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As collective motion plays a crucial role in modern day robotics and engi-
neering, it seems appealing to seek inspiration from nature, which abounds with
examples of collective motion (starling flocks, fish schools etc.). This approach to-
wards understanding and reverse-engineering a particular aspect of nature forms the
foundation of this dissertation, and its main contribution is threefold.

First we identify the importance of appropriate algorithms to extract param-
eters of motion from sampled observations of the trajectory, and then by assuming
an appropriate generative model we turn this into a regularized inversion problem
with the regularization term imposing smoothness of the reconstructed trajectory.
First we assume a linear triple-integrator model, and by penalizing high values of
the jerk path integral we reconstruct the trajectory through an analytical approach.
Alternatively, the evolution of a trajectory can be governed by natural Frenet frame
equations. Inadequacy of integrability theory for nonlinear systems poses the ut-
most challenge in having an analytic solution, and forces us to adopt a numerical
optimization approach. However, by noting the fact that the underlying dynamics
defines a left invariant vector field on a Lie group, we develop a framework based
on Pontryagin’s maximum principle. This approach toward data smoothing yields
a semi-analytic solution.

Equipped with appropriate algorithms for trajectory reconstruction we analyze
flight data for biological motions, and this marks the second contribution of this
dissertation. By analyzing the flight data of big brown bats in two different settings
(chasing a free-flying praying mantis and competing with a conspecific to catch a
tethered mealworm), we provide evidence to show the presence of a context specific
switch in flight strategy. Moreover, our approach provides a way to estimate the
behavioral latency associated with these foraging behaviors. On the other hand,
we have also analyzed the flight data of European starling flocks, and it can be
concluded from our analysis that the flock-averaged coherence (the average cosine of
the angle between the velocities of a focal bird and its neighborhood center of mass,
averaged over the entire flock) gets maximized by considering 5-7 nearest neighbors.
The analysis also sheds some light into the underlying feedback mechanism for
steering control.



The third and final contribution of this dissertation lies in the domain of control
law synthesis. Drawing inspiration from coherent movement of starling flocks, we
introduce a strategy (Topological Velocity Alignment) for collective motion, wherein
each agent aligns its velocity along the direction of motion of its neighborhood
center of mass. A feedback law has also been proposed for achieving this strategy,
and we have analyzed two special cases (two-body system; and an N -body system
with cyclic interaction) to show effectiveness of our proposed feedback law. It has
been observed through numerical simulation and robotic implementation that this
approach towards collective motion can give rise to a splitting behavior.
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Chapter 1: Introduction

1.1 Background and Motivation

Collective motion plays a pivotal role in modern robotics and engineering, es-

pecially in the area of search and rescue missions (Andriluka et al. [2010]; Liu &

Nejat [2013]; Marques et al. [2006]), surveillance (Ahmadzadeh et al. [2006]; Bethke

et al. [2009]; Harmon [1987]; Kingston et al. [2008]; Li et al. [2008]; Quigley et al.

[2005]), environmental monitoring (Dunbabin & Marques [2012]; Elfes et al. [1998];

Leonard et al. [2010]; Pinto et al. [2013]; Tokekar et al. [2010, 2013]) etc. On the other

hand, examples of collective motion can be observed in a variety of natural settings.

Fish schools [Gautrais et al., 2009], locust migratory bands [Bazazi et al., 2008],

pigeon flights [Nagy et al., 2010], starling murmurations [Ballerini et al., 2008b] -

examples are ubiquitous in nature. The reasons for living in a group are relatively

well studied, and researchers have attributed a range of evolutionary factors be-

hind group motion, including better defense against predator attack [Carere et al.,

2009], energy efficient movement due to aerodynamic (Cutts & Speakman [1994];

Weimerskirch et al. [2001]) or hydrodynamic [Herskin & Steffensen, 1998] coupling,

information sharing [Miller et al., 2013], cooperative food collection [Beekman et al.,

2001], and others. However, the individual-level interaction mechanisms, that give

1



rise to group level collective behavior, are not yet well-understood. Therefore, it

seems to be a relevant effort to explore the underlying strategies and control laws

governing collective motion, because it is not only beneficial from the perspective

of engineering adaptation and exploitation, but it will also further our basic sci-

entific understanding of nature. Also, with recent advances in bio-inspired designs

for unmanned vehicles (Roberts et al. [2014]; Sfakiotakis et al. [2014]; Tan et al.

[2006]), the importance of understanding the interaction mechanism (governing col-

lective behavior) is becoming more and more prominent. The primary objective of

this dissertation is to contribute to both the analysis of collective motion arising

in natural settings, and the synthesis of biomimetic, decentralized algorithms for

collective motion.

As the first step towards our goal, we identify the need to recover a trajectory,

along with its higher order derivatives, from a finite set of discrete, probably noisy,

observations. Generally, in the field of neuroethology and bio-inspired robotics, the

research is often aimed towards exploration of the underlying strategies and steering

control laws governing pursuit (Chