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Visual categories refer to categories of objects or scenes in the computer vision

literature. Building a well-performing classifier for visual categories is challenging

as it requires a high level of generalization as the categories have large within class

variability. We present several methods to build generalizable classifiers for visual

categories by exploiting commonality and diversity of labeled samples and the cat-

egory definitions to improve category classification accuracy.

First, we describe a method to discover and add unlabeled samples from auxil-

iary sources to categories of interest for building better classifiers. In the literature,

given a pool of unlabeled samples, the samples to be added are usually discovered

based on low level visual signatures such as edge statistics or shape or color by an

unsupervised or semi-supervised learning framework. This method is inexpensive

as it does not require human intervention, but generally does not provide useful

information for accuracy improvement as the selected samples are visually similar

to the existing set of samples. The samples added by active learning, on the other



hand, provide different visual aspects to categories and contribute to learning a

better classifier, but are expensive as they need human labeling. To obtain high

quality samples with less annotation cost, we present a method to discover and add

samples from unlabeled image pools that are visually diverse but coherent to cat-

egory definition by using higher level visual aspects, captured by a set of learned

attributes. The method significantly improves the classification accuracy over the

baselines without human intervention.

Second, we describe now to learn an ensemble of classifiers that captures both

commonly shared information and diversity among the training samples. To learn

such ensemble classifiers, we first discover discriminative sub-categories of the la-

beled samples for diversity. We then learn an ensemble of discriminative classifiers

with a constraint that minimizes the rank of the stacked matrix of classifiers. The

resulting set of classifiers both share the category-wide commonality and preserve

diversity of subcategories. The proposed ensemble classifier improves recognition

accuracy significantly over the baselines and state-of-the-art subcategory based en-

semble classifiers, especially for the challenging categories.

Third, we explore the commonality and diversity of semantic relationships of

category definitions to improve classification accuracy in an efficient manner. Specif-

ically, our classification model identifies the most helpful relational semantic queries

to discriminatively refine the model by a small amount of semantic feedback in inter-

active iterations. We improve the classification accuracy on challenging categories

that have very small numbers of training samples via transferred knowledge from

other related categories that have a lager number of training samples by solving a



semantically constrained transfer learning optimization problem.

Finally, we summarize ideas presented and discuss possible future work.
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Chapter 1: Introduction

Recognizing visual categories is an important computer vision problem with

high applicability to systems requiring visual perception. Such systems include

autonomous vehicle, robots and web services with automatic image tagging, search

and management, to name a few. The recognition problem is usually formulated as

a generalizable classifier learning problem with state-of-the-art feature descriptors.

Building a generalizable classifier for visual category recognition, however, is difficult

due to high intra-class variations of visual features because of the high level of visual

diversity of samples within a category. In other words, visual categories may contain

highly diverse samples in terms of appearance. To address the intra-class variations

in learning a classifier, there are two typical solutions. One is to use a large number

of labeled samples. The other is to learn a sophisticated classifier. The first solution

requires expensive human labeling efforts to obtain quality labeled samples and

the second solution often requires high computational cost. Avoiding the issues of

expensive human labeling and high computational costs, we present three methods

to improve visual category recognition accuracy.

The first method is to add unlabeled samples to categories by learned at-

tributes. Using attributes learned from auxiliary data, we can add high quality
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samples without requiring humans in the loop, unlike active learning. Using the

attribute representation, we can identify high quality samples without explicitly

modeling the sample distribution, unlike semi-supervised learning (SSL). We add

samples by two criteria: commonality and specificity of the initially given labeled

samples. The samples added by the two criteria are visually diverse but maintaining

the characteristics of the category of interest, thus improving classification accuracy.

The second method is to build an ensemble of classifiers for addressing both

diverse appearances of subcategories and commonality. With a given set of labeled

samples, we discover the subcategories that are discriminative to other categories

and learn a set of subcategory classifiers that share the commonality of them. The

new ensemble classifier improves accuracy compared to state-of-the-art methods.

The third method is a novel learning framework for visual category catego-

rization by exploiting the commonality and diversity of category definitions with

an efficient interactive semantic feedback. In this framework, a discriminative cate-

gorization model is improved through iterative semantic feedback. Specifically, the

model identifies the most helpful relational semantic queries to discriminatively re-

fine the model. The semantic feedbacks on whether the pattern is valid or not is

incorporated back into the model, in the form of regularization, and the process

iterates. We validate the proposed model in a few-shot multi-class classification

scenario, where we measure classification performance on a set of ‘target’ classes,

with few training instances, by leveraging and transferring knowledge from ‘anchor’

classes, that contain larger sets of labeled instances.

The dissertation consists of the following chapters. Chapter 2 describes the

2



method to add unlabeled samples to categories by learned attributes. Chapter 3

describes the method to build an ensemble of classifiers to address the visual varia-

tions of samples without adding unlabeled samples. Chapter 4 presents the transfer

learning framework with interactive semantics. We then conclude the dissertation

with a future plan in Chapter 5.
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Chapter 2: Adding Unlabeled Sample to Categories by Learned At-

tributes

2.1 Introduction

Designing generalizable classifiers for visual categories is an active research

area and has led to the development of many sophisticated classifiers in vision and

machine learning [70]. Building a good training set with minimal supervision is a

core problem in training visual category recognition algorithms [6].

A good training set should span the appearance variability of its category.

While the internet provides a nearly boundless set of potentially useful images for

training many categories, a challenge is to select the relevant ones – those that help

to change the decision boundary of a classifier to be closer to the best achievable.

So, given a relatively small initial set of labeled samples from a category, we want

to mine a large pool of unlabeled samples to identify visually different examples

without human intervention.

This problem has been studied by two research communities: active learning

and semi-supervised learning. In active learning, the goal is to add visually different

samples using human intervention, but to minimize human effort and cost by choos-
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ing informative samples for people to label [27, 52, 58]. Even though the amount of

human intervention is minimized and its cost is getting cheaper via crowd sourcing,

e.g., Amazon Mechanical Turk, it is still preferable to not have humans in the loop

because of issues like quality control and time [58].

Semi-supervised learning (SSL) aims at labeling unlabeled images based on

their underlying distribution shared with a few labeled samples [19,59,73]. In SSL,

it is assumed that the unlabeled images that are distributed around the labeled

samples are highly likely to be members of the labeled category. However, if we

need to dramatically change the decision boundary of a category to achieve good

classification performance, it is unlikely that this can be done just by adding samples

that are similar in the space in which the original classifier is constructed.

To expand the boundary of a category to an unseen region, we propose a

method that selects unlabeled samples based on their attributes. The selected un-

labeled samples are not always instances from the same category, but they can still

improve category recognition accuracy, similar to [31, 41]. We use two types of

attributes: category-wide attributes and example-specific attributes. The category-

wide attributes find samples that share a large number of discriminative attributes

with the preponderance of training data. The example-specific attributes find sam-

ples that are highly predictive of the hard examples from a category - the ones

poorly predicted by a leave one out protocol.

We demonstrate that our augmented training set can significantly improve the

recognition accuracy over a very small initial labeled training set, where the unla-

beled samples are selected from a very large unlabeled image pool, e.g., ImageNet.
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Our contributions are summarized as follows:

1. We show the effectiveness of using attributes learned with auxiliary data to

label unlabeled images without annotated attributes.

2. We propose a framework that jointly identifies the unlabeled images and cat-

egory wide attributes through an optimization that seeks high classification

accuracy in both the original feature space and the attribute space.

3. We propose a method to learn example specific attributes with a small sized

training set, used with the proposed framework. We then combine the category

wide and the example specific attributes to further improve the quality of

image selection by diversifying the variations of selected images.

The rest of the chapter is organized as follows: Section 2.2 reviews related

work. Section 2.3 presents the overview of our approach. Section 2.4 describes our

optimization framework for discovering category wide attributes and the unlabeled

images as well as a method to capture exemplar specific attributes. Section 2.5

describes the details of the dataset configurations used in our experiments. Ex-

perimental results that demonstrate the effectiveness of our method is presented in

Section 3.4. Section 3.5 concludes the chapter.

2.2 Related Work

Our work is related to active learning, semi-supervised learning, transfer learn-

ing and recent work about borrowing examples from other categories.

Active Learning The goal of active learning is to add examples with minimal

6



human supervision [27]. [58] provides a comprehensive survey. Recently, Parkash et

al. proposed a novel active learning framework based on interactive communication

between learners and supervisors (teachers) via attributes [52]. It requires fairly

extensive human supervision with rich information.

Semi-Supervised Learning Semi-supervised learning (SSL) adds unlabeled

examples to a training set by modeling the distribution of features without su-

pervision. [73] is a detailed review of the SSL literature. Fergus et al. proposed

a computationally efficient SSL technique for large datasets [19]. Our approach

also uses a large dataset and scales linearly in the size of that dataset; it differs

from conventional SSL approaches because we do not use the distribution of sample

in the original feature space, but in an attribute space. Recently, Shrivastava et

al. proposed a SSL based scene category recognition framework using attributes,

constrained by a category ontology [59]. They leverage the inter-class relationships

as constraints for SSL using semantic attributes given by a category ontology as a

priori. Our approach is similar to their work in terms of using attributes, but aims

to discover attributes without any structured semantic prior.

Transfer Learning and Borrowing Examples Our work is related to re-

cent work on transfer learning [50] and borrowing examples [31,41,57].

Ruslan et al. [57] proposed building a hierarchical model from categories to

borrow images of a useful category for detection and classification. They assume

that the images in a category are not diverse and adding all images from some

selected category will help to build a better model for the target category. The

assumption, however, is bound to be violated by visually diverse categories.
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Instead, Lim et al. [41] propose a max-margin formulation to borrow some

samples from other categories based on a symmetric borrowing constraints.

Kim and Grauman [31] propose a shape sharing method to improve segmen-

tation based on the insight that shapes are often shared between objects of different

categories.

Attributes Research on attributes recently has been drawing a lot of at-

tention in the computer vision community because of their robustness to visual

variations [17, 35, 37]. Attributes can, in principle, be used to construct models of

new objects without training data - zero shot learning [37]. Recently, Rastegari et

al. [54] propose discovering implicit attributes that are not necessarily semantic for

category recognition. The discovered attributes preserve category-specific traits as

well as their visual similarity by an iterative algorithm that learns discriminative

hyperplanes with max-margin and locality sensitive hashing criteria.

2.3 Approach Overview

Given a handful of labeled training examples per category, it is difficult to build

a generalizable visual model of a category even with sophisticated classifiers [70].

To address the lack of variations of the few labeled examples, we expand the visual

boundary of a category by adding unlabeled samples based on their attributes. The

attribute description allows us to find examples that are visually different but similar

in traits or characteristics [17,35,37].

Based on recent work on automatic discovery of attributes [54] and large scale
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category-labeled image datasets [12], we discover a rich set of attributes. These

attributes are leaned using an auxiliary category-labeled dataset to avoid biasing the

attribute models towards the few labeled examples. The motivation here is similar

to what underlies the successful Classemes representation [63] which achieved good

category recognition performance by representing samples by external data that

consists of a large number of samples from various categories.

Across the original visual feature space and the attribute space, we propose a

framework that jointly selects the unlabeled images to be assigned to each category

and the discriminative attribute representations of the categories based on either

a category wide or exemplar based ranking criteria. Sec. 2.4.1 presents the opti-

mization framework for category wide addition of unlabeled samples to categories.

This adds samples that share many discriminative attributes amongst themselves

and the given labeled training data. The same framework can be applied to identify

relevant unlabeled samples based on their attribute similarity to specific instances

of the training data. This only involves a simple change to one term of the optimiza-

tion, and is based on how ranks of unlabeled samples change as labeled samples are

left out, one at a time, from the attribute based classifier. So, the optimization runs

twice - one to identify samples that share large numbers of discriminative attributes

within class and a second to find samples that share strong attribute similarity with

specific members of the class, and the two sets of samples are then combined to

create the augmented training set for the class. We refer to the first as a categorical

analysis and the second as an exemplar analysis.
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2.4 Joint Discovery of Discriminative Attributes and Unlabeled Sam-

ples

2.4.1 Categorical Analysis

We simultaneously discover discriminative attributes and images from the un-

labeled data set in a joint optimization framework formulated in both visual feature

space and attribute space with a max margin criterion for discriminativity. Un-

like [59], we do not require a label taxonomy to find the shared properties. Also

unlike [41], we do not need to learn the distributions of the unlabeled images in the

original feature space.

For each category c, we will construct a classifier in visual feature space, wvc ,

using the set X = {xi|i ∈ {1, . . . , l, l + 1, . . . , n}} that consists of the initially

given labeled training images {xi|i ∈ {1, . . . , l}} ⊂ X and the selected images

from the unlabeled image pool {xi|i ∈ {l + 1, . . . , n}} ⊂ X. The subset of images

from the unlabeled set is assigned to a category based on identifying discriminative

attribute models. Since the problems of determining the discriminative attributes

and selecting the subset of unlabeled data to assign to a category are coupled, we

learn them jointly. Additionally, we want to mitigate against unlabeled samples

being assigned to multiple categories, so a term M(·) is added to the optimization
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criteria to enforce that. The joint optimization function is:

min
Ic∈I,wv

c ,w
a
c

∑
c

(
αJvc (Ic, w

v
c ) + βJac (Ic, w

a
c )
)

+M(I)

subject to

Jvc (Ic, w
v
c ) = ‖wvc‖2

2 + λv

n∑
i=1

ξc,i

Ic,i · yc,i(wvcxi) ≥ 1− ξc,i, ∀i ∈ {1, . . . , n}

Jac (Ic, w
a
c ) = ‖wac‖2

2 + λa

n∑
j=1

ζc,j −
n∑

k=l+1

Ic,k

(
wacφ(xk)

)
Ic,j · yc,j(wacφ(xj)) ≥ 1− ζc,j, ∀j ∈ {1, . . . , n}

n∑
k=l+1

Ic,k ≤ γ, Ic,k = 1, ∀k ∈ {1, . . . , l}

M(I) =
∑∑
c16=c2

Ic1 · Ic2,

(2.1)

Ic ∈ {0, 1} is the sample selection vector for category c, and indicates which unla-

beled samples are selected for assignment to the training set of category c. Ic,i = 1

when the ith sample is selected for category c. xi ∈ RD is the visual feature vector

of image i. yc,i ∈ {+1,−1} indicates whether the label assigned to xi is c (+1) or

not (−1). φ(·) : RD → RA is a mapping function of visual feature to the attribute

space that is learned from auxiliary data, where RD and RA denote visual feature

space and attribute space, respectively. α and β are hyper-parameters for balanc-

ing the max margin objective terms for both the visual feature and attribute based

classifiers. γ is a hyper-parameter for specifying the number of selected images.

