experiment design should include a procedure to shutdown the experiment in

case of emergency (testbed out of control).

7) Experiment monitoring and compromise detection mechanism

Details regarding the compromise detection and monitoring of the different

components of the experiment should be included in the design.

8) Obtain approval before launching an experiment

Because of the sensitivity and risks associated with hosting honeypots, all of the

details of the experiment design must be validated by the Division of Information

Technology, Security and Policy Office at the University of Maryland.

 32

3.2 Cybercrime Framework

3.2.1 Introduction

The framework described in this section has been developed to support different

honeypot-based experiments designed to understanding the attackers’ behavior on a

system following a “successful” compromise, i.e., when an attacker gains access to a

honeypot. All the testbeds for this research have been grouped in one framework

providing the core functionalities common to all experiments. Each experiment has

been designed to satisfy the following constraints: 1) the honeypots must offer a

frequently probed and vulnerable point of entry; 2) a large number of honeypots must

be made available to the attackers at the same time; 3) different honeypot

configuration types must be randomly assigned to attackers in order to identify the

impact of the specified treatment condition, i.e. the configuration factor we want to

test upon crime outcomes; 4) relevant data must be collected to characterize the

attacks developed and the crimes committed by the honeypots following the initial

compromise of the honeypot.

Each honeypot-based experiment presents several characteristics such as the level of

interaction, the point of entry, the vulnerability allowing the attacker to enter the

honeypot and the “honey,” the artifact that will make the honeypot attractive to

attackers.

3.2.1.1 Level of Interaction

For the purpose of this experiment we want to study the behavior of the attacker after

a successful compromise. Our honeypot must be “compromised” and provide an

environment as close as possible to a real systems. This can only be achieved with a

 33

high-interaction honeypots, as low-interaction honeypots are not sophisticated enough

to support all of the actions made by an attacker.

3.2.1.2 Point of entry

We need a point of entry that provides remote access to systems. Among the most

commonly probed services on the UMD network, only three provide remote access

functionalities: VNC (TCP/5900), Remote Desktop Protocol (RDP) (TCP/3389) and

Secure Shell Protocol (TCP/22).

VNC or Virtual Network Computing is a tool allowing users to take control of a

remote computer. The user interface, whether it is graphic or text, is displayed on the

user’s remote computer. This protocol would require a video recording of the

attackers’ session to capture all of his or her interactions with the honeypot. Videos

are difficult and burdensome to process and analyze.

Remote Desktop Protocol or RDP provides the same remote access experience as

VNC for Microsoft Operating Systems such as Windows XP or Windows Server

2008. It presents the same drawbacks as VNC.

Secure Shell creates a secured communication channel to establish a connection to a

remote host shell. This protocol is entirely text-based and the interactions are

keystroke-based. The keystroke capture will provide the list of commands executed

on the honeypot. For this experiment, SSH is the chosen point of entry.

3.2.1.3 Vulnerability

A common vulnerability introduced on SSH servers to facilitate the attackers’

honeypot compromise is the weak password. Several studies involving SSH-based

honeypots introduced accounts with commonly attempted usernames and passwords.

This method presents a few limitations:

 34

• Several attackers can “compromise” the honeypots and apart from the IP

address nothing can discriminate them.

• An attacker may come back several weeks later and use the same credentials

to gain access to the honeypot again.

• Depending on their brute-forcing method and the dictionaries used, they may

not find the right credentials.

A better solution is to allow the attacker to access the honeypot after a random

number of attempts and create the “successful” credentials on the compromised

honeypot. This method was selected for our research.

3.2.1.4 “Honey”

Computer resources such as processing power or storage can be also considered as

“honey.” Attackers can use the hard disk space for file sharing purposes. A Linux box

can be turned into a web server and host a fishing website. The processing power that

represents these hosts can be used for attackers to achieve other bigger mischiefs on

the Internet.

3.2.1.5 Datasets

In order to study the attackers’ behavior we need to know all the commands they type

during their SSH sessions. The data collector already captures the raw network traffic

and the network flow records. These two datasets are useful to identify the attacks

launched by the honeypots after their compromise.

3.2.2 Framework Design

To satisfy the different requirements in data collection and design, we developed the

experimental platform shown in Figure 5. This testbed allows us to implement the

SSH vulnerability, the keystroke capture and the security policy.

 35

The study of the attackers’ behavior requires deploying several experiments with a

similar design. Only the “treatment” received by the attackers changes from one

experiment to another. The different treatments are motivated by the respective

research questions inherent to each experiment.

Each Cybercrime experiment uses three different types of hosts: a network gateway, a

collector host and a set of machines, called OVZ hosts. All of these hosts are virtual

machines running on the lab VMware cluster. Because of the specific network

configuration that has to be shared across three different hypervisors, the virtual

machines for the cybercrime projects are hosted on three specific VMware servers.

Figure 5. Experiment Design

The gateway for the system shown in Figure 5 is placed between the Internet and the

other components of the framework, and accepts SSH connections on port TCP/22.

The OVZ hosts run OpenVZ [OVZ15], a lightweight virtualization solution for Linux

systems. OpenVZ allows us to run several honeypots per OVZ host in parallel. The

collector is common to all the cybercrime experiment testbeds. This host centralizes

the collected data and the processing.

 36

3.2.2.1 Collector and Management Host

The cybercrime framework provides an environment that facilitates deployment and

management of the cybercrime experiments. It also provides a consistent way to

collect and process the data generated by the honeypots.

Data collection, processing and storage

The collector host is responsible for centralizing and organizing the data generated by

the different monitoring tools used on the framework.

This host receives:

• The authentication events from all the honeypots

• The key logger traces from all the OVZ hosts

• The honeypot deployments from all the gateways

A Perl script processes the raw data and uploads them in a database on a daily basis.

The data processing script rebuilds the attackers’ sessions on the honeypots from the

Syslog [SYS15], a computer log storage management program, authentication logs

sent by the Honeypots. It also cleans the keystrokes data and matches them with the

attackers’ sessions.

Central Repository

All of the scripts running on the cybercrime framework are stored in a repository on

the collector host. The scripts are automatically distributed to the different

components of all of the experiments. The framework is flexible enough to allow

experiment specific scripts. In addition to the scripts, the configuration files and the

honeypots base images are all stored on the collector host and are all automatically

distributed when necessary.

 37

Monitoring

The collector host also monitors the health of the framework: it makes sure that each

component is online and that all the monitoring tools are operating correctly. A daily

email is generated and sent out to the cybercrime team. It contains information on the

data collected as well as the health of each experiment.

The collector host also runs the website that provides access to the live data and status

of the framework.

Maintenance

The framework provides a set of scripts that performs the daily maintenance

operations of the different components. These operations include the removal of

honeypot containers reaching the end of their lifecycle and the automatic creation of

new containers to allow further honeypot deployments.

3.2.2.2 Network Gateway

The gateway is attached to three different networks. One network interface is

connected directly to the Internet and is configured with the 300 public IP addresses

made available for the honeypots. The second interface is attached to a private

network where all the honeypots containers are connected. The third network is used

for management and data collection purposes. The gateway runs a Linux Ubuntu

12.04 operating system. The Secure Shell server is a custom designed C program

using the libssh [LIB15].

The fake SSH service returns a SSH successful authentication message to the

attackers after a number of brute force attempts. This number is randomly selected

between 100 and 200 at the very first login attempt by the attacker from a specific

honeypot IP address. At this point each attacker is identified by his or her IP address.

 38

When the expected number of attempts is reached, the C program calls an external

script that 1) records the deployment in a database on the collector server, 2)

configures the next available honeypot container with the login credentials that

“successfully” broke into the system, 3) creates a Network Address Translation rule

(NAT) to associate the public IP address targeted with the private IP of the newly

configured honeypot container and, 4) attributes and applies one of the configuration

types of the corresponding experiment. Once the execution of the script is complete,

the Secure Shell server establishes a Secure Shell connection with the newly

configured honeypot and redirects it to the attacker.

This overall sequence of brute-force entry and the resulting procedures discussed

above can collectively be termed as a deployment wherein the intruder is successfully

assigned to a honeypot with a randomly assigned type or treatment condition. The

execution of the script and configuration of the honeypot container only takes a few

seconds. In addition to running the fake SSH server and routing the Internet traffic to

the honeypots, the gateway also limits the attacks targeting other Internet hosts to

prevent their subsequent compromise. This is achieved by rate-limiting the outgoing

traffic on specific protocols and ports. The firewall on the gateway limits:

• SSH scans and brute force attempts;

• UDP datagrams to prevent DoS attacks;

• Web and RDP scans.

3.2.2.3 OpenVZ Hosts

While the gateway manages the traffic and deployment of the honeypots, these

honeypots need to be constructed and directly maintained by additional hosts. As we

 39

wanted to provide a UNIX environment to the attackers, OpenVZ was deployed on

five CentOS 5.4 systems to perform the construction and maintenance tasks necessary

for the honeypots to exist and function as intended. We used the stable release of the

OpenVZ kernel 2.6.18-164.15.1.el5.028stab068.9 for the deployment.

As mentioned previously, OpenVZ is a lightweight virtualization tool for Linux-

based OSs. An OS is fundamentally composed of two main elements: the kernel and

the user space. The kernel controls the computer hardware and provides the

applications executed by the users functions to interact with the hardware. The user

space or application space is where all the users processes and software are executed.

Each virtual machine on VMware or other full virtualization solutions will have

virtual hardware (i.e., CPU, memory, network, hard drive) and will run a complete

operating system with kernel and user space. On the other hand OpenVZ, the host OS

will share its kernel and user space. Each container will be a sub-tree of the host

operating system process list. Each container will have its own file system, but this

file system will be a sub-directory on the host OS file system.

The advantages of OpenVZ are threefold: first, OpenVZ allows running several

lightweight Linux OSs in parallel on a single OVZ host. After stress-testing the OVZ

hosts, we determined that we could easily run up to 60 containers per OVZ host at the

same time. With 5 OVZ hosts, this solution gave the ability to run up to 300

honeypots in parallel. Second, OpenVZ provides the tools to easily adjust the

containers’ configuration including the IP address and the credentials. Moreover, the

OpenVZ virtual network interface does not permit the change of IP address within the

honeypot container. As a consequence, attackers are not able to change the honeypot

 40

IP address following compromised entry. Lastly, attackers cannot interact with other

honeypot containers or with the host OS. The attacker’s actions are restricted to his or

her assigned container. Even with root privileges, each container is isolated from the

other devices within the design and from the host OS running on each OVZ host, but

we can access the containers (honeypots) file systems and process list.

Each container or honeypot is built upon Fedora 12 operating system. Each container

comes with two servers: Apache and Secure Shell Server.

3.2.2.4 Datasets Definition

In addition to the network flow records and the raw network traffic collected by the

data collector, we also gather information relative to the attackers’ Secure Shell

sessions that include the commands typed by the attackers.

Deployments

This dataset contains for each honeypots:

• The deployment timestamp

• The attacker’s IP address

• The country of the attacker based on the IP address

• The origin network number based on the attacker’s IP address

• The targeted public address on the Honeynet network

• The successfully “guessed” login and password

• The honeypot type or treatment number

Session

In the session dataset, it is possible to find all of the Secure Shell sessions for each

honeypot along with the following information:

 41

• The username used by the attacker to access the honeypot

• The login and logout times

• The IP of the attacker

• The country and network of origin of the attacker based on his or her IP

address

Keystrokes

To capture the attackers’ keystrokes, we use a key logger from the Honeynet Project

called Sebek [SBK15]. Sebek is a kernel module that extracts the keystrokes from the

read system call. A modified version of the Sebek module has been deployed on each

of the OVZ hosts. The module has been modified to support OpenVZ and add the

Honeypot ID in the log. The keystroke collection generates two different outputs per

sessions:

• The raw keystrokes (Figure 6)

• The keystrokes processed into lists of commands (Figure 7)

For both datasets, Sebek provides a timestamp, a Virtual Environment ID (VEID)

also known as honeypot (HP) ID and container (CT) ID, the OVZ host IP address, the

user ID, the process ID, the file descriptor and i-node of the standard output, and the

command name. The keystroke output provides an additional timestamp in

microseconds. This timestamp allows us to see the time difference between each

keystroke.

 42

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318193697	
]#w	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318389729	
]#[RETURN]	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318655731	
]#c	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318817674	
]#d	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318859656	
]#	
 	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318925694	
]#/	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319075653	
]#t	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319187660	
]#m	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319375652	
]#p	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319452646	
]#[RETURN]	

	

Figure 6. Sebek Filter Keystrokes Output

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
]#w	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
]#cd	
 /tmp	

	

Figure 7. Sebek Filter Commands Output

3.3 Initial Cybercrime Experiment

The experimental setup shown in Figure 5 is the initial architecture of the cybercrime

framework presented in Section 3.2 of Chapter 3. This experiment was used to collect

the required data for the study in Chapter 4. This architecture contained a standalone

experiment and consisted of one gateway and one OpenVZ host. At the time, the

OVZ host could only handle forty honeypots in parallel. The architecture of the

OpenVZ host is similar to the one presented in Section 3.2 of Chapter 3, however the

 43

design of the SSH gateway was different. The OS was a Linux Ubuntu 9.10 server

installed with modified versions of OpenSSH [OPS15] Secure Shell server, PAM-

MySQL, a module handling user authentication against a MySQL database, NSS-

MySQL, a library providing users information from MySQL database, and a specific

shell provided to attackers when their brute force attack succeeds.

Figure 8. Initial Testbed Design

OpenSSH was modified to reject Secure Shell login attempts on its public IP

addresses until a predefined number of attempts. When this predefined threshold was

reached, OpenSSH skipped password verification, created a new user with the latest

credentials attempted by the attacker and called PAM, which was configured to use

the modified PAM-MySQL module for user verification. The predefined threshold

was randomly selected between 150 and 200. Moreover, to limit the number of

deployed honeypots to three per attacker IP address, the modified version of Secure

Shell server rejected any attempt from an IP address that has already deployed three

honeypots.

PAM-MySQL initial purpose is to verify user credentials using MySQL as backend.

In the modified version, PAM-MySQL created user accounts for attackers and

recorded on a MySQL database user information including: login, password, source

 44

IP address, targeted IP address on the gateway, a user ID and the path of the specific

shell on the gateway which handles the honeypot deployment.

NSS-MySQL is required to read user information from the MySQL database. This

component is required by OpenSSH to access user account information before

granting access to a session. The module was modified to handle conflicting cases of

user entries with a same user login. The distinction between these entries was based

on the targeted IP address of the SSH connection.

Attackers, who had been identified according to their IP addresses, could deploy up to

three honeypots that were configured as follows: The first honeypot (HP1) had no

network limitation, the second one (HP2) had the main IRC port blocked (port 6667,

incoming and outgoing traffic), the third one (HP3) had every port blocked except

HTTP, HTTPS, FTP, DNS, and SSH.

The set of honeypots consisted of three configurations that enforced increasing

network limitations including a first fully functional environment, a second

configuration where only the IRC port is blocked, and a third configuration where

only a few services were allowed (HTTP, HTTPS, FTP, DNS, SSH). Attackers could

compromise these three honeypot configurations incrementally during one month (the

honeypots were backed up and redeployed at the beginning of each month), starting

with the first configuration being deployed on 40 public IP addresses.

 45

3.4 Design Limitations of the Testbed

3.4.1 Honeynet

The UMD Honeynet presents several limitations in term of design. First, even though

the Honeymole allows transparent traffic forwarding, the attacker could detect the

network latency introduced when redirecting traffic to the UMD Honeynet. Second,

not all organizations participating to the UMD Honeynet apply the same security

policy. Some networks will be protected by firewalls or intrusion prevention systems

whereas some others will not have any security. In addition, some organizations do

not allow the deployment of high interaction honeypots.

3.4.2 Cybercrime framework

The design of the cybercrime framework contains several limitations on the studies

presented in the following chapters. First, the OS is Linux. It is not guaranteed that

attackers targeting Windows vulnerabilities will exhibit the same behavior. The point

of entry is limited to Secure Shell. As a consequence, the population of the different

studies will be limited to attackers targeting Unix systems via SSH. In addition, the

use of a modified SSH server granting access to the honeypots after a random number

of attempts between 100 and 200 limits also the population of attackers on our

experiments. To summarize, the honeypots are accessible to attackers targeting

Secure Shell servers running on Unix OS and attempting at least 100 to 200

combinations of username and password during their brute-force attack.

All the honeypots have UMD IP addresses. All the analyses performed using the

datasets introduced before will be limited to one location. Moreover, a dedicated set

of 1500 IP addresses were provided for the experiments. Finally, the configuration

 46

applied to the honeypots should not reveal their nature and should be in line with the

UMD policies and the law.

3.5 Human Subjects Research

The subjects in all the experiments deployed on the UMD Honeynet (that consists of

low and high interaction honeypots) are attackers who cannot be identified. In

addition, it is not possible to determine the exact number of subjects due to the

automated nature of some attacks.

After consulting with the IRB office, it was decided that these experiments did not

need to be covered by an IRB.

 47

Chapter 4 – An Empirical Study to Analyze Attacks and

Attackers

The study presented in this chapter was published in [SAL11]. I co-advised the two

student interns developing the project. My contribution is about 35% for this project.

I performed part of the data analysis and the writing of the result sections requiring

network flow records, IRC traffic and IRC logs analyses.

4.1 Introduction

In this chapter, we present an empirical study to characterize attackers and attacks

against targets of opportunity, i.e. when the victim host happens to be on the Internet

and has been randomly selected. The experimental design used in this study was

deployed on the initial cybercrime testbed described in Section 3.3 of Chapter 3.

4.2 Research Questions and Hypotheses

In this chapter we describe the experiment to study the attackers’ characteristics and

behavior after successful compromise to empirically address the following research

questions:

a) How skilled are the attackers based on the observations of attack sessions?

b) How can we differentiate attackers on a compromised honeypot?

c) What is the purpose of the compromise?

d) Do attackers share the access to their honeypots?

Discerning who is launching computer-focused crimes, i.e., crimes committed on the

Internet, is difficult. We divided the attack process between the initial brute force-

 48

attack against Secure Shell accounts and the intrusion step when the attacker logs in

using the “successfully” guessed username and password. For brute force attacks, we

can only rely on the attacker’s IP address. However, once the attacker logs into the

compromised honeypot, we can also use the keystrokes and the attack types to try to

characterize computer-focused crimes further. We analyzed whether the attacker who

launched the brute force attack is the same attacker as the one who logs in based on

the IP address and whether a single attacker using several IP addresses logs in or

multiple attackers share the same compromised honeypot.

A number of compromised Internet hosts can become part of a bot network launching

crimes. According to [GOE07], these bots may connect to IRC servers to allow the

attackers to control them remotely. Attackers may also set up a backdoor port to

access the compromised machine remotely [LEV03]. We hypothesize that when

blocking IRC and/or backdoors, skilled attackers will attempt to remove the network

restrictions. Therefore, by adding network restrictions, we hypothesize that we will

attract skilled attackers.

To expand our knowledge of attacker profiles, we characterized the attackers’ skills

by introducing a list of ten criteria. We discuss the link between the attacker’s skill

and particular actions including hiding his/her malicious activities, changing the

password or checking for the presence of other users. We also discuss the relationship

between the attacker’s skill and the attacker’s capacity to successfully launch an

attack to commit crimes from the compromised honeypots under different network

restrictions.

 49

To understand why attacks were launched we categorize them into different classes

according to the rogue software installed and exploited. As explain previously, a

number of the honeypots will become a bot and will take part of a network of

compromised hosts called botnet. IRC is the most commonly used protocol to control

the different bots [RAT13]. Therefore we expect the attackers to mainly install IRC-

based bot tools.

Finally, we expect a number of the honeypots to be shared with different attackers. It

is possible that some of the honeypots will be part of an underground market for

compromised hosts [FRA07]. Therefore, we expect the honeypots to be accessed by

different attackers.

4.3 Method

To answer these questions we used the data collected from May 17, 2010 to October

31, 2010 with the experimental design described in Section 3.3 of Chapter 3.

For this study we analyzed network flow records and attackers’ keystrokes processed

into lists of commands, and we use the Honeynet Project’s Honeysnap tool [HON15]

and Wireshark [WIR15] to collect the rogue software installed by the attackers on the

honeypot.

Two analyses were performed on the keystrokes. The first one was to detect copied

and pasted text in attackers’ sessions to show how much attacks are automated. The

second one is an approach to evaluate how many different users exploit the same

honeypot.

To detect copy and pasted, we calculated the average delay between keystrokes for

each command typed. A copy and pasted command is generally performed in two

 50

steps: 1) the user copies and pastes the command in his/her shell, 2) the user hits the

return key to launch the action. We removed the last keystroke interval between the

last keystroke of the command and the return because of a possible excessive delay

that could give the wrong results. To detect these commands containing copy and

pasted text, we use a threshold of 100 milliseconds of average delay interval between

keystrokes. This threshold corresponds to the maximum speed of a skilled typist who

can type up to 120 words per minute (i.e., 10 characters per second). We assumed that

a human being could not go beyond such typing speed.

We noted that attackers often mixed interactive commands and copy and pasted text,

especially when they use long paths or URLs. The attack session shown in Figure 9

illustrates this behavior. Text in italic indicates commands containing copied and

pasted text and recorded average time interval are shown on the left-hand side.

[28	
 µs]	
 	
 cat	
 /usr/share/man/man1/.error	

[>100	
 ms]	
 cat	
 /proc/cpuinfo	

[>100	
 ms]	
 history	
 -­‐c	

[>100	
 ms]	
 w	

[>100	
 ms]	
 ps	
 -­‐x	

[>100	
 ms]	
 cat	
 /proc/cpuinfo	

[42	
 µs]	
 wget	
 http://download.microsoft.com/…	

[>100	
 ms]	
 ls	

[>100	
 ms]	
 rm	
 -­‐rf	
 W2Ksp3.exe	

[>100	
 ms]	
 cd	
 /usr/sbin	

[28	
 µs]	
 	
 wget	
 http://sbebe.110mb.com/img	

Figure 9. Attack Session Commands

4.3.1 Attackers and Crimes Identification

4.3.1.1 Attacker Identification

A critical step to understand the threat landscape is to correctly identify attackers.

Most of the time, an assumption is made by mapping each IP address to a single

attacker. However, it is more realistic to assume that attackers can use multiple IP

addresses to more adequately hide their traces. In order to go beyond this assumption,

 51

we defined multiple indicators to build attacker profiles that we then use to try to

uniquely identify human individuals behind each attack. In addition to the IP address,

these indicators are:

• Attacker AS routing number and attacker’s geographic location: to potentially

detect if an attacker comes from a single ISP that has changed the client IP

address over the time window of our experiment.

• Attacker specific actions: three subcategories are considered.

o Rogue software origin: a same attacker often downloads his/her tool

from a same location while compromising a target.

o Techniques to perform specific actions: for example, attackers who try

to erase their traces can employ multiple commands. However, they

usually use the same method from one attack session to another.

o Files accessed: many attackers install rogue software in hidden or

complex locations. If two sessions access this kind of file, it is usually

a hint about the attacker’s identity.

o Comparison of keystroke profiles that we describe further in the

remainder of this section.

The goal of keystroke analysis is to help differentiate attackers. According to

[SON01], delays due to the network for SSH connections in comparison to delays

between human keystrokes can be neglected. Our analysis of keystrokes is based on

this assumption. Extensive research exists on keystroke profiling [ABU06, MON97,

JOY89]. We considered, in particular, the study presented in [MON97] because it

introduces an approach adapted to our goals, which consists of user authentication

 52

and user recognition by analyzing data collected from various users typing on their

workstations. The approach consists of grouping the recorded text following the most

used syllables in English. Then, the graph of keystroke latencies (i.e., time between

successive keystrokes) and durations (i.e., length of time keys are pressed) as a

function of the syllables reveals the user’s keystroke profile. In our case, we recorded

session keystroke latencies from attackers’ commands that are not copied and pasted

text and we compared the delays of each matching pair of keystrokes between all the

attack sessions recorded on a honeypot.

Our experiment differs from [MON97] because contrary to their experiment where

the authors evaluated the efficiency of recognizing a user through his/her keystrokes,

we don’t know in advance from which user the session keystrokes originates.

Therefore, keystrokes profiles are considered in our experiment as an indicator among

other parameters (IP address, AS number, attacker’s techniques to perform specific

actions, files accessed and rogue software downloaded) to differentiate attackers.

Moreover, contrary to their experiment, the quantity of keystrokes used to perform

the comparison directly depends on the number of commands the attacker typed. In

certain cases the recognition through keystrokes is not possible due to the lack of

recorded keystrokes for a session.

4.3.1.2 Attacker Skill

To assess the attacker’s skill over the entire recorded attack sequence, we discussed

two approaches. The first one consists of asking an analyst to review each attacker

session and to attribute a score. The second one introduces several criteria that

correspond to various actions performed by attackers. We postulate that a variety of

criteria fulfilled by an attacker indicates a relatively higher skill level. As a result, we

 53

compute the skill level as a function of the criteria fulfilled. While the first approach

is subjective, the second may be limited due to the definition of the criteria. We opted

for the second approach because it enables others to easily replicate our experiment.

We developed ten criteria based on four generic questions to evaluate the

competences of the attacker. These questions are:

1) Is the attacker careful about not being seen? The fact that an attacker does not

want to be noticed indicates that the attacker knows that such behavior increases the

chances to maintain access to the target. It also indicates that the attacker knows how

to reduce his/her traces. We identified four approaches in the criteria: erasing the files

that attackers imported on the target from the Internet (Criterion 4, Table 2), deleting

the logs that contain traces of the attacker’s activity (Criterion 1), restoring the logs

not to catch the attention of a user who could notice that the logs are missing

(Criterion 2) and checking the presence of other users during the attack (Criterion 3).

2) Does the attacker pay attention to the environment of the honeypot before

committing a crime? Learning about the compromised host and its environment

(especially the network environment) is often important to carrying out the crime

successfully. Therefore, we created Criterion 5, whether the attacker checks the

environment. In addition, checking the presence of other users (Criterion 3), which is

one of the criteria used to evaluate the attacker’s discretion, also contributes to

answering this question.

3) How familiar is the attacker with the rogue software he/she is using? Some

attackers attempted to use specific rogue software unsuccessfully. For example, a

rogue software having network functionalities that is installed on a target where the

 54

corresponding network port is blocked (Criterion 10) indicates a poor knowledge of

the software or a lack of expertise to detect blocked ports. On the contrary, editing the

configuration file(s) (Criterion 6) before the installation shows that the attacker is

aware of what he/she is doing and is not just reproducing an attack without

understanding it. We can also link to the question the fact that the attacker changed

the system to make the rogue software work (Criterion 7).

4) Is the attacker protecting the compromised honeypot? Even once an attacker

compromises a honeypot, brute force attacks continue to be launched against it. Since

the attacker gained access through a brute force attack, it means that the attacker

account credentials (login and password) are somehow weak. Therefore, we

introduced two criteria to take in account if the attacker was protecting his or her

account, changing the password and creating a new user account (Criteria 8 and 9).

These ten criteria are evaluated with a value between 0 and 1 and summed over the

entire period of the experiment, leading to an overall attacker’ skill level between 0

and 10 for the global attacker’s activity. We are able to identify all the sessions from

a specific attacker through the profile analysis described previously (Section 4.3.1.1).

