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Mild Traumatic Brain Injury (MTBI) is one of the most common neurological

disorders. A subset of patients develop persistent cognitive deficits. A number of

the brain studies have been conducted to discover the abnormalities and disrup-

tions in the brain functional networks using similar methods to those employed in

more severe brain disorders such as Alzheimer’s or Schizophrenia. Static functional

network analysis using resting state brain fMRI images has shown some promis-

ing results in identifying characteristics of MTBI. However, recent development in

the dynamics of functional networks have been able to reveal insightful information

about anomalies in brain activities that have not been observed when using tra-

ditional static analysis. Our work focuses on both static and dynamic functional

analysis of the brain. Our overall analysis pipeline is data-driven using a dataset

of 47 MTBI subjects and a demographically matching healthy control group size of

30. The data-driven approach proactively removes noise, focuses on the entire brain

functional networks and performs advanced independent component analysis, fol-

lowed by statistical tests to characterize the functional networks of MTBI patients.



A key distinction of our research is the finer labeling of MTBI subject according

to their long term 6 months recovery status. Our results suggest that those MTBI

subject who suffer prolonged recovery exhibit disturbed functional networks, and

slowed dynamism in functional connectivity than those of the healthy control or

those MTBI participants who recovered quickly. A number of useful network mea-

surements have been found to capture the states and changes of the brain functional

networks for healthy and different types of MTBI subjects in their resting state. We

believe that our findings can shed more light into the impact of MTBI on the ef-

fectiveness of several functional networks and can contribute to helping clinicians

make more informed decisions to aid in the recovery of MTBI patients.
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Chapter 1: Introduction

1.1 Brain Imaging

In the past decades, mapping anatomical brain regions with their biological

properties through the use of imaging has been one of the most popular topic in

neuroscience. With the developments of increasingly more sophisticated brain imag-

ing, the higher temporal and spatial resolution have enabled researchers to study

the brain in unprecedented details. Several areas in brain science have achieved

major discoveries due to the advancements in brain imaging technology, areas such

as cognitive neuroscience, affective neuroscience, and neuroeconomics. On the other

hand, another critical topic that exploits the technology advances is neuro-pathology,

which is the study of the diseases of the nervous system tissues. By studying the

functional connections captured by the acquired brain imaging data, we are gain-

ing important information about brain diseases such as mild traumatic brain injury

(MTBI) and schizophrenia.
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1.1.1 Structural And Functional Brain Imaging

Depending on the goals, brain imaging techniques can be mainly categorized

as structural or functional, defined as follows.

1. Structural Brain Imaging: This type of study focuses on the study of the

anatomy of the brain structure, attempting to provide detailed anatomical

organization of a typical brain. Common imaging tools used to infer such

information include Computed Axial Tomography (CAT), Diffusion Magnetic

Resonance Imaging (MRI), and Positron Emission Tomography (PET). For

example, CAT measures the absorption of x-ray beams as they pass through

body tissues, where the bone has the highest attenuation and appears white,

whereas gas has the lowest attenuation and appears as black. Fig. 1.1 provides

an illustration of a chest X-ray image. Moreover, CAT can be used to compute

cross sectional images. In brain imaging applications, a ring of x-ray generators

and detectors generate a serial of cross-sectional images of the subject’s brain

during the CT scan. The scanned images represent the direct tissue structure,

and abnormalities can be detected from these images [134].

The MRI technology involves the application of a static magnetic field which

forces on the alignments of lower energy nuclei of the brain. When the mag-

netic field pauses, the detector coils measure the energy level that indicates

the return rate of the nuclei to their original low energy state. This rate de-

termines the type of image generated: T1 image differentiates gray and white
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matters, and T2 portrays white matter hyper-intensities [138].

Diffusion MRI attempts to capture the diffusion of water molecules in body

tissues. Water molecules naturally move randomly according to a Brownian

motion in an isotropic medium. However, due to the special properties of body

tissues, the diffusion may be an-isotropic, and the molecule moves primarily

along neural fibers. The advanced development of diffusion tensor imaging

(DTI) enables the measurement of diffusion in multiple directions, which al-

low researchers to measure brain connectivity and fiber directions of different

regions of the brain [135]. Several examples of DTI imaging can be found in

Fig. 1.2, [136].

2. Functional Brain Imaging: This type of study focuses mainly on discovering

concurrent activations of different parts of the brain due to certain cognitive

and affective processes. Major brain imaging technique to support this type of

study includes PET, functional MRI (fMRI), Electroencephalography (EEG)

and Magnetoencephalography (MEG). For example, quantitative EEG mea-

sures the coherence of brain activities between two different cortical areas. If

the synchronization increases during a task, the coherence measure will in-

crease. Advantages of quantitative EEG includes its wide availability, low

cost, non-invassiveness and avoidance of radiation exposure. In particular,

the change in coherence in the resting state and in performing a task may

be important for diagnosing dementia [137]. fMRI measures the blood flow

activity tied to neural activities. The excessive amount of oxygen brought to

3



Figure 1.1 CT imaging of chest. Bones and muscles have larger density
and appears to be white, air in the lungs has smaller density and appear
to be black.

Figure 1.2 DTI technology is able to measure the water molecule dif-
fusion in tissues which indicates neural fiber directions [136].

the brain region in use decreases the magnetic field gradient, which leads to

greater magnetic homogeneity that yields greater blood flow [139]. Different

functional imaging modalities provide different spatial and temporal resolu-

tions and involve a range of invassiveness.
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Figure 1.3 4D fMRI data is a temporal series of 3D brain scan.

Figure 1.4 Each voxel corresponds to one spatial position in the brain,
and each voxel has a time series representing its temporal activation
during the fMRI session.
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1.1.2 fMRI

fMRI is a functional neuroimaging technique using the MRI technology that

scans brain activities by detecting associated changes in blood flow in the brain [169].

The technique is made possible because the neuronal activities demands oxygen and

sugar to be brought in quickly. The oxygen level causes a difference in magnetic

susceptibility in the blood. One reason for the popularity of fMRI is due to its

good balance between the temporal and spatial resolutions combined with its non-

invassiveness. Hence it has gained popularity in functional imaging research [140].

Subjects are not exposed to radiation as in CT technology, and therefore there

are no side effect on the subjects. fMRI scans the entire brain indiscriminately,

unlike EEG/MEG methods which are more effective when performed on the cortical

surface. fMRI captures activities with a relatively high spatial resolution typically

2− 3mm and can be as accurate as 1 mm.

Among many useful measures of blood flows, we focus on the blood-oxygen-

level dependent (BOLD) contrast, discovered by Seiji Ogawa [170], who demonstrate

that the difference of magnetic susceptibility between oxyhemoglobin and deoxyhe-

moglobin can be detected using MRI.

An fMRI scanner places a static magnetic field through the subject’s brain,

which will force some low energy nuclei to align with the external field. Because the

discrepancy in magnetic susceptibility in oxygen-rich and oxygen-poor blood, the

two types of blood react differently to the sudden pause of magnetization. Oxygen

rich blood exhibit a higher degree of magnetic homogeneity, which means aligned
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nuclei return to its original lower energy state at a faster rate and emits higher

energy than oxygen-poor blood. Therefore, for those brain regions that have a

richer amount of oxygen, the fMRI intensity will be greater than the baseline sig-

nal. Unfortunately, the BOLD signal can be easily corrupted by noise from various

sources, and hence the need to apply signal processing and multiple statistical tools

to improve the signal to noise ratio (SNR) and to extract the underlying signal.

The acquired fMRI data consists of a 4D matrix, representing a time series

of 3D brain scan, as shown in Fig. 1.3. The fMRI data is relatively large, there is

about 100, 000 voxels in each typical brain scan. Each voxel corresponds to a volume

in a spatial location. During the course of the fMRI scan, hundreds of brain scans

are captured at an interval defined as TR, usually TR = 2 seconds. By tracking the

intensities of a voxel over time, we obtain a time series for each voxel.

As for neuro-pathology research, fMRI is the primary tool for neuroimag-

ing that the researchers have used to study various brain dysfunctions, such as

Alzheimers [141–143], schizophrenia [144, 145], and MTBI [146–148], the latter be-

ing also the topic of this research. It is widely adopted as a diagnostic tool that aids

physicians to learn how a healthy, or injured brain works, and that helps assess the

potential risk of certain surgeries and treatments. Lastly, due to its vast popularity

among neuro-researchers, in-depth studies have been conducted based on data-sets

produced by fMRI , thereby enabling scientists to easily compare their results across

studies and platforms.
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1.2 Resting State fMRI and Resting State Network

1.2.1 Resting State fMRI

fMRI has been widely used to study the brain mapping related to the pro-

cesses of cognition and emotion. Traditional fMRI research has been primarily

task-oriented. The subjects are told to perform certain tasks to activate and in-

crease the neural activity in related brain regions [131,132]; for example, tapping a

finger or counting, watching pictures are used respectively to understand the acti-

vations of the motor and visual networks. Often used with the task-related fMRI

research is the Seed analysis, which provides a method to verify prior hypotheses by

either calculating the correlation between seed areas or by modeling the relation-

ship between the seed region and all the other regions in the brain. Many leading

functional mapping techniques of the brain have been determined following this pro-

cedure [166–168]. However, forming an interesting hypothesis and the design of the

corresponding task to effectively verify the hypothesis can sometimes be challenging.

Data-driven approaches are often preferred for thier exploratory nature in detecting

patterns that lead to valuable discoveries.

On the other hand, the rs-fMRI studies require that the subject be at rest and

search for functional mappings between brain regions by examining the relationships

of the corresponding fMRI time series. In the rs-fMRI setting, the subjects are

told to relax and not to think of anything in particular, while their spontaneous

brain BOLD signal is measured throughout the fMRI sessions. It also opens the
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door for studying subjects with difficulty to perform certain tasks. rs-fMRI is a

relatively new type of fMRI research which has drawn increasing attention since it

was first introduced by Biswal [167] in 1995. In his work, the subjects were told

not to perform any task during their fMRI sessions. The seed region was set to

be the left somatosensory cortex (see figure 1.6) because it has been found to be

related with bilateral finger tapping in earlier studies. The correlations between the

seed region and all the other brain regions were examined and eventually a strong

correlation was found between the left somatosensory cortex and homologous areas

in the contralateral hemisphere. This pioneering work was confirmed and replicated

later through anatomical studies which found that left somatosensory cortex is in

high synchronization with primary and higher order somatosensory areas. Prior to

Biswal’s work [167], there have been many suspicions on rs-fMRI due to the fact

that SNR in rs-fMRI is very low, which was caused by various sources of noise

and other important physiological factors such as the respiratory and cardiovascular

cycles measured in the BOLD signal. Biswal’s [167] research dispels these doubts

on rs-fMRI, since many contemporary scientists attribute the resting state signal

to other sources such as heart beating and observation noise. This research has

revealed that the brain network is not idle when the subject is resting, and in fact

carries out a vast amount of spontaneous activities that are highly correlated among

different brain regions [129].
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1.2.2 Basis of rs-fMRI Analysis

rs-fMRI focuses on the low frequency fluctuations that range from 0.01 to

0.1 Hz of the rs-fMRI BOLD signal [149, 159, 167]. The underlying neuronal basis

of these low frequency rs-fMRI fluctuations is still an open question, with some

researchers arguing that the rs-fMRI signal is merely an artifact of various physi-

ological processes, such as the cardiovascular and respiratory processes [160–163].

However, the support for the significance of these low frequency fluctuations orig-

inates from the underlying spontaneous neuronal activation that stems from the

fact that most of these RS patterns tend to occur in brain regions that overlap

in both function and neuro-anatomy [116, 129, 165, 167]. This observation suggests

that multiple brain networks work together to complete functional tasks occurring

during resting. The correlations are particularly high between those anatomically

separated networks with similar functionality [129]. Moreover, it has also been

reported that cardiovascular and respiratory components have different frequency

than the rs-fMRI frequency of interest [149, 150]. Overall, an increasing number of

researchers agree with the neuronal basis of rs-fMRI signal, and treat the cardiovas-

cular and respiratory components as noise. This is the reason why it has become a

standard practice to pre-process the rs-fMRI data to reduce the corruption caused

by physiologic processes and other noise sources.

It has been observed that several anatomically separated regions display a high

level of synchronization in their rs-fMRI time series. This implies that these regions

form a network that carries out a task together when the brain is at rest. The
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identification of resting state networks (RSN) has drawn increasing attention over

the past decade. In the signal processing setup, this problem can be viewed as a blind

source separation problem, and tools such as Independent Components Analysis

(ICA) or seed analysis are adopted to support rs-fMRI applications [151–153]. rs-

fMRI studies have successfully identified a number of RSNs: synchronous activation

between spatially distinct brain regions without the presence of external stimulus.

More details will be covered in the following section.

1.2.3 Resting State Network (RSN)

The human brain is often modeled as a set of networks that interact with each

other to carry out a particular task. This type of functional mapping has become one

of the most popular topics in cognitive neuroscience [121,122]. The brain networks

can be further classified as task-positive and task-negative networks [123]. The

former includes brain regions that are activated when we perform tasks and cognitive

processes, in contrast to task-negative regions that are more active when the subject

is at rest without any external stimulus. Anatomically separated brain regions that

show high synchronization behaviors during rest are defined to be RSNs [115]. A

number of studies have consistently reported the existence of RSNs [115,116,165].

The most well known and widely studied RSN is the default mode network

(DMN), which includes the Medial prefrontal cortex (MPFC), Posterior Cingulate

Cortex (PCC), lateral and medial temporal lobes and posterior inferior parietal

lobe [113, 114]. See figure 1.5 for an illustration [15]. On the other hand, the key
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example of task-positive networks is the so called core network which is composed of

a large number of sub-networks: bilateral insular regions, anterior cingulate cortex,

two lateralized parietal frontal networks, primary sensorimotor network and visual

networks. The DMN and core networks work in an alternative way: the activation

of DMN when the subject is at rest is usually coupled with deactivation of the task-

positive core network, whereas when the subject is performing a cognitive task that

involves the core network, a suppression of the DMN has been observed [123, 124].

The ever-alternating activation of the core and DMN networks have been suggested

to be an important factor in the brain cognitive processing [129,130].

DMN was first identified by Raichle in 2001 [113] from PET data and by

Greicius from fMRI data two years later [114]. During the PET study, the subjects

were told to rest with their eyes closed. DMN regions were determined as the regions

that are more active when the subjects are resting than performing cognitive tasks.

This finding was confirmed by Greicius using fMRI and consistently verified by other

researchers using various data and analysis tools [115–120,165].

Although still in its development stage, DMN also has important clinical im-

plications, Many studies of DMN have found that the direct relationship between

DMN dysfunctions and major psychiatric and neurodegeneratie diseases [125–128].

Other than the DMN, seven other RSNs have been found consistently through-

out many neuroimaging studies [115, 116, 129, 154–156, 165]. The locations of these

eight RSNs are illustrated in Fig. 1.7 extracted from paper [129]. These networks

have been reported consistently over many studies, using different subject groups,

data acquisition methods, and processing procedures. These networks include

12



1. The primary motor network, located in the posterior portion of the frontal

lobe, which works with other motor areas to perform movements.

2. The primary visual network, located in the occipital lobe, is responsible for

processing visual information.

3. The extrastriate visual network, which is part of the occipital cortex next to the

primary visual network. It is devoted to higher order visual processing [157].

4. The two lateralized networks consisting of superior parietal and superior frontal

regions. It plays important roles in integrating sensory information from sen-

sors of the body, knowledge of numbers and their relationships, and manipu-

lation of objects [158].

5. The DMN is composed of precuneus, medial frontal and inferior parietal and

temporal regions. DMN is active when the subject is at rest without any

external stimulus. Its functionality is still an on-going debate [104].

6. The network consisting of bilateral temporal/insular and anterior cingulate

cortex. It is believed to play an important role in consciousness, diverse func-

tions such as emotions and the regulation of the body’s homeostasis [102,105,

111,112].

7. The frontal network, which consists of neurons that are in charge of decision

making, problem solving, and control of purposeful behaviors [103].

The functional synchronizations of these spatially non-overlapping RSNs co-

incide with our knowledge of the functional networks. These observations suggest
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Figure 1.5 Default mode network includes the Medial prefrontal cor-
tex (MPFC), Posterior Cingulate Cortex (PCC), lateral and medial
temporal lobes and posterior inferior parietal lobe.