Jvc (Ic, w
v
c ) and the second constraint of Eq. 2.1 are a max-margin classification

terms in visual feature space. Jac (·) and the forth constraint of Eq. 2.1 are a max-

margin classifier in the attribute space (TA) with a selection criterion (TR); we divide

11



it as follows:

Jac (Ic, w
a
c ) = ‖wac‖2

2 +
n∑
j=1

ζc,j︸ ︷︷ ︸
TA

−
n∑

k=l+1

Ic,k

(
wacφ(xk)

)
︸ ︷︷ ︸

TR

. (2.2)

TR essentially chooses the top γ responses of the attribute classifier from the

unlabeled set by the fifth constraint of Eq. 2.1. The term M(Ic) penalizes adding

the same sample to multiple categories (sixth constraint of Eq. 2.1).

The objective function is obviously not convex due to the interconnection of the

two spaces by the example selecting indicator vector I and the attribute mapper

φ(·). However, if the Ic’s were known and we fix either Jvc (Ic, w
v
c ) or Jac (Ic, w

a
c ),

the function becomes convex and can be solved with an iterative block coordinate

descent algorithm. At each iteration we fix one of the terms and the entire objective

function becomes an ordinary max margin classification formulation with a selection

criterion. Each iteration of the block coordinate descent algorithm updates the set

of indicator vectors I. At the first iteration, the initial value of I is determined by

training the attribute classifier wac on the given labeled training set. Then, after

the two SVM’s in both spaces are updated, we update I. Since there is no proof

of convergence for the algorithm, we iterate it a fixed number of times - 1 ∼ 3 in

practice. The iterations could be controlled using a held out validation set, but since

our premise is that labeled samples are rare we do not do that.

2.4.2 Exemplar Analysis

The discriminative attributes learned in Sec. 2.4.1 capture commonality among

all examples in a category. We refer them as categorical attributes. Each example,

12



however, has its own characteristics that may help to expand the visual space of

the category by identifying images based on example-specific characteristics. To

discover exemplar attributes, a straightforward solution would be to learn exemplar-

SVMs [45]. The exemplar-SVM, however, requires many negative samples to make

the classifier output stable. For our purposes, though, we can accomplish the same

thing by analyzing how the ranks of unlabeled samples change when a single sample

is eliminated from the training set of the attribute SVM. If an unlabeled sample

sees its rank drop sharply from its rank in the full-sample SVM, then the training

sample dropped should have strong attribute similarity to the unlabeled sample.

This is illustrated in Figure 2.1. The first row shows the labeled training

samples (10 examples). The left most column is a list of unlabeled images ordered

by confidence score by wac . Rest of the columns are lists of unlabeled images ordered

by each wac,̄i’s. Note that an image of halved orange in the second column makes

the first ranked images in the left most column (by wac ) go down because the halved

orange was removed in the training set of wac,̄i. Eliminating the half orange (second

sample, top row) from the training set reduces the rank of the globally best unlabeled

sample from 1 to 10.

First, let wac be the attribute classifier for the current training set for category c

(while the process is initialized based on the labeled training set, after each iteration

we use the additional unlabeled samples added to the category to construct a new

attribute classifier). Let wac,j̄ be the attribute classifier learned when the ith sample is

removed from the training set. We next describe how we use the ranks of unlabeled

samples in these two classifiers to modify TR in Eq. 2.2. Basically, we are going

13



to re-rank the unlabeled samples based on their rank changes from wac to wac,j̄. We

want samples whose ranks are lowered dramatically by the elimination of a single

sample from the training set to be highly ranked by the re-ranking function. This

can be accomplished by computing the following score based on rank changes, and

the sorting the unlabeled samples by this score:

ej(xi) =
µ

rg(xi)
− ν

rj(xi)
, (2.3)

where xi is a sample from the an unlabeled pool, rg(·) and rj(·) are the rank functions

of wac and wac,j̄ respectively. µ and ν are the balancing hyper-parameters for two

ranks. TR is then simply determined by first selecting the new top ranked sample

from each leave one out SVM, then the second ranked, until a fixed number of

samples are selected (skipping over duplicates). This set is then used to re-learn the

feature and attribute based SVM’s and the entire process iterates.

2.5 Dataset

We construct a dataset from a large scale dataset for category recognition,

ImageNet [12] using its standard benchmark subset, ILSVRC 2010 dataset. We will

publicly release our dataset for future comparison.1 It consists of approximately 1

million images of 1,000 categories. The images are downloaded from a photo sharing

portal2. It provides fine grained category labels such as specific breed of dogs, e.g.,

Yorkshire Terrier and Australian Terrier.

1http://umiacs.umd.edu/∼jhchoi/addingbyattr/
2http://www.flickr.com
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Figure 2.1: Unlabeled images ordered by confidence score by wac and a set of wac,̄i’s

(column wise).

We randomly choose 11 categories among natural objects such as vegetable

and dogs as the categories of interest. Those categories have very large appearance

variations due to factors including non-rigid deformation, lighting, camera angle,

intra-class appearance variability etc.. For each category, we randomly choose ten

images as an initial labeled training set and 500 images as a testing set. The

unlabeled image pool consists of images that are arbitrarily chosen from the entire

1,000 categories in the ILSVRC 2010 benchmark dataset, but includes at least 50
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samples from each of the categories to be learned. The size of the image pool

varies in the experiments but is much larger (from 5,000 to 50,000) than the initial

training set. For learning the attribute space and the mapper, it is expected that

the attribute mapper should capture some attribute of the categories of interest.

For this purpose, we use 50 labeled samples from 93 categories that are similar to

the 11 categories to learn the attribute space.

2.6 Experiments

The main goal of our method is to add unlabeled images to the initial training

set in order to classify more test images correctly. We demonstrate the effectiveness

of our method by improvements in average precision (AP) of category recognition.

We also evaluate our approach under various scenarios including the precision of the

unlabeled image pool and the size of the learned attribute space and also the effect

of parameters including number of selected examples. Moreover, we evaluate the

effect of selecting images that are not from the category of interest.

2.6.1 Experimental Setup

Visual feature descriptors: We use various visual feature descriptors including

HOG, GIST and color histograms. Since the feature dimensionality is prohibitively

large, we reduce the dimension to 6,416 by PCA.

Attribute discovery: We use the binary attribute discovery method of Rastegari et

al. [54] as the attribute mapping function, φ(·) in Eq. 2.1. We learn the mapper
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with default hyper-parameter sets as suggested in [54]. We use 400 bits in most of

our experiments. We also present performance as a function of the number of bits.

Max margin optimization: We use LibLinear [16] for training all max-margin

based objective functions. To address the non-linearity of visual feature space,

we use homogeneous kernel mapping [65] on the original features with the linear

classifier. For the hinge loss penalty hyper-parameter, we use 0.1.

Parameters: For the parameter in Eq. 2.1, we use α = 1, β = 1. For categorical

attribute only, we mostly use γ = 50 except ones in Section 2.6.4. For combining

exemplar and categorical attributes, we mostly use γ = 20 and γi = 3 except for Sec-

tion 2.6.4. We investigate algorithm performance as a function of γ in Section 2.6.4.

For the parameters of the scoring function for exemplar-attributes in Eq. 2.3, we

use µ = 1 and ν = 1.

2.6.2 Qualitative Results

Our method discovers examples that expand the visual coverage of a category

by not only adding the examples from the same category but also examples from

other categories. Figure 2.2 illustrates qualitative results on the category Dalmatian

for both categorical and exemplar attributes analyses. The selected examples based

on categorical attributes exhibit characteristics commonly found in the labeled ex-

amples such as dotted, four legged animal. The exemplar attributes, on the other

hand, select examples that exhibit the characteristic of individual labeled training

examples.
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Selected	  by	  Categorical	  A+ributes	   Selected	  by	  Exemplar	  A+ributes	  

Labeled	  Training	  Examples	  
1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Figure 2.2: Qualitative results of our method. Note that the selected examples by

categorical attributes display characteristics commonly found in the labeled training

examples such as ‘dotted’, ‘four legged animal’. In contrast, the exemplar attributes

select the examples that display the characteristic of individual example.

2.6.3 Comparison with Other Selection Criteria

Given our goal of selecting examples from a large unlabeled data with only a

small number of labeled training samples, we do not compare with semi-supervised

learning methods because they need more labeled data to model the distribution.

Since our method does not involve human intervention, we do not compare to active

learning.

We compare to baseline algorithms which are applicable to the large unlabeled

data scenario. The first baseline algorithm is to select nearest neighbors. The second

baseline selects images by an active criterion that finds examples close to a learned

decision hyperplanes [27]. Both baseline algorithms selects images based on analysis

in the visual feature space. We summarize the comparison in the Table 2.1. ‘Init.’

refers to initial labeled training set. ‘NN’ refers to addition by ‘nearest neighbor’
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in visual feature space, ‘ALC’ refers to addition by ‘active learning criteria (ALC)’

that finds the examples close to the current decision hyperplanes [27]. ‘Cat.’ refers

to our method of select examples using categorical attributes only. ‘E+C’ refers

to addition using categorical and exemplar attributes. The size of the unlabeled

dataset is roughly 3,000 from randomly chosen categories out of 1,000 categories.

As shown in Table. 2.1, the two baseline strategies decrease mean average

precision (mAP). However, our method identifies useful images in the unlabeled

image pool and significantly improves mAP by 7.64%. Except for the category

Greyhound, we obtain performance gain from 2.77% - 16.36% in all categories. The

added examples serve not only as positive samples for each category but also as

negative samples for other categories. The quality of the selected set can change the

mAP significantly in both ways.

2.6.4 Number of Selected Examples

As we select more examples, controlled by γ in Eq. 2.1, the chances of both

selecting useful images and harmful images for a category increase simultaneously.

We vary the number of selected examples and observe mean average precision as

shown in Figure 2.3. The category wide attributes identify useful unlabeled images.

In addition, the exemplar attributes further improve the recognition accuracy.
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Category Name Init. NN ALC Cat. E+C

Mashed Potato 45.03 34.02 51.15 61.39 63.92

Orange 29.84 16.29 26.97 40.61 41.05

Lemon 32.21 27.58 32.43 35.37 34.23

Green Onion 25.06 16.50 19.66 38.57 40.20

Acorn 13.09 11.05 15.41 19.35 20.10

Coffee bean 58.29 43.89 56.62 64.65 66.54

Golden Retriever 14.54 15.57 12.61 17.54 18.61

Yorkshire Terrier 29.62 13.62 27.63 41.41 45.65

Greyhound 15.24 15.73 15.64 14.75 15.22

Dalmatian 43.84 27.97 37.91 54.42 57.23

Miniature Poodle 26.10 12.50 21.16 28.87 30.21

Average 30.26 21.34 28.84 37.90 39.36

Table 2.1: Comparison of average precision (AP) (%) for each category with 50

added examples by various methods.

2.6.5 Adding Examples from Similar Categories

Among the selected images per category, some examples are true instance of

the category. We refer to these as exact examples and the rest as similar examples.

We are interested in how much the similar examples improve category recognition.

First, we examine the purity of the selected set in Figure 2.4. In the figure, red bars

denote the purity of selected images using category wide attributes only (+ by C
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Figure 2.3: Mean average precision (mAP) of 11 category by our method varying

the number of unlabeled images selected. The red, green and blue are the mAP

using the initial labeled set (Init. Set), the augmented set by our method using

category wide attributes only (+ by C only) and categorical+exemplar attributes

respectively. (+ by E+C)

only) and the green bars are obtained from categorical+exemplar attributes (+ by

E+C). The purity is the percentage of exact samples in the set. Surprisingly, even

though the purity values seem low, they still improve classification performance.

We now investigate how much the similar examples improve the average pre-

cision (AP) by removing the exact examples from the selected set. The blue bars in

Figure 2.5 represent the AP using just the similar examples. It is interesting to note

that using only the similar examples still improves the APs over the initial labeled

set.
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Figure 2.4: Purity of added examples.

In addition, it is also interesting to observe how the performance changes when

we add the same number of similar examples as the size of the initially selected image

set (50). This is shown as green bars in Figure 2.5. In the figure, the navy colored

bars are obtained using the initial labeled set (baseline). The blue bars use only

similar examples among the selected 50 examples. The green bars use 50 similar

examples to compare with the result of our selected 50 examples (orange bars)

including both similar and exact examples. The red bars are obtained using a set of

50 ground truth images, which is the best achievable accuracy (upper bound). Even

the similar examples alone improve the category recognition accuracy compared to

just using the initial labeled set. All results are obtained using categorical attributes

only. (The results using both exemplar and categorical attributes are similar so are

omitted).
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Figure 2.5: Mean average precision (mAP) as a function of the purity of the selected

examples.