Table 2 lists the different criteria with their definitions and the method used to

evaluate them.

Criteria 1, 2 and 3 are evaluated using ratios between numbers of sessions involving a

given attacker. More precisely, we take into account whether these actions have been

performed during each session or not, because the corresponding action(s) are more

efficient if they are performed every time the attacker connects to the honeypot. For

example, to be the most efficiently hidden, an attacker needs to hide at each session,

 55

or if the attacker wants to verify who else is using the target, the attacker has to check

the presence of other users at every session. The score for these criteria is the ratio of

the number sessions where the attacker fulfilled the criteria over the total number of

sessions, leading to any number between 0 and 1.

Table 2. Attacker Skills Criteria

Criterion
ID Criteria Name Definition Assessment

1 Hide Deletion of log files or
deactivation of logging

Ratio of the number of sessions where
the attacker hid

2 Restore Deleted
Files Restoration of deleted files Ratio of the number of sessions where

deleted files were restored

3 Check Presence Observation of users Ratio of the number of sessions where
presence has been checked

4 Delete Downloaded
File

Deletion of downloaded
rogue software after usage

0 if downloaded file is not deleted in any
session, 1 otherwise

5 Check System Observation of system
configuration or state

0 if the system has never been checked in
any session, 1 otherwise

6 Edit Configuration
File

Edition of rogue software
configuration file

0 if configuration file is not edited in any
session, 1 otherwise

7 Change System
Modification of system
configuration or state to
have a working attack

0 if the system has never been modified
in any session, 1 otherwise

8 Change Password Change user password 0 if the password was never changed in
any session, 1 otherwise

9 Create New User Creation of new user 0 if no new user is created in any session,
1 otherwise

10 Rogue Software
Adequacy

Adequacy of rogue
software

0 if less than half of the installed rogue
software is adequate, 1 otherwise

Most other criteria (4, 5, 6, 7, 8, and 9) are considered for the global activity of the

attacker. The criterion is evaluated as either 0 or 1, depending if the attacker did the

corresponding action(s) at least once among all sessions. Indeed, these actions do not

need to be performed in each session to give an indication of the attacker’s skill level.

The remaining criterion is the rogue software adequacy (Criterion 10). The idea is to

assess whether the rogue software requirements match the target configuration. For

 56

each rogue software, we know its type from the rogue software analysis (see Section

0) and the honeypot on which it has been run. Depending on the honeypot

configuration, the rogue software is noted as adequate or not. We attribute 1 if more

than half of the attacker’s rogue software is adequate and 0 otherwise. This choice

does not penalize too much an attacker who installed inadequate software, realizes it,

and installs another more adapted one. And gives 0 to an attacker that insisted in

installing several inadequate rogue software.

4.3.1.3 Attack Tools Identification

To identify the tools installed by attackers to commit crimes from the compromised

honeypots, we developed an application in Java that automates a part of the analysis

and stores the results in a database. This application performs two tasks, the static

analysis and the dynamic analysis of a given attack tool.

Information obtained by static analysis includes: the name of the file that was

downloaded on the honeypot (filename), the URL address from where it was

downloaded (url_origin), the IP address corresponding to the URL (ip_origin), the

time of the download (download_time), the session in which the software was

downloaded (session_id), the file type (file_info), the file size (filesize), the number of

files after unpacking if it is an archive (nb_files), the roguesoft_id of other rogue

software already in the database that are similar (matching_files) and finally the files

affected by the rogue software during execution and that were identified to be likely

used as configuration files (configuration_files).

Information obtained by dynamic analysis includes: the ports that are being opened

during an execution of the rogue software (open_ports), the files that are being

 57

accessed (files_open), the log of the network traffic generated (log_iptables), and the

processes created (new_processes).

This dynamic analysis consists of replaying attacker sessions involving the rogue

software in a sandbox identical to the honeypot environment. At this point, human

intervention is required to reproduce the sequence of commands entered by the

attacker after he/she downloaded the rogue software. A full automation of the

execution would have been possible if attackers were not making any mistakes while

typing commands and if keystrokes were perfectly recorded. However, having to

execute rogue software manually helps identify them. Once we have reproduced the

attack, the modifications to the sandbox resulting from the rogue software execution

are saved and analyzed.

The information gathered statically and dynamically is reviewed to identify the type

of rogue software. Ports opened during the execution give information on the protocol

linked to the rogue software acting as a server. If no port has been opened, then this

type of information can be retrieved from the network traffic traces in case the rogue

software was used as a client. The files accessed during execution are usually a

relevant clue to identify a specific type of rogue software. Similarly, a particular

process called during execution can reveal the type of malware.

It can happen that rogue software belongs to several categories (e.g., an archive

containing several pieces of malware). In those cases, by replaying attackers actions,

we only consider the observed usage(s) of the rogue software to determine the

category, or categories, it belongs to.

 58

Different versions of rogue software are identified as distinct rogue software through

the static analysis. However, they will belong to the same category if the dynamic

analysis reveals that the attacker’s purpose while using it was the same.

The same rogue software used with different configurations are also distinguished.

The matching_files field in the static analysis helps identify identical or similar files

used by attackers.

The information gathered during this analysis process about attackers’ tools and their

behavior are stored in a database. This database helps to understand the scope of

attacks. We note that unlike traditional malware analysis services like VirusTotal

[VIR15], our approach is not exclusively based on a comparison with a repository of

already known dangerous files. Running both static and dynamic analyses often

reveals the purpose of the attack tools instead of only giving a general idea about the

dangerousness of the file.

4.4 Results and Analysis

This section first presents overall results, then focuses on the attacks characteristics.

As previously mentioned, three types of honeypots were deployed: HP1 is fully

functional, HP2 has the IRC port blocked for incoming and outgoing traffic, and HP3

has all ports blocked besides HTTP, HTTPS, FTP, DNS, and SSH. Moreover, the

network is configured so that only attackers who gained access to HP1 can reach

HP2, and once access is granted to HP2 attackers can reach HP3.

4.4.1 Results

The experiment was conducted from May 17, 2010 to October 31, 2010. At the

beginning of each month, the honeypots were recycled. During the experiment, 106

 59

honeypots were successfully deployed, 56 HP1, 30 HP2 and 20 HP3. Table 3 shows

the distribution of sessions per honeypot type and the number of computer

compromise sessions (non-empty sessions).

Table 3. Distribution of Session per Honeypot Type

 Number of sessions Number of non-empty
sessions

All honeypots 312 211 (68%)

HP1 160 110 (69%)

HP2 105 74 (70%)

HP3 47 27 (57%)

4.4.2 Attackers’ Origin

We first considered the origin of the attackers by analysing IP addresses related

information: the IP address itself, the AS number related to this IP and the country of

origin.

It has been shown that attackers can be divided in different groups: those who

conduct reconnaissance by brute-force scanning hosts, and those who attempt to

actually gain control of hosts by compromising them [ALA06]. We verified this

statement by comparing the origins of both groups in the case of the SSH experiment.

Figure 10 shows the percentage of attackers who performed brute-force scanning but

who did not compromise the computer (i.e., even if they found the login/password

combination, they didn’t use a shell), the percentage who did both, and the percentage

who only compromised the target (i.e., they knew the login/password combination

and got a shell at the first login attempt). Figure 10.a shows the results when we

assume that a single IP address is associated with a single attacker. Figure 10.b shows

the results when we assume that the attacker could have used another IP address that

belongs to the same organization, identified by its AS number. Both figures confirm

 60

previous results because the majority of attackers are clearly divided into two groups

and only a small fraction of attackers are associated with both brute-force scanning

and compromising hosts.

We also note that these results should be taken with caution because a given attacker

could easily appear to connect from different IP addresses, different AS numbers and

different countries.

Figure 10. IP Addresses (a) and ASN (b) Distributions of Attackers

4.4.3 Attackers’ Characteristics

In this section we introduce the results about attackers’ differentiations and attackers’

skills. Once the attacker has compromised the honeypot, we used keystrokes profiles

and the attackers keystroke logs to characterize the attack.

4.4.3.1 Identifying Attackers Through Keystroke Profile

Once the attacker compromised the target, the interactive shell sessions provide

keystrokes to build profiles and keylogs. We applied a new approach of keystrokes

analysis, discussed in Section 4.3.1.1, to differentiate attackers.

36.7%	

60.8%	

2.5%	

Brute	
 force	
 a4ack	

Computer	
 compromise	

Brute	
 force	
 a4ack	
 and	

computer	
 compromise	

(a)
	

47.1%	

45.7%	

7.1%	

(b)

 61

Figure 11 and Table 4 introduce an example of keystrokes analysis for three sessions

of a given honeypot. According to the IP addresses, the attacks come from the USA

(session 1), Israel (session 2) and Romania (session 3). Figure 11 shows the delays

between pairs of keystrokes as a function of the characters composing the pair.

Values in Table 4 indicate the average delays interval between matching pairs of

keystrokes for the three sessions. The smaller the value is, the closer the profiles are.

In light grey we observe that profiles 1 and 2 are closer than profiles 1 and 3 or 2 and

3 are. Thus, the attacker from session 3 is likely to be different from the attacker in

session 1 and 2.

Figure 11. Time Intervals between Keystrokes for a Sample of Matching Pairs

In this case, further manual analysis of the attackers’ key logs sessions allowed

distinguishing two different attackers: in session 1 and 2 the attacker used identical

rogue software and executed the command “unset	
 HISTFILE” at the beginning of

both sessions whereas no similar actions were performed in session 3.This method

allowed to significantly improve the estimation of the number of attackers for each

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

900000	

O[CR]	
 W[CR]	
 OC	

TI
M
E	

IN
TE
RV

AL
	
 IN

	
 M
IC
RO

	
 S
EC

O
N
DS

	

Keystroke	
 Pairs	

Session	
 1	
 Sessions	
 2	
 Session	
 3	

 62

honeypot. Starting from 73 distinct IP addresses exploiting the honeypots over the

five and a half months, we concluded that these were actually 39 different attackers.

We note that we favored expert judgment over a traditional clustering technique to

analyze those results, because the lack of ground truth prevented us from identifying

correct thresholds to build clusters from the different characteristics reviewed.

Table 4. Table of average keystroke delays

Session ID 1 (USA) 2 (Israel) 3 (Romania)

1 (USA) 0
57.7

(121 matching pairs
of keystrokes)

197.5
(15 matching pairs

of keystrokes)

2 (Israel) X 0
163.8

(20 matching pairs
of keystrokes)

3 (Romania) X X 0

4.4.3.2 Characteristics of Attacker Sessions based on Attacker Skills

Based on the skill ranking technique introduced in Section 4.2, Figure 12 shows the

distribution of attackers’ skill levels from 0 (no skill criterion observed) to 10 (all

skill criteria observed) for the different honeypots. Figure 12 seems to indicate that

the configuration of the honeypot is not linked to the attackers compromising it. This

leads to the conclusion that deploying honeypots with very different configurations

does not ensure the observation of different types of attackers.

Having defined attackers’ skills using ten criteria, we show the percentage of

attackers who conducted each action in Figure 13. We see that more than 90% of the

attackers checked the system and the presence of other users on the target. Almost

80% of the attackers changed the account password. Less than 60% hid their actions.

 63

Figure 12. Distribution of attackers by skill levels

This number is surprising as we expected that one of the attackers’ main goals is to

remain undetected. Less than 60% of the attackers installed correctly rogue software.

Note also that new user accounts are created for only about 15% of the attackers.

10%	

8%	
 8%	

23%	

26%	

10%	

13%	

3%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	
 (Average:	
 5.4)	

All	
 Honeypots	

(a)

7%	
 7%	
 7%	

25%	

36%	

4%	

14%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	

HP1	

(b)

14%	

5%	

9%	

23%	
 23%	

14%	

9%	

5%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	

HP2	

(c)

17%	

67%	

17%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	

HP3	

(d)

 64

Figure 13. Percentages of Attackers Fulfilling Skill Criteria

Most of the attackers used copy and pasted commands in their session. To further

expand the analysis, Figure 14 represents the percentage of copied/pasted commands

by skill level. One can observe that the most advanced attackers are more likely to

paste directly command lines. One might expect that copied and pasted commands

comes from less skilled attackers (a.k.a. script kiddies). However, to limit their

visibility, it makes sense that skilled attackers prepare their attacks and limit the

amount of time on the compromised host launching the crime via the copy and paste

command. However, another interpretation of this result could be that some attackers

59%	

21%	

95%	

79%	

95%	

46%	
 49%	

77%	

15%	

56%	

0%	

20%	

40%	

60%	

80%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Criterion	
 ID	

All	
 Honeypots	

(a)

64%	

18%	

93%	

71%	

93%	

29%	

36%	

82%	

7%	

64%	

0%	

20%	

40%	

60%	

80%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Criterion	
 ID	

HP1	

(b)

41%	

18%	

91%	

77%	
 82%	

45%	

55%	

73%	

18%	

27%	

0%	

20%	

40%	

60%	

80%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Criterion	
 ID	

HP2	

(c)

17%	

100%	

67%	
 67%	

33%	

67%	

0%	

20%	

40%	

60%	

80%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Criterion	
 ID	

HP3	

(d)

 65

are simply using copied and pasted commands to execute a sophisticated attack

without understanding it.

Figure 14. Percentages of Copied/Pasted Commands per Skill Level

To identify what actions are the most representative of the attacker’s skill level, we

calculate the skill distributions for groups of attackers who were observed performing

specific actions. Figure 15 show the distributions for creating a new user (Figure 15.a),

hiding his/her actions (Figure 15.b), changing his or her password (Figure 15.c),

correctly launching rogue software (Figure 15.d) and finally checking the presence of

other users (Figure 15.e).

On Figure 15.a, we clearly notice that the population of attackers that created a new

user has a higher average skill level (7.7) than the entire attacker population average

(5.4) as shown on Figure 12.a. This observation increases our confidence in selecting

“Create new user” as a criterion for the skill level. As shown on Figure 15.b, Figure

15.c and Figure 15.d, similar cases can be observed to a lesser extent for a majority of

the other criteria. However, Figure 15.e shows that the average skill level of attackers

that checked presence (5.5) is very close to the global average. This, as well as the fact

that 95% of the attackers performed this action, shows that this action is performed by

any type of attacker.

3%	

29%	

17%	
 20%	

26%	

40%	

23%	

59%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 	

co
pi
ed

	
 a
nd

	
 p
as
te
d	

co
m
m
an
ds
	

Skill	
 level	

 66

Figure 15. Distributions of Attackers per Skill Level Specific Actions

50%	

33%	

17%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	
 (Average	
 7.7)	

Create	
 New	
 User	

(a)

4%	
 4%	

13%	

39%	

13%	

22%	

4%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

45%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	
 (Average	
 6.3)	

Hide	

(b)

3%	
 3%	

7%	

23%	

30%	

13%	

17%	

3%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	
 (Average	
 6.0)	

Password	
 Change	

(c)

5%	

32%	
 32%	

5%	

23%	

5%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	
 (Average	
 6.2)	

Rogue	
 So\ware	
 Adequacy	

(d)

8%	
 8%	
 8%	

24%	

27%	

8%	

14%	

3%	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Pe
rc
en

ta
ge
	
 o
f	
 a
4
ac
ke
rs
	

Skill	
 level	
 (Average	
 5.5)	

Check	
 Presence	

(e)

 67

4.4.4 Compromise Purpose

This section introduces the results about the third research question that motivated

this study, the compromise purpose. Table 5 presents the list of categories of rogue

software resulting from the analysis described in Section 0. This analysis allowed

concluding on the type of software for 90% of the rogue software collected. The

remaining 10% could not be identified because they could not be correctly extracted

from the network traces, either because of a prematurely stopped download or

because of a broken network trace.

Table 5. Type of file or rogue software used by attackers

IRCbot Software used to enroll a compromised host in a
botnet that uses the IRC protocol to communicate

Bouncer IRC IP address spoofing software for the IRC
protocol

Backdoor Software allowing the attacker to come back on
the host by another means

Scanner IP address or port scanning tool to look for
potential vulnerability(ies)

Attack tools File(s) download by the attacker to assist him or
her during the attack (File editor, hiding script…)

Flooder Software used to flood other IP address(es) with
a large volume of packets (denial of service)

Privilege escalation Tool to try to gain root privileges on the host

Download testing
files

Big files used by attacker to test the speed of the
Internet connection of the host

Library Libraries added by attackers to make other rogue
software work.

VoIP exploit Tool to exploit vulnerabilities in VoIP software

Audio server Server to stream Internet radios

 68

We observe that this list contains many categories that were expected based on the

results found in [BER09], including IRC bots and IRC bouncers. In addition, we

found some unexpected software, including a server for audio streaming.

By replaying every attack in a sandbox, we were able to gain an understanding of the

compromise purpose. In Figure 16, we see that installing IRC bot and IRC bouncers

are still the most frequently occurring software categories. It is also interesting that the

third most common software was for attackers to test the network bandwidth or the

connectivity by downloading test files.

Figure 16. Number of Downloaded Files per Category and Honeypot Type

In order to compare the rogue software installed per honeypot type, we regrouped

them into two groups as shown in Table 6:

• Coordination tools: This group includes IRCbot, bouncer IRC and backdoor

• The attack tools: This group includes the other rogue software categories

shown in Table 6 (besides “Audio server” and “Unidentified”).

27	

8	
 8	

6	

10	

1	

3	

12	

1	
 2	

8	

14	
 15	

4	

1	

5	

1	

5	

1	

4	
 3	
 3	

1	
 2	
 1	

0	

5	

10	

15	

20	

25	

30	

N
um

be
r	
 o

f	
 r
og
ue

	
 so
,
w
ar
e	

Rogue	
 so,ware	
 category	

HP1	

HP2	

HP3	

 69

Using these two groups we applied a χ-square test to compare the differences in the

number of rogue software downloads between the honeypot types HP1 and HP2. The

low number of rogue software installed on honeypot type HP3 did not permit us to

include it in this analysis.

Table 6. Rogue software groups per honeypot types

Software group HP1 HP2 HP3

Coordination Tools 43 33 3

Attack Tools 35 12 6

With a p-value of 0.045, the χ-square test shows that the number of downloaded

rogue software, for the two considered groups, is not independent of the type of

honeypot (when considering HP1 and HP2).

One of the goals of our experiment was to study the attacker’s behavior over a long

period of time. The attackers retain access to their honeypot for up to one month. It

allowed us to observe the time intervals between sessions occuring on a same

honeypot after the initial deployment triggered by a successful brute-force attack. We

found that on average, attackers exploit the brute-forced host after 12 hours.

However, for 30% of the honeypots, the fourth attack session occurred, on average,

13 days after the deployment. This result is important to justify the extended period of

time that we allocated to honeypot exploitation. Limiting honeypot life time to 24

hours [BER09, RAM07] would have significantly reduced the scope of our data

collection. We also noted that the first session corresponds to the installation and the

execution of a malicious program for 39% of the honeypots studied.

 70

Figure 17. Average Time between Sessions and Number of Honeypots

Another objective was to be able to determine whether or not and how often

compromised hosts are shared among attackers. For the 60 honeypots that were

targeted by the 39 attackers identified in Section 4.4.3, 20% of them shared

honeypots. Nine honeypots (15%) were exploited by more than one attacker. We

found that seven honeypots had been exploited by two different attackers, one

honeypot by three different attackers and one honeypot by five different attackers.

This raises the important issue about how the access to honeypots was shared and

why. Even though 77% of the attackers changed the password, 15% shared the access

with at least one other attacker.

Figure 18 shows the timeline of activity for eight of the nine honeypots that were

shared. Each diamond on Figure 18 represents a session and each shade of grey a

unique attacker. These eight honeypots present the particularity of all having an IRC

bot installed during their lifetime. IRC logs were analyzed from these bots in order to

evaluate the influence of IRC as a vector of transmission of honeypots credentials.

0.5	

3.1	

8.8	

13.2	

17.8	

19.4	

20.9	

26.8	

31.0	
 54	

45	

25	

18	

14	

11	
 10	
 9	
 7	

0	

10	

20	

30	

40	

50	

60	

0	

5	

10	

15	

20	

25	

30	

35	

1st	
 2nd	
 3rd	
 4th	
 5th	
 6th	
 7th	
 8th	
 9th	

N
um

be
r	
 o

f	
 h
on

ey
po

ts
	

Ti
m
e	

(D
ay
s)
	

Session	
 order	

Time	
 a\er	
 the	
 deployment	
 Number	
 of	
 honeypots	
 where	
 a	
 ith	
 session	
 occurred	

 71

We discovered that five of the eight honeypots used two identical IRC servers. We

also found credential information being shared on IRC channels.

These results are important to show that attackers seem to be organized to

compromise and exploit honeypots. However, we note that we observed this type of

shared access for only a minority of honeypots.

Figure 18. Timeline of Attacker Access to the Shared Honeypots

4.5 Limitations

The limitations of the experiment are the following. First, since the attackers and

computer-focused crimes evolve, we expect these results will change over time.

Second, we have only looked at an SSH entry point with different network

configurations. We will need to consider other entry points as well as other

configurations to assess how attackers react to them (e.g., large disk space).

 72

Third, our empirical results cover a single organization. While we do not believe that

the location will have had a significant impact on our results since these are targets of

opportunity that were found using automated tools to gain access, it would be

interesting to replicate our experiment in other organizations to compare the results.

Fourth, the keystroke analysis technique assumes that the path followed by the

packets carrying attacker’s commands is static and does not change over the course of

the attacker sessions. We believe this assumption holds for the majority of attackers,

but it would be interesting to validate it.

Fifth, the experimental setup constrained the honeypots to be reset at the beginning of

each month. This may have cut off attacks occurring towards the end of the month.

Furthermore, the honeypots types (HP1, HP2 and HP3) were not assigned randomly.

A better design would randomly allocate a honeypot type every time an attacker

obtains a honeypot.

Sixth, we are not sure attackers perceived the network restrictions and tried to correct

them in order to set up their backdoor or IRC bot.

Lastly, the number of sessions and honeypots deployed are too low to draw many

strong conclusions from this study.

4.6 Conclusions

An empirical research study was conducted in order to gain insights on attackers and

the type of crimes launched from the honeypots. The experiment focused on targets of

opportunity where attackers face targets with different network capabilities. We

introduced novel approaches to characterize the attacker and the attack. In particular,

we discussed how to use keystrokes profiles analysis and attacker behavior to have

 73

strong evidence that attackers are different. We also introduced criteria to assess

attackers’ skills. We used a variety of different data to conduct our analysis: IP

address, AS routing number, network traffic, key logs, keystrokes profile, attack

sequence, and rogue software downloaded.

We found that the main motivation behind the compromise was to install IRC-based

botnets. We collected evidence to show that 15% of attackers shared honeypot access

with at least one other attacker. This represents nine honeypots, seven of which had

their password changed. This reveals that attackers appear to be organized and share

credentials. Changing password was a frequent action for attackers (77% of attackers

updated the target computer password). Only skilled attackers created a new user

account, but most attackers checked the presence of other users. We also noticed that

the configuration of the compromised honeypot did not seem to impact the type of

attacker attacking it.

 74

Chapter 5 – Are Computer Focused Crimes Impacted by

System Configurations?

The study presented in this chapter was published in [SOB12]. It marked the

beginning of a collaboration with faculty and students of the Criminology and

Criminal Justice Department at the University of Maryland.

5.1 Introduction

In Chapter 4, we listed the assessment of the attackers’ reaction to honeypot

configuration changes as future work. The experimental setup of the study described

in this chapter provides different honeypot configurations. Several limitations were

raised concerning the experimental design of the work described in Section 3.2 of

Chapter 3:

• Attackers were assigned a honeypot configuration sequentially (HP1 for the

first honeypot deployed, HP2 for the second and HP3 for the third). A better

design would employ randomization of the honeypot configuration.

• The number of honeypots was too low in order to perform a strong statistical

analysis.

• Not all the attackers had access to their honeypot(s) for 30 days since the

honeypots were recycled at the beginning of every month.

To address these limitations, the experiment used to collect the data was built using

the cybercrime framework described in Chapter 3.

 75

More specifically, we concentrated on crimes committed by attackers who gain

access by finding the correct combination username/password on SSH to a computer

running UNIX. Once an attacker has access to the computer, he/she can build the

attack over a period of 30 days. We focused specifically on the crime(s) the attacker

commits, i.e., the attacks launched from the computer the attacker gained access to

towards any external computer.

5.2 Research Questions and Hypotheses

In this chapter we discuss computer-focused crimes and address the following

research questions:

a) Does the computer configuration impact whether the crime is destructive or

not?

b) Does the computer configuration impact whether the target is of choice or

opportunity?

c) Does the computer configuration impact whether the attack is coordinated or

not?

Network flow records and attackers’ keystrokes were used for this study. Network

flow records helped identify the difference crimes committed by the attackers.

Keystrokes, processed into lists of commands, were used to identify the attackers’

actions. Details on these data were provided in Section 3.2.2.4 of Chapter 3.

Many dimensions of a computer-focused crime can be studied. The focus is on three

specific dimensions: 1) whether the crime was destructive or not, 2) whether the

victim of the crime was a target of choice or a target of opportunity, and 3) whether

the attack was coordinated or not. Flooding attacks are characterized as destructive,

 76

while scanning activity or brute force attacks are non-destructive. Flooding attacks

and phishing campaigns are examples of targets of choice. Scanning activity or brute

force attacks can be considered as targets of opportunity. Coordinated attacks can be

identified by the exchange of some IRC communication before or during the attack.

This study is divided into two parts. First, we assess the effectiveness of a warning

banner in deterring the attackers to launch crimes. More specifically the warning

banner from the NIST 800-53’s system use notification control (AC-8)

recommendation.

Deterrence is based on the fear of threat punishment refraining a criminal to engage in

a criminal activity [CUS93, GIB75, PAT87]. Criminal activities involving computer

misuse are punished by the Computer Fraud and Abuse Act of 1986 up to 10 years of

imprisonment [KER09]. According to [GEE75], deterrence effectiveness depends on

the communication mechanism used to inform the offenders of potential detection

and punishment. Studies on such mechanisms showed warning signs are an efficient

way to carry the deterrence message [CLA97, CUS93]. Mixed results have been

observed in the physical world on the deterrent effect of warning signs. A study on

unsafe driving indicated that they were effective [RAM00] whereas in [GRE85], they

had no effect on cable television signal theft. Several theoretical studies argued on the

effectiveness of warning on the Internet. Because of anonymity of the Internet

prevents the authorities to identify, locate and prosecute authors of crimes, the

deterrence has less effect [BLA01, HAR96]. However, authors of crimes do not have

to be identifiable for the deterrence to work [GOO10] as they exhibit a rational

decision-making process during attack sessions [PNG09].

 77

Because of their rational decision-making process that could prevent them from

engaging in criminal online activities [PNG09], the possible effectiveness of

deterrence on the Internet and the effect of warning signs in the physical work, we

hypothesize that attackers will be deterred by the standard NIST banner and as a

consequence discouraged from launching crimes from the honeypots.

Another goal of this study is to empirically assess whether the configuration of the

computer compromised by the attacker impacts the type of crime committed. Authors

in [CHA11] demonstrated that malicious activities on a computer could be detected

by monitoring abnormal resources usage when the user is away from his/her

computer. With this study we determine that CPU, network and disk access are

computer resources used by malicious software. Since all the instructions interpreted

by the CPU reside in the main memory of the computer, all programs executed by a

system will reside in memory at some point [COL03], it is safe to assume that

malicious activities use memory as well. Not all crimes require the same computer

resources; we hypothesize that attackers will launch different attacks depending on

the available system resources (disk, memory and bandwidth).

