
ABSTRACT

Title of dissertation: Studying the Impact of Multicore
Processor Scaling on Cache Coherence
Directories via Reuse Distance Analysis

Minshu Zhao, Doctor of Philosophy, 2015

Dissertation directed by: Professor Donald Yeung
Department of Electrical and Computer Engineering

Directories are one key part of a processor’s cache coherence hardware, and

constitute one of the main bottlenecks in multicore processor scaling, e.g. core count

and cache size scaling. Many research effects have tried to improve the scalability of

the directory, but most of them only simulate a few architecture configurations. It is

important to study the directory’s architecture dependency, as the CPUs continue

to scale. This is because besides applications, directory behaviors are also highly

sensitive to architecture. Varying core count directly affect s the amount of sharing

in the directory, and varying the data cache hierarchy affects the directory access

stream. But unfortunately, exploring the huge design space of multiple core counts

and cache configurations is challenging using traditional architectural simulation

due to the slow speed of simulations.

This thesis studies the directory using multicore reuse distance analysis. It

extends existing multicore reuse distance techniques, developing a method to extract

directory access information from the parallel LRU stacks used to acquire private-

stack reuse distance profiles. This thesis implements this method in a PIN-based

profiler to study the directory behavior, including the directory access pattern and

directory content, and to analyze current directory techniques.

The profile results show that the directory accesses are highly dependent on

cache size, exhibiting a 3.5x drop when scaling the data cache size from 16KB to

1MB; the sharing causes the ratio of directory entry to cache blocks to drop below

50%; and the majority of the accesses are to a small percentage of the directory

entries. Cache simulations are performed to validate the profiling results, showing

the profiled results are within 14.5% of simulation on average. This thesis also

analyzes different directory techniques using the insights from the profiler. The

case studies on the Cuckoo, DGD, SCD techniques and multi-level directories show

that required directory size varies significantly with CPU scaling, the opportunity

of compressing private data decreases with cache scaling, reducing the sharer list

size is an effective technique and a small L1 directory is sufficient to capture most

of the latency critical accesses respectively.

Studying the Impact of Multicore Processor Scaling on Cache
Coherence Directories via Reuse Distance Analysis

by

Minshu Zhao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Donald Yeung, Chair/Advisor
Professor Manoj Franklin
Professor Bruce Jacob
Professor Ankur Srivastava
Professor Alan Sussman

c© Copyright by
Minshu Zhao

2015

Dedication

To my parents, who have been always there for me.

ii

Acknowledgments

First, I would like to thank my advisor, Dr. Donald Yeung, for his patience,

encouragement and immense knowledge. His advice and guidance helped me all the

way from taking courses through writing this thesis. He made the last six years a

rewarding journey.

My thanks also goes to the members of my committee, Dr. Franklin, Dr. Ja-

cob, Dr. Srivastava and Dr. Sussman, for their insightful comments, hard questions

and extreme patience.

I also would like to thank my fellow students in the lab, Meng-Ju Wu, Inseok

Choi, Michael Badamo and Jeff Casarona for their support, feedback, suggestions

and friendship. In particular, I am grateful to Dr. Meng-Ju Wu, who laid the

foundation for this work, enlightened me the direction of research and gave me

many insightful discussions.

Finally, I would like to thank my parents, Yunyi Zhao and Chao Zhu, who

encouraged me to pursue Ph.D. study in the first place and supported me all the

way through my study emotionally.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background on Directory 9
2.1 Cache Coherence and Directory . 9

2.1.1 Directory . 11
2.1.2 Cache Coherence Protocol . 14

2.1.2.1 MESI protocol . 15
2.1.2.2 MSI protocol . 17
2.1.2.3 MOESI protocol . 18
2.1.2.4 Protocol Variation in Evictions 18

2.2 Previous Directory Techniques . 19

3 Background on Reuse Distance Analysis 24
3.1 Reuse Distance Profile . 24
3.2 Multicore Reuse Distance Profile . 28

3.2.1 CRD Profile . 28
3.2.2 PRD Profile . 29

3.3 Cache Sharing Behavior . 31
3.4 Core Count Scaling Behavior . 33

4 Analysis Framework 35
4.1 Characterization of Directory Behavior 35
4.2 Directory Access Analysis . 38

4.2.1 Evictions . 44
4.3 Directory Content Analysis . 44
4.4 Sensitivity to Coherence Protocols . 45

iv

5 Directory Cache Profiler 48
5.1 Profiler Process Flowchart . 48
5.2 Profiler Implementation . 50

5.2.1 LRU Stacks . 50
5.2.2 Counters . 51

6 Profile Studies and Results 55
6.1 Experimental Setup . 55
6.2 Study 1: Directory Access Frequency 56

6.2.1 Cache Size Scaling . 56
6.2.2 Core Count Scaling . 61

6.3 Study 2: Directory Coverage . 63
6.3.1 Cache Size Scaling . 63
6.3.2 Core Count Scaling . 69

6.4 Study 3: Directory Access Distribution 75
6.4.1 Cache Size Scaling . 75
6.4.2 Core Count Scaling . 81

7 Cache Simulations and Validations 85
7.1 Experimental Setup . 85
7.2 Study 1: Directory Access Frequency 86
7.3 Study 2: Directory Coverage . 91
7.4 Study 3: Directory Access Distribution 95

8 Case Studies and Discussions 98
8.1 Cuckoo Technique Discussion . 98

8.1.1 Experimental Setup . 99
8.1.2 Experiment results . 99

8.2 DGD Technique Discussion . 100
8.2.1 Experimental Setup . 102
8.2.2 Experiment results . 103

8.3 SCD Technique Discussion . 107
8.3.1 Experimental Setup . 108
8.3.2 Experimental Results . 109

8.4 Multi-Level Technique Discussion . 111
8.4.1 Experimental Setup . 114
8.4.2 Private Cache Results . 116
8.4.3 Shared Cache Impact . 120

8.5 Directory Access Frequency Discussion 122

9 Conclusion 124

Bibliography 126

v

List of Tables

2.1 Access mode, cache hit or miss, cache block state, directory access
and comments for MESI protocol. 16

4.1 Access mode, PRD, PRDremote and sharer count characterization of
data cache transactions and T1–T3 categorization. 42

6.1 Parallel benchmarks used in the evaluations. 56
6.2 Cache-miss APKI at 3 private cache sizes, sharing-induced APKI,

and APKI for 16- and 256-core CPUs. 58
6.3 Coverage for all entries . 65
6.4 Percentage of multi-shared entries . 67
6.5 Coverage drop in coverage due to core count scaling. 71
6.6 Percent accesses destined to ≥ 3-access entries, percent entries with

≥ 3 accesses, and percent T2 accesses destined to ≥ 3-access entries. 78
6.7 Percentage of accesses towards directory of 18.75% coverage 79
6.8 Percentage Difference in accesses destined to ≥ 3-access entries, en-

tries with ≥ 3 accesses, and T2 accesses destined to ≥ 3-access entries
for 16-cores and 256-cores from 64-cores, at 64MB. 81

7.1 Data and directory cache parameters for simulation validation. 85

8.1 Data and directory cache parameters for cuckoo experiments. 99
8.2 DGD Coverage; Compare DGD with profiled total coverage 106
8.3 SCD Coverage; Compare SCD with profiled total coverage 111
8.4 Data and directory cache parameters for two level directory. 114

vi

List of Figures

2.1 Directory Accesses in a Multicore Cache Hierarchy 10

3.1 memory reference streams for uniprocessor and multicore 24
3.2 LRU stacks for RD, CRD, and PRD 25
3.3 CRD and PRD profiles for benchmark ocean 32
3.4 PRD profiles for benchmark ocean for 16-, 64-, 256-cores 33

4.1 Directory Accesses in a Multicore Cache Hierarchy 36
4.2 Two interleaved memory reference streams 38
4.3 LRU stacks . 39

5.1 Process Flowchart of the Profiler . 48
5.2 PIN profiler implementation. 50

6.1 Breakdown of directory APKI vs. private data cache size for 64-core
CPUs . 57

6.2 Total cache-miss induced directory APKI for 16-, 64-. 256-core CPUs 62
6.3 Coverage vs. private data cache size for 64-core CPUs 64
6.4 Entries with wide sharing for 64-core CPUs 68
6.5 Coverage vs. private data cache size for 16-, 64-, and 256-core CPUs . 70
6.6 Entries with wide sharing for 16-, 64-, 256-core CPUs 72
6.5 (Continued) Entries with wide sharing for 16-, 64-, 256-core CPUs . . 73
6.4 (Continued) Entries with wide sharing for 16-, 64-, 256-core CPUs . . 74
6.5 Distribution access during their lifetimes 76
6.6 Percentage of accesses towards directory of 18.75% coverage 80
6.7 Distribution access during their lifetimes for 16-cores 82
6.8 Distribution access during their lifetimes for 256-cores 83

7.1 Breakdown of directory APKI vs. private data cache size for 64-core
CPUs . 87

7.2 Percent APKI error for directory accesses. 88
7.3 Percent APKI error for directory accesses for 16, 64, 256 cores. 90
7.4 Coverage vs. private data cache size for 64-core CPUs 92

vii

7.5 Percent coverage error. 93
7.6 Percent coverage error for 16, 64, 256 cores. 94
7.7 Distribution access during their lifetimes 96
7.8 Percentage of entries with ≥ 3 accesses 97
7.9 Percentage of entries with ≥ 3 accesses for 16, 64, 256 cores 97

8.1 Minimum Cuckoo coverage for 1% eviction rate. 100
8.2 DGD with 64 cores . 105
8.3 SCD with 256 cores . 110
8.4 Multi-level directory cache implementations. 112
8.5 Hit and miss rates for T1 and T2 lookups at different levels of the

directory cache for different private cache sizes. 116
8.6 L2 directory cache read APKI for different private cache sizes. 118
8.7 L2 directory cache write APKI for different private cache sizes. 118
8.8 Latency critical L2 directory cache access APKI with or without

shared caches and deferred . 121

viii

Chapter 1: Introduction

High-performance microprocessors are integrating an increasing number of

cores on chip. Today, CPUs with 8–10 state-of-the-art cores or 10s of smaller

cores [1,2] are in the market. For example, Knights Landing announced by Intel will

be built using up to 72 Airmont (Atom) cores with four threads per core [3]. CPUs

with 100s of cores–i.e., large-scale chip multiprocessors (LCMPs) [4,5]–will be pos-

sible in the near future. This offers enormous potential performance improvement

for programs with thread-level parallelism.

At the same time, new memory technologies have been adopted to provide

more storage close to the cores, thus keeping up with the compute scaling. For

example, Knights Landing employs on-package eDRAM [3]. There are also studies

on Phase-Change RAM [6], Spin Transfer Torque RAM [7] and Resistive RAM [8].

These new technologies will provide the potential for much larger amounts of cache

on chip.

While LCMPs are growing with more cores and larger on-chip caches, to

fully utilize them, computer architects face huge challenges in scalability. Among

these challenges, one of the most critical is cache coherence. Snooping protocols,

which send cache coherence operations through a bus, only work for small-scale sys-

1

tems. When scaling beyond 16 or 32 cores, a directory-based protocol is required.

Directory-based protocols keep a separate directory that stores the state and sharers

of the cache blocks it tracks for coherence, enabling point-to point protocols that are

more scalable than snooping protocols. But scaling this directory beyond hundreds

of cores and hundreds of megabytes of cache is a key problem.

Ideally, a directory should consume small area and power, and incur low la-

tency overhead when scaling to large core count and cache size. A directory’s area,

latency overhead and power can be tuned via a few design parameters. First, the

area of a directory is determined by its capacity. Second, the latency overhead of a

directory can be calculated by latency per access times its access frequency. Lastly,

power dissipation of a directory is composed of static power, which is determined by

its capacity, and dynamic power, which can be calculated by the energy per access

times access frequency. In addition, both latency per access and energy per ac-

cess of the directory are affected by the directory’s capacity and architecture, while

the access frequency of the directory is mostly decided by the data cache capac-

ity. Therefore tuning directory capacity and directory architecture can change the

balance between area, latency and power in the directory.

Many directory architectures have been proposed to make different trade-offs

in balancing these three design parameters. Duplicate tag directories [9] are area-

efficient, but require high associativity as CPUs scale. This architecture incurs large

overhead in access latency and energy per access, thus becoming not scalable with a

large number of cores. Sparse directories [10], on the other hand, are more scalable,

because they store the sharer list per cache tag in a cache with low associativity.

2

Unfortunately, the sparse directory architecture can become very big, as its size

scales with both core count and cache size. When the cache size increases, there

are more tags that need to be stored in the directory, whereas when the core count

increases, there are more sharers that need to be tracked by each directory entry. For

example, a full-map sparse directory for a 256-core CPU (assuming 64-byte cache

blocks) will be half the size of its associated cache. Moreover, sparse directories

require over-provisioning the number of tags to avoid conflicts due to their low

associativity, further worsening the area and power requirement of a sparse directory

as cache capacity scales.

Researchers have developed many approaches to improve the capacity scaling

of directories. One approach is to reduce the sharer lists, such as using alterna-

tive sharing representations [10–15], or hierarchical directories [16–18]. Another

approach is to reduce conflicts [18–20]. There are also approaches exploiting private

data [20–23]. However, these techniques do not come without a price; many of them

increase the complexity of the directory and/or access to the directory, complicating

the directory design.

The balance among area, power and performance is not only affected by the

directory techniques, but it is also affected by directory behavior, such as the access

frequency to the directory and the content of the directory. Therefore, to complete

the picture of the effectiveness and trade-off of different directory techniques, di-

rectory behavior needs to be studied–specifically, the directory access patterns and

directory content characteristics. Directory access patterns include the read/write

access frequency, as well as access distribution over different directory entries. This

3

information helps designers to understand the cost of each technique. Directory

content characteristics include the total number of entries in the directory, as well

as the degree of sharing for each entry. They also include the type of sharing–read

vs. write. This information helps designers to determine how much the directory

can be compressed.

These two important factors are impacted by how applications exercise the

directory. For example, sharing is inherently an application behavior, with any

sharing that occurs in the directory traceable to the interaction between application

threads. Also, the directory access streams are dependent upon the memory access

streams, which are decided by applications too.

But in addition to applications, directory content and access patterns are also

highly sensitive to architecture. For example, varying core count usually changes

the number of application threads, directly affecting the amount and frequency of

sharing, thus changing the content of the directory. Also, varying the data cache

hierarchy affects directory access streams because the directory access streams are

cache-filtered versions of the memory access streams. Therefore, the cache size will

affect the directory behavior by changing directory access streams.

On the other hand, the data cache hierarchy can also alter the sharing captured

by the directory. This is because only the sharing that occurs in the private caches

is visible to the directory, while the sharing that occurs in the shared cache or main

memory is not visible. And the data cache size affects where the sharing happens.

For example, the sharing that happens between two application threads may occur

far apart in time. When the data cache is small, it is possible that the data block is

4

evicted from the private cache before the second access happens. In this case, the

sharing of the data block does not go through the private cache, thus it is invisible

to the directory. But if the data cache is large enough to retain the data block,

then the sharing of this data block happens in the private cache, and the directory

is needed to provide coherence information. Therefore, the data cache size affects

the directory behavior by changing the sharing pattern as well.

Given the importance of memory coherence to multicore scalability, it is cru-

cial to study different directory techniques and their application and architecture

dependencies. Traditionally, computer architects have used architectural simulation

alone to study directory effects. Simulators can model memory behavior accurately,

but simulating CPUs with 100s of cores is extremely slow. Moreover, one simulation

only represents one individual architecture configuration and input problem. Simu-

lation sweeps are usually required to gain deep insights. But with increasing number

of cores and more complex cache hierarchies, the design space for the directory is

growing exponentially large. Therefore, many researchers only vary the application,

i.e., by running entire benchmark suites, but they do not vary the cache configu-

ration when studying directory techniques. There are only a few studies that have

simulated different core counts or cache sizes [19, 22, 24]. And even in their cases,

they only look at a small number of configurations.

One of the tools that can help architects evaluate multicore caches is reuse

distance (RD) analysis [25–30]. RD analysis evaluates cache hierarchies using RD

profiles, which capture program-level locality. Recently, private-stack reuse distance

(PRD) profiling [27–30] has been proposed to model the interaction in private data

5

caches using per-thread coherent LRU stacks.

RD profiles are architecture independent across cache scaling, i.e., a few profiles

can reveal cache behavior across a large number of CPU configurations. Studies

also show that PRD profiles for programs with symmetric threads are essentially

architecture independent across cache size scaling as well [26, 27, 30,31].

In light of this, this thesis applies multicore RD analysis to study the directory

behavior. As explained above, the directory behaviors as well as the trade-off of

different directory techniques are architecture dependent. This thesis extended RD

analysis to provide a fast way to study the directory behavior across different CPU

configurations, giving insights into the directory scalability problem, similar to what

RD analysis has provided for the data cache. A framework is proposed based on PRD

stacks that can extract the directory access and sharing information. In particular,

relative reuse distance between sharers is proposed in this thesis. Relative reuse

distance quantifies the sharing distance between accesses, identifies the sharing that

occurs in the private cache, and thus directory, and enables the capacity-sensitive

directory behavior analysis. Then, insights of directory access and sharing patterns

are used to study the effectiveness and trade-off of directory techniques when core

count and/or cache size scale.

The analysis is implemented in a PIN-based profiler [32] to study directory

behavior when scaling cache size and core count. Three aspects of the directory

behavior are studied in this thesis: directory access frequency, directory contents

and directory access distribution. For directory access frequency, the profiling results

show a 3.5x drop in total accesses when increasing cache sizes from 16KB to 1MB,

6

despite an increase in sharing-based directory accesses. For directory contents, the

results show an increase in number of shared entries and a reduction in private

entries when scaling cache sizes, enabling an reduction in total number of directory

entries. The results show that directory size can be reduced by 53.3% in terms of

coverage. For directory access distribution, the results show that at 1MB, 23.0% of

the entries receive 37.8% of the total directory accesses and 82.7% of the sharing-

based directory accesses. The profiling results also show that core count scaling

has a much smaller effect on directory than cache size scaling. With 64MB total

cache, the directory accesses increases by 38% and the directory size increase by

2.3% despite a 16x increase in core count.

To validate the profiling results, cache simulations are performed in this thesis

to compare against profiling results. The validation results show the profiled di-

rectory accesses are within 8.6% of simulation on average across cache size scaling,

and within 12.2% of simulation on average across core count scaling. Moreover, the

profiled directory coverage results are within 11.2% of simulation on average across

cache size scaling, and within 14.5% of simulation on average across core count scal-

ing. In addition, the error of profiled directory access distribution results is 8.7% on

average across cache size scaling, and 8.1% on average across core count scaling.

This thesis also discusses the implications of the profiling results for current

directory techniques. First, the fraction of on-chip memory for directory varies with

cache size scaling. Experiments show that for most benchmarks, a Cuckoo directory

only needs to provide entries for 37.5–87.5% of the cache blocks in the private caches.

Second, the fraction of shared entries increases with cache size scaling. Experiments

7

show that the average reduction for DGD technique compared to a regular directory

decreases from 49.6% to 26.7% with cache size scaling. Third, most entries exhibit

a limited sharing degree even with cache size scaling. Experiments show that on

average, the increase in directory entries for the SCD technique is within 7.2%.

Fourth, a small fraction of the directory receives a large portion of the directory

accesses. Experiments show that in a multi-level directory, the first level that only

covers 18.75% of the cache blocks in the private caches receives 83–91% of the latency

critical directory accesses. Lastly, there are more opportunities to trade off directory

access latency for directory size with cache size scaling, indicating the overheads for

the above techniques reduce with cache size scaling.

The rest of this thesis is organized as follows. Chapter 2 provides the back-

ground on cache coherence structures, directory and the current directory tech-

niques. Chapter 3 provides the background on sequential and multicore reuse dis-

tance analysis, and previous work studying cache sharing behavior using RD analy-

sis. Chapter 4 discusses how reuse distance is used in analyzing directory behavior.

Chapter 5 discusses the detailed implementation of the analysis framework. Chap-

ter 6 reports profiling results while chapter 7 validates the profile results with cache

simulations. Chapter 8 discusses implications and the case studies. Finally, chap-

ter 9 concludes the thesis.

8

Chapter 2: Background on Directory

2.1 Cache Coherence and Directory

The memory hierarchy of a typical multicore usually consists of multiple levels

of private caches, an optional shared cache, and a shared main memory, as illustrated

in Figure 2.1(1). Cores and their private data caches sit at the top of the hierarchy,

with multiple levels of private cache per core. Off-chip memory sits below the cache

hierarchy.

Caching shared data in the private caches introduces a cache coherence prob-

lem. This is because the cores see memory through their local private caches, and

without precautions, they can see different value of same memory location in their

respective caches [33].

Hennessy and Patterson discussed the three aspects of cache coherence in the

book Computer Architecture, Fourth Edition: A Quantitative Approach [33].

1. Preserving program order. After a write by core C to memory location X, a

read by C always returns the value written by C, if there is no writes to X by

another core between the write and the read by C.

2. Cores should not continuously read an old data value. After a write by one

9

Core Core

Private
Data Cache

Private
Data Cache

Shared Data Cache
(Optional)

Main Memory

Sharing
Point

(1) Multicore Cache Hierarchy

Core Core

Private
Data Cache

Private
Data Cache

Directory
Cache

Shared Data Cache
(Optional)

Main Memory

(2) Directory Accesses

Figure 2.1: Directory Accesses in a Multicore Cache Hierarchy

core to memory location X, a read by another core to location X should return

the written value, if the read and write are sufficiently separated in time and

no other writes to X occurs between the two accesses.

3. Writes to the same memory location are serialized. That is, if value 1 and

then 2 are written to one location, cores can never read the value of location

as 2 and then later read it as 1.

Also as explained above, cache coherence is only relevant to the private caches,

not the shared structure. Therefore this thesis defines the line between last level

private caches and the first shared structure (either shared cache or main memory)

as the CPU’s sharing point. Cache coherence has to be maintained above the sharing

point while there is no coherence issue below the sharing point.