2.6.6 Precision of Unlabeled Data

The unlabeled data can be composed of images from many categories. The

precision of the unlabeled data is defined as the ratio of size of the unlabeled images

from extraneous categories to the size of the entire unlabeled image data. The

larger the unlabeled data, the lower we expect its precision to be (imagine running

a text based image search using the category name and accepting the first k images

returned). It is interesting to observe how robust our method is against the precision

of unlabeled data.

We start with an unlabeled set (550 images, 50 from each of the 11 categories)

of precision 1.0, and reduce precision by adding images from other categories. The
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number of the unrelated images ranges from 2,500 to 50,000, which are randomly

chosen from the entire 1,000 categories of the ImageNet ILSVRC 2010 dataset.

As shown in Figure 2.6, we observe that the accuracy improvement by our

method using categorical attributes is quite stable even when precision is low.
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Figure 2.6: Mean average precision (mAP) as a function of precision of unlabeled

data. Precision denotes the ratio of size of the unlabeled images from extraneous

categories to the size of the entire unlabeled image data (size = 50,000). Although

precision decreases, the mean average precisions (mAP) by our method do not de-

crease much.

2.6.7 Size of Initial Labeled Set

We next explore how the size of the initial labeled set effects accuracy. We

systematically vary the size from 5 to 50 and show mAP compared to an SVM
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learned on the initial training set - see Figure 2.7. The mAP gain for the smallest

initial labeled set (5) is the highest as expected. When the number of samples is

larger than 25, our method (+ by C only) does not improve the mAP much, although

it still improves by 1.18− 2.74%. Interestingly when there are many samples in the

initial training set (e.g., more than 25), the exemplar traits begin to reduce the

mAP.
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Figure 2.7: Mean average precision (mAP) as a function of the size of the initial

labeled set. The number of added samples is 50 in all experiments.

2.6.8 Comparison to Exemplar SVM

We also compare the effectiveness of our proposed exemplar attributes discov-

ery method (Sec. 2.4.2) to a conventional exemplar SVM [45]. It is straightforward

to integrate the exemplar SVM into our formulation (Eq. 2.1): by setting label
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Figure 2.8: Comparison of our exemplar attribute discovery method (Sec. 2.4.2) to

exemplar SVM. Our method outperforms the exemplar SVM in terms of category

recognition accuracy by APs without the extra large negative example set (size =

50,000).

yc,j to 1 for the jth example, the label coresponding to the examples in the same

category to 0 and the rest to 1. To stabilize the exemplar SVM scores, we employ

50,000 external negative samples to learn each exemplar SVM while we use the small

original training set for our method. Figure 2.8 shows that our exemplar attribute

discovery method outperforms the exemplar SVM by large margins even without

the large negative example set.
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2.7 Conclusion

We proposed a method to select unlabeled images to learn classifiers based on

learned attributes. The unlabeled images selected by our method do not necessarily

belong to the category of interest but are similar in attributes. Our method does

not require any annotated attribute set a priori but first builds an automatically

learned attribute space. We formulate a joint optimization framework to select both

images and the attributes for a category and solve it iteratively. In addition to the

category wide attributes, we identify example specific attributes to diversify the

selected images. For addressing the problem of small size training set to learn the

example specific attributes, we propose a method that can be intuitively regarded

as an inverse of exemplar SVM.

From a large unlabeled data pool, the selected images improve category recog-

nition accuracy significantly over accuracy obtained using the initial labeled training

set.
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Chapter 3: Sharing Subcategory Commonality for Learning Gener-

alizable Classifiers

3.1 Introduction

Classifier generalization is an important goal in visual recognition. It is achieved

by either using sufficient labeled training data or enforcing prior knowledge as a

regularizer to prevent overfitting to the given training samples [23]. The regular-

izers include geometric properties (e.g., max-margin in Support Vector Machines

(SVM) [9] and convex hull in Power-SVM [70]), shrinkage (e.g., ridge regression)

and sparsity (e.g., sparse coding [23]).

Intra-class variation of visual categories is often high and leads to multi-modal

distributions of training samples [20,45]. Even with a good regularization prior, it is

challenging to learn a single generalizable visual category classifier. Fig. 3.1 shows

an illustrative example of classifying an ‘orange’ category. Images with + or − sign

are the positive/negative training samples respectively. Blue rectangles denotes

test samples labeled as orange. Red rectangles denotes test samples labeled as not

orange. Navy blue O denotes correct classification. Red X denotes misclassification.

Proposed method learns a set of classifiers on discovered discriminative overlapping

28



subcategories. The classifiers are forced to be similar by minimizing the rank of the

subcategory classifier matrix to share commonalities amongst subcategories.

(a) Training samples of ‘Orange’ category

Queries 

Queries 

Categorical Linear Sub-category Classifier 

Queries 

Queries 

(b) A linear classifier (c) Subcategory classifiers

Proposed	  

Queries	  

Queries	  

(d) Proposed

Figure 3.1: Classification of ‘Orange’ category by Various Approaches.

The visual appearances of ‘orange’ are diverse: a half-cut shape, close-up and

zoomed-out as shown in Fig. 3.1-(a). In feature space, orange images would form

multiple modes, as depicted in Fig. 3.1-(b)∼(d). A single classifier for the ‘or-

ange’ category might miss visually inconsistent variations (e.g., half-cut and whole

shape) in Fig. 3.1-(b). The ensemble classification approaches [18, 24, 45] address

this problem by introducing diversity into the classification model by dividing the
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category into several subcategories and learning subcategory classifiers. However,

the subcategories only have partial information of a category. The information in-

sufficiency can lead each subcategory classifier to incorrectly classify test samples

as marked with red X in Fig. 3.1-(c). Recently, Zhu et al. proposed learning over-

lapping subcategory classifiers to overcome information insufficiency [74]. We also

formulate an objective function to learn an ensemble of subcategory classifiers that

share information among the subcategories.

In learning such an ensemble to improve classification accuracy, there are two

problems to address; 1) identifying a good set of subcategories for better classifica-

tion and 2) learning a set of subcategory classifiers for better classification.

For discovering subcategories, one may use clustering algorithms (e.g., k-

means [44]) or use discriminative subcategorization method (DSC) [24], or treat

each sample as a subcategory as an extreme case as in Exemplar-SVM (E-SVM) [45].

The first two of these methods were proposed to obtain visually distinctive clusters

but not to improve classification. Instead, we discover a set of subcategories that

are good for classification. To do that, we first learn a classifier for each possible

subcategory to build a space of subcategory classifiers. Then we explore the subcat-

egory classifier space to select the few subcategories that are most discriminative.

The subcategories found are not only chosen for better classification but are also

encouraged to overlap, which improves classification accuracy [74].

Once we discover the subcategories, we jointly learn a set of discriminative

subcategory classifiers that exploit what is shared among subcategories. The re-

sulting ensemble classifiers maintain not only individual subcategory specificity but
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also commonalities amongst the subcategories. One of the advantages of our method

is that we do not need to specify or know the optimal number of subcategories for

classification. The joint learning of subcategory classifiers is analogous to multi-task

learning where each ‘task’ is learning a subcategory classifier. So, we refer to our

approach as ‘Multi-Subcategory Learning’.

We compare our method with baselines and state-of-the-art single category-

wide classifiers and subcategory based ensemble classifiers. Our method outperforms

other methods by a large margin on three popular visual recognition datasets; Pascal

VOC 2007, ImageNet-20 and Caltech-256.

3.2 Related Work

Subcategory Based Methods: To address the intra-class variation of vi-

sual category recognition, a number of subcategory based approaches have been

proposed [18, 24, 45, 74]. At one extreme, each example can be a subcategory. Mal-

isiewicz et al. proposed an ensemble of Exemplar-SVM approach to obtain example-

specific characteristics for better detection accuracy [45]. Since each Exemplar-SVM

uses only one positive sample, it requires a very large number of negative samples

to obtain a good classifier [45]. Recently, Choi et al. proposed a way of obtaining

exemplar traits by comparing ‘leave-one-out’ classifiers and ‘full’ classifiers without

requiring a large negative sample set [11].

Building a subcategory classifier for better category-wide classification can be

viewed as learning part models for a better classification [18] but in feature space. In
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this sense, the Latent-SVM (LSVM) can be used to build subcategory models [24].

Also, Hoai and Zisserman formulated a discriminative subcategory clustering objec-

tive function for discovering ‘pure’ and ‘disjoint’ subcategories for good clustering

performance [24]. Recently, Zhu et al. claimed that subcategory overlap is impor-

tant for better accuracy and proposed an iterative algorithm to assign samples to

multiple subcategories for obtaining overlapping subcategories [74]. We also dis-

cover overlapping subcategories but in a principled way by formulating an objective

function that enforces the subcategory classifiers to share commonality amongst

themselves while being discriminative with respect to other categories.

Ensemble Methods: The subcategory based method is an ensemble classifi-

cation approach that uses multiple classification models to obtain better predictive

performance [55]. Existing methods include ‘cross-validation committee’, ‘bagging’

and ‘boosting’ [55]. Each classifier in the ensemble captures traits of a random sub-

set of the training set. The ensemble of classifiers is usually learned independently.

Matikainen et al. modified AdaBoost to learn a good ensemble of classifiers for rec-

ommendation tasks [47]. In recent work, including Multiple-Instance SVM [3] and

Latent-SVM [18], ensemble classifiers are learned jointly. We also want to learn an

ensemble of classifiers jointly, but force them to share commonality.

Multi-task Learning: Multi-task learning addresses simultaneous learning

of multiple prediction tasks that are related to each other [10]. In multi-class classi-

fication, classifiers for each class are learned simultaneously by the low-rank embed-

ding of the multi-class structure [2,4,42,43]. Loeff and Farhadi proposed a multi-task

learning based scene recognition method [42]. Specifically, they enforced the scene
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classifier to share or discover latent structures of scene labels using trace-norm mini-

mization [2]. Bergamo et al. proposed a meta-class feature to merge categories based

on their visual similarity for learning more discriminative multi-class classifiers [7].

Recently, Harchaoui et al. proposed a scalable approach to learn a set of classifiers

through a single objective function with trace-norm regularization for multi-class

classification [22].

We extend the idea to learning the classifiers for a single category for better

generalization by utilizing the intrinsic commonalities of subcategories. In other

words, our method leverages shared information among the subcategories. Sharing

the same motivation, Weston and Blitzer proposed a method to improve ranking

quality for a single task by leveraging the structure of already ranked queries by

matrix low rank parameterization [67]. Yang et al. proposed a ν-SVM based multi-

task learning framework for one-class classification for small number of training set

scenario [69].

3.3 Multi-Subcategory Learning

The goal of Multi-Subcategory Learning is two-fold. One is to discover visual

subcategories that are directly useful in learning a discriminative ensemble classi-

fier. The other is to learn subcategory classifiers that capture both the subcategory

traits and their commonalities. Specifically, we want to jointly learn the subcate-

gory classifiers that are not only discriminative, but also share common information

among them. Unlike the previous approach for sharing information by overlap-
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ping samples [74], we formulate a discriminative learning framework to enforce the

information sharing.

3.3.1 Formulation

We are given labeled training samples for a category S = (xi, yi) ∈ RD ×

{1,−1}, i ∈ {1, . . . , N} where D is the feature dimension, N is the total number

of samples. Positive sample set is denoted by Xp = {xi|yi = 1} and the negative

sample set is denoted by Xn = {xi|yi = −1}.

First, we discover a set of subcategories that are discriminative to other cate-

gories. As a direct way of finding a good set of subcategories for classification, we

learn subcategory classifiers and choose a few that are discriminative with respect

to other categories. In this way, we naturally allow the subcategories to overlap, as

is known to be beneficial for better classification [74].

Specifically, we first construct M candidate subcategories; the candidate set of

subcategories can be obtained by various methods including exhaustive bagging [55]

that considers all possible subsets of the positive training set of a category (2N) or

exhaustive bagging on clusters of the positive training set obtained by any clustering

methods, e.g., k-means. This is to reduce the number of candidate subcategories

that are exponentially large. For each candidate subcategory, we learn a classifier,

wm ∈ RD, discriminative to other categories (but not to other subcategories). We

then stack the subcategory classifiers into a matrix, W = [w1 · · ·wM ] ∈ RD×M and

choose a small number of subcategories that are most discriminative. We formulate
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this by an optimization of a selector vector, I, with a sparsity regularizer and a

discriminative loss term as:

min
I
‖I‖1 + α

N∑
i=1

ξi

subject to

yiI
TW Txi ≥ 1− ξi, ∀i ∈ {1, · · · , N},

(3.1)

where I ∈ BM is a M -dimensional binary indicator vector (chosen 1, not chosen 0),

α is a balancing parameter between the sum of slack variables for the loss term and

the sparsity constraint. Small α results in fewer subcategories. Optimization details

are presented in the following subsection.