To explore the two different hypotheses, we will consider the following computer

configurations: 1) whether a warning message was provided to the attacker when

he/she gained access to the target computer, 2) the size of the hard drive, 3) the size

of the memory, and 4) the size of the bandwidth. For each of these configurations we

will study the number of crimes that are (non)-destructive, attacks that are (non)-

coordinated, and victims that are targets of choice/opportunity.

 78

5.3 Experimental Design

To answer these questions we used the data collected from October 10, 2011 to April

30, 2012.

Attackers, who have been identified according to their IP addresses, are randomly

attributed one of the sixteen honeypots configurations introduced in Table 7. These

configurations combine:

• Low (512 Mbytes) and high (2.25Gbytes) memory space,

• Low (5 Gbytes) and high (30 Gbytes) disk space,

• Low (128 Kbits/s) and high (512 Kbits/s) bandwidth,

• Banner or no banner displayed after a successful SSH login (see Figure 19).

Table 7. Honeypots Configuration

Configuration Memory Disk Space Bandwidth Banner

1 High High High No Banner
2 Low High High No Banner
3 High Low High No Banner
4 Low Low High No Banner
5 High High Low No Banner
6 Low High Low No Banner
7 High Low Low No Banner
8 Low Low Low No Banner
9 High High High Banner

10 Low High High Banner
11 High Low High Banner
12 Low Low High Banner
13 High High Low Banner
14 Low High Low Banner
15 High Low Low Banner
16 Low Low Low Banner

 79

At the time of the design of this experiment, the low and high values were chosen to

reflect a computer with limited hardware resources that could impact the execution or

download of programs vs. a powerful machine that will permit fast Internet access

and execution of memory and disk consuming programs.

Figure 19. Banner Displayed

5.4 Results

The results come from data collected during the period of October 10, 2011 to April

30, 2012. A total of 939 honeypots were deployed. Figure 20 shows the distribution

of the number of each honeypot type deployed.

 80

Figure 20. Number of Deployed Honeypots

5.4.1 Analysis of Number of Crimes per Honeypot Type

This chapter focuses on the committed crimes, i.e., attacks launched from the

honeypots to some external computer. Specifically, an attacker commits a crime using

the compromised honeypot when communicating in a particular way with some

targets outside the organization network. These communication patterns are shown in

the network flow records, different patterns characterizing different crimes. The

period of time during which we see these patterns defines the crime. A total of 245

crimes (i.e., attacks launched from honeypots towards external computers) were

committed, representing an average of 0.261 crimes per honeypot deployed,

reflecting in fact a large disparity of the number of committed crimes per honeypot.

We found that most honeypots contained one crime (15 honeypots) or two crimes (8

honeypots). We also found three honeypots launched respectively 26, 43 and 83

crimes. Figure 21 shows the distribution of the number of honeypots on which were

observed a given number of crimes. As expected, we also found some disparity of the

number of crimes per type of honeypot deployed as shown in Figure 22.

0	

10	

20	

30	

40	

50	

60	

70	

80	

Type	

1	

Type	

2	

Type	

3	

Type	

4	

Type	

5	

Type	

6	

Type	

7	

Type	

8	

Type	

9	

Type	

10	

Type	

11	

Type	

12	

Type	

13	

Type	

14	

Type	

15	

Type	

16	

N
um

be
r	
 o

f	
 H
on

ey
po

ts
	

Honeypot	
 Type	

 81

Figure 21. Number of Honeypots and Number of Crimes

Figure 22. Number of Crimes per Honeypot Type

If we calculate the crime rate (i.e., number of crimes observed divided by the number

of honeypots deployed) per 100 honeypots deployed for each honeypot configuration

with and without a warning banner, we obtain the results shown in Table 8.

Among the six highest crime rates, three include a warning banner and three do not

include one. The highest rate does not include a warning banner but the second one

does. Four out of the top six highest crime rates and three out of the four top ones are

linked to a high bandwidth. The same applies to high disk space. Among the six

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	
 2	
 3	
 4	
 6	
 7	
 8	
 9	
 12	
 26	
 43	
 83	

N
um

be
r	
 o

f	
 h
on

ey
po

ts
	

Number	
 of	
 crimes	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

N
um

be
r	
 o

f	
 c
rim

es
	

Honeypot	
 type	

 82

highest rates, four are linked to low memory size. But among the four highest ones,

only two are linked to low memory size.

Table 8. Crime Rate per Honeypot Type

Memory Disk Space Bandwidth Warning No Warning

High High High 7.14 131.75

Low High High 79.71 4.35

High Low High 4.41 40.00

Low Low High 34.29 0.00

High High Low 0.00 3.39

Low High Low 51.47 21.05

High Low Low 0.00 1.49

Low Low Low 0.00 4.41

5.4.2 Classification of Observed Crimes

The 245 observed crimes can be classified into the following five main groups.

C1: Reconnaissance activities (68 instances on 23 honeypots): The attacker

downloaded and launched a tool scanning wide ranges of IP addresses to discover

specific services such as Secure Shell Servers (SSH). During our investigations we

discovered that Web and SSH services were particularly targeted. Each packet has a

different source port. However, the destination port is always the same. The network

flow pattern is also characterized by the TCP SYN flag [GAD08].

C2: Flooding attacks (161 instances on 15 honeypots): The attacker downloaded

and launched a tool generating a large amount of User Datagram Protocol (UDP)

packets towards one specific IP address [XU09]. We observed two types of UDP

flooding attacks. Different source and destination ports for each packet, and a large

 83

number of packets and bytes sent characterize the first type. The second type is

characterized by a random high number as source port and the port number of well-

known services including SSH (22), DNS (53) and web (80). During the whole

attack, packets are sent using the same source port to the same destination port. A

simple aggregation of the network flows summarizes this activity in one line. The

attack is less visible than the first type where millions of records will be shown for an

equivalent attack.

C3: Brute force attacks (5 instances on 2 honeypots): A brute force attack consists

in guessing the credentials of an already known service. Several short connections to

the targeted service characterize this attack [ALS07]. We detect a brute force attack

when we identify several flows with different source ports, the same destination IP

address and port, and the TCP flags SYN, FIN and RESET.

C4: Phishing attacks (4 instances on 4 honeypots): Few honeypots have been setup

to host fishing websites to steal credentials or other personal information by providing

a fake website which looks almost exactly like the legitimate one [IRA08]. A

phishing website is coordinated with emails to attract the users to the trap. In addition

to the network flows, for phishing attacks, keystrokes logs were analyzed to detect the

modification and installation of a phishing website.

C5: SPAM Sender (7 instances on 2 honeypots): The attacker downloaded and

launched a tool sending unwanted electronic messages [DHI07]. When unsolicited

mails are sent, the network flows show high volume of bytes exchanged between mail

servers and the honeypots.

 84

Applying a criminological approach, we will examine in more details three aspects of

the crime:

• Whether the crime was destructive or not,

• Whether the crime focused on a target of choice or opportunity,

• Whether the attack was coordinated or not.

We now need to classify the five attack types we have observed based on the crime

aspects discussed in this chapter: level of destructiveness, target of

choice/opportunity, and coordinated/non-coordinated attack.

5.4.3 Destructiveness

Destructiveness indicates the potential damage that can occur for the victim. The

different attacks have been classified depending on their level of destructiveness.

Reconnaissance activities (C1) are not destructive since only one probe packet is sent

to a server to determine whether the port is open or not. It is the interest of the

attacker to keep the service running since it might be used to gain access to the

targeted system later.

Flooding attacks (C2) are typically destructive. The large volume of UDP packets can

affect the targeted system as well as the network equipment. The damages can cause a

single computer or an entire network to go down.

The login attempts associated to the brute force attack (C3) are not causing any

damage to the system. This malicious activity is considered to be non-destructive.

The objective is to access a system using a specific service. This service has to be

running if the attacker wants to take advantage of it.

 85

A phishing attack (C4) resulting in the deployment of a website is also non-

destructive. It aims at collecting users’ information.

A SPAM campaign (C5) can quickly overload a mail server. The attackers want to

target as many users as possible. It is not in their interest to interrupt the mail delivery

of their phishing or commercial messages. Thus this attack is not considered as

destructive in this study.

5.4.4 Target of Choice or Opportunity

A target of opportunity is a system that happens to be within a wide range of targets.

A target of choice is a particular system or network selected by the attacker.

Reconnaissance activities (C1) are generally observed on wide ranges of IP addresses.

The program probing for open ports is usually given entire subnets to analyze

targeting several systems and organizations. A brute force attack (C3) often comes

after the reconnaissance phase. It uses the results of the scan to determine which hosts

to target. Thus, victims of brute force attacks can also be considered to be targets of

opportunity.

The victims of UDP flood attacks (C2) can be classified as targets of choice. These

attacks only target one specific IP address. The victims of phishing websites (C4) and

SPAM campaigns (C5) are also targets of choice. Phishing attacks target one specific

organization including banks, mail providers and their customers. Such an attack

requires specific knowledge about the organization to deceive its users and obtain

credentials. SPAM campaigns, which are either advertising a phishing website or a

product, are targeting specific categories of people.

 86

5.4.5 Coordinated/Non-Coordinated Attack

Finding out whether an attack is coordinated is more complicated. We define a

coordinated attack when several other hosts are contributing to the same attack. Even

though this cannot be determined with certainty, it is possible to identify the

honeypots generating Internet Relay Chat (IRC) traffic. IRC is known to be used by

Botnet to command and control several compromised hosts [ZHU07]. We postulate

that any crime for which we observe IRC traffic right before the start of the crime or

during the crime provides evidence of a coordinated attack. On the contrary to levels

of destructiveness and targets of choice/opportunity, we cannot systematically link a

type of crime to a coordinated/non-coordinated attack. A detailed analysis of each

crime is needed.

Table 9 summarizes the crimes observed to the levels of destructiveness and whether

the victim is a target of choice or opportunity.

Table 9. Characterization of Observed Crimes

Crime Destructiveness Target Choice/Opportunity

Reconnaissance No Opportunity

Flooding Attacks Yes Choice

Brute force No Opportunity

Phishing Website No Choice

SPAM No Choice

5.5 Warning Banner Impact Analysis

We investigated the impact of the warning banner on the destructiveness of the crime,

the type of victim (choice or opportunity) and the type of attack (coordinated or not).

 87

5.5.1 Does the Warning Banner Impact Whether the Crime is Destructive or

Not?

In the previous section, we categorized the 245 observed crimes into destructive and

non-destructive crimes. In this section, we analyze whether the level of

destructiveness is linked to the warning banner.

Table 10 shows the number of destructive and non-destructive crimes observed for

the honeypot configurations with a warning banner and without a warning banner.

Table 10. Computer Configuration vs. Level of Destructiveness

 Destructive Non-Destructive

Warning 65 56

No Warning 96 28

For each computer configuration, we apply a χ-square test to see whether the warning

banner impacts whether the crime is destructive or not. We find a P-value of 9.3E-5.

So we reject the hypothesis of independence. We conclude that the existence of the

warning banner and whether the crime is destructive are not independent.

5.5.2 Does the Warning Banner Impact Whether the Target is of Choice or

Opportunity?

In this section, we analyze whether the victim is a target of opportunity or choice is

linked to the warning banner.

Table 11 shows the number of observed crimes where the victim is a target of

opportunity or choice for honeypots with a warning banner and without a warning

banner.

 88

Table 11. Computer Configuration vs. Target of Choice/Opportunity

 Opportunity Choice

Warning 47 74

No Warning 26 98

We apply a χ-square test to see whether the warning banner impacts whether the

victim is a target of opportunity or choice. We find a P-value of 2.2E-3. So we reject

the hypothesis of independence. We conclude that the existence of the warning

banner and whether the victim is a target of opportunity or choice are not

independent.

5.5.3 Does the Warning Banner Impact Whether the Attack is Coordinated or

Not?

In this section, we analyze whether the attack is coordinated or not is linked to the

existence of a warning banner.

Table 12 shows the number of crimes observed where the attack is coordinated or not

for the honeypot configurations with a warning banner and without a warning banner.

Table 12. Computer Configuration vs. Coordinated/Non-Coordinated Attack

 Coordinated Non-Coordinated

Warning 70 51

No Warning 39 85

We apply a χ-square test to see whether the warning banner impacts whether the

attack is coordinated or not. We find a P-value of 3.22E-5. So we can reject the

hypothesis of independence. We conclude that the existence of the warning banner

and whether the attack is coordinated or not are not independent.

 89

5.6 Computer Resources Impact Analysis

In this section we investigate the impact of the computer configuration on the

destructiveness of the crime, the type of victim (choice or opportunity) and the type

of attack (coordinated or not).

5.6.1 Do The Computer Resources Impact Whether the Crime is Destructive or

Not?

In the previous section we categorized the 245 observed crimes into destructive and

non-destructive crimes. In this section, we analyze whether the level of

destructiveness is linked to the computer resources.

Table 13 shows the number of observed destructive and non-destructive crimes for

each of the computer resources configuration: low/high memory size, low/high disk

space, and low/high bandwidth.

Table 13. Computer Configuration vs. Level of Destructiveness

 Destructive Non-Destructive

Low Memory 89 24

High Memory 72 60

Low Disk Space 69 60

High Disk Space 92 24

Low Bandwidth 28 46

High Bandwidth 133 38

For each computer configuration option, we apply a χ-square test to see whether the

computer configuration impacts whether the crime is destructive or not. For each

case, we find a P-value between 6.9E-05 (low/high memory size) and 1.5E-09

 90

(low/high bandwidth). So in all cases we reject the hypothesis of independence. We

conclude that the computer configuration (for the considered values of memory sizes,

disk space and bandwidth) and whether the crime is destructive are not independent.

5.6.2 Does The Computer Configuration Impact Whether the Target is of

Choice or Opportunity?

In this section, we analyze whether the victim is a target of opportunity or choice is

linked to the computer resources.

Table 14 shows the number of observed crimes where the victim is a target of

opportunity or choice for each of the computer resources configurations: low/high

memory size, low/high disk space, and low/high bandwidth.

Table 14. Computer Configuration vs. Target of Choice/Opportunity

 Opportunity Choice

Low Memory 24 89

High Memory 49 83

Low Disk Space 51 78

High Disk Space 22 94

Low Bandwidth 42 32

High Bandwidth 31 140

For each computer configuration option, we apply a χ-square test to see whether the

computer configuration impacts whether the victim is a target of opportunity or

choice. For each case, we find a P-value between 0.0067 (low/high memory size) and

1.3E-09 (low/high bandwidth). So in all cases we reject the hypothesis of

independence. We conclude that the computer configuration (for the considered

 91

values of memory size, disk space and bandwidth) and whether the victim is a target

of opportunity or choice are not independent.

5.6.3 Does The Computer Configuration Impact Whether The Attack is

Coordinated or Not?

In this section, we analyze whether the attacks is coordinated or not is linked to the

computer resources.

Table 15 shows the number of observed crimes where the attack is coordinated or not

for each of the computer configurations: low/high memory size, low/high disk space,

and low/high bandwidth.

Table 15. Computer Configuration vs. Coordinated/Non-Coordinated Attack

 Coordinated Non-Coordinated

Low Memory 31 82

High Memory 78 54

Low Disk Space 76 53

High Disk Space 33 83

Low Bandwidth 27 47

High Bandwidth 82 89

For each computer configuration option, we apply a χ-square test to see whether the

computer configuration impacts whether the attack is coordinated or not. We found a

P-value of 0.09 corresponding to low/high bandwidth. The other P-value were 1.7E-

07 and 6.7E-07, respectively for low/high disk space and low/high memory size. So

we cannot reject the hypothesis of independence for bandwidth size. However, in the

other cases, we can reject the hypothesis of independence. We conclude that the

 92

computer configuration (for the considered values of memory size and disk space)

and whether the attack is coordinated or not are not independent.

5.7 Discussion

The different empirical studies led to the following conclusions:

1. The existence of the warning banner and 1) whether the crime is destructive,

2) whether the victim is a target of opportunity or choice, and 3) whether the

attack is coordinated or not, are not independent.

2. The computer configuration (for the considered values of memory size, disk

space and bandwidth) and 1) whether the crime is destructive and 2) whether

the victim is a target of opportunity or choice, are not independent.

3. The computer configuration (for the considered values of memory size and

disk space) and whether the attack is coordinated or not are not independent.

Even though it might seem counter-intuitive that warning banners have no dissuasive

effect on the crimes, i.e., attacks launched from the honeypots towards external

computers, one explanation might be that attackers who are committing a crime still

decided to engage in crimes despites the warning banner. More precisely, these

attackers appear to have decided to ignore the banner and downloaded their attack

tools, and deployed the attack and finally launched it. So, if banners do not have an

effect on the crimes, we might expect them to have an effect on the attacks. Some

attackers who would have been tempted to launch an attack might rethink this and

stop the attack. Such behavior has been confirmed in another study on the deterrent

 93

effect of the warning banner, published in [MAI14], where we showed that when

looking at the attack sessions, the warning banner does reduce their duration.

The result regarding high bandwidth was expected. These results confirm that

attackers are indeed searching for bandwidth. The fact that low disk space favors non-

destructive crimes should be understood as non-destructives crimes being committed

independently on the disk space.

The results regarding the memory size are more intriguing. We should not conclude

that attackers are interested in low memory size. Instead these results show that

attackers are much more interested by bandwidth and disk space than they are by

memory size.

This chapter presents some empirically driven conclusions that help to identify the

attack threat. Additional studies are needed to revisit/confirm the conclusions we

found.

5.8 Limitations

One limitation of this study is the location of the data collected. The dataset was

obtained by honeypots deployed at the University of Maryland. It is important to

replicate these experiments at different locations and at different times.

A time period of 30 days was provided to attackers for developing and launching their

attacks. A study should focus on this duration and its impact on the observed crimes.

The honeypots did not contain specific “honey” to attract attackers. They were basic

computers with various configurations of disk space, bandwidth and memory size. A

study including different types of “honey” would be interesting to see whether similar

conclusions can be derived.

 94

Attackers gained access to the honeypots using SSH as an entry point. Providing such

entry point might favor particular attackers and attacks. It would be interesting to

compare the results we obtained with outcomes of studies that provided other access

points to attackers.

The warning banner also presents several limitations. We have no guarantee that

attackers read the warning banner or understood it since the message displayed is in

English. Attackers from non-English speaking countries may not understand the

message announcing the punishment threat. In order to prevent the attackers from

detecting the nature of the compromised hosts, the honeypots behavior should be

close to a regular UMD operated system. The means to convey the warning, i.e. the

banner following the NIST recommendation 800-53, was chosen based on the UMD

policy and not reveal the nature of the honeypots. For example, a banner announcing

counter attack threats would be against the UMD policy, unlawful and suspicious.

The present study does not provide any insight on the attacker. We concede that we

cannot guarantee that each attacker using the framework is human. Conversely, we

cannot guarantee that each attacker using the framework is an automated bot.

5.9 Conclusions

This chapter focused on three specific dimensions of computer focused crimes: 1)

whether the crime was destructive or not, 2) whether the victim of the crime was a

target of choice or a target of opportunity, and 3) whether the attack was coordinated

or not. We empirically assessed whether the configuration of the computer

compromised by the attacker impacts the type of crime committed. We considered the

following computer configurations: 1) whether a warning message was provided to

 95

the attacker when he/she gained access to the target computer, 2) the size of the hard

drive, 3) the size of the memory, and 4) the size of the bandwidth. For each of these

configurations, we studied the number of crimes that are (non)-destructive, attacks

that are (non)-coordinated, and victims that are targets of choice/opportunity.

The three empirical studies led to the following conclusions.

1. The existence of the warning banner and 1) whether the crime is destructive,

2) whether the victim is a target of opportunity or choice, and 3) whether the

attack is coordinated or not, are not independent.

2. The computer configuration (for the considered values of memory size, disk

space and bandwidth) and 1) whether the crime is destructive and 2) whether

the victim is a target of opportunity or choice, are not independent.

3. The computer configuration (for the considered values of memory size and

disk space) and whether the attack is coordinated or not are not independent.

 96

Chapter 6 – Are Computer Focused Crimes Impacted By

Surveillance Warning Banners or Surveillance Tools?

6.1 Introduction

In Chapter 5, we studied the impact on the crimes committed by attackers on different

honeypot configurations as well as the effect of one aspect of deterrence: a warning

banner. In this chapter we focus on another aspect of deterrence: surveillance.

6.2 Research Question and Hypothesis

We investigate one aspect of cybercrime deterrence: the announcement and existence

of surveillance mechanisms. More specifically, we ask the following research

question:

Are computer focused crimes (i.e., after an attacker gains unauthorized

access to a computer, the use of this computer to launch an attack

towards an external target) impacted by a surveillance warning banner

and/or surveillance tools?

We analyzed the following data: 1) network flow records to identify the different

crimes committed by the attackers, and 2) the keystrokes processed into lists of

commands to study the attackers’ actions. Details on these data were provided in

Section 3.2.2.4 of Chapter 3.

The authors in [CLA97] introduce three different types of surveillance mechanisms

aimed at preventing crime by increasing offenders’ perception of threat detection.

Formal surveillance is when a person or a system is dedicated to surveillance.

Dedicated individuals such as cops or surveillance technologies such as closed-circuit

 97

television (CCTV) or monitoring tools deployed by IT security professional, are

examples of formal surveillance. Individuals perform natural surveillance during their

daily activities whereas a designated employee such as a parking attendant carries out

surveillance by place managers.

In our study, we will focus on formal surveillance. A review of the research on the

effectiveness of formal surveillance in the physical work showed mixed results.

Formal surveillance reduced the number of car thefts in guarded parking lots

[LAY92, HES95, BAR96] whereas CCTV was ineffective in preventing violent and

property crimes in city centers, public housing communities and public transportation

facilities [WEL08].

The security community has been claiming that deterrence does not work on the

Internet. Unfortunately, such a claim is rarely accompanied by empirical data to

support it. This work allows for an investigation of this claim directly by focusing on

the announcement and existence of surveillance mechanisms on a compromised

computer system.

A study has shown that awareness of surveillance tools on employees’ computers

reduces the intent of system misuse by employees [ARC09]. Based on this result we

hypothesize that a banner announcing surveillance banner and a surveillance tool will

discourage attackers from using the compromised system to launch crimes.

We present findings from a field experiment we conducted over a period of 19

months, which is concentrated on computer-focused crimes [FUR02]. The goal of this

chapter is to assess whether these crimes are impacted by a surveillance warning

banner and surveillance tools.

 98

The impact of a surveillance banner or surveillance tools is analyzed in terms of the

following metrics: the number of crimes committed, the timing of the first crime

related to the timing of initial compromise, the temporal distribution for all crimes

following an initial compromise, and the specific crime rates pertaining to the most

frequently observed crimes.

For the purpose of this experiment, a farm of four honeypots were randomly assigned

to attackers as follows: Type 0) no surveillance banner nor tools, Type 1) a

surveillance banner but no surveillance tools, Type 2) no surveillance banner but

surveillance tools, and Type 3) a surveillance banner and surveillance tools.

6.3 Experimental Design

Attackers, who have been identified according to their IP addresses, are randomly

attributed one of the configuration types listed in Table 16. The configuration

randomly assigned to the honeypot container involves a two (banner vs no banner) x

two (processes vs no processes) design:

• The display of a banner after a SSH login informing the user that the system is

under surveillance (Figure 23),

• The presence of surveillance tool processes (Figure 24)

Figure 24 shows two different surveillance processes. One is called zabbix_agentd,

which is the agent of Zabbix an open source monitoring solution. The other is a script

named “monitor.” “monitor” updates and saves a file every minute containing the

disk usage, the system uptime, the available memory, the users’ logins and the

running processes. The attacker has access to these files.

 99

Table 16. Honeypot Configuration Types

Honeypot Type Surveillance Banner Surveillance Processes

0 No No

1 Yes No

2 No Yes

3 Yes Yes

Figure 23. Surveillance Banner Displayed

Figure 24. Result of the ps	
 ax command

 100

6.4 Results and Analysis

The results reported come from data collected during the period of 19 months from

April 2012 to October 2013. A total of 2914 honeypots were deployed.

6.4.1 Results

Figure 25 shows the number of honeypots deployed over time. On average 153.4

honeypots were deployed per month with a standard deviation of 67.7 honeypots per

month.

Figure 25. Number of Honeypots Deployed over Time

Figure 26 shows the distribution of the number of honeypots deployed over time for

each of the four honeypot configuration types employed within the current design. A

total of 710 honeypots of Type 0, 763 of Type 1, 694 of Type 2 and 747 of Type 3

were deployed. We observe that even though the overall number of honeypots

deployed varies over time, the repartition among the four types remains consistent

since we allocated the treatment conditions randomly.

For Type 0, the average number of honeypots that were deployed per month is 37.4

honeypots with a standard deviation of 15.7. The averages and standard deviations for

Types 1, 2, and 3 are respectively 40.2/17.1, 36.5/19.9 and 39.3/18.6. These results

0	

50	

100	

150	

200	

250	

300	

N
um

be
r	
 o

f	
 h
on

ey
po

ts
	

Time	

 101

support that randomization was successfully applied at the point of deployment. As

such, any identified differences across treatment groups that follow can be attributed

to the applied treatments, as all other characteristics pertaining to the attacker (both

observed and unobserved) should be balanced in expectation across the four groups.

Figure 26. Number of Honeypots Deployed over Time by Honeypot Type

6.4.2 Combined Crimes Committed

This chapter focuses on the crimes committed following successful entry to the

respective honeypot, i.e., attacks launched from the honeypots towards external

computers. Specifically, an attacker commits a crime using the compromised

honeypot when communicating in a particular way with some targets outside the

organization network. A total of 611 crimes were committed, representing an average

of 0.210 crimes per honeypot deployed.

Figure 27 shows the distribution of the number of crimes committed per honeypot.

Among the honeypots that have committed crimes, we observe that most honeypots

contained one crime (50 honeypots – 58.1%), two crimes (10 honeypots – 11.6%), or

three crimes (7 honeypots – 8.1%). Thus, note the general positive skew in the data

0	

10	

20	

30	

40	

50	

60	

70	

80	

N
um

be
r	
 o

f	
 h
on

ey
po

ts
	
 	

Time	

Type	
 0	
 	
 Type	
 1	
 Type	
 2	
 Type	
 3	

 102

with most of the honeypots containing less than 4 crimes and 1 crime serving as the

modal category. However, one honeypot was involved in 41 crimes, one in 59 crimes,

one in 72 crimes and even one in 183 crimes. These 183 crimes resulting from a

single honeypot were reconnaissance attacks against specific ports and targets; we

have flagged this data point as an outlier. Another honeypot committed 72 crimes;

these crimes consist of 52 DoS attacks (against 52 distinct targets) and 20

reconnaissance attacks. Since the majority of these crimes are targeted DoS attacks,

we will not flag this data point as an outlier, and retain this observation for all further

analyses. Henceforth, we will often present results with and without the flagged

outlier of 183 reconnaissance attacks committed on one honeypot.