10

2.1.1 Directory

The protocols to maintain coherence for multiple processors are called cache

coherence protocols. The cache coherence protocol keeps track of the state of any

sharing of a data block, e.g., whether the block is shared or private, and if the

former, the cores that are sharing the data block. Traditionally, there are two ways

to maintain cache coherence between multiple cores.

One is the snooping protocol, which sends cache coherence operations through

some broadcast medium, such as a bus. In snooping protocols, each cache that has a

copy of the data also has the sharing status of the block, but there is no centralized

structure for this information. The request of a cache block is sent to the broadcast

medium and the broadcast medium is snooped by the cache controller of each core,

to determine if the core has a copy of the data that is being requested.

Snooping protocols are simple and do not require significant hardware support,

because they rely on a single point of serialization: the broadcast bus. But they are

very message intensive. When the number of cores increases, snooping protocols will

generate too many messages for the bus to handle. Therefore the snooping protocol

has limited scalability.

The alternative to snooping protocols is to keep a directory. A directory-based

protocol keeps a separate directory that stores the state of the block it tracks for

coherence. Each entry contains sharing information of a memory block, such as

whether the block is dirty or which caches have a copy of this block. The use of

a directory structure can reduce the bandwidth demands, as memory requests only

11

need to go to the directory, not to every other core in the CPU.

One simple directory implementation is to attach each memory block with the

directory entry that is in the shared structure, either shared data cache (assuming

inclusive) or main memory. This is taking advantage of the shared structure as one

single point for accesses to be serialized. It is also called an in-cache directory if

the directory is implemented in the shared cache. In such an implementation, the

amount of the information is proportional to the size of the shared structure.

An in-cache directory can be very costly in terms of area. Because the shared

cache is usually much bigger than the last level private cache, not all the cache

blocks in the shared cache are cached in the last level private cache. These blocks

that are not cached by the private caches need neither coherence nor directory en-

tries. Therefore, when the directory is integrated with shared cache, it contains

many empty entries, wasting precious on-chip area. For example, modern day In-

tel microprocessors (like the Intel Core i7 processor) implement inclusive last level

shared caches, and these are 8x the size of the cores’ private caches [34]. If an

in-cache directory is implemented, then at least 87.5% of the directory entries are

not in use at any given time.

On the other hand, for a directory that is implemented in main memory, the

overhead is not only the area, but also the long access latency. Because many

directory accesses involve the data that are already on chip, accessing main memory

before proceeding greatly increases the access latency of such accesses.

To reduce the area overhead, some approaches try to only track the active cache

blocks that are resident in the private data caches and put this smaller directory

12

cache on chip. One of the approaches is duplicate-tag-based directory [9, 35]. A

duplicate-tag-based directory uses the existing tags in the private cache and stores

all of them in central place, usually sitting at the CPU’s sharing point. Therefore,

the state for a block can be determined by examining the directory to find out all

the copies of the tag in every possible cache.

Duplicate-tag-based directory is simple to implement and requires low area

cost. However, its associativity increases proportional to the core count, which

makes it not scalable. To illustrate, with a 64-core CPU, the directory needs to

contain the tags for all 64 possible cache locations. And if each cache is 16-way set

associative, then the aggregate associativity of the directory is 1024 ways.

Another approach is using a sparse directory [10]. The sparse directory orga-

nizes the cache coherence information as a cache. Each entry of the sparse directory

is indexed by the tag of the blocks that are active in the private cache, and the

entry contains the sharing information. Similarly, a sparse directory also sits at the

CPU’s sharing point. Figure 2.1(2) illustrates a directory cache with the on-chip

cache hierarchy.

Because the sparse directory is implemented in a similar way as a cache, the

architect is free to decide the associativity of the directory, making it more scalable.

However, there is area overhead associated with the sparse directory. One of them is

over-prevision. Theoretically, the directory cache size can be the same as the total

number of private cache blocks, but a sparse directory is usually over-provisioned by

2x to 4x to reduce the probability of conflicts in the directory, in case the memory

access pattern is skewed to load one directory set more heavily than the others [10].

13

With increasing size of the private data cache, the over-prevision of the directory

can cost a lot of on-chip area.

Moreover, a straightforward way to implement a directory entry is to use a

bit vector with one bit per core, also known as a full map entry. Therefore, a

system with N cores requires N bits per entry. The directory entry scales linearly

with the core count. As the core count increases, full map can incur significant

area overhead too. To illustrate, a 256-core CPU needs 256 bits (32 bytes) for every

directory entry. And if the directory is over-provisioned by 4x, for each 64-byte cache

entry, 128-byte directory capacity is needed to maintain the coherence, making the

directory larger than the caches. The huge area requirement for high core count

makes sparse directory unscalable too. Therefore, many researchers have proposed

to reduce the directory size and thus improve the scalability. This thesis discusses

various techniques in detail in Section 2.2.

2.1.2 Cache Coherence Protocol

To maintain the coherence requirements discussed above, a read should always

see the value of the most recently write. Hennessy and Patterson discussed the two

types of protocols to maintain the cache coherence in the book Computer Architec-

ture, Fourth Edition: A Quantitative Approach [33]. One is write update protocol.

The write update protocol updates all cached copies of a data block when the data

is written to. However, because such protocols have to multicast the writes to all

existing copies, the bandwidth requirement for this protocol is huge. Therefore,

14

this protocol is not as widely used as the alternative protocol, the write invalidate

protocol.

The write invalidate protocol invalidates copies of a data block when a write

happens, so that the core that issues the write has exclusive access to the data before

it writes to the data. This protocol is the most common protocol for directory-based

schemes, so this thesis will focus on write invalidate protocols.

In addition to invalidating all the other copies of a cache block that is being

written to, a cache miss should always find the most recent value of the data. There

are two types of cache regarding write policy, write through and write back. In

a write-back cache, the most recent copy is in the cache, but not in the memory.

Therefore, the directory has to provide the information of where the most recent

copy is. Because write-back cache requires less memory bandwidth, it is widely

used in multicore CPU, so this thesis will focus on write invalidate protocols with

write-back caches.

2.1.2.1 MESI protocol

The MESI protocol is a widely used cache coherence protocol developed by the

University of Illinois at Urbana-Champaign [36]. This section explains the protocol

in detail because the analysis in this thesis focuses on MESI protocols.

MESI identifies the four states in which a cache block can be in:

• Modified state. This indicates that the block has been modified in the cache.

Therefore the data in the cache is the most recent copy and is inconsistent

15

Mode Hit or Miss State Directory Access Comment

1 R miss I -> E Create Directory Entry Data From Next Level
2 R miss M,E,S -> S Directory Entry Access Data Forwarding
3 R hit M,E,S No Directory Access Data Cache Hit
4 W miss I -> M Create Directory Entry Data From Next Level
5 W miss M,E,S -> M Directory Entry Access Data Forwarding, Invali-

dations
6 W hit S -> M Directory Entry Access Invalidations
7 W hit M,E -> M No Directory Access Data Cache Hit

Table 2.1: Access mode, cache hit or miss, cache block state, directory access and
comments for MESI protocol.

to the data below the sharing point. Also the core which owns this data has

exclusive access to it. The eviction of this block will cause a write back to the

memory.

• Exclusive state. This indicates that the block is only in one is cache, but

unmodified. This state can be changed into Shared state in response to a read

request, or changed into Modified state when being written to. The Exclusive

to Modified change can be done locally without notifying the directory.

• Shared state. This indicates that the block is unmodified and exists in more

than one private cache. The block cannot be written to in this state. Also the

eviction of this block does not need a write back to the memory.

• Invalid state. This indicates that the block is not in any of the private caches.

Table 2.1 shows cache coherence mechanism based on the access mode, hit

or miss and the state of the cache block. For example, a cache block starts out in

with invalid state, and a read miss or write miss will bring the cache block into the

private cache, and create a new directory entry for it. A read miss puts the block

16

into exclusive state, while the write miss puts the block into modified state. While

the block is valid in the private cache, a transition to shared state from modified or

exclusive state is triggered by a read miss from another core. This read miss will

update the directory and also write back the data to the next level. On the other

hand, a transition to the modified state from shared state is triggered by a write.

This write will access the directory to send out invalidation messages.

As Table 2.1 shows, different cache transactions can trigger different directory

accesses. Section 4.2 will discuss this information can be used to study the behavior

of the directory in detail.

2.1.2.2 MSI protocol

The MSI is a basic cache coherence protocol. Compared to the MESI protocol,

the MSI protocol does not have an Exclusive state. In the MSI protocol, shared

state indicates the block is unmodified and exists in one or more private caches.

Therefore, the exclusive state in MESI protocol is a special case of shared state in

MSI protocol.

Having exclusive state helps to reduce one type of directory access, the transi-

tion form exclusive state to modified state. In MSI protocol, such transition is from

shared state to modified state, and incurs a directory access. Therefore the MSI

protocol requires more memory bandwidth than the MESI protocol.

17

2.1.2.3 MOESI protocol

The MOESI protocol is another popular cache coherence protocol proposed

by Sweazey and Smith [37]. In addition to the four states in the MESI protocol,

MOESI adds an Owned state.

• Owned state. This indicates that the block is both modified and shared. This

state is triggered when another core issues a data request to a block in modified

state. Instead of changing to shared state and writing back the data as in the

MESI protocol, the data is forwarded to the requesting core, changes into

owned state without writing back to the next level.

The owned state avoids the need to write back a modified data to next level

before sharing it. Therefore, the write-back is deferred and in some cases, multiple

write-back can be combined into one write-back, thus saving memory bandwidth.

Therefore, depending on the cache coherence protocol, the access frequency to

the directory and the behavior of the directory can be different. Section 4.4 discusses

how different cache coherence protocols change the directory behavior.

2.1.2.4 Protocol Variation in Evictions

Apart from different cache coherence protocols, another important part of the

directory protocol implementation is how the eviction of data is handled. In a write-

back cache, when a modified block is evicted from the data cache, it will write back

to the next level memory structure. And naturally, the directory needs to be notified

18

because the location of the most recent copy of this data is changed. However, for

a evicted data block that is clean, it is unclear whether the directory needs to be

notified. Notifing the directory will cause extra traffic on chip, but this also enables

the directory to update the sharing information. For example, in a sparse directory,

by enabling clean eviction notification, a directory entry knows the exact number of

existing copies of the corresponding data in the private caches and can be evicted

if the number goes down to zero.

The difference in handling the data eviction in different directory techniques

affects the analysis in this thesis, and will be explained in Section 4.4.

2.2 Previous Directory Techniques

As explained in Section 2.1.1, the size of the sparse directory is the major

problem in scalability. A number of prior works have explored many ways to re-

duce the size of directories, and this thesis studies the characterization of directory

behavior and evaluates the effectiveness and the cost of prior works.

Several works have focused on reducing sharer lists. One way is to use a

compressed but inexact encoding for each entry. Gupta et al. proposed the coarse

vector technique, which uses N/K bits, where a bit is set if any of the sharers in a

K-sharer group caches the block [10]. Acacio et al. proposed sharing code based

on multilayer clustering approach [38]. It constructs the nodes logically in a tree

structure and the sharing code is the level of the root of the minimal sub-tree that

contains the home node and all the sharers.

19

Another approach is to maintain the exact sharer lists. IEEE Standard Scal-

able Coherent Interface (SCI) [39] proposed chained directory protocol. Each direc-

tory entry contains a chain of pointers to all the sharers. Nilsson and Stenstrom

proposed a balanced tree structure instead of a link list for each entry [40] and

Chang and Bhuyan improved it by maintaining multiple trees for each entry [41].

A hierarchical directory is also proposed to implement multiple levels of directory

cache, in which each first-level directory encodes the sharers of a subset of caches,

and the higher level tracks the directory of lower level caches [16–18,42]. Recently,

Zhao et al. observed that many memory locations have the same sharer list and

thus proposed SPACE [15]. SPACE encodes sharing patterns in the directory entry

and has a separate table to decode the pattern into bit-vectors.

Moreover, one observation is that in many benchmarks, only a few memory

blocks are widely shared among all cores. This has enabled researchers to propose

a directory entry format that only tracks a few sharers. Agarwal et al. evaluate the

schemes of limited pointers, in which a smaller number of pointers is used to identify

the sharers [11]. Choi and Park proposed the segment directory, a hybrid of limited

pointers and bit-vector, to further reduce the entry size [12]. Each directory entry

is of size K+log
2
N/K and can track at most K sharers. The problem of the limited

pointer technique is sharer overflow, when the number of pointers is not enough

to track all the sharers. Agarwal et al. evaluated the broadcasting policy as well

as the no-broadcast policy in which extra sharers get invalidated [11]. Chaiken et

al. proposed a software fallback, where the software emulates a full map directory

when overflow happens [14]. Researchers have also combined limited pointers with

20

various techniques mentioned above. Gupta et al. proposed switching to coarse

representation [10] and Chen proposed using chained pointers when directory entries

overflow [13]. Sanchez et al. proposed SCD [18] to scale up to a thousand cores or

more. For cache blocks with narrow sharing, SCD uses pointers in entries, while for

blocks with wide sharing, it uses a hierarchy of multiple directory entries.

The capacity reduction of these techniques is dependent upon how the direc-

tory entry is encoded, but the overhead is related to directory behavior. When the

techniques employ complex directory protocol, they usually require multiple look-

ups per directory access, increasing the directory access latency. This thesis analyzes

the directory access frequency, thus it can estimate the cost of such techniques.

Apart from reducing the directory entry size, there are techniques that focus on

reducing the number of entries. One is to reduce the over-provisioning by reducing

conflicts. Ferdman et al. proposed the Cuckoo Directory [19] to reduce conflict

misses using Cuckoo Hashing [43]. ZCache-style replacement [44] is also used to

reduce the conflicts in SCD [18] and DGD [20]. The directory content studied in

this thesis shows a minimum number of directory entries needed in these techniques

assuming full associativity; therefore, it gives a lower bound on the directory capacity

when designing a directory cache using these techniques. On the other hand, these

techniques combine sophisticated hashing schemes and re-insertions, increasing the

cost of directory accesses unevenly. This thesis studies the accesses frequency for

different types of directory accesses, thus it can help determine the cost of these

techniques.

There are also approaches focusing on exploiting private data to reduce the

21

number of entries. Cuesta et al. use the operating system to detect private pages

and omit tracking cache blocks in those private pages [23,45]. Valls et al. proposed

PS-Dir [21], which stores shared cache entries in regular SRAM, while keeping pri-

vate entries in slower eDRAM. SCT [22] and DGD [20] recognize private data ac-

cessed by each core tend to occur in large contiguous regions. Hence, they coalesce

consecutive privately accessed cache blocks, and track them as a single coherence

unit. The directory content analysis in this thesis can determine the number of

shared entries in the directory, thus giving a lower bound of these techniques. The

analysis can also be performed assuming different cache block sizes, giving an esti-

mate of their capacity reduction. In addition, these techniques require complicated

directory operation, therefore the directory access pattern analysis in this work can

be helpful in analyzing the cost of such techniques.

The tagless coherence directory [46] proposed by Zebchuk et al uses bloom

filters to track which blocks are in the private cache. This approach significantly

reduces directory storage requirements because the tags are not stored, so the ca-

pacity of the directory purely depends on the number of bloom filters. However,

the approach uses multiple hash functions, and access energy can be very high. The

directory access frequency analysis in this thesis can help determine whether it is

energy-scalable.

Finally, the last technique is to exploit the locality of coherence operation.

The thesis shows that not all entries in the directory are equally important. Some

directory entries are accessed much more frequently than other directory entries

WayPoint [24] proposed a two-level directory. It evicts infrequently accessed entries

22

that do not fit in the on-chip directory, and stores them in off-chip DRAM. The

access distribution analysis in this thesis can help analyze this kind of non-uniform

access distribution across directory entries.

23

Chapter 3: Background on Reuse Distance Analysis

3.1 Reuse Distance Profile

Reuse distance (RD) analysis is a tool to characterize cache behavior by ana-

lyzing program locality. It is initially developed for uniprocessor to study the locality

of the program. The analysis measures an RD profile, which records RD values for

all memory references.

An RD value is defined as the number of unique data blocks referenced since

the last reference to the same data block. To illustrate, Figure 3.1(a) shows a

memory access stream for uniprocessor accessing seven memory blocks, A−G. At

t = 5, block A is accessed, the RD value for this access is 3 because there are three

unique references between this access and the previous access to block A at t = 1.

An LRU stack is used to obtain the RD values. The stack contains the pro-

gram’s memory blocks, and is maintained like a cache with LRU ordering among

the blocks. When a memory access is performed, the LRU stack is searched to find

 Time: 1 2 3 4 5 6 7 8 9 10 11

 Core: A B C D A C E F G C D

 (w)

 Time: 1 2 3 4 5 6 7 8 9 10 11

Core C1: A B C D A C

Core C2: E F G C D

 (w)

a. b.

Figure 3.1: memory reference streams for uniprocessor and multicore

24

A
B
C
D

C

A

Ref A, t = 5 Ref A, t = 9 Ref C, t = 11

B

D

A

C

E

F
G

B

D
A
C

E

F
G

E
B

C2C1

D

A

C

F
GC

A

EB

C2C1

D
A C

F
G

C

D

= hole
E

B

C2C1

A C

F
G

C D

= hole

Ref A, t = 9 Ref D, t = 10 t = 12

b.a. c.

d. e. f.

C2C1 C2C1

A C

Figure 3.2: LRU stacks for RD, CRD, and PRD

the memory block and the stack depth of the block is its RD value. Then the entry

for this memory block is moved to the top of the stack. To illustrate, Figure 3.2(a)

shows the state of the LRU stack at t = 5, the stack depth of block A is 3, which is

the RD value for this access.

Moreover, assuming LRU and full associativity, a cache of size CS can satisfy

any reference with RD < CS; therefore the cache miss count for this cache is the

sum of all references in the RD profile with RD ≥ CS. To illustrate, Figure 3.2(a)

shows the state of the LRU stack at t = 5, and shows the RD value for this access

to block A. Therefore, this access will be a hit in a cache with 4 or more entries,

but a miss in a cache with less than 4 entries.

In sequential programs, the RD profiles are architecture independent, because

25

the memory access stream is fixed once the binary of the program is produced. Each

program produces one memory access stream results in one RD profile. With this

profile, it is possible to predict the misses for any cache size CS, and evaluate cache

performance at any cache size CS. Therefore RD profiles allow fast analysis along

the cache capacity dimension.

In recent years, RD analysis is extended for multicore processors by modeling

inter-thread interactions. The memory hierarchy in multicore processor usually con-

tains two different cache architecture, shared cache and private cache. To evaluate

shared cache, Concurrent reuse distance (CRD) analysis [25–31] is developed. It

uses one global LRU stack to model the reuse across thread-interleaved memory

references. To evaluate private cache, private-stack reuse distance (PRD) analy-

sis [27–30] is developed. It models multiple LRU stacks, one stack per core, and the

memory references are accessed on its local stack while the coherence is maintained

among all stacks.

RD analysis for multicore CPUs is more complex compared to the sequential

RD analysis because the locality in parallel programs involves both per-thread reuse

and memory reference interaction between simultaneous threads. For example, in

a shared cache, inter-thread memory reference interleaving leads to interference.

While in private caches, data sharing leads to replications and communications.

Moreover, memory interleaving caused by inter-thread interactions depends on

timings. Therefore RD analysis for multicores become sensitive to how the memory

accesses are interleaved, i.e., architecture dependent. CRD/PRD profile measured

on one architecture might not be valid for another architecture if the per-thread

26

timing changes substantially, unable to reflect the locality for the cache accurately.

However, studies show that in programs whose threads execute similar codes,

e.g., programs that exploit loop-based parallelism, the memory interleaving is regu-

lar [26, 27, 30, 31]. Because these threads tend to speedup or slow down by similar

amounts with different architectural configuration. Therefore CRD/PRD profiles

for these programs are stable across different architecture, and thus essentially ar-

chitecture independent and can provide accurate analysis.

As multicore RD analysis is a great tool to study cache size scaling, there

are also researches that extended reuse distance to study core count and problem

size scaling. Researches shows that CRD and PRD profiles for symmetric threads

change in a systematic fashion when scaling core count and problem size. For core

count scaling, memory interleaving from the threads are increased, but with similar

locality characteristics [29–31]. For problem scaling, the computation structure, such

as loops, and the data structure are increased proportionally [30,47]. Therefore the

shift in CRD and PRD profiles preserve the shape and are highly predictable.

Therefore researchers proposed using simple prediction algorithms to predict

the profiles with different core counts and problem sizes. Reference groups [47] was

proposed to predict shape-preserving profile shift. The technique creates groups of

reference and measure the shift rates for each group by comparing two profiles. Then

apply the scaled shift rates to form a scaled-up profiles. The technique is first used

to predict RD profiles across problem size scaling [47]. It is then extend to predict

CRD and PRD profiles across problem size and core count scaling, and researches

show the technique is very accurate [29, 30, 47].

27

3.2 Multicore Reuse Distance Profile

3.2.1 CRD Profile

As explained in Section 3.1, Concurrent reuse distance or CRD, is used to

capture locality information in a shared cache, by measuring the reuse distance of

thread-interleaved memory reference stream that access one shared cache. CRD

values are measured on a global shared LRU stack [25–31].

To illustrate, Figure 3.1(b) shows a interleaving of memory references from

two cores, C1 and C2. In this memory access stream, all memory references are

read expect the reference to block D at t = 10, as indicated by (w) in the figure.

This memory access stream is constructed from the memory access stream in Fig-

ure 3.1(a), by distributing and interleaving the memory accesses among two cores.

Figure 3.2(b) and (c) shows the global LRU stacks for CRD profile. In particular,

Figure 3.2(b) shows the state of the global LRU stack at t = 9, when core C1 ref-

erences block A. There are six blocks above A in this global LRU stack, thus the

CRD for this access is 6, indicating this access is a hit for any shared cache with 7

or more entries, but a miss for any shared cache with less than 7 entries.