Suppose we discover K subcategories by solving Eq.(3.1); we now learn the

subcategory classifiers jointly by enforcing information sharing of subcategory clas-

sifiers, wk ∈ RD, where k ∈ {1, . . . , K}. We enforce information sharing by mini-

mizing the rank of the sub-matrix of W denoted by W̃ = [w1 · · ·wK ] ∈ RD×K which

consists of the selected classifiers. Along with a discriminative loss term, minimizing

the rank of W̃ enforces the classifiers to be similar so that the classifiers share infor-

mation while they are discriminatively learned. The optimization objective function

is as follow:

min
W̃

rank(W̃ ) + β
N∑
i=1

K∑
k=1

ζi,k

subject to

Y (i, k)wTk xi ≥ 1− ζi,k, ∀i ∈ {1, · · · , N},

∀k ∈ {1, · · · , K},

(3.2)

where β is a balancing parameter between the sum of slack variables for the loss
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function and the rank of a matrix, and Y ∈ RN×K is a matrix of subcategory

membership labels. β determines the amount of information sharing. Y (i, k) is the

subcategory membership label of the ith sample for the kth subcategory (associated

with wk), that is:

Y (i, k) =



1 if xi ∈ Xp,k,

0 if xi /∈ Xp,k, xi ∈ Xp

−1 if xi ∈ Xn,

(3.3)

where Xp,k denotes the set of positive samples that belong to the kth subcategory.

3.3.2 Optimization

Optimizing Eq.(3.1) and Eq.(3.2) is not trivial due to the integer variable I

and rank term, respectively. We rewrite the equations to efficiently solve them using

popular relaxations.

3.3.2.1 Discovering Subcategories

Solving Eq.(3.1) is a combinatorial optimization problem since the indicator

variable I is discrete. To solve it efficiently, we relax the objective function by

replacing I ∈ BM with Ĩ ∈ RM and binarize Ĩ to obtain I as follows:

I(m) =


1, if Ĩ(m) 6= 0,

0, if Ĩ(m) = 0.

(3.4)
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Using this relaxation, Eq.(3.1) becomes an L1-SVM objective function as:

min
Ĩ
‖Ĩ‖1 + α

N∑
i=1

h(yiĨ
TW Txi), (3.5)

where h(·) is the hinge loss function. It can be solved by a stochastic gradient

descent algorithm in its primal form as in [16].

Eq.(3.5) finds subcategories (associated with the subcategory classifiers) that

are discriminative to other categories. The discovered subcategories can overlap as

long as they are discriminative. The overlapping subcategories play an important

role for better classification as an ensemble [74], while other subcategory discovery

methods find disjoint subcategories, e.g., k-means, Latent-SVM or DSC [24].

3.3.2.2 Sharing Information by Rank Minimization

Minimizing a loss function with a rank constraint is not a convex problem [68],

leading to an NP-hard optimization. The trace norm (or nuclear norm), denoted

by ‖ · ‖Σ, is a convex surrogate for the rank function and is frequently used as an

alternative regularization term for efficient optimization [49]. Using the trace norm

for minimizing the rank of W̃ , which is the sub-matrix of W selected by I in Eq.(3.1),

we reduce Eq.(3.2) to:

min
W̃

‖W̃‖Σ + β

l∑
i=1

K∑
k

h(Y (i, k)I(k)wTk xi), (3.6)

where h(·) is the hinge loss function.

Eq.(3.6) is convex since both the trace norm and hinge loss function are convex

and can be optimally solved by gradient descent algorithms. Although Eq.(3.6)
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is convex, each term has a discontinuous point which is not differentiable. We

approximate hinge loss by its smooth proxies as in [2,42] and use a proximal gradient

method to optimize the regularized convex problem.

3.3.3 Aggregation of Ensemble Classifier Scores

As opposed to a single category-wide classifier that gives a scalar valued clas-

sification score (or confidence value) for a sample, an ensemble of classifiers for a

category gives a vector of classifier outputs for a sample. To consolidate the scores

of ensemble classifiers we use ‘max’ aggregation same as [18,74] as:

f(x) = max
k
wk · x, k ∈ {1, . . . , K}, (3.7)

where k denotes a subcategory mixture component. K is the set of all mixture

components. wk is the template for the kth subcategory, and x is the image feature

vector.

3.4 Experimental Evaluation

For empirical validation, we use three datasets; Pascal VOC 2007 [15], Caltech-

256 [21] and ImageNet-20, which is a subset of ImageNet dataset, that is similar in

size to Pascal VOC 2007 but contains a more visually diverse set of images of fine-

grained categories (10 vegetable types and 10 dog breeds) as shown in Fig. 3.2. The

categories in ImageNet-20 dataset are randomly selected 10 vegetables and 10 dog

breeds including ‘Mashed Potato’(MP), ‘Crab Apple’(CA), ‘Black Berry’(BB), ‘Or-

ange’(OG), ‘Lemon’(LM), ‘Plum’(PM), ‘Chard’(CD), ‘Green Onion’(GO), ‘Acorn’(AC),
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‘Coffee Bean’(CB), ‘Vizsla’(VS), ‘Brittany Spaniel’(BS), ‘Golden Retriever’(GR),

‘Flat-coated Retriever’(FR), ‘Yorkshire Terrier’(YT), ‘Greyhound’(GH), ‘Dalma-

tian’(DM), ‘Corgi’(CG), ‘Miniature Poodle’(MPl) and ‘Griffon’(GRf). We will pub-

licly release the dataset and the code for future comparison (Link).

(a)

(b)

Figure 3.2: Fine-grained dog breeds in ImageNet-20 dataset. (a) Basenji

(BS) (b) Corgi (CG).

3.4.1 Experimental Setup

Dataset Size: Each set consists of training, validation (for hyper-parameter tun-

ing) and testing set. Pascal VOC 2007 contains 2,501 images for training, 2,510

for validation and 5,011 for testing of 20 categories. With Caltech-256, we use a

challenging set-up that has 20 training samples per category (5,120 images for train-

ing), 6,400 for validation and 6,400 for testing of 256 categories. The ImageNet-20

dataset is slightly larger than Pascal (20 categories, 3,000 images for training, 5,000

images for validation, 5,000 images for testing).

Visual Feature Descriptors: For Caltech-256 and ImageNet-20 dataset, we use

color GIST, BoW of SIFT, Pyramid HOG and Pyramid self-similarity as in [63] and

reduce the dimensionality by PCA (and discriminative binary codes (DBC) [54] for

Caltech-256 only) to 400 dimensions. For Pascal VOC 2007 dataset, we use OverFeat
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features by a deep convolutional neural net (output of FC7 layer of AlexNet [33])

learned on the ImageNet challenge 2012 dataset [28] using the OverFeat implemen-

tation by [?].

Optimization: For sparse selection of the subcategories (Eq.(3.1)), we use LibLin-

ear [16] which implements an L1-constrained hinge loss optimization. For optimizing

Eq. (3.2), we use MALSAR library with our objective function [72]; it uses the accel-

erated gradient method (AGM) by computing the proximal operator for trace-norm

regularizer. For Latent-SVM and DSC, we use the code provided by the authors

of [24].

Parameters: All hyper-parameters are tuned by validation set accuracy. For build-

ing the candidate subcategory classifiers, W ∈ RD×M , we first cluster the training

set into 10 candidate subcategories using k-means (if the number of positive samples

is less than or equal to 10, we skip this (Sec.3.4.5)) and generate 1,024 candidates

subcategories (M = 1024) for all experiments. For all three datasets, we swept

broad range of hyper-parameters and picked the best value in terms of accuracy on

a held-out validation set.

For baseline SVM, we sweep the balancing parameters between the hinge loss

and the regularization terms, usually denoted by C ∈ {10−4, 10−3, . . . , 103, 104}.

For Power-SVM, we sweep balancing parameter of cross-overs, referred as D ∈

{10−4, 10−3, . . . , 103, 104} as in [70].

For each of E-SVM’s and LOO-SVM’s, we sweep C ∈ {10−4, 10−3, . . . , 103, 104}.

For LSVM [18] and DSC [24], we sweep C ∈ {10−4, 10−3, . . . , 103, 104} and numbers
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of subcategories (1∼10) as it strongly influences the final classification accuracy.

For the parameters of our method, we explore α ∈ {0.01, 0.1, 0.5} and β ∈

{1, 2, . . . , 25}. To construct a candidate classifier space, a matrix of W in Eq.(1)

of main paper, we learn linear SVM with C = 1 of all combinations of samples or

10-clusters of samples. In other words, constructing the candidate subcategories,

we use the exhaustive bagging method for small sample experiments (Sec. 4.5) or

exhaustive bagging on 10-clusters obtained by k-means [44].

For kernel based non-linear classifier, we use kernel-SVM with two popular

kernels; radial basis and polynomial function. For radial basis function (RBF) ker-

nels, we explore σ ∈ {10−2, 10−1, . . . , 10, 102} with C ∈ {10−2, 10−1, . . . , 10, 102}.

For Polynomial kernel-SVMs, we explore 2,3 and 4 degree polynomials with g ∈

{10−2, 10−1, . . . , 10, 102} with C ∈ {10−2, 10−1, . . . , 10, 102}. All multi-class classifi-

cations are done in one-vs-all manner.

3.4.2 Recognition Accuracy

For quantitative analysis, we summarize mean average precision (mAP) of

ours and compared methods in Table 3.1. P-SVM denotes Power-SVM, which is

a state-of-the-art linear classifier [70]. E-SVM denotes an ensemble of Exemplar-

SVM’s, which is a baseline ensemble classifier [45]. LOO-SVM denotes an ensem-

ble of Leave-One-Out-SVM’s, which are maximally overlapping subcategory classi-

fiers [11]. LSVM and DSC denote an ensemble of Latent-SVM’s and its modified

version [18].

41



Compared to baselines and state-of-the-art classification methods of both sin-

gle classifier approaches and ensemble approaches, our method shows the best overall

performance.

Dataset SVM P-SVM E-SVM LOO-SVM LSVM DSC Ours

Imgnet20 41.03 41.93 21.95 41.02 39.56 39.06 43.87

C256-tr20 27.65 26.59 16.77 27.51 22.90 22.90 29.85

VOC2007 73.92 73.56 63.44 74.14 71.15 71.06 74.70

Table 3.1: Recognition accuracy in mean average precision (mAP,%). On

ImageNet-20 (Imgnet20), Pascal VOC 2007 (VOC2007) and Caltech-256 (C256-

tr20). Comparison with state-of-the-art subcategory based approaches (LSVM and

DSC), baseline ensemble approach (E-SVM) and its complementary version (LOO-

SVM), state-of-the-art linear classifier (P-SVM) and baseline (SVM).

For a detailed analysis, we present class-wise average precision (AP) on ImageNet-

20 and Pascal VOC 2007 in Table 3.2. In the table, ‘SVM’ denotes a class-wide

Linear SVM, ‘P-SVM’ denotes a class-wide Power-SVM, ‘E-SVM’ denotes an en-

semble of exemplar-SVM’s, ‘LOO-SVM’ denotes an ensemble of ‘Leave-One-Out’

SVM’s that are learned on maximally overlapping subcategories, ‘LSVM’ denotes

latent-SVM used in the deformable parts model, ‘DSC’ denotes discriminative sub-

categorization method and ‘Ours’ denotes the proposed method. Bold indicates

the best accuracy across the methods. All hyper-parameters are determined using

a held-out validation set. Our method significantly outperforms other methods on

the categories on which the baseline SVM performs poorly (see Sec. 3.4.3 for further
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Imgnet-20 Vegetables Dogs
Avg.

Method\Cat. MP CA BB OG LM PM CD GO AC CB VS BS GR FR YT GH DM CG MPl GRf

SVM 77.00 44.41 62.06 43.70 37.25 37.19 53.06 51.02 17.31 64.65 18.97 27.95 18.91 50.10 36.61 17.50 74.75 24.45 40.39 23.27 41.03

P-SVM [70] 74.02 42.14 61.75 40.04 40.57 40.74 47.18 51.12 20.51 60.41 22.63 31.01 23.59 55.00 37.14 20.70 73.13 28.83 37.78 30.29 41.93

E-SVM [45] 33.85 21.74 26.89 25.88 21.92 17.62 23.60 34.69 10.02 36.29 12.59 13.52 13.08 24.08 18.54 12.44 35.65 12.98 23.09 18.75 21.86

LOO-SVM [11] 77.02 44.20 62.00 43.51 37.31 37.05 52.93 51.14 17.18 64.75 18.79 28.65 18.75 49.57 36.55 17.64 74.66 25.20 40.28 23.03 41.01

LSVM [18] 70.82 43.29 60.39 36.91 37.97 39.82 43.30 46.81 18.18 62.35 20.92 21.63 19.89 53.14 35.54 18.84 69.87 27.37 35.41 28.79 39.56

DSC [24] 70.82 43.29 60.39 39.19 37.97 39.82 43.30 35.07 17.04 62.39 20.56 29.89 21.98 53.14 31.25 18.84 69.87 27.37 30.16 28.79 39.06

Ours 75.61 43.07 62.53 44.90 42.33 45.21 52.49 54.28 22.17 62.04 23.07 32.52 25.01 53.34 37.94 20.36 74.06 30.48 43.03 33.00 43.87

VOC2007 Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV Avg.

SVM 91.12 82.82 86.85 84.67 36.67 74.93 88.08 84.27 52.73 58.40 63.10 81.35 83.55 81.33 91.78 51.19 70.87 59.92 90.81 68.21 73.92

P-SVM 90.90 82.87 86.17 85.03 38.02 73.46 86.60 83.37 52.66 58.63 62.39 79.60 83.68 80.82 91.34 49.43 71.09 58.70 90.11 66.47 73.56

E-SVM 87.59 73.31 80.78 76.58 23.61 63.39 82.40 72.27 38.74 40.10 47.28 69.54 77.91 70.47 85.40 36.51 62.19 34.18 86.83 59.64 63.44

LOO-SVM 91.15 82.86 86.84 84.70 36.73 74.84 88.07 84.28 52.70 58.35 63.16 81.37 83.62 81.32 91.80 51.23 71.07 59.65 90.83 68.25 74.14

L-SVM 91.30 81.00 85.12 83.72 34.47 67.37 86.01 81.09 53.01 54.94 63.88 77.03 79.99 78.62 91.71 41.36 65.19 57.06 89.47 60.60 71.15

DSC 91.30 81.00 86.20 83.72 32.82 67.17 86.01 81.09 53.01 54.94 57.58 78.07 79.99 78.11 91.71 43.35 67.56 57.06 89.85 60.60 71.06

Ours 91.20 83.34 87.12 85.55 40.52 74.49 87.96 84.13 55.79 57.87 63.55 81.35 82.71 81.78 91.07 54.52 72.24 59.56 91.07 68.16 74.70

Table 3.2: Class-wise average precision (%) on ImageNet-20 (upper) and

Pascal VOC 2007 dataset (lower).

discussion), e.g., Plum (PM), Acorn (AC), Golden Retriever (GR) and Corgi (CG)

in ImageNet-20 and Dining Table (Table) and Sofa in Pascal VOC 2007.