Figure 1.6 Illustration of somatosensory cortex, which locates at the
lateral postcentral gyrus in the parietal lobe of the human brain.
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Figure 1.7 The consistently found RSN using different dataset and
different methods, these networks include the primary sensorimotor
network, the primary visual and extra-striate visual network, a net-
work consisting of bilateral temporal/insular and anterior cingulate
cortex regions, left and right lateralized networks consisting of supe-
rior parietal and superior frontal regions (*reported as one single net-
work) and the so-called default mode network consisting of precuneus,
medial frontal, inferior parietal cortical regions and medial temporal
lobe [129].

15



that even when the brain is at rest, the brain is still constantly performing and

coordinating tasks that require an entire network to cooperate, and there exist cer-

tain connectivity patterns in the resting brain to synchronize brain regions with

functional overlapping.

1.3 Traditional Functional Analysis

The rich literature of rs-fMRI provides us with many useful tools to study

the connectivity between non-overlapping brain regions, including studying sub-

networks within and between RSNs. The most common tools used are: principal

components analysis (PCA), singular value decomposition (SVD), clustering, in-

dependent components analysis (ICA), and seed analysis [106–108, 150, 154, 167].

Roughly, the rs-fMRI analysis can be divided into two major groups: seed analy-

sis and multivariate decomposition [129], which will be discussed in the following

sections.

1.3.1 Seed Analysis

This is the simplest way to study functional connectivity between brain re-

gions. A brain region of interest is fixed, which is defined as a seed, and the cor-

relations of the seed region with all the other regions in the brain are computed.

The seed method produces a one to all connectivity map, and this map provides

clear information to what extent other brain regions are connected to the seed, and

whether this relationship is positive or negative. The choice of the seed is usually
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pre-determined, either an interesting brain region in an rs-fMRI study, or in the

case of task-related fMRI analysis, the seed is chosen to be the area where the task

is believed to stimulate. The simplicity of seed analysis allows researchers to make

conclusions with strong evidence and confidence [88]. However, the seed method is

highly limited by the prior hypothesis and is not suitable for extracting interesting

features for the whole brain analysis [129].

1.3.2 Multivariate Decomposition

This type of analysis is also called model-free analysis [129]. It is usually used

to study the whole-brain connectivity map without making any prior assumptions

about the fMRI data. Among all the techniques that belong to this category, the

ones that proved the most useful are PCA, ICA, Laplacian clustering, hierarchical

clustering, and normalized cut clustering [89,90,101,115,116,140,155,156]. Among

them, the most widely adopted and the most consistent method is the ICA [89,115,

156].

ICA is designed to solve the blind source separation problem. In the rs-fMRI

setting, it identifies a set of independent temporal or spatial patterns under the

assumption that the observed fMRI data is a linear mixture of this set of independent

components. ICA is a tool for the whole brain analysis; however, with an extra step

of regression or back construction, it enables us to compare the time series of the

independent components within a group or across groups of subjects. The extracted

spatial patterns often overlap known functional sub-networks.
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Other than the ICA method, clustering algorithms are also used in fMRI ap-

plications [101,155]. They function in a similar way as the ICA method. ICA seeks

to combine simultaneously activate voxels together, and to separate those voxels

that are independent. A clustering algorithm, by minimizing the within-cluster dis-

tance, and maximizing between-cluster distance, achieves a similar goal, where the

relationship between the voxels fMRI time series are captured by their Euclidean

distance. Due to the straightforwardness of the clustering methods, the correspond-

ing results are easier to interpret than those obtained by the ICA method. Their

results overlap to a certain degree. For example, the existence of DMN is discovered

by seed analysis [98, 114], clustering methods [101], and also by group level ICA

method [115, 165]. Similarly, the intrinsic functional connectivity between primary

visual and auditory regions have been found by all three methods [129]. A distinct

advantage of the group ICA method is the convenient comparison between subjects

and groups, made possible by the group level ICA Decomposition which generates

a set of spatial patterns that are common for all the subjects. Moreover, advanced

development of ICA can remove the noise and produce maximally reproducible and

stable group level patterns [183].

1.3.3 Pre-Processing and Noise Removal

The measured rs-fMRI signal is unavoidably confounded by various random

noise components that arise from both the scanner artifacts and the subjects them-

selves [99]. The significant and controllable sources of noises are [100]: thermal noise

18



due to free electrons, patient head motion, physiological processes, such as cardiovas-

cular and respiratory process, and finally low frequency signal drift. Pre-processing

attempts to increase SNR. With overwhelming noise sources, in addition to the in-

trinsic low SNR in the rs-fMRI, it becomes critical to pre-process the rs-fMRI data,

using the following common procedures: motion correction, slice-time correction,

spatial filtering, temporal filtering, registration and normalization. The rest of this

subsection will be devoted to explain these noise sources and the corresponding

pre-processing methods, as well as the popular software packages used.

1.3.3.1 Motion Correction

During the rs-fMRI scan, the subjects are told to stay relaxed, not to perform

any task, and to stay still. However, the subjects always move during the lengthy

30-minutes fMRI scan, even a very slight head movement can cause significant signal

change, and voxel misalignment. To illustrate how significant this issue is, 1% head

motion near strong intensity boundaries may cause 1% voxel signals shift and this

signal change maybe even bigger than the actual BOLD signal; even worse, the

head movement cause voxel misalignment, which means the captured signal doesn’t

correspond to a consistent anatomical voxel over time [91, 93, 94], The solution of

motion correction is co-registration, which is the process known to spatially align

two images. For each subject, simply choose one fMRI image as the target/reference

and register all the other volumes to the reference. Fig. 1.8 shows how to detect

a motion. The sudden jumps in the green time series illustrates the inconsistency
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Figure 1.8 Summary of Motion. The red time series shows the differ-
ence between consecutive time points, and the green time series shows
how the other volume deviates from the references. Both time series is
able to show the sudden spike which corresponds to the head motion,
and the red time series also displays the low frequency drift.

between the current signal strength and that of the next time point, which is likely

due to a sudden head motion. Moreover, the red time series also shows that there

is a low frequency drift in addition to the motion, which will be addressed later.

The registration uses 6 degree of freedom (DOF) rigid body transformation

which assumes that the size of the two images are identical, and the superimposi-

tion can be controlled by a combination of three translations and three rotations.

The effects of motion can be corrected by modeling each motion component as a

regressor in the Generalized Linear model (GLM) which allows non-Gaussian er-

ror, and remove their effects in the observed time series [97]. Alternatively, we can

model each freedom as a variable, and propose certain objective functions that will

transform the problem into an optimization problem [95].
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1.3.3.2 Slice Timing Correction

Within each volume, it appears that the whole brain is scanned at the same

time, because most fMRI scans are only able to acquire one slice at a time, the next

slice is scanned immediately after the scan of the previous, but still at a slightly

later time within a certain Repetition Time (TR). In this case, the last acquired

slice appears to lead the change than the earlier slice, although the actual activity

happens simultaneously. Slice timing correction can be done by using temporal

interpolation, which identifies the right signal amplitude from discrete nearby time

points. All slices have to be synchronized to a single time point within a TR interval.

The choice of this time point can be either the first time point or the middle of the

TR, the former integrates easily with Gaussian linear modeled GLM, whereas the

latter requires less interpolation.

Slice timing correction is often considered as an optional step in pre-processing.

Because the haemodynamic response (the delivery of blood to active neuronal tis-

sues) can be sluggish, some researchers argue that this correction is not necessary

if the TR is set to be small. However, it has been shown that, under certain as-

sumptions, this correction improves the results, especially for task related fMRI

cases [96].

1.3.3.3 Spatial Filtering and Smoothing

The noise mixed with BOLD signal is usually assumed to be Gaussian noise

with zero mean, and therefore, averaging the signal can even out the noise. This
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is where the spatial filtering plays a role. It is simply an average of one voxel’s

signal with its neighbors. The smoothness is often a desirable property for analysis

methods, such as the thresholding based on Gaussian field theory. However, a

possible risk we encounter especially in rs-fMRI is if the actual signal is already

small, it can become even harder to detect it after the smoothing process; this can be

addressed by using a smaller size smoothing kernel. The smoothing kernel is similar

to a window function that imposes different weights that control the smoothing

process. For example, a popular choice implemented by the FSL package is Gaussian

full width half maximum (FWHM) kernel [91]. With this kernel, the smoothing is

implemented as a 3D convolution, where the new intensity of each voxel intensity

is computed as a weighted average of neighboring intensities, the weighting and the

neighborhood size is controlled by a Gaussian function that shown in Fig. 1.9. In

the case of FWHM, the size is determined by the rate of decaying of the chosen

kernel, the kernel includes the weights that are larger than 0.5 of its peak value.

1.3.3.4 Temporal Filtering

The spatial filtering is to remove the low frequency Gaussian noise contained

in the signal and allow the signal to be sufficiently smooth for subsequent analysis.

Temporal filtering can improve the SNR substantially by filtering out the high fre-

quency noises which are likely due to scanner, physiological process and noises, and

low frequency drift mentioned earlier [92, 99]. This process also serves as a mask

that will be discussed later. Temporal filtering utilizes a high pass filter (HPF) that
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Figure 1.9 An example of Gaussian FWHM smoothing kernel, it con-
trols the weights, and the size of its neighborhood in consideration.

only let through high frequency components, and a low pass filter (LPF) that keeps

low frequency components. Note that the cutoff frequency of the LPF is higher

than the cutoff the HPF. The cutoff of the LPF is often set to be around 0.2 Hz,

to remove the high frequency components due to breathing ( 0.3 Hz) and heartbeat

( 1 Hz). The general choice of the HPF is 0.01 Hz to remove the lower part of

the spectrum, that is usually the noise caused by scanner drifting. There are other

methods to remove this slow scanner drift. For example, the SPM package models

this slow drift with cosine basis set to identify variance. FSL package uses a high

pass filter but convolves the signal with a Gaussian-weighted function as a further

temporal smoothing [91,93,94].
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1.3.3.5 Image Registration and Global Intensity Normalization

The final step is to register all images to the same brain template, which is

an anatomical brain template. This step is necessary because subjects have dif-

ferent brain shape and sizes. Registration to the same K-space (2D or 3D Fourier

transform) makes the following analysis possible and easier.

Global intensity normalization makes the mean consistent among all subjects.

Different subject rs-fMRI data have different means, even the same subject in two

different sessions lead to a difference in the mean. This is caused by various less

relevant factors such as the caffeine level [34]. Global intensity normalization is a

simple procedure to scale each 4D fMRI data to obtain the same mean [91,93,94].

1.3.4 Functional Network

Instead of connections between a few brain regions, there has been an in-

creasing interest in investigating whole brain networks using graph methods. Brain

mapping is the study of the brain regions that are activated by certain tasks, the re-

lationship between non-overlapping brain regions, how they interact with each other,

and how to discover these interactions. Investigating the topology and properties of

the brain network can provide invaluable insights on how the brain works [70–73].

Brain networks can be constructed by the seed method, ICA or clustering

algorithm. The functional network is defined as a graph G = (V,E), where V

is the non-overlapping brain regions as nodes, and E is the set of edges. In the

case of a weighted graph, the edge weight captures the quantitative relationships
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between the corresponding nodes. The network can be bi-directional or undirected

depending on the design of the study. The main advantage of this method is that no

biological assumptions are needed to be made a priori, statistical tools and feature

extractions can determine if there are interesting patterns in the dataset, or if there

is a difference between the two groups of subject under study.

1.3.4.1 Connectivity Computation

The computation of the edge weight can be done in a number of ways depend-

ing on the assumption and the goal of the study. The most popular and straight-

forward quantitative measure that has been adopted by various studies depends on

the correlation or correlation coefficient between the time series of nodes in V . For

example, nodes u, v ∈ V have time series xu, xv respectively, each with T time

points. Their correlation can be computed as,

ru,v = E[(xu − xu)(xv − xv)]

this measure corresponds to the covariance, but the mean of the time series is often

centered to zero, and hence correlation and covariance are the same in this case.

Correlation coefficient is a popular alternative, because it leads naturally to Fisher’s

z-transformation, which is adopted in a number of studies [74–76].

ρu,v =
cov(xu, xv)

σu × σv
=

ru,v
σu × σv

where σu, σv are the standard deviations of time series xu, xv respectively. Corre-

lation related metrics are popular for computations of connectivity because of their
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low complexity, they are easy to understand, and well suited for integration with

other statistical methods.

1.3.4.2 Network Properties

Given a functional network G constructed from measuring connectivity be-

tween brain regions, a number of studies have established a possible efficient topol-

ogy of the graph, which is called small world property. This small world network

property is often known for its high connectivity in its local neighborhood of ma-

jor hubs measured by clustering coefficient C which will be defined later, yet still

achieves short path length L at a global scale. The small worldness is quantified

by comparing the network of interest G to the mean clustering coefficient and path

length estimated in a random graph with the same edge degree distribution as G.

For a small world network, we expect the ratios C
Crandom

≈ 1 and L
Lrandom

� 1. This

observation has been made not only by rs-fMRI studies [80, 83] but has also been

supported by MEG and EEG studies [84–86]. Studies that use anatomical tem-

plates have shown that the probability that a node has k connections follows an

exponential truncated power-law, which is an unique characteristic of small world

network [80]. Studies have hypothesized that certain highly connected hubs in the

functional brain networks are those targeted by Alzheimer’s disease, which reduces

the efficiency of the brain operations [87]. Overall, these studies show that the

brain functional network is not a random network, but rather a highly efficient net-

work that has several highly connected nodes that serves as hubs with strong local
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connectivity.

A link between the efficiency of the functional network and the subjects’ cogni-

tive abilities has been proposed by many pioneering rs-fMRI studies, mostly focusing

on the connectivity within the DMN, because DMN is a distinct network for resting

state brain activities [70,81,82] .

The patterns of a functional brain network have also been successfully linked

to indications of certain brain diseases, reported by an increasing number of studies.

These studies suggest that neuro-degenerative diseases affect the interconnected

cortical networks, rather than a single local region [128] Alzheimer’s disease has been

reported to be linked to decreased connectivity within DMN [109]. Greicius’ study

found reduced activities in the posterior cingulate cortex (PCC) and hippocampus

in the functional network of Alzheimer’s patients. Research in [125] noted a decrease

in the clustering coefficient for the functional network in the Alzheimer group. These

rs-fMRI studies are supported by resting state MEG studies, where decreased brain

network efficiency was reported for subjects with Alzheimer’s [71,110].

Functional disconnectivities of the functional network have been reported with

the schizophrenia disease [60, 61, 140], which can be potentially a disconnection

disease [62]. Studies have suggested aberrant DMN connectivity in schizophrenia

disease, reporting a reduction in connectivity between medial frontal cortex and

precuneus [63,98]. These studies have suggested that the DMN plays an important

role in the pathophysiology of schizophrenia [98]. Anatomical studies suggest that

schizophrenia is related to aberrant information integration between brain regions,

which leads to an overall decreased brain network efficiency [64,85,142]
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These studies have brought forth some interesting and useful network algo-

rithms that can be used to explore the brain network efficiency. For a network

G = (V, E), the shortest path determines a path between the vertices such that

the sum of the weights on the path is minimized. The single source SP problem

can be solved efficiently using Dijkstra’s algorithm which determines the shortest

path using a greedy strategy [65]. The all pairs shortest paths can be computed by

the Floyd Warshall algorithm [67–69]. The most straightforward evaluation of the

efficiency of a network is the average shortest path, that is the average shortest path

between all possible pairs of nodes,

a =
∑

s,t∈V

d(s, t)

n(n− 1)

where d(•, •) is the length of shortest path value between vertices s, t. Another

useful quantitative evaluation is the minimum spanning tree (MST), which serves

as the backbone of a connected and undirected graph G. A spanning tree of a graph

is a tree that contains all the vertices. The MST is the spanning tree with the

minimal summed weights of the edges of the tree. The MST can be found efficiently

with well known greedy algorithms such as Prim’s and Kruskal’s algorithms.