Figure 27. Number of Honeypots and Number of Crimes

Figure 28 and Figure 29 show the number of crimes (with and without the outlier)

committed over the 19 months of data collection. When including the outlier, an

average of 32.2 crimes/month with a standard deviation of 51.8 crimes/month were

observed. When excluding the outlier, these values decrease to an average of 22.5

crimes/month and a standard deviation of 32.5 crimes/month. Even though the

number of crimes varies over time, there is no obvious trend suggesting a difference

of attacker behavior towards the honeypots based on the number of crimes. We want

0	

10	

20	

30	

40	

50	

60	

1	
 2	
 3	
 4	
 5	
 6	
 9	
 11
	

14
	

16
	

18
	

19
	

27
	

41
	

59
	

72
	

18
3	

N
um

be
r	
 o

f	
 h
on

ey
po

ts
	

Number	
 of	
 crimes	

 103

to verify that the population of attackers targeting the honeypots is not qualitatively

changing over time. We are making sure that the differences we may observe are due

to the applied treatment and not a change of attackers over time. The Augmented

Dickey-Fuller trend test [DIC79, CHE95] is a commonly used test for that purpose

[ELD01]. When applying the Augmented Dickey–Fuller trend test on the ratio of the

number of monthly crimes divided by the number of monthly honeypots deployed,

we find no statistically significant trend or unit root. We also analyze the number of

crimes committed per honeypot configuration observed over time.

Figure 28. Number of Crimes over Time (With Outlier)

Figure 29. Number of Crimes over Time (Without Outlier)

0	

50	

100	

150	

200	

250	

N
um

be
r	
 o

f	
 c
rim

es
	

Time	

0	

20	

40	

60	

80	

100	

120	

140	

160	

N
um

be
r	
 o

f	
 c
rim

es
	

Time	

 104

Figure 30 and Figure 31 show, for each treatment condition, the number of crimes

(with and without the outlier) committed over time. For Type 0, when including the

outlier, an average of 14.5 crimes/month with a standard deviation of 42.6

crimes/month were observed. When excluding the outlier, these values decrease to an

average of 4.84 crimes/month and a standard deviation of 8.29 crimes/month.

The averages and standard deviations for types 1, 2, and 3 are respectively 6.47/15.7,

4.53/6.04 and 6.68/16.8. For each honeypot type, there is no obvious trend suggesting

a difference of attacker behavior towards the honeypots based on the number of

crimes. When applying the Augmented Dickey–Fuller test on the ratio of the number

of monthly crimes divided by the number of monthly honeypots deployed, for each

honeypot configuration, we find no statistically significant trend or unit root. This

analysis lends support that, based on the number of crimes committed (overall and for

each honeypot configuration type), the data collection duration of 19 months did not

lead to a difference of attacker behavior.

Figure 30. Number of Crimes per Honeypot Type over Time (With Outlier)

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

N
um

be
r	
 o

f	
 c
rim

es
	

Time	

Type	
 0	
 	
 Type	
 1	
 Type	
 2	
 Type	
 3	

 105

Figure 31. Number of Crimes per Honeypot Type over Time (Without Outlier)

Table 17 contains the number of deployed honeypots and the number of committed

crimes for each honeypot configuration. We observe that the number of crimes varies

between honeypot configurations. If we calculate the crime rate (i.e., number of

crimes observed divided by the number of honeypots deployed and multiplied by

100) per 100 honeypots deployed for each honeypot configuration, we observe that

the surveillance banner and surveillance tools seem to have a deterrent effect. This is

confirmed with a chi-square test with a p-value of 0.00014.

Table 17. Crime Rates (With Outlier)

HP # HPs deployed # Crimes Crime Rate

Type 0 710 275 38.7

Type 1 763 123 16.1

Type 2 694 86 12.4

Type 3 747 127 17.0

Total 2914 611 21.0

As previously seen, we have an outlier among the honeypots of Type 0 where one

honeypot committed 183 crimes. When removing the outlier, we obtain the results

0	

10	

20	

30	

40	

50	

60	

70	

80	

20
12
/0
4	

20
12
/0
5	

20
12
/0
6	

20
12
/0
7	

20
12
/0
8	

20
12
/0
9	

20
12
/1
0	

20
12
/1
1	

20
12
/1
2	

20
13
/0
1	

20
13
/0
2	

20
13
/0
3	

20
13
/0
4	

20
13
/0
5	

20
13
/0
6	

20
13
/0
7	

20
13
/0
8	

20
13
/0
9	

20
13
/1
0	

N
um

be
r	
 o

f	
 c
rim

es
	

Time	

Type	
 0	
 	
 Type	
 1	
 Type	
 2	
 Type	
 3	

 106

shown in Table 18. Since the crime rates across conditions varies between 12.4 and

17.0, the surveillance banner and tools do not appear to have an impact on the overall

crime rate. Indeed, the p-value rises to 0.79 with the exclusion of the outlier, which

suggests the previous finding was driven exclusively by the presence of an outlier in

the control condition.

For the four honeypot configurations, we applied a Kruskal-Wallis H test on the

number of committed crimes per honeypot. When including the outlier, we obtain a

p-value of 0.932. Without the outlier, the p-value becomes 0.98. In both cases, we fail

to reject the null hypothesis that the honeypot configuration does not have an impact

on the number of crimes committed on a honeypot.

Table 18. Crime Rates (Without Outlier)

HP # HPs deployed # Crimes Crime Rate

Type 0 709 92 13.0

Type 1 763 123 16.1

Type 2 694 86 12.4

Type 3 747 127 17.0

Total 2913 428 14.7

We also analyzed the time of the first crime committed on each honeypot. The

Kruskal-Wallis H test led to a p-value of 0.717. Thus, we fail to reject the null

hypothesis that the honeypot configuration does not have an impact on the timing of

the first crime committed on each honeypot.

Table 19 shows for each honeypot configuration the number of honeypots deployed

as well as the number of honeypots that were used for committing at least one crime

(i.e., use of this honeypot to launch an attack towards an external target). The type of

honeypot configuration does not seem to have a significant impact since the ratio

 107

varies between 2.2% and 3.7%. Indeed the p-value of the chi-square test is 0.90.

When considering all the honeypots deployed, 2.95% were used to commit a crime.

This number is very low since the honeypot does not contain any true ‘honey’ (e.g.,

credit card number, social security number copies of passport, bank documents) and

its only value should theoretically lay in using it to launch attacks against other

targets. Observing that this happens in only about 3% of the cases is an intrinsically

noteworthy finding. Additionally, one should note that this percentage is consistent

across the different honeypot types.

Table 19. Crime Ratio

HP # HPs deployed HPs with at least
one crime Ratio

Type 0 710 25 0.0352

Type 1 763 17 0.0223

Type 2 694 26 0.0375

Type 3 747 18 0.0241

Total 2914 86 0.0295

To better understand such low crime rates, we indicate in Table 20 the number of

honeypots that were involved in malicious activity (i.e., were used by the attacker)

based on the observation of any keystroke activity. The ratios in Table 20 indicate, for

each honeypot configuration, the percentages of honeypots containing some

malicious activity. We observe that the percentages vary between 63% and 64.2%

(overall 63.8%). This narrow range in the proportion of honeypots containing at least

some malicious activity across the four types is in line with a priori expectations

given the appropriate implementation of randomization. These numbers show that

about one third of the honeypots that were compromised (where credentials were

obtained) were not even used in any development of an attack. Attackers did not use

 108

them without knowing their potential value. This might indicate that attackers have a

large pool of compromised computers and do not use all the ones they broke into.

Table 20. Malicious Activity Ratio

HP # HPs deployed HPs with malicious
activity Ratio

Type 0 710 456 0.642

Type 1 763 481 0.630

Type 2 694 448 0.645

Type 3 747 474 0.634

Total 2914 1859 0.638

Two other important metrics are introduced for the present analysis pertaining

explicitly to those honeypots that contain some malicious activity: the probability that

at least one crime has been committed (i.e., X>=1) and the rate at which these

honeypots engaged in crime. For each of the honeypot configurations, these numbers

are provided in Table 21.

We observe that the probability that at least one crime has been committed varies

between 3.5% and 5.8% across the honeypots configurations. As depicted in Table

21, Type 1 and Type 3 have slightly lower percentages than Type 0 and Type 2 with

Type 2 having the highest percentage of the four conditions with 5.80%. So the

honeypot configuration type does not seem to have an impact on the probability that

at least one crime has been committed, as the chi-square test produces a p-value of

0.83. The overall probability of at least one crime on these honeypots is 4.6%, which

is an otherwise surprising observation, as one would expect the probability of

committed crimes from the honeypots to be higher given the aforementioned lack of

honey on these systems.

 109

Table 21. Committed Crimes

HP Prob. at Least One
Crime Committed Rate of Crimes Committed

Type 0 25/456 (5.48%) 275/456 (0.603) (with outlier)
92/456 (0.202) (without outlier)

Type 1 17/481 (3.53%) 123/481 (0.256)

Type 2 26/448 (5.80%) 86/448 (0.192)

Type 3 18/474 (3.80%) 127/474 (0.268).

Total 86/1859 (4.63%) 611/1859 (0.329) (with outlier)
428/1859 (0.230) (without outlier)

When considering the rate of crimes committed per honeypot with malicious activity,

we observe that the rate is 0.603 crimes committed per honeypot for Type 0 while

including the outlier. This rate falls to between 0.192 and 0.268 crimes per honeypot

in the presence of a surveillance banner or surveillance tools. As such, one might

conclude that surveillance mechanisms evoke a deterrent effect within this sample,

and this conclusion is affirmed by a chi-square test with the p-value approaching zero.

However, upon removal of the outlier, Type 1 and Type 3 honeypots have higher

rates of crimes committed per honeypot than the control group.

The overall rate becomes 0.23 crimes committed per honeypot with malicious

activity, and the chi-square test is no longer statistically significant with a p-value of

0.59, and thus does not support the conclusion that surveillance evokes a deterrent

effect on the rate of crimes committed.

As discussed in the previous section, the surveillance mechanisms under assessment

consist of a banner retaining surveillance content and two surveillance tools. The

banner appears upon entry each time the hacker accesses the system. However, we

cannot prove that the attacker saw it, read it, nor understood it (e.g., the attacker might

 110

not be familiar in English). For the tools, we also have no guarantee attackers have

identified them. When analyzing the session content and looking for the “ps”

command that indicates which processes are running, we found the following

honeypots had used “ps” at least once: Type 0, 2/25 (8.0%), Type 1, 2/17 (11.8%),

Type 2, 9/26 (34.6%) and Type 3, 4/18 (22.2%), leading overall to 17/86 (19.8%). So

only for 20% of the honeypots that have committed a crime “ps” was used to check

which processes were running on the system. Moreover, this does not prove that

attackers found the presence of the surveillance tools but only that attackers were

interested in the running processes. These findings have the potential to downward

bias any potential statistically significant effects that might otherwise be observed with

regard to the effect of surveillance means on crime outcomes. E.g., the surveillance

processes only have the potential to elicit an effect on attacker behavior amongst this

20% subsample that actually brought up the list of processes.

We define a coordinated crime as any crime during which several other hosts are

contributing to the same criminal event. Even though this cannot be determined with

certainty, it is possible to identify the honeypots generating Internet Relay Chat (IRC)

traffic. IRC is known to be used by Botnet to command and control several

compromised hosts [ZHU07]. We postulate that any crime for which we observe IRC

traffic right before the start of the crime or during the crime provides evidence of a

coordinated crime.

Table 22 shows the total number of honeypots with at least one crime as well as the

number of honeypots containing some IRC traffic for each honeypot type. We

observe that overall, 80% of the crimes were coordinated. When focusing on specific

 111

honeypot types, the percentage of coordinated crimes varies between 67% and 88%.

However, this disparity is not found to be statistically significant across conditions as

the chi-square test returns a p-value of 0.36. The preponderance of coordinated crimes

is stark given the lack of sophistication inherent to the observed crimes that would

otherwise not warrant this observed level of coordination.

Table 22. Coordinated Crimes

HP # HPs with at least
one crime Coordinated Ratio

Type 0 25 20 80.00

Type 1 17 14 82.35

Type 2 26 23 88.46

Type 3 18 12 66.67

Total 86 69 80.23

6.4.3 Classification of Observed Crimes

During data collection, we observed four of the five types of crimes described in

Section 5.4.2 of Chapter 5:

• Reconnaissance activities: 389 instances over 79 honeypots

• Denial of Service attacks: 180 instances over 10 honeypots. In addition to the

two different types of Denial of Services attacks observed in a previous study

we noticed the unusual use of transport protocols such as Combat Radio User

Datagram Protocol characterizes: One honeypot used 240 different transport

layer protocols.

• Brute force attacks: 40 instances over 12 honeypots

• Phishing attacks: 2 instances over 2 honeypots

 112

Since phishing attacks were only observed twice during the data collection period, we

will remove them and will focus on the most frequently committed crimes:

reconnaissance, DoS and brute force attacks.

6.4.3.1 Reconnaissance Attacks

We first assess whether we observe a trend for the number of reconnaissance attacks

over the 19 months of data collection. When applying the Augmented Dickey–Fuller

trend test on the ratio of the number of monthly reconnaissance attacks divided by the

number of monthly honeypots deployed we find no statistically significant trend or

unit root in the data. We also applied this test on the same ratio for the data collected

for each honeypot type and also found no statistically significant trend or unit root in

the data. Table 23 and Table 24 contain the number of deployed honeypots and the

number of reconnaissance attacks (with and without the outlier) for each honeypot

type. We calculate the crime rate for reconnaissance attacks (i.e., number of crimes

observed divided by the number of honeypots deployed and multiplied by 100) per

100 honeypots deployed for each honeypot type. We observe a stark effect for the

surveillance mechanisms on the crime rate while including the outlier, but this effect

disappears when excluding the outlier. The p-values from chi-square tests confirm

these observations with 1.56E-11 (with outlier) and 0.30 (without outlier). Thus, when

excluding the outlier, we fail to reject the null hypothesis that the honeypot type does

not have an impact on the rate of reconnaissance attacks launched from the honeypots.

 113

Table 23. Reconnaissance Attacks Rates (With Outlier)

HP # HPs deployed # Reconnaissance
Attacks

Reconnaissance
Attack Rate

Type 0 710 259 36.5

Type 1 763 27 3.54

Type 2 694 50 7.20

Type 3 747 53 7.095

Total 2914 389 13.3

Table 24. Reconnaissance Attacks Rates (Without Outlier)

HP # HPs deployed # Reconnaissance
Attacks

Reconnaissance
Attack Rate

Type 0 710 76 10.7

Type 1 763 27 3.54

Type 2 694 50 7.20

Type 3 747 53 7.095

Total 2914 206 7.07

For the four honeypot types, we applied a Kruskal-Wallis H test on the number of

reconnaissance attacks per honeypot and obtained a p-value of 0.542 (with outlier)

and 0.704 (without outlier). Thus, we fail to reject the null hypothesis that the

honeypot type does not have an impact on the rate of reconnaissance attacks launched

from each honeypot.

We also analyzed the time of the first reconnaissance attack launched on each

honeypot. The Kruskal-Wallis H test led to a p-value of 0.696. Thus, we fail to reject

the null hypothesis that the honeypot type does not have an impact on the timing of

the first reconnaissance attack launched from each honeypot.

Finally, we analyzed the time associated with each reconnaissance attack launched

from each honeypot. For the sake of brevity, these data are not displayed here, but are

available upon request from the author. The Kruskal-Wallis H test led to a p-value of

 114

0.102 (with outlier) and 0.08 (without outlier). Thus, we fail to reject the null

hypothesis that the honeypot type does not have an impact on the timing of the

reconnaissance attacks launched from each honeypot.

In sum, we fail to find a statistically significant effect of surveillance mechanisms on

relevant metrics associated with reconnaissance activity launched from the honeypots.

6.4.3.2 Denial of Service Attacks

We first assess whether we observe a trend for the number of DoS attacks over the 19

months of data collection. When applying the Augmented Dickey–Fuller trend test on

the ratio of the number of monthly DoS attacks divided by the number of monthly

honeypots deployed we find no statistically significant trend or unit root. We also

applied the test on the same ratio for each honeypot configuration and also found no

statistically significant trend or unit root.

Table 25 contains the number of deployed honeypots and the number of DoS attacks

for each honeypot type as well as the crime rate for DoS attacks. We observe a stark

effect for the surveillance banner and surveillance tools on the crime rate pertaining

to DoS attacks. This is confirmed with a chi-square test with a p-value of 0.0047.

Thus, we reject the null hypothesis that the honeypot configuration does not have an

impact on the rate of DoS attacks launched from each honeypot. However, we should

note that this effect is in a direction contrary to a priori expectations as DoS attacks

are only observed for those honeypots containing surveillance mechanisms with no

DoS attacks launched from honeypots in the control group.

 115

Table 25. DoS Attacks Rates

HP # HPs deployed # DoS Attacks DoS Attack Rate

Type 0 710 0 0.0

Type 1 763 95 12.45

Type 2 694 33 4.755

Type 3 747 52 6.96

Total 2914 180 6.18

For the four honeypot configurations, we applied an Kruskal-Wallis H test on the

number of DoS attacks per honeypot and obtained a p-value of 0.108. Thus, we fail to

reject the null hypothesis that the honeypot type does not have an impact on the

number of the DoS attacks launched from each honeypot.

We also analyzed the time of the first DoS attack launched on each honeypot. The

Kruskal-Wallis H test led to a p-value of 0.652. Thus, we fail to reject the null

hypothesis that the honeypot type does not have an impact on the timing of the first

DoS attack launched from each honeypot.

Finally, we analyzed the time associated with each DoS attack launched from each

honeypot. The Kruskal-Wallis H test led to a p-value of 2.10E-07. Thus, we reject the

null hypothesis that the honeypot type does not have an impact on the timing of the

DoS attacks launched from each honeypot.

In sum, the assignment to the four honeypot types included in this analysis appears to

have an effect on the rate at which attackers engage in DoS attacks. However, this is

an augmentative effect wherein surveillance mechanisms increase, and in fact

produce, the DoS attack rates as compared to the control condition. This runs counter

to deterrence-based expectations and should be explored further in future analyses.

 116

6.4.3.3 Brute Force Attacks

We first assess whether we observe a trend for the number of brute force attacks over

the 19 months of data collection. When applying the Augmented Dickey–Fuller trend

test on the ratio of the number of monthly brute force attacks divided by the number

of monthly honeypots deployed we find no statistically significant trend or unit root.

We also applied the test on the same ratio for each honeypot configuration and also

found no statistically significant trend or unit root.

Table 26 contains the number of deployed honeypots and the number of brute force

attacks for each honeypot type. If we calculate the crime rate (i.e., number of crimes

observed divided by the number of honeypots deployed and multiplied by 100) per

100 honeypots deployed for each honeypot type, we do not observe a clear effect for

the surveillance banner and surveillance tools on the respective crime rate. This is

confirmed with a chi-square test with a p-value of 0.243. Thus, we fail to reject the

null hypothesis that the honeypot configuration does not have an effect on the rate of

brute force attacks launched from each honeypot.

Table 26. Brute Force Attacks Rates

HP # HPs deployed # Brute Force
Attacks

Brute Force Attack
Rate

Type 0 710 15 2.11

Type 1 763 1 0.131

Type 2 694 2 0.288

Type 3 747 22 2.94

Total 2914 40 1.37

For the four honeypot types, we applied a Kruskal-Wallis H test on the number of

brute force attacks per honeypot and obtained a p-value of 0.238. As such, we fail to

 117

reject the null hypothesis that the honeypot type does not have an impact on the rate

of brute force attacks launched from a honeypot.

We also analyzed the time of the first brute force attack launched on each honeypot.

The Kruskal-Wallis H test produced a p-value of 0.33. Thus, we fail to reject the null

hypothesis that the honeypot type does not have an impact on the timing of the first

brute force attack launched from each honeypot.

Finally, we analyzed the time associated with each brute force attack launched from

each honeypot. The Kruskal-Wallis H test produced a p-value of 0.024. Thus, we

reject the null hypothesis that the honeypot type does not have an impact on the

timing of the brute force attacks launched from each honeypot.

In sum, we generally fail to find a statistically significant effect of a surveillance

banner and surveillance processes on brute force attacks according to the highlighted

metrics. The lone exception to this is with regard to the timing of the first brute force

attack, which warrants further study.

6.5 Discussion

From a statistical point of view, most of the results presented are tantamount to null

effects. However, the simple fact that not all of the above tests resulted in null effects

suggest that there may be a mechanism at play connecting the presentation and

application of surveillance content with attacker behavior. This opens the door to

further research to better understand this procedure and whether deterrence is

applicable given the finding regarding DoS attack behavior produced from those

honeypots retaining surveillance content.

 118

In another study focusing on attack sessions and keystrokes, we observed that the

presence of a surveillance banner reduced the probability of commands being typed in

the first attack session. In addition, the presence of keystrokes in the following attack

sessions was conditioned by the presence of the surveillance banner and keystrokes in

the first session. This study has been published in [MAI14].

The framework we developed could handle up to 300 deployed honeypots at the same

time. We often did not reach the limit of these 300 honeypots. The goal of the long

data collection period was to ensure a high number of honeypot deployments and

ideally a high number of observed crimes. We show in this chapter that only about

3% of the honeypots committed at least one crime; Even though 2,914 honeypots

were deployed, only 86 of them were involved in committing at least one crime.

Many were involved in committing several crimes leading to a total of 611 crimes

committed during the data collection period. When applying statistical tests, we

observed that most led to a null effect. In some case very few crimes had been

committed (e.g., 1 brute force attack for Type 1 honeypot configuration). This raises

an issue with regard to what constitutes an adequate sample size for analyzing such

rare events. Even a data collection period of over 19 months with a framework

handling a potentially larger farm of honeypots might not be sufficient from a

statistical point of view. The impetus behind the development of empirical studies is

to obtain a better understanding of the attack threat. As such, it may be found

permissible to derive some conclusions and substantive interpretations in spite of the

aforementioned limitations to the present study.

 119

6.6 Limitations

One limitation of the study is that data were collected on one specific network. We do

not claim that these results are generalizable to other networks, as the same study on a

different network might lead to different results and conclusions. This is a common

limitation for field experiments wherein the external validity is often limited, but is

countered by the high internal validity inherent to randomized experiments that

enable the identification of potentially causal effects.

Another limitation is that we do not claim these results will remain true over time.

This study was conducted over a specific period of time, and as such, may retain

limited retrospective and prospective application. The attack behavior can rapidly

change, which necessitates that our findings should be revisited by future research.

The data collection period is rather long: 19 months. One concern is that the crime

behavior might have changed during that time. This is why we ran some trend tests

for the overall number of crimes (for all honeypots and for each of the honeypot

configuration types) as well as for the most frequently observed crimes

(reconnaissance, DoS, and brute force attacks) (for all honeypots and for each of the

honeypot configuration types). In each case, we did not find any statistically

significant trend or unit root in the data. These observations help mitigate the

potential bias inherent to this limitation related to the long data collection period.

The present study does not provide any insight on the attacker. We concede that we

cannot guarantee that each miscreant using the framework is human. Conversely, we

cannot guarantee that each miscreant using the framework is an automated bot. The

keystroke dataset contains the delays in milliseconds between each keystroke. Large

 120

and irregular intervals would lend themselves toward a human typing the commands.

Short and regular intervals would suggest that the session is controlled by an

automated script. We find evidence of both types, but note that this does not

definitively prove a session was conducted by a human or a bot. We use this as

support that there are likely a nontrivial number of bots and a nontrivial number of

humans within our dataset. This is relevant within this context for providing the

aggregate effect of such a policy implementation on a real-world computer network.

This still increases the probability of a type II error within the present analysis due to

this lack of differentiation between computer and human users, but that does not

diminish the relevance of these analyses due to this serving as an effective test of a

social-science driven policy.

The configurations applied to the honeypots also present some limitations. As

previously mentioned, we have no guarantee that the attackers read the banner or

understood it since the message displayed is in English. Attackers from non-English

speaking countries may not understand the message announcing the surveillance.

Moreover, we also do not know whether attackers checked for the monitoring tools

even when they listed the processes running on the honeypot.

In order to prevent attackers from detecting the nature of the compromised hosts, the

honeypots behavior should be close to a common UMD operated system. The means

to convey surveillance, i.e. the banner announcing the surveillance processes, and the

monitoring tools were selected based on several constraints. For example, a banner

with counter attach threats is against the UMD policy. A message announcing the

 121

monitoring tools in the middle of a session is not a usual behavior for a computer

system.

6.7 Conclusions

This chapter focuses on one aspect of cybercrime deterrence: the announcement and

existence of surveillance mechanisms. More specifically, we investigate whether

computer focused crimes are impacted by a surveillance warning banner or

surveillance tools.

A farm of four honeypots was configured as follows: Type 0) no surveillance banner

nor tools, Type 1) a surveillance banner but no surveillance tools, Type 2) no

surveillance banner but surveillance tools, and Type 3) a surveillance banner and

surveillance tools. Following a brute force attack on Secure Shell, attackers were

randomly assigned to one of these treatment conditions and were granted access to

the target system for 30 days. Computer focused crimes were identified through the

network flows. The impact of a surveillance banner and/or surveillance tools was

analyzed based on the number of crimes, time of the first crime, time distribution for

all crimes and the crime rates for the most frequently observed crimes.

We observed that none of the honeypot configurations had a statistically significant

impact upon these metrics when considering all crimes, but that some impact was

measured for some of the most frequently observed crimes.

 122

Chapter 7 – Effects of a Banner on the Commands Typed

by Attackers: Differences across Countries

7.1 Introduction

Chapter 6 discussed the effect of a surveillance banner and surveillance mechanisms

on the attacks launched by a target computer following a successful compromise by

attackers. We observed that surveillance had no impact on the number of crimes, time

of the first crime, time distribution for all crimes and the crime rates for the most

frequently observed crimes when considering all crimes but that some impact was

measured for some of the most frequently observed crimes.

7.2 Research Questions and Hypotheses

In this chapter we aim to empirically study the following research questions:

c) Is there a variation in the probability that an attacker would enter commands

depending on the country of origin from which an attack is launched?

d) Do attackers from different countries vary in their use of system activity

commands in the presence of a surveillance banner?

For this study we analyzed 1) the data from the session and deployment tables to

identify the country of origin of all the sessions per honeypots, and 2) the keystrokes

processed into lists of commands to study the attackers’ actions. We provided details

on these data in Section 3.3.2.4 of Chapter 3.

Theoretical and empirical research from a variety of social science disciplines ranging

from psychology to criminology to business ethics continues to show that the effects

 123

of sanctions are not constant across individuals in a given population [ARC09],

[LOU12], [THO3]. A review of the current research shows that in the physical world,

criminals often display different responses to deterrence mechanisms.

In this chapter, we investigate whether a surveillance banner alters the behavior of

attackers based on their country of origin (based on the observed IP address). Using

several metrics, such as commands typed by attackers, to measure attackers’ behavior

we explore whether attackers originating from the United States, China, Romania,

Republic of Korea, and Germany display significant differences in specific session

characteristics during an attack based on whether or not they were exposed to a

surveillance banner.

We specifically focus on the possibility that attackers from different countries may

respond differently to a surveillance banner as factors such as cultural differences

existing across nations, as well as differential assessments regarding the likelihood of

punishment may result in varying responses to a particular sanction threat.