However, the RD for the accesses belong to core C1, also know as intra-thread

RD, is 3, while CRD for this access is 6. In this case, CRD > RD, because of

the memory interleaving. The accesses from C2 is different from accesses from C1,

and cause dilation of intra-thread reuse distance. Therefore the private data in the

threads will cause CRD to increase compared to its intra-thread RD.

28

On the other hand, the shared data in the threads can offset the dilation

effect. First effect is the overlapping reference. For example, Figure 3.1(b) shows

C2’s access to block C at t = 8 interleaves with C1’s reuse of block A at t = 9, but

it does not increase A’s CRD, because C1 already accesses block C at t = 5 in this

reuse interval. Second effect is the intercept. To illustrate, Figure 3.2(c) shows the

state of the global LRU stack at t = 11, when core C1 is referencing block C. The

intra-thread RD for this access is 2, while the CRD for this access is also 2. This is

because core C2 accesses the same block C in this reuse interval, causing the CRD

to decrease.

3.2.2 PRD Profile

As explained in Section 3.1, Private-stack reuse distance or PRD, is used to

capture locality information in private caches, by measuring reuse distance across

per-thread memory reference streams that access coherent private caches. PRD

values are measured on multiple private LRU stacks that are kept coherent with

individual threads’ memory reference streams [27–30].

Similar to sequential RD profiles, PRD profiles capture the reuse within each

LRU stack, or intra-thread reuse, which can be used to predict the private cache

misses. Figure 4.3(d)-(f) shows the LRU stacks for PRD profiles. In particular,

Figure 4.3(d) shows the intra-thread reuse at t = 9. In Figure 4.3(d), Core C1

references A. There are three blocks above A in the LRU stack of core C1, so its

PRD = 3. This access is a hit in a cache of size 4 or more, but a miss in a smaller

29

cache. But the private stacks are multiplied, so the total private cache size should

be the aggregate capacity of all private cache. Therefore in this case, the private

cache has to be size 8 or more for this access to be a hit.

Other than intra-thread reuse, PRD profiling captures inter-thread interac-

tions as well, e.g., sharing. When read sharing occurs, in which one data block is

accessed by multiple cores; replicas of the block show up in multiple stacks. These

replicas in the stacks increase the capacity pressure because more cache is needed

to satisfy the cores’ accesses. For example, in Figure 4.2, C1 accesses c at t = 5 and

C2 accesses C at at t = 8. Figure 4.3(d) shows data block C is replicated in both

stacks.

In addition to read sharing, PRD also captures write sharing by maintaining

coherence via write invalidation between LRU stacks. To illustrate, C2’s reference to

D at t = 10 in Figure 4.2 is a write , then invalidation will occur in C1’s stack as in

Figure 4.3(e). The invalidation has two consequences. One is that a “hole” is created

when a block is invalidated to prevent promotion of blocks further down the LRU

stack [27]. When a data block below the hole is referenced, the hole moves to the

position of that block, to preserve the stack depth of the blocks below. For example,

in Figure 4.3(f) shows the state of the private LRU stack at t = 12, after the re-

references of C by C1 at t = 11. Comparing to Figure 4.3(e), Figure 4.3(f) shows,

the reference of C cause block A to be pushed down and the hole move to depth

(C’s old position). The other consequence is the coherence miss, which is a miss

caused by the write invalidation. For example, in Figure 4.3(f), after invalidation,

if C1 re-reference block D again, then this access will always miss, regardless of the

30

cache capacity.

3.3 Cache Sharing Behavior

In previous studies [29,30], researchers studies the sharing in the caches using

reuse distance analysis, in particular the difference between CRD and PRD pro-

files. This thesis studies the directory behavior using an extension of reuse distance

analysis. Since the sharing in cache is closely related to the directory behavior, this

section reviews how CRD and PRD profiles reveal the sharing in caches.

As explained in Section 3.2, PRD profile and CRD profile are used to study

private cache and shared cache respectively. If there is no sharing between the

threads, the profiles for private cache and shared cache are similar, as shown in

previous studies [29, 31]. But sharing will cause PRD profile to have more misses

than CRD profile. There are two sources of the extra misses.

One is the extra misses due to the replication. To illustrate, Figure 4.3(d)

shows the core C1 re-referencing block A at t = 9. Figure 4.3(d) also shows data

block C is replicated in both stacks and this replication puts pressure to the cache.

And as explained in Section 3.2.2, for access A to be a hit, the private cache must

be size 8 or more. But Figure 4.3(b) shows the same access for shared cache, and

as explained above, for this access A to be a hit, the shared cache only need to be

size 7 or more. The difference in capacity requirement comes from the replication

of block C. Therefore, for same capacity, the private cache will suffer more misses

than shared cache due to replications.

31

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
P

K
I

Per-Core Private Cache Size(MB)

(1) ocean

 10

 100

 1000

 0 0.01 0.02 0.03 0.04 0.05 0.06

M
P

K
I

Per-Core Private Cache Size(MB)

(2) ocean for small capacity

Figure 3.3: CRD and PRD profiles for benchmark ocean

The other source of extra misses is the coherence miss from the invalidations.

Coherence miss can only happens in private cache. To illustrate, in Figure 4.3(f),

after invalidation of block D at t = 10, if C1 re-reference block D again, then this

access will always miss, regardless of the cache capacity. While in Figure 4.3(c), the

write to block D at t = 10 will not cause any invalidation. After the access of block

C at t = 11, if C1 re-reference block D, it will still hit if the cache is large enough.

In another word, coherence miss will never happen in CRD profile because there is

no write invalidation in a shared cache. Therefore, the private cache will suffer more

cache misses than shared cache due to invalidations.

To illustrate the difference between CRD and PRD profiles, Figure 3.3 plots

the MPKI corresponding to the CRD and PRD profiles for ocean from SPAHSH2

benchmark suites [48] following the method in the previous study [29, 30]. Fig-

ure 3.3(1) shows the two complete profiles and Figure 3.3(2) shows the two profiles

for small capacity.

As Figure 3.3(2) shows, the PRD and CRD profiles are almost identical at

small capacity, indicating the absence of sharing effects, both replications and inval-

idations. This shows at small capacity, the most data in the cache are private data.

32

 1

 10

 100

 1000

 0 50 100 150 200 250 300

M
P

K
I

Total Private Cache Size(MB)

(1) ocean

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
P

K
I

Total Private Cache Size(MB)

(2) ocean for small capacity

Figure 3.4: PRD profiles for benchmark ocean for 16-, 64-, 256-cores

While figure 3.3(1) shows in larger capacity, there is a gap between PRD and CRD

profiles, which is called “sharing-based degradation” in previous study [30]. This

shows the sharing only begin to manifest itself in a larger cache.

This is because the parallelization scheme, such as blocking, usually have high

sharing distance. Traditionally, programmers try to avoid frequency sharing in

the benchmarks to minimize the communication and getting better performance.

Therefore, the sharing distance for benchmarks are usually high and thus the sharing

is only observable in a larger cache.

3.4 Core Count Scaling Behavior

In previous studies [29, 30], researches also study how PRD profiles changes

with core count scaling. This thesis also studies how directory behavior changes

with core count scaling. Therefore this section reviews the core count scaling effects

on PRD profiles.

Figure 3.4 plots the MPKI corresponding to the PRD profiles for ocean from

SPAHSH2 benchmark suites [48] for 16-, 64- and 256-cores, following the method

in the previous study [29, 30]. Figure 3.4(1) shows the three complete profiles and

33

Figure 3.4(2) shows the three profiles for small capacity.

As Figure 3.4(2) shows, at small capacity, the PRD profile exhibits a shift with

the increasing core count. In fact the shift is proportional to the number of cores.

This is because the core count scaling increases the interference between the threads.

In loop-based parallel programs, the parallelization is done by breaking the loop into

multiple parts and execute them on multiple cores, as Figure 3.1 shows. Therefore,

with more cores, more interleaved memory locations are referenced between reuses.

And the increased PRD value shifts the PRD profiles towards higher capacity.

While as Figure 3.4(1) shows, at larger capacity, the shift in PRD profile

becomes smaller and not proportional to the number of cores. This is because of

the limited scope of the interference. In loop-based parallel programs, though the

distance of reuse within a loop is increased due to more core count, the distance of

reuse between the loops are mostly constant. Therefore, at larger core count the

shift is very insignificant.

On the other hand, Figure 3.4(1) shows the non-shifting parts of PRD also

increases with core count. This is due to the increase of sharing with core count

scaling. With more cores, there are more replications and invalidations, causing

PRD to increase with core counts.

34

Chapter 4: Analysis Framework

This chapter explains the how reuse distance framework is adapted for ana-

lyzing directory cache. Section 4.1 discusses how to study the directory behavior

through the data cache transactions information. Section 4.2 and 4.3 explain using

reuse distance analysis framework to study the directory access and content. Sec-

tion 4.4 discusses the sensitivity of the analysis framework to coherence protocol.

4.1 Characterization of Directory Behavior

A directory cache access is performed when a core performs a memory opera-

tion that cannot be satisfied from the core’s local private cache hierarchy, requiring

memory transactions that involve other remote caches or main memory. Therefore

the behavior of a directory cache can be studied through data cache transactions.

To illustrate, Figure 4.1 groups cache transactions into 3 categories, labeled T1–T3.

T1 represents a cache transaction that misses all the way to the sharing point,

either to shared cache or main memory. The directory is accessed, to create an

entry to track future coherence information. Moreover, the directory access that

caused by T1 transaction is usually latency tolerant, because T1 transaction incurs

access below the sharing points, often off-chip, and much higher access latency than

35

Core Core

Private
Data Cache

Private
Data Cache

Directory
Cache

Shared Data Cache
(Optional)

Main Memory

T2

T2

T3

T1

T1

E T2

Figure 4.1: Directory Accesses in a Multicore Cache Hierarchy

directory access. Though directory still need be to accessed to determine that the

data is not chip, it can be overlapped with the memory access because only memory

address is needed to proceed.

T2 represents a cache transaction that requires information from remote cores.

These “sharing-based” transaction accesses directory too, to determine the coher-

ence action and the sharers involved. Comparing to T1 transaction, the directory

access that caused by T2 transaction is usually latency critical, because the direc-

tory information is essential to either the correctness of the program or getting the

data, the directory access has to done before getting the data block.

T3 represents a cache transaction that hit in local private data cache and can

be satisfied by it, such as read hit or write hit to a modified block. T3 transaction

will not generate directory access.

Finally, E represents a notification to the directory when when a cache block

is evicted from the private cache. This thesis assumes all eviction, dirty or clean

36

will notify the directory, so that the directory is synchronized with the cache.

Therefore, by examining the data cache transactions and data cache eviction,

one can get the access information to the directory cache. This includes the access

frequency to the whole directory, as well as the how the access distributed across

directory entries.

Apart from directory cache access frequency and distribution, the access to the

directory also change the content of the directory. In order to analyze the directory

cache content, the concept of directory entry lifetime is introduced. Directory entry

lifetime is defined as the period that the entry resides in the directory.

When T1 transaction is performed, a new data block is brought into the private

cache. This creates a new directory entry with a single sharer in the directory cache,

and starts a new directory entry lifetime.

During its lifetime, T2 transaction access modifies the sharer list of the direc-

tory entry. A T2 read transaction adds a sharer to the entry’s sharer list, while a

T2 write transaction reduces the sharer list to a single sharer (assuming invalidation

on writes). And a eviction notification also subtract one sharer from the sharer list.

Finally, the lifetime of a directory entry ends when the directory is notified that

all copies of its associated data blocks have been evicted from the private caches.

And the directory entry can be deallocated to provide space for other entries.

Therefore, by examining the data cache transactions and data cache eviction,

one can get the content information to the directory cache. This includes total

number of entries in the directory as well as the sharing degree of each entry.

Here, the T1-T3 and E transactions in Figure 4.1 are determined by the private

37

data cache. The data cache size affects the hit and miss of a data transaction and

the number of private caches (i.e., cores) will affect the sharing between each caches,

thus affect the balance and frequency of T1, T2, T3 and E transactions. As discussed

above, this not only changes the access pattern but also affects the content of the

directory by changing the lifetimes and the sharer lists of a directory entry. The

goal of this thesis is to fully characterize the dependence of directory’s accesses and

contents on the private data cache hierarchy.

4.2 Directory Access Analysis

 Time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Core C1: A B C D E A B C B C

Core C2: E C F G E H

 (w)

Figure 4.2: Two interleaved memory reference streams

As explained in Chapter 3, RD analysis is a great tool to study the cache

behavior with cache scaling, because one profile can provide the cache information

across all cache size. This section discusses how to extend multicore RD analysis to

analyze directory caches. As discussed in Section 4.1, the directory’s accesses are

closely related to data cache misses. In particular, a major part of the directory’s

accesses come from cache misses, because when a cache miss occurs, the directory

is accessed to determine if the requested cache block is in other private caches.

Figure 4.2 shows a interleaving of memory references from two cores, C1 and

C2. In this memory access stream, all memory references are read expect the ref-

erence to block C at t = 8, as indicated by (w) in the figure. For example, when

38

CS2

CS3

CS1

C2C1

B
C

A

D
E

A

E

= e

E

B

C2C1

Wr C

C

E
D

A

E

B

C2C1

E

E
D

A
C
F

E

C2C1

C

C
F
G

e. C2C1

H

C

C
F

f.

B

C2C1

C

E
D

A

C
F

C

HB

E
D

A B

E
D

A

G

E
G E

G

Figure 4.3: LRU stacks

C1 re-references block A at t = 7 in Figure 4.3(a), if the local private cache is

large enough to capture this reuse (PRD < CS), then the reference is a read hit.

Otherwise (PRD ≥ CS), the reference is a miss and generates a directory access.

Therefore, looking at PRD already provides a major part of the directory access

information.

However, PRD profile only provide local cache information, and this informa-

tion alone is not enough. The problem is revealing the sharing in the cache. For

example, PRD profiles cannot identify if a write hit is performed on a shared cache,

nor can they distinguish whether a directory access is a shared access (T2). As

discussed in Chapter 1, although sharing is an application-level property, whether

the sharing in the program is exposed to the directory depends on the size of the

data cache. Therefore, the relative reuse distance between sharers is essential to

39

determine if the sharing happens in the cache.

Relative reuse distance is proposed to evaluate the difference of stack depths

for the same block across multiple stacks. Because the stacks are organized in LRU

fashion, the difference in stack depths indicates how far apart in time the sharing

happens. For example, if the two accesses to the same block from different cores

happen close in time, then a small cache is sufficient to retain the data block when

the second access happens. On the other hand, if the two accesses happen far apart

in time, the data block is possibly evicted from the cache before the second access

happens if the cache is too small. The sharing is only exposed given a bigger cache.

In order to analyze the relative reuse distance, remote reuse distance, or

PRDremote, is introduced. PRDremote is the minimum stack depth across all re-

mote PRD stacks for a memory reference. Relative reuse distance can be calculated

by comparing PRD and PRDremote, thus obtaining the sharing information.

There are three possible outcomes for PRDremote < CS, ≥ CS and ∞. When

PRDremote = ∞, there is only one copy of the data block regardless of cache size,

and it resides in the local LRU stack. Thus, this data block is “truly private.”

PRDremote ≥ CS suggests there is no other copy of this data block within the

limited time window captured by CS. The data block is classified as “temporally

private” [22]. Lastly, PRDremote < CS shows there are other copies in the remote

LRU stacks, and there is sharing going on in the private caches.

To illustrate, Figure 4.3(f) shows C1 re-references data block C at t = 16. Data

block C exists in both LRU stacks, but at different depths, hence the directory access

behavior depends on the private cache size. Figure 4.3(f) shows three cases, labeled

40

CS1–CS3. If the cache size is CS1, then PRD ≥ CS1 and PRDremote ≥ CS1, so

neither copy is on chip. Thus, C1’s reference is a miss and generates a T1 directory

access. If the cache size is CS2, then PRD < CS2 and PRDremote ≥ CS2, and only

C1’s copy is on chip. The block C is “temporally private.” So C1’s reference is a T3

access regardless of access mode, and does not generate a directory access. Lastly,

if the cache size is CS3, then PRD < CS3 and PRDremote < CS3, and both copies

are on-chip. If the access is a read, this is a read hit and a T3 access, so there is

no access to the directory. But if the access is a write, then this is a write hit to a

shared block, so a T2 directory access is generated.

The above example shows a few combinations of access mode, PRD and

PRDremote, and how they affect the access to the directory. Table 4.1 lists the

18 possible different cache transactions, depending on the access mode (read or

write), PRD/PRDremote outcomes discussed above, and also how these transactions

are related to MESI protocol in Table 2.1. Table 4.1 reports them in terms of the

T1–T3 categories.

The first eight transactions in Table 4.1 are from the T1 category. All of these

accesses miss in the local private cache and there is no other copy in remote private

caches (PRD ≥ CS and PRDremote ≥ CS). Transactions 1 and 2 represent cold

misses, as shown in Figure 4.3(e). Transactions 2 and 3 can be a local cold miss,

but in most cases they are coherence misses, which is an access after invalidation.

As shown in Figure 4.3(d) when CS < 4, PRD for block C is ∞ because of the write

invalidation that happens at t = 8. Transactions 5 and 6 represent the case where

the data is truly private and resides only in the local cache, and corresponds to

41

Mode PRD PRDremote sharer count Comment Table 2.1

T1 Transactions: New Lifetimes

1 R ∞ ∞ 0 -> 1 Cold Miss 1
2 W ∞ ∞ 0 -> 1 Cold Miss 4
3 R ∞ ≥ CS 0 -> 1 Coherence Miss 1
4 W ∞ ≥ CS 0 -> 1 Coherence Miss 4
5 R ≥ CS ∞ 0 -> 1 Truly Private 1
6 W ≥ CS ∞ 0 -> 1 Truly Private 4
7 R ≥ CS ≥ CS 0 -> 1 Temporally Private 1
8 W ≥ CS ≥ CS 0 -> 1 Temporally Private 4

T2 Transactions: Directory Entry Reuse

9 R ∞ < CS N -> N+1 Forwarding, Coherence Miss 2
10 R ≥ CS < CS N -> N+1 Forwarding 2
11 W ∞ < CS N -> 1 Invalidation, Coherence Miss 5
12 W ≥ CS < CS N -> 1 Invalidation 5
13 W < CS < CS N -> 1 Invalidation 6

T3 Transactions: Data Cache Hits

14 R < CS ∞ 1 -> 1 Truly Private 3
15 W < CS ∞ 1 -> 1 Truly Private 7
16 R < CS ≥ CS 1 -> 1 Temporally Private 3
17 W < CS ≥ CS 1 -> 1 Temporally Private 7
18 R < CS < CS N -> N Read to Shared 3

Table 4.1: Access mode, PRD, PRDremote and sharer count characterization of data
cache transactions and T1–T3 categorization.

Figure 4.3(a) when CS < 5. And transactions 7 and 8 represent temporally private

data, as the sharing is not captured on chip, and corresponds to Figure 4.3(f) when

CS = CS1. All the reads in this categories correspond to case 1 in Table 2.1 for MESI

protocol, indicating the directory block transitioned from invalid state to exclusive

state. While all the writes in this categories correspond to case 4, indicating the

directory block transitioned from invalid state to modified state.

The next five transactions in Table 4.1 are from the T2 category. All of

these accesses involve sharing that is captured on-chip (PRDremote < CS) and

require remote action such as invalidation or forwarding. Transactions 9 and 10

represent a read miss in the local private cache, but the data can be forwarded by a

42

remote private cache. Transaction 9 corresponds to Figure 4.3(d) when CS ≥ 4 and

transaction 10 corresponds to Figure 4.3(c) when CS = 3. They also correspond to

case 2 in Table 2.1 for MESI protocol, indicating the directory block transitioned

to shared state. Transactions 11 and 12 represent a write miss to a shared block on

chip, which causes invalidation. Transaction 10 corresponds to Figure 4.3(b) when

CS ≥ 4 and transaction 11 corresponds to Figure 4.3(c) when CS = 3. They also

correspond to case 5 in Table 2.1 for MESI protocol, indicating the directory block

transitioned to modified state. Transaction 13 represents a write hit to a shared

block on chip, also causes invalidation. It corresponds to Figure 4.3(f) when CS =

CS3. It also corresponds to case 6 in Table 2.1 for MESI protocol, indicating the

directory block transitioned to modified state. Also, similar to transactions 2 and 3,

transactions 9 and 11 can be a local cold miss, but in most cases they are coherence

misses.

The last five transactions in Table 4.1 are from the T3 category. All of these

accesses hit in the local private cache (PRD < CS) and there is no need for a

coherence operation. Transactions 14 and 15 represent accesses to truly private data,

and correspond to Figure 4.3(a) when CS ≥ 5. Transactions 16 and 17 represent

accesses to temporally private data, and correspond to Figure 4.3(f) when CS =

CS2. Transactions 18 represents a read to a shared block, as shown in Figure 4.3(f)

when CS = CS3 and the reference is a read. All the reads in this categories are

corresponding to case 3 in Table 2.1 for MESI protocol, indicating no change in

directory states, while all the writes are corresponding to case 7, indicating the

directory block transitioned to modified state locally.

43

4.2.1 Evictions

In addition to T1 and T2 transactions, evictions from data caches also access

the directory, (i.e., to notify the directory that the block is no longer in the data

cache). Evictions can also be identified by PRD profiling. When a block is accessed,

it pushes the blocks in the local LRU stack downward. And when a block moves

below a given stack depth, it is evicted from the cache with the corresponding

capacity. For example, in Figure 4.3(c), block E is accessed, and as shown in

Figure 4.3(d), block G, F and C are pushed down. Therefore, if CS = 1, block G

is evicted, if CS = 2, block F is evicted, while if CS = 3, block C is evicted.

4.3 Directory Content Analysis

Besides directory accesses, another important part of the directory behavior is

the contents of the directory. Table 4.1 also reports how different cache transactions

change the directory’s contents.

To analyze the content of the directory, this thesis first studies the number

of live entries in the directory. As discussed in Section 4.1, a T1 transaction in

Table 4.1 represents a cache transaction that misses all the way to the sharing point,

introducing a new entry into the directory for future use. Hence, this transaction

increases the number of entries by one. On the other hand, during a data block

eviction, the directory is notified. When the last copy of the cache block is evicted,

indicating there are no copies in the private caches, the directory entry is evicted

and the number of directory entries decreases by one.