1.4 Mild Traumatic Brain Injury and Glasgow Coma Scale

Mild Traumatic Brain Injury (MTBI), often called concussion, although the

latter is a sub-class of the former, is caused when a severe impact or a impulsive force

is too strong to be absorbed by the cerebrosipinal fluid, which severs as a cushion

around the brain [50]. There is no universally accepted definition of MTBI, but it
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has been widely defined as a head injury with a temporary loss of brain function,

which leads to various possible subtle or severe physical, cognitive and emotional

symptoms. The common evaluations of MTBI includes some combination of loss of

consciousness (LOC), post-traumatic amnesia (PTA), and the Glasgow Coma Scale

(GCS).

MTBI incurs a variety of symptoms, which only appears immediately after the

head/brain injury [46]. Most symptoms are resolved in a short period of 7−10 days;

however, the number and type of symptoms each patient suffers varies greatly [47].

Among them, the most common ones are headache, dizziness, vomiting, nausea, lack

of motor coordination, difficulty in balancing [48]. MTBI also impairs the cognitive

ability of the patients, including confusion, disorientation, difficulty to focus, and

possibly LOC in some cases [49].

The physiological results of MTBI are often unpredictable and can last from

hours to years [51]. For example, in one animal study, MTBI was followed by an

initial growth in glucose metabolism, which was followed by a subsequent reduced

metabolism that may persist up to four weeks after the incident [52]. The subsequent

metabolic processes are reversible for the majority of affected brain cells; however, a

small portion of the cells may die due to the event [53]. It is commonly observed that

the cerebral blood flow is relatively reduced, although the causes are still unknown,

this leads to an energy crisis to the cerebral cells because the reduced amount

of glucose supply carried by blood [54]. MTBI causes diffusive brain injury, the

dysfunction occurs over entire brain networks instead of the spot of impact [55].

Diagnosis of MTBI is a combination of physical and neurological examinations,
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Figure 1.10 Glasgow Coma Scale performs three tests, eye, verbal, and
motor responses. The three separate values and their sum are consid-
ered for a GCS score ranging from 3 to 15, 3 indicates deep coma, and
15 is for a fully awake person.

duration of the LOC, post-traumatic amnesia (PTA), and the GCS score [56]. GCS

is a neurological scale that aims to record the conscious state of a person reliably

and objectively. GCS is between 3 (deep unconsciousness), and 15 (fully awake).

This scale was first proposed by Graham Teasdale and Bryan Jennett [57]. The

GCS is a result of three components, eyes, verbal and motor responses. The scoring

table is shown in Fig. 1.10, the three separated scores and their sum are factored

in to compute a final score ranging from 3 to 15 indicating the consciousness of the

person.

1.5 Data Specification

In this work, we use data for the following three groups of subjects,

1. Healthy Controls: subjects with a healthy brain. They are used in this study
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as a control group to help identify possible abnormalities with the other two

groups. There are 30 subjects in this set.

2. MTBI-A: subjects with post-concussion symptoms after six month of the in-

cidents, They are diagnosed with MTBI and low GCS scores in their acute

phase. The post-concussion symptoms are self reported. There are 24 sub-

jects in this set.

3. MTBI-B: subjects without post-concussion symptoms after six month of the

incident. They have been scored low on GCS test. This decision is based on

self-reported symptoms. There are 23 subjects in this category.

The subjects and dataset are carefully assembled such that their demographics

(age, education, and gender) are matched between the three groups, otherwise func-

tional Connectivity measurements are possible to be biased by these factors. Table

3.1 shows the size of each group, and their GCS scores, age, gender and education

level.

Table 1.1 Demographics Information for the Three Groups

TYPE SIZE GCS AGE GENDER EDUCATION

HEALTHY 30 NA 38.1± 19.1 NA 15.3± 2.3

MTBI B 23 9 46.1± 16 NA 14.6± 3.3

MTBI A 24 8 50.8± 19.2 NA 14.3± 3.1
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Chapter 2: Methodology

In this chapter, we will discuss in detail each stage of our analysis pipeline,

and justify the reasons behind our methodology.

2.1 Masking

2.1.1 Introduction

Masking is a convenient way for indexing an array. A mask M is an 3D array

of the same size as the matrix X to be indexed such that each entry is either 0 or

1. Masking has the following syntax: Y = X[M ] where Yijk = Xijk if Mijk = 1,

and Yijk = 0 if Mijk = 0. The masking matrix in our work is a binary {0,1} matrix

with three spatial dimensions: (54, 64, 50), which match the standard template (ta-

lairach template- TT N27 template in AFNI) onto which we register each individual

functional image.

Masking is commonly used as a pre-processing step prior to any statistical

analysis because of the following reasons:

1. Masking serves as a regularization filter that removes noisy signals that have

too high or too low magnitudes compared to the average. The removal of the
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two ends of the spectrum often improves the quality of the data by reduc-

ing its skewness. The reduction in skewness assists in the stabilization and

convergence in the statistical analysis which to be introduced later.

2. By focusing on signals in the middle of the spectrum which are more likely to be

relevant, the amount of data that needs to be analyzed is reduced significantly.

In our case, the number of voxels of the brain template is (54 ∗ 64 ∗ 50). The

remaining number of voxels after a typical masking is around 150, 000, which

is a reduction of 13.2%, thereby saving computational resources and improving

the quality of the results

Masking naturally converts the 4D fMRI data to a 2D matrix per subject,

where the dimensions of the converted 2D matrix are (n masked voxels, n timepoints).

The conversion process is illustrated by Fig. 2.1. The 2D matrix form is more conve-

nient for many data processing algorithms such as PCA and ICA. The mask reserves

an one to one mapping between the 2D matrix and the original 4D brain imaging

time series. It is saved for converting backward from 2D to 4D which is helpful when

we want to draw meaningful interpretations from the results obtained using the 2D

matrix.

2.1.2 Mask Computation

Our method of computing a masking is based on a heuristic proposed by

T.Nichols [14]. We start by finding the least dense point of the histogram, between

fractions lower cutoff and upper cutoff of the total image histogram. The least
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Figure 2.1 Illustration of the Masking Process. The mask is ap-
plied to every fMRI scan, and convert the 3D data into a vec-
tor. Overall, the 4D data is converted to a 2D matrix with shape
(n masked voxels, n timepoints)

dense point often serves as an indicator of the gap that separates the signal and the

noise of smaller magnitudes. Fig. 2.2 is a voxel activation histogram of a random

subject in our dataset. The x-axis is the activation magnitude ranging from −30

to 30, centered at 0. The y-axis is the histogram count of number of voxels that

fall into the corresponding bins. The masking algorithm first discards the lower and

upper portions of the histogram, then finds the least dense point. Because most

noisy sources introduce low-energy and low magnitude noise, the least dense point

is often found on the left hand side of the peak. The x-axis value of the least dense

point is marked as a threshold. The voxels that lie between the least dense point

and the higher cutoff point are kept as signal for analysis later. Note this method

allows the masking to be discontinuous in space, (see an example in the z direction

cut of Fig. 2.3).
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Figure 2.2 Illustration of the Masking Computation: First, the lower
and upper fractions of the histogram is excluded, then the least dense
part of histogram is located, which is marked as a threshold. Any
voxel with magnitude larger than the threshold is saved.

In our project, the lower and upper cutoffs are set to be 20% and 85% re-

spectively. To ensure that the masked fMRI data has the same number of voxels,

each subject is processed with a common mask. This group-level mask is computed

as the common intersection of each individual mask. Then common group mask is

applied to each subject individually. An example of such a group mask is shown

in Fig. 2.3, which illustrates the shape and areas covered by the common mask.

Brain areas known without tissue are eliminated by the masking process because

the signal measured in those areas are low magnitude noise.
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Figure 2.3 A group mask is computed as the common intersection of
all individual mask. Three cross sectional x,y, and z cuts for simple
illustration. The dark blue part is what will be kept, and the gray
areas show what will be discarded.

2.2 Group Independent Components Analysis

2.2.1 Introduction to Independent Components Analysis

ICA decomposes a multivariate observation matrix into multiple independent

non-Gaussian components. An easy example of the use of this technique is to solve

the cocktail party problem which is the phenomenon of being able to focus on

one conservation while filtering out all the other talking as noise during a cocktail

party [13].

During a party, you constantly hear a mixture of conversations. yet it is rarely

a problem for you to get confused about the speaker you are listening to. The

content, location, speaker voice constitute a signature of speech, which makes each

speech ’independent’ from each other. The goal of ICA is similar to this blind data

source separation performed automatically by our brain.

Two fundamental assumptions of ICA are:

1. The sources are independent to each other, just like each speech in a party is
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independent to each other.

2. Each source follows a non-Gaussian distribution.

The justifications of these assumptions will be discussed later.

2.2.1.1 ICA’s Application to fMRI

ICA has been successfully utilized in many fMRI applications. Spatial ICA

parcellates brain into non-overlapping regions under the criterion of promoting sta-

tistically independence, which will be introduced later. ICA can also be used to find

temporally independent components; however, most applications of ICA to fMRI

use spatial ICA to parcellate brain components that are maximally independent in

space. McKeown et al. claimed that the spatial ICA works well for most fMRI

applications due to the fact that the spatial patterns of typical cognitive activation

paradigms are distributed sparsely. Moreover, the nature of many noise sources are

also sparse and localized, such as:

1. Vascular pulsation (signal localized to larger veins that are moving as a result

of cardiac pulsation)

2. Breathing induced motion (signal localized to strong tissue contrast near dis-

continuities: tissue edges)

ICA algorithms with a sparse prior would be well suited for spatial analysis.

Each 2D masked matrix forms a natural observation matrix XN×n, where N

is the number of time points, and n is the number of masked voxels. The process
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Figure 2.4 Illustration of Individual ICA. The observation matrix is
decomposed into time course matrix and ICA spatial map matrix

of ICA is illustrated in Fig. 2.4. At a high level, ICA factors the left hand side

matrix X into the right hand side product of time course matrix and the IC matrix,

where each row of the IC matrix is an IC that corresponds to a set of regions in the

brain. The corresponding column of time course matrix is the temporal activation

pattern of that IC during the scan. The number of ICs needs to be carefully selected.

Common approaches for estimating the number of ICs include various information

theoretic approaches such as Akaike Information Criterion (AIC).

2.2.1.2 A Brief Overview of ICA Theory

In mathematical settings, the observation matrix X is formed by an array of

vectors X = (X1, . . . , Xn)T ,

where n is the number of observations, which is often assumed to be equal to

the number of source patterns; the cases of under-determined and over-determined

ICA are discussed in [32]. Each Xi is an realization of a random vector Xi ∼

(x1, . . . , xt)
T , where t is the number of features (which is equal to the volume of
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the mask in our case), and each random variable xi is a mixture of n components.

Overall, X is a matrix of n observations and t features. Each observation is a

mixture of a set of independent components sk = (sk1, . . . , skt), k = 1, 2, . . . , n,

each with length t:

xi =
n∑

k=1

skaik (2.1)

where ai = (ai1, . . . , ain) are the mixture weights. The vector expression above has

a very concise matrix form:

X = AS (2.2)

A possible justification of ICA lies in the central limit theorem, which states,

the distribution of a sum of independent, identically distributed random variable

converge to Gaussian distribution. In the classical version of CLT, if the xi is inde-

pendent, identically distributed random variables with expected value µ and finite

variance σ2, then 1
N

∑N
i xi → N(µ, σ

2

N
) as N →∞. The ICA can be understood as

the reversed process of CLT. Assuming the observed brain patterns are mixtures of

non-Gaussian sources, X = AS where matrix A is the mixing matrix of shape t∗t, S

are the true source patterns. The goal of the ICA is to unmix observation matrix X

by seeking an unmixing matrix W such that Y = WX = WAS ≈ S where Y is an

approximation of the true source patterns, W is the unmixing matrix that converts

observation back to independent sources. On the other hand, because Y = WAS

can be interpreted as Y is a linear transformation of S the true sources. By CLT,

Y can only be more or equally Gaussian as S. By maximizing the non-Gaussianity

of Y , ICA finds an independent source pattern that explains the observation X.
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Note this argument is a overly simplified justification of the ICA theory, for more

in-depth discussion, see [32].

2.2.1.3 Independence

The probabilistic definition of independence is the following: Two r.v.s X and

Y with CDF Fx(x) and Fy(y) and PDF fx(x) and fy(y) are independent if and only

if the combined random variable (X, Y ) has a joint cumulative distribution,

FX,Y (x, y) = Fx(x)Fy(y) (2.3)

or equivalently,

fX,Y (x, y) = fx(x)fy(y) (2.4)

This definition is rarely used in practice, because it requires the true distri-

butions of X, Y , and (X, Y ) to be known . In reality, those distributions can only

be estimated approximately if given enough observations. Widely used practical

estimations of independence is the KL divergence rooted in information theory,

KL(X||Y ) =
∫
fX(x) log

fX(x)

fY (x)
dx (2.5)

= H(X, Y )−H(X) (2.6)

where H(•) is the entropy function of a distribution.

Another popular information theoretic measure of independence is the mutual

information between X and Y :

I(X;Y ) =
∫

X

∫

Y
fX,Y (x, y) log

(
fX,Y (x, y)

fX(x)fY (y)

)
(2.7)
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2.2.1.4 Measure of Non-Gaussianity and Pre-processing Steps

The non-Gaussianity can be measured by the 4th order cumulant - kurtosis

which captures the degree of peakness of the underlying distribution, and is com-

monly used as a distance away from normality.

κ4(Z) = E[Z4]− 3E[Z2]2

where the second term is zero if the data X is centered and whitened in the pre-

processing. This premise and the fact that typical ICA algorithms are iterative

explains why it is a common practice to pre-process the data matrix X. Essential

pre-processing steps include:

1. Center the data, by subtracting the mean from the signal. This step doesn’t

change the mixing matrix A or the unmixing matrix W because Y − E[Y ] =

W (X − E[X]) = WA(S − E[S]).

2. Whiten the data. Because the sources are independent from each other,

E[SST ] = In, where n is the number of independent sources and the rank

of matrix SST . Whitening X converts the covariance matrix to an identity

matrix of rank n. This is done by the SVD technique. SVD decomposes

the covariance matrix into products of orthogonal matrix U and eigenvalue

diagonal matrix D. Σ = E[XXT ] = UDUT . The whitened data matrix

X̂ is X̂ = D−
1
2UT To obtain the desirable whitening property E[X̂X̂T ] =

(D−
1
2UT )TUDUT (UD−

1
2 ) = In.
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2.2.1.5 ICA as an Optimization Problem

The first stage of ICA is often to center and whiten the data, which is a linear

transformation such that the new zero-mean components are uncorrelated and have

variance one. The whitening is not a constraint of ICA problem, but whitening

step forces the mixing matrix to be orthogonal, which is often critical, as stated in

section 5.2 of [32]

Here we see that whitening reduces the number of parameters to be es-

timated. Instead of having to estimate the n2 parameters that are the

elements of the original matrix A , we only need to estimate the new,

orthogonal mixing matrix Ã . An orthogonal matrix contains n(n−1)
2

de-

grees of freedom. For example, in two dimensions, an orthogonal trans-

formation is determined by a single angle parameter. In larger dimen-

sions, an orthogonal matrix contains only about half of the number of

parameters of an arbitrary matrix. Thus one can say that whitening

simplifies the problem of ICA significantly. Because whitening is a very

simple and standard procedure, much simpler than any ICA algorithms,

it is a good idea to reduce the complexity of the problem this way [32].

It is easy to verify that the recovered independent sources are ambiguous to

their sign, scale, and permutation of orders. To find an optimal unmixing matrix W ,

the ICA can be formulated as an optimization problem: promote non-Gaussianity

42



as an objective function of WX.

Observations: X = AS

Optimize: f(WX)

Subject to: W orthogonal

and si’s are independent

Results: Y = WX

where f(•) is a function that tests statistical independence empirically. It can be

proven mathematically that if the f(•) function is chosen to be mutual information,

this objective function can be derived to be,

f(WX) = f(Y )

= f(y1, . . . , yn)

= H(y1) + . . .+H(yM)

where yi represents the random variables of matrix Y . Now the question transforms

to maximizing the sum of entropy of the column variables of matrix Y . It is known

that the distribution that yields the smallest entropy is Gaussian, therefore to max-

imize the objective function, we want each column distribution to move away from

normal distribution as much as possible.