For example, in one country, the presence of a surveillance banner may serve as a

valid signal of a threat, and accordingly, attackers originating from that country

would internalize a heightened risk of apprehension and punishment, reducing their

adverse behavior in response. However, in another country, a banner may be

perceived in an opposing manner. For instance, attackers originating in countries

geographically separated from the target may perceive a lower likelihood of

apprehension and therefore, may not be deterred by a threat.

Moreover, in certain countries, rather than eliciting a deterrent effect, a banner may

instead generate feelings of defiance and a willingness to oppose the threat posed by

 124

an authority. Consequently, the banner may increase the propensity of an attacker to

engage in adverse behavior [SHE93].

Despites the anonymity offered by the Internet and because of their human nature,

attackers exhibit a rational decision-making process [PNG09]. They will attempt to

maximize rewards while minimizing the risks of being detected. Because of the

proximity of the attackers originating from the United States, we hypothesize that

U.S. attackers, more easily identifiable and prosecutable, would be deterred by

surveillance. More specifically, U.S. attackers understanding a surveillance

announcement banner would look for effective surveillance cues including monitoring

tools.

7.3 Experimental Design

Attackers, who have been identified according to their IP addresses, are randomly

attributed one of the configuration types listed in Table 27. The configuration

randomly assigned to the honeypot container involves a two (banner vs no banner) x

two (processes vs no processes) design:

• The display of a banner after a SSH login informing the user that the system is

under surveillance (Figure 32),

• The presence of surveillance tool processes (Figure 33)

Figure 33 shows two different surveillance processes. One is called zabbix_agentd,

which is the agent of Zabbix an open source monitoring solution. The other is a script

named “monitor”. “monitor” updates and saves a file every minute containing the

disk usage, the system uptime, the available memory, the users’ logins and the

running processes. The attacker has access to these files.

 125

Table 27. Honeypot Configuration Types

Honeypot Type Surveillance Banner Surveillance Processes

0 No No

1 Yes No

2 No Yes

3 Yes Yes

Figure 32. Surveillance Banner Displayed

Figure 33. Result of the ps	
 ax command

 126

7.4 Results and Analysis

7.4.1 Results

This analysis focuses on data collected over a 31-month period from March 31, 2012

until October 29, 2014. During this period of analysis, 5,231 deployments occurred

along with a total of 49,149 sessions from 103 different countries. The database used

the countries and country codes from the International Organization for

Standardization (ISO) 3166. For some IP addresses, the mapping to a country was not

possible due to geo-localization restrictions, resulting in a blank country of origin for

that session. These sessions are categorized as Unknown. The geo-localization

database also flagged the known anonymous public proxy servers, these sessions are

also categorized as Unknown.

As mentioned in [STU12], the IP address used during the brute-force phase before the

honeypot deployment often originates from different countries compared to the ones

used during attack sessions. Our results also show such differences regarding the IP

address origins. In addition, the brute-force, also known as dictionary, attack is often

automated and thus no attacker can actually read the surveillance banner at this stage.

Consequently, the surveillance banner can only be seen starting with the first session

when the attacker logs onto the honeypot after its deployment. We focused on the

sessions’ origin countries, not the deployment origin countries.

The number of sessions per country ranges from 19,653 (United States) to one

(Azerbaijan, Ghana, Latvia, New Caledonia, Nicaragua, Papua New Guinea,

Seychelles, United Arab Emirates, and American Samoa). Table 28 shows the five

countries with the highest originating session counts: the United States, China,

 127

Romania, the Republic of Korea and Germany. The next highest number of session

corresponds to the category Unknown. The other countries account for fewer sessions.

For the remainder of the chapter, we will focus on the five countries with the highest

number of sessions.

Table 28. Number of Sessions per Country (Top 5)

Country Number of Sessions

United States 19,653	

China 13,420	

Romania 3,845	

Republic of Korea 1,395	

Germany 1,267	

7.4.2 Analysis

We focused our analysis on the impact of the surveillance banner, as very few

attackers issued the correct commands that would display the surveillance processes

and reveal the existence of surveillance tools. For the following study, we merged

honeypots types 0 and 2 (No Banner), and honeypot types 1 and 3 (Surveillance

Banner).

7.4.2.1 Total Number of Sessions

We first started to look at the number of sessions per country and per honeypot

configuration, i.e., with surveillance banner or without a surveillance banner. We

believed that the surveillance banner deters the attackers and that it impacts the

number of sessions. We expected to see fewer sessions on the honeypots displaying

the surveillance banner than the ones not displaying any kind of text. It translates into

the attacker not coming back on the honeypot after seeing the surveillance banner.

 128

Table 29 shows the total number of sessions for the honeypots with and without a

banner for the five considered countries. We want to assess whether deterrence has

the same effect for these five countries. Therfore, we applied a χ-square test to assess

whether the impact of the banner on the number of sessions depends on the country.

With a p-value of 1.E-99, the χ-square test shows that the number sessions on the

honeypots displaying a banner or not displaying a banner is independent of the

country.

From Table 29, we see that the deterrence effect would lead to a smaller number of

sessions when a banner is being displayed. This is the case for the United States and

the Republic of Korea. However, the opposite is observed for China, Romania and

Germany.

Table 29. All Sessions

Country Banner No Banner

United States (19,653)	
 9,395	
 10,258	

China (13,420)	
 7,204	
 6,216	

Romania (3,845)	
 1,966	
 1,879	

Republic of Korea (1,395)	
 442	
 953	

Germany (1,267)	
 863	
 404	

7.4.2.2 Number of Sessions with Keystrokes

Depending on the presence of a banner, the number of sessions is not independent

from where the attack was launched. In addition, the banner may impact the actions

done by the attackers during these attack sessions. Our dataset contains the keystrokes

typed by the attacker during the attack session. Our assumption is that the banner

impacts the presence of keystrokes during an attack session. We believe that if

 129

deterred by the surveillance banner, the attacker would not type anything and leave

the system to avoid detection.

We counted the number of sessions with keystrokes, i.e. attack sessions where the

attacker issued commands to his or her honeypot after deployment. Table 30 shows

for each of the top five countries the number of sessions with keystrokes split

between honeypots displaying or not displaying a banner.

Table 30. All Session with Keystrokes

Country
(sessions with keystrokes)

Banner
(sessions with keystrokes)

No Banner
(sessions with keystrokes)

United States (494)	
 236	
 258	

China (730)	
 349	
 381	

Romania (1713)	
 871	
 842	

Republic of Korea (34)	
 16	
 18	

Germany (288)	
 146	
 142	

We applied a χ-square test to assess whether the impact of the banner on the number

of sessions with keystrokes depends on the country. With a p-value of 0.58, we

cannot reject the hypothesis that number of sessions with keystrokes is independent of

the country.

From Table 30, we see that the deterrence effect would lead to a higher number of

keystroke sessions for honeypots without a banner. This is the case for the United

States, China and the Republic of Korea but not for Romania and Germany. Thus,

these results show that the surveillance banner does not have a systematic deterrence

effect on whether or not the attackers type during the attack sessions.

 130

The attacker may not be deterred anymore when he or she realizes the honeypot is

still compromised, i.e., the host is still online and the compromised user account has

still the same password. It may indicate that the system is not under surveillance and

thus the attacker can actually perform malicious activities on the compromised

honeypot and ignore the banner. For this reason, we also looked at the first attack

sessions only.

Table 31 shows for each of the five countries the number of first sessions with

keystroke with banner and without banner. Since the observations are lower than 5 for

the Republic of Korea, we need to exclude these results when applying a χ-square

test. Therefore, we applied a χ-square test to assess whether the impact of the banner

on the number of first sessions with keystrokes depends on the country for the United

States, China, Romania, and Germany. With a p-value of 0.68, the χ-square test, we

cannot reject the hypothesis that number of first sessions with keystrokes is

independent of the country.

From Table 31, we see that the deterrence effect would lead to a higher number of

first sessions with keystrokes for honeypots without a banner. This is the case for the

United States and Romania but not for China, the Republic of Korea and Germany.

Thus, these results show that the surveillance banner does not have a systematic

deterrence effect on whether or not the attackers type during the first attack sessions.

Even though the differences are small, these results seem to point towards a

difference in behavior between attacks from the United States and China.

 131

Table 31. First Sessions with Keystrokes

Country
(1st session w/keystrokes)

Banner
(1st session w/keystrokes)

No Banner
(1st session w/keystrokes)

United States (86) 40	
 46	

China (50) 27	
 23	

Romania (192) 92	
 100	

Republic of Korea (4) 3	
 1	

Germany (30) 17	
 13	

7.4.2.3 System Activity Commands

An attacker who receives a banner announcing the presence of a surveillance system

may decide to look if it is indeed true and maybe disable it. He or she might want to

check if someone is logged in to watch him or her or if the stolen account has ever

been used. We concentrated the analysis of the keystrokes on the following

commands:

• ps: This command shows the processes currently running on the system.

• top: This command also shows the processor usage in real time per processes.

• who: This command displays the current logged in users on the system.

• ls: This command lists the files present in a directory.
If someone else is using the system, the who command may return one or more other

users logged into the system. Also, someone actively using a system leaves traces. A

home directory with no files clearly indicates that the user is not really active and

barely uses the system.

Table 32 presents, for all five countries, the number of sessions with system activity

check commands displaying a surveillance banner and the one without banner.

 132

Table 32. All Sessions with System Activity Commands

Country
(sessions with commands)

Banner
(sessions with commands)

No Banner
(sessions with commands)

United States (211)	
 100	
 111	

China (103)	
 62	
 41	

Romania (859)	
 420	
 439	

Republic of Korea (19)	
 6	
 13	

Germany (212)	
 105	
 107	

We applied a χ-square test to assess whether the impact of the banner on the number

of sessions with system activity commands depends on the country. With a p-value of

0.10, the χ-square test, we cannot reject the hypothesis that number of sessions with

system activity commands is independent of the country.

The results of the banner and no banner configurations comparison for each country

show a positive difference (i.e., higher number of sessions for honeypots having a

banner compared to the ones without one) between the configuration with banner and

the one without banner for the sessions from China only. According to the results it

seems that attackers from China check for the system activity when a banner is

presented upon login. This result is interesting since the cyber security community

usually assumes that attackers who launched an attack outside the United States

would not be influenced by any deterrence approach.

For the same reasons as the keystrokes analysis, we then focused on the first attack

session. Table 33 contains the number of the first sessions with system commands

displaying a banner and the ones not presenting a surveillance banner. Since the

observations are lower than 5 for the Republic of Korea, we exclude these results

 133

when applying a χ-square test. Therefore, we applied a χ-square test to assess

whether the impact of the banner on the number of first sessions with system activity

commands depends on the country for the United States, China, Romania, and

Germany. With a p-value of 0.17, the χ-square test, we cannot reject the hypothesis

that number of first sessions with system activity commands is independed on the

country.

Expected results are higher for the banner configuration than the no banner ones. This

is indeed the case for the observed attacks from China. However, the opposite is

observed for the United States, Romania, and Germany. These results are surprising

since we would have expected the United States and China to have the opposite

results. For the attacks initiated in the United States, attacks were expected to be

influenced by the banner.

Table 33. First Sessions with System Activity Commands

Country
(1st session w/commands)

Banner
(1st session with
w/commands)

No Banner
(1st session with commands)

United States (29)	
 11	
 18	

China (20)	
 13	
 7	

Romania (93)	
 45	
 48	

Republic of Korea (1)	
 0	
 1	

Germany (18)	
 6	
 12	

7.5 Limitations

As previously mentioned, we cannot guarantee that all attackers read the banner or

understood it. Also, we cannot differentiate with certainty a bot from a human being.

 134

To prevent the attackers from detecting the nature of the compromised hosts, the

honeypots behavior should be close to a regular UMD operated system. The means to

convey the surveillance, i.e. the banner announcing the surveillance processes, and

the monitoring tools were selected based on several constraints. For example, a

banner with counter attach threats is against the UMD policy. A message announcing

the monitoring tools in the middle of a session is not a usual behavior for a computer

system.

The cybersecurity community has often avoided presenting results based on the IP

address since many IP addresses can be spoofed. Authors in [STU12] did show that

attackers launching brute force attackers and then compromising a honeypot use two

different IP addresses. The experiment described uses randomized assignment of

honeypots, which should mitigate some external factors like the use of spoofed IP

addresses. Other limitations of the experiment are the duration (31 months), and the

location (single location of a US public university).

7.6 Conclusions

The presented study used data collected over 31 months from two honeypot

configurations assigned to attackers: Control (no banner) or banner condition.

Following a brute force attack on SSH, attackers were randomly assigned a

configuration and were granted access for 30 days. We focused on the commands

typed by attackers and disaggregate the dataset based on country of origin of the

attack, concentrating on the most frequent countries (i.e., United States, China,

Romania, Republic of Korea, and Germany).

 135

We explored various metrics: total number of sessions, number of sessions with

keystrokes, number of first sessions with keystrokes, system activity commands typed

in any session or in the first session. We applied χ-square tests to assess the impact of

the presence of the banner and the country from where the attack came from.

In the number of attack sessions, we could reject the hypothesis that the impact of the

banner is independent for the five countries. In addition, for all sessions, the use of a

banner altered behavior originating in China, Romania and Germany. When focusing

on specific commands that provide information on the attacked computer (i.e., ls,

who, top, ps), the banner only has an impact on all sessions for attacks from China.

As expected we observed mixed results. The presence of the banner mainly did not

have an effect.

While the current study contributes to literature of deterrence on the Internet, this

study led to many questions that should be examined by future research that will

require additional experiments. For instance, future research should examine

questions such as, would other deterrence approaches lead to the same results than the

banner? Why did some attacks from China lead to counter-intuitive results? How can

we more precisely characterize the attacks from different countries? Are attacks

global (since we are now all interconnected) or local (based on the cultural

environment of the attacker)?

 136

Chapter 8 – Conclusions

8.1 Summary

Chapter 3 described the distributed honeypot network architecture deployed at the

University of Maryland as well as the honeypot framework developed for the

cybercrime project. This framework was used to support different honeypot-based

experiments, aimed at understanding the attackers’ behavior on a system following a

“successful” compromise.

The empirical study presented in Chapter 4 determined the relative skill levels of the

attackers according to a set of ten criteria. We also classified the different malicious

software uploaded and installed on the compromised honeypots according to the

software’s identified purpose. We showed that the main motivation behind attack is to

install IRC-based botnets. We collected evidence to show that about 15% of attackers

shared honeypot access with at least one other attacker. We noted that changing

password was a frequent action for attackers (77% of attackers updated the target

computer password). Only skilled attackers created a new user, but most attackers

checked for the presence of users on the system. We also noticed that the

configuration of the target did not seem to impact the type of attacker launching the

attack.

Chapters 5 and 6 were more focused on the crimes committed (i.e., launched attacks)

by the honeypots following a compromise. More specifically in Chapter 5 we

focused on three specific dimensions of computer focused crimes: 1) whether the

crime was destructive or not, 2) whether the victim of the crime was a target of choice

 137

or a target of opportunity, and 3) whether the attack was coordinated or not. We

empirically assessed whether 1) the size of the hard drive, 2) the size of the memory,

3) the size of the bandwidth, and 4) the presence of a warning message impacted the

type of crime committed. The different empirical studies led to the following

conclusions:

• A warning banner is non dissuasive for any of the observed crimes,

• High bandwidth favors any of the observed crimes besides non-destructive

crimes,

• High disk space favors destructive crimes, crimes against targets of

choice, and crimes involving coordinated attacks,

• Low disk space and high memory space favor non-destructive crimes, and

• Low memory size favors destructive crimes, crimes against targets of

opportunity, and crimes not using coordinated attacks.

Chapter 6 highlighted one aspect of cybercrime deterrence: the announcement and

existence of surveillance mechanisms. More specifically, we investigated whether

computer focused crimes are impacted by a surveillance warning banner or

surveillance tools. A farm of four target computers was configured as follows: Type

0) no surveillance banner nor tools, Type 1) a surveillance banner but no surveillance

tools, Type 2) no surveillance banner but surveillance tools, and Type 3) a

surveillance banner and surveillance tools. The impact of a surveillance banner and/or

surveillance tools was analyzed based on the number of crimes, time of the first

crime, time distribution for all crimes and the crime rates for the most frequently

observed crimes. We observed that none of the target configurations had a

 138

statistically significant impact upon these metrics when considering all crimes, but

that some impact was measured for some of the most frequently observed crimes.

Chapter 7 presented a study on the impact of a surveillance banner on the attackers’

behavior on the honeypot and, more specifically, the differences of behavior

depending on the attacker’s country of origin. Five countries were studied based on

their frequency: China, Germany, Republic of Korea, Romania and United States.

Various metrics were employed to identity variations in the attackers’ behavior: total

number of sessions, number of sessions with keystrokes, number of first sessions with

keystrokes, system activity commands typed in any session or in the first session. It

was determined that the surveillance banner had no statistically significant effect,

however when focusing on specific commands that provide information on the

attacked system (i.e., ps, ls, who, top), we noticed that the display of such a banner

has an impact on the number of sessions for attacks from China.

8.2 Contributions

8.2.1 Technical Contributions

Chapter 3 presented a distributed honeypot network architecture designed to support

honeypot-based research experiments. Factors that were considered in the design

included:

• Central, organized and secured data collection

• Safety mechanisms to contain attacks and isolate Honeypots from

management and regular networks

• Routing methods to forward remote location honeypot traffic

 139

• Good practices to design and deploy honeypot-based experiments via a

security and deployment policy

The cybercrime framework also described in Chapter 3 allowed the deployment of

similar experiments involving high interaction honeypots, each experiment randomly

exposed attackers to different treatment. This framework design introduced a novel

method to:

• Deploy up to three hundred honeypots per experiment due to a lightweight

virtualization method

• Ease attackers’ access to the honeypots independent from the dictionary they

use during the brute-force phase.

The framework also provides a central data collection and storage database.

8.2.2 University of Maryland Security

Both honeypot-based architectures provide valuable information on the attackers and

the respective attacks they launch from compromised systems. First, it is not always

possible to perform a forensic analysis on campus systems to understand how the

device was compromised and to identify the nature of the malicious software

implanted on it. Since we have a good knowledge of a “clean” honeypot and we keep

an image of the honeypots, it is easy to find malware and the modifications made on

the system. Second, from the keystroke dataset and the network flow analysis we can

extract:

• IP of the attackers: These IPs can be flagged as malicious and blocked if the

traffic generated interferes with the correct operation of the University’s

network and systems.

 140

• URL used by the attackers to download malicious software on the honeypot

can be also collected and used to populate the Intrusion Detection Systems

(IPS), a network security device blocking attacks, list of malicious links. The

IPS can then flag compromised UMD computers attempting to download

malicious software.

• Network flow records of the attacks launched by a compromised honeypot or

specific malicious activity from the framework. We then try to identify these

attacks in the UMD netflow records.

8.2.3 Science of Cybersecurity

The empirical studies in Chapters 5, 6 and 7 showed that the warning and surveillance

aspects of the deterrence have mainly no significant effect on the attackers’ behavior.

Despites these negative results, the studies followed a rigorous scientific approach to

test our hypothesis: we formulated research questions and designed methodologically

rigorous experiments to generate sufficient data to perform strong statistical analyzes.

8.3 Limitations

The primary limitations of the presented studies reside in the validation. The

validation requires both the replication and reproduction of the results. To replicate

the results the same experimental design and methodology should be used in another

location. Reproducing the results implies developing another experiment to collect

the data and another methodology to analyze them. Both replication and reproduction

require 1) the deployment of sensitive and risky experiments, and 2) the sharing of

security data.

 141

In addition, the re-analysis of the results may not be possible as the security context is

constantly changing. New attacks and vulnerabilities appear every day.

8.4 Future Work

One problem that is not totally addressed by this work is the replication of the

experiments in another location. Despite the current ongoing collaborations with

different universities and companies, the number of external IP addresses is not

sufficient to replicate the experiments at the same scale. We will need to develop

collaborations so that the studies described in Chapter 4, 5, 6 and 7 can be replicated

and the results compared.

To completely cover the deterrence theory, we will need to test the effect of barriers

on the attackers and attacks. We suspect that introducing obstacles to the compromise

and exploitation of the honeypots may impact the behavior of attackers.

A growing number of attacks are now automated. We currently use the timestamps to

identify sets of commands that have been typed “too quickly” and some other

keystrokes characteristics such as UP-ARROW or BACKSPACE. This method

presents a few limitations of its own: it is possible that attackers use a tool that

replicates sessions, in that case UP-ARROW and such will be replicated as well.

Network delays can impact the timestamp and prevent the detection of automated

sessions. In that area, additional work is necessary to identify other characteristics of

automated sessions independent from the keystrokes timestamps.

Future work will consist in developing new experiments in close collaboration with

various fields in the social sciences such as criminology, economics, or psychology.

 142

8.5 Conclusion

Over the last five years I have been involved in several research projects that can be

grouped according to three aspects:

• A collaboration with City University in London on antivirus detection,

regression and label changes,

• The development of a network of honeypots to support large scale

empirical studies on malicious data, and

• The design, implementation, and result analysis for several empirical

studies in collaboration with criminologists.

The first research project (not described in this manuscript) led to 3 published papers

[GAS12, GAS13a, GAS13b], two of which were in highly competitive conferences

[GAS13a, GAS13b]. The second research project led to one publication (as first

author) [SOB11]. The third research project led to two journal articles [MAI13,

MAI14] and two papers in highly competitive conferences [SAL11, SOB12].

In this dissertation, we have shown how to successfully develop empirical

experiments in cybersecurity. This has been made possible through the collaboration

with the Security Team at the Division of Information Technology.

 143

Appendix A: CyQLNet

CyQLNet is a network architecture aiming at providing a safe computing

environment for the researchers and collaborators of the Cybersecurity Quantification

Laboratory (CyQL). The network infrastructure is designed to isolate and protect the

research resources (data and servers) from the external world but also from the

honeypot network operated by the research team while simultaneously providing a

means to easily access and manage the data generated by the honeypots.

A.1 Network Architecture

Figure 34. CyQL Network Architecture

 144

As shown in Figure 34, CyQLNet consists of six different networks distributed across

three different locations. A rack in the datacenter location is housing all of the servers

as well as some storage devices (See Figure 35). The location in Engineering Lab

Building (EGL) is the physical lab with the research team’s workstations. The

Computer and Space Science location is dedicated to storage devices. All of these

sites are connected through the University network using secured encrypted

communication channels. The gateways EGL-GW and CSS-GW establish a tunnel

with AVW-GW. AVW-GW forwards transparently the traffic from the different

networks using the tunnels.

Figure 35. Datacenter Server Rack

 145

A.1.1 Core Network

The core network hosts the lab general-purpose server and the management interfaces

of the critical infrastructure devices including switches, network attached storage

devices, gateways and server remote access control. It’s a private secured network

that is not directly accessible from the Internet.

A.1.2 Core Network DMZ

By definition, a DMZ or demilitarized zone is a sub-network that hosts services

accessible from an external network such as Internet. In our case, the DMZ network is

used to provide access to internal web applications from the Internet without having

Internet hosts interacting directly with the servers on the Core Network. The DMZ

hosts a web server and a server used to exchange data with outside organizations or

hosts.

A.1.3 Honeynet

This network is dedicated to host the public interface of honeypot-based experiments.

The machines connected to this network can receive the Internet traffic of different

organizations. Its infrastructure is described in Section 3.1 of Chapter 3.

A.1.4 Honeynet Management Network

The UMD Honeynet deployment policy described in Section 3.1.4.2 of Chapter 3

recommends each experiment have a separate private management interface. This

interface allows the experiment administrator to access and perform maintenance

operations on the honeypots involved. It also permits the download of data collected

by the honeypots for backup or processing.

 146

Because of their nature, the Honeypots can get compromised and the attacker(s) can

use them to access the internal network. The firewall rules on the main gateway

prevent any hosts on the Honeypot Management Network from accessing the other

networks and the Internet. Anything that is connected to the Honeynet network and

that has a private management interface will be connected to this network. The

Honeypot Management Network acts as an insulation layer while allowing the

experiment users to manage their honeypot and download their data.

Using a separate interface presents another advantage. Any traffic observed on the

Honeynet is considered as malicious. The attackers might detect the honeypot access

for management purpose. In addition, the Honeynet traffic would have to be filtered

to remove any “legitimate” traffic from the data collection.

A.1.5 Virtual Private Network

As previously mentioned, most of the networks operated by CyQL are private, and

thus not accessible from the Internet except for the DMZ.

Virtual Private Network (VPN) technology is used to create a secured tunnel between

a remote host (or network) and the main network gateway (AVW-GW) across a

public network such as the campus network and the Internet. Once established, the

VPN tunnel allows the remote host or network to access the private networks. There

are two different VPN services available to access the internal networks of CyQL.

• The Lab Users VPN profile permits access to a specific set of servers within

the Core and Honeypot Management Networks.

• The Administrators VPN allows access to every network and device without

any restrictions.

 147

A.2 Network Components

A.2.1 Gateways

a) AVW-GW and AVW-GW-2

AVW-GW is the main gateway for CyQLNet. It interconnects all the networks except

the Honeynet. It provides Internet access to the networks hosted in the datacenter if

permitted by the firewall.

AVW-GW-2 is a spare gateway. It is a replicate of the main gateway ready to take

over in case of failure of AVW-GW.

PfSense [PFS15] is based on FreeBSD Operating System and customized to run as a

firewall and router. It is entirely manageable through a web interface and offers

advanced firewalling and routing functionalities allowing us to connect different sites

and isolate the Honeynet.

AVW-GW provides different network services such as:

• IPSec VPN tunnels to interconnect the different locations of CyQLNet.

• VPN services to allow remote access of the networks

• A time server to help synchronize clocks on the different servers of CyQLNet

• Automatic IP address configuration on the Core and Honeypot Management

Networks

• Provides Domain Name Services on the Honeypot Management Network

Access Control List

One of the key functionalities of the gateway is its ability to forward traffic from one

network to another if permitted by the access control list shown Table 34. The ACLs

presented in Table 34 only show the global traffic filtering. A number of firewall

 148

rules allow a more fine-grained access control based on host IP addresses and

services ports.

Table 34. AVW-GW Access Control List

Source Destination Action

Core Network * Allow

Honeypot Management Network * Deny

Core Network DMZ * Deny

EGL Lab Network Core Network Allow

EGL Lab Network Honeypot Management Network Allow

EGL Lab Network Core Network DMZ Allow

EGL Lab Network CSS Storage Network Deny

EGL Lab Network Internet Allow

CSS Storage Network * Deny

VPN Administrator * Allow

VPN Lab Users Core Network Deny

VPN Lab Users Honeypot Management Network Deny

VPN Lab Users Core Network DMZ Allow

VPN Lab Users CSS Storage Network Deny

VPN Lab Users EGL Lab Allow

b) EGL-GW and CSS-GW

Both gateways are running the same version of PfSense as AVW-GW and establish

tunnels with AVW-GW to interconnect the distant networks across the UMD

network.

EGL-GW provides Internet access to the lab workstations and to the different

networks allowed by the ACLs shown in Table 34. CSS-GW only allows traffic from

 149

specific servers in the Core Network to the storage devices. Since Internet is not

necessary in this location, it is disabled.