44

This thesis also further studies the content of the directory by analyzing the

sharer count of each directory entry. When a directory entry is first introduced by

a T1 transaction, the sharer count of the entry is one, meaning there is only one

copy of this cache block in the private cache. While this entry is in the directory, it

might receive T2 transactions. T2 transactions in Table 4.1 represent sharing-based

directory transactions. These will change the sharer count of the directory entry.

Read transactions (transactions 9 and 10 in Table 4.1) will increase the sharing

count by one, and write transactions (transactions 11, 12 and 13 in Table 4.1) will

reduce the sharing count to one through invalidations. On a data block eviction,

the directory is notified which decreases the sharer count for the directory entry by

one. Eventually, the sharer count will reach zero when there are no copies in the

private caches. This coincides with the eviction of the directory entry.

4.4 Sensitivity to Coherence Protocols

Although this work focuses on analyzing the access patterns and contents of

the directory across many architecture configurations, it is inevitably sensitive to

coherence protocols. For coherence protocols differ in the cache statues they support.

This thesis assumes the MESI protocol which includes the exclusive state. But

as explained in Section 2.1.2, depending on the protocol, some cache transactions

may or may not become a directory access. For example, the MSI protocol does not

have exclusive state. A write hit to a clean block will result in a directory access

regardless if the block is private or not, while in the MESI protocol a write hit to a

45

clean but private block will not result in a directory access. Therefore a directory

using the MSI protocol incurs more accesses to the directory.

Another example is MOESI protocol. MOESI protocol have owned state,

which is a dirty cache block shared in the private cache. Comparing to shared state

in MESI protocol, the data in owned state in the private cache is inconstant with

its copy in the next level. This affect the latency criticality of the access to this

directory entry. For example, a read miss to a block in shared state can access the

directory and next level memory in parallel because the next level have the most

recent information. But a read miss to a block in owned state must access the

directory first before getting the data, because the directory holds the location of

the most recent data.

On the other hand, the eviction notification policy affects the directory con-

tent information. This thesis assumes all evictions notify the directory, so that

the directory has full knowledge of the content of the cache. Many directory tech-

niques adopted this policy, such as Cuckoo Directory [19], DGD [20] and SCD [18].

But some directory techniques does not inform directory after a clean data cache

evictions, so that it will consume less memory bandwidth, as in [18–20,22].

First, when directory is not notified when a clean data evicted from cache, the

directory entry will record extra sharers that does not have the data any more, thus

the sharing degree of the directory entry can be inaccurate. For example, assuming

the data is cached by cache 1 and 2, then get evicted by cache 1 but cached by cache

3, the sharer list of the directory that gets clean notification will be 2,3 while the

sharer list of the directory that doesn’t get clean notification will be 1,2,3.

46

Second, when directory is not notified when a clean data evicted from cache,

the directory cannot evict the directory entry when its lifetime is ended. For exam-

ple, assuming the data is cached by cache 1 and 2, then get evicted by both caches,

the directory can not evict this entry because it does not get the eviction notifica-

tion. Therefore in this case, the directory contents is different from this analysis

because some entries stay in directory even if their lifetimes have ended.

47

Chapter 5: Directory Cache Profiler

5.1 Profiler Process Flowchart

This thesis implements the directory behavior profiling presented in Chapter 4

within the Intel PIN tool [32]. Figure 5.1 shows the flowchart of the whole process.

The Intel PIN tool is able to instrument memory instructions in the binary. For

every memory instruction, the Intel PIN tool passes the memory address, core id

and the read/write information to the PIN profiler.

As discussed in Section 3.2, the PIN profiler maintains coherent private LRU

stacks. (64-byte blocks are assumed in all LRU stacks). For every memory reference,

the PIN profiler first consults the LRU stacks to compute PRD and PRDremote.

Then it refers to Table 4.1 to determine the directory access type. In order to

enable capacity scaling analysis, the PIN profiler refers to the table multiple times

Memory
Address

Reuse
Distance

Access
Type

Evicted
Blocks

Directory
Behavior

LRU Stacks

Reference
 Table

LRU Stacks

Counters

Counters

Figure 5.1: Process Flowchart of the Profiler

48

for different CS values. While the LRU stacks can explore all CS exhaustively, the

PIN profiler steps CS in increments of 16KB and stop at the application’s maximum

PRD for profiling speed.

Since computing PRD and PRDremote requires examining all LRU stacks, both

local and remote, other information can also be obtained at the same time besides

the cache transaction and directory access type. One additional piece of information

acquired is evicted blocks for each capacity CS. This can be obtained by searching

the block that is pushed to stack depth CS in the current local LRU stack. Another

piece of information is the current number of sharers for each capacity CS. This

can be obtained by computing the number of cores with stack depth less than CS.

After getting the directory access type and the evicted block for each capacity

CS, the PIN profiler updates a set of counters, for both directory access information

and directory content information. Finally, based on the statistics the PIN profiler

collects, the behavior of the directory is obtained

Finally, the PIN profiler follows McCurdy’s method [49] which performs func-

tional execution only, context switching threads after every memory reference. This

interleaves threads’ memory references uniformly in time. Studies have shown that

for parallel programs with symmetric threads, this approach yields profiles that

accurately reflect locality on real CPUs [26,29], especially for PRD profiles.

49

A

B

C

A

A

B

C

CS

CS

1

2

.

.

.

.

.

.

. . .

Multiple LRU Stacks Aggregated Counters Individual Counters

xact ctrs dir ctrs

access ctrssharer ctrs

xact ctrs dir ctrs

access ctrssharer ctrs

dir entry sharer ctrs

dir entry access ctrs

dir entry sharer ctrs

dir entry access ctrs
A

A

A

A.
.
.

.

.

.

dir entry lifetime ctrs
A

dir entry lifetime ctrs
A

Figure 5.2: PIN profiler implementation.

5.2 Profiler Implementation

This section explains the implementation of the PIN profiler. Figure 5.2 illus-

trates the two parts of the PIN profiler. One part is the LRU stacks, which provide

directory information based on memory accesses, such as PRD and PRDremote. The

other part is the counters, which record different statistics that the profiler tracks.

5.2.1 LRU Stacks

As discussed in 3.2, the PIN profiler uses LRU stacks to obtain the PRD and

PRDremote value for each memory reference. LRU stacks are implemented using

top-down splaying tree [50]. This binary search tree is sorted by access time, and

therefore maintains the LRU ordering of blocks in the cache. Also, the rank of a

node is defined as the number of nodes which have higher access time in the tree.

50

When an access is made to block A in the LRU stack, the profiler uses a hash table

to find the last access time for the block A, and searches the tree. Then the depth

of block A is the rank of the node A. Therefore, by examining all the stacks, PRD

and PRDremote for this access can be obtained.

It is also possible to get the address for evicted blocks in the LRU stacks.

When an access is made to block A in the LRU stack, it will update its place in the

stack and will increase the rank of other blocks in the stacks. So the block that gets

evicted from the cache with capacity CS is the block whose stack depth increases to

CS. Therefore, by searching the blocks for the one whose rank increases to capacity

CS, it is possible to find the evicted block for each capacity in the stack that is

accessed.

5.2.2 Counters

The profiler maintains multiple sets of counters to keep statistics. Some are

aggregated counters used to to keep the statistics for the whole directory, such as

the access count to the directory and the average number of entries in the directory.

Others are individual counters used to keep the statistics for individual directory

entries, such as the access count to each entry and the sharer count of each entry.

First of all, the profiler records the access count to the directory to enable ac-

cess frequency profiling. 19 aggregated counters are maintained for each CS value,

one for each of the 18 cache transactions in Table 4.1 plus one for evictions. Fig-

ure 5.2 illustrates the per-transaction counters, labeled “xact ctrs,” at each profiled

51

private cache size, labeled “CSi.” The profiler increments the corresponding cache

transactions counter based on the result of the table look-up, and increments the

eviction counter when evictions happen. To illustrate, Figure 5.2 shows a reference

to block A. This reference is transaction 7 for capacities CS1 and CS2 by referring

to Table 4.1, and also this transaction is a directory fill. Therefore, using these

statistics and the total instruction count, it is possible to compute the frequency of

directory fills, directory entry reuses and eviction notifications to the directory for

all data cache capacities.

Second, the profiler tracks the number of live directory entries to enable the

directory cache content profile. It computes the average number of live directory

entries across time by accumulating the lifetime of all live directory entries and then

averaging them by total time. In this study, the time is defined as the memory refer-

ence count. A set of directory lifetime counters are maintained, one per unique data

block contained in all of the LRU stacks for every capacity, as shown in Figure 5.2,

labeled as “dir entry lifetime ctrs.” When a reference initiates a new directory entry

lifetime, its time is stored into the counter. Figure 5.2 illustrates a reference to block

A is a directory fill for capacities CS1 and CS2. And as discussed in Section 4.2,

Table 4.1 shows this initiates a new directory entry lifetime for capacities CS1 and

CS2. On the other hand, when an eviction terminates a directory entry, the profiler

computes the difference between the stored time and current time as the duration

of the lifetime of the entry. Figure 5.2 also shows block B is evicted at capacity

CS1, and block C is evicted at capacity CS2. By consulting all LRU stacks when

an eviction happens, the profiler determines that all copies of block C are at stack

52

depth greater or equal to CS2. This indicates the lifetime of block C in the direc-

tory terminated, and the profiler computes the lifetime of block C at capacity CS2

Then it adds this value into an aggregated counter for capacity CS2. There is one

aggregated counter provided for each capacity, labeled as “dir ctrs” in Figure 5.2.

At the end of the program, these values are divided by the total time to obtain the

average number of directory entries for each capacity.

In addition, the profiler obtains the sharing distribution in the directory by

tracking the max sharing degree of individual directory entries during their time in

the directory. Similar to directory cache content profiling, it computes the average

number of live directory entries with N max sharing degree across time. A set of

directory sharing counters are maintained along with the lifetime counters, one per

data block for every capacity. Figure 5.2 illustrates these counters, labeled as “dir

sharer ctrs.” As mentioned above, when a reference is made, the profiler searches

the LRU stacks to determine the current number of sharers for all profiled private

cache sizes, and the counters are updated accordingly. When a directory entry is

evicted at CSi, the lifetime is added into an aggregated counter for capacity CSi

and N sharers. There is one aggregated counter provided for each capacity and each

possible max sharing degree, labeled as “sharer ctrs” in Figure 5.2. At the end of

the program, the profiler divides these values by the total time to break down the

average number of directory entries in terms of the maximum number of sharers for

each capacity.

Moreover, the profiler also counts accesses to individual directory entries dur-

ing their lifetimes to enable the access distribution profile. In a similar fashion,

53

another set of per-entry counters at every CS is maintained, labeled “dir entry ac-

cess ctrs” in Figure 5.2. Each time a reference is made, the profiler checks if the

transaction causes a directory access at capacity CS. If so, it increments the corre-

sponding “dir entry access ctrs.” Also, when a directory entry is evicted at CSi, the

profiler adds its lifetime into an aggregated counter for capacity CSi and N accesses.

There is one aggregated counter provided for each capacity and each possible access

counts, labeled as “access ctrs” in Figure 5.2. At the end of the program, the profiler

divides these values by time to break down the average number of directory entries

in terms of the number of accesses received for each capacity.

54

Chapter 6: Profile Studies and Results

6.1 Experimental Setup

This chapter studies the directory’s characteristics using the profiler and how

multicore CPU scaling impacts the directory using 15 parallel benchmarks. Ta-

ble 6.1 lists the benchmarks and their suites: SPLASH2 [48], MineBench [51], or

PARSEC [52]. The last two columns in Table 6.1 report the problem sizes and their

dynamic instruction counts (in billions). For the kernels, entire benchmark run is

profiled. For all other benchmarks, the first parallel iteration is used to warm up

the PRD stacks, and then the second parallel iteration is profiled.

Three studies are performed with profiler. Section 6.2 and 6.3 study how

core count and cache size scaling affect the directory access stream and directory

contents. Then Section 6.4 studies the directory access distribution across cache

size scaling to show the temporal reuse of directory entries.

55

Benchmark Suite Problem Size Instructions (Billions)

fft (kernel) SPLASH2 222 elements 2.42

lu (kernel) SPLASH2 20482 elements 22.2

radix (kernel) SPLASH2 224 keys 3.79

barnes SPLASH2 219 particles 32.7

fmm SPLASH2 219 particles 16.4

ocean SPLASH2 10262 grid 1.34

water SPLASH2 403 molecules 2.31

kmeans MineBench 222 objects, 18 features 10.2

blackscholes PARSEC 222 options 2.44
bodytrack PARSEC B 261,16k particles 10.3
canneal PARSEC 2500000.net 0.09
fluidanimate PARSEC in 500k.fluid 2.83
raytrace PARSEC 1920x1080 pixels 4.22

swaptions PARSEC 218 swaptions 22.4

streamcluster PARSEC 218 data points 4.33

Table 6.1: Parallel benchmarks used in the evaluations.

6.2 Study 1: Directory Access Frequency

6.2.1 Cache Size Scaling

Figure 6.1 shows how scaling private data cache size can impact the cache-

induced directory access frequency, as reported by the “xact ctrs” in the profiler.

Figure 6.1 plots the total number of cache miss-induced directory accesses per 1000

instructions, or “APKI,” in solid lines labeled as “Total Misses”.

As shown in Figure 6.1, directory accesses are highly sensitive to data cache

size, they drop rapidly as capacity increases. To illustrate, the first three columns

in Table 6.2 show the access counts for all benchmarks at three different cache

capacities. At small private cache sizes (16KB), 7 out of 15 benchmarks in Table 6.2

have a directory APKI exceeding 11, and one reaches 32. But at larger private cache

56

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(1) fft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(2) lu

0.0

2.0

4.0

6.0

8.0

10.0

12.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(3) radix

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

16K 0.5 1 1.5 2 2.5 3 3.5 4

A
P

K
I

Per-Core Private Cache Size(MB)

(4) barnes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(5) fmm

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

16K 0.5 1 1.5 2 2.5 3 3.5 4

A
P

K
I

Per-Core Private Cache Size(MB)

(6) ocean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4

A
P

K
I

Per-Core Private Cache Size(MB)

(7) water

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(8) kmeans

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
P

K
I

Per-Core Private Cache Size(MB)

(9) blackscholes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

16K 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
P

K
I

Per-Core Private Cache Size(MB)

(10) bodytrack

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

16K 0.5 1 1.5 2 2.5

A
P

K
I

Per-Core Private Cache Size(MB)

(11) canneal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16K 0.4 0.8 1.2 1.6 2 2.4

A
P

K
I

Per-Core Private Cache Size(MB)

(12) fluidanimate

0.0

0.2

0.4

0.6

0.8

1.0

16K 0.5 1 1.5 2 2.5 3

A
P

K
I

Per-Core Private Cache Size(MB)

(13) raytrace

0.0

1.0

2.0

3.0

4.0

5.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(14) swaptions

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

With Notifications
Total Misses

T2
T2 Read Shared

(15) streamcluster

Figure 6.1: Breakdown of directory APKI vs. private data cache size for 64-core
CPUs

57

Table 6.2: Cache-miss APKI at 3 private cache sizes, sharing-induced APKI, and
APKI for 16- and 256-core CPUs.

Benchmark Directory Accesses T2 APKI
16KB 1MB ∞ 16KB 1MB ∞ 16c 256c

fft 16.0 3.8 3.0 0.0 0.2 1.7 3.7 3.9
lu 2.0 0.7 0.7 1.0 0.7 0.7 0.2 1.1
radix 16.7 5.7 3.4 0.1 0.2 2.3 5.6 6.1
barnes 19.1 0.8 0.6 12.0 0.4 0.6 0.6 0.9
fmm 2.0 0.6 0.4 0.3 0.2 0.2 0.6 0.8
ocean 32.0 7.1 4.6 1.3 1.9 2.0 6.0 10.1
water 2.4 0.6 0.6 0.1 0.2 0.2 0.5 0.8
kmeans 1.1 1.1 1.1 0.6 0.6 0.6 1.1 0.6
blackscholes 1.3 0.8 0.8 0.5 0.0 0.0 0.8 0.8
bodytrack 11.6 0.1 0.1 10.1 0.1 0.1 0.1 0.3
canneal 24.3 23.6 24.0 1.8 8.4 9.9 22.9 24.9
fluidanimate 2.2 1.3 1.2 0.3 0.7 0.7 0.8 1.9
raytrace 0.8 0.5 0.5 0.0 0.1 0.1 0.5 0.6
swaptions 2.7 2.7 2.7 0.2 0.2 0.2 2.6 2.9
streamcluster 23.0 6.4 6.4 6.2 6.3 6.3 5.7 6.9

Average 5.3 1.5 1.4 0.5 0.3 0.5 1.3 1.8

sizes (1MB), all benchmarks except for canneal have a directory APKI less than or

equal to 7.1. And half of the benchmarks are under 1 APKI. Across all benchmarks,

the average directory APKI drops from 5.3 at 16KB to 1.5 at 1MB, a factor of 3.5x.

The accesses to the directory can be broken down into two categories. One

is the pure data cache capacity miss (T1 transactions), and the other is the on-

chip sharing access (T2 transactions). To illustrate, Figure 6.1 plots APKI for T2

accesses in dashed lines, labeled as “T2.” Therefore, the gap between the solid lines

(“Total Misses”) and the dashed lines (“T2”) is the T1 accesses. Because the T1

accesses in Figure 6.1 are induced by data cache capacity misses, they decrease when

the private cache size increases. The changes in T2 accesses with cache size scaling

are more complicated, as discussed later. Moreover, the ratio between T1 accesses

58

and T2 accesses is also affected by the cache size scaling.

At small cache sizes, Figure 6.1 shows the cache accesses are mostly dominated

by T1 transactions. The fourth to sixth column in Table 6.2 shows the T2 access

counts for all benchmarks at three different cache capacities. They show that at

small private cache sizes (16KB), T2 accesses are very few– most benchmarks (12

out of 15) have less than 2 APKI T2 transactions. By comparing the T2 access

counts to total accesses counts in Table 6.2, it is shown in small private cache sizes

(16KB), only 9% of the directory accesses are T2 accesses on average. This is because

at 16 KB, the data caches are too small to capture many shared accesses occurring

between threads, and data cache capacity misses are also high due to the small size

of the cache. Therefore, the majority of the directory accesses are destined to private

data, without incurring any sharing-based transactions. These data are also often

temporally private because of the small cache size. There are three exceptions: lu,

bodytrack and streamcluster. These benchmarks exhibit widely shared data even

in a small data cache.

When data cache sizes increase, the ratio of T2 transactions over total cache-

miss induced directory accesses generally increases too. By comparing column two

and column five in Table 6.2, it is shown that in large private caches (1M), 20%

of the directory accesses are T2 transactions. While T1 transactions decrease with

cache capacity because data, especially truly private data, start to fit in cache and

cease to incur T1 transactions, the reduction in T2 transactions is not as much,

and even increases in 7 benchmarks. This is because as data starts fitting in the

data cache, once temporally private data are no longer private, and sharing starts

59

to manifest on chip.

While the sharing is increasing with cache size scaling, depending on the type

of sharing, it may cause an increase or decrease in the number of T2 transactions

In particular, read sharing will cause an increase and then a decrease in T2 trans-

actions. To illustrate, Figure 6.1 plots APKI for T2 accesses associated with read

sharing (i.e., transaction 10 in Table 4.1) in dash-dotted lines, labeled as “T2 Read

Shared.” “T2 Read Shared” transactions first increase with cache capacity because

more remote sharers are captured on chip with bigger cache capacity. But once

all sharers are cached, i.e., the read-sharing working set fits in cache, there are no

more directory accesses. In contrast, write sharing leads to coherence related T2

transactions, such as coherence misses(i.e., transactions 9 and 11 in Table 4.1) and

invalidations (i.e., transactions 11, 12 and 13 in Table 4.1). These transactions also

increase with capacity scaling because more sharing is captured with cache capacity

scaling, but they cannot be eliminated by capturing all sharers on-chip. Therefore,

the gap between the “T2” and “T2 Read Shared” curves in Figure 6.1 increases

monotonically.

Moreover, at each benchmark’s maximum PRD, which is equivalent to an in-

finite cache, all read-shared T2 transactions are eliminated while all write sharing

is exposed. The sixth column in Table 6.2 shows T2 transactions reach 0.5 APKI

at this maximum PRD. These T2 transactions at “∞” quantify a program’s intrin-

sic coherence-related directory accesses. At maximum PRD, 36% of the directory

accesses are T2 transactions.

Therefore, there are two effects of cache scaling in the directory. It decreases

60

the T1 accesses because it decreases the cache capacity misses, especially to truly

private data. It also increases the T2 accesses by exposing the sharing-based direc-

tory accesses on chip. What the results show is that the capacity effect has a bigger

impact on the directory than the sharing effect. So the accesses to the directory

decrease dramatically with cache size scaling.

6.2.2 Core Count Scaling

In addition to data cache scaling, core count scaling also affects the directory

accesses. Figure 6.2 plots the total cache-miss induced directory APKI for three

different core counts, 16, 64 and 256. Notice the x axis in this figure plots total

cache size instead of per-core cache size as in Figure 6.1 to permit comparison

across different number of cores.

As shown in Figure 6.1, core count scaling has a much smaller impact on

directory access count than cache size scaling. To illustrate, the last two columns

in Table 6.2 report the cache-miss induced directory accesses for 16- and 256-core

CPUs at 64MB of total private cache. As shown in Table 6.2, average directory

cache accesses only increase from 1.3 to 1.8 across all 15 benchmarks–a 38% increase–

despite a 16x scaling in core count. In contrast, the previous section showed directory

accesses decrease by 3.5x when scaling the private cache size from 16KB to 1MB.