Surprisingly, LSVM and DSC overall perform poorly, even though we per-

formed multiple optimizations and picked the best performing classifiers (the op-

timization of LSVM and DSC uses a stochastic gradient decent and finds a local

minimum). But they outperform the linear SVM in 65 categories of Caltech-256, 10

categories of ImageNet-20 and 3 categories of Pascal VOC 2007. Like our method,

when the baseline SVM performs poorly, they improve the accuracy on average (see

Sec. 3.4.3).

For qualitative analysis, we present test images sorted by (consolidated) clas-

sifier confidence, in descending order, obtained by various methods including ours

in Fig. 3.3. In the figure, two vegetable categories and two dog breed categories
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on ImageNet-20 dataset. Red rectangle indicates mis-classified samples. Note that

our method not only classifies more samples correctly but also find the subcategory

traits (e.g., the bundled green onions, half cut oranges, a zoomed-out greyhound in

the center and frontal face of a griffon) and semantically similar images (e.g., no dogs

in ‘Green Onion’ and no vegetables in ‘Greyhound’). The red boxes around images

indicate misclassified samples. Our method not only correctly classifies more sam-

ples in top-retrieval rank (low-recall region) but also identifies samples that exhibit

subcategory traits, e.g., the bundled green onions, half cut oranges, a zoomed-out

greyhound in the center and frontal face of a griffon (refer to ‘Ours’ row). In addi-

tion, the retrieved images by our method are semantically more consistent than ones

by other methods, e.g., no dogs in ‘Green Onion’ and no vegetables in ‘Greyhound’.

We also compare to kernel based non-linear classifiers which require expensive

resources such as large memory space and computational burden at test time. Since

it is not trivial to choose a proper kernel for each classification task, we tried various

kernels including polynomial kernels with various degrees (2, 3 and 4) and Radial

Basis Functions (RBF) with extensive hyper-parameter tuning. Our method is not

only fast (0.91 sec, compared to 230.53 sec) but also shows comparable performance

to kernel based methods (1∼2% overall accuracy difference) and even outperforms

them in a small-training set scenario (see Sec. 3.4.5).

Generalization by Training Error and Testing Accuracy. Our ensemble

classification model adjusts the model complexity by information sharing among

classifiers. The level of overfitting as a function of model complexity is best shown
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Figure 3.3: Qualitative comparison of our method to other methods.

by both training error and test error as shown in Fig.2.11 in Hastie et al. [23]. Thus,

it is interesting to investigate the training errors of the methods to observe the

overfitting and generalization. Table 3.3 shows training error alongside with testing

accuracy of each method on each dataset.

Even with higher training error, our method achieves better test accuracy,

which implies that our method learns a well-balanced set of classifiers between under-

and overfitted ensembles. Baseline SVM achieves decent training error rate but not

competitive test accuracy, which implies its classification boundary is not gener-
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Dataset Type SVM P-SVM E-SVM LOO-SVM LSVM DSC Ours

Imgnet20
Tr.Err. 19.23 32.46 0.0 18.7 25.14 22.52 30.00

Ts.Acc. 41.03 41.93 21.86 41.01 39.56 39.06 43.87

VOC2007
Tr.Err. 2.66 0.24 0.0 2.62 1.02 0.95 8.71

Ts.Acc. 73.92 73.56 63.44 74.14 71.15 71.06 74.70

C256-tr20
Tr.Err. 0.01 71.75 1.92 0.02 0.68 0.41 0.75

Ts.Acc. 27.65 26.59 16.77 27.51 22.90 22.90 29.85

Table 3.3: Average training errors and testing accuracy (mAP,%). When

both the training error (Tr.Err.) and the test accuracy (Ts.Acc) are high, classifier

is less overfitted and more generalizable.

alizable. Power-SVM achieves the highest training error but the second best test

accuracy, which implies the underfitting by enforcing too much regularization by the

exemplar uncertainty. As an E-SVM overfits to each example, it shows zero or very

small training error but shows poor generalization performance. LOO-SVM show

similar training error and testing accuracy to SVM as each LOO-SVM is trained with

only one fewer training sample than SVM. LSVM and DSC show higher training

error than SVM but do not generalize well.

3.4.3 When Do We Need Subcategory Based Methods?

Intuitively, subcategory based methods are for the category that linear method

cannot perform well. [74] shows that subcategory based methods perform bet-
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ter when the baseline classifier suffers (possibly due to underfitting). We also

observe the same trend; compare the improvement in ‘Acorn’(AC), ‘Viszla’(VS),

‘Golden Retriever’(GR) ‘Greyhound’(GH), ‘Corgi’(CG) and ‘Griffon’(GRf) cate-

gories in ImageNet-20 and ‘Chair’ and ‘Table’ in Pascal VOC 2007, on which the

average precision (AP) of SVM are less than 25% as shown in Table 3.2.

We summarize the mean average precision (mAP) of difficult categories where

linear SVM performs worse than 25% (Imgnet-20 and VOC2007) or the 50-worst

categories of linear SVM performance (C256-tr20) and the mAP of easy categories

where linear SVM performs better than 70% (Imgnet-20 and VOC2007) or the top-

50 categories of linear SVM performance (C256-tr20) in Table 3.4. In the table,

Difficult categories denote the ones on which Linear SVM performs worse than 25%

(Imgnet-20), 40% (VOC2007) or the 50-worst categories of linear SVM performance

(C256-tr20) and easy categories denote the ones on which Linear SVM performs

better than 70% (Imgnet-20 and VOC2007) or the top-50 categories of linear SVM

performance (C256-tr20).

In the difficult categories, subcategory-based methods such as LSVM, DSC

and Ours outperform SVM significantly (∼ 4.19% overall). In the easy categories,

subcategory methods outperform linear methods but with a small margin (0.2 ∼

1.54% overall). For detailed analysis, we show examples of precision-recall curves of

two difficult categories and two less difficult categories in Fig. 3.4.
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Linear Subcat. Ensemble

mAP(%) # cat SVM P-SVM E-SVM LOO-SVM LSVM DSC Ours

Difficult Categories

Imgnet-20 6 18.12 21.65 11.22 18.09 19.38 19.76 22.07

VOC2007 3 46.86 46.70 32.95 46.89 42.95 43.06 50.28

C256-tr20 50 4.44 5.52 1.83 4.37 5.10 5.15 6.33

Easy Categories

Imgnet-20 2 72.91 71.73 33.23 73.11 70.97 67.19 72.60

VOC2007 13 84.03 83.46 76.05 84.06 81.36 81.67 84.16

C256-tr20 50 66.78 62.50 50.43 66.70 58.37 58.28 68.32

Table 3.4: Average recognition accuracy (mAP,%) of difficult (upper) and

easy (lower) categories.

3.4.4 Subcategory Configuration for Better Classification

It is not obvious what set of subcategories are good for better classification

by an ensemble. Specifically, for better classification, it is not known 1) what is

the optimal number of subcategories 2) how to find the subcategories that are good

for ensemble classification. We seek the answers to these questions in the following

subsections.
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Figure 3.4: Precision-recall curves of difficult categories (a,b) and easy

categories in ImageNet-20 (c,d). Numbers in legend indicate average precision

(AP) of each method.

3.4.4.1 Optimal Number of Subcategories

All previous methods require to specify the number of subcategories as a hyper-

parameter [18,24] and classification accuracy is sensitive to the number of subcate-

gories as shown in Fig. 3.5-(a). It is, however, not obvious how many subcategories

are optimal for better classification. Our method does not require to specify the

number subcategories but implicitly determines the appropriate number of subcat-
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egories through the balancing hyper-parameter between the rank of the classifier

matrix and the loss function, β, and the accuracy is not sensitive to the choice of β

as shown in Fig. 3.5-(b). In addition, the accuracy by our method can be affected

by candidate subcategory configurations which are controlled by α in Eq.(3.1) (The

larger α results in more candidate subcategories). But the accuracy is also not sen-

sitive to the choice of α as shown in Fig. 3.5-(c). (see the related discussion about

Table 3.6).
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Figure 3.5: Sensitivity to hyper-parameters for subcategory Discovery. Av-

erage validation accuracy (mAP) on ImageNet-20 dataset as a function of a hyper-

parameter. Note that scale of the y-axis is the same in all figures for easy comparison.

(a) Accuracy by LSVM as a function of number of subcategories specified (b) Ac-

curacy of our method as a function of β with fixed α (c) Accuracy of our method

as a function of α with fixed β.

3.4.4.2 Information Sharing Amongst Subcategories

As argued in [74], the overlap of subcategories plays an important role in

obtaining better consolidated classification accuracy in an ensemble. The overlap
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of the subcategories is equivalent to shared information among subcategories. Our

method implements information sharing by discovering overlapping subcategories

(Eq. (3.1)) and learning the subcategory classifier jointly by enforcing similarity

amongst them (Eq. (3.2)). Fig. 3.6 shows the number of samples per subcategory

that are discovered by DSC and our method (Eq.(3.1)). The larger the number of

big subcategories, the more the subcategories overlap. Our method finds more large

subcategories than DSC.
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Figure 3.6: Histogram of size of subcategories discovered by DSC and our

method on Caltech-256 dataset. More number of large subcategories implies

that many subcategories overlap.

Fig. 3.7 shows an example of subcategories (‘Green Onion’(GO) category of

ImageNet-20 dataset) discovered by DSC and our method. The subcategories discov-

ered by DSC are visually distinctive with respect to each other and do not overlap,

whereas the ones selected by our method are not visually distinctive but are highly

overlapped and have discriminative diversity for better classification.

With the discovered subcategories, we enforce the subcategory classifiers to

be similar to each other so that the underlying subcategories are further overlapped
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Figure 3.7: Subcategory discovered by DSC and our method. On ‘Green

Onion’(GO) category in ImageNet-20.

by optimizing Eq. (3.2). In Fig. 3.8, we plot the accuracy on validation set and the

trace norm of the classifier matrix W as a function of iteration of gradient decent

and proximal projection. The lower the trace norm, the more information is shared.

As the iteration progresses, the trace norm of the classifier matrix decreases and the

accuracy increases.

Although the joint learning of the ensemble classifiers (Eq.(3.2)) depends on

Dataset Indep. Ours

Imgnet20 41.70% 43.80%

VOC2007 72.26% 74.70%

C256-tr20 24.94% 29.85%

Table 3.5: Information sharing and accuracy. Average test accuracy by ensem-

ble classifier learned independently (Indep.) and by our method (Ours).
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Figure 3.8: Trace-norm of W̃ and accuracy. (Left) Validation accuracy on

‘Crab Apple’ category in ImageNet-20 dataset. As optimization iteration proceeds,

trace norm decreases and accuracy increases.

the discovered subcategory structure via Y , we find that the structure of the sub-

categories does not significantly affect the classification accuracy. Table 3.6 shows

the accuracy of the rank minimized classifiers using different subcategory discovery

methods. ‘DSC’ refers to the subcategories discovered by DSC. ‘DSC-ov’ refers to

overlapping DSC subcategories using [74]. The accuracy of rank minimized classi-

fier on different subcategory configurations are similar even with exemplar subcat-

egories. But our proposal of discovering the subcategory candidates still shows the

best results as it directly finds a good set of subcategories for classification.

53



K-Means Exemplar LOO DSC DSC-ov Ours

mAP(%) 43.29 43.48 43.50 43.52 43.72 43.87

Table 3.6: Mean average precision (mAP,%) on rank minimized ensem-

ble classifier learned on different subcategory discovery methods. On

ImageNet-20 dataset. LOO refers to ‘Leave-One-Out’ scheme for a set of subcat-

egories that are maximally overlapping. ‘DSC-ov’ refers to overlapping categories

by [74] on subcategories found by DSC. All hyper-parameters are determined by a

validation set.

3.4.5 Generalization in Small Training Set Scenario

When there are few training samples given, classification generalization is more

important but challenging [57]. As the number of labeled training samples decreases,

we expect that the accuracy improvement by our method also decreases. Fig. 3.9

shows mAP of various methods as a function of training set size. Notably, even

with only 10 training samples per category, our method still outperforms the linear

baseline and performs comparably to other methods.

It is interesting to note that in the small training set scenario (10 training

samples per category), our method outperforms kernel based non-linear classifiers

(K-SVM) as shown in Table 3.7.

For the choice of kernel, we pick the best kernel among 2,3 and 4 degree

polynomial and RBF kernels with extensive hyper-parameter tuning on a held-out

validation set. We believe that the kernel method overfits to the small training data

so the test accuracy is lower than regularized ensemble classifiers.
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Figure 3.9: Mean average precision (mAP,%) as a function of size of train-

ing set on ImageNet-20 dataset. Even on a small training set (10 samples per

category), improvement by our method is still noticeable.