CSS-GW and EGL-GW provides Domain Name Services (DNS) and IP auto

configuration.

c) Honeygate

Honeygate is the main gateway for the Honeynet. It also runs PfSense. Its

functionalities are described in Section 3.1.2.1 of Chapter 3.

A.2.2 Switches

All of the network devices are connected to two switches. These switches are using

Virtual Local Area Network (VLAN) to partition one network into several logical

networks. Depending on the switch port, a VLAN ID tag is added to each frame sent

by a device on the network. This VLAN ID indicates which network partition the

frame belongs to. Each VLAN is a distinct network, a device on VLAN 1 can only

communicate with the other devices on VLAN 1. It is not possible to jump from one

network to another.

The VLAN configuration is done port by port on the switches. Most of the times, the

VLAN tag is added to the frame once it enters one of the switches and removed when

it leaves the switch. Some of the switches ports are called “trunk ports”. These ports

are assigned two or more VLANs. The devices attached to these trunk ports are

configured to support VLANs and to communicate on different networks. Both

switches (avw-sw-1 and avw-sw-2) are connected to each other using trunk ports and

share the same VLAN configuration shown in Table 35.

 150

Table 35. Virtual LAN Definition

VLAN ID Description

2 Core Network

3 Core Network DMZ

4 Honeynet

5 Honeypot Management Network

6 UMD Network

A.3 General Purpose Server

A.3.1 Zeus

Zeus is one of the main servers of the Core Network. It provides core services for the

whole network including authentication, directory and file sharing services. It is

running Linux Ubuntu Server 10.04 Long Term Support.

a) Active directory

Active Directory (AD) is a Microsoft product used to authorize, authenticate and

manage users and computers on a Windows Domain. AD is usually operated on a

Windows Domain Controller Windows Server operating system. In our case, we use

Samba, a re-implementation of the main Windows file and printer sharing protocols

on UNIX systems. Samba version 4 can act as a Domain Controller and provide

Active Directory Services for Windows and Linux servers. To do so, a Domain

Controller part of an Active Directory relies heavily on the following services:

• Domain Name Services (DNS): A DNS server is in charge of translating a

machine name such as www.umd.edu into an IP address usable to contact a

host on an IP network.

 151

• Kerberos: Kerberos is an authentication protocol using secret-key

cryptography. It provides strong authentication of client and services using

tickets.

• LDAP: Lightweight Directory Access Protocol is used to connect to, search

and modify a directory. A directory stores and organizes the different network

entities such as services, hosts, users and groups.

On the CyQL Network, the Active Directory is used to centrally manage the

authentication. As a consequence, each user has one credential that he or she can use

to log into workstations, servers and applications.

In addition to the authentication, the Active Directory is used to authorize access to

workstations, servers or applications. Authorizations are based on group

memberships. This allows us to control who can use a specific server, workstation or

services. It is also used to give users additional privileges on some servers or

workstations (ability to become administrator of the machine).

b) File Sharing Service

Three different shared directories are available on Zeus and mounted automatically

on Windows and Linux workstations and servers.

• Home Directories: Each user has a secured space to store documents and other

files.

• Projects Directory: A common space for each research projects.

• Common Directory: A common space for all users to share files.

 152

c) Servers Resources Monitoring

We use Munin [MUN15] to collect data on the critical system resources such as disk,

memory, network and processor usage. It generates graphs representing a year worth

of data points for each of the monitored resources. Munin is used to identify the root

cause of performance issues and help with the hardware upgrade decision-making

process.

d) Backup

Zeus runs BackupPC [BAC15] to backup user files of the File Sharing Service as well

lab a set of specific directories on the lab servers. BackupPC does not require the

installation of a client on each server. It uses Rsync, a file transfer tool, over Secure

Shell protocol and public key authentication to access the remote hosts directories to

duplicate.

BackupPC creates the backup files on a network storage disk NFS share mounted on

Zeus. In its current configuration, backupPC performs and incremental backup every

night (only the files that changed will be backed up again) and a full backup once a

week. We currently keep up to seven days of backups. A deleted file can be recovered

for up to seven days but after that delay, it is removed from the backup.

The directories to backup as well as the servers can be easily added through the web

interface. The web interface also provides access to the backed up files and their

different versions.

Each server in the lab will have its configuration (/etc directory) backed up every

day.

 153

e) Servers Central Management

The administrator account on Zeus can establish remote administrator sessions via the

Secure Shell protocol with every lab computer and server using public key

authentication, a password-less method to authenticate users. In addition to being able

to get a remote shell without providing a password from the administrator session on

Zeus, this mechanism allows us:

• To push new configuration files to all the servers automatically

• To perform maintenance operations automatically by running script on remote

hosts.

A.3.2 Poseidon

This server is dedicated to heavy data processing and large database hosting. When a

script is time-consuming and requires more resources than a regular desktop,

Poseidon is used in order to execute it. The user allowed to access that machine

uploads the script or tool along with the data required for the processing task.

Poseidon has a fast access to the data generated by the Honeynet.

A.3.3 Zephyr

Zephyr hosts all the lab web applications common to all research projects. Most of

these applications are actually accessible from the Internet via the Proxy server. Two

types of web applications are hosted on Zephyr. CAS [CAS15] and SCM-Manager

[SCM15] are Java-based applications ran by Apache Tomcat and OpenProject is a

Ruby based application ran by Rails/Unicorn.

 154

a) Central Authentication Services (CAS)

CAS is a single sign-on web portal used to authenticate lab users on all the web-based

applications. When accessing one of the lab web applications, the user is required to

authenticate with CAS once. The user can access other applications without proving

his or her identity again.

CAS contacts Zeus Active Directory services to verify the authenticity of the user’s

login name and password.

b) Source Control Management (SCM) Manager

Software and script developers often use source control software to manage the

different revisions of their code. These tools are used to create code repositories.

They keep track of the different versions or revisions of the source code. Each

revision will be associated with a timestamp and the author of the change. Usually,

the different versions can be compared, restored and sometimes merged.

These code repositories can be shared with different developers. We use SCM

Manager to provide for the lab users:

• A web interface to create and visualize the different code repositories

• An URL that can be used by the different source control tools to access the

repositories remotely

• Authentication and authorization mechanisms to control the access to the

different repositories. SCM-Manager uses Active Directory groups to grant

users to repositories.

SCM Manager supports Git [GIT15] and SVN [SVN15] source control software.

 155

c) OpenProject

The web-based application OpenProject [OPE15] is an open source project

management tool. Each research project will have a dedicated workspace providing

tools such as Wiki (for documentation), file sharing, source code repository access,

timeline tracking or task tracking. The tools can be added to a project according to the

team members’ needs. For large projects, it is possible to create sub-projects within a

project workspace. OpenProject relies on the lab Active Directory Services to

authenticate and authorize users to access the different project workspaces. Group

membership will dictate which projects a user can access and modify.

A.3.4 Zabbix Appliance

Zabbix [ZAB15] monitors the different critical resources and applications of each

computer system (physical and virtual) such as free disk space, memory, processor

usage and the state of the different services provided by the server. Zabbix server,

running on the Zabbix Appliance virtual machine, contacts the Zabbix agents

installed on all the servers monitored by the tool to gather data on specific system

resources and services. The server then saves the data in a database and triggers an

alert if all the conditions for a specific situation are met. Most of the time, when a

system resource becomes low or an application goes offline, an alert is sent to the

administrator. Another email is sent when the situation has been solved.

The visualization of the alerts as well as the configuration of Zabbix server is made

possible through Zabbix web interface. This interface is entirely customizable; the

data collected by the server can be presented in a table, graph or even a map. It is also

possible to customize the data that can be gathered by the server as well as the

 156

method to collect them. For example, Zabbix can use network management protocols

such as SNMP (simple network monitoring protocol) to get a numerical value or a

string indicating the status of a network device that is not running the agent.

A.3.5 DMZ Servers

a) Guard

Guard is a temporary file storage area used to receive or send data from or to an

external entity. For example, a UMD network server exports the event logs of a

security device for the purpose of a research project every day. These logs are

uploaded on Guard at midnight. Later, Poseidon downloads them and erases them

from Guard.

Guard only allows Secure Copy Protocol (SCP) sessions, a transfer protocol over the

Secure Shell Protocol. Regular SSH sessions are not permitted except from Zeus.

b) Proxy

Proxy is an intermediate server used to access the lab web applications from the

Internet. It allows us to protect the core servers. These servers are not directly

accessible from the Internet and as a consequence less vulnerable to web attacks.

The proxy contacts the servers running the web applications only when the users have

been authenticated. Proxy can be the victim of an attack. The damages would be

limited to this machine and would not affect the internal servers.

A.4 VMWare Cluster

Nowadays, the Information Technology industry relies more and more on

virtualization. Thanks to cloud technologies, virtual servers can be created or

 157

destroyed according to the demand of computing resources. In the past, a physical

machine was dedicated to provide one core function, and was not used at 100% of its

capacity. Virtualization makes it possible for several hosts to share the same hardware

reducing the costs of equipment and minimizing maintenance. Advanced

virtualization software also makes it easy to create, duplicate or move virtual

machines.

The CyQL Network virtual environment is based on VMware vSphere ESXi

[VMW15] (ESXi host), a bare-metal hypervisor, and vCenter, a central management

tool for ESXi.

Vmware ESXi runs its own dedicated operating system optimized to only support the

core features of the virtualization software. On the host itself, Vmware ESXi provides

only basic network configuration options. An ESXi host can be standalone and an

application called vSphere client is used to manage the host and the virtual machines.

An ESXi host can be part of a cluster managed by vCenter. When connected to a

vCenter server, the vSphere client allows the management of the different ESXi hosts

participating in that cluster and the different virtual machines.

vCenter can provide advanced functionalities such as high availability, load

balancing, shared storage or shared virtual network interfaces. It is possible to

manage fully virtualized datacenters with this tool.

In our case, even though all of the hypervisors are attached to vCenter, the network

interfaces and the storage are configured locally on each ESXi server. In addition to

its central management console role, vCenter allows us to move or duplicate a virtual

machine from one server to another server.

 158

In the current configuration of the Vmware Cluster, we count three types of

hypervisors dedicated to host specific virtual machines:

• Management Hypervisors: dedicated to servers of the core network

• UMD Honeynet Hypervisors, dedicated to host honeypot virtual machines.

• Cybercrime Hypervisors, dedicated to the Cybercrime project virtual

machines. These virtual machines require a different network configuration.

As previously mentioned, the network configuration is local to each hypervisor.

Depending on the type of hypervisor the virtual machine is hosted on, it will be

possible to connect it on different networks. This is done to preserve networks

isolation. Honeypots virtual machines should be connected to the UMD Honeynet and

Honeynet Management networks and not on any other network. Table 36 shows the

list of hypervisors and their respective network configuration.

Table 36. Hypervisors Network Configuration

Hypervisor	
 Core
Network	

Core
Network

DMZ	

Honeynet	
 Honeynet

Management	

Cybercrime

Management	

Cybercrime
Honeypot	

Management	

Homer	

Hercules	

Cybercrime	

Babylon	

Armagedon	

Titan	

Honeynet	

Colosseum	

Petra	

 159

A.5 Data Storage Devices

The storage devices are network hard drives used to duplicate the data collected by

the different honeypot projects. The disks are split between two locations to ensure

redundancy of the data in case of the complete loss of storage devices in one of the

locations.

A.5.1 Disk Configuration

a) Access

The data stored on the different network disks are accessible through the UNIX file

sharing protocol called Network File System (NFS). Each storage device will export

or share a directory that will be mounted on the servers of the core network.

Because of the critical data these disks may host, the storage devices are only

accessible by the main data collection server and Zeus. All the backup processes are

all initiated by either of these two hosts.

b) Fault Tolerance

All the storage devices have one or more disks. Disk failure is a relevant concern. To

prevent data loss, two different levels of Redundant Array of Independent Disks

(RAID) mechanism are used to combine multiple drives into one logical disk for the

purpose of data redundancy:

• RAID 1 or mirroring, when the drives are in pair and mirrored. Disk 2 is an

exact copy of disk 1.

• RAID Level 5, when the data is organized in blocks and these blocks are

distributed across different along with an additional parity block. This RAID

 160

level works with 3 and more drives and can withstand one drive failure at a

time.

As shown in Table 37, the use of redundancy is disk space consuming. For a total of

52 TB of hard drive storage, 18 TB are used for the purpose of redundancy.

The disk drives could be combined together. This configuration is called RAID 0 or

JBOD (Just a Bunch of Disks). The disks are merged into one logical drive and the

data blocks are spread across the two drives. This RAID level presents a serious

drawback: if one drive fails, all of the data are lost.

Each disk drive could be used independently but distributing the data across the 18

different disks would difficult to manage. Also if one drive fails, up to 4TB of data

can be lost.

Table 37. Storage RAID Levels

Device Disk
Configuration Total Size RAID Level Effective Size

Zion 5 x 4 TB 20 TB RAID 5 14 TB

Yosemite 5 x 4 TB 20 TB RAID 5 14 TB

Susquehanna 2 x 1 TB 2 TB RAID 1 1 TB

Chesapeake 2 x 1 TB 2 TB RAID 1 1 TB

Shenandoah 2 x 2 TB 4 TB RAID 1 2 TB

Assateague 2 x 2 TB 4 TB RAID 1 2 TB

Total 52 TB 34 TB

A.5.2 Backup Policy and Data classification

To identify how data storage and backup should be handled, a data storage and

backup policy has been defined. Each dataset is classified according to a level of

criticality. This level of criticality will dictate how and where to store the data.

 161

a) Level of criticality “High”

Data that we will not be able to recreate if lost. For example, datasets generated by an

experiment.

• This data should be stored on a server with RAID Level 1 minimum

• This data should be duplicated on two other storage devices, in two different

locations

• This data should be backed up twice a day.

b) Level of criticality “Medium”

Data that we can re-create but the process can be time consuming. For example,

scripts analyzing the data collected by an experiment.

• This data should be stored on a server with RAID Level 1 minimum

• This data should be duplicated on another storage device, in a different

location than the server storing that data initially

• This data should be backed up every day at night after business hours

User files, source code repositories, servers configurations, non-critical databases and

OpenProject data fall under that category.

c) Level of criticality “Low”

Large volume of data generated by analysis scripts or downloaded again.

• This data should be stored on a server with RAID Level 1 minimum

• Data duplication is optional

• Back up periodically from every day to once a week depending on the

changes

 162

Appendix B: UMD Honeynet

B.1 Traffic Filtering

The Honeygate host is designed to be the UMD Honeynet’s single point of entry. Per

this design, every single packet received from the Honeymole tunnels, the UMD

internal network and the UMD border network goes through this gateway. Even

though this may be seen as a single point of failure, this design permits traffic shaping

and filtering to 1) shut down the Honeynet in case of emergency, 2) block an IP

address in the event of an uncontrolled compromise and 3) limit the action of a

controlled compromise on the Internet and the UMD network.

Honeygate also maintains a blacklist of IP addresses that should be blocked. These

addresses can belong to the Honeynet, but they can also be Internet IP addresses. As

shown in Figure 36, there are two main points off traffic inspection on Honeygate:

• In front of each network feed (traffic providers such as Honeymole, border

network and UMD Network) where we only block the IP addresses from the

blacklist.

• In front of the Honeynet network interface where we block traffic targeting

the UMD network and the blacklisted IP addresses.

An IP address can be blacklisted for several reasons:

• A honeypot is compromised beyond control.

• A honeypot is targeting a specific IP address on the Internet. To protect that

host, the IP of the victim is blocked.

 163

• An Internet host targets the Honeynet. The IP is blocked to protect the

Honeynet.

• Several Internet hosts target one Honeypot, the Honeypot IP is blocked to

protect the Honeynet.

Figure 36. Honeygate Architecture

B.2 Traffic Routing

The traffic of all of the organizations taking part to the UMD Honeynet is directed to

the honeypot network using different methods. As depicted in Figure 36, the

Honeygate gateway is designed to handle different sources of traffic: direct routing

 164

(UMD Internal), bridge for Honeymole tunnels, and bridge for GRE tunnel. A

network bridge connects two network segments. It learns what devices are on each

side. The traffic will be forwarded from one segment to another if the source and

destination hosts are not on the same network segments. The bridge is transparent and

allows us to observe and filter traffic.

B.2.1 Direct Routing

The Honeygate host is advertised as the main router for all the campus internal sub-

networks dedicated to the honeypots. In that configuration, the Honeygate host is

behaving like a regular router.

B.2.2 Generic Routing Encapsulation Bridge

GRE is a tunneling protocol that permits the Division of Information Technology to

tunnel down the traffic from the campus border routers to an intermediate router

connected to the Honeygate. Like for the Honeymole servers, the traffic received

from this intermediate router is forwarded to the Honeynet via a bridged network

interfaces to permit packet filtering.

The traffic from the campus border network is neither filtered nor protected by the

University’s intrusion detection systems.

B.2.3 Honeymole Tunnel

Honeymole [HON15] is a tunneling program that creates a secure communication

bridge between a Honeymole client and server. The client, hosted on the remote

location network and the server, hosted on the University of Maryland network, both

capture the required traffic to port the external entity honeypot IP addresses to the

UMD Honeynet. The Honeymole server at UMD is a virtual machine hosted on one

 165

of the Honeynet hypervisors. As shown in Figure 37, the server is connected to the

Internet via a Firewall. This firewall only allows the traffic created by the

communication tunnel established with the client. The Honeymole server injects the

traffic received by the Honeymole client to the Honeygate on one of its bridged

interfaces. The network bridge will then forward the traffic to the UMD Honeynet.

This server is also connected to the Honeypot Management network to permit

administration tasks and monitoring.

Figure 37. Honeymole Architecture

The Honeymole Server is running on top of a Linux OS. We have a Honeymole

Server virtual machine for each remote organization giving us IP addresses for the

Honeynet.

 166

B.3 Honeypots Database

In addition to the data collection (Section 3.1.3 of Chapter 3), the data collector Spy

hosts the database that keeps track of the different honeypot-based experiments as

well as all the UMD Honeynet IP addresses. With about 2,000 IP addresses, it is

important to keep track of the various past and current experiments as well as their IP

address allocations.

B.3.1 Database Schema

Figure 38. UMD Honeynet Database

As shown in Figure 38, the UMD Honeynet database consists of seven tables

providing information regarding the honeypots, where they are hosted (virtual

machine), their IP addresses and the experiment they belong to.

 167

a) Experiment and owner tables

 The experiment table keeps track of all of the experiments including their start and

end date, and their description. The fields exp_pcap and exp_flow are both flags

indicating whether the traffic and flow data specific to the experiment should be

created during the log rotation.

The experiment table is linked with the owner table. The owner table contains the

contact information of the person responsible for the experiment.

b) Host and Hypervisor tables

The host table contains the information related to the virtual hosts running one or

several honeypots. Virtual machines are usually hosted on a dedicated physical host

called hypervisor. The hypervisor table allows us to specify on which hypervisor the

virtual machines are located. This table provides for each system its IP address, the

software version, and its name.

c) Honeypot, network and type tables

The honeypot table provides information including the IP address configuration, the

level of interaction (Link with type table) and the hosting machine (link with host

table) for each honeypot deployed on the Honeynet.

The honeypot table is also linked with the network table. This last table contains the

list of the different subnets that compose the Honeynet. For each subnet the table

provides information on the IP allocated, details on the location, the IP address of the

subnet LIH host, the IP address of the Honeymole host (if applicable) and the location

of the malware repository on Spy. In addition to all these, one of the monitoring tools

maintains the health status of the Honeymole tunnel and Low Interaction Host. The

 168

net_rrd_color contains the color code representing a specific subnet in all the graphs

generated by the different monitoring tools.

B.3.2 Database Usages

The primary usage of the databases is to be able to track down a honeypot from its IP

address. The need to identify a honeypot from its IP address mostly happens during

incidents investigations or traffic analyses.

The database is also used to build the traffic filters for each experiment and subnet

used during the network traffic log rotation. The database allows us to create a traffic

file for each experiment and each subnet automatically. There is no need to modify a

script or a configuration file when adding a new experiment or subnet.

A set of scripts uses the database to generate the IP configuration of the LIH hosts.

The scripts extract the IP addresses linked with the different LIH hosts in the

database, generate the network file configuration file and push it to the different LIH

hosts.

B.4 Monitoring and Alerting Systems

B.4.1 Honeynet Monitoring: DarkNOC

The Honeynet requires constant monitoring to guarantee that protection systems (for

example firewalls, traffic shapers) and data collection are operating correctly. The

volume of data collected daily can be important and significantly impacts data

processing and extraction.

DarkNOC is a solution designed to efficiently process large amount of malicious

traffic received by a large honeynet, provide a user-friendly Web interface to

 169

highlight potential compromised hosts to security administrators and provide the

overall network security status.

Figure 39. DarkNOC Web Interface

The graphical user interface organizes the different data necessary to present a

summary of the honeypots activity. Figure 39 shows the homepage of DarkNOC.

The graphical user interface first provides a global view of the activity of the

honeypots: the data displayed pertain to all of the subnets. The user then has the

possibility to reduce the scope of analysis to one subnet. The web page provided by

DarkNOC is divided into four different sections: 1) the subnets status, 2) the flow-

based information, 3) the snort events and 4) a summary of the malware collection.

 170

B.4.2 Alerting and Reporting Tools

a) LIH Watch

A first script connects to the Low Interaction Honeypots hosts to check whether the

LIH tools (Dionaea and fake SSH server) are running. If not, an email is sent to the

administrator and an attempt is made to restart the service. This script is executed

every six hours.

b) UMD Hosts Alert

Another script executed at 6am and 6pm looks for any host from the University of

Maryland network that has attempted to communicate with the Honeypots. Since the

honeynet is not hosting any legitimate traffic, any attempt from a UMD host to

connect to a honeypot is suspicious and is investigated.

c) Scanner Detection

Every hour a script uses the netflow repository to identify potential Secure Shell

(SSH) and Remote Desktop (RDP) scanning the Internet. To do so, the flows are

aggregated per honeypots and per destination ports. If for port TCP/22 (SSH) or

TCP/3389 (RDP) the number of destination IPs exceeds a certain threshold for one

honeypot, this honeypot is flagged and an email is sent to the administrator for

investigation. This detection is done after traffic filtering. The purpose is to make sure

the security measures are still efficient.

d) Phishing Websites Detection

The same script then checks for potentially exploited web servers within the

Honeynet. Some attackers often use a compromised honeypot to host a phishing

website. The script detects potential phishing websites by looking at the number of

different hosts from the Internet trying to access web servers (port TCP/80) on the

Honeynet. When such a website is made available online, the traffic towards the web

 171

server hosting it significantly increases. The list of potential web servers hosting a

website is part of the report sent to the administrator every hour.

e) Traffic Graph Report

In addition to DarkNOC, the Honeygate also sends a mail report on the Honeynet

traffic. It shows the number of bits (Figure 40) and packets (Figure 41) per seconds

for the incoming and outgoing honeynet traffic.

Figure 40. Honeynet Traffic bits per second

Figure 41. Honeynet Traffic packets per second

 172

Under normal situations the outgoing and incoming traffic are symmetrical. If a

honeypot gets compromised and starts to scan or use a denial of service attack against

an Internet host, the outgoing traffic would be more important than the incoming

traffic. On the other hand, if a honeypot were the target of a scan or denial of service

attack, the graph would show that more traffic is coming in.

f) Zabbix

Even though Zabbix monitors mostly the core network systems, some honeynet

components are also monitored.

Host availability

It is possible to add software packages on PfSense. These packages add

functionalities to the gateway. We added the Zabbix agent package allowing us to

monitor Honeygate like any other systems. Zabbix will report if the gateway is

unreachable. Zabbix will also report heavy processor usage, which is often linked to

heavy network traffic.

The Low Interaction Honeypots and Honeymole server virtual machines are also

running Zabbix agent and are monitored by Zabbix server.

Honeymole Tunnels State

On the Honeymole server virtual machines, Zabbix will collect the number of running

processes for honeymole. When a Honeymole tunnel is up, two honeymole processes

are present in the process list. When the tunnel is down, only one process is listed.

Zabbix will trigger an alert when the number of honeymole processes falls under two.

Network Traffic Collection

Zabbix is configured to collect the size of the current hour network traffic capture file

on Spy. When the Honeynet is the target of a large attack or if one compromised host

 173

generates a lot of traffic that is not blocked by the gateway, the capture file is

significantly larger than usual. The threshold for alert is currently set to 2 GB. When

the capture file is bigger than 2 GB, Zabbix triggers an email alert.

B.5 Honeypot Experiments Hosting Environment

The experiment-hosting environment is an important element of the Honeynet. The

objective is to provide the hardware resources (physical or virtual) to run all of the

honeypot-based experiments. Different solutions have been implemented over the

years to maximize the number of honeypots while minimizing maintenance tasks,

being able to handle heavy network traffic and not overload the infrastructure.

B.5.1 Physical Hosts

Initially, most of the honeypot hosts were physical computers, but each new

implementation of the Honeynet significantly expanded the number of IP addresses

available for the honeypots. Resource-wise it was not possible to have one physical

honeypot per IP address even if low interaction honeypots were used. Besides, in its

current design, each subnet requires at least two machines: One honeymole server and

one LIH machine. Just for the infrastructure, almost 15 computers would be

necessary.

B.5.2 VMware Server 2

The honeypot virtualization within the Honeynet was first introduced with VMware

Server 2.0 [VMS15], a virtualization software suite. VMware Server was installed on

top of a Linux Operating System on fifteen physical machines. Depending on the

nature of the virtual machines, each node could run up to five virtual machines. 10

 174

years ago, virtualized servers were quite unusual and attacker could guess that they

were honeypots, and try to exploit the physical host machine. To prevent the

detection of the virtualization both VMware Server and the guest operating system

were patched to hide the information that would reveal the nature of the targeted

system.

Even though virtualization was allowing us to more than triple the number of

honeypots, VMware Server was presenting several issues: the underlying Operating

System required maintenance and was also consuming significant computer resources

such as CPU time and memory. VMware Server management interface turned out to

be very unstable. In addition, the management of the virtual machines was

decentralized, there was no central console to create and control the different virtual

hosts across the different physical machines.

B.5.3 VMware vSphere

VMware vSphere is the current Honeypot experiment hosting solution. Several nodes

of the VMware cluster are dedicated to run the honeypot-based experiments virtual

machines. As described in Section 4 of Appendix A, these hypervisors are connected

to different networks.

 175

Appendix C: Cybercrime Framework

C.1 Framework Design

In this appendix, we provide more details on the cybercrime framework design. As

shown in Figure 42, each cybercrime experiment uses three different types of hosts: a

network gateway, a collector host and a set of machines, called OVZ hosts. All of

these hosts are virtual machines running on the lab VMware cluster. Because of the

specific network configuration that has to be shared across three different

hypervisors, the virtual machines for the cybercrime projects are hosted on three

specific VMware servers.

Figure 42. Experiment Design

The gateway is placed between the Internet and the other components of the

framework, and is accepting SSH connections on port TCP/22. The OVZ hosts run

 176

OpenVZ [OVZ15], a lightweight virtualization solution for Linux systems. OpenVZ

allows us to run in parallel several honeypots per OVZ host. The collector is common

to all the cybercrime experiment testbeds. This host aims at centralizing the collected

data and the processing.