As explained in the previous section, the directory accesses are mainly com-

posed of cache misses, which follow the PRD profile. Previous studies have examined

the effects of core count scaling on PRD [29, 30]. As explained in Section 3.4, the

61

2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(1) fft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(2) lu

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(3) radix

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(4) barnes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(5) fmm

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

16 cores
64 cores

256 cores

(6) ocean

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1M 20 40 60 80 100 120 140

A
P

K
I

Total Private Cache Size(MB)

(7) water

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(8) kmeans

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1M 20 40 60 80 100 120

A
P

K
I

Total Private Cache Size(MB)

(9) blackscholes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1M 10 20 30 40 50 60 70

A
P

K
I

Total Private Cache Size(MB)

(10) bodytrack

22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0

1M 20 40 60 80 100 120 140

A
P

K
I

Total Private Cache Size(MB)

(11) canneal

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1M 50 100 150 200 250

A
P

K
I

Total Private Cache Size(MB)

(12) fluidanimate

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(13) raytrace

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(14) swaptions

4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0

1M 50 100 150 200 250 300

A
P

K
I

Total Private Cache Size(MB)

(15) streamcluster

Figure 6.2: Total cache-miss induced directory APKI for 16-, 64-. 256-core CPUs

62

main effect is that the PRD profile shifts to larger RD values as the number of cores

increases, at small cache sizes. And then the PRD profile’s shift slows down and

becomes minimal for very large cache sizes. Therefore, because directory accesses

are derived from the private cache misses that PRD profiles capture, the directory

access profiles also exhibit the same shape-preserving shift.

Also, in most benchmarks, the total directory accesses increase slightly with

the shifting. This is because of the increase in sharing-related accesses with the core

count scaling. Therefore, the directory access increases with core count scaling, due

to the curve-shifting caused by cache capacity misses and the increase in sharing

accesses caused by increased number of cores. But the core count scaling has a much

smaller impact on the directory access pattern compared to cache size scaling.

6.3 Study 2: Directory Coverage

6.3.1 Cache Size Scaling

Figure 6.3 shows how scaling private data cache size impacts the number of

directory entries in the directory cache, as tracked by the “entry ctrs” in the profiler.

This thesis uses a metric called Coverage [18], which is the ratio of the total live

directory entries to total private cache blocks. Intuitively, if all the cache blocks in

the private caches are privately accessed, there will be an equal number of directory

entries and data cache blocks. So, the coverage is 100% in this case. If there are

cache blocks that are shared among multiple cores, then some cache blocks will be

replicated in the private cache, but only consume one entry in the directory. So the

63

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Per-Core Private Cache Size(MB)

Total
≥ 2 sharers
≥ 4 sharers

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.05 0.1 0.15 0.2 0.25 0.3

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2 1.6 2

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 6.3: Coverage vs. private data cache size for 64-core CPUs

64

Table 6.3: Coverage for all entries

Benchmark Coverage
64KB 1MB ∞

fft 99.9% 99.0% 67.1%
lu 52.3% 32.1% 9.1%
radix 98.8% 84.0% 41.6%
barnes 60.2% 81.0% 41.5%
fmm 85.8% 90.2% 47.6%
ocean 96.8% 95.8% 79.1%
water-spatial 87.5% 68.4% 51.6%
kmeans 99.1% 89.5% 53.2%
blackscholes 76.7% 70.9% 50.0%
bodytrack 12.4% 18.1% 18.1%
canneal 91.2% 62.5% 39.0%
fluidanimate 91.5% 82.3% 70.8%
raytrace 93.7% 71.7% 39.0%
swaptions 91.3% 94.8% 78.6%
streamcluster 97.2% 63.1% 14.2%

Average 82.3% 73.6% 46.7%

coverage less than 100% in this case. Figure 6.1 plots the time average result in

solid lines, labeled as “Total”. The results here are for 64-core CPUs.

As Figure 6.3 shows, coverage decreases significantly with cache size scaling.

The coverage starts near 100% in most benchmarks in Figure 6.3, but then drops to

near 50% in many benchmarks as the cache sizes increase. To illustrate, Table 6.3

reports coverage for each benchmark. At 64KB, the coverage is on average 82.3%,

with 9 benchmarks over 90%. At 1MB, the coverage on average drops to 73.6%,

with only 4 benchmarks over 90%. While at the maximum PRD, the coverage in

half of the benchmarks drops below 50%, and reaches 46.7% on average. In extreme

cases such as lu, bodytrack, and streamcluster, the coverage drops under 20%.

This drop in coverage is because of the increased sharing in larger caches. As

discussed in Section 6.2, shared accesses between threads only start to be captured

65

in larger cache sizes, which leads to the increasing percentage of T2 accesses with

data cache size scaling. Moreover, many of these T2 accesses increase the sharers

tracked per directory entry as shown in Table 4.1. In other words, the percentage of

multi-sharer entries increases with cache size scaling, while the single-sharer entries

decreases. As explained above, because compared to private data blocks, shared data

blocks can be tracked with fewer directory entries, the directory coverage drops with

data cache size scaling.

To illustrate, Figure 6.3 plots the coverage for entries with 2 or more sharers in

dashed lines, labeled as “≥2 sharers”. So, the gap between the solid lines and dashed

lines breaks down the coverage for single-sharer entries. As shown in Figure 6.3, the

gap gets smaller with increasing data cache sizes. To quantify this phenomenon,

the first three columns in Table 6.4 report the percentage of live directory entries

that are multi-sharer entries. For 64KB private caches, only 9.33% of the directory

entries are multi-sharer entries on average across all benchmarks, indicating over

90% of the entries serve private blocks in the cache. 9 out of 15 benchmarks have

less than 6% shared entries and 4 benchmarks have less than 1% shared entries. At

1MB however, 27.99% are multi-sharer entries on average. The percentage of shared

entries are more then doubled in 9 out of 15 benchmarks. And at the maximum

PRD, 39.15% are multi-sharer entries.

However, further breaking down the coverage by number of sharers shows the

increase in the sharing occurs non-uniformly. To illustrate, Figure 6.3 plots the

coverage for entries with 4 or more sharers in dotted lines, labeled as “≥4 sharers.”

As in Figure 6.3, the gap between the dash lines and the dotted lines is big, showing

66

Table 6.4: Percentage of multi-shared entries

Benchmark ≥2 Sharers ≥4 Sharers ≥32 Sharers
64KB 1MB ∞ 1MB ∞ 1MB ∞

fft 0.01% 8.10% 71.09% 0.0008% 0.0188% 0.0008% 0.0184%
lu 5.54% 51.04% 50.92% 50.999% 50.890% 46.490% 47.325%
radix 0.16% 1.31% 51.19% 0.0207% 0.0400% 0.0014% 0.0022%
barnes 19.77% 48.24% 93.47% 3.3819% 34.010% 0.0433% 0.3660%
fmm 6.92% 27.38% 35.24% 0.3968% 1.8503% 0.0136% 0.0103%
ocean 4.71% 3.78% 5.71% 0.1126% 0.0923% 0.0029% 0.0010%
water-spatial 26.25% 29.33% 29.66% 2.7904% 2.7860% 0.0056% 0.0059%
kmeans 2.24% 0.15% 0.06% 0.0003% 0.0002% 0.0003% 0.0002%
blackscholes 0.46% 0.03% 0.03% 0.0312% 0.0253% 0.0312% 0.0253%
bodytrack 32.67% 83.26% 83.26% 19.192% 19.192% 6.4751% 6.4751%
canneal 5.98% 34.61% 37.40% 6.2946% 10.095% 0.0353% 0.0279%
fluidanimate 25.66% 37.93% 24.19% 2.2900% 1.4139% 0.0010% 0.0010%
raytrace 2.41% 7.56% 6.60% 0.2730% 0.2217% 0.0076% 0.0060%
swaptions 0.15% 0.01% 0.002% 0.0092% 0.0028% 0.0092% 0.0027%
streamcluster 7.03% 87.09% 98.39% 30.274% 78.775% 0.0685% 0.0751%

Average 9.33% 27.99% 39.15% 7.7378% 13.294% 3.5458% 3.6228%

that most of the multi-sharer entries have 2 or 3 sharers. As explained above,

when cache size increases, many private entries become shared, but most of them

exhibit only 2- or 3-way sharing. The coverage for entries with 4 or more sharers

remain small, even at the max PRD. To illustrate, the fourth and fifth columns in

Table 6.4 report the percentage of entries for “≥4 sharers.” As Table 6.4 shows,

at 1MB, 27.99% of the entries are multi-sharer entries, while only 7.74% of the

entries have more then 4 sharers. Therefore, 72.36% of the multi-shared entries

have 2 or 3 sharers. Even at the maximum PRD, only 13.29% of the entries have

more then 4 sharers, showing that 66.43% of the multi-shared entries have 2 or

3 sharers. As discussed above, at the maximum PRD, all of the sharing in the

benchmarks are exposed. Among all 15 benchmarks, only three of them, lu, barnes

and streamscluster have significant sharing.

67

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(2) lu

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(4) barnes

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(6) ocean

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(7) water

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(9) blackscholes

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(10) bodytrack

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.4 0.8 1.2 1.6 2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(13) raytrace

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Total
≥ 2 sharers

≥ 4 sharers
≥ 10 sharers

≥ 32 sharers
64 sharers

Figure 6.4: Entries with wide sharing for 64-core CPUs

68

To illustrate further, Figure 6.4 plots the coverage for widely shared entries,

using a log scale on the Y-axis. For example, as Figure 6.4 shows, directory entries

with ≥32 entries account for very a small fraction of coverage across all cache sizes.

And the increase with cache size scaling is insignificant. Table 6.4 also reports the

percentage of entries for “≥32 sharers.” In 13 out of 15 benchmarks, directory

entries with ≥32 sharers account for less than 0.07% of the total entries at 1MB

cache, and less then 0.4% at the maximum PRD. Therefore, the reduction in coverage

with cache size scaling mostly comes from the increase of narrowly shared entries,

instead of widely shared entries.

6.3.2 Core Count Scaling

Similar to study 1 in Section 6.2, core count scaling also affects the directory

content. As Section 6.2 shows, core count scaling increases sharing in private caches,

so it will decrease the directory coverage too. Figure 6.5 illustrates the impact of

core count scaling on coverage by plotting the total coverage for 16, 64 and 256

cores. Also the x axis in this figure is total cache size instead of per-core cache size

as in Figure 6.3 to permit comparisons across core count.

As Figure 6.5 shows, core count scaling’s impact on coverage is not as big as

cache size scaling, which also matches the results in study 1. To illustrate, Table 6.5

reports the change in directory coverage from 64 cores to 16 cores and to 256 cores

at two different cache sizes, 256KB and 1MB. As Table 6.5 shows, the changes are

not very significant. At 256KB, the change in coverage on average is only 4.20%

69

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

16 cores
64 cores

256 cores

(2) lu

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(6) ocean

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120 140

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120 140

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 6.5: Coverage vs. private data cache size for 16-, 64-, and 256-core CPUs

70

Table 6.5: Coverage drop in coverage due to core count scaling.

Benchmark 16 Cores 256 Cores
256KB 1MB 256KB 1MB

fft -0.04% -0.04% 0.18% 0.20%
lu -17.14% -4.86% 1.13% -8.43%
radix -0.08% -0.03% 0.60% 0.22%
barnes -11.26% -8.05% 27.23% 12.95%
fmm -4.71% -3.83% 11.84% 7.07%
ocean -2.25% -1.80% 4.64% 4.08%
water-spatial -6.35% 0.01% 14.11% 3.93%
kmeans -0.03% 0.02% 0.18% -0.05%
blackscholes -3.63% -0.44% 14.78% 1.81%
bodytrack -20.24% -20.14% 8.88% 10.50%
canneal -1.77% -0.47% 1.94% 0.38%
fluidanimate -5.28% -8.07% 2.28% 10.35%
raytrace 1.49% 0.57% 1.80% 6.90%
swaptions -1.55% -0.32% 6.23% 1.33%
streamcluster -0.47% 0.06% 0.60% -0.31%

Average -1.58% -0.47% 2.62% 1.79%

from 16 cores to 256 cores. While at 1MB, the change in coverage on average is only

2.26% from 16 cores to 256 cores. With a 16x change in core count, the change in

coverage is within 5%, which is much less than the cache size scaling effect. In a

few cases, the change is over 20%, but still smaller compared to the effect of cache

size scaling.

To illustrate how core count scaling affects the coverage, Figure 6.4 shows the

coverage breakdown for all benchmarks. Figure 6.4 plots the exact same results as in

Figure 6.4, except showing the complete set for 16, 64 and 256 cores. Therefore the

64-core parts of Figure 6.4 is the same as Figure 6.4. Figure 6.4 shows, core count

affects the widely sharing entries. In many benchmarks, the directory entries that

have 16 sharers when the application runs with 16 threads scales to 64 sharers when

the application runs with 64 threads and to 256 sharers when the application runs

71

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
C

o
v
e

ra
g

e
Per-Core Private Cache Size(MB)

(2) fft,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) fft,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(4) lu,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) lu,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(6) lu,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(7) radix,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) radix,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(9) radix,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(10) barnes,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) barnes,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(12) barnes,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(13) fmm,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) fmm,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) fmm,256-cores

Figure 6.6: Entries with wide sharing for 16-, 64-, 256-core CPUs

72

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(16) ocean,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4
C

o
v
e

ra
g

e
Per-Core Private Cache Size(MB)

(17) ocean,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(18) ocean,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(19) water,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(20) water,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.1 0.2 0.3 0.4 0.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(21) water,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(22) kmeans,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(23) kmeans,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(24) kmeans,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 1 2 3 4 5 6 7

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(25) blackscholes,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(26) blackscholes,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.1 0.2 0.3 0.4 0.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(27) blackscholes,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.1 0.2 0.3 0.4 0.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(28) bodytrack,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(29) bodytrack,64-cores

0.0001%
0.001%
0.01%
0.1%

1%
10%

100%

 0 0.05 0.1 0.15 0.2 0.25

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(30) bodytrack,256-cores

Figure 6.5: (Continued) Entries with wide sharing for 16-, 64-, 256-core CPUs

73

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 1 2 3 4 5 6 7 8

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(31) canneal,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(32) canneal,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(33) canneal,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 1 2 3 4 5 6 7

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(34) fluidanimate,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.4 0.8 1.2 1.6 2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(35) fluidanimate,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(36) fluidanimate,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 1 2 3 4 5 6 7 8 9

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(37) raytrace,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(38) raytrace,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(39) raytrace,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(40) swaptions,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(41) swaptions,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(42) swaptions,256-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(43) streamcluster,16-cores

0.0001%
0.001%
0.01%

0.1%
1%

10%
100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(44) streamcluster,64-cores

0.0001%
0.001%

0.01%
0.1%

1%
10%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(45) streamcluster,256-cores

Total
≥ 2 sharers

≥ 4 sharers
≥ 16 sharers

≥ 64 sharers
256 sharers

Figure 6.4: (Continued) Entries with wide sharing for 16-, 64-, 256-core CPUs

74

with 256 threads. Therefore, the number of sharers for these entries increases when

core count increases, so the coverage generally drops with increasing core count.

However, the fraction of these entries is very small. As discussed above, most multi-

shared entries only have 2 or 3 sharers. And most of these entries are not affected

by the core count. Therefore, the overall impact of core count scaling on coverage

is small.

6.4 Study 3: Directory Access Distribution

6.4.1 Cache Size Scaling

Lastly, this thesis studies how accesses are distributed across different individ-

ual directory entries. To illustrate, Figure 6.5 breaks down the coverage of directory

entries by number of accesses they receive during their life time in the directory

cache, as reported by the “dir entry access ctrs” from the profiler. The graphs are

formatted in the same fashion as Figure 6.3. The difference is that the graphs in

Figure 6.3 break down coverage of directory entries in terms of number of sharers

rather than number of accesses. In particular, Figure 6.3 plots the coverage for all

entries (labeled “Total”), with ≥ 2, ≥ 3, and ≥ 10 directory accesses for a 64-core

CPU.

Comparing the graphs in Figure 6.5 to their corresponding graphs in Figure 6.3

shows many similarities. For example, the coverage for single-access entries (the

gap between “Total” and “≥ 2 accesses”) in Figure 6.5 is the same as the single-

sharer entries (the gap between “Total” and “≥ 2 sharer”) in Figure 6.3. This is

75

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

Total
≥ 2 accesses
≥ 3 accesses

≥ 10 accesses

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2 1.6 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 6.5: Distribution access during their lifetimes

76

because single-sharer entries are private entries, and private entries only get one

access during their lifetimes–the access that fills the entry into the directory cache.

So, the coverage for multi-access entries (≥ 2 accesses) in Figure 6.5 is the same as

for multi-sharer entries (≥ 2 sharers) in Figure 6.3.

Moreover, for directory entries with higher sharing degree, the access counts

are also related to their sharing degree. To be specific, the access counts of an

entry is equal to or greater than its sharing degree. Therefore, as was discussed

in Section 6.3, that sharing increases non-uniformly with cache size scaling, so too

does the access distribution increase non-uniformly. As illustrated in Figure 6.5, A

small part of the directory receives a disproportionately large fraction of the directory

accesses.

Table 6.6 quantifies this phenomenon. The second to fourth columns of Ta-

ble 6.6 report the portion of accesses to the entries with ≥ 3 accesses during their

lifetimes at 256KB, 1MB, and ∞ private caches. And the fifth to seventh columns

report the percentage of directory entries with ≥ 3 accesses during their lifetimes. At

256KB, Table 6.6 shows the entries with ≥ 3 accesses during their lifetimes account

for only 5.4% of all directory entries, but receive 23.2% of all directory accesses on

average. At 1MB, such entries account for 23.0% of directory entries but receive

41.6% of the total accesses. And at ∞ cache, they account for 35.2% of directory

entries but receive 57.0% of the total accesses.

In addition, the study looks at the portion of T2 accesses to these entries. As

discussed in Section 4.1, T1 accesses are cache transactions that miss all the way to

the sharing point, while T2 accesses are directory reuse transactions. Therefore, T2

77

Table 6.6: Percent accesses destined to ≥ 3-access entries, percent entries with ≥ 3
accesses, and percent T2 accesses destined to ≥ 3-access entries.

Benchmark % Accesses % Entries % T2 Accesses
to ≥3 Entries with ≥3 Accesses to ≥3 Entries

256KB 1MB ∞ 256KB 1MB ∞ 256KB 1M

fft 0.4% 0.5% 84.8% 0.0% 0.0% 71.1% 70.8% 10.3%
lu 54.5% 98.1% 98.4% 8.2% 51.0% 50.9% 100.0% 100.0%
radix 1.8% 1.8% 33.1% 0.1% 0.1% 25.9% 91.3% 55.0%
barnes 29.4% 52.9% 99.2% 12.3% 35.1% 92.5% 88.2% 86.6%
fmm 9.0% 26.8% 62.1% 5.2% 14.9% 27.0% 72.7% 76.4%
ocean 13.4% 27.9% 44.4% 5.2% 3.3% 4.9% 95.5% 97.5%
water-spatial 11.4% 43.5% 45.5% 6.3% 17.6% 17.6% 61.6% 83.8%
kmeans 55.9% 55.9% 55.9% 0.5% 0.1% 0.1% 100.0% 100.0%
blackscholes 0.8% 0.8% 0.8% 0.1% 0.0% 0.0% 100.0% 100.0%
bodytrack 80.8% 99.3% 99.3% 11.4% 85.2% 85.2% 99.7% 100.0%
canneal 14.2% 42.9% 51.2% 7.5% 27.1% 30.1% 65.5% 88.8%
fluidanimate 38.6% 63.9% 69.4% 23.4% 35.5% 23.3% 89.1% 98.6%
raytrace 4.1% 4.4% 4.4% 0.8% 0.6% 0.5% 59.7% 43.4%
swaptions 6.3% 6.3% 6.3% 0.0% 0.0% 0.0% 100.0% 100.0%
streamcluster 26.9% 98.9% 99.9% 0.2% 73.9% 98.4% 70.0% 99.9%

Average 23.2% 41.6% 57.0% 5.4% 23.0% 35.2% 84.3% 82.7%

accesses are always on-chip transactions while T1 accesses can be off-chip transac-

tions if the sharing point is at the chip boundary. Hence T2 directory accesses are

more latency sensitive. The eighth to ninth columns of Table 6.6 report the portion

of reuse transaction to entries with ≥ 3 accesses during their lifetimes at 256KB and

1MB private caches. Table 6.6 shows that at 256KB, 5.4% of the directory entries

received 84.3% of the T2 accesses while at 1MB 23.0% of the directory entries re-

ceived 82.7% of the T2 accesses. Therefore, a small fraction of the directory cache

not only receives a large fraction of the total directory accesses, but also receives the

majority of latency-sensitive directory accesses.

When a directory cache is implemented, it is usually sized using a fixed cov-

erage over data cache size. Therefore, this study also looks at the accesses’ locality

78

Table 6.7: Percentage of accesses towards directory of 18.75% coverage

Benchmark % T2 Accesses % Total Accesses
256KB 1MB 256KB 1MB

fft 100.0% 100.0% 19.3% 19.3%
lu 100.0% 100.0% 69.3% 98.4%
radix 100.0% 100.0% 21.1% 24.8%
barnes 100.0% 73.5% 37.0% 42.5%
fmm 100.0% 86.5% 22.3% 32.2%
ocean 100.0% 100.0% 26.2% 40.6%
water-spatial 98.7% 97.4% 21.6% 54.5%
kmeans 100.0% 100.0% 64.2% 65.1%
blackscholes 100.0% 100.0% 21.9% 27.1%
bodytrack 100.0% 100.0% 100.0% 100.0%
canneal 100.0% 93.2% 30.0% 46.0%
fluidanimate 86.4% 87.0% 37.2% 54.2%
raytrace 100.0% 100.0% 24.4% 31.9%
swaptions 100.0% 100.0% 24.4% 24.8%
streamcluster 93.9% 97.4% 45.1% 95.7%

Average 98.6% 95.7% 37.6% 50.5%

with fixed coverage. Figure 6.6 shows profiling results. The profiler ranks the di-

rectory entries with the number of accesses they receive during their lifetimes, then

finds out the first N entries that occupy 18.75% coverage and computes the num-

ber of total and T2 accesses towards those entries. Figure 6.6 shows that with a

directory cache sized of 18.75% coverage receives a large fraction of the total di-

rectory accesses, and the majority of T2 directory accesses. Table 6.7 reports that

at 256KB, directory cache with 18.75% coverage receives 98.6% of the T2 directory

accesses and 37.6% of the total directory accesses; and at 1M, it receives 95.7% T2

directory accesses and 50.5% of the total directory accesses. In most cases, this high

percentage is due to the locality in the directory cache. In some other cases, such as

lu, bodytrack and streamclutser, this high percentage is because the total coverage

is lower than 18.75%.