2.2.2 Group Level ICA

When ICA was first introduced by [33] for fMRI analysis in 1998, it had mainly

been applied to each individual fMRI dataset. In this way, each individual receives
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its own time courses that correspond to their own set of ICs. By manually choosing

and comparing the set of ICs, the value of ICA was shown in its ability to generate

brain spatial parcellations that correspond to known brain networks [129].

However, because each subject was characterized by its own set of time courses

and ICs, it is not clear how to extract common patterns or differences between

subjects in a certain population. Being able to compare across subjects is highly

valuable when the main goal is to infer features that distinguish between two groups

of subjects. However, ICA is by its nature a uni-subject analysis method, which

cannot be easily extended to multi-variate analysis. More research needs to be

conducted to understand how data from multi-subject can be considered as input

of an ICA process.

To address the problem, several useful group level ICAs have been proposed

and applied to real-world fMRI data with promising conclusions. Justifications were

given to each type of group level ICA. Popular choices of multi-subject ICA are:

1. Temporal concatenation fMRI, where the fMRI data are concatenated along

the time axis. This approach assumes that the spatial patterns that generate

the fMRI data are the same across the subjects. The process is illustrated in

Fig. 2.5. A single ICA is applied to the combined dataset, which decomposes

the data into a set of common IC spatial patterns and time courses that

explain the concatenated matrix. The latter cannot be used as inference of

the subjects and it is usually discarded. The unique time courses for each

subject can be derived using regression techniques.
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2. Spatial concatenation fMRI, where the fMRI data are concatenated along the

spatial axis. A single ICA is applied to the combined dataset, which factors

the combined matrix into a commonly shared time courses and a large spatial

pattern that correspond to all subjects combined. The latter doesn’t have a

meaningful interpretation and is often ignored. Spatial map that is specific to

each subject is easily obtained by a regression step.

3. Tensor ICA, which, unlike the two methods above, estimates common time

courses and common spatial maps simultaneously. The process of tensor ICA

is described in Fig. 2.6 .The individual fMRI data are concatenated to a 3D

dataset with (time * space * subjects). Tensor-ICA factors it to triplets of time

courses, spatial maps and session modes. The session modes contain subject

specific parameters that can be compared on the basis of common time courses

and spatial maps.

These methods differ in the way they combine the individual data as input.

Tensor-ICA and spatial concatenated ICA are suitable when there are common time

courses generated consistent to the stimulus paradigm among the subjects. On the

other hand, the temporal concatenated ICA assumes that the underlying spatial

maps are common for all subjects, which is an reasonable for resting state fMRI

study, during which the temporal variations are much larger than spatial variations.

The temporally concatenated ICA has been a popular choice for the fMRI data

parcellation and has been implemented by various software packages, each with its

own goal and scope.
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Figure 2.5 The process of temporal ICA. Individual fMRI data are
concatenated along the temporal axis, and a single ICA is applied to
decompose the combined data to time courses and a common spatial
map.

Figure 2.6 The process of tensor ICA. Individual fMRI data are com-
bined to form a 3D dataset with dimensions (time * space * subject).
Tensor ICA decompose the input to a triplets, where the session modes
contains subject-specific data.
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1. MELODIC Matlab software. This software is part of the FSL package, which

is a comprehensive library of analysis tools for brain imaging data. The

MELODIC package implements ICA by decomposing the 4D datasets into

spatial and temporal components. Both temporal concatenation ICA and

tensorial ICA are implemented in the package.

2. GIFT Matlab software, which implements multiple algorithms for ICA and

blind source separation for fMRI and EGG brain imaging data. FIT is a mod-

ule of GIFT which implements the jointICA, parallel ICA and CC with join-

tICA methods. Another useful tool is the FNC package which displays tem-

poral relations amongst components, helping researchers determine functional

connections within the brain. In addition to multiple implementations of ICA,

such as FastICA and info-max, the GIFT package contains a duel-regression

implementation which is used to derive subject-specific time courses from the

common spatial maps and each individual fMRI. This back-reconstruction step

allows direct and meaningful comparisons of time courses of various compo-

nents across subjects or even groups. Calhoun [151] showed how spatial ICA

followed by duel-regression can capture variations in subject specific spatial

maps.

3. Canonical ICA (CANICA) Python package, which is another ICA method for

group level fMRI functional analysis. It adopts a hierarchical model to ex-

tract common spatial patterns from fMRI dataset. The advantages of this

ICA method is the stability and reproducibility of the extracted IC patterns,
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and is robust to various noise sources. CANICA estimates the intermedi-

ate PCA model order by removing Gaussian like noise using statistical test,

whose details will be discussed in the next section. The focus is to locate the

subspace with maximal reproducibility and stability for group level principal

components. Finally, the common voxel intensity thresholding is based on the

value of the absolute intensity.

Each package has proven its value in developing the ICA method for fMRI analysis,

Because of the superior reproducibility of CANICA and its natural integration with

the rest of our Python written processing pipeline, it is adopted as the ICA decom-

position method in this work. Details and theoretical framework of CANICA will

be presented in the next section.

2.2.3 CANICA: Canonical ICA

Since the introduction of spatial ICA to fMRI analysis, CANICA has been one

of the most successful methods for brain parcellation. In many cases, meaningful

spatial patterns are derived naturally from the resting state fMRI data. However,

a crucial disadvantage of most ICA methods is the vulnerability to noise and the

resulting lack of reproducibility. Noise is ubiquitous in all signal processing and

statistical studies. It is particularly an issue for resting state fMRI analysis, because

1) the minimal signal produced by subjects during their resting fMRI scan; 2) various

noise sources rooted in the nature of the fMRI technology, ranging from the cosmic

noise to subject head motion. fMRI pre-processing mitigates the noise issue to a

48



certain extent, but the SNR in processed data is still on the low side. Most ICA

methods are vulnerable to noise, and extracted IC patterns change drastically when

noise is introduced into the input dataset. The common solution to this issue is to

pick the patterns that are meaningful to a neurological experts’ eye. This artificial

process introduces bias sourced from human, and there is no standard way to identify

meaningful IC patterns. The bias due to poor reproducibility and human involved

filtering process has led to various sets of IC reported in the literature and caused

confusion when comparing results of different papers.

Because reproducibility has been a critical issue, Gael et al. developed a robust

ICA pipeline called CANICA that is able to separate signal from noise by multiple

layers of statistical tests and data processing such as Canonical Correlation Analysis

(CCA). As a result, only reproducible IC spatial maps are extracted from the group

level fMRI, and those patterns that are likely produced by noise are eliminated. The

reproducibility of CANICA can be proven by a cross validation to generate stable

group-level ICs using only a subset of participants [183].

CANICA assumes a special hierarchical model that explains the fMRI obser-

vations. At the lowest level of the model, all brain activities are expressed by a

mixture of a set group level spatial patterns B of shape (n patterns, n voxels). The

spatial patterns Ps of subject s is generated by B with a square mixing matrix

ΛS with additional subject variability matrix RS. The relation can be expressed

mathematically:

PS = ΛSB +Rs
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On the group level, the subjects’ data can be concatenated vertically to obtain

an even more concise relationship.

P = ΛB +R (2.8)

where P = Ps, R = Rs, and Λ = Λs, for s = 1, 2, . . . , S, and S is the number of

subjects in the group.

In the resting state fMRI framework, there is no external stimulus to the sub-

ject, nor is there any task the subject is required to perform. The fMRI observation

matrix YS for subject s can be modeled simply as a mixture of subject-specific spa-

tial patterns PS plus noise introduced in the scan denoted as ES. The relationship

is described as,

YS = WSPS + ES

where WS is another square mixing matrix, and matrices YS, WS, and ES share the

same shape.

The model is illustrated in Fig. 2.7. Note that in the rightmost frame, the

group level spatial maps estimated from the fMRI data is not necessarily indepen-

dent from each other, the independence can only be obtained as a result of the final

ICA decomposition.

The ultimate goal of CANICA is to determine the set of independent spatial

map components that are common to all subjects, and this is done by multiple stages

of estimation and data extractions illustrated in Fig. 2.7. The following sections

will be devoted to explain each phase of CANICA.

50



Figure 2.7 CANICA hierarchical models. Group principal components
B forms subject-specific principal components, which in turn builds
the fMRI BOLD observation for each subject.

2.2.3.1 Individual Level Noise Extraction

The fMRI scan is inherently a noisy process. The technique used to locate the

subspace where most energy resides is the Principal Component Analysis (PCA).

The residual is considered as noise or irrelevant which contribute little to the overall

statistical characteristics of the dataset.

For subject s with a rectangular shape observation matrix YS, PCA uses Singu-

lar Value Decomposition (SVD) to decompose YS into the following: Ys = UsΣsV
T
s ,

where:

• US is a orthogonal matrix formed by left-singular vectors.

• VS is also a orthogonal matrix that is formed by the set of right-singular

vectors,

• The middle matrix ΣS is a rectangular diagonal matrix formed by singular

values of YS.

The PCA technique picks the top n dimension subspace corresponding to the

51



top n largest eigenvalues. The approximation of rs-fMRI YS in this subspace is

computed as signal components YS, and the rest is left as noise.

Es = Ys − (USΣSV
T
S )1,...,n (2.9)

= Ys − (USΣS)1,...,n(V T
S )1,...,n (2.10)

= Ys − ŴSP̂S (2.11)

ŴS = (USΣS)1,...,n (2.12)

P̂S = (VS)1,...,n (2.13)

where (USΣSV
T
S )1,...,n is the product of matrices limited to the top n dimension,

those with largest singular values and their corresponding singular vectors.

The choice of the number of dimensions of n is a significant issue because a

large n aggressively includes more signal components, which will also unavoidably

include some noise components that corrupt the signal. On the other hand, a

small n is a conservative approach to get rid of noise at the price of losing certain

signals. CANICA uses a statistical test to choose the proper value of n. Conventional

methods use a percentage of total energy/variance; however, it can be shown that n

is highly dependent on the sample size under this rule, instead of the true structural

variation determined by the underlying model. The dimension of the signal subspace

is fixed, and hence the conventional rule includes more and more noise as the sample

size increases. Research on the optimal order of PCA as a prior step of fMRI ICA

model reports that 20−60 seem to work well depending on the specific dataset [185–

187]. CANICA adopts the method proposed in [184], which builds a mathematical

framework for analyzing three sources of the PCA model errors together with a
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stopping rule that uses the t-test for assessing the stability of the subspace spanned

by the first n principal components. The method finds noise dominated modes

using a t-test of bootstrap stability between real data and artificial Gaussian noise.

Only those modes that are not noise dominated are retained [184]. Due to the

computational expense of this order estimation, the algorithm is applied only to one

subject, and the same parameters are applied to all subjects’ fMRI data [183].

2.2.3.2 Group Level Variability

PCA finds the intrinsic subspace that captures most of the variance in the data.

Canonical Correlation Analysis (CCA) is commonly used to find common shared

subspace for two different sets of variables, whose projections have the maximum

correlation. CCA is naturally adopted by CANICA as the method to identify a

stable-component subspace shared by all subjects. Conventional CCA is developed

for two datasets, where CANICA concatenated multiple datasets P̂s as the input of

an SVD decomposition,

P̂ = P̂s=1,...,S

P̂ = ΥZΘ

where Υ and Θ are unitary matrix formed by singular vectors, and Z is the rectan-

gular diagonal matrix formed by the singular values of P̂ . According to the CCA

theory, The rows of Θ are inter-subject reproducible components, and the diagonal

values of matrix Z represent the between-subject reproducibility [183]. The decision

has to be made to only retain a top portion n2 of the singular values just in our
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previous PCA step. The canonical weighted forms interesting group level patterns,

B̂S = (Υ)1,...,n2

CANICA uses a thresholding criterion to choose the value of n2, and the crite-

rion is based on the reproducibility compared to observation noise ÊS extracted in

the previous steps. The maximum canonical correlations of noise can be computed

by sampling a bootstrap distribution of ÊS. Only canonical variables with a prob-

ability p < 0.05 of being generated by noise are selected. Therefore, the retained

canonical components are more reproducible than the observation noise.

Inter-subject reproducible components B are given by the vectors of ΘT whose

corresponding diagonal values in Z are each larger than the significance threshold

set above. The corresponding vector of ΥZ forms the mixing matrix Λ.

The previous two sections estimate the group-level subspace of interest by first

using PCA to determine the maximum stable signal subspace, and then maximizing

the reproducibility of the group level components. Both steps utilize SVD and a

noise model.

2.2.3.3 Group Level Independent Components

The group-level components B span the subspace of maximum correlation be-

tween the subjects. CANICA uses the FASTICA [182] on this subspace to find the

group level independent components A, as shown in the last stage of Fig. 2.7. FAS-

TICA is an iterative implementation of ICA algorithm which attempts to determine
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the independent components with maximally non-Gaussian marginal distribution.

B = MA

where M is a loading matrix that controls the contributions of the ICs included in

A.

The informative signal of the ICA patterns are hidden in the non-Gaussian tail

of the histogram, so it is important to benchmark the Gaussian mode and only keep

the rest of the distribution. This is in line with the idea of ICA which is to extract

maximally non-Gaussian components. CANICA uses a simple null distribution of

Gaussian of unit variance. Similar to the approach in Schwartzman’s work [181], the

null distribution fits the center of the empirical distribution, and CANICA keeps

only the voxels with absolute intensity larger than a threshold that is computed

from the null distribution.

2.2.4 IC Illustration

ICA has proven to be quite valuable because the extracted IC patterns often

match with our prior knowledge of brain anatomy. See Fig. 2.8 for 42 extracted

patterns of ICs by CANICA [183]. Those with a black frame are the ones that could

be related to known intrinsic brain networks, such as: pre-frontal, motor network

and thalamus.

55



Figure 2.8 Illustration of 42 IC maps extracted by CANICA from rest-
ing state dataset. Maps corresponding to anatomically known net-
works are in a black frame, whereas maps likely corresponding to ar-
tifacts are not framed. Extracted brain networks are labeled with the
name of the general structure they can be related to.
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2.3 Regression

CANICA identifies a set of stable and reproducible IC patterns which form a

common basis across the subjects. However, to compare between subject, we need

to derive using their individual fMRI data and the CANICA patterns by making

use of regression techniques.

Linear regression is used to find the linear relationship between target value

y(w, x) and input variables x̄ = (x1, x2, . . . xp) and mixing coefficients w̄ = (w1, . . . , wp)
T

with order p,

y(w, x) = w0 + w1x1 + . . .+ wpxp + ε (2.14)

= x̄× w̄ + ε (2.15)

where ε is Gaussian noise with distribution N(µ = 0, σ = 1).

In practice, there are n pairs of observations of (x̄, y)1,...,n, where n is usually

larger than p for the system to be determined. By stacking n observations of x̄i and

yi, the system can be written in a matrix form, where

Y = Xw + ε (2.16)

where

Y =




y1
y2
...
yn


 w =




w1

w2
...
wp


 X =




x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p
...

...
. . .

...
xn,1 xn,2 · · · xn,p




n×p

ǫ =




ǫ1
ǫ2
...
ǫn




The simplest linear regression model is the ordinary least squares (OLS), which
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Figure 2.9 The process of OLS can be thought as trying to find a
straight line that fits through the input (x-axis) and target (y-axis)
with the minimum differences.

tries to fit a linear model in Eq. 2.16 with coefficients w by minimizing the squared

difference between the observed target Y and the predicted approximation Xw

measured in L2. Mathematically, the objective function can be written as

min
w
||Xw − Y ||22 (2.17)

A simple illustration of the process can be understood as fitting a straight line

between the target and input variables, when there is only one independent variable

x, as shown in Fig. 2.9.

Unsurprisingly, this simple OLS has an explicit solution,

ŵ = (XTX)−1XTY Ŷ = Xŵ = X(XTX)−1XTY = PY

where P = X(XTX)−1XT is the projection matrix onto the space spanned by the

columns of X.
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OLS works most effectively when the columns (regressors) of the design matrix

X are independent of each other. When the regressors are linearly dependent,

the values of the weights ŵ cannot be computed because the matrix XTX is not

invertible. This independence of regressors assumption is not a problem in the fMRI

setting, because the design matrix is formed by the group level spatial patterns

extracted by ICA whose goal is to achieve independence.