C.1.1 Collector and Management Host

The Collector host handles several functionalities within the cybercrime framework.

a) Data collection, processing and storage

The collector host is responsible for centralizing and organizing the data generated by

the different monitoring tools used on the cybercrime framework. This host receives:

• The authentication events from all the honeypots

• The key logger traces from all the OVZ hosts

• The honeypot deployments from all the gateways

A Perl script processes the raw data and uploads them in a database on a daily basis.

The data processing script rebuilds the attackers’ sessions on the honeypots from the

Syslog authentication logs. It also cleans the keystrokes sent by Sebek and matches

them with the attackers’ sessions.

b) Central Repository

All of the scripts running on the cybercrime framework are stored in a repository on

the collector host. The scripts are automatically distributed to the different

components of all of the experiments. The framework is flexible enough to allow

experiment specific scripts. In addition to the scripts, the configuration files and the

honeypots base images are all stored on the collector host and are all automatically

distributed when a change occurs.

 177

A central database also keeps track of the honeypots deployments and provides the

gateways the IP to use and the NAT rules associating a honeypot container with a

public address.

c) Monitoring

The collector host also monitors the health of the framework: it makes sure that each

component is online and that all the monitoring tools are operating correctly. A daily

email is generated and sent out to the cybercrime team. It contains information on the

data collected as well as the health of each experiment.

The collector host also runs the website that provides access to the live data and status

of the framework.

d) Maintenance

The framework provides a set of scripts that performs the daily maintenance

operations of the different components. These operations include the removal of

honeypot containers reaching the end of lifecycle and the automatic creation of new

containers to allow further honeypot deployments.

C.1.2 Network Gateway

The gateway is attached to three different networks. One network interface is

connected directly to the Internet and is configured with the 300 public IP addresses

made available for the honeypots. The second interface is attached to a private

network where all the honeypots containers are connected. The third network is used

for management and data collection purposes. The gateway runs a Linux Ubuntu

12.04 operating system. The SSH server is a custom designed C program using the

libssh [LIB15]. The fake SSH service returns a SSH successful authentication

message to the attackers after a number of brute force attempts. This number is

 178

randomly selected between 100 and 200 at the very first login attempt by the attacker

for a specific honeypot IP address. At this point each attacker is identified by his or

her IP address.

When the expected number of attempts is reached, the C program calls an external

script that 1) records the deployment in a database on the collector server, 2)

configures the next available honeypot container with the login credentials that

“successfully” broke into the system, 3) creates a Network Address Translation rule

(NAT) to associate the public IP address targeted with the private IP of the newly

configured honeypot container and, 4) attributes and applies one of the configuration

types of the corresponding experiment. Once the execution of the script is complete,

the SSH server establish a SSH connection with the newly configured honeypot and

redirects it to the attacker. This overall sequence of brute-force entry and the resulting

procedures discussed above can collectively be termed as a deployment wherein the

intruder is successfully assigned to a honeypot with a randomly assigned type or

treatment condition. The execution of the script and configuration of the honeypot

container only takes a few seconds. In addition to running the fake SSH server and

routing the Internet traffic to the honeypots, the gateway also limits the attacks

targeting other Internet hosts to prevent their subsequent compromise. This is

achieved by rate-limiting the outgoing traffic on specific protocols and ports. The

firewall on the gateway limits:

• SSH scans and brute force attempts;

• UDP datagrams to prevent DoS attacks;

• Web and RDP scans.

 179

C.1.3 OpenVZ Hosts

While the gateway manages the traffic and deployment of the honeypots, these

honeypots need to be constructed and directly maintained by additional hosts. As we

wanted to provide a UNIX environment to the attackers, OpenVZ was deployed on

five CentOS 5.4 systems to perform the construction and maintenance tasks necessary

for the honeypots to exist and function as intended. We used the stable release of the

OpenVZ kernel 2.6.18-164.15.1.el5.028stab068.9 for the deployment.

As mentioned previously, OpenVZ is a lightweight virtualization tool for Linux-

based operating systems. An operating system is fundamentally composed of two

main elements: the kernel and the user space. The kernel controls the computer

hardware and provides the applications executed by the users functions to interact

with the hardware. The user space or application space is where all the users

processes and software are executed. Each virtual machine on VMware or other full

virtualization solutions will have virtual hardware (CPU, memory, network, hard

drive…) and will run a complete operating system with kernel and user space. On the

other hand OpenVZ, the host operating system will share its kernel and user space.

Each container will be a sub-tree of the host operating system process list. Each

container will have its own file system, but this file system will be a sub-directory on

the host operating system file system.

The advantages of OpenVZ are threefold: first, OpenVZ allows to run several

lightweight Linux OSs in parallel on a single OVZ host. After stress-testing the OVZ

hosts, we determined that we could easily run up to 60 containers per OVZ host at the

same time. With 5 OVZ hosts, this solution gave the ability to run up to 300

honeypots in parallel. Second, OpenVZ provides the tools to easily adjust the

 180

containers’ configuration including the IP address and the credentials. Moreover, the

OpenVZ virtual network interface does not permit the change of IP address within the

honeypot container. As a consequence, attackers are not able to change the honeypot

IP address following compromised entry. Lastly, attackers cannot interact with other

honeypot containers nor with the host operating system. The attacker’s actions are

restricted to his or her assigned container. Even with root privileges, each container is

isolated from the other devices within the design and from the host operating system

running on each OVZ host, but we can access the containers (honeypots) file systems

and process list.

a) OpenVZ Containers

Each container or honeypot is identified by its CTID (container ID). In our case the

CTID is also the Honeypot ID. This identification number is unique across the 5 OVZ

hosts of one experiment. A container can have the following states:

• Available, pre-deployed honeypot but not yet in use by an attacker

• In use, fully deployed and configured honeypot, reachable by an attacker via

its corresponding public IP address.

• To revert, the honeypot has reached its end of life and awaits the recycling

process

b) Template

OpenVZ uses a template to create a container. This template is a compressed archive

file containing the containers file system. The template used for this project is built

upon Fedora 12 operating system. Each container comes with two servers: a Web and

Secure Shell Server.

 181

C.1.4 Network Configuration

As shown in Figure 42, several networks have been created to support the cybercrime

experiments proper operations and traffic containment:

• Honeynet: Shown in blue in Figure 42, this network is connected to the

gateway to give access to the public IP addresses dedicated to the

experiments.

• Honeynet Management Network: Shown in black in Figure 42, this network

allows Cybercrime administrators to access the data and the different

components of the framework from the users networks (core, lab and VPN

networks).

• Experiment Management Network: Shown in green in Figure 42, this network

is to separate the management traffic from the malicious once. This is to

satisfy the network isolation rule. Besides this ensures that we have a constant

access to the OVZ hosts even if an attacker uses all the bandwidth with his or

her honeypot.

• Honeypot Network: Shown in red in Figure 42, this network is dedicated to

the attackers’ traffic (malicious) between the gateway host and the different

honeypots or containers.

C.2 Datasets

In this section, we provide more details on the data collection and processing.

 182

C.2.1 Datasets definition

In addition to the Network and the raw network traffic collected by the UMD

Honeynet Data Collector, we also gather information relative to the attackers’ Secure

Shell sessions that include the commands typed by the attackers.

a) Sessions

Syslog [SYS15] is a computer log storage management program. This tool provides a

standardized format for log messages generated by systems, software, tools and

operating systems.

The Syslog configuration of the honeypots has been modified to send all the logs to

the Collector host in addition to the existing local log files. Among all the events

received by Syslog, we are particularly interested in the authentication messages

generated by the Secure Shell server. These authentication messages provide enough

information to produce records in the database pertaining to the beginning and end of

the attackers’ session, the origin IP address and the username used to authenticate on

the system.

Syslog uses the Honeypot Network shown in red in Figure 42 to send all the log

messages from the Honeypots to a remote Syslog server running on the Collector.

Syslog is the only exception to the network isolation rule. In this case, the data

collected from the Honeypots are transiting among malicious traffic. This solution is

preferable than connecting the honeypots themselves to a management network.

The remote Syslog server on the Collector host is able to separate the Syslog events

from one experiment to another. The Honeypots of each experiment will send their

Syslog events to an IP address allocated to the experiment. Depending on that IP

 183

address, the Syslog server will be able identify the experiment and route the message

appropriately.

On the Cybercrime Framework, the Collector host stores the Syslog events in a

database. Depending on the source of the message (its destination IP on the

Collector), the appropriate experiment database will be selected to store the message.

########################	

##	
 Example	
 Experiment	
 ##	

########################	

	

########################	

#	
 Source	

########################	

#	

source	
 s_src_example	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 udp(ip("10.2.0.254")	
 port(514));	
 	
 	

};	

	

########################	

#	
 Destination	

########################	

#	

destination	
 d_mysql_example	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 sql(type(mysql)	

	
 	
 	
 	
 	
 	
 	
 	
 host("localhost")	
 username("syslog")	
 password("XXXXXXX")	

	
 	
 	
 	
 	
 	
 	
 	
 database("example")	

	
 	
 	
 	
 	
 	
 	
 	
 table("logs")	

	
 	
 	
 	
 	
 	
 	
 	
 columns("host",	
 "facility",	
 "priority",	
 "level",	
 "tag",	
 "datetime",	

"program",	
 "msg",	
 "pid")	

	
 	
 	
 	
 	
 	
 	
 	
 values("$HOST_FROM",	
 "$FACILITY",	
 "$PRIORITY",	
 "$LEVEL",	
 "$TAG",	
 "$YEAR-­‐
$MONTH-­‐$DAY	
 $HOUR:$MIN:$SEC",	
 "$PROGRAM",	
 "$MSG",	
 "$PID")	

	
 	
 	
 	
 	
 	
 	
 	
 indexes("host",	
 "facility",	
 "priority",	
 "datetime",	
 "program"));	

};	

	

########################	

#	
 Log	
 path	

########################	

#	

log	
 {	
 source(s_src_example);	
 filter(f_session);	
 destination(d_mysql_example);	
 };	

Figure 43. Experiment Syslog Configuration

To do so, we have to define a log path in Syslog that includes a source, a filter and a

destination. In the configuration file shown in Figure 43 is defined the source

 184

s_src_example that will select all the events received on the IP address 10.2.0.254,

port UDP 514.

The destination rule d_mysql_example contains all the information required by Syslog

to record events in a specific database.

The log path at the end of the configuration file takes all the messages from

s_src_example, filters them with the rules listed in f_session and then saves in the

database specified in d_mysql_example.

As mentioned previously, Syslog is used to log various system events but we are only

interested by successful Secure Shell logins and end of sessions. Filters can be

applied on Syslog messages to discard the events we do not want to save in database.

Figure 44 shows the set of filters defined in f_session used to only keep the following

SSH authentication messages:

• Accepted	
 password	
 for	
 root	
 from	
 X.Y.Z.W	
 port	
 6045	
 ssh2	

• pam_unix(sshd:session):	
 session	
 closed	
 for	
 user	
 root	

########################	

#	
 Filter	

########################	

#	

filter	
 f_session	
 {	
 match("session	
 closed"	
 value("MESSAGE"))	
 or	
 match("Accepted	

password"	
 value("MESSAGE"))	
 or	
 match("Accepted	
 keyboard-­‐interactive/pam"	

value("MESSAGE"));	
 };	

Figure 44. Syslog Filter

Figure 45. Syslog Table Structure

 185

Each experiment has a “logs” table used by Syslog on the Collector to record the

Secure Shell authentication. The table structure in Figure 45 allows Syslog to store

the following information for each event:

• host: The Honeypot IP address

• facility: The software type that has generated the message

• priority: Combines the facility and the level of security

• level: The severity of the message from info to critical

• datetime: The date and time of the event

• program: Name of the program issuing the message

• msg: The event message (log)

• seq: The Syslog event number

• pid: Process ID of the program issuing the message

This table will be used later by the processing scripts to rebuild the attackers’ Secure

Shell sessions.

b) Keystrokes

To capture the attackers’ keystrokes, we use a key logger from the Honeynet Project

called Sebek [SBK15]. Sebek is a kernel module that extracts the keystrokes from the

read system call. A modified version of the Sebek module has been deployed on each

of the OVZ hosts. Since the Linux kernel is shared between all the containers, Sebek

can record the keystrokes for all of them at the same time. The module has been

modified to support OpenVZ and to add the Honeypot ID in the log. Each

Cybercrime experiment OVZ host will send the data captured by the Sebek module to

 186

a specific port number on the Collector host through the Honeypot Management

network.

On the Collector side, a Sebek listener called sbk_extract is started for each

experiment. Each instance of sbk_extract listens on different UDP ports. The tool will

decode the Sebek traffic received from the various OVZ hosts. The output generated

by sbk_extract is not human readable as it is still in an encoded form. To decode and

organize the Sebek output we use a Perl script called sbk_ks_filter.pl.

This intermediate script will read the sbk_extract ouput and:

• filter out the unnecessary logs created by the Sebek modules

• extract the attackers keystrokes

• rebuild from the keystrokes the attackers commands by using “[ENTER]” as

delimiter

The sbk_ks_filter.pl script generates two files. The first one contains the commands

issued by the attackers and the other contains the keystrokes. An example of

keystrokes and its equivalent commands is shown respectively in Figure 46 and

Figure 47. For both of these files, Sebek provides a timestamp, a VEID also known as

Honeypot ID, the OVZ host IP address, the User ID, the process ID, the file

descriptor and i-node of the standard output, and the command name. The keystroke

output provides an additional timestamp in milliseconds. This timestamp allows us to

see the time difference between each keystroke in milliseconds.

The Sebek module on the OVZ hosts already filters out anything that is not related to

Secure Shell keystrokes, but additional filtering is required on the Collector as well.

The sbk_ks_filter.pl script removes:

 187

• The keystrokes and commands with a VEID of 0. VEID 0 designates the OVZ

host itself.

• The keystrokes and commands with an i-node number greater than 10000.

OpenVZ generates these “keystrokes” during the honeypot configuration

phase.

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318193697	
]#w	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318389729	
]#[RETURN]	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318655731	
]#c	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318817674	
]#d	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318859656	
]#	
 	

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519318925694	
]#/	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319075653	
]#t	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319187660	
]#m	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319375652	
]#p	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
 MS:1412519319452646	
]#[RETURN]	

	

	
 Figure 46. Sebek Filter Keystrokes Output

	

[2014-­‐10-­‐05	
 10:28:38	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
]#w	

	

[2014-­‐10-­‐05	
 10:28:39	
 Veid:1021	
 Host:10.0.10.21	
 UID:500	
 PID:12998	
 FD:0	
 INO:2	

COM:bash	
]#cd	
 /tmp	

	

Figure 47. Sebek Filter Commands Output

 188

C.2.2 Databases

All data collected and processed by the Cybercrime Framework is stored in databases.

Each database has its own dedicated database on the database server hosted on the

Collector. Each experiment database schema has the same structure as the one

depicted in Figure 48.

Figure 48. Cybercrime Database Schema

a) Deployment

This table keeps track of all the honeypots deployments. This table is only populated

by the Gateway, and it inserts the following information for each successful

deployment:

• The Honeypot ID

• The OpenVZ host running the honeypot

• The private IP address of the honeypot

• The deployment timestamp

 189

• The attacker’s IP address

• The country of the attacker based on the IP address

• The origin network number based on the attacker’s IP address

• The targeted public address on the Honeynet

• The successfully “guessed” login and password

• The honeypot type or treatment number

This table is also updated by the recycling process to keep track of the honeypots that

have reached their end of life:

• dep_expiration is the honeypot expiration timestamp which is the deployment

timestamp plus thirty days.

• dep_hpact is a flag to indicate if the honeypot is still active or recycled

o If dep_hpact = 0: The honeypot has been recycled

o If dep_hpact = 1: The honeypot is still active

• dep_shutdown is the timestamp of the recycling

b) Session

All the successfully established attacker’s Secure Shell sessions are rebuilt in this

table from the Syslog authentication logs. From this table it is possible to find all of

the SSH sessions for each honeypot along with the following information:

• The username used by the attacker to access the honeypot

• The login and logout times

• The IP of the attacker

• The country and network of origin of the attacker based on his or her IP

address

 190

The session_error field is used by the data consistency check.

The session and deployment tables are linked by the deployment ID. One deployment

can have zero to several sessions. One session corresponds to only one deployment.

c) Keystroke

This table stores all of the commands typed by the attackers during a Secure Shell

session. For example, the typed commands shown in Figure 47. One record in this

table contains all of the commands along with the header added by Sebek for one

session.

The keystroke table is linked with the session table and the deployment table via the

session ID and the deployment ID. The relation with the deployment is not necessary

since it can be also done through the session table but it allows a quick sort of the

keystroke per deployment.

The multiple_pid, review and error fields are used by the data consistency check.

d) Keystroke_dirty

This table keeps track of the changes made by the keystroke cleanup process. Its

structure is similar to the keystroke table.

e) Logs

This table is used by Syslog to store the authentication messages from the Secure

Shell servers. Its structure and use is described in the previous section.

f) IP

This table is mostly used and updated by the Gateway host. It contains the list of the

Honeynet public IP addresses dedicated to a Cybercrime experiment. Each IP address

is associated with:

• The netmask used to configure the network interface on gateway

 191

• The IP address state

o If ip_state = -1: This IP is blocked, a firewall rule is added to block

the traffic to and from it.

o If ip_state = 0: This IP is available for brute-force and is not

associated with a honeypot

o If ip_state = 1: This IP is in use and associated with a Honeypot. In

this case the Gateway creates the Network Address Translation rules to

forward the traffic for that IP to the correct honeypot identified by its

private IP (ip_privip).

• The IP of the OVZ host is present for information only. It is a quick way to

find the OVZ host running the honeypot in case of an issue.

At boot, the Gateway associates all of the public IP addresses present in the database

with the network interface connected to the Honeynet network and uses the state of

each IP to initialize the firewall blocks and traffic forwarding for the active

honeypots.

During the deployment phase in addition to creating a deployment record in the

database, the Gateway updates the corresponding IP record with the new state, the

honeypot private IP address and the OVZ host IP address.

During the recycling process, the Collector also updates the IP state and remove the

OVZ host and honeypot private IPs.

C.3 Data Processing Script (Session, KS, KS cleanup)

The data processing script is executed at midnight every day, and it performs the

following actions:

 192

1) Sebek Filter output files rotation

2) Re-build in database the session information from the Syslog table

3) Process the command and keystroke files of the day and associate them with

the sessions

4) Clean the keystrokes

C.3.1 Sebek Rotation

The sbk_ks_filter.pl script creates two files called current.dump and

current.ks.dump and both are located in /cybercrime/data/<experiment>/sebek/.

They respectively contain the commands and the keystrokes of the attackers. The

processing script first suspends the keystroke collection for all the experiment and

then renames, relocates and compresses the current files using the following

convention:

/cybercrime/data/<experiment>/sebek/YYYY/MM/YYYY-­‐MM-­‐DD_<experiment>.cmd.gz	
 	

/cybercrime/data/<experiment>/sebek/YYYY/MM/YYYY-­‐MM-­‐DD_<experiment>.ks.gz	
 	

Then Sebek is restarted with new current.dump and current.ks.dump files.

C.3.2 Sessions

For each experiment, the processing script looks for the Syslog logs entries similar to

the one shown in Figure 49. This event indicates that an attacker successfully

authenticated on a honeypot using Secure Shell. The search is limited to the past

seven days by using the log timestamps.

Accepted	
 password	
 for	
 root	
 from	
 X.Y.Z.W	
 port	
 6045	
 ssh2	

Figure 49. Secure Shell Accepted Password Message	

For each authentication success message found, the processing script will extract:

• The timestamp which is the session start time

 193

• The username

• The IP address

• But also the process ID stored in database

And will look for the session closing message recorded after the session start. The

session closed message like the one shown in Figure 50 indicates that the attacker

logged out of the honeypot. Both accepted password and session closed events will

present the same process ID. This allows us to identify the right session closed

message. Once found, the record provides the timestamp of the session end.

pam_unix(sshd:session):	
 session	
 closed	
 for	
 user	
 root	

Figure 50. Secure Shell Session Closed Message

A database query quickly identifies the honeypot where the session occurred and

returns the deployment ID necessary to create a session in the database. Once the

session is rebuilt and all the information gathered, a record is inserted in the session

database. If a session with the same characteristics already exists, the record is not

created in database to avoid duplicates. As mentioned previously, the script looks at

all the sessions from the past seven days and thus is likely to find sessions that have

already been inserted in database. But this is necessary to make sure we record the

sessions that are lasting several days.

C.3.3 Keystroke and Session Association

With the information provided by Sebek, the only way to match the commands

logged by Sebek with a session is to compare the commands timestamps with the

session start and end timestamps.

The script reads line by line the previously rotated Sebek files and sorts the logs per

VEID also known as honeypot ID. It creates a file for each honeypot ID:

 194

/cybercrime/data/<experiment>/keystrokes/<hpid>/<honeypot_id>. This file

contains the keystrokes of the honeypot. If the file already exists, the new keystrokes

are appended at the end.

The processing script then queries the database to obtain the sessions of the

honeypots with keystrokes from the last seven days. For each session, the script

identifies all the commands (from the honeypot_id file) matching the start and end

timestamps.

At this point, if a previous keystroke record exists in the database for that session, the

record is deleted and re-created.

For the same reason as the session processing, the script processes the commands for

the session of the last seven days. The Sebek log lines that do not fit any session are

ignored. It is also worth noting that because of the volume of data they represents, the

keystrokes files are not imported in the database.

C.3.4 Keystroke Cleanup

The Session-Keystroke association matching process presents some issues. The

timestamps are used to match the keystrokes with a session. It works well when an

attacker opens a session, types some commands and closes the session. However if

the attacker of one honeypot opens two or more sessions in parallel, the processing

script will not be able to distinguish which of the sessions the keystroke logs belong

to.

Sebek log header provides a VEID that identifies the honeypot. For each session the

process ID (PID) is unique and does not change during the session. So the PID can be

used to identify the different sessions with the keystrokes logs. However, when an

 195

attacker invokes a program that stays in the foreground and interprets the keyboard

entries (such as a text editor) the PID reported by Sebek changes but it is still the

same session. These regular PID changes can be identified using the COM field. The

COM field reflects the process name that handled the logged keyboard entries. When

the PID changes within the same session, the COM field is likely to change as well

and match the previously typed command.

For example in Table 38, the attacker was initially on the shell bash and ran the

command ftp, a file transfer tool. Ftp does not return to the shell immediately, it

offers a prompt and the user can enter ftp commands to download or upload files. Ftp

now handles the standard input. As a consequence the PID and the COM fields

changed. Once the attacker exited the ftp program, the PID and COM fields went

back to their initial value.

Table 38. Keystrokes Commands with “normal” multiple PIDs

Sess.
ID

Dep.
ID

Keystrokes Commands

696 211
[2013-­‐10-­‐22	
 17:37:26	
 Veid:1788	
 …	
 PID:25014	
 …	
 COM:bash	
]#ls	
 -­‐a	

[2013-­‐10-­‐22	
 17:37:31	
 Veid:1788	
 …	
 PID:25014	
 …	
 COM:bash	
]#ftp	

[2013-­‐10-­‐22	
 17:42:53	
 Veid:1788	
 …	
 PID:25033	
 …	
 COM:ftp	
]#bye	

[2013-­‐10-­‐22	
 17:43:26	
 Veid:1788	
 …	
 PID:25014	
 …	
 COM:bash	
]#ls	
 -­‐a

Some attackers sometimes launch a second shell. The PID changes but the COM field

does not, however the attacker has to enter “bash” to start the new shell.

Because of this imperfect relation between keystroke and session logs, the database

can have keystroke session duplicates.

 196

a) Full duplicates

An example of duplicated keystroke session is shown in Table 39. The commands are

the same across the sessions. It usually happens when the sessions have about the

same duration and overlap totally. In that case the keystroke record for session ID

18999 will be deleted.

Table 39. Keystroke Session Duplicate

Sess.
ID

Dep.
ID

Commands

18965 2558

[2014-­‐05-­‐15	
 04:50:58	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#	

[2014-­‐05-­‐15	
 04:52:00	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#cd	
 .t	

[2014-­‐05-­‐15	
 04:52:00	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#chmod	
 +x*	

[2014-­‐05-­‐15	
 04:52:06	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#./inst	

18999 2558

[2014-­‐05-­‐15	
 04:50:58	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#	

[2014-­‐05-­‐15	
 04:52:00	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#cd	
 .t	

[2014-­‐05-­‐15	
 04:52:00	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#chmod	
 +x*	

[2014-­‐05-­‐15	
 04:52:06	
 Veid:3549	
 …	
 PID:6159	
 …	
 COM:bash	
]\#./inst	

b) Partial duplicate

An example of partial duplicate is shown Table 40. When the session duration is

significantly different or when the sessions do not overlap by much, the commands

are partially duplicated. In this case we remove the keystroke record for session

19071. It is clear that command has been duplicated from session 19070 and are

incomplete.

Table 40. Keystroke Session Partial Duplicate

Sess.
ID

Dep.
ID

Keystrokes Commands

19070 2553
[2014-­‐05-­‐15	
 04:56:58	
 Veid:3541	
 …	
 PID:28750	
 …	
 COM:bash	
]#w	

[2014-­‐05-­‐15	
 04:57:02	
 Veid:3541	
 …	
 PID:28750	
 …	
 COM:bash	
]#passwd	

[2014-­‐05-­‐15	
 04:57:39	
 Veid:3541	
 …	
 PID:67569	
 …	
 COM:bash	
]#perl	
 udp.pl	

19071 2553 [2014-­‐05-­‐15	
 04:57:39	
 Veid:3541	
 …	
 PID:67569	
 …	
 COM:bash	
]#perl	
 udp.pl	

 197

c) Multiple and mixed PIDs across several sessions

It happens that some attackers open several sessions at the same time with more or

less overlap and use them actively to issue commands on the system. The keystrokes

get duplicated on the different sessions and depending on the overlaps, the duplicates

are usually partial. These keystroke records will naturally show different PIDs

confirming the sessions overlap. After verifying that the PID change does not account

for a program execution, the processing script will try to separate the keystrokes for

each concurrent session. One session will have all the keystrokes for a specific PID

and the other sessions’ partial duplicates. The partial duplicates in each of the parallel

sessions will be removed. When the processing script cannot determine properly the

each keystroke sessions, the records get flagged in the database (multiple_pid and

error fields) and the error must be fixed manually.

The review field in the keystroke table indicates the processing script has reviewed

and if necessary corrected the keystroke record.

C.3.5 Data Consistency Check

Because of the complexity of the programs operating the honeypots, collecting the

data, building the datasets and processing them, inconsistencies across the different

tables can appear at times. The datasets built by the framework must be trusted as

they are being in various research projects. Any inconsistency or error should be

spotted quickly, the root cause identified and the problem fixed. Most of the issues

raised by the consistency check program are reported to the administrator for manual

inspection. The fields error in the keystroke table and session_error in the session

table are both used to flag records with problems.