79

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

% of T2
% of Total

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.05 0.1 0.15 0.2 0.25 0.3P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2 1.6 2P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
e

rc
e

n
ta

g
e

 o
f

a
c
c
e

s
s
e

s

w
it
h

 1
8

.7
5

%
 c

o
v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 6.6: Percentage of accesses towards directory of 18.75% coverage

80

Table 6.8: Percentage Difference in accesses destined to ≥ 3-access entries, entries
with ≥ 3 accesses, and T2 accesses destined to ≥ 3-access entries for 16-cores and
256-cores from 64-cores, at 64MB.

Benchmark % Accesses % Entries % T2 Accesses
to ≥3 Entries with ≥3 Accesses to ≥3 Entries

16-cores 256-cores 16-cores 256-cores 16-cores 256-cores

fft -0.3% 1.3% 0.0% 0.0% -7.6% 24.6%
lu -3.2% -8.7% 0.1% 17.7% 0.0% -0.6%
radix -1.6% 2.9% -0.1% 0.3% -43.7% 16.8%
barnes -5.4% 2.7% -3.3% 1.5% -1.6% 0.9%
fmm -4.4% 7.1% -2.9% 4.9% -0.4% 3.3%
ocean -14.3% 19.5% -1.9% 3.5% -1.3% 0.6%
water-spatial -5.7% 8.3% -3.3% 8.0% -7.2% 8.3%
kmeans -1.2% -37.7% -0.1% 0.5% 0.0% 0.0%
blackscholes -0.6% 2.5% 0.0% 0.0% 0.0% 0.0%
bodytrack 0.5% -0.5% 10.5% -22.5% 0.0% 0.0%
canneal -2.0% 0.6% -0.8% -0.9% -1.3% 0.4%
fluidanimate -23.6% 8.5% -20.5% 17.0% -5.6% -0.3%
raytrace -0.2% 0.3% -0.1% 0.2% -1.1% 19.9%
swaptions -2.2% 5.6% 0.0% 0.0% 0.0% 0.0%
streamcluster 0.4% -0.1% -1.5% -0.2% 0.0% 0.0%

Average -4.3% 0.8% -1.6% 2.0% -4.6% 4.9%

6.4.2 Core Count Scaling

Similar to study 2 in Section 6.3, core count scaling also affects the directory

access distribution. As explained above, the directory access distribution has a close

relationship with the directory sharing degree; therefore, core count scaling has a

similar effect on directory access distribution.

To illustrate, Figures 6.7 and 6.8 plot the access distribution profile for 16 and

256 cores. The graphs are in the same format as Figure 6.5. Comparing Figure 6.7,

6.8 and 6.5 show these three graphs are very similar. Similar to Study 1 and Study

2, core count scaling has a small effect on access distribution too.

To further quantify this phenomenon, Table 6.8 shows the percentage differ-

81

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(2) lu

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

Total
≥ 2 accesses
≥ 3 accesses

≥ 10 accesses

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8 9

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14 16 18

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 6.7: Distribution access during their lifetimes for 16-cores

82

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

Total
≥ 2 accesses
≥ 3 accesses

≥ 10 accesses

(15) streamcluster

Figure 6.8: Distribution access during their lifetimes for 256-cores

83

ence in accesses destined to ≥ 3-access, in entries with ≥ 3 accesses, and in T2

accesses destined to ≥ 3-access entries at 64MB total private cache, when compar-

ing 16 cores and 256 cores against 64 cores. As Table 6.8 shows, the percentage

of accesses, entries and T2 accesses generally increase with core count scaling, but

the change is very small. From 16-cores to 256 cores, the increase in percentage of

accesses destined to ≥ 3-access is only 8.9%, the increase in percentage of entries

with ≥ 3-access is only 3.6%, and the increase in percentage of T2 accesses destined

to ≥ 3-access is only 5.7%, which is quite small considering there is a 16x increase

in core count.

84

Chapter 7: Cache Simulations and Validations

The profiler uses LRU stacks to model a cache, thus assuming full associativity.

Therefore, though the profiler captures the capacity misses and sharing effects, other

cache effects, such as conflicts, are not captured. These conflict misses can affect

the directory behavior by changing the directory access stream. This chapter uses

a cache simulator to quantify the error in the profiling results, showing they are

accurate to provide directory behavior insights.

7.1 Experimental Setup

A cache simulator is implemented to model the cache hierarchy in Figure 4.1,

using the same PIN tool from Section 5. In the cache simulator, the LRU stacks

Table 7.1: Data and directory cache parameters for simulation validation.

Private Data Cache Sizes (Associativities)

Private L1: 16KB (4-way)
Private L2: 64KB (8-way)
Private L3: 256KB, 512KB, 1MB, or 2MB (8-way) (64 cores)

4MB (8-way) (16 cores)
256KB(8-way) (256 cores)

Directory Cache Coverage (Associativities)

Cuckoo: 200% (4-way)

85

are replaced with data cache models and a directory model. The data cache model

implements three levels of private cache, L1, L2 and L3 per core with 64-byte cache

blocks. The private caches are inclusive and a MESI protocol is used to maintain

cache coherence. This chapter performs validation of the profile predictions from

Chapter 6 at four different L3 cache sizes at 64 cores for cache scaling, and also at

three different core counts at a total L3 capacity of 64MB. Table 7.1 specifies the

cache parameters used in the cache simulations.

In the directory cache model, a Cuckoo Directory [19] is implemented. A

Cuckoo directory uses multiple hash functions and iterative re-insertion to increase

the effective associativity of the directory cache. Re-insertion is limited to 32 at-

tempts in this study. In the validation experiments, the Cuckoo directory is over-

provisioned to 2x the number of directory entries compared to private data cache

blocks to reduce the conflicts in the directory. Also, full-map directory entries are

used in the experiments, which mirrors the profiler because the profiler tracks all

sharers precisely. Table 7.1 specifies the directory cache parameters used in the

cache simulations.

7.2 Study 1: Directory Access Frequency

This section validates the directory access analyses in Section 6.2. To illustrate

the errors between the profiling results and the simulation results, Figure 7.1 plots

the simulation results along with the profiling results for the directory APKI at the

4 different cache sizes from Table 7.1, labeled as “Sim with notifications,” “Sim total

86

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

With Notifications
Total Misses

T2

(1) fft

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

Sim With Notifications
Sim Total Misses

Sim T2

(2) lu

0.0

2.0

4.0

6.0

8.0

10.0

12.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(3) radix

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

16K 0.5 1 1.5 2 2.5 3 3.5 4

A
P

K
I

Per-Core Private Cache Size(MB)

(4) barnes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(5) fmm

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

16K 0.5 1 1.5 2 2.5 3 3.5 4

A
P

K
I

Per-Core Private Cache Size(MB)

(6) ocean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
P

K
I

Per-Core Private Cache Size(MB)

(7) water

0.6

0.8

1.0

1.2

1.4

1.6

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(8) kmeans

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
P

K
I

Per-Core Private Cache Size(MB)

(9) blackscholes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
P

K
I

Per-Core Private Cache Size(MB)

(10) bodytrack

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

16K 0.5 1 1.5 2 2.5

A
P

K
I

Per-Core Private Cache Size(MB)

(11) canneal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16K 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

A
P

K
I

Per-Core Private Cache Size(MB)

(12) fluidanimate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16K 0.5 1 1.5 2 2.5 3

A
P

K
I

Per-Core Private Cache Size(MB)

(13) raytrace

0.0

1.0

2.0

3.0

4.0

5.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(14) swaptions

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

16K 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
P

K
I

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 7.1: Breakdown of directory APKI vs. private data cache size for 64-core
CPUs

87

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(1) Cache-miss induced directory accesses (T1+T2)

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(2) T2 directory accesses

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaptions

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(3) Total directory accesses with notifications

Figure 7.2: Percent APKI error for directory accesses.

88

misses,” “Sim T2.” All results are for 64 cores. Figure 7.1 shows visually the errors

in total cache-miss induced directory accesses, T2 accesses and directory accesses

with notifications that the profiler predicts.

To show the results quantitatively, Figure 7.2 plots the percentage error for

directory accesses between the profiling results and simulation. Figure 7.2(1) plots

the percentage error for cache miss-induced directory accesses, Figure 7.2(2) plots

the percentage error for T2 directory accesses, and Figure 7.2(3) plots the percentage

error for directory accesses with notifications. As Figure 7.2 shows, the simulation

and profiling results are very close in most cases. The profiling results are within 7%

of simulation, for 88% of the data points in total cache miss-induced APKI, for 73%

of the data points in T2 APKI, and for 85% of the data points in directory accesses

with notifications, respectively. Across all benchmarks in the 64-core validations,

the error is 5.0% for total cache miss-induced APKI, 8.6% for T2 APKI and 5.7%

for directory accesses with notifications, respectively.

There are validation points in Figure 7.2 that have high error, but most of

these are benign. Figure 7.1 gives a visualization of the source of these errors. In

one case, the high error is due to the very small APKI. As discussed in Section 6.2,

directory access frequency drops with cache size scaling, making APKI very small for

some benchmarks at certain cache sizes. In this case, tiny absolute errors can result

in large percentage error. This happens in bodytrack as shown in Figure 7.1(10) and

radix’s T2 access as shown in Figure 7.1(3). Another case is the sudden drop in the

access frequency. Because of conflict misses, the profiler may mis-judge the capacity

at which such drops happen slightly, which can result in large error. This happens

89

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(1) Cache-miss induced directory accesses (T1+T2)

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(2) T2 directory accesses

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaptions

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(3) Total directory accesses (T1+T2+Notifications)

Figure 7.3: Percent APKI error for directory accesses for 16, 64, 256 cores.

in barnes as shown in Figure 7.1(4) and streamcluster as shown in Figure 7.1(15).

But these errors only occurs locally at capacities near the drop.

This section also validates the profiling result across multiple core counts. Fig-

ure 7.3 reports the error for 16, 64, 256 cores for total cache-miss induced directory

accesses, T2 accesses and directory accesses with notifications. Similar to Figure 7.2,

the errors are low. The profiling results are within 7% of simulation for 82% of the

data points in total cache miss-induced APKI, for 71% of the data points in T2

APKI, and for 82% of the data points in directory accesses with notifications, re-

spectively. Across all benchmarks in the core count validations, the error is 8.0% for

total cache miss-induced APKI, 12.2% for T2 APKI and 9.4% for directory accesses

90

with notifications, respectively. Also, similar to the cache size scaling results for 64

cores, most of the cases with elevated errors in the core count scaling results are

benign.

Overall, the simulation results show the profiler can predict directory cache

accesses with good accuracy.

7.3 Study 2: Directory Coverage

In addition to directory accesses, this section also quantifies the error in the

directory content analyses in Section 6.3. The cache simulator measures the average

number of live directory entries and the average number of live shared directory

entries (entries with ≥ 2 sharers) in the simulated directory cache using a cuckoo

directory with 200% coverage, as explained in Section 7.1, because this virtually

ensures that there will be no directory induced evictions due to conflicts in the

directory. Figure 7.4 plots the simulation results along with the profiling results for

the 4 different cache sizes in Table 7.1 at 64 cores to visually illustrate the agreement

between the profile results and simulation. Figure 7.4 plots the simulation results

for all directory entries’ coverage, labeled as “Sim total,” and the results for shared

directory entries’ coverage, i.e., entries with equal or more than two sharers, labeled

as “Sim ≥ 2 sharers.”

To show the results quantitatively, Figure 7.5 plots the percentage error be-

tween the simulation and profiling coverage results for 64 cores. Figure 7.5(1) plots

the percentage error for all directory entries. Figure 7.5(2) plots the percentage

91

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

Total
≥ 2 sharers

Sim Total
Sim ≥ 2 sharers

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2 1.6 2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 7.4: Coverage vs. private data cache size for 64-core CPUs

92

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

C
o

v
e

ra
g

e
i
E

rr
o

r

(1) All directory entries

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaptions

streamcluster
average

P
e

rc
e

n
t

C
o

v
e

ra
g

e
i
E

rr
o

r 256K
512K

1M
2M

(2) Directory entries with ≥ 2 sharers

Figure 7.5: Percent coverage error.

error for the shared directory entries.

Figure 7.5(1) shows the framework can predict coverage for all directory entries

with good accuracy. Across all benchmarks in the 64-core validations, the average

coverage error is only 2.2%. Similar to Section 7.2, the main source of error is the

conflict misses in the data cache, as the profiler does not capture conflicts in the

private data cache. Also similar to Section 7.2, there are some data points with high

errors, such as bodytrack. This is also because absolute value is small and thus tiny

absolute errors result in large percentage error.

Figure 7.5(2) shows the framework can also predict the coverage for shared

entries as well. Across all benchmarks in the 64-core validations, the coverage aver-

age error is 11.2%. This is relatively larger than the results for all directory entries.

Nevertheless, the profiling results are within 7% of simulation for 73% of the data

points.

There are validation points in Figure 7.5(2) that have high error, but most of

93

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

C
o

v
e

ra
g

e
i
E

rr
o

r

(1) All directory entries

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e

rc
e

n
t

A
P

K
I

E
rr

o
r

(2) Directory entries with ≥ 2 sharers

Figure 7.6: Percent coverage error for 16, 64, 256 cores.

these are benign. Figure 7.4 gives a visualization of the source of these errors. In one

case, the high error is due to the very small coverage. As discussed in Section 6.3,

only a small fraction of the directory entries is shared in many benchmarks, especially

in small data cache capacities. In this case, tiny absolute errors can result in large

percentage error. This happens in fft as shown in Figure 7.4(1), radix as shown in

Figure 7.4(3) and blackscholes as shown in Figure 7.4(9). Another case is the sudden

change in the directory coverage. Because of conflict misses, the profiler may mis-

judge the capacity at which the sharing changes slightly, which can result in large

error. This happens in bodytrack as shown in Figure 7.4(10), and streamcluster as

shown in Figure 7.4(15). But these errors only occurs locally at capacities near the

changes.

The profiling results across multiple core counts are also validated. Figure 7.6

reports the coverage error for 16, 64, 256 cores with 64MB total L3 caches. Across all

benchmarks in the core count validations, the average coverage error for all directory

94

entries is 2.7% and the average coverage error for shared directory entries is 14.5%.

Also, similar to the cache size scaling results for 64 cores, most of the cases with

elevated errors in the core count scaling results are benign.

7.4 Study 3: Directory Access Distribution

In addition to directory content analyses, this section also quantifies the error

in the access distribution analyses in Section 6.4. The cache simulator measures the

average number of live directory entries with ≥ N accesses. Similar to Section 7.3,

a cuckoo directory with 200% coverage is used. Figure 7.7 plots the simulation

results along with the profiling results for 4 different cache sizes in Table 7.1 at 64

cores to visually illustrate the agreement between the profile results and simulation.

As explained in Section 6.4, the coverage for the total directory entries and multi-

access entries (≥ 2 accesses) in Figure 7.7 is the same as for the total directory

entries and multi-sharer entries (≥ 2 sharers) in Figure 7.4. Therefore, Figure 7.7

plots the simulation results for directory entries with ≥ 3 accesses, labeled as “Sim

≥ 3 accesses,” and the results for for directory entries with ≥ 10 accesses, labeled

as “Sim ≥ 10 accesses.”

To show the results quantitatively, Figure 7.8 plots the error of the percentage

of directory entries with ≥ 3 accesses between the simulation and profiling results

for 64 cores.

Figure 7.8 shows the framework can predict directory distribution well. Across

all validation points at 64 cores, the average coverage error is 8.7%. Similar to

95

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

Total
≥ 2 accesses
≥ 3 accesses

≥ 10 accesses

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

Sim ≥ 3 accesses
Sim ≥ 10 accesses

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2 1.6 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 7.7: Distribution access during their lifetimes

96

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

waterl
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaptions

streamcluster
average

P
e
rc

e
n
t

A
P

K
I
E

rr
o
r

Figure 7.8: Percentage of entries with ≥ 3 accesses

0%

20%

40%

60%

80%

100%

fft
lu

radix
barnes

fmm
ocean

water
kmeans

blackscholes
bodytrack

canneal
fluidanimate

raytrace
swaption

streamcluster
average

P
e
rc

e
n
t

A
P

K
I
E

rr
o
r

Figure 7.9: Percentage of entries with ≥ 3 accesses for 16, 64, 256 cores

Section 7.4 and 7.3, the main source of error is the conflict misses in the data cache,

as the profiler does not capture conflicts in the private data cache. When there is

a sudden change in the percentage of directory entries, the profiler may mis-judge

the capacity at which the sharing changes slightly, which can result in large error,

as shown in bodytrack. Also similar to Section 7.3, many data points have small

absolute value, which lead to large percentage error with tiny absolute errors, as

shown in fft, radix.

The profiling results across multiple core counts are also validated. Figure 7.9

reports the percentage error for 16, 64, 256 cores with 64MB total L3 caches. Across

all benchmarks in core count validations, the average error on percentage of directory

entries is 8.1%. Also, similar to the cache size scaling results for 64 cores, most of

the cases with elevated errors in the core count scaling results are benign.

97

Chapter 8: Case Studies and Discussions

This chapter applies the insights that the profiler provides on existing directory

techniques, and discusses the implications for such techniques. Experiments are also

conducted to verify some of the observations.

8.1 Cuckoo Technique Discussion

Minimizing directory size is an important goal in directory design, but how

small a directory can be without penalizing performance is a basic question in di-

rectory design. The analyses in Section 4.3 quantify the content of the directory

and therefore can help architects make design decisions in sizing directories as CPUs

scales.

The first observation in Section 6.3 is that the coverage varies with CPU

scaling, especially the drop with cache size scaling, as shown in Figure 6.3. This

implies that a smaller fraction of the total on-chip memory is needed for the directory

cache as CPUs scale. This affects the techniques that track all directory entries, such

as the techniques that focus on reducing the sharers lists, but tracks all entries. To

test this implication, A cache simulation study is conducted in this section.

98

Table 8.1: Data and directory cache parameters for cuckoo experiments.

Private Data Cache Sizes (Associativities)

Private L1: 16KB (4-way)
Private L2: 64KB (8-way)
Private L3: 256KB, 512KB, 1MB, or 2MB (8-way) (64 cores)

Directory Cache Coverage (Associativities)

Cuckoo: 12.5% (4-way), 25% (4-way), 37.5% (3-way),
50% (4-way), 75% (3-way), 87.5% (7-way),
100% (4-way), 125% (5-way), 200% (4-way),

8.1.1 Experimental Setup

The experimental setup is similar to the one explained in Section 7.1. The

simulation is for 64-core CPUs and for 4 different L3 data cache sizes. The upper part

of Table 8.1 specifies the cache sizes that are simulated. In this experiment, a Cuckoo

directory is simulated. 9 different directory cache sizes are tried to determined

the minimum size that achieve good performance. Table 8.1 specifies the cache

parameters for the experiments. In particular, The bottom part of Table 8.1 specifies

the 9 directory cache sizes (in terms of coverage) that are simulated.

8.1.2 Experiment results

Figure 8.1 plots the minimum Cuckoo directory cache size each benchmark

requires in terms of coverage to achieve less then 1% eviction rate. As Figure 8.1

show, Cuckoo directory’s coverage drops with data cache scaling, thus implying

smaller directories can be used as data caches scale. At 256KB private cache, most

benchmarks require 125% coverage. But at 2MB private cache, only five bench-

99

 0%

20%

40%

60%

80%

100%

120%

140%

256K 512K 1M 2M

C
o
v
e
ra

g
e

fft

radix

lu

barnes

fmm

ocean

water

(1) SPLASH2

 0%

20%

40%

60%

80%

100%

120%

140%

256K 512K 1M 2M

C
o
v
e
ra

g
e

kmeans
blacksholes

bodytrack
canneal

fluidanimate
raytrace

swaptions
streamcluster

(2) PARSEC and MineBench

Figure 8.1: Minimum Cuckoo coverage for 1% eviction rate.

marks remain at 125%. Six benchmarks exhibit coverage between 75–87.5% and

four benchmarks drop to 50% or less.

The cuckoo directory coverage results in Figure 8.1 are different from the

profiling coverage results in a few ways. First, data cache conflicts are taken into

consideration. Second, the conflicts in the directory are also taken into consideration

and over-provisioning is used to reduce directory cache conflicts. Third, only a few

discrete directory cache sizes are simulated. However, comparing Figures 8.1 and

Figure 6.3 still shows the minimum Cuckoo sizes are correlated to the profiling

coverage results. In most cases, the Cuckoo coverage is between 30–50% higher

than the profiling results. The increase in coverage is due to the directory cache

conflicts and the discrete directory cache sizes. These results show that directory

coverage and required directory size varies significantly with CPU scaling, i.e., they

scale sub-linearly with CPU scaling. Moreover the profiling framework in this thesis

can be helpful to identify the minimum directory size.

8.2 DGD Technique Discussion

Section 4.3 also break down the entries by sharing degree, especially the ratio

between private and shared directory entries. Section 6.3 shows this ratio changes

100

with CPU scaling, especially data cache scaling. In Section 6.3, Table 6.4 reports

the percentage of shared entries over all live directory entries. Therefore, on average,

the ratio of private entries over all directory entries decreases from 90.67% at 64KB

private caches, to 72.01% at 1MB private caches and 60.85% at maximum PRD.

As discussed in Section 2.2, many directory techniques focus on exploiting

private data to reduce directory cache size [20,22,23,45]. The profiling results show

these techniques can be very effective, because the private entries still account for

a majority of the directory entries. However, these techniques are also sensitive

to CPU scaling because the portion of private entries is decreasing with cache size

scaling.