3.5 Conclusion

We presented an approach to generalizing visual category classification. To

achieve this goal, we learn a set of classifiers that not only preserve unique traits

of subcategories but also share commonalities amongst them. To learn such a set,

we discover the discriminative overlapping subcategories in a classifier space and

jointly learn a set of subcategory classifiers that share subcategory commonalities

by minimizing the rank of the matrix of subcategory classifiers.

Our method outperforms category-wide single classifier approaches including

baseline SVM, the state-of-the-art Power-SVM [70] and subcategory based classifi-
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mAP(%) #tr/cat SVM K-SVM LSVM DSC Ours

Imgnet20 10 17.33 20.56 20.82 20.78 20.52

VOC2007 10 43.47 44.26 43.17 43.49 46.06

C256 10 20.88 22.19 18.49 18.56 23.70

Table 3.7: Mean average precision (mAP,%) in a Small-Training Set Sce-

nario. Our method outperforms a kernel based non-linear classifier (K-SVM).

cation approaches such as the ensemble of Exemplar-SVM’s [45], Latent-SVM [18],

the state-of-the-art discriminative subcategory method (DSC) [24] on three visual

category recognition datasets.

3.6 Hyper-parameters for Experiments

For all three datasets, we swept broad range of hyper-parameters and picked

the best value in terms of accuracy on a held-out validation set.

For baseline SVM, we sweep the balancing parameters between the hinge loss

and the regularization terms, usually denoted by C ∈ {10−4, 10−3, . . . , 103, 104}.

For Power-SVM, we sweep balancing parameter of cross-overs, referred as D ∈

{10−4, 10−3, . . . , 103, 104} as in [70].

For each of E-SVM’s and LOO-SVM’s, we sweep C ∈ {10−4, 10−3, . . . , 103, 104}.

For LSVM [18] and DSC [24], we sweep C ∈ {10−4, 10−3, . . . , 103, 104} and numbers

of subcategories (1∼10) as it strongly influences the final classification accuracy.

For the parameters of our method, we explore α ∈ {0.01, 0.1, 0.5} and β ∈

{1, 2, . . . , 25}. To construct a candidate classifier space, a matrix of W in Eq.(1)
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of main paper, we learn linear SVM with C = 1 of all combinations of samples or

10-clusters of samples. In other words, constructing the candidate subcategories,

we use the exhaustive bagging method for small sample experiments (Sec. 4.5) or

exhaustive bagging on 10-clusters obtained by k-means [44].

For kernel based non-linear classifier, we use kernel-SVM with two popular

kernels; radial basis and polynomial function. For radial basis function (RBF) ker-

nels, we explore σ ∈ {10−2, 10−1, . . . , 10, 102} with C ∈ {10−2, 10−1, . . . , 10, 102}.

For Polynomial kernel-SVMs, we explore 2,3 and 4 degree polynomials with g ∈

{10−2, 10−1, . . . , 10, 102} with C ∈ {10−2, 10−1, . . . , 10, 102}. All multi-class classifi-

cations are done in one-vs-all manner.
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Chapter 4: Interactive Semantics for Knowledge Transfer

4.1 Introduction

In recent years, semantic information has been exploited extensively to im-

prove object category recognition accuracy, since object categories are essentially

semantic entities that are human-defined. Various types of semantic sources have

been exploited such as attributes [1, 26], taxonomies [66, 71], and analogies [25],

as auxiliary information to aid categorization. However, exhaustive top-down con-

struction of such knowledge bases could be expensive as it takes large amount of

human effort to obtain, and such knowledge base might be largely unavailable for

non-generic set of object categories, e.g., recognizing the specific year/model of a

vehicle, or cartoon characters from animation database.

Further, not all knowledge is equally useful in the discriminative classification

sense. For example, knowing that an apple is more similar to a pear than a dragon,

while semantically meaningful, may not be useful to distinguish it from other fruits.

Thus, finding and using a proper set of semantic information (e.g., that an apple is

more similar to a pear than a mellon) can greatly and efficiently enhance recognition

accuracy. In addition, it is difficult to construct the optimal vocabulary of semantic

information without prior knowledge about the object itself and/or other categories
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that are potentially confusing. This is evident from the game of 20-questions. Every

question asked (and answered) has a profound effect on the distribution of questions

a player may ask next. It is clear that if a player needed to ask all the questions

at once, upfront, he may need considerably more than 20 questions to identify the

object in question.

To address such challenges, we propose a method to obtain and leverage a

focused set of semantic queries by examining a discriminatively learned model for

object categorization in an interactive learning framework. Starting from a base

model with no semantic information, we want to iteratively improve it by generating

semantic queries for human(s) to answer, then in turn update the existing model

with feedback. We expect such an interactive learning system to help transferring

knowledge effectively from anchor categories, that are well learned, to the target

categories that have very small number of labeled training samples.

Our contributions are threefold: (1) We propose an interactive learning frame-

work that can be incrementally improved, by asking for verification of semantic

queries from humans and taking that feedback into account. (2) As part of the

learning framework, we present an active selection method that automatically gen-

erates semantic queries from a learned model by detecting relational regularities,

and ranking them by their expected impact on the recognition performance. (3)

We empirically validate that our method can transfer knowledge for better classifi-

cation via relational semantics to target categories, and thus improve classification

performance on them. Figure 4.1 shows the overview of the approach. Our model

is a discriminative manifold with embedded semantic entities. The discriminative
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categorization model is refined by iteratively generating semantic questions and user

feedback. Thumbnail images denote category prototypes in the embedding space.

The categories are partitioned into two sets: Anchor classes, that have reasonable

number of samples per class, and Target classes, that have few labeled instances, to

which the semantic knowledge is transferred. From the semantic embedding space,

we detect relational hypotheses based on classification confusion among target and

anchor classes. Approach consists of three steps: (1) finding confusing classes in

the target set and confident classes in the anchor set and generating triplet-based

relationships (e.g., target class Chimpanzee is closer to anchor class Gorilla than

to anchor class Deer); (2) translating the detected relational hypotheses into ranked

list of semantic questions to obtain human judgement concerning their validity; (3)

translating validated geometric relations into regularizers for the objective function

and retraining the model.

4.2 Related Work

Encoding Semantics for object recognition: The most popular semantic informa-

tion that has been explored for improving recognition accuracy is attributes and

taxonomies [1, 26, 46, 71]. While most previous work leverages taxonomies and at-

tributes by focusing on shallow properties such as similarity between the semantic

entities, some recent works focus on the their geometrical relationships. [48] showed

that there exist regularity between word vectors trained on the skip-gram mod-

els (e.g., the words form analogies). The same analogical relations were explored
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Figure 4.1: System Overview.

in [25] and [39] to regularize the geometry of the learned category embeddings for

categorization, such that category embeddings associated with an analogy form a

parallelogram. More similar to our design, [64] took advantage of relative closeness,

encoded by triplets of entities.

The limitation of all these methods is that they require a pre-constructed

knowledge base, which often takes a lot of human effort and expertise to create. Such

knowledge bases may not be readily available for atypical classes, e.g., specific dog

breeds or exotic car models. Our method does not require a predefined knowledge

base, and, in fact, is designed to ascertain the most informative, from the model’s

point of view, knowledge relationships from human users/expert(s).

Active/Interactive/Self-Paced Learning: Our method, which actively selects a few

important relational patterns to validate through user feedback, is an instance of ac-
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tive/interactive learning. The generic active learning focuses on selecting instances

based on possible contribution that the selected instances can make towards im-

proving the classification model and asking for corresponding category labels from

a human annotator. Recently, non-class label type queries have been also explored

for active-learning, such as in [32], which presents an active learning algorithm that

can either ask for attribute or category labels, while learning a joint object cate-

gorization model. Pairwise similarity, which forms our relational patterns, has also

been explored in [29]. However, in [29], the queries are selected to better search for

the target in a fixed metric space, while our method iteratively retrains the metric

space with the answered queries.

The closest work to ours, in terms of motivation, is [13], which generates

active queries considering the geometry of the manifold, and retrains the model

with the newly annotated samples. However, [13] focuses on the instance(sample)-

level geometry while we focus on semantically important geometrical patterns among

category prototypes. [8] makes use of the graph structure to select instances from

groups for queries; instances whose collective label prediction disagrees with instance

label prediction are preferred. Our method also makes use of structural relationships,

but focuses on the geometry of category prototypes rather than instances.

[51] also closely share our motivation of building a semantic model by it-

eratively selecting semantically meaningful hypotheses from a pool of candidates.

They generate discriminative visual attribute hypotheses and then present human

subjects a set of images with and without such attributes, and ask them to name

the attributes that differentiate between the two, only if the difference is nameable.
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The model with such semantic refinement was shown to outperform the non-semantic

initial variant.

Self-paced learning, or curriculum learning, [34, 40] is a learning paradigm

that incrementally learns from subsets of labeled instances instead of learning in

a batch. Self-paced learning iteratively builds the model using samples that are

discovered adaptively, based on the model at the previous iteration. Our approach

is an instance of self-paced learning, but discovers semantic constraints rather than

instances. Further, since semantics are latent, and do not directly correlate with

recognition performance, the criterion for iterative selection of such entities is much

more difficult to formalize.

Lifelong learning: Lifelong learning [61] is a learning paradigm that continuously

learns from a stream of incoming inputs, while transferring knowledge obtained

from earlier stages to later ones. Lifetime learning has gained popularity due to its

scalability and applications that deal with long streams of inputs, e.g., in web-scale

data, wearable cameras and autonomous vehicles. Since the inception of the idea by

the seminal work of [61], many researchers have worked on such continuous learning

systems. Recent work includes [14], which learns the shared basis for all tasks in

an online learning framework. The model was later expanded, in [56], to allow

active selection of tasks at each iteration. We hope that our interactive learning

paradigm, that learns semantic information online, can serve as a module in such

lifelong learning frameworks. In doing so, it would allow mitigation of semantic drift

through intermittent, but focused, human feedback.
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Knowledge Transfer When little labeled data is available for certain categories,

transferring knowledge from related categories can be helpful [53, 62]. [62] adapt

classifiers for classes with small number of training instances by utilizing informa-

tion from classifiers of classes with sufficiently large number of training instances.

However, they transfer information in a batch, where as our method focuses on

incremental transfer and improvements. [53] similarly use cross-category knowledge

to improve the image classification accuracy in a batch.

4.3 Approach

Given a labeled datasetD = {(xi, yi) ∈ (Rd,Y)}Ni=1, where xi is a d-dimensional

feature vector of ith example, yi is its class label and N is the number of examples, we

learn a model that minimizes classification error for new, unknown, example x∗ at

test time. We adopt an efficient and scalable discriminative embedding approach [5]

to classification, where both the samples, xi, and their labels, yi, are projected into

a common low dimensional space ∈ Rm, where m � d. We denote the projected

version of xi as zi = f(xi) and class label yi = c ∈ Y as uc. The goal is then to

learn both the embedding function f(·) and the location of the prototypes uc for all

classes such that the projected version of the test instance f(x∗) would be closer to

the correct class prototype than to others.

If one assumes existence of semantic information, the above model can be

further improved [25, 39] through graph-based regularization, i.e., semantic rela-

tionships as constraints on the placement of prototypes in the embedding space.
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However, as the number of entities increase, the number of possible relationships

between them increases rapidly, making it difficult to annotate all semantic rela-

tionships offline. Further, even if one has a complete set of semantic information,

not only using all of semantic relationships lead to an unjustifiable computational

expense, but also not all semantics would be equally useful for discriminative clas-

sification, which suggests that encoding all of the semantics may even degrade the

classification performance. One often needs to trade off discriminative classification

accuracy for the ability to encode all the semantics entities in the knowledge set with

a fixed dimensional manifold. To address this, we aim to actively identify a com-

pact subset of semantic relations that are most helpful in learning a discriminative

classification model.

We make use of semantics in the form of relative distance: “class a is more

similar to class b than to class c.” However, the total number of such triplet rela-

tionships is cubic in the number of category labels. To alleviate prohibitive cost of

attaining a complete semantic knowledge base, we propose an interactive approach

to require subset of them. Specifically, we repeat the following three steps. 1) detect

geometric patterns that constitute potential semantic triplet queries with respect to

the current model, 2) obtaining ‘yes’ or ‘no’ answers to these semantic questions

from a human user and 3) retraining the model by imposing structural regularizers

based on the obtained semantic knowledge. We summarize the overall procedure of

our method in Algorithm 1 and describe detailed steps in the following subsections.

65



Algorithm 1 Interactive Learning with Semantic Feedback

Input: (xi, yi) ∈ Rd × Y, ∀i ∈ {1, . . . N}.

Output: W ∈ Rm×d,U ∈ Rm×C .

1: R ← ∅

2: Initialize W prev,Uprev with random matrices

3: WA and UA ← Solve Eq.(4.1)

4: δW = WA −W prev, δU = UA −Uprev

5: while δW > ε and δU > ε do

6: W and U ← Solve Eq.(4.2) with R,WA

7: P ← GenerateOrderedQueries(W ,U ,R) (Sec. 4.3.2)

8: R← Feedback(P) (Sec. 4.3.3)

9: R ← R∪R

10: δW = W −W prev, δU = U −Uprev

11: Uprev = U , W prev = W

12: end while

4.3.1 Discriminative Semantic Embedding

To detect patterns that can be translated into semantic queries, we use a man-

ifold embedding approach, where both the data points (features) and the semantic

entities (category labels) are embedded as points on a manifold. The semantic

queries are asked and the answers refine the manifold. Both the detection of the

relations and categorization will be done on this manifold [66]. With the relational

semantics, the manifold is discriminatively learned on a large margin loss function.