2.3.1 Ridge Regression

Ridge regression, also called Tikhonov regularization, is a powerful tool that

copes well with ill-posed problems. When some assumptions of the OLS are violated

and the estimation of regression coefficients w is not achievable, an L2 regularization

term is included in the objective function,

min
w
||Xw − y||22 + α||w||22

where α > 0 is a positive regularization parameter that controls the contribution of

the L2 penalty term, also called shrunkage. The larger the value of α, the greater the

degree of shrinkage and the estimated weights ŵ become more robust to colinearity

of the regressors. The effect of the parameter α is shown in Fig. 2.10, the larger α

is, the smaller the L2 norm of the coefficients.

Ridge regression provides a more robust method than OLS when the problem

is ill-posed. Moreover its complexity is the same as OLS. Given a matrix X of size

(n, p), both methods have cost O(np2) assuming that n ≥ p for an over-determined

setting.
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Figure 2.10 The shrunkage parameter α controls the contribution of
regularization term in the objective function. The larger the α is, the
smaller the output time series is.

The solution to the Ridge regression problem is given explicitly by,

w = (XTX + α2I)−1XTY

which is very similar to that of the OLS, w = (XTX)−1XTy, and with a ridge down

term that agrees with OLS in its limiting form:

• As α→ 0, wridge → wOLS.

• As α→∞, wridge → 0.

2.3.1.1 Choosing an Optimal α

Since the shrinkage coefficient α has a large effect on the resulting solution,

choosing a suitable value for α is very important. This value is often determined

by an ad hoc approach for practical problems. The most obvious solution is to
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try a number of different values of α and pick the one that minimizes the mean

square error MSE, because the goal of the regression is to approximate the target

variables as close as possible. The choice of α is part of a bigger problem called

model selection.

Cross validation is a useful technique to test the performance of a model. The

idea is to split the labeled dataset into multiple subsets based on certain criterion.

The model is trained using part of the subsets only, and the trained model is scored

using the rest of the subsets. The parameter that leads to the best score is regarded

as the winner.

It is common to repeat multiple runs of the training and testing cycle and take

the average of the scores produced by a model for a more robust measure. Each

run, the model is trained by randomly generated training sets. The most common

way of splitting the data is called k-fold Cross Validation (CV). The dataset X and

the label y are splits to K equal size subsets (X1, X2, . . . , XK) and (y1, y2, . . . , yK),

where K is commonly chosen ranging from 4 to 10. Denote the approximation model

that is trained with parameter θ and using K − 1 subsets excluding Xi as f(z, i, θ).

The error for the ith fold is computed as the approximation error for yi,

ε(i, θ) =
1

|Xi|
∑

j=1,...,|Xi|
(yi(j)− f(Xi(j), i, θ))

2

where Xi(j) and yi(j) are the jth elements in training Xi and testing set yi, respec-

tively.

We iterate over all possible i = 1, 2, . . . , K, and compute the approximation

errors ε(i, θ), the averaged error is the score for the model trained with parameter
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θ,

ε(θ) =
1

K

∑

i=1,...,k

ε(i, θ)

the optimal parameter θ∗ is the one that minimizes the K-fold CV,

θ∗ = arg min
θ
ε(θ)

A K-fold CV can be computationally expensive in computation. If the num-

ber of possible parameters is M , K-fold CV trains MK models to find the best

parameters, and the situation is severe if the complexity of the model training is

high. Moreover, in many cases, the size of the dataset is not large enough to be split

into K decent datasets. Under these circumstances, Leave One Out (LOO) is often

preferred. LOO is a special case of K-fold CV when K = 1. Instead of splitting

the entire dataset, and train the model multiple times, LOO provides a convenient

solution for the square error incurred by parameter θ,

ε(θ) =
1

|X|
∑

i=1,...,n

(
yi − (Xw)i

1− Pii
)2

P = X(XTX + α2I)−1XT

where P is the projection matrix which is similar to that of OLS. This result indicates

that instead of training multiple models with different portions of the dataset, LOO

provides a way to train the model once over the entire dataset and the error as θ is

given by the equation above. Replacing the Pii by the average of diagonal elements,

tr(P )
n

, [180],

GCV (θ) =
1

n

||Y −Xw||2
(1− tr(P )

n
)2
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which leads to further simplification that boosts efficiency. The Generalized Cross

Validation (GCV) is the CV method that we use for model selection for the optimal

α shrinkage coefficient, it is conveniently implemented by Python sklearn package.

In the fMRI setting, the above Ridge regression together with the GCV method

are applied to each individual fMRI dataset, with the fMRI dataset as the observa-

tion matrix Y and group level spatial maps as matrix X, the regressor coefficient

matrix w of shape (n timepoints, n voxels) estimated from this process is viewed

as the time course specific to that subject. Each column of this time course corre-

sponds to the temporal activation of a spatial map for that subject. Information

extracted from the correlations of these time courses is used to describe the states

of the brain, and the information helps us distinguish between subjects belonging

to different groups.

2.4 Network Construction

Viewing each spatial pattern as a node in the brain functional network, the

distance between their corresponding time courses as the edge weights, functional

networks are built for each subject. It is equivalent of computing the distance matrix

between each pair of rows of subject-specific time courses and convert this adjacency

matrix to a network.

Conventional fMRI functional analysis implicitly assumes that the relation-

ship between different regions in the brain are static. Therefore their relationship

is extracted by measuring the distance/similarity between the entire time course.
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However, recent studies have shown that the such relationships are ever changing,

certain relationships that were impossible to discover under the static setting were

found in the dynamic setting. Indeed, when studying the dynamics of the func-

tional relationships of the brain, many interesting phenomena start to emerge in

our research.

The most popular and well established dynamic functional analysis tool is

the sliding window method. The relationship between each pair of time series are

exploited only within a window that is controlled by its shape, size, and the overlap

between the windows are determined by its step size. As the window moves along

the time axis, each frame constitutes a network limited by that short period of

time, and dynamic functional analysis focuses on the transition and variability of

the series of windowed networks.

For each subject, within one sliding window, there are nIC number of time

courses. The relations between those time courses within one window represents the

relationship of the nodes in the functional networks. Multiple distance or similarity

measures can be adopted to explore this distance relations. In this work, we prefer to

use authentic metrics because it makes more sense later when we compute distance

based network properties such as shortest path, or MST. L1 metric is used for

distance computation in this work.

More specifically, the time course for each subject can be expressed as a 2D

matrix Tn IC∗n features. This matrix is sliced along the feature axis with a rectangular

window of size window size = 35 and window step = 5. Within the kth slice,

the truncated time course is denoted as Tk with shape (n IC ∗ window size). We
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construct a distance matrix Dn IC∗n IC where Di,j = f(Tki, Tkj) where f(•) is the

chosen L1 norm distance, f(a, b) =
∑
i |ai − bi|. Finally, for subject s has series of

L1 distance matrix Dsk, k = 1, . . . , n windows, where n windows is the number of

windows, determined by the size and step of the window parameters. We construct

a network Gs,k that corresponds for subject s and its kth distance matrix, by treating

the Ds,k as the adjacent matrix.

For subject s, we map a function onto its series of networks, and get a series

of scores z̄ = (h(Gs,1), h(Gs,2), . . . , h(Gs,n windows)). One of the interesting network

properties we measured is the average shortest path, which measures the average

shortest path of all possible pair of nodes of the graph, namely,

a =
∑

(s,t)∈V

d(s, t)

n(n− 1)

where V is the set of nodes of the graph, and the function d(s, t) is the shortest path

between nodes s and t, computed by well know shortest path algorithm Dijkstra or

Floyd-Wallshall. In fMRI setting, when a subject has a smaller average shortest path

score for their functional network, it implies the brain regions are more synchronized

with each other, which in turn implies a healthy and efficient brain state based on

the topological meaning of shortest path.

Due to the nature of the never resting brain and various noise sources, the

L1 distance matrix calculated is never zero. Due to the lack of reasonable bench-

marking research and techniques that are available, we focus on weighted graph

algorithms that can consider a fully connected graph with various weights. Fortu-

nately, such algorithms cover a large set of graph characteristics, such as shortest
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path algorithm, clustering coefficient algorithm and minimum spanning tree (MST).

In addition to the average shortest path algorithm, another network property

we study is the MST, which can be viewed as the backbone of the graph. The MST

can be computed very efficiently via Prim’s algorithm or Kruskal’s algorithm.

2.5 Statistical Tests

For each subject, we conduct a series of network properties. We’d like to com-

pare across subjects using uni-variate statistical tests, meaning the serial scores for

each subject need to be reduced to a single value, in addition to the implicit assump-

tion that the scores for each subject obeys the same underlying distribution. It is

difficult to apply multivariate statistical test in our case, because the misalignment

of the scan time series.

Multiple statistical tests are carried out to evaluate group difference, especially

the difference between the two MTBI types and the HC group. In terms of reducing

the series of scores into one single summarizing number, we proposed two different

methods that focus on different aspect of the dynamics of the functional networks.

1. The easiest method is to take the mean or median of the series, for subject

s who has a series of SP scores: (zs,1, . . . , zs,nwindows
), we compute the mean

zs = 1
nwindows

∑
i=1,...,nwindows

zs,i. This method is essentially equivalent to static

functional analysis, because the averaging operation along the temporal axis

eliminates the dynamics captured by the sliding window method.

2. One reduction method that leads to meaningful group difference discovery is to
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compute the average difference of adjacent pair of scores. For example, subject

s has a series of average SP scores zsi i = 1, . . . , n windows, we compute for

this subject a single score: z = 1
n windows−1

∑n windows−1
i=1 |zs,i−zs,i+1|. This score

captures the rate of change for that subject under the network measures.

These two proposed methods reduce the serial scores (zs,1, . . . , zs,nwindows
) for

subject s into one single value zs. Then we perform three different tests: rank-sums,

t-test, and F oneway/ANOVA to test if group difference exist among the groups.

ANOVA, t-test and rank-sums are all well-known statistical tests that compare

the mean between two or more groups that account for their variability. Extensive

research can be found for each of them. Here we provided a brief introduction to

each of them.

2.5.1 Welch’s t-test

t-test estimates the probability p-value of the likelihood of a null hypothesis

H0. The null hypothesis H0 in t-test assumes that the two groups obey distributions

that have the same mean. The t-test computes a number called the t-statistics,

which is related to the degree of the difference between the means of two sets of

samples that are being compared. The larger the t is, the larger the difference.

However, the t-statistics is not the most useful result, because this number does

not tell us the degree of difference. This is why we also compute the p-value. The

p-values provide an answer to the important question: once a T = t0 is computed, if

the null hypothesis H0 is indeed true, what is the probability of getting a T-statistics
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number at least as large as this? That is Pr{T ≥ t0|H0}. In this sense, the smaller

the p-value is, the less likely that we would find a difference similar to our dataset

by chance, this means the dataset is very rare under the assumption H0, and hence

it is reasonable to argue that there is a difference between the two sets of samples

when small p-values are computed.

The computation of the p-value is usually done by extrapolating pvalues from

values on the discrete pvalue table once the T-statistics and the null hypothesis

are determined, because the actual computation involves estimating the cumulative

density function (CDF) of null distribution, which can be computationally expensive.

Multiple versions of t-tests have been developed for different purposes. The

Welch’s t-test is an adaptation of Student’s t-test, and is intended for use for the

case where the two sets have possible unequal variances. This t-test is adopted

in our work because it is not clear if MTBI will have any unpredictable effects on

the variance of our network properties. More specifically: Welch’s t-test fits the

characteristics of our datasets in the following sense:

1. Each group contains different numbers of subject, ranging from 23 to 30. A

number of tests rely on the sample size being equal. An easy solution is to

repeat multiple rounds of the test, each with equal sample size randomly drawn

from each group, and finally take the mean of the pvalues.

2. Groups are likely to have different variances. We cannot assume that the

MTBI subjects exhibit the same variability as the HC group. However, this

type of test can still be performed to data that might violate this requirement.
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In this case, the power of the test is mitigated. The group difference found

in this case truly shows there is a group difference. If a more powerful and

proper test were performed on the same dataset, an even smaller pvalue would

be found.

After examining the characteristics of our dataset, Welch’s t-test seems to be

the most suitable t-test, because the two group variances cannot be assumed to be

equal, and the group sizes may or may not vary.

The T-statistic to test whether the groups means are different is calculated as:

t =
X1 −X2

sX1−X2

sX1−X2
=

√
s21
n1

+
s22
n2

Here s2 is the unbiased estimator of the variance of the each sample, ni is the

group size. And the pvalue can be computed by extrapolating from the standard

discrete pvalue table.

2.5.2 One-way ANOVA

Similar to the other two tests, one-way ANOVA tests the null hypothesis that

samples in two or more groups are drawn from populations with the same mean

values accounting for their variances.

ANOVA is a omnibus test, meaning that a single test can tell whether there is

a difference among the groups, instead of performing multiple tests for each possible

pairs of groups. The advantages of this type of omnibus test is no group comparisons
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need to be specified, the difference is automatically found if there is one. However,

the downside is that if the null hypothesis is rejected, it is not clear which group or

groups exhibit the difference.

The intuition of ANOVA lies in the CLT, for datasets (Y1, Y2, . . . , YK), where

dataset Yi consists of a number of samples, Yi = (Yi,1, . . . , Yi,ni
) and K is the number

of datasets, and N denotes the total sample size. If the null hypothesis H0 is true,

meaning if the groups means are equal to each other, Ȳi = Ȳj = Ȳ , ∀i, j, where

Ȳ = 1
N

∑
∀i, j Yi,j is the mean of the entire datasets combined, the variances of the

between group means µB should be smaller than the variance of the within group

means µW ,

µB =
1

K − 1

∑

i

ni(Ȳi − Ȳ )2

µW =
1

N −K
∑

∀i, j
(Yi,j − Ȳi)2

µB ≤ µW

The F-statistic is computed as:

F =
µB
µW

This F-statistic assumes K − 1 and N −K degrees of freedom under the null

hypothesis. Under this definition and the implication of the CLT, a large F-statistic

would imply that the samples are drawn from different distributions.

The assumptions of ANOVA are:

1. Sample variable residues are Gaussian distributed.

2. Samples are independent.
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3. Variances of the groups are equal.

4. The samples for a given group are iid normal distribution random variables.

2.6 Analysis Pipeline

We now summarize our analysis pipeline. First a common mask is computed

with threshold level of 0.3 and the mask regions do not need to be connected,

the upper cutoff is 85% and the lower cutoff is 20%. with an opening parameter

of 2 to ensure possible skull regions are excluded. A common mask is computed

and applied to each individual RSFRMI data. CANICA is then applied to the

combination of all fMRI data, with a threshold level of 3, randomly start for 10

times to ensure good results, and the FWHM Smoothing kernel of 6mm. The

number of ICs is chosen to be 40. fMRI data are centered and normalized such that

the standard deviation (STD) of every voxel time series is 1. We then apply the

Ridge regression to each fMRI individually fitting for the best shrunkage parameter

α ranging from 0.1 to 5. The dynamics functional analysis adopts a window size of

30 and a step length of 5, the window shape is rectangular. The function that is used

to compute distance between the internal time series of a subject is the L1 norm. A

weighted undirected functional network is constructed for each time window using

the distance matrix as the adjacency matrix. Graph algorithms such as average

shortest path, clustering coefficient, and MST, are applied to every network. The

serial score of each subject is summarized into a single value using the two methods

described before, focusing on static and dynamics aspect, respectively. Finally, one
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way ANOVA tests the existence of a group differences between the three groups

of subjects, and the t-test examines the detailed pairwise group difference. We

also study the static and dynamic functional connectivity within the sub-networks

such as DMN and Sensorimotor network to gain information about the impact of

MTBI on brain functional connections and what causes the prolonged recovery of

the MTBI-A type. Chapter 3 will provide the overall results, and Chapter 4 will

be devoted to discuss possible explanations, the importance of our findings, and

potential future research directions.
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Chapter 3: Results

3.1 Data Acquisition

The rs-fMRI data used in this study were collected within the first 24 hours

of the subjects’ brain injury. All imaging was performed on a Siemens Tim-Trio

3T MRI scanner using a 12 channel receive only head coil. A high resolution T1-

weighted-MPRAGE (TE = 3.44 ms, TR = 2250ms, TI = 900ms, flip angle = 9,

resolution = 256 256 96, FOV = 22 cm, sl. Thick. = 1.5 mm) was acquired

for anatomic reference with slices parallel to the anterior and posterior commissure

points (AC-PC). For the rs-fMRI scan, T2*-weighted images were acquired using a

single-shot EPI sequence (TE = 30 ms, TR =2000 ms, FOV = 230 mm, resolution

= 64 64) with 36 axial slices (sl. thick. = 4 mm) over 5 min 42 s that yielded 171

volumes. During the resting state scans, extraneous auditory and visual stimuli were

removed, and the participants were instructed to rest peacefully with eyes closed.