The profiler’s analyses can show how well these techniques will theoretically

do. In particular, the curves labeled “≥ 2 sharers” in Figure 6.3 show the coverage

for shared entries. If a directory technique can reduce directory entries for private

data, then in the limit, the “≥ 2 sharers” curves in Figure 6.3 show the best that such

a technique can ever do–i.e., by eliminating all private directory entries. Figure 6.3

shows removing private entries can potentially lower coverage significantly. However,

the reduction becomes smaller as CPUs scale due to increased sharing in the data

cache.

To further illustrate this, the profiler is modified to compute the coverage

for DGD technique [20] at 64 cores. DGD exploits the observation that private

data tend to occur in large contiguous regions. DGD employs a “region entry” to

track such contiguous private data. A “region entry” only occupies one directory

entry but is able to track 64 consecutive blocks (4KB of memory) if they are all

101

accessed by the same core, i.e., the region owner. When another core other than

the region owner accesses the data in this region, the region is not private anymore.

A “block entry” (for tracking individual cache blocks) is created for this data block.

The “region entry” still exists to track the blocks that remain private to the region

owner. Normal “block entries” and “region entries” are stored in the same structure.

Each directory entry contains 64 bits, to either track 64 cores in a “block entry”

using a full-map approach, or 64 consecutive blocks in a “region entry.” The main

advantage of DGD is its ability to reduce the number of entries required to track all

cache blocks.

8.2.1 Experimental Setup

The experiment is done using a modified profiler, which is similar to the one

explained in Chapter 5. Similar to Section 5.2.2, counters are maintained to track

the number of live directory entries for the DGD technique.

Similar to Section 5.2.2, the profiler computes the average number of live DGD

entries across time by accumulating the lifetime of all DGD directory entries and

then averaging them by total time. A set of region entry counters, one per 64

consecutive blocks (4KB of memory) contained in all of the LRU stacks for every

capacity are maintained, to track the number of data blocks and the region owner

for this region. A set of region lifetime counters are also maintained along with the

region entry counters, one per 4KB of memory for every capacity.

When a reference initiates a new region entry lifetime, its time is stored into

102

the region lifetime counter and the region owner is also recorded. When another

data block in this region accessed by the region owner, the DGD entry counter

increases by one. When another core other than the region owner accesses the data

in this region, DGD entry counter decreases by one if the data is currently tracked

by the region entry, because the block is not private any more.

When the lifetime of block for one cache capacity terminates, the profiler

determines whether it is tracked by the region entry or the block entry. If the

data block is tracked by the block entry, the profiler computes the lifetime of block,

using directory lifetime counters explained in Chapter 5 and adds this value into an

aggregated counter for this capacity. If the data block is tracked by the region entry,

the profiler decreases region entry counter by one. When the counter reaches zero,

indicating all the private blocks belongs to the owner in this region has exited the

cache, the profiler computes the lifetime of the region entry, using region lifetime

counter and add this value into an aggregated counter for this capacity. There is

one aggregated counter provided for each capacity. At the end of the program, the

values in the aggregated counters are divided by the total time to obtain the average

number of DGD entries for each capacity.

8.2.2 Experiment results

Figure 8.2 plots the coverage for DGD at 64 cores in the dotted lines, labeled

as “DGD”, along with the same “Total” and “≥ 2 sharers” from Figure 6.3 for

comparison. Notice the “DGD“ lines always lie between the “Total” and “≥ 2

103

sharers” lines. This is because the “≥ 2 sharers” lines is the theoretical limit for

techniques that exploit private data.

Figure 8.2 shows in most cases, coverage for the DGD technique drops with

cache size scaling because the total coverage drops with cache size scaling. But in

fft and radix, the coverage for DGD increases due to the increased sharing with data

cache scaling. To quantify this phenomenon, the first three columns in Table 8.2

report the DGD coverage for private cache sizes of 256KB, 1MB and the maximum

PRD. At 256KB, DGD coverage on average is 33.5%; at 1MB, DGD coverage on

average is 30.8%; and at maximum PRD, DGD coverage on average is 20.0%. In

most cases, Figure 8.2 shows the DGD coverage is less than 50%. Hence, the results

show DGD is a good technique for achieving small directory cache size.

On the other hand, Figure 8.2 also shows the DGD technique’s reduction in

coverage over the total coverage is not as big when cache sizes scale. The next

three columns in Table 8.2 report the DGD coverage reduction compared to the

total coverage for private cache sizes of 256KB, 1MB and the maximum PRD. At

256KB, DGD’s coverage reduction on average is 49.6%; at 1MB, DGD’s coverage

reduction on average is 42.7%; and at maximum PRD, DGD’s coverage reduction

on average is 26.7%. This shows the DGD coverage reduction goes down with cache

size scaling, but the reduction is still significant, even at maximum PRD.

The DGD work does not consider the cache capacity scaling effect [20], but

its predecessor, SCT [22], which proposed the idea of a “region entry” did study

cache size scaling. The authors observed that SCT’s reduction of the directory

size compared to a 2x sparse directory increases with cache size scaling. Thus, the

104

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

Total
DgD

≥ 2 sharers

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2 1.6 2

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3

C
o
v
e
ra

g
e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 8.2: DGD with 64 cores

105

Table 8.2: DGD Coverage; Compare DGD with profiled total coverage

Benchmark DGD Coverage DGD Coverage Drop
256KB 1MB ∞ 256KB 1MB ∞

fft 10.0% 30.1% 48.8% 89.8% 69.0% 18.4%
lu 5.6% 16.7% 4.7% 43.8% 15.4% 4.4%
radix 10.8% 13.2% 25.5% 85.2% 70.8% 16.2%
barnes 81.3% 76.9% 39.1% 0.2% 4.1% 2.3%
fmm 62.2% 61.4% 27.1% 29.4% 28.8% 20.4%
ocean 15.7% 11.0% 7.8% 80.3% 84.8% 71.3%
water-spatial 44.5% 34.6% 26.2% 36.1% 33.8% 25.4%
kmeans 2.2% 1.6% 0.9% 95.2% 87.9% 52.3%
blackscholes 1.6% 1.2% 0.8% 86.5% 69.7% 49.2%
bodytrack 5.3% 15.9% 15.9% 12.7% 2.2% 2.2%
canneal 80.2% 59.7% 37.3% 5.4% 2.8% 1.7%
fluidanimate 69.6% 49.2% 36.2% 14.6% 33.1% 34.6%
raytrace 29.8% 26.5% 14.2% 60.1% 45.2% 24.8%
swaptions 1.8% 1.5% 1.2% 95.0% 93.2% 77.4%
streamcluster 81.5% 63.1% 14.2% 10.3% 0.0% 0.0%

Average 33.5% 30.8% 20.0% 49.6% 42.7% 26.7%

authors concluded that the opportunity increases with cache size scaling. However,

this scaling result is a combination of two effects on reduction in of total coverage

and the increase in multi-sharer entries.

To illustrate, when the data cache is small (at 256KB), the coverage for all

directory entries is 78.0%, but 85.5% of the entries are private. DGD coverage is

small because it can compress the private entries. When the data cache is larger (at

maxPRD), only 60.8% of the entries are private, but the coverage for all directory

entries is 40.3%. The DGD technique does not have as many private entries to

compress, but the coverage is still small because the total coverage is low to begin

with. Therefore, while techniques that can compress private data entries will still

be useful when scaling the architecture, their opportunity actually decreases with

scaling.

106

8.3 SCD Technique Discussion

Besides the relationship between private and shared entries, a final observation

is that the sharing occurs non-uniformly in the data cache, as most entries only

exhibit 2 or 3 sharers. As discussed in Section 6.3, Table 6.4 reports the percentage

of entries for “≥4 sharers,” showing that at 1MB, only 7.74% of the entries have

more then 4 sharers. And, at maximum PRD, only 13.29% of the entries have more

then 4 sharers.

As discussed in Section 2.2, many techniques take advantage of the fact that

most directory entries are narrowly shared entries. They employ limited pointers

to represent the sharer list instead of a full-map approach, and choose different

techniques when the pointers overflow, such as software fallback [14], chained point-

ers [13] and extra entries [18]. However, these techniques are also sensitive to cache

size scaling because the sharing increases.

To further illustrate this point, the profiler is modified to compute the coverage

for the SCD technique at 256 cores [18]. SCD employs different techniques to handle

directory entries with narrow sharing and wide sharing. For blocks with narrow

sharing, SCD uses one entry with 3 pointers. When the pointers overflow, the

entry becomes the root of a hierarchical directory entry with as many leaf entries as

needed. Each leaf entry contains the leaf id and also a 16-bit part of the full-map bit

vector. The main size reduction is from the size of the directory entry. Compared to

a 256-bit full map entry, the SCD entry is 32 bits; therefore reducing the directory

entry by 87.5%.

107

8.3.1 Experimental Setup

The experiment is done using a modified profiler, which is similar to the one

explained in Chapter 5. Similar to Section 8.2.1, counters are maintained to track

the number of live directory entries for the SCD technique.

Similar to Section 8.2.1, the profiler computes the average number of live SCD

entries across time by accumulating the lifetime of all SCD directory entries and

then averaging them by total time. A set of SCD entry counters, one per unique

data block contained in all of the LRU stacks for every capacity are maintained, to

track the number of live directory entries for this region. A set of SCD lifetime

counters are also maintained along with the SCD entry counters, one per data block

for every capacity.

The SCD entry counters count the number of live directory entries for this

region. When the number of sharers is smaller than the number of available pointers,

i.e., 3 in this case, the SCD counter value is one. When the number of sharers

exceed the number of available pointers, SCD counter value is computed based on

the sharing pattern. In this implementation, each leaf directory entry tracks 16-bit

part of the full-map bit vector. Therefore, if there is at least one sharer in the 16-bit

part, a leaf entry is counted. Every time there is a change in value in SCD entry

counter, the profiler computes the time interval by subtract the current time by

the time stored in the SCD lifetime counter and updates the SCD lifetime counter.

Then the profiler stores the product of SCD entry count times the time interval in to

an aggregated counter. There is one aggregated counter provided for each capacity.

108

At the end of the program, these values are divided by the total time to obtain the

average number of SCD entries for each capacity.

8.3.2 Experimental Results

Figure 8.3 plots the coverage for SCD at 256 cores in the dotted lines, labeled

as “SCD”, along with the same “Total” and “≥ 2 sharers” from Figure 6.3 for

comparison. Notice the “SCD“ lines always lie above the “Total” lines because

a single entry in a conventional non-hierarchical directory technique may require

multiple entries in the SCD technique.

Figure 8.3 shows in most cases, the coverage for SCD still drops with cache

size scaling because the total coverage drops with cache size scaling. But in stream-

cluter, due to its wide sharing and unique sharing pattern, SCD coverage increases

significantly, comparing to the total coverage. To quantify this phenomenon, the

first three columns in Table 8.3 report the SCD coverage for cache sizes of 256KB,

1MB and the maximum PRD. At 256KB, SCD coverage on average is 79.7%; at

1MB, SCD coverage on average is 72.9%; and at maximum PRD, SCD coverage on

average is 48.6%. Although SCD directories require more entries than a full-map

directory, the coverage still drops below 50% at the maximum PRD. Considering the

directory size reduction SCD brings by reducing the sharer list size, SCD provides

a significant reduction in the directory cache size.

Moreover, the increase of SCD’s coverage is small. To illustrate, the next three

columns in Table 8.3 report the SCD coverage increase for cache sizes of 256KB,

109

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(1) fft

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(2) lu

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(3) radix

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(4) barnes

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(5) fmm

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(6) ocean

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(7) water

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(8) kmeans

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(9) blackscholes

0%

20%

40%

60%

80%

100%

 0 0.05 0.1 0.15 0.2 0.25

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

SCD
Total

≥ 2 sharers

(10) bodytrack

0%

20%

40%

60%

80%

100%

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(11) canneal

0%

20%

40%

60%

80%

100%

 0 0.4 0.8 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(12) fluidanimate

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(13) raytrace

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(14) swaptions

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1 1.2

C
o

v
e

ra
g

e

Per-Core Private Cache Size(MB)

(15) streamcluster

Figure 8.3: SCD with 256 cores

110

Table 8.3: SCD Coverage; Compare SCD with profiled total coverage

Benchmark SCD Coverage SCD Coverage Increase
256KB 1MB ∞ 256KB 1MB ∞

fft 99.6% 98.9% 63.7% 0.0% 0.0% 0.3%
lu 51.7% 44.1% 16.9% 3.5% 3.6% 7.1%
radix 95.4% 83.8% 43.0% 0.1% 0.0% 0.1%
barnes 62.4% 74.0% 50.0% 8.0% 5.9% 12.9%
fmm 80.3% 84.0% 50.3% 0.5% 0.9% 2.4%
ocean 92.0% 92.2% 75.3% 0.7% 0.5% 0.5%
water-spatial 72.4% 69.1% 38.0% 6.0% 4.6% 2.4%
kmeans 97.2% 89.6% 53.3% 0.0% 0.0% 0.0%
blackscholes 74.7% 69.4% 49.0% 1.3% 0.3% 0.2%
bodytrack 22.8% 14.2% 14.4% 13.7% 6.6% 6.8%
canneal 85.2% 65.9% 42.7% 1.6% 3.8% 5.8%
fluidanimate 90.6% 85.1% 54.1% 8.6% 13.1% 7.3%
raytrace 88.9% 65.2% 23.0% 0.8% 0.4% 0.1%
swaptions 91.0% 93.6% 78.6% 0.5% 0.1% 0.0%
streamcluster 91.2% 64.4% 76.7% 0.0% 1.0% 62.4%

Average 79.7% 72.9% 48.6% 3.0% 2.7% 7.2%

1MB and the maximum PRD, compared to a full-map directory. At 256KB, SCD

increases the coverage by 3.0% on average; at 1MB, SCD increases the coverage by

2.7% on average; and at the maximum PRD, SCD increases the coverage by 7.2%.

This shows that the increased sharing at large cache sizes reduces SCD’s advantage

as cache size scales, but the impact is not significant.

8.4 Multi-Level Technique Discussion

Another characteristic of the directory is that directory entries do not get

accessed uniformly. In fact, as discussed in Section 6.4, a small part of the directory

receives a disproportionately large fraction of the directory accesses. As Table 6.7

shows, at 256KB, directory cache with 18.75% coverage receives 98.6% of the T2

111

System DRAM

Multicore CPU

L1 Dir

L2 Dir

System DRAM

Multicore CPU

L1 Dir

L2 Dir

Stacked DRAM Chip Boundary

Package Boundary

System DRAM

Multicore CPU

L1 Dir L2 Dir

DRAM

SRAM

SRAM

eDRAM
or

A. B. C.

Figure 8.4: Multi-level directory cache implementations.

directory accesses and 37.6% of the total directory accesses; and at 1M, it receives

95.7% T2 directory accesses and 50.5% of the total directory accesses.

As discussed in Section 4.1, the reason to distinguish T1 and T2 transactions is

the characteristic of latency tolerance. T2 transactions need to be performed before

performing the operation to the corresponding data, such as checking the sharer list

and then invalidating the sharers. These transactions are on the critical path. In

contrast, T1 transactions only involve creating new entries, and the corresponding

data are in the next level. Although directory access is still needed to determine the

data is not in the private cache, this can be speculated, by performing the directory

access and data access in parallel. Therefore, T1 transactions are tolerant of slower

directory access.

As discussed in Section 2.2, recent directory designs have proposed asymmetric

storage techniques to exploit this characteristics. They propose two levels of direc-

tory cache, a fast L1 directory cache backed by a slower L2 directory cache [21, 24].

In particular, directory entries that receive a lot of T2 accesses should be kept in the

L1 directory cache, so that it can provide low latency to these entries with accesses

112

that are on the CPU’s critical path. In contrast, directory entries solely involved T1

access can reside in the L2 directory cache, because T1 accesses are latency tolerant

and a longer latency for T1 accesses will not affect the CPU performance.

To achieve high performance, the L1 directory cache should be implemented

in SRAM on-chip, similar to a conventional directory cache. But there are different

implementation for the L2 directory cache, as shown in Figure 8.4. First, the L2

can be implemented in on-chip SRAM with some energy reduction techniques that

increase access latency to reduce the energy requirement for the directory. The L2

can also be implemented in eDRAM to reduce the area requirement for the directory.

PS-Dir [21] used this approach.

Alternatively, the L2 directory cache can be implemented in off-chip DRAM,

either as a stacked die on top of the CPU die or in main memory. WayPoint [24]

implemented the L2 directory cache in system DRAM. Implementing L2 off-chip

essentially provides unlimited capacity, but also increases the access latency and

energy.

In this section, the cache simulator in Section 7.1 is modified to simulate a

two-level directory cache, to understand directory locality further. The simulator

models the implementation described in Figure 8.4(B). Using stacked DRAM is a

tradeoff between the high area requirement in Figure 8.4(A) and the high latency

in Figure 8.4(B).

113

Table 8.4: Data and directory cache parameters for two level directory.

Data Cache Hierarchy
Private Only Private + Shared

Private L1 16KB (4-way) Private L1 16KB (4-way)
Private L2 64KB (8-way) Private L2 64KB, 128KB
Private L3 256KB, 512KB 256KB, 512KB (8-way)

1M, 2M (8-way) Shared L3 128MB (8-way)
Stacked DRAM L4 1G (8-way) Stacked DRAM L4 1G (8-way)

Directory Cache Hierarchy

L1: 18.75% Coverage of last level private cache(6-way)
L2: In-cache directory with L4

8.4.1 Experimental Setup

This simulator models two different on-chip cache hierarchies, with a stacked-

DRAM cache, and a two-level directory cache. In one hierarchy, three levels of

private cache are simulated, and in the other, two levels of private cache and a

shared cache are simulated. Similar to the cache simulator in Section 7.1, all caches

are inclusive and a MESI protocol is used to maintain private cache coherence. Four

different last-level private cache sizes in both hierarchies are simulated to show the

scaling effects. Table 8.4 lists the simulation parameters for the cache hierarchies.

The simulator also models a two-level directory cache. The L1 directory cache

is 6-way set associative, implemented on chip and the L2 is an in-cache directory,

implemented with the stacked-DRAM cache. The L1 directory is sized to have

18.75% coverage over the last-level private data cache, as shown in Table 8.4. And

while the in-cache directory is large, it is still small compared to what stacked-

DRAM can provide. Full-map implementation is used in these two directory caches

114

to eliminate the transactions related to imprecise sharer tracking.

The following describes the directory cache management policy. On a directory

access, the L1 directory is checked first, and if the L1 misses, than the L2 directory

in the stacked-DRAM is checked. On an L2 miss, a new directory entry is filled into

the L1 directory cache along with the data. This access is always a T1 transaction

and will start a new lifetime in the directory cache. This entry will then receive one

or more T2 transaction hits (which are satisfied with low latency) during its time

in the L1 directory cache. Later, the entry can be evicted from the L1 and written

back to the L2 directory cache. On an L2 hit, the directory entry is promoted to

the L1. This access can be a T1 transaction or a slow T2 transaction, depending on

whether the associated data is in the private cache or not.

On the other hand, when the data associated with a directory entry is evicted

in data cache, the entry in the L1 is notified to keep the sharer list updated (Both

dirty block and clean block evictions notify the directory [19]). If there is no existing

data block associated on chip according to the sharer list, the entry is invalidated to

make room for other entries. However, the entry is not notified if it is in the L2 to

reduce the traffic to the stacked-DRAM, though this will prolong the lifetime of the

directory entry due to imprecise tracking. In addition, when a dirty block is evicted

from the on-chip data cache, a data writeback is performed to the stacked-DRAM.

In this case, an L2 directory update is performed at the same time to update the

state to invalid.

115

0%

20%

40%

60%

80%

100%

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

2
5
6
K

5
1
2
K

1
M

2
M

P
e
c
e
n
ta

g
e

B
re

a
k
d
o
w

n

T2 L1 hit T2 L1 miss T1 L1 hit T1 L2 hit T1 L2 miss

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 8.5: Hit and miss rates for T1 and T2 lookups at different levels of the
directory cache for different private cache sizes.

8.4.2 Private Cache Results

This section looks at how multi-level directory caches can exploit temporal

locality. Figure 8.5 breaks down the rate of L1 and L2 directory cache hits and

misses in terms of T1 or T2 transactions as a percentage of total directory accesses.

Figure 8.5 shows the results for four different cache sizes for each benchmark. Each

bar provides the breakdown into five categories: T2 accesses that hit or miss in the

L1 directory cache, T1 accesses that hit in either the L1 or L2 directory cache, and

T1 accesses that miss in both directory caches.

Figure 8.5 shows the majority of T2 transactions hit in the L1 directory cache.

As the “T2 L1 Hit” and “T2 L1 Miss” components in Figure 8.5 show, the T2 hit

rates across different cache sizes are 27–37% of all directory transactions, but are

83–91% of all T2 transactions. The simulations confirm that a small L1 directory

cache can exploit temporal reuse across T2 transactions, allowing the most latency-

critical accesses (T2) to be serviced rapidly. Only 14% of the T2 accesses on average

incur longer L2 accesses.

Compared to the locality results in Figure 6.6 and Table 6.7, the cache simu-

lation results are different in a few ways. First, data cache conflicts and directory

116

conflicts are taken into consideration. Second, the profiler counts the T2 access

to the entries with most accesses they receive in their lifetime, while the simulator

uses a LRU replacement policy. Therefore, the simulation results have lower T2 hit

rates. However, comparing Figure 8.1 and Figure 8.5 still shows the T2 hit rates

are correlated to the profiling results.

Figure 8.5 also shows that the majority of the directory accesses miss in both

directory caches. These accesses, labeled “T1 L2 Miss,” are the T1 directory accesses

that create new entries in the directory. They account for 44–48% of all directory

accesses. Moreover, a small number of T1 accesses hit in the L1 directory cache.

This is because some directory entries linger in the directory after their data blocks

are evicted from the data cache. These accesses, labeled “T1 L1 Hit,” account for

only 0.01–0.2% of all directory accesses.