Formally, we want to embed both the image features xi and corresponding
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class labels yi into a common low-dimensional space such that the projection of

xi, denoted as zi, is closer to the corresponding category embedding uyi than the

embeddings for all the other categories. This is accomplished by constructing a linear

projection W ∈ Rm×d such that zi = Wxi, and ‖Wxi−uyi‖2
2 + 1 ≤ ‖Wxi−uc‖2

2,

∀c 6= yi.

For knowledge transfer, we first build a reference model with well-defined an-

chor classes. Then we build a model on the target classes by transferring semantic

information from the anchor classes.

4.3.1.1 Semantic embedding for Anchor classes

The desired objective for categorizing semantic embeddings in the anchor

classes can be expressed as minimization of the large-margin constraints above for

all anchor class instances indexed by i ∈ {1, . . . , NA} with respect to W A and

prototypes uc:

min
WA,UA

NA∑
i=1

∑
c∈CA

L
(
WA,xi,uc

)
+ λ1‖WA‖2F + λ2‖UA‖2F ,

s.t. L(WA,xi,uc)

= max(‖WAxi − uyi
‖22 − ‖WAxi − uc‖22 + 1, 0),

∀i,∀c 6= yi,

(4.1)

where NA is number of training samples in anchor classes (CA), UA is a column

stacked matrix of label prototypes {uc} of the anchor classes and λ1 and λ2 are

hyperparameters for scale regularization terms; ‖ · ‖F refers to a Frobenius norm.
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4.3.1.2 Knowledge Transfer via Relational Semantics

From the learned anchor class categorization model with W A and UA, we

transfer the knowledge to the target classes that have only a few training samples.

Specifically, we use interactively provided semantic relationship R ∈ R to regularize

the objective function. Formally, learning the discriminative embeddings of target

classes can be achieved by solving the following regularized optimization problem:

min
W ,U

NT∑
i=1

∑
c∈CT

L (W ,xi,uc) + λ1‖W ‖2F + λ2‖U‖2F + λ3‖W −WA‖2F + γ
∑
j

Ω (Rj ,U) ,

s.t. Rj ⊂ R,

L(W ,xi,uc) = max(‖Wxi − uyi
‖22 − ‖Wxi − uc‖22 + 1, 0),∀i,∀c 6= yi,

(4.2)

where NT is number of training samples in target classes (CT ), Rj is a subset of R

(the set containing all semantic constraints), and U = [UA,UT ] is a concatenation of

all class prototypes. We regularize the data embeddingt W with W A, and semantic

embedding with Ω(Rj,U), which is a regularizer defined on the relationship Rj.

4.3.1.3 Encoding Relational-Semantics by Geometric Topologies

The semantic relationships are used to regularize the embedding space for

better classification generalization [25, 39]. As mentioned previously, we use the

triplet-based relationships in which human feedback is of the form of ‘object a is more

similar to b than to c’. Triplet-based relationships have many desired properties such

as less need to reconcile feedback scale since it is a relative relationship [30,60]. Even

though the relationships are local with respect to the associated entities, solving the

optimization using the relationships, Eq.(4.2), changes the topology of the class
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prototype embeddings globally, which results in a semantically more meaningful

model overall.

Triplet-based Relationship. Suppose an target entity, ut, is semantically closer to

the anchor entity ua1 than to another anchor entity ua2 ; we denote such relationship

by R = (t, (a1, a2)) and define its geometric regularizer as a hinge loss type of

regularizer that encourages moving ut closer to ua1 and farther from ua2 :

max
(
1− ‖ua2 − ut‖2

2/‖ua1 − ut‖2
2, 0
)
. (4.3)

Eq.(4.3), however, is neither differentiable nor convex in terms of u∗’s thus makes

the optimization difficult if it is used as a regularization term. So, we relax the

regularizer by introducing a scaling constant σ1 as a proxy of ‖ua1 − ut‖2
2 by a

distance between the sample mean of class a1 and t. In addition, the max(x, 0)

is not continuous at x = 0 thus not differentiable. So, we use a differentiable

smooth proxy of the max(x, 0) function,hρ(·), to make the regularizer differentiable

everywhere:

Ω(R,U ) = σ1hρ
(
‖ua1 − ut‖2

2 − ‖ua2 − ut‖2
2

)
, (4.4)

where the hρ(x) is a differentiable proxy for max(x, 0) as in [2]. A detailed description

of hρ(·) is as following:

In order to use the gradient descent optimization method at the peak points,

we approximate them by smoothed versions as shown by the blue curves in Fig. 4.5

as in [2].
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hρ(·) is the approximate hinge loss function that has no discontinuity:

hρ(z) =



1− z z < 1− ρ

−(1−z)4
16ρ3

+ 3(1−z)2
8ρ

+ (1−z)
2

+ 3ρ
16

|1− z| ≤ ρ,

0 z > 1 + ρ.

(4.5)

and its derivative with respect to z is

∂hρ(z)

∂z
=



−1 z < 1− ρ

(1−z)3
4ρ3
− 3(1−z)

4ρ
− 1

2
|1− z| ≤ ρ.

0 z > 1 + ρ.

(4.6)

In our experiments we use ρ = σ = 10−7.
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4.3.1.4 Numerical Optimization

The optimization problems in Eq. (4.1) and Eq. (4.2) are not jointly convex

on W and U , but are bi-convex in terms of each variable. We use alternating

optimization to solve the problem, where we alternate between the optimization of

W and U while fixing the other. We use stochastic sub-gradient method to optimize

for each variable.

4.3.2 What Questions to Ask First?

To reduce the number of semantic relationships in the regularizer, while aiming

for better classification, we discover candidate semantic questions that are helpful

for improving classification accuracy.

4.3.2.1 Generating a Pool of Queries

We first generate a pool of candidate triplet-based semantic relationships;

R = {R|R = (t, (a1, a2))}. R has three entities; target, ut, and two anchors

(ua1 ,ua2). We want to improve the classification of the target entity by transferring

knowledge from the anchor entities, that are highly confident in classification. To

generate the pool of triplets, we find the target entities that are highly confused

(i.e., classification accuracy in the current model is low) and the anchor entities

that are highly confident (i.e., classification accuracy in the current model is high).

Specifically, for each R = (t, (a1, a2)), we define a scoring function, S(R,U),

for mining semantic relationship by favoring the most confusing (the least confident)
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target entity and the least confusing (the most confident) anchor entities. For the

measure of confusion of each entity, we regard each entity as a random variable

for class label and use its entropy, H(uc). The higher the entropy, the higher the

confusion. We then define the scoring function as the conditional entropy of a target

entity, ut, given anchor entities (ua1 ,ua2) as:

S(R,U) = H(ut|ua1 ,ua2)

= H(ut1 ,ua1 ,ua2)−H(ua1 ,ua2),

(4.7)

Given the label of the target entity ut of the candidate relationship R, we want the

anchor entities to be even more certain. In other words, we assume the uncertainty

of anchor entities given the target entity label, H(ua1 ,ua2|ut), is 0. Then, we can

reduce (4.7) to:

S(R,U) = H(ut)−H(ua1 ,ua2). (4.8)

Intuitively, the score favors choosing target entities that have high classification

confusion and the anchor entities that have low classification confusion. Detailed

descriptions of how to compute the probability mass function for the entropy, and

the derivation of the conditional entropy function are described in the following

subsections.

4.3.2.2 Probability Mass Function

To compute the score by the entropy (Sec.4.3.2.5), we define each entity’s prob-

ability mass function by its classification confusion on validation set. Specifically,
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the probability of a label entity ui to be a class label j is definedas:

Pui
(j) =

∑
xk∈V 1(g(xk) = j)

|V| , (4.9)

where g(·) is the current classification model learned with ui and xk and V is a set

of feature embeddings, g(xk), in validation set. Thus 1(g(zk) = j) equals to the

number of feature embeddings whose obtained label by the current model is j. | · |

denotes cardinality of a set. The ideal PMF is a delta function when c = j; δ(c = j).

Note that the measure depends on the sample distribution under the current model.

Thus, the entropy of an entity can be written as:

H(ui) = −
∑
j∈C

Pui
(j) logPui

(j), (4.10)

where C is a set of all class labels. For the joint entropy, we need to derive a joint

probability mass function of multiple label entities.

4.3.2.3 Joint Probability Mass Function of Multiple Entities

For computing a joint entropy, deriving a joint probability mass function

(PMF) of multiple entities from Eq.(4.9) is straightforward. We start from the

joint PMF of two entities, Pui,uj
(c1, c2). Since the probability of ui being label c1

is dependent on the obtained labels of neighboring feature embeddings, z1, · · · , zN ,

Pui
(c1) is actually a conditional probability as:

Pui
(c1) = Pui

(c1|z1, . . . ,zN)

= Pui
(c1|{zk|zk ∈ N i}).

(4.11)
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We can write the joint PMF of ui and uj as:

Pui,uj
(c1, c2) = Pui|uj

(c1|c2)Puj
(c2)

= Pui|uj
(c1|{zk|zk ∈ {N i ∪N j}}, c2)Puj

(c2|{zk|zk ∈ {N i ∪N j}})

= Pui|uj
(c1|{zk|zk ∈ {N i −N j} ∪ c2})Puj

(c2|{zk|zk ∈ N j})

= Pui|uj
(c1|{zk|zk ∈ {N i −N j} ∪ c2})Puj

(c2),

(4.12)

the second to third line is because if uj is given (or known), N j are not necessary

as conditioned variables; Pui|uj
(c1|{zk|zk ∈ {N i ∪ N j}}, c2) = Pui|uj

(c1|{zk|zk ∈

{N i − N j} ∪ c2}). Then the conditional probability of Pui|uj
(c1|c2) and the joint

probability of (ui,uj) can be written as:

Pui|uj
(c1|c2) =

(∑
zi∈N i−N j 1(g(zi) = c1)

)
+ 1(c1 = c2)

|N i −N j|+ 1
(4.13)

Pui,uj
(c1, c2) =

(∑
zi∈N i−N j 1(g(zi) = c1)

)
+ 1(c1 = c2)

|N i −N j|+ 1
·
∑

zi∈N j 1(g(zi) = c2)

|N j| .

(4.14)

A joint PMF of more than three variables can be straightforwardly obtained by the

chain rule.
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4.3.2.4 Conditional Entropy

By the independence of variable for conditional entropy, we have the following

equation:

H(ua1 , . . . ,uak |ut1 , . . . ,utg)

= H(ua1 , . . . ,uak ,ut1 , . . . ,utg)−H(ut1 , . . . ,utg) = 0,

H(ua1 , . . . ,uak ,ut1 , . . . ,utg) = H(ut1 , . . . ,utg).

(4.15)

Using Eq.(4.15) here, we can derive Eq.(6) in the main paper from Eq.(5) in the

main paper as:

S(R,U) = H(ut,ua1 ,ua2)−H(ua1 ,ua2)

= H(ut)−H(ua1 ,ua2).

(4.16)

4.3.2.5 Scoring Metric to Prioritize the Queries

Given the pool of queries, we prioritize the queries to reduce the number

of questions to be answered for efficiency. Note that in the interactive setting, in

principle, it is optimal to ask one question at a time. However, this can be expensive

as it requires frequent re-training of the model. An alternative is to ask mini-batch

of questions at a time. In both cases the scoring scheme is crucial for picking one (or

a few) most useful questions from the pool to improve the quality of the knowledge

transfer. We tested a number of metrics for prioritizing queries.

Entropy Based Score. Entropy based score uses the scores computed in the pool

generation process to prioritize the queries (Eq.(4.16)). Although this metric is good
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for generating a potential set of queries that could improve accuracy the most, it

cannot directly predict the accuracy improvement from enforcement of the corre-

sponding relational semantics. For example, when Deer is the confused target class

and Elephant and Killer Whale are confident anchor classes, the entropy is going

to be high, but the actual accuracy improvement that may result by enforcing the

relational semantics of Deer is closer to Elephant than Killer Whale may not be.

Classification Accuracy. To obtain a good scoring function of the relational seman-

tics, we use classification accuracy of each candidate constraint computed using a

validation set. Validation set accuracy is the most direct prediction of expected clas-

sification gain when a certain relation is used. Further, since we only order questions

within a pool of small number of queries, this is still computationally viable (not so

if we would have considered all possible semantic relationships as the pool).

Predicting the Classification Accuracy by a Regression Model. Computing the clas-

sification accuracy of each constraint even within the pool at every iteration is still

computationally expensive, we can approximate it by regressing over multiple types

of features, which is a proxy for estimating the classification improvement by a vector

of various scores (c) to the validation accuracy (s). Suppose the relationship consists

of target class t and two anchor classes a1 and a2. We use a score vector to estimate

the validation accuracy. The score vector c consists of confidence/confusion of t, a1

and a2 on both training set and validation set, geometric fitness
(
‖ua2−ut‖2
‖ua1−ut‖2

)
and ball

radius of sample distribution with respect to each class label prototype for t, a1 and
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Figure 4.3: Classification performance on AWA and ImageNet-50 dataset. Results

are average accuracies over five random splits with standard error shown at 95%

confidence interval.

a2. Using a set of features (C) and corresponding validation accuracies(s = {s}), we

obtain a linear regression model, with a bias, by solving R̂ = arg minR ‖RTC−s‖2
2.

Using R̂, we can approximate the validation accuracy by extracting the feature

described at test time and regressing s.

4.3.3 Feedback

Feedback can be obtained from human expert(s). We simulate human feedback

by an oracle that gives answers based on the distance of attribute description. Since

the attribute description is an agglomerative score of different criteria from a number

of human annotators, it is a reasonable measure for the semantic decision regarding

validity of relational queries. Specifically, for each triplet-based relationships, we

compute the distance of attribute description of ut and ua1 and ut and ua2 . If
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the distance between ut and ua1 is smaller than the distance between ut and ua2 ,

the oracle gives an answer to the system of ‘Yes’, otherwise ‘No’. We only use the

relationships that are answered as ‘Yes’ as constraints.