The participants consist of 30 healthy controls and 23 MTBI patients without

self-reported post-concussion symptoms 6 months after the incident, and 24 patients

with self-reported post-concussion symptoms 6 months after the injury. Participants

are carefully assigned to match the between-group demographics, such as age, gen-

der, and educational level. These factors are considered because they may have an
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impact on the functional connectivity measurements, and thereby skew the results.

Table 3.1 shows the size, basic demographic information, and the GCS scores for

each group. Informed consent was obtained from each participant prior to scan-

ning. All participants were over the age of 18. Patients were screened and excluded

for history of neurological and psychiatric illness, history of stroke, history of brain

tumors or seizures, and contraindications to MR. Only those patients with an admis-

sion GCS of 13-15 and mechanism of injury consistent with trauma were included

in this study.

The main goal of this research is to identify the differences between two types

of MTBI and the HC using both static and dynamic functional analysis. A close look

at the sub-networks will reveal which brain functionality is impaired during MTBI

recovery. Our work provides insights on why some MTBI patients suffer from long

lasting symptoms while others do not. To achieve these goals, we found that it is

necessary to have finer labeling of MTBI based on their long term recovery status.

The three groups are defined as follows.

1. Healthy Control (HC): healthy subjects with a healthy brain. They are used

in this study as a control group to help identify possible abnormalities with

the two other groups. There are 30 subjects in this set.

2. MTBI-A: subjects with post-concussion symptoms six months after the inci-

dent, they are diagnosed with MTBI and low GCS score in their acute phase.

The post-concussion symptoms are self reported. There are 24 subjects in this

set.
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3. MTBI-B: this group consists of the subjects without post-concussion symp-

toms after six months of the incident. They have scored low on the GCS test.

This category is based on self-reported symptoms. There are 23 subjects in

this set.

Table 3.1 Demographics Information for the Three Groups

TYPE SIZE(person) GCS AGE(MEAN, yr) GENDER EDUCATION(yr)

HEALTHY 30 NA 40.17 18M/12F 15.38

MTBI B 23 9 38.78 15M/8F 14.48

MTBI A 24 8 44.54 19M/5F 14.04

3.2 Interpretation of pvalues and Significance Level

The p-value produced by the statistical test suggests the inconsistency between

the observed data and the assumption that the null hypothesis is true. Statistical

significance, which is the low probability of observing the results that are at least

as extreme current results under the premise that the null hypothesis H0 is true,

is chosen to be α = 0.05, which is a popular choice [12]. Therefore, if the pvalue

derived by a statistical test is less than 0.05, then the result would be considered

statistically significant and the null hypothesis would be false and the alternative

hypothesis H1 would be accepted to be true.
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3.3 Data Centering and Normalization

This section is devoted to justifying certain data pre-processing steps we take

before applying PCA or ICA. Our steps are:

1. Centering and normalizing each individual rs-fMRI data-set before the appli-

cation of regression.

2. Test for group difference in time courses energy after the regression.

The intensity and the variance of the time series can be due to unrelated

factors such as caffeine levels [34]. Each individual masked rs-fMRI data is centered

and normalized before the application of Ridge regression. For each masked voxel,

the mean is removed (µ = 0) and STD is normalized to σ = 1. The normalization

ensures that the results and conclusions are not biased by the original intensities of

the rs-fMRI data.

Ridge regression allows each subject to choose its own optimal shrunkage pa-

rameter α within a pre-specified range between 0.1 to 10. The shrunkage parameter

α affects the magnitude of the resulting time courses as shown in Fig 3.4. A large

α leads to small magnitude of the time courses. The functional network is defined

by the relationships between the time courses, as well as the magnitude of the time

courses. To validate the claim that MTBI has an impact on the functional connec-

tivity due to the relationship between brain regions, it is crucial to establish the

fact that the absolute magnitude of time courses of each group are similar to each

other. ANOVA one way test is carried out for this purpose, to test the potential
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group difference of L1 norm of the time series. For subject s, the average absolute

magnitude of time courses is computed as

Es =
1

n

1

T

∑

i=1,...,n

∑

j=1,...,T

|xs,i,j| (3.1)

where n = 34 and T = 171 is the number and length of meaningful time series that

belongs to subject s, xs,i,j represents the jth element of ith time course of subject s.

Fig 3.1 shows the comparison between the three groups. It is clear that they

have similar and comparable variance. More specifically, the three-group one-way

ANOVA yields a large pvalue p = 0.261, which is too large to reject the null hy-

pothesis H0 : µMTBI−A = µMTBI−B = µHC . Therefore it is highly unlikely that

the magnitudes of the regressed time courses play role in our results and we can

safely conclude that our final conclusion is determined by the inner relationships

between the time courses, which is determined by the inherent characteristics of

brain functional network of different types of subjects.

3.4 Group ICA with CANICA

CANICA identifies the maximal reproducible subspace from the rs-fMRI data

where the group level spatial patterns resides, the set of 40 group level spatial

patterns is presented in Figure 3.2. On the top left corner is their functional labels.

The number of ICs was chosen to be 40 based on popular choices in the literature

as well as similar results produced by multiple different values ranging from 20 to

100.
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Figure 3.1 The average absolute magnitude comparison between the
three groups. The value is computed based on Eq. (3.1). p = 0.261
for ANOVA f-oneway test between the three groups. The small pvalue
argues against the existence of group difference of time courses mag-
nitude.

3.4.1 Number of ICs

Picking the number M of ICs is important in fMRI applications, because

it controls the number of nodes and the granularity of networks to be examined.

A large M will create networks with excessive number of nodes, and each node

corresponds to a small region of the brain, therefore the independence between

different regions is compromised. It is also difficult to detect sufficiently interesting

behaviors of the small regions in this case. On the other hand, having an overly

small value of M will likely coalesce correlated brain regions together. There are

a number of approaches to estimate the value of M, including empirical estimation

and information theoretic approaches such as using the Akaike information criterion
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(AIC), Kullback information criterion (KIC), and the Bayesian information criterion

(BIC) [11]. The popular choice of M in fMRI ranges from 20 to 60 depending on

the data-set so as to obtain the most meaningful brain parcellation according to

the literature [183]. After our numerous attempts of M ranging from 30 to 100, we

conclude that M = 40 best suits our application because of the high quality and

meaningful spatial patterns it yields. In fact only 6 of the ICs out of the 40 ICs are

labeled as noise by neurological experts.

Out of the 40 ICs, 34 components are labeled with meaningful known brain

functionality and 6 of them are labeled as noise. These spatial patterns are computed

by the CANICA hierarchical model with a pre-smoothing FWHM of 6 millimeters

in size and a threshold level of 3. The entire brain functional network is split into

the following list of sub-networks, their illustrations are in Fig. 3.2,

1. V - Visual network, includes: V1: primary visual, V2: visual associated area,

V3: associate visual cortex, V4: associate visual cortex.

2. CC - Cognitive control network, CC1: bilateral dorsolateral prefrontal and

right posterior parietal, CC2: bilateral frontal anterior frontal lobe, CC3: bi-

lateral frontal lobe, CC4: L posterior parietal, CC5: bilateral frontal lobe.

3. D - Default mode network, DMN. D1: PCC, D2: PCC, D3: medial prefrontal,

D4: medial prefrontal cortex.

4. A - Auditory network, consists of cerebral regions that controls auditory pro-

cessing. A1: Left Wernickes, A2: primary/secondary auditory cortex, A3:
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Left Wernickes, A4: auditory cortex, A5: left brocas/Wernickes, A6: right

Wernickes.

5. C - Cerebellum, a brain region that plays an important role in motor control

as well as some cognitive functions such as attention and language.

6. SC - Subcortical network. SC1: putamen, SC2: thalamus.

7. SM - Sensorimotor network. SM1: supplementary motor area, SM2: primary

somatosensory, SM3: mid cingulate.

8. NOISE: 6 extracted spatial patterns are labeled as noise because they do not

overlap with any known brain functionality regions.

We also study the static and dynamic functional connectivity within these

sub-networks and attempt to discover the causes of the group differences between

the two MTBI types and healthy controls.

CANICA produces highly reproducible ICs compared to other group ICA

methods. The 40 group level spatial patterns are shown in Figure. 3.2. The set

of labels can be divided into several categories based on their function, shape, and

position in the template brain. The labeling scheme is similar to what has been re-

ported in related literature [129,183]. This set of spatial patterns serve as common

basis upon which the subjects can be compared.
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Figure 3.2 40 spatial patterns derived by the CANICA technique, the
shape and position of each spatial component is illustrated with three
coordinate cuts. The spatial patterns are labeled by neurological ex-
perts. 34 of them overlap with clearly known brain networks, 6 of 40
are labeled as noise components. The details of the labels can be found
in a list in section 3.4.1.
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3.5 Ridge Regression Results

CANICA derives 40 group level spatial components that serve as the common

basis for subject and group comparison. The functional connectivity is computed

between the time courses of the same subject. The time series is obtained by the

regression technique, resulting in 40 time courses that correspond to the 40 CANICA

extracted spatial patterns. Each time course captures the temporal dynamics of the

corresponding spatial pattern. Individual masked rs-fMRI data is used as the target

matrix Y and the set of group level spatial patterns as the design matrix X. The

Ridge regression finds the relation between X and Y using an objective function

that suppresses the magnitude of the resulting time series. Figure 3.3 shows the

set of time series of a random Healthy Control (HC), each of the 40 time series has

a length of 171 time points, which is equal to the duration of the fMRI sessions.

The time series show similar magnitudes, their pairwise relationships define the

functional network. In the static functional analysis, the whole time series will be

used to compute its distance to another time series. In the dynamic functional

analysis case, the time series will be sliced into a number of shorter time series using

a moving window along the temporal axis, and functional analysis will be performed

on every temporal slice, the series marks the dynamic changes of the functional brain

of the subject.

Ridge regression suppresses the colinearity in the underlying variables by

adding a shrunkage term into the objective function [14], and its contribution is

controlled by a shrunkage parameter α. Figure 3.4 shows the effect of the shrunkage
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Figure 3.3 Each subject is represented by 40 time series derived from
Ridge regression with the rs-fMRI data and the group level spatial
patterns as input. Each time series corresponds to one spatial pattern
and captures the temporal activation of those brain regions.

parameter α has on the resulting time series. The changing values of α controls the

magnitudes of the resulting time series.

The subject-specific time series are derived from their rs-fMRI and the group

level spatial patterns. An illustration of the time series of a randomly chosen healthy

subject is plotted in Figure. 3.3. The time series represents the temporal activation

of the spatial patterns.

The relationships among the time series give rise to the functional network

G = (V,E), where the weight of each edge is the distance between the two time

series corresponding to the end points of the edge. An example of a functional

network is shown in Figure. 3.5. Various distance or similarity measures have been

adopted for fMRI analysis, such as the correlation coefficient, Fisher’s z-score, and

partial correlation computed by precision matrices. The metric we use is the L1
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Figure 3.4 The effect of shrunkage parameter α. As the value of α de-
creases from 5 to 0.1, the regularization term in the objective function
plays a smaller role, and the computed time series magnitude grows.
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norm which has a more straightforward explanation to the distance based network

properties such as SP and MST, and also because it produces consistent results over

different window parameters during multiple tests.

3.6 Functional Brain Network Construction

A static functional brain network is constructed by computing the distance/similarity

between each pair of time series for a given subject, which is then used to construct

the adjacency matrix of the network. In this research, the distance metric is chosen

to be the L1 norm because of its straightforward interpretation and its empirical

superior results. In addition, L1 norm yields stable results under various window

parameters. Figure 3.5 shows the static functional network for a healthy subject,

the edge length is proportional to the distance between the two nodes. The network

forms several local sub-networks, which can constitute the sub-networks with their

own functionalities. The focus on this work is the dynamic functional analysis. The

main difference is that instead of computing a single static functional network, the

entire time series is processed by a sliding window, and a series of networks are

constructed for each window.

3.7 Statistical Tests

We analyze the dynamics of the functional network by constructing a series

of such networks using a moving window. This series of networks produces a series

of measurements zs,1, . . . , zs,nwindows
, for subject s, one for each window. We use

85



Figure 3.5 The graph of the functional network for a random healthy
subject. The network reflects the relationships between the 40 spatial
patterns, the lengths of the edges are proportional to the distances.

window size of 30 with a step length of 10, the shape of the window is rectangular,

which yields similar results with a commonly adopted tapered sliding window.

In the resting state fMRI setting, different network properties represent differ-

ent aspects of the functional network. The shortest path intuitively represents the

information exchange cost between the corresponding regions of the brain. A net-

work with a large shortest path indicates decreased efficiency. On the other hand,

the large local clustering coefficient suggests that the nodes tend to create tightly

knit groups characterized by a relatively high density of ties. Lastly, the total weight

of MST measures the efficiency of broadcast communication among the nodes.

Figure 3.7 displays the summarized value for each subject, using a number

of network properties including the average shortest path and average clustering

coefficient. Three-group ANOVA test pvalue, group mean, and STD are shown in

the same figure.
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The ANOVA pvalues indicate whether there is a difference between the three

groups. A detailed comparison between the three groups is shown in Table 3.2, which

show the t-test pvalues between each pair of groups. The t-tests are performed in

multiple runs, with equally numbers of subjects drawn from each group randomly.

Both methods uncover differences between MTBI-A and the other two groups:

MTBI-B and HC. Figures. 3.6 and 3.7 show the network properties of all subjects,

divided into three groups with different marker styles and colors. Group mean and

STD are also available for groups in the corresponding regions. More importantly,

one way ANOVA test pvalues score for the three groups is annotated on the figure.

The corresponding tables show in detail how each group is numerically different from

each other. Promisingly, most of the measured properties suggest that differences

exist between the groups. A number of measured network properties show group

difference between MTBI-A and the other two groups. In particular, MTBI-A has

larger average weights of MST (p = 0.017) and average clustering coefficient (p =

0.079) than that of HC. More interestingly, MTBI-A has larger average shortest

path, average weight of MST, and average clustering coefficient than the other type

of MTBI, MTBI-B. As for the changing dynamics of the network properties, MTBI-

A type shows slowed dynamics displayed by average shortest path (p = 0.09) than

that of HC, between MTBI-A and MTBI-B, MTBI-A shows reduced dynamics in

average shortest path (0.019) than that of MTBI-B.

The implications are two-fold. First, the separation of the two MTBI types

and the fact that no difference is found between MTBI-B and HC suggests that the

MTBI incident didn’t cause major impairment on the function network for MTBI-B
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(a) Average Clustering Coefficient. (b) Average Weight of MST.

(c) Average Shortest Path.

Figure 3.6 Static Network properties for the subjects. The measured properties

of functional network includes average shortest path, the average weights of the

MST, and the average clustering coefficient of the network. Three groups are dis-

tinguished by their line-style and marker. The ANOVA one-way pvalue indicates

the possibility of the observations happen given the null hypothesis H0 were true.
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(a) Dynamics in Average Clustering Co-

efficient. (b) Dynamics in Average Shortest Path.

(c) Dynamics Average Weight of MST

Figure 3.7 Dynamics of network properties for the subjects.

The dynamics is computed as the average absolute difference between values of

adjacent time points. The dynamics is computed for these network properties:

average clustering coefficient, average shortest path, and the weights of the MST.