Lastly, Figure 8.5 shows T1 speculation can be very accurate. As discussed

above, directory accesses and data accesses can be performed in parallel for T1

transactions because they only involve creating new entries. It is possible to specu-

late all L1 directory cache misses are T1 transactions, and fetch the directory entry

and data at the same time. On average, only 7.5% of the L1 directory misses are

T2 transactions; therefore, the speculation will be wrong only 7.5% of the time on

average. When the speculation is wrong, a data block is fetched from the next level

of the memory hierarchy needlessly. But because the L2 directory is implemented

as an in-cache directory within the L4 data cache, this will usually not incur an

extra main memory access. However, it does consume extra L4 cache bandwidth.

Moreover, for all other L1 directory misses, L2 directory accesses with their data

117

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

R
e

a
d

 A
P

K
I

 T2 L1 Miss T1 L2 hit

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 8.6: L2 directory cache read APKI for different private cache sizes.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

2
5

6
K

5
1

2
K

1
M

2
M

W
ri
te

 A
P

K
I

Data WB L1 Entries WB

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 8.7: L2 directory cache write APKI for different private cache sizes.

accesses are overlapped.

Figures 8.6 and 8.7 report traffic to the L2 directory cache. When transaction

can not be serviced from the L1 directory cache (“T2 L1 miss,” “T1 L2 hit,” and

“T1 L2 miss”), the next level stacked-DRAM cache along with its in-cache directory

is accessed. The “T2 L1 miss” components cause extra accesses and bandwidth to

the stacked-DRAM cache because the data is in the private cache on chip. On

the other hand, the “T1 L2 hit” components do not cause extra accesses to the

stacked-DRAM cache because the accesses need to fetch the data anyway, but they

do consume extra bandwidth to fetch the directory entry to make sure the data is

not in the private cache. In addition, the “T1 L2 miss” components do not cause

extra accesses nor bandwidth to the stacked-DRAM because it is a stacked-DRAM

cache miss.

Figures 8.7 shows there are two types of write transactions to the directory.

One is due to the L1 directory cache writeback. This transaction causes extra

118

accesses and bandwidth to the stacked-DRAM. The other is the private data cache

writeback. Because only dirty data is written back and updates the directory along

with it, this transaction will not cause extra access (because dirty data writeback is

necessary), but will cause extra bandwidth to the directory.

Figure 8.6 reports the read traffic (APKI) to the L2 directory, including “T2

L1 miss” and “T1 L2 hit.” Figure 8.6 shows the read traffic to L2 directory is highly

benchmark dependent. 10 out of 15 benchmarks have very little traffic, less then

1 APKI. The APKI for the remaining benchmarks, fft, radix, ocean, canneal and

streamcluster, are between 0.2–16.3 APKI, which is significant. However, the ma-

jority of the read traffic is latency tolerant T1 transactions. 13 out of 15 benchmarks

have less than 0.8 APKI read traffic caused by “T2 L1 miss.” The APKI of “T2

L1 miss” for canneal and streamcluster varies from 0.1 to 4.5. But on average, the

APKI for “T2 L1 miss” is between 0.3–0.6 and the APKI for “T1 L2 hit” is between

0.4–2.3, which is not significant for stacked-DRAM.

Figure 8.7 reports the write traffic (APKI) to the directory, including “Data

WB” and “L1 entry WB.” Similar to Figure 8.6, Figure 8.7 shows the write traffic to

the L2 directory is also very benchmark dependent. 10 out of 15 benchmarks have

less than 2 APKI. The write APKI for fft, radix, ocean and streamcluster is between

0.1–16.2 APKI and the write APKI for canneal is between 18.0–21.4 APKI. However,

all of the write traffic can be buffered and pipelined to be performed without stalling

the CPU. Though write traffic is significant in a few benchmarks, on average, the

APKI for “Data WB” is between 1.0–1.5 and APKI for “L1 entry WB” is between

2.2–4.4, which is not significant for stacked-DRAM.

119

8.4.3 Shared Cache Impact

As discussed in Section 4.1, directory cache behavior is determined by private

caches. However, when considering the latency criticality of directory accesses, the

shared cache also comes into play because it changes the sharing point. In the pre-

vious section, only private caches existed on chip; therefore, the sharing point is

off-chip, as indicated in Figure 4.1. The data accesses associated with T1 transac-

tions happen off-chip, thus the T1 transactions are latency tolerant. However, the

shared cache moves the sharing point on chip The data for certain T1 transactions

may now be found in the shared cache on chip. In that case, the directory cache

accesses are on the CPU’s critical path and become latency critical.

On the other hand, shared caches also provide a potential optimization: they

overlap the directory cache accesses with the data accesses if the directory entry

update is deferred. Usually, when a local cache read miss happens, the directory

cache has to be checked to determine the state and the location of the cache block

before the data can be fetched. However, the shared cache may already contains the

data, and can also include the state information with its corresponding cache block.

In this case, if the access is a data read and the state of the cache block is shared

or invalid, indicating the shared cache holds the most recent copy, then the shared

cache data can be forwarded to the requesting core immediately without further

stalling the core. The directory cache still needs to be updated, such as creating a

new entry or adding a sharer to the sharer list, but this can happen off the critical

path of the core’s data access.

120

-15.00
-10.00

-5.00
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

A
P

K
I

No Shared Shared After deferred

average
streamcluster

swaptions
raytrace

fluidanimate
canneal

bodytrack
blackscholes

kmeans
water-sp

ocean
fmm

barnes
radix

lu
fft

Figure 8.8: Latency critical L2 directory cache access APKI with or without shared
caches and deferred

Figure 8.8 shows how a shared cache affects the latency tolerance of the L2

directory accesses. The “No shared” components in Figure 8.8 reports the “T2 L1

miss” components in the private + shared cache hierarchy from Table 8.4. The

“Shared” components report the extra latency critical directory accesses, e.g., the

T1 directory transactions that hit in the shared cache. The “After deferred” com-

ponents report the latency critical directory accesses that cannot be deferred, e.g.,

the directory accesses that cannot be overlapped with their data accesses due to

inconsistent states.

Averaged across all benchmarks, Figure 8.8 shows the latency critical portion

of the directory accesses almost double, increasing from 2.2–3.5 APKI to 3.7–7.4

APKI. This is because a large portion of “T1 L2 hit” become latency critical due

to the shared data cache. Due to good temporal reuse, T1 transactions have a high

possibility of hitting in the shared cache.

Although shared cache hits eliminate one source of latency tolerance, it also

provides a chance for optimization, as discussed above. Figure 8.8 shows after

deferring some directory accesses, the latency critical APKI drops to 1.9–3.7, even

lower than the original “T2 L1 miss” component in some cases. This is because not

121

only can the directory entry update for T1 transactions be deferred, but it works

for read forwarding T2 transactions as well (Transaction 9 and 10 in Table 4.1). In

these cases, the requesting core does not have to wait for the directory access to

determine which remote core has the data because the most recent data copy is in

the shared cache.

8.5 Directory Access Frequency Discussion

It is well known that cache misses reduce when scaling cache size, and directory

accesses are closely related to cache misses as explained in Section 4.1. The analyses

in Section 4.2 quantify this phenomenon and breakdown its components. This can

help architects make design tradeoffs in directory caches as CPUs scale.

The first observation is that the total cache-miss induced directory accesses

drops with CPU scaling, especially cache scaling as shown in Figure 6.1. As dis-

cussed in Section 2.2, many directory techniques proposed to reduce directory size

do so at the expense of increased directory access latency. For example, some tech-

niques employ complex hashing functions, such as Cuckoo Directory [19], SCD [18],

and Tagless directories [46]. Some other techniques require multiple access to the

directory, such as hierarchical directories [16,17], software fallback [14] and chained

pointers [13]. Because the directory accesses drop as CPUs scale, they make up a

smaller fraction of the overall execution time. Therefore, the results from Section 6.2

imply that trading off higher access latency to reduce directory size is a good idea

as CPUs scale.

122

The second observation is that the percentage of T2 transactions over total

cache-miss induced directory accesses(T1+T2) increases with CPU scaling. As dis-

cussed in Section 2.2, some directory techniques employ re-insertion techniques to

reduce the directory conflicts, such as Cuckoo Directory [19] and SCD [18]. These

techniques increase the cost of directory accesses unevenly. In particular, the inser-

tion of new directory entries (T1 translations) is more expensive in these techniques.

Though T1 accesses constitute the majority of the directory accesses in small caches,

they become less significant when cache size scales. So, the performance penalty for

these techniques will be less with CPUs scales. Therefore, the results imply that

trading off higher insertion latency to smaller directory size is also a good idea as

CPUs scale.

123

Chapter 9: Conclusion

Reuse distance is a useful tool to study the locality in the data cache, for both

sequential and parallel benchmarks. This thesis extends the reuse distance analysis

to study the directory cache behavior because directory is one of the main bottle-

necks in multicore processor scaling. It proposes the relative reuse distance between

sharers to analyze the directory and extract insights on directory’s architecture de-

pendency.

This thesis builds a profiler using PIN-tool based on reuse distance analysis to

study how directory access frequency, directory content information and directory

access distribution changes with core count and cache size scaling. In terms of access

frequency, the profiling results show directory accesses drop significantly with data

cache size scaling. In terms of directory content, the profiling results show the

directory coverages also drop significantly with data cache size scaling. In terms of

access distribution, the profiling results show the there is locality in the directory.

The profiling results also show that cache size scaling has a much bigger effect on

directory than core count scaling.

Cache simulation studies is done to validate the profiling results. The valida-

tion results shows that the profiler is accurate enough to provide directory behavior

124

insights. This thesis also does case studies on four representative directory tech-

niques using the insights from the profiler, including Cuckoo, DGD, SCD and multi-

level techniques, and quantifies how multicore scaling will impact on them. The case

study on Cuckoo technique shows that the required directory size scales sub-linearly

with CPU scaling. The case study on DGD technique shows that the opportunity

of compressing private data decreases with CPU scaling. The case study on SCD

technique shows that reducing sharer list size is an effective technique with CPU

scaling. And the case study on multi-level technique shows splitting directory into

multiple level can be a promising technique.

In conclusion, this thesis provides a tool for architects to study the whole

design space of directory behavior in relatively short time, providing insights for

designing the directory.

125

Bibliography

[1] Anant Agarwal, Liewei Bao, John Brown, Bruce Edwards, Matt Mattina, Chyi-
Chang Miao, Carl Ramey, and David Wentzlaff. Tile Processor: Embedded
Multicore for Networking and Multimedia. In Proceedings of the Symposium
on High Performance Chips, 2007.

[2] Yatin Hoskote, Sriram Vangal, Nitin Borkar, and Shekhar Borkar. Teraflop
Prototype Processor with 80 Cores. In Proceedings of the Symposium on High
Performance Chips, 2007.

[3] Nebojsa Novakovic. Intels xeon phi knights series expands in 2015. November
2013.

[4] Lisa Hsu, Ravi Iyer, Srihari Makineni, Steve Reinhardt, and Donald Newell.
Exploring the Cache Design Space for Large Scale CMPs. ACM SIGARCH
Computer Architecture News, 33, 2005.

[5] Li Zhao, Ravi Iyer, Srihari Makineni, Jaideep Moses, Ramesh Illikkal, and
Donald Newell. Performance, Area and Bandwidth Implications on Large-Scale
CMP Cache Design. In Proceedings of the Workshop on Chip Multiprocessor
Memory Systems and Interconnect, 2007.

[6] H. S P Wong, S. Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, B. Ra-
jendran, Mehdi Asheghi, and Kenneth E. Goodson. Phase change memory.
Proceedings of the IEEE, 98(12):2201–2227, 2010.

[7] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane,
H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A
novel nonvolatile memory with spin torque transfer magnetization switching:
spin-ram. In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE
International, pages 459–462, 2005.

[8] H. Akinaga and H. Shima. Resistive random access memory (reram) based on
metal oxides. Proceedings of the IEEE, 98(12):2237–2251, 2010.

126

[9] Luiz Andre Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas
Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben
Verghese. Piranha: A Scalable Architecture Based on Single-Chip Multipro-
cessing. In Proceedings of the 27th Annual International Symposium on Com-
puter Architecture, pages 282–293, Vancouver, Canada, June 2000.

[10] Anoop Gupta, Wolf dietrich Weber, and Todd Mowry. Reducing memory and
traffic requirements for scalable directory-based cache coherence schemes. In
In International Conference on Parallel Processing, pages 312–321, 1990.

[11] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An
Evaluation of Directory Schemes for Cache Coherence. In Proceedings of the
15th International Symposium on Computer Architecture, Los Alamitos, CA,
1988.

[12] Jong Hyuk Choi and Kyu Ho Park. Segment Directory Enhancing the Limited
Directory Cache Coherence Schemes. In Proceedings of the 13th International
Symposium on Parallel Processing and the 10th Symposium on Parallel and
Distributed Processing, Washington, D.C., 1999.

[13] Guoying Chen. SLiD–A Cost-Effective and Scalable Limited-Directory Scheme
for Cache Coherence. In Proceedings of the Parallel Architectures and Languages
Europe, Heidelberg, Germany, 1993.

[14] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories:
A Scalable Cache Coherence Scheme. In Proceedings of the 4th International
Conference on Architectural Support for Programming Languages and Operating
Systems, New York, NY, 1991.

[15] Hongzhou Zhao, Arrvindh Shriraman, and Hya Dwarkadas. Space: Sharing
pattern-based directory coherence for multicore scalability. In In 19th Intl Con-
ference on Parallel Architectures and Compilation Techniques (PACT), 2010.

[16] Song-Liu Guo, Hai-Xia Wang, Yi-Bo Xue, Chong-Min Li, and Dong-Sheng
Wang. Hierarchical Cache Directory for CMP. Journal of Computer Science
and Technology, 25(2):246–256, March 2010.

[17] Deborah A. Wallach. PHD: A Hierarchical Cache Coherent Protocol (Master’s
Thesis). 1993.

[18] Daniel Sanchez and Christos Kozyrakis. SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding. In Proceedings of the 18th International
Symposium on High Performance Computer Architecture, 2012.

[19] Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and Babak Falsafi. Cuckoo
directory: A scalable directory for many-core systems. In 17th IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages
169–180, 2011. selected by the program committee for Best Student Papers ses-
sion.

127

[20] Jason Zebchuk, Babak Falsafi, and Andreas Moshovos. Multi-Grain Coherence
Directories. In Proceedings of the 46th Annual International Symposium on
Microarchitecture, Davis, CA, December 2013.

[21] Joan J. Valls, Alberto Ros, Julio Sahuquillo, Maŕıa E. Gómez, and José Duato.
Ps-dir: a scalable two-level directory cache. In Proceedings of the 21st interna-
tional conference on Parallel architectures and compilation techniques, PACT
’12, pages 451–452, New York, NY, USA, 2012. ACM.

[22] Mohammad Alisafaee. Spatiotemporal Coherence Tracking. In Proceedings
of the 45th Annual International Symposium on Microarchitecture, December
2012.

[23] Blas A. Cuesta, Alberto Ros, Maŕıa E. Gómez, Antonio Robles, and José F.
Duato. Increasing the effectiveness of directory caches by deactivating coherence
for private memory blocks. In Proceedings of the 38th annual international
symposium on Computer architecture, pages 93–104, New York, NY, USA, 2011.
ACM.

[24] John H. Kelm, Matthew R. Johnson, Steven S. Lumettta, and Sanjay J. Patel.
Waypoint: Scaling coherence to thousand-core architectures. In Proceedings of
the 19th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’10, pages 99–110, New York, NY, USA, 2010. ACM.

[25] Chen Ding and Trishul Chilimbi. A Composable Model for Analyzing Locality
of Multi-threaded Programs. Technical Report MSR-TR-2009-107, Microsoft
Research, 2009.

[26] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen. Is Reuse Distance
Applicable to Data Locality Analysis on Chip Multiprocessors? In Proceeding
of Compiler Construction, 2010.

[27] Derek L. Schuff, Benjamin S. Parsons, and Jivay S. Pai. Multicore-Aware Reuse
Distance Analysis. Technical Report TR-ECE-09-08, Purdue University, 2009.

[28] Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. Accelerating Multicore
Reuse Distance Analysis with Sampling and Parallelization. In Proceedings of
the 19th International Conference on Parallel Architectures and Compilation
Techniques, 2010.

[29] Meng-Ju Wu and Donald Yeung. Efficient Reuse Distance Analysis of Multicore
Scaling for Loop-based Parallel Programs. ACM Transactions on Computer
Systems, 31(1), 2013.

[30] Meng-Ju Wu, Minshu Zhao, and Donald Yeung. Studying Multicore Proces-
sor Scaling via Reuse Distance Analysis. In Proceeding of the International
Symposium on Computer Architecture, Tel-Aviv, Israel, June 2013.

128

[31] Meng-Ju Wu and Donald Yeung. Coherent Profiles: Enabling Efficient Reuse
Distance Analysis of Multicore Scaling for Loop-based Parallel Programs. In
Proc. of the 20th International Conference on Parallel Architectures and Com-
pilation Techniques, Galveston Island, TX, October 2011.

[32] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005.

[33] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

[34] Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C. Steely Jr., and Joel
Emer. Achieving non-inclusive cache performance with inclusive caches: Tem-
poral locality aware (tla) cache management policies. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’43, pages 151–162, Washington, DC, USA, 2010. IEEE Computer
Society.

[35] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multipro-
cessors. In Proc. of the 33rd Int’l Symp. on Comp. Arch., June 2006.

[36] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution
for multiprocessors with private cache memories. In Proceedings of the 11th
Annual International Symposium on Computer Architecture, ISCA ’84, pages
348–354, New York, NY, USA, 1984. ACM.

[37] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols
and their support by the ieee futurebus. In Proceedings of the 13th Annual
International Symposium on Computer Architecture, ISCA ’86, pages 414–423,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[38] Manuel E. Acacio, Jose Gonzalez, Jose M. Garcia, and Jose Duato. A New Scal-
able Directory Architecture for Large-Scale Multiprocessors. In Proceedings of
the 7th International Symposium on High Performance Computer Architecture,
Washington, D.C., 2001.

[39] D.B. Gustavson. The scalable coherent interface and related standards projects.
Micro, IEEE, 12(1):10–22, 1992.

[40] H. Nilsson and P. Stenstrom. The scalable tree protocol-a cache coherence
approach for large-scale multiprocessors. In Parallel and Distributed Processing,
1992. Proceedings of the Fourth IEEE Symposium on, pages 498–506, 1992.

129

[41] Y. Chang and L.N. Bhuyan. An efficient hybrid cache coherence protocol for
shared memory multiprocessors. In Parallel Processing, 1996. Vol.3. Software.,
Proceedings of the 1996 International Conference on, volume 1, pages 172–179
vol.1, 1996.

[42] Quing Yang, G. Thangadurai, and L.N. Bhuyan. Design of an adaptive cache
coherence protocol for large scale multiprocessors. Parallel and Distributed
Systems, IEEE Transactions on, 3(3):281–293, 1992.

[43] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Journal of
Algorithms, 2001.

[44] Daniel Sanchez and Christos Kozyrakis. The zcache: Decoupling ways and
associativity. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, pages 187–198, Washington, DC,
USA, 2010. IEEE Computer Society.

[45] Blas Cuesta, Alberto Ros, Maria E. Gomez, Antonio Robles, and Jose Duato.
Increasing the effectiveness of directory caches by avoiding the tracking of non-
coherent memory blocks. IEEE Transactions on Computers, 62(3):482–495,
2013.

[46] Jason Zebchuk, Vijayalakshmi Srinivasan, Moinuddin K. Qureshi, and Andreas
Moshovos. A Tagless Coherence Directory. In Proceedings of the 42nd Interna-
tional Symposium on Microarchitecture, New York, NY, 2009.

[47] Yutao Zhong, Steven G. Dropsho, and Chen Ding. Miss Rate Prediction across
All Program Inputs. In Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques, 2003.

[48] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd International Symposium
on Computer Architecture, 1995.

[49] Collin McCurdy and Charles Fischer. Using pin as a memory reference gen-
erator for multiprocessor simulation. ACM SIGARCH Computer Architecture
News, 33, 2005.

[50] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, July 1985.

[51] Ramanathan Narayanan, Berkin Ozisikyilmaz, Joseph Zambreno, Gokham
Memik, and Alok Choudhary. MineBench: A Benchmark Suite for Data Min-
ing Workloads. In Proceedings of the International Symposium on Workload
Characterization, 2006.

130

[52] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PAR-
SEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the International Conference on Parallel Architectures and Com-
pilation Techniques, 2008.

131

	List of Tables
	List of Figures
	Introduction
	Background on Directory
	Cache Coherence and Directory
	Directory
	Cache Coherence Protocol

	Previous Directory Techniques

	Background on Reuse Distance Analysis
	Reuse Distance Profile
	Multicore Reuse Distance Profile
	CRD Profile
	PRD Profile

	Cache Sharing Behavior
	Core Count Scaling Behavior

	Analysis Framework
	Characterization of Directory Behavior
	Directory Access Analysis
	Evictions

	Directory Content Analysis
	Sensitivity to Coherence Protocols

	Directory Cache Profiler
	Profiler Process Flowchart
	Profiler Implementation
	LRU Stacks
	Counters

	Profile Studies and Results
	Experimental Setup
	Study 1: Directory Access Frequency
	Cache Size Scaling
	Core Count Scaling

	Study 2: Directory Coverage
	Cache Size Scaling
	Core Count Scaling

	Study 3: Directory Access Distribution
	Cache Size Scaling
	Core Count Scaling

	Cache Simulations and Validations
	Experimental Setup
	Study 1: Directory Access Frequency
	Study 2: Directory Coverage
	Study 3: Directory Access Distribution

	Case Studies and Discussions
	Cuckoo Technique Discussion
	Experimental Setup
	Experiment results

	DGD Technique Discussion
	Experimental Setup
	Experiment results

	SCD Technique Discussion
	Experimental Setup
	Experimental Results

	Multi-Level Technique Discussion
	Experimental Setup
	Private Cache Results
	Shared Cache Impact

	Directory Access Frequency Discussion

	Conclusion
	Bibliography