4.3.4 Interactive Learning

The key to our approach is to adaptively update the query generation. We

refer to this as ‘interactive’ model. So far, we describe the process of one iteration of

human interaction. We iterate the process multiple times, updating the embedding

manifold (model) and use the updated model to generate a new pool and prioritize

the queries for the next iteration. The adaptive query generation and prioritiza-

tion scheme achieve better classification accuracy with fewer number of relational

constraints, as compared to a single iteration model, which we refer to as ‘active’

model. In other words, interactive model is more efficient in terms of utilizing human

feedback.

4.3.5 Computational Complexity

The computational complexity of Algorithm 1 depends on the complexity of

training the model on the anchor and target classes, and generating a query pool.

First, the complexity of training the model on the anchor classes in Eq.(4.1)

for each WA and UA is O(md(NA+1)) and O(m(dNA+CA)) respectively, and the

complexity of training the model for target categories in Eq.(4.2) is O(md(NT + 2))

and O(m(dNT +CT + |R|)) for W and U . It is dominated by O(mdNT ) as dNT �
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CT + |R|.

To generate a query pool (Sec. 4.3.2) takes total of O(NC+NACA+NTCT +

kpC
2
r ). We first compute the probability mass function (PMF) for each label en-

tity by O(NC), where N = NA + NT , C = CA + CT and a confusion matrix of

label entities by its PMF with the complexity of O(NACA + NTCT ). A naive way

of enumerating all possible constraints takes O(CTCA2
) but we generate a decent

sized subset (kp) to consider the most confusing entities’ nearest neighboring la-

bel embeddings (Cr) by O(kpC
2
r ). Thus, the complexity of generating the pool is

O(NC +NACA +NTCT + kpC
2
r ). Re-scoring the pool using cross validation takes

O(kpmdN
T ). Finally, the outer loop of algorithm usually iterates few times and

thus the total complexity of Algorithm 1 is O(NA(md + CA) + NT (kpmd + CT ) +

NC + kpC
2
r ).

Test time complexity is O(m(CT +d)), which is the same for all linear embed-

ding methods.

4.4 Experiments

4.4.1 Datasets and Experimental Details

We validate our method on two object categorization datasets: 1) Animals

with Attributes (AWA) [36], which consists of 50 animal classes and 30,475 images,

2) ImageNet-50 [25], which consists of 70,380 images of 50 categories.

We evaluate the performance of knowledge transfer by classification accuracy

on target classes in a challenging set-up that has very small number of training
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Figure 4.4: Effect of Interaction. (a) Classification accuracy as a function of number

of constraints added by active or interactive scoring. (b) Qualitative result of nearest

neighbor of target class.

samples (2, 5 and 10 samples per class, few-shot learning) with a prior learned

with anchor classes that have comparatively more numbers of training samples (30

samples per classes). For testing and validation set, we use a 50/50 split of remaining

samples, excluding the training samples. In both datasets, we use 40 classes as

anchor classes and 10 classes as target classes. We configure the anchor/target

classes, following the configuration of training/test classes in zero-shot/few-shot

learning set-up in [38].

Low-Level Features: The low-level features of both dataset is SIFT and other tex-

ture and color descriptors with PCA, provided by dataset authors [25,38]. In AWA

dataset, we do PCA to reduce the dimensions to 300. In ImageNet-50, we use 1000

dimensional feature of same type of low level description to AWA dataset. We center

the features by the sample mean. For dimension of the embedding space, we choose
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75, which is slightly bigger than the number classes (50) for encoding additional

semantic information.

Animals with Attribute (AwA): There are 50 classes in total in AwA dataset [38].

Ten of them are target classes. The target classes of AwA dataset are ‘Leop-

ard’, ‘Pig’, ‘Hippopotamus’, ‘Seal’, ‘Persian Cat’, ‘Chimpanzee’, ‘Rat’, ‘Humpback

Whale’, ‘Giant Panda’ and ‘Racoon’. The rest of the 40 classes of AwA serves as

anchor classes.

ImageNet-50: There are 50 classes in total in the ImageNet-50 dataset [25]. The 50

classes are randomly chosen from the entire ImageNet dataset. The 50 classes are:

‘Kitfox’, ‘australianterrier’, ‘lesserpanda’, ‘egyptiancat’, ‘persiancat’, ‘cougar’, ‘bad-

ger’, ‘greatdane’, ‘scottishdeerhound’, ‘jaguar’, ‘blackfootedferret’, ‘skunk’, ‘corgi’,

‘weasel’, ‘colobus’, ‘orangutan’, ‘chimpanzee’, ‘gorilla’, ‘greyhound’, ‘hare’, ‘patas’,

‘baboon’, ‘macaque’, ‘tabby’, ‘raccoon’, ‘polecat’, ‘lion’, ‘cheetah’, ‘otter’, ‘sun-

flower’, ‘bonsai’, ‘strawberry’, ‘lamp’, ‘pooltable’, ‘acorn’, ‘drum’, ‘marimba’, ‘daisy’,

‘comb’, ‘rule’, ‘ferriswheel’, ‘rollercoaster’, ‘buckle’, ‘button’, ‘barnspider’, ‘garden-

spider’, ‘bridge’, ‘featherboa’, ‘bathtub’, ‘basketball.’

Among them, we randomly choose ten of them are target classes. The target

classes of ImageNet-50 dataset are ‘cougar’, ‘weasel’, ‘colobus’, ‘gorilla’, ‘tabby’,

‘raccoon’, ‘pool-table’, ‘comb’, ‘roller-coaster’, ‘feather-boa’. The rest of the 40

classes of ImageNet-50 serves as anchor classes.
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4.4.2 Classification Accuracy

Fig. 4.3 shows the classification accuracy on target classes for the two datasets.

Our interactive model (Interactive) with the scoring metric described in Sec. 4.4.2.1

outperforms the baseline transfer models (LME-transfer) without semantic con-

straints and the large margin model without knowledge transfer (LME). Specifically,

‘LME’ refers to the model learned using Eq.(4.2) with λ3 = 0, γ = 0, and ‘LME-

Transfer’ refers to the model learned using Eq.(4.2) without the semantic constraints

(γ = 0). For the ‘Interactive’, we add 20 semantic constraints per iteration and run

5∼6 iterations, so add 100∼120 semantic constraints in total.

Effect of Interaction. Our interactive learning scheme continuously updates the

model to select a better set of questions in terms of classification accuracy. We use

a mini batch size of 10 for interactive setting. The interactively mined constraints

provide better classification accuracy over an equivalent sized set of constraints

produced in a batch. Fig. 4.4-(a) shows the classification accuracy as a function of

number of constraints added by the iteratively updated model and by a batch model.

In both cases same measure for selection and ordering was used. Interestingly, as

iterations continue, the accuracy starts to drop. We believe it is because there is not

much helpful semantics to be added for classification past that iteration. (similar

argument is in the introduction)

As a qualitative result, we present the nearest neighbor of a target class in the

anchor set in Fig. 4.4-(b). As baseline models (LME, LME-Transfer) do not explic-
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# Iter Positively answered query at its highest rank

1 |fox - persian cat| < |blue whale - persian cat|

2 |grizzly bear - persian cat| < |horse - persian cat|

3 |dalmatian - persian cat| < |beaver - persian cat|

4 |dalmatian - persian cat| < |german shepherd - persian cat|

Table 4.1: Top Ranked Query as Interaction (Iter) Proceeds. As interactions continue, top

ranked query whose target class is ‘Persian Cat’ becomes semantically more meaningful.

itly enforce the semantic relationships of categories, the nearest neighbors obtained

by the baseline models are not semantically meaningful. The nearest neighbors

obtained using our model, however, are semantically meaningful from the first it-

eration onward. As iterations proceed, the nearest neighbor is further refined to

be semantically more meaningful, e.g., Siamese-cat appears as the second nearest

neighbor in the iteration 2 and 3 where as it was a third-nearest neighbor at the

first iteration.

As interaction proceeds, the embedding space becomes semantically more

meaningful so do the generated queries. Table 4.1 shows top positive query re-

lated to Persian-cat as a function of iterations. In early iterations, the questions try

to relate Persian-cat to fox and blue whale. But in the later iterations, the question

becomes more semantically meaningful, comparing Persian-cat with dalmatian and

german shepherd.
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Dataset Animals with Attribute ImageNet-50

# samples/class 2 5 10 2 5 10

LME 22.51±2.48 29.85±1.90 34.52±1.33 23.20±2.97 28.22±2.43 34.67±1.62

LME-Transfer 24.59±2.23 32.17±1.53 35.39±1.67 23.47±2.66 28.78±2.05 34.94±1.03

Random 24.75±2.11 31.32±1.31 35.96±1.66 24.23±1.92 28.72±2.26 34.74±2.26

Entropy 24.96±2.24 31.81±1.27 35.92±1.91 24.60±2.80 28.88±2.43 35.64±0.99

Active-Regression 25.43±1.90 32.49±1.58 36.18±0.88 23.34±2.76 28.99±2.34 35.49±0.89

Active 26.62±1.67 32.42±1.45 36.40±1.33 24.35±2.42 28.55±2.07 35.60±1.01

Interactive 27.24±1.82 33.31±1.28 36.46±1.60 24.95±2.20 29.08±1.88 35.62±1.01

Interactive-UB 28.57±1.85 33.61±2.15 36.86±1.83 25.15±2.13 29.23±1.85 35.95±1.53

Table 4.2: Classification Accuracy (%) for Comparing Quality of Scoring Function. For

ease of comparison, we provide two baselines of the method (LME and LME-Transfer) and

the upper-bound of our interactive model (Interactive-UB), which is obtained by adding

constraints scored by the test set.

4.4.2.1 Comparison Among Query-Scoring Metrics

Scoring metric for query is one of the most important components in the

interactive framework. In Table 4.2, we compare the accuracy obtained by adding

the constraints by the various scoring schemes that we have presented in Sec. 4.3.2.5.

Number of constraints added and other hyper-parameters are determined by cross

validation. ‘Random’–random ordering of query from the selected pool. ‘Entropy’–

Entropy-based scores. ‘Active’–classification accuracy based score by a batch-mode

model. ‘Active-Regression’–regressed score of the classification accuracy obtained

by a batch-mode model. ‘Interactive’–classification accuracy based score by an

adaptively updated model, which is our proposal. ‘Interactive-UB’ refers to a upper
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bound that our framework can achieve; we score and add the queries based on

classification accuracy with test set itself in our interactive model. Note that except

‘Interactive’, all other scoring metrics are in a batch-mode. The interactive model

outperforms the batch mode model, which we denote as ‘Active’, and other scoring

schemes, and is tight to the upper bound. We also present the baseline results of

‘LME’ and ‘LME-Transfer’ for reference.

Note that all methods use the same validation set to tune parameters. Our

scoring metric in ‘Active’ and ‘Interactive’, in addition, uses it to prioritize queries

to the user as this is the most direct way to measure the effect of adding a particu-

lar constraint on the recognition accuracy without using the testing set. While this

perhaps makes direct comparison to the baselines slightly less transparent, the com-

parison of ‘Active’ and ‘Interactive’ variants, which both use this criterion, clearly

points to the fact that ‘Interactive’ learning is much more effective in selecting and

ordering of constraints.

4.5 Conclusion

We propose an interactive learning framework that takes human feedback to

iteratively refine the learned model. Our method detects recurring relational pat-

terns from a semantic manifold and translate them into semantic queries to be

answered and retrain the model by imposing the constraints obtained by positively

feed-backed semantic relationships. We validate our method against batch learning

methods on classification accuracy of target classes with transferred knowledge from

85



anchor classes via relational semantics.
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Chapter 5: Conclusion

We have explored several methods to improve the visual category recognition

in various scenarios.

As there are large pools of unlabeled image sources readily available on the

web, we propose a method to add quality samples from external sources to ob-

ject categories by learned attributes with the minimal human supervision. Unlike

conventional semi-supervised learning (SSL) methods that only use a single visual

feature space, our method utilizes two different visual representations to discover

quality samples. The added samples capture the commonality and diversity of the

given labeled samples of each visual categories. The expanded set improves the

classification accuracy over the baselines significantly.

When the unlabeled samples are not available, we need to build a better

classification model to improve the classification accuracy by exploiting the given

labeled samples. We propose to build an ensemble of classifiers that incorporate

both diverse specificity and commonality of the subcategories. First, we discover the

subcategories that are discriminative to the other categories. The set of classifiers

captures the diversity of each discovered subcategory. Then we force the set of

classifiers to share the common characteristic of the subcategories by minimizing
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the rank of a matrix of classifiers. The new set of classifiers significantly outperform

the baselines and the state-of-the-art generalizable classifiers by a noticeable margin,

especially in difficult categories.

When semantic information of the category definitions is available, we could

use an interactive semantic transfer learning formulation that exploits relational

commonality and diversity of category definitions in an efficient manner. The

discriminative classification model identifies the most helpful relational semantic

queries and the semantic feedbacks refines the model in the form of regularization

in a few iterations. The refined model improves the classification accuracy on the

challenging categories that has only a few number of training samples.

However, the proposed methods have following limitations. The learned at-

tribute based SSL method has a risk of semantic drift of adding unrelated samples to

categories in a long run as all SSL methods have. The learning information shared

classifier does not scale with the size of the labeled training set. The sparse semantic

information in the third method does not improve the accuracy dramatically. Ad-

dressing these issues can be interesting research directions for building better visual

recognition systems.
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