Three groups are distinguished by their line style and marker. The ANOVA one-

way pvalue indicates the likelihood of the observation if the null hypothesisH0 were

true, and the mean and STD of each group is annotated within their corresponding

region.
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type. The mixing of the two types of MTBI is likely to prevent meaningful discov-

ery. On the other hand, MTBI-A type is going through a distinct recovery process

that separates itself from both healthy and MTBI-B type. The extended average

shortest path and average clustering coefficient suggest a network that is locally

clustered and lack of long range connectivity, compared to the efficient small world-

ness reported for a healthy brain [80]. Moreover, the larger shortest path implies

distant connections between different nodes of the functional network, and hence

a less coordinated brain, as is reported in other studies [16, 43]. The static results

establish the topological structures of the functional network. The dynamic func-

tional connections of MTBI have not been studied systematically before. Figure 3.7

and tables 3.2f - 3.2d show that functional dynamics of MTBI-A type are changing

slower than that of the healthy control and MTBI-B. The implication of this slow

down is that the MTBI-A patients are suffering from a reduced level of metabolic

process in their brain.

The distinction of MTBI subjects according to their recovery six months after

the incident is the foundation of our research. The different pace in recovery is com-

monly seen when it comes to neurological diseases, since it is usually complicated by

pre-existing psychiatric or substance abuse problems, poor general health, concur-

rent orthopedic injuries, or comorbid problems (e.g. chronic pain, depression, sub-

stance abuse, life stress, unemployment, and protracted litigation). [36–40,48,53,54].

It is also reasonable to argue that the recovery rate is affected by the types of

impact the subject has suffered. MTBI is such a broad concept that it contains

various sub-categories and can be associated with broad physiological and psycho-
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logical symptoms. For these reasons, the long term outcome is strongly related to

recovery pace, and the various types of MTBI. As an example, A recent publication

found no group difference between MTBI and HC [179], the authors focused on the

default-mode network (DMN) and sub-cortical structures with dynamic sliding win-

dow method, followed by group comparison using the ANOVA and the MANCOVA

methods. Their final results, which show no significant group differences, were

based on measures of static or dynamic connectivity within a prior ICN. Reduced

(HC > MTBI patients) static connectivity was observed in the DMN at uncorrected

( p < 0.005) thresholds [179]. Reduced cerebral blood flow was observed in the

study reported [54], which can play an important role in why the reduced functional

connectivity is consistently found in MTBI fMRI studies [41–43].

3.8 Measurements Within the Sub-networks

Studying the possible existence of group differences within the sub-networks

can provide valuable insights on which sub-networks are responsible for the difference

in the whole-brain functional network and also which sub-networks are most affected

by MTBI disorder in a resting brain. We study the set of time series that belong

only to each of these sub-networks, and examine with the same graph-theoretic

methodology to determine if group differences exist within the sub-networks. Note

that by limiting our attention on the sub-networks, we are intentionally ignoring the

connections between these sub-networks, which can be a topic for future studies. The

sub-networks are listed below, and each sub-network is shown in Fig 3.8. Instead
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of showing the ICs of Fig 3.2, this figure shows combined spatial regions for better

illustration.

1. Visual network.

2. Cognitive control network.

3. Default mode network, DMN.

4. Auditory network.

5. Cerebellum.

6. Subcortical network.

7. Sensorimotor network.

As we delve deeper and study the internal gateways of each sub-network, we

can learn which networks are responsible for the group differences between MTBI-

A and the other two groups. It also provides us with an possible explanation on

the effects of MTBI, and may help to answer questions such as “which damaged

functional sub-network is responsible for prolonged MTBI recovery”, “which network

is not affected by MTBI at all”. In essence, the integrity of the functional network

does not imply the well being of the actual brain regions; more concrete anatomical

studies have to be conducted to draw more definitive conclusions. As shown by the

pvalue tables, none of the sub-networks reveal differences between MTBI-B and HC,

which is consistent with the global brain result we obtained in the previous sections.

Difference between MTBI-A and other two groups are found in the auditory network,
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Figure 3.8 Illustrations of sub-networks: visual, auditory, DMN, senso-
rimotor, subcortical, and cerebellum. These sub-network are composed
of the ICs derived from CANICA and labeled by their functionalities:
V, C, A, CC, D, SC, SM.
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visual network, sensorimotor functional network, and DMN network, whereas the

rest of the subnetworks seems to be unaffected by MTBI, and they are: cerebellum,

subcortical and cognitive control network.

The Ridge regression derives 40 time series matching the group level spatial

pattern computed by CANICA, for each subject. The subgraph of each sub-network

is defined by the relationship between the time courses of the endpoint ICs belonging

to the subnetwork. We limit our attention to the sub-networks and attempt to find

similar group differences in the sub-networks.

The graph theoretic algorithms applied to each sub-network are: average short-

est path, average clustering coefficient, and average weight of the MST. Then we

summarize the network measurements along the sliding windows to a single mea-

sure, using either the static method or the dynamic method. Finally, independent

t-test is performed to each sub-network for each possible pair of groups.

The results of the auditory sub-network are summarized in Table 3.3. MTBI-

A type shows functional abnormalities from HC and MTBI-B. Compared to HC,

MTBI-A has a larger average shortest path (p = 0.074), and slowed dynamics of

average shortest path (p = 0.053). The difference between MTBI-A and MTBI-B is

more obvious. MTBI-A exhibits larger weights of MST (p = 0.016), larger average

shortest path (p = 0.013) and slowed dynamics of average shortest path (p = 0.061).

The auditory sub-network is affected by A-type MTBI, the sub-network efficiency

is reduced compared to HC and b-type MTBI. There is no statistical difference

between MTBI-B and HC using one graph-theoretic measures.
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Results of the DMN network are included in Table 3.4. DMN is a resting

state network that is commonly related to brain disorders. Numerous studies have

reported to observe either increased or reduced functional connectivities in DMN

sub-network for patients with brain pathologies such as: Schizophrenia, autism,

and Alzheimer’s diseases. In our sub-network study, we find substantial difference

between the two type of MTBI. Indicated by the static and dynamic measurements

of average shortest path, MTBI-B has efficient and more active functional brain, its

static average shortest path is smaller than that of MTBI-A (p = 0.036) and the

changing frequency of shortest path is faster (p = 0.03).

Results for Sensorimotor network are shown in Table 3.5. Sensorimotor net-

work is commonly impaired by MTBI disorder, the lack of orientation and balancing

are commonly observed symptoms of MTBI patients. The difference between the

two types of MTBI is again revealed by the analysis of this sub-network, p = 0.053

for average weight of MST, p = 0.001 for average clustering coefficient. MTBI-A also

differs from HC group on average clustering coefficient (p = 0.036) and dynamics of

shortest path (p = 0.026).

The results for visual networks can be found in Table 3.6. The difference

between MTBI-A and HC is prominent in this sub-network. HC group has a smaller

weight of MST (p = 0.047) and smaller average shortest path (p = 0.056). These

differences indicate the superior efficiency of the functional network of HC. The

information exchange is more efficient and cheaper for HC group. MTBI-A group

is likely to experience difficulty in visual processing.

95



Results for cerebellum regions are shown in Table 3.7. Cerebellum plays an

important role in motor control and other movement-related functionalities. Al-

though it does not initiate movement, it is in charge of coordination, precision, and

accurate timing by processing the input from the sensory systems of the brain. No

difference among the three groups are found by analysis of this sub-network, possible

explanations will be discussed later in this section.

Results for cognitive control network are shown in Table 3.8. Cognitive control

involves brain regions related to cognitive processes, including working memory,

reasoning, task flexibility, and problem solving as well as planning and execution [10].

No group difference is found by cognitive control sub-network analysis.

Finally, the results for subcortical network are shown in Table 3.9. Similar

to cerebellum and cognitive control network, no group difference is revealed by our

analysis on this functional sub-network.

Four sub-networks our of the sense show group differences similar to the re-

sults of the whole-brain analysis. These are the auditory, visual, sensorimotor, and

DMN networks. They are highly related to the most common MTBI symptoms,

such as blurry vision, difficulty in balancing and orientation, and ringing in the

ear [18–22,24]. Research has shown that the MTBI groups perform lower on the full

and secondary scales for attention and response accuracy on the integrated visual

and auditory (IVA), continuous performance test (CPT) and Neuro-psychological

Impairment Scale (NIS) [23]. More specifically, the MTBI groups perform worse

than HC on reaction time, lack of attention, impulsivity, and variability on reaction

time. On the NIS, the MTBI group reports more neuro-psychological symptoms
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than the healthy control group. Early research [25, 26] has shown that disrupted

white matter activities have been detected across certain networks in DMN, senso-

rimotor network, and attentional and frontal network. An animal study [27] on rats

has also reported that the sensorimotor functionality is impaired when the subject

rat underwent MTBI. Among all the sub-networks that showed differences between

the three groups, DMN has been reported most frequently to be related to MTBI in

resting state fMRI research. Another study [42] found that there are substantial re-

ductions of connectivity in the PCC and parietal regions and increased connectivity

around the MPFC in patients with MTBI (p < .01). The reduced posterior con-

nectivity correlates positively with neuro-cognitive dysfunction, while the increased

frontal connectivity correlates negatively with post-concussion symptoms. Another

study focused on the sub-acute phase of MTBI [43], the authors found an associa-

tion between MTBI and the reduction of connection strengths within DMN in the

posterior cingulate and lateral parietal cortices. Their work suggests the existence

of brain alterations in the resting state default mode network in the sub-acute phase

of MTBI.

It is notable is that the other three sub-networks: cognitive control, cere-

bellum, and subcortical networks appear to be irrelevant to MTBI, because these

networks seem to be similar in the three groups. This result conflicts with the

obvious cognitive behaviors exhibited by MTBI subjects. Studies suggest that indi-

viduals who have experienced a concussion or mild traumatic brain injury (MTBI)

show deficits in cognitive control [17]. The absence of group difference is possibly

due to the nature of resting state study and the high order functionalities of these
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sub-networks. For example, the cerebellum is related to motion in a way that it

does not initiate motion, but it fine tunes the balancing and timing. These sub-

networks, especially cognitive control network are expected to be turned off during

the resting state study. Most cognitive studies require the subject to perform certain

cognitive tasks or processes in order to evaluate their cognitive performance. In the

resting state study, any cognitive process is undesirable and prohibited. Although

it is highly likely that the patients cannot entirely empty their mind during the

5 minutes fMRI scan, the thinking should happen rarely and intermittently, and

therefore should not be a dominant component of the rs-fMRI signal.

3.9 State Analysis

In research [4, 5], the k-means clustering technique is applied to the distance

matrices computed in each window to identify a small number of functional con-

nectivity (FC) states, which is analogous to the EEG micro-states: short periods

during. which scalp topography remains quasi-stable [3].

The states are identified as the centroids of the k-means clustering applied on

the distance matrix calculated within each window; those distance matrices reflect

the most typical and common states the brain goes through to carry out various

cognitive processes. By studying the characteristics of each brain state, and the

distribution of the time each group spends in each state, we may find possible

explanations of the static and dynamic characteristics of the MTBI-A type.

Compared to the study using state analysis on Schizophrenia [5], in which the
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decision on the number of clusters or typical states is made using the elbow crite-

rion on the ratio of within and between cluster distances, our study uses Bayesian

Information Criterion (BIC) to determine the value of k, the number of clusters.

BIC assumes a likelihood model, which can be constructed by viewing the k-means

clustering as a Gaussian mixture model.

The formula of BIC is defined in Eq. (3.2):

BIC = −2 ln p(x|θ̂,M) + k(lnn− ln 2π) (3.2)

where ln p(x|θ̂,M) is the maximum value of the marginal likelihood function

given the model M and the maximizing parameter θ̂. The parameter k is the number

of free parameters to be estimated, n is the number of data points included in the

dataset x.

BIC can also be rewritten as an increasing function of the error variance σ2
e

and of k [2]. Thereby it is preferable to pick the model with the lowest BIC value,

which is k = 5 in Fig. 3.9.

The states are defined by the distance matrix calculated within each sliding

window because it uniquely determines the connection and topology of the func-

tional network during that short period of the window time. According to the BIC

measurements in Fig 3.9, five typical states are extracted from all the distance ma-

trices from every subject and every sliding window. These centroid states can be

used to label all the other states based on their memberships in the k-means cluster-

ing. The individual functional activities can be described as a temporal transition
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Figure 3.9 BIC scores with various numbers of clusters k. The k with
the lowest BIC is most preferable.

between the centroid states. The three groups do not spend an equal amount of

time in each state. Each one of them has its own ’favorite’ state and ’least favorite’

state, and the characteristics of those states explain the behavior of the type. The

characteristics of a state is defined as follows,

1. A: Average connectivity strength in auditory sub-network.

2. V: Average connectivity strength in visual sub-network.

3. D: Average connectivity strength in DMN sub-network.

4. SM: Average connectivity strength in sensorimotor sub-network.

5. SC: Average connectivity strength in subcortical sub-network.

6. CC: Average connectivity strength in cognitive control sub-network.

7. C: Average connectivity strength in cerebellum sub-network.

8. ASP: Average shortest path length of the whole functional network.
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9. ACC: Average clustering coefficient of the whole functional network.

For ease of comparison of the states, we compute the rank from the raw values,

with 1 being the smallest and 5 being the largest for the five states. The ranks and

the amount of time each type stays in is summarized in Table 3.10. State2 is

characterized by average connectivity strength in all sub-networks, as well as the

values of network measurements. All three groups spend similar amount of time in

state2, around 34%.

State5 and state3 show the strongest and weakest connections within all sub-

networks, respectively.

State5 also has the smallest average shortest path and a low clustering coeffi-

cient, which reflects high efficiency transmission between the regions. MTBI-A type

spend significantly less time in this state compared to the two other groups (10.0%

compared to 18.0% and 17.4%).

On the contrary, state3 displays the decreased link efficiency and a high ten-

dency of local cliqueness. MTBI-A visits state3 only half as frequently as MTBI-B

and HC group, thereby it spends more time in states 1 and 2, and explains why

MTBI-A has reduced transition between the states..

Finally state1 and state4 have comparable network measurements somewhere

between those of state3 and state5. Compared to state4, state1 has reduced connec-

tivity in sub-network: auditory, DMN, visual, sensorimotor, and cognitive control,

the same results as in the sub-network analysis. Those are the sub-networks that

are found affected by the MTBI disorder. In addition, state1 is characterized by
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reduced clustering coefficient and large shortest path. Together they indicate dis-

ruption of the small world topology. It is also interesting that MTBI-A stays in this

state for the majority of its time, 35.0%, twice as much as HC and MTBI-B group.

The fact that MTBI-A has two major states: 1 and 2, to a certain degree, explains

why MTBI-A has reduced functional connectivity and slowed dynamics.

Chapter 4: Conclusions and Future Directions

This study uses an analysis pipeline that includes stages of pre-processing

steps, noise removal, advanced ICA, cross validating Ridge regression, graph-theoretic

analysis, and statistical tests. By identifying independent brain regions and study-

ing their functional relationships to model the brain as a functional network, this

work is able to detect both static and dynamic differences between the group pairs:

MTBI-A and MTBI-B, MTBI-A and HC, using their brain scans within the first

24 hours of the brain injury. This is a new finding that has not been previously

explored, to the best of our knowledge.

A major contribution of our work is to identify a functional brain basis to

distinguish MTBI-A and MTBI-B groups based on the patient’s symptoms after 6

months. This new understanding of MTBI is supported by a combination of facts:

1) there is no universally accepted definition of MTBI, 2) MTBI can be caused by

various reasons and has demonstrated a broad spectrum of symptoms, 3) differences

102



in recovery pace are commonly reported but they are still controversial [31, 52, 53].

It is possible that prior research did not reveal dynamic differences between HC and

MTBI, due to absence of the long term tracking of the subjects. According to our

results, the two types of MTBI showed significant differences in their brain functions.

From what we can tell, there are no significant functional difference between MTBI-

B and HC, using either static or dynamic functional analysis. However, group

differences between A-type MTBI and the other two groups are detected by several

network properties and tests. The uniqueness of MTBI-A suggests that subjects go

through a different recovery process than those of MTBI-B, and the divergence can

be detected within the first 24 hours of the brain injury, because we use acute stage

MTBI brain scans. Persisting post-concussional symptoms which last 3− 6 months

after the injury may have different acute symptoms (albeit the same initiating event).