 198

A consistency check is performed every morning. A report of the issues is sent via

email to the administrator. The email is sent only if at least one issue has been

detected. Once a session or keystroke record has been flagged it will not be reported

again by the following execution of the consistency check tool.

a) IDs Consistency

This step consists in checking that the sessions are still associated with a deployment

and that the keystrokes are associated with a session. For the session table, the dep_id

of each record is checked against the deployment table to detect orphan sessions. The

same for the keystroke table and the session records. Orphan records are removed

from the database since they cannot be associated to a deployment or a session.

b) Null sessions with Keystrokes

Null sessions are attackers Secure Shell sessions with a duration of 0 seconds. The

attacker logs in and logs out immediately. These sessions are most likely automated;

the attacker may want to check that he or she still has access to the compromised

system. A scripted bot could also execute a few commands on the honeypot to launch

an attack program or a network scan or perform any action on the system in less than

a second.

In any cases, a null session cannot have an extended keystroke session. The

consistency check program identifies these null sessions with keystrokes, flag them

and reports them to the administrator.

c) Keystrokes and Session match

At this step, the tool checks that each command in all the keystroke records is a

perfect fit for the associated session. The tool compares the command timestamp with

 199

the session start and end timestamps. Here again, the keystroke records with issues

are flagged and reported.

d) Session Start and End

This is a simple check, it detects for each session when, according to the database, a

session start timestamp is posterior to a session end timestamp.

C.3.6 Data Extraction

One of the objectives of the cybercrime initiative is to involve different domains of

expertise not necessarily linked to engineering or computer science. All of the

datasets should be easily accessible by any authorized researcher. The SQL language

used to query the cybercrime databases can quickly become a barrier to data access.

To solve that issue, some ruby scripts and a web page have been developed to provide

a way for researchers to extract the data into text files compatible with most

spreadsheet software.

a) Frontend

The frontend application is a web page hosted on the processing server Poseidon.

This web page offers the possibility to submit a data extraction job. These extraction

jobs are customizable via an online form shown in Figure 51:

• The user can extract the data from one or more experiments (or databases)

• The extraction can include the attackers’ commands

• The result files can contain the commands categories (tags)

• The filters allow the user to select specific deployment IDs or session IDs.

When yes is selected, the two additional fields shown in Figure 52 appear.

• The user can select a start and end date for the deployments.

 200

• The output field allows the user to customize the output file names.

• The email address is used by the program to notify the user when an

extraction job has started and ended. The email provides also a link to

download a ZIP archive containing the result files.

Figure 51. Data Extraction Online Form

After filling out the online form, the extraction job will be inserted in database. The

database keeps track of all the extraction requests with their status (not yet processed,

processing and processed).

Figure 52. Session and Deployment IDs filters

 201

b) Backend

Two different scripts are involved in the backend. The first one checks the database

for new extraction job every five minutes. Once a new job is submitted, this script

launches the extraction process with all the options specified by the user. As the

extraction process can be resource and time consuming, only one job is executed at a

time.

To facilitate the data analysis of the Cybercrime experiments, a modular ruby script

has been written to extract the data from the Collector database and aggregate the

deployment, session and keystroke information. This extraction script generates four

types of output:

• Session Aggregate: This file gathers general information on each deployment

as well as some specific characteristics and metrics pertaining to the first nine

sessions (if present).

• Keystroke Panel: A list of commonly used and well-known UNIX commands

has been built. The panel file will contain the number of times these well-

known commands have been executed for each session.

• Union Session Aggregate: This file gathers general information on each

deployment as well as characteristics and metrics on the first nine union

sessions.

• Union Session Panel: This file gathers general information on each

deployment as well as characteristics and metrics for all the union sessions.

 202

Union sessions are cases when an attacker opens multiple Secure Shell sessions at

once. The Union session collapse and combines the characteristics of all these

sessions into one.

When the extraction script starts processing a job, the user is notified via email and

the database maintaining the job queue is updated with the “processing” status. A job

in a processing state will prevent the execution of other jobs at the same time.

Once the extraction process is done, the user receives an email with a link to

download the ZIP archive containing the output files. The ZIP archive will be

available for download during seven days.

 203

C.4 Honeypot Life Cycle

The honeypot lifecycle is determined by the experimental design and also by the

technical implementation. As depicted in Figure 53, three phases characterize the

attackers actions against the Honeypots. The first one is the scanning phase where the

attackers look for SSH servers on the Internet. When the IP address corresponds to a

non-deployed honeypot, the experiment gateway receives these scans and replies to

them to show that a SSH service is running.

Figure 53. Honeypot Lifecycle

Scanning	

Com

prom
ise	

Brute-­‐force	

Attempt	

~100+	
 login/password

Deployment

SSH	
 Scan

Gateway	
 accepts	

connections

Attacker	
 connects	
 to	

Honeypot	
 and	
 uses	
 it

Data	
 Collection

Recycling

Honeypot	
 is	
 recycled	

after	
 30	
 days

 204

C.4.1 Brute-force Attack

Figure 54. Brute Force Attack Attempt

The second phase is the brute-force attack where the attackers try to guess the login

and password. The gateway handles these attacks. As shown in Figure 54 once the

threshold of guesses is reached, the honeypot is deployed. Once deployed, the

attacker can establish a SSH session with the Honeypot using the “guessed”

 205

credentials. This is the compromise phase during which we collect most of the data

related to one honeypot.

After 30 days, the honeypot is shut down: the public IP address is blocked and the

corresponding container is marked for recycling.

C.4.2 Honeypot deployment

The deployment process, shown in Figure 55, handles 1) the network configuration

(traffic redirection of a public IP address to a Honeypot private IP address using

Network Address Translation (NAT)), 2) the honeypot configuration and 3) the

logging to database.

The deployment is initiated by the Gateway following a successful login and

password “guess”. The gateway determines the Honeypot ID of the next available

Honeypot as well as the honeypot type randomly. It will then contact the OVZ host

hosting the container with the corresponding Honeypot ID. The container will be

configured to reflect the treatment for the honeypot type given by the gateway.

 206

Figure 55. Honeypot Deployment Process

O
pe

nV
Z

H
os

t

 207

C.4.3 Honeypot Recycling

a) OVZ Containers Recycling

Due to technical issues related to Sebek, the honeypot OVZ containers cannot be

recycled right after the 30-day compromise phase. The OVZ host operating system

crashes when the Sebek kernel module is loaded and a honeypot container is being

stopped for destruction. Once the operating system has crashed, all of the containers

stop working and a reboot is necessary. This interrupts the normal operations of the

experiment. To prevent this interruption, we wait until the 60 honeypot containers are

ready for recycling. The process is divided into two steps. As shown in Figure 56, the

recycling script determines whether all of the 60 honeypots on a given OVZ host have

reached their end of life or not. If yes, a recycling flag file is created and the OVZ

host is rebooted. This part of process is executed every nights.

Figure 56. OVZ Containers Recycling Process Part 1

 208

The second part of the process takes place at the OVZ host’s OS (Figure 57). After

the reboot, the recycling script detects the flag file. Containers are backed up on the

Collector Host and then destroyed. Based on the number of containers per OVZ host

(typically sixty) and the number of OVZ hosts (five), new honeypot IDs are

determined and a new set of containers is created. The system then continues normal

boot operations: it starts the honeypot containers and loads the Sebek module. The

framework will detect the creation of these containers and will release the block of IP

addresses chosen randomly. At the end of the recycling process, the Sebek module is

loaded in memory.

Figure 57. OVZ Containers Recycling Process Part 2

 209

b) Honeypot Recycling

The recycling process is executed every night. The Collector host looks for honeypot

deployments that have passed their expiration date. For each expired honeypot, the

Collector host:

• connects to the corresponding OVZ host and changes the container ID name

from localhost (default) to to_recycle,

• connects to the Gateway to install the firewall rule blocking the public IP

address

• updates the IP table in database with the new state

• updates the deployment table to mark the honeypot as inactive and add the

shutdown timestamp.

c) IP Unblock

The recycling process blocks the public IP addresses of the honeypots being

deactivated. When an OVZ host is entirely recycled, meaning old honeypots

destroyed and new ones created, it is necessary to unblock a number of public IP

addresses equal to the number of freshly created honeypots.

This process is executed every day in the morning after the recycling process on the

OVZ hosts. It identifies the number of IP addresses available to brute-force attacks

and checks on each OVZ hosts how many containers are not in use and not marked

for recycling:

• If the number of available honeypots is greater than the number of available

IP addresses, the script determines the number of IP to release and randomly

 210

selects IP addresses from the database. The firewall block is then removed on

the Gateway and IP address state is updated.

• If the number is equal, nothing is done

• If the number of available IP is greater than the number of honeypots, in this

case the script will block the surplus of IP addresses.

C.5 Multi-Experiment Architecture

Figure 58. Cybercrime Framework

As shown in Figure 58, the Cybercrime framework has been designed to host several

experiments. The framework provides a common Collector host for all the

experiments, and a template of OVZ hosts and Gateway. OVZ hosts, OVZ containers

(honeypots) templates and Gateway can be customized depending on the experiment

design. The experiments share the same physical networks, but different IP address

ranges are used to separate them, in particular on the Honeypot Traffic network. As a

consequence, the Collector host must have several IP addresses on the Honeypot

Network in order to be reachable from the honeypots of each experiment to receive

the Syslog messages.

 211

Bibliography

[ABU06] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted

approach to understanding the botnet phenomenon,” SIGCOMM

Conference on Internet Measurement, 2006.

[ALA06] E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, and M. Herrb, “Lessons

learned from the deployment of a high-interaction honeypot,” EDCC,

2006

[ALM08] S. Almotairi, A. Clark, G. Mohay, and J. Zimmermann, “Characterization

of attackers’ activities in honeypot traffic using principal component

analysis.” , Network and Parallel Computing, 2008

[ALS07] M. Alsaleh, M. Mannan, P.C. van Oorschot, “Revisiting Defenses against

Large-Scale Online Password Guessing Attacks,” Dependable and Secure

Computing, 2012

[AMU15] Amun: Python Honeypot, http://amunhoney.sourceforge.net, March 2015

[AND05] M. Andreolini, A. Bulgarelli, M. Colajanni, F. Mazzoni, “HoneySpam:

honeypots fighting spam at the source,” Steps to Reducing Unwanted

Traffic on the Internet Workshop, 2005

 212

[ANU15] Anubis: Malware Analysis for Unknown Binaries,

https://anubis.iseclab.org, April 2015

[ARC09] J. D’Arcy, J., and A. Hovay. “Does one size fit all? Examining the

differential effects of IS security countermeasures”, Journal of Business

Ethics, 89(1), p. 59-71, 2009

 [BAC08] P. Bacher, T. Holz, M. Kotter, and G. Wicherski, “Know Your Enemy:

Tracking Botnets (using honeynets to learn more about bots),” Technical

report, The Honeynet Project, august 2008.

[BAC15] BackupPC: Open Source Backup to disk, http://backuppc.sourceforge.net,

March 2015

[BAI05] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The

internet motion sensor: A distributed blackhole monitoring system,”

Network and Distributed System Security Symposium NDSS 05, 2005

[BAR96] P. Barclay, “Preventing auto theft in suburban Vancouver commuter lots:

Effects of a bike patrol. Preventing mass transit crime”, Crime prevention

studies 6, 1996

 213

[BAY06] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing

Malware,” 15th European Institute for Computer Antivirus Research

(EICAR 2006) Annual Conference, 2006

[BER09] R. Berthier, J. Arjona, and M. Cukier, “Analyzing the Process of

Installing Rogue Software,” in Proc. International Conference on

Dependable Systems and Networks (DSN-2009), 2009

[BLA01] S. Blank, “Can information warfare be deterred? In Information Age

Anthology”, Volume III: The Information Age Military, eds. David S.

Alberts and Daniel S. Papp. Washington, DC: Command and Control

Research Program, 2001.

[CAS15] Central Authentication Service, https://www.apereo.org/cas, April 2015

[CHA04] G. Chamales, “The honeywall cd-rom,” Security Privacy, 2004.

[CHA11] Chang, Ee-Chien, et al. "Enhancing host security using external

environment sensors." International Journal of Information Security 10.5,

2011

[CHA15] Chaosreader, http://chaosreader.sourceforge.net, March 2015

 214

[CHE95] Y.-W. Cheung, L. Kon, “Lag Order and Critical Values of the

Augmented Dickey-Fuller Test,” Journal of Business & Economic

Statistics, American Statistical Association, 1995

[CLA97] R. Clarke, “Situational crime prevention”, Monsey, NY: Criminal Justice

Press, 1997

[COL03] R. Colin, "Operating systems incorporating UNIX and Windows”, 1997

[CON15] Conpot ICS/SCADA Honeypot, http://conpot.org, March 2015

[CUR04] K. Curran, C. Morrissey, C. Fagan, C. Murphy, B. O’Donnell, G.

Fitzpatrick, and S. Condit, “A year in the life of the irish honeynet:

attacked, probed and bruised but still fighting,” Information Knowledge

System Management, 2004.

[CUS93] M. Cusson, "Situational deterrence: Fear during the criminal event”,

Crime prevention studies 1, 1993

[CWS14] Malware Analysis CWSandbox: http://www.mwanalysis.org, March 2014

[DIO15] Dionaea – catches bugs, http://dionaea.carnivore.it, March 2015

 215

[DHA06] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” In

Proceedings of the SIGCHI conference on Human Factors in computing

systems, CHI ’06, 2006.

[DHI07] C. Dhinakaran, Lee Jae Kwang, D. Nagamalai, “An Empirical Study of

Spam and Spam Vulnerable email Accounts,” Future Generation

Communication and Networking (FGCN 2007), 2007

[DIC79] D. Dickey, W. Fuller, “Distribution of the Estimators for Autoregressive

Time Series With a Unit Root,” Journal of the American Statistical

Association, American Statistical Association, 1979

[ELD01] J. Elder, and P. E. Kennedy, “Testing for unit roots: what should students

be taught?.”, The Journal of Economic Education 32.2 (2001)

[FIL15] The Fine Free File Command, http://www.darwinsys.com/file/, March

2015.

[FPR15] NetFlow Probes: fprobe and fprobe-ulog, http://fprobe.sourceforge.net,

March 2015.

 216

[FRA07] J. Franklin, A. Perrig, V. Paxson, S. Savage, “An inquiry into the nature

and causes of the wealth of internet miscreants”, Computer and

communications security, 2007

[FUR02] S. Furnell, “Cybercrime: Vandalizing the Information Society,” Boston,

MA: Addison-Wesley, 2002

[GAD08] J. Gadge, A.A. Patil, “Port scan detection,” ICON, 2008

[GAS13a] M. Cukier, I. Gashi, B. Sobesto and V. Stankovic. "Does Malware

Detection Improve with Diverse Antivirus Products? An Empirical

Study". in 32nd International Conference on Computer Safety, Reliability

and Security (SAFECOMP), 2013.

[GAS13b] I. Gashi, B. Sobesto, S. Mason, V. Stankovic and M. Cukier, “A Study of

the Relationship between Antivirus Regressions and Label Changes”,

International Symposium on Software Reliability Engineering (ISSRE),

2013.

[GEE75] M. R. Geerken,W. R. Gove, “Deterrence: Some theoretical

considerations”, Law and Society Review, 1975

 217

[GHA14] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works”, SIGCHI

Conference on Human Factors in Computing Systems, 2006.

[GIB75] J. P. Gibbs, Crime, punishment, and deterrence. New York: Elsevier,

1975

[GIT15] Git, http://git-scm.com, March 2015

[GLA15] Glastopf Honeypot Project, http://glastopf.org, March 2015.

[GOE07] J. Goebel, T. Holz, “Rishi: Identify Bot Contaminated Hosts by IRC

Nickname Evaluation”, Hot Topics in Understanding Botnets. 2007.

[GOO10] W. Goodman, "Cyber Deterrence." STRATEGIC STUDIES 102, 2010

[GRE85] G. S. Green, “General Deterrence and Televison Cable Crime: A Field

Experiment in Social Control”, Criminology 23.4, 1985

[HAR96] R. Harknett, “The Information Technology Network and the Ability to

Deter: the Impact of Organizational Change on 21 st Century Conflict”,

Joint Center for International and Security Studies, 1996.

 218

[HES95] R. Hesseling, "Theft from cars: reduced or displaced?" European Journal

on Criminal Policy and Research 3.3, 1995

[HOD15] Honeydrive honeypot bundle distro, http://bruteforce.gr/honeydrive,

March 2015.

[HON15] Honeymole, http://www.honeynet.org/project/Honeymole, March 2015.

[HOS15] Honeysnap, https://projects.honeynet.org/honeysnap/, March 2015.

[HUNT09] P. Hunton, “The growing phenomenon of crime and the Internet: A

cybercrime execution and analysis model,” Computer Law & Security

Review, Volume 25, Issue 6, p. 528-535, November 2009

[ILO03] J. Ilonen, “Keystroke dynamics,” Advanced Topics in Information

Processing, Lecture, 2003.

[IRA08] D. Irani, S. Webb, J. Giffin, C. Pu, “Evolutionary study of phishing,”

eCrime Researchers Summit, October 2008

[JOY89] R. Joyce, G.K. Gupta, and J. Cook, “User authorization based on

keystroke latencies,” Dept. of Computer Science, James Cook University

of North Queensland, 1989.

 219

[JIA06] X. Jiang, D. Xu, and Y. M. Wang, “Collapsar: A VM-based honeyfarm

and reverse honeyfarm architecture for network attack capture and

detention”, Journal of Parallel and Distributed Computing, 2006

[KAA06] M. Kaâniche, E. Alata, V. Nicomette, Y. Deswarte and M. Dacier,

“Empirical analysis and statistical modeling of attack processes based on

honeypots”, Workshop on Empirical Evaluation of Dependability and

Security (WEEDS-DSN06), Philadelphia, PA, June 28, 2006

[KER09] O. S. Kerr, "Vagueness Challenges to the Computer Fraud and Abuse

Act”, Minn. L. Rev. 94, 2009

[KIP15] desaster/kippo GitHub, https://github.com/desaster/kippo, March 2015

[KIT03] K. Burden and C. Palmer, “Internet crime: Cyber Crime — A new breed

of criminal?,” Computer Law & Security Review, Volume 19, Issue 3, p.

222-227, May 2003

[KOH09] J. Kohlrausch, “Experiences with the noah Honeynet testbed to detect

new internet worms”, IT Security Incident Management and IT Forensics,

2009.

 220

[LAY92] G. Laycock, C. Austin, “Crime prevention in parking facilities”, Security

Journal 3.3, 1992

[LEI08a] C. Leita and M. Dacier, “Sgnet: A worldwide deployable framework to

support the analysis of malware threat models”, European dependable

Computing Conference, Washington, DC,USA, 2008

[LEI08b] C. Leita and M. Dacier, “Sgnet: Implementation Insights”. Network

Operations and Management Symposium (NOMS), 2008

[LEI08c] C. Leita, K. Mermoud and M. Dacier, “ScriptGen: an automated script

generation tool for Honeyd”, Computer Security Applications

Conference, 2005

[LEV03] J. Levine, R. Labella, H. Owen, D. Contis, and B. Culver, “The Use of

Honeynets to Detect Exploited Systems Across Large Enterprise

Networks”, IEEE Workshop on Information Assurance, IEEE Systems,

Man and Cybernetics Society, 2003

[LIB15] Libssh – The SSH Library!, https://www.libssh.org, March 2015.

 221

[LOU12] T. A. Loughran, A. Piquero, A. R. Fagan, and E. P. Mulvey, “Differential

deterrence: Studying heterogeneity and changes in perceptual deterrence

among serious youthful offenders”, Crime & Delinquency, 2012

[MAI13] D. Maimon, A. Kamerdze, M. Cukier and B. Sobesto, “Daily Trends and

Origin of Computer-Focused Crimes Against a Large University

Computer Network An Application of the Routine-Activities and

Lifestyle Perspective”, British Journal of Criminology, 2013

[MAI14] D. Maimon, M. Alper, B. Sobesto and M. Cukier, “Restrictive Deterrent

Effects of a Warning Banner in an Attacker Computer System”,

Criminology, 2014.

[MAI15] D. Maimon, T. Wilson, W. Ren and T. Berenblum, “On the Relevance of

Spatial and Temporal Dimensions in Assessing Computer Susceptibility

to System Trespassing Incidents”, British Journal of Criminology, 2015.

[MON97] F. Monrose and A. Rubin, “Authentication via keystroke dynamics”,

Computer and Communications Security, 1997.

[MUN15] Munin, http://munin-monitoring.orgm, March 2015.

[NFD15] NFDump, http://nfdump.sourceforge.net , March 2015.

 222

[NFS15] NfSen – Netflow Sensor, http://nfsen.sourceforge.net, March 2015.

[OPE15] OpenProject, https://www.openproject.org, March 2015.

[OVZ15] OpenVZ Linux Containers Wiki, http://openvz.org/, March 2015.

[PAT87] R. Paternoster, "The deterrent effect of the perceived certainty and

severity of punishment: A review of the evidence and issues”, Justice

Quarterly 4.2, 1987

[PAU14] A. Pauna and I. Bica "RASSH - Reinforced adaptive SSH honeypot,"

Communications (COMM), 2014

[PEF15] Inside Windows: Win32 Portable Executable File,

https://msdn.microsoft.com/en-us/magazine/cc301805.aspx, March 2015.

[PFS15] PFSense Project – Open Source Firewall and Router Software

Distribution, https://www.pfsense.org, March 2015.

[PHO15] J. Nazario, PhoneyC: A Virtual Client Honeypot, USENIX Conference

on Large-scale Exploits and Emergent Threats: Botnets, Spyware,

Worms, and More, 2009.

 223

[PNG09] I. PL Png, Q. Wang, "Information security: Facilitating user precautions

vis-à-vis enforcement against attackers”, Journal of Management

Information Systems 26.2, 2009

[POL10] M. Polychronakis, K.G. Anagnostakis and E.P. Markatos,

"Comprehensive Shellcode Detection Using Runtime Heuristics", in

Proceedings of the 26th Annual Computer Security Applications

Conference, 2010

[POU05] F. Pouget, M. Dacier, and V. H. Pham, “Leurre.com: on the advantages of

deploying a large scale distributed honeypot platform,” In ECCE’05, E-

Crime and Computer Conference, 2005

[PRO03] N. Provos, “Honeyd: A Virtual Honeypot Daemon,” Technical report,

Center for Information Technology Integration, University of Michigan,

2003

[PRO07] N. Provos and T. Holz, “Virtual honeypots: from botnet tracking to

intrusion detection,” Addison-Wesley Professional, first edition, 2007

[RAM00] P. Rämä, R. Kulmala, "Effects of variable message signs for slippery road

conditions on driving speed and headways”, Transportation research part

F: traffic psychology and behaviour 3.2, 2000

 224

[RAM07] D. Ramsbrock, R. Berthier, M. Cukier, “Profiling Attacker Behavior

Following SSH Compromises,” Dependable Systems and Networks

(DSN'07), 2007

[RAT13] R. P. Rathod, P. U. Bhalchandra, S. D. Khamitkar S.D, S. N. Lokhande,

“A Critical Investigation of Botnet,” GJCST-E: Network, Web &

Security 13.9, 2013

[ROE99] M. Roesch, “Snort - lightweight intrusion detection for networks,” In

Proceedings of the 13th international conference on Large Installation

System Administration, 1999

[SAL11] G. Salles-Loustau, R. Berthier, E. Collange, B. Sobesto, and M. Cukier,

“Characterizing Attackers and Attacks: An Empirical Study”, Pacific Rim

International Symposium on Dependable Computing, 2011

[SBK15] Sebek – The Honeynet Project, https://projects.honeynet.org/sebek/,

March 2015.

[SCM15] SCM-Manager, https://www.scm-manager.org, March 2015.

 225

[SHE93] L. W. Sherman, “Defiance, deterrence, and irrelevance: A theory of the

criminal sanction,” Journal of research in Crime and Delinquency, 30(4),

p. 445-473, 1993

[SHE95] L. W. Sherma and D. L. Weisburd, “General deterrence effects of police

patrol in crime hot spots: A randomized, controlled trial”, Justice

Quarterly 12:625–48, 1995.

[SOB11] B. Sobesto, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder, and R.

Berthier, “DarkNOC: Dashboard for Honeypot Management”, USENIX

conference on Large Installation System Administration, Berkeley, CA,

USA: USENIX Association, 2011.

[SOB12] B. Sobesto, M. Cukier, and D. Maimon, “Are Computer Focused Crimes

Impacted by System Configurations? An Empirical Study”, Software

Reliability Engineering (ISSRE), 2012.

[SON01] D.X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and

timing attacks on SSH”, USENIX Security Symposium, 2001.

[SPI02] L. Spitzner. Honeypots, “Tracking Hackers,” Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

 226

[SSH15] SSH Analysis, http://www.brendangregg.com/sshanalysis.html, March

2015.

[STR90] Jr, Straub, W. Detmar, “Effective IS security: An empirical study”,

Information Systems Research, 1990.

[STU12] I. Studnia, V. Nicomette, M. Kaaniche and E. Alata, "A distributed

platform of high interaction honeypots and experimental results," Privacy,

Security and Trust (PST), 2012.

[SVN15] Apache Subversion, https://subversion.apache.org, March 2015.

[SYS15] Syslog – Log Management, http://www.syslog.org, March 2015.

[TCP15] TCPDUMP & Libpcap, http://www.tcpdump.org, March 2015.

[THO13] K. Thomas, T. A. Loughran, and A. R. Piquero, “Do individual

characteristics explain variation in sanction risk updating among serious

juvenile offenders? Advancing the logic of differential deterrence,” Law

and Human Behavior, 37(1), p.10, 2013

[THU15] Thug - Python low-interaction honeyclient, http://buffer.github.io/thug/,

March 2015.

 227

[VIR15] VirusTotal - Free Online Virus, Malware and URL Scanner,

https://www.virustotal.com, March 2015.

[VIS11] V. Visoottiviseth, U. Jaralrungroj, E. Phoomrungraungsuk, and P.

Kultanon, “Distributed honeypot log management and visualization of

attacker geographical distribution,” In Computer Science and Software

Engineering (JCSSE), 2011.

[VMW15] vSphere, http://www.vmware.com/products/vsphere, March 2015.

[VMS15] VMware Server, http://en.wikipedia.org/wiki/VMware_Server, March

2015

[VRA05] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G.

M. Voelker, and S. Savage, “Scalability, fidelity, and containment in the

potemkin virtual honeyfarm,” SIGOPS Oper. Syst. Rev., 2005.

[WEI02] N. Weiler, “Honeypots for distributed denial of service attacks,”,

Enabling Technologies: Infrastructure for Collaborative Enterprises,

2002.

 228

[WEL08] B. Welsh, D. Farrington, "Effects of Closed Circuit Television

Surveillance on Crime: A Systematic Review”, Campbell Systematic

Reviews 4.17, 2008

[WILL07] C. Willems, T. Holz and F. Freiling, “Toward Automated Dynamic

Malware Analysis Using CWSandbox,” IEEE Security and Privacy, 2007

[WIR15] Wireshark – Go deep, https://www.wireshark.org, March 2015.

[XU09] X. Rui; M. Wen-li; Z. Wen-ling, “Defending against UDP Flooding by

Negative Selection Algorithm Based on Eigenvalue Sets,” Information

Assurance and Security, 2009.

[ZAB15] Zabbix :: The Enterprise-Class Open Source Network Monitoring

Solution, http://www.zabbix.com, March 2015.

[ZHU07] J. Zhuge, T. Holz, X. Han, J. Guo, and W. Zou, “Characterizing the irc-

based botnet phenomenon,” Peking University & University of

Mannheim Technical Report, 2007