Determining the prevalence of lasting symptoms is challenging. Around 75% MTBI

patients’ symptoms are resolved within the first 3 months, but 5− 15% of patients

suffer post-concussional symptoms 12 months after the initial injury [29, 53]. The

etiology that prolongs the recovery of MTBI-A may not be present in the cases

of MTBI-B. Not all MTBI subjects are created equal, various brain regions can be

impaired during the accident and lead to comparable symptoms. The key differences

between MTBI-A and MTBI-B types were not observable from their behavioral

studies, nor are they predictable by the GCS tests [30]. Nevertheless, the underlying

impaired brain functionality seems to alter their rs-fMRI functional network [31,43].

Static analysis discovers the relationship between the prolonged recovery pro-

cess of MTBI-A type and the disruption of the small world topology of functional
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network. The functional network of a healthy brain assumes small world topol-

ogy [72, 80], which is characterized by a dense local clustering yet a short path

length between any distant pair of nodes because of the existence of a few long-

range connections. This type of graph topology has proven to be an attractive

model for many empirical graphs, such as social networks, internet, and gene net-

works, because of its architectural advantage [84]. It is commonly used to model the

organization of brain functional network because this topology can facilitate both

segregated/specialized and distributed/integrated information processing [84].

The whole-brain functional network of MTBI-A is characterized by locally

clustered nodes, while lack of long range functional connections of their functional

networks measured within 24 hours of the initial injury, (p < 0.03). The enlarged

“traveling distance” of the functional network is in line with what has been re-

ported in related literature. Johnson [43] reported that patients with a concussion

showed a reduced number of connections and strength of connections in the poste-

rior cingulate and lateral parietal cortices within the resting state DMN. Moreover,

connections between the left dorso-lateral prefrontal cortex and left lateral parietal

cortex showed a significant reduction in magnitude as the number of concussions

increased. Regression analysis also indicated an overall loss of connectivity as the

number of MTBI episodes increased.

A recent publication of Mayer [179] reported reduced (HC > MTBI patients)

static connectivity was observed in the DMN at uncorrected ( p < 0.005) thresholds.

Moreover, a trend (p = 0.07) for decreased dynamic connectivity in patients across

all ICN was observed using spatially invariant analyses (DisCo-Z).
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The reduced connection in functional networks is associated with more expen-

sive information exchange, delayed response to external stimuli. Because complex

cognitive processes are possible the product of information transmission between dif-

ferent functional regions of the brain [130] . The disruption of the normal network

topology can undermine the high order functional processes and can be exhibited

as the difficulty in organizing thoughts for MTBI patients. The reduced functional

connectivity reflects the obstructions in the communication paths [1], due to the

impact of MTBI disorder.

Using dynamic functional analysis, MTBI-A type is characterized by its slowed

change rate from a time window to the next window. Specifically, the value of av-

erage shortest path is found be change slower than that of MTBI-B and HC groups

along the window. Shortest path may indicate the efficiency of the functional net-

works, and the dynamics of shortest path may reflect the flexibility of the network.

The brain functional network is ever-changing and ever-updating, the changing re-

lationship between the regions facilities and supports the higher order cognitive

processes [130]. The inability to change fast between different functional states may

relate to the mitigated cognitive and emotional impairments of MTBI-A type of

patients.

The dynamic functional analysis suggests that MTBI-A group may suffer from

slowed metabolic processes compared to HC and MTBI-B groups. This claim is in

line with the frequently reported MTBI symptoms [53, 171]. Studies [172–175, 178]

have shown that age plays as an important factor in the MTBI recovery process,

its implication is even stronger than that of the CT results, and aging in turn has
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a strong effect on the brain metabolism [176, 177]. These links between slowed

metabolism and persisting post-concussional symptoms are potential reasons for a

prolonged recovery process of MTBI-A type. More explicit connection between the

prolonged MTBI recovery and slowed brain metabolism is an interesting topic for

future study.

Different results have been reported by Mayer [179] that there is no association

discovered between abnormalities in functional network within DMN and MTBI

during the semi-acute phase of recovery- our results of the well-recovered group

MTBI-B matches their results. Neither static or dynamic functional analysis found

the differences between MTBI-B and HC groups. The discrepancy can be caused by

the following reasons, 1) our data-set contains 77 subjects in total, which produces

more convincing statistical test results than a subset of research with relatively

small data-sets (less than 20). 2) Our research is the first to adopt the concept

of separation of MTBI patients based on their long term recovery outcome. This

can make a difference because the combination of MTBI-A and MTBI-B groups

is more similar to HC than MTBI-A alone. 3) Our methods remove noise and

improves SNR aggressively, in addition to a number of noise removal procedures in

the pre-processing stage, masking before ICA and the adopted CANICA method

can account for our results. 4) Finally, our method is data driven that models the

whole brain, whereas the majority of previous work mainly focused on the DMN

and other well known seed regions.

In addition to whole brain analysis, subgraph formed by sub-networks with dif-

ferent brain functionalities are investigated. Out of the seven sub-networks, MTBI-
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A shows functional abnormalities in auditory, visual, sensorimotor and DMN, when

compared to HC and MTBI-B. Again, the well recovered B-type MTBI group dis-

plays no difference to HC group. These sub-networks are found to be related to

the most common symptoms of MTBI, such as ringing in the ear, difficulty in bal-

ancing, and blurred vision [18–22, 24]- they are also the most explicit symptoms

of MTBI. These sub-networks are also the ones that are most consistently studied

during resting state study. It has been suggested that these sub-networks maintain

certain activations when the brain is at rest. Our results suggest that these sub-

networks are most susceptible to MTBI disorder, which confirms the results of many

non-functional studies of the MTBI disorder.

A study [7] that compares the visual sensitivity of children with MTBI to

that of matched non-injured children and to assess the evolution of visuo-perceptual

performance over time. The processing threshold for complex visual stimuli were

significantly affected for the MTBI group, and this affect last as long as 12 weeks

after the injury. Their finding suggests that MTBI children have selective visual

deficits for high-order information processing, and this deficits persists over a long

period (12 weeks).

Similarly, another study [6] investigates the relationship between the visuospa-

tial orientation of attention and obstacle avoidance during gait in MTBI patients

individuals over a month post-injury. They observe that MTBI patients present

impairment in orient attention in space immediately after the injury, they also have

statistically more obstacle contacts than the healthy controls. They conclude with

the discovery of the association between MTBI with spatial attention deficits and
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the ability to avoid obstacles during movement.

The fMRI study conducted by [9] examines the association between semi-acute

phase of MTBI and certain cognitive attentional, memory deficit. They conclude

that MTBI patients who have difficulty in disengaging and reorienting auditory

attention also show hypo-activation abnormalities in various regions including sen-

sorimotor, auditory and DMN sub-networks. Functional connectivity abnormalities

related to multiple sensorimotor regions are observed in a study [8] with children

participants. They suggest that the altered connectivity may be related to the

participants’ impaired sensorimotor performance tests. On the other hand, the con-

clusion on the other three sub-networks which do not show group differences is hard

to interpret, as these networks are related to high-order functional processes, and

also because they are generally seems to be turned off during the resting state study.

Finally, the state analysis identifies five states using k-means clustering tech-

nique. MTBI-A type spends significantly less time in state5 with the strongest

functional connectivity (10.0%). Compared to HC and MTBI-B, MTBI-A stays in

state1 for 35.0% of its total time, and it is a state with high-degree disruption of

small world topology. The distribution of how MTBI-A spends its time explains

why it has reduced strength in functional connectivity, as well as reduced dynamics

in multiple network properties.

Our findings implies the MTBI disorder reveals itself in sub-networks such

as auditory, visual, sensorimotor and DMN when the brain is at rest. Without

conducting behavior tests, these biomarkers are able to provide information on the

functional disorder of the patients due to MTBI.
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In conclusion, by studying the static and dynamic functional network of the

whole brain as well as the region with known functionality, we are able to find a

number possible bio-markers that tell apart MTBI patients who will have prolonged

concussional symptoms from those who will recover quickly within 6 months. To

the best of our knowledge, our study is the first functional study to find differences

between different types of MTBI, and suggest their recovery pace. It is also the

first to identify the dynamic functional difference between MTBI and healthy con-

trol. Our finding is important to the separation of MTBI subjects according to

their self-reported 6 months recovery status. We advocate that brain recoverable

disorder functional study should pay more attention to the recovery rate, which in-

dicates the possible different pathologies of the common symptoms on the surface.

Our results support the static functional hypo-connection reported in the literature.

Furthermore, the slow dynamics in multiple network measurements suggests that

the prolonged recovery may be related to slowed brain metabolism. Finally, the

value of the bio-markers extracted within 24 hours after the injury are related to

the subject’s 6 month recovery. These bio-markers can be valuable to help clinicians

to create the best recovery course of action for MTBI patients.
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Table 3.2 pvalue of Group Comparisons for Network Properties

(a) Average Weight of MST

HC M-B M-A

HC 1 0.718 0.018

M-B 0.64 1 0.021

M-A 0.017 0.02 1

(b) Average Shortest Path

HC M-B M-A

HC 1 0.747 0.139

M-B 0.721 1 0.031

M-A 0.142 0.031 1

(c) Average clustering Coefficient

HC M-B M-A

HC 1 0.73 0.067

M-B 0.763 1 0.04

M-A 0.07 0.039 1

(d) Dynamics in Average Clustering Coef-

ficient

HC M-B M-A

HC 1 0.738 0.197

M-B 0.714 1 0.097

M-A 0.148 0.094 1

(e) Dynamics in Average Shortest Path

HC M-B M-A

HC 1 0.786 0.01

M-B 0.785 1 0.02

M-A 0.008 0.019 1

(f) Dynamics in Weights of MST

HC M-B M-A

HC 1 0.568 0.228

M-B 0.58 1 0.135

M-A 0.206 0.136 1
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Table 3.3 pvalues of Auditory Network

(a) Average Weight of MST

HC M-B M-A

HC 1 0.385 0.12

M-B 0.393 1 0.016

M-A 0.108 0.016 1

(b) Average Clustering Coefficient

HC M-B M-A

HC 1 0.616 0.585

M-B 0.645 1 0.31

M-A 0.519 0.31 1

(c) Average Shortest Path

HC M-B M-A

HC 1 0.352 0.074

M-B 0.318 1 0.013

M-A 0.008 0.014 1

(d) Dynamics of Average shortest path

HC M-B M-A

HC 1 0.566 0.053

M-B 0.608 1 0.061

M-A 0.051 0.059 1

(e) Dynamics of Average Clustering Coef-

ficient

HC M-B M-A

HC 1 0.769 0.358

M-B 0.811 1 0.387

M-A 0.291 0.385 1
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Table 3.4 pvalues for DMN Sub-Network

(a) pvalues of Average Weight of MST

HC M-B M-A

HC 1 0.725 0.101

M-B 0.801 1 0.116

M-A 0.129 0.123 1

(b) pvalues of Average Clustering Coeffi-

cient

HC M-B M-A

HC 1 0.519 0.373

M-B 0.552 1 0.795

M-A 0.343 0.806 1

(c) pvalues of Average Shortest Path

HC M-B M-A

HC 1 0.745 0.134

M-B 0.752 1 0.036

M-A 0.108 0.034 1

(d) pvalues of Dynamics of Average Short-

est Path

HC M-B M-A

HC 1 0.441 0.176

M-B 0.456 1 0.03

M-A 0.147 0.031 1

(e) pvalues of Dynamics of Average Clus-

tering Coefficient

HC M-B M-A

HC 1 0.341 0.11

M-B 0.35 1 0.388

M-A 0.109 0.381 1
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Table 3.5 pvalues for Sensorimotor Sub-Network

(a) pvalues of Average Weight of MST

HC M-B M-A

HC 1 0.376 0.212

M-B 0.407 1 0.053

M-A 0.229 0.056 1

(b) pvalues of Average Clustering Coeffi-

cient

HC M-B M-A

HC 1 0.316 0.036

M-B 0.266 1 0.001

M-A 0.044 0.001 1

(c) pvalues of Average Shortest Path

HC M-B M-A

HC 1 0.745 0.509

M-B 0.752 1 0.249

M-A 0.536 0.241 1

(d) pvalues of Dynamics of Average Short-

est Path

HC M-B M-A

HC 1 0.217 0.026

M-B 0.195 1 0.333

M-A 0.027 0.36 1

(e) pvalues of Dynamics of Average Clus-

tering Coefficient

HC M-B M-A

HC 1 0.691 0.13

M-B 0.652 1 0.286

M-A 0.123 0.3 1
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Table 3.6 pvalues for Visual Sub-network

(a) pvalues of Average Weight of MST

HC M-B M-A

HC 1 0.507 0.047

M-B 0.494 1 0.117

M-A 0.044 0.123 1

(b) pvalues of Average Clustering Coeffi-

cient

HC M-B M-A

HC 1 0.442 0.081

M-B 0.462 1 0.238

M-A 0.094 0.221 1

(c) pvalues of Average Shortest Path

HC M-B M-A

HC 1 0.569 0.056

M-B 0.51 1 0.172

M-A 0.059 0.171 1

(d) pvalues of Dynamics of Average Short-

est Path

HC M-B M-A

HC 1 0.424 0.8

M-B 0.448 1 0.332

M-A 0.773 0.318 1

(e) pvalues of Dynamics of Average Clus-

tering Coefficient

HC M-B M-A

HC 1 0.175 0.654

M-B 0.199 1 0.374

M-A 0.666 0.35 1
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Table 3.7 pvalues for Cerebellum Sub-network

(a) pvalues of Average Weight of MST

HC M-B M-A

HC 1 0.647 0.464

M-B 0.624 1 0.805

M-A 0.475 0.844 1

(b) pvalues of Average Clustering Coeffi-

cient

HC M-B M-A

HC 1 0.151 0.222

M-B 0.177 1 0.873

M-A 0.178 0.879 1

(c) cerebellum Network, pvalues of Aver-

age Shortest Path

HC M-B M-A

HC 1 0.611 0.767

M-B 0.667 1 0.745

M-A 0.776 0.712 1

(d) pvalues of Dynamics of Average Short-

est Path

HC M-B M-A

HC 1 0.742 0.539

M-B 0.822 1 0.484

M-A 0.567 0.474 1

(e) pvalues of Dynamics of Average Clus-

tering Coefficient

HC M-B M-A

HC 1 0.399 0.604

M-B 0.378 1 0.658

M-A 0.613 0.643 1
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Table 3.8 pvalues for Cognitive Control Sub-network

(a) pvalues of Average Weight of MST

HC M-B M-A

HC 1 0.652 0.786

M-B 0.608 1 0.51

M-A 0.774 0.514 1

(b) pvalues of Average Clustering Coeffi-

cient

HC M-B M-A

HC 1 0.541 0.7

M-B 0.503 1 0.307

M-A 0.721 0.301 1

(c) pvalues of Average Shortest Path

HC M-B M-A

HC 1 0.706 0.735

M-B 0.695 1 0.861

M-A 0.752 0.864 1

(d) pvalues of Dynamics of Average Short-

est Path

HC M-B M-A

HC 1 0.71 0.389

M-B 0.713 1 0.272

M-A 0.416 0.271 1

(e) pvalues of Dynamics of Average Clus-

tering Coefficient

HC M-B M-A

HC 1 0.59 0.358

M-B 0.637 1 0.66

M-A 0.32 0.688 1
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Table 3.9 pvalues for Subcortical Sub-network

(a) pvalues of Average Weight of MST

HC M-B M-A

HC 1 0.667 0.541

M-B 0.692 1 0.338

M-A 0.554 0.343 1

(b) pvalues of Average Shortest Path

HC M-B M-A

HC 1 0.613 0.512

M-B 0.726 1 0.345

M-A 0.558 0.362 1

(c) pvalues of Dynamics of Average Short-

est Path

HC M-B M-A

HC 1 0.716 0.714

M-B 0.696 1 0.865

M-A 0.766 0.875 1

Table 3.10 State Analysis: Rank and Time Consumption of Each State

A C CC D SC SM V ACC ASP HC M-A M-B

state1 4 3 4 4 3 4 4 5 4 16.4% 35.0% 13.6%

state2 2 2 2 2 2 2 2 3 2 32.0% 34.4% 35.7 %

state3 5 5 5 5 5 5 5 2 5 11.5% 5.3 % 11.3 %

state4 3 4 3 3 4 3 3 1 3 22.0% 15.3% 22.0%

state5 1 1 1 1 1 1 1 4 1 18.0% 10.0% 17.4%
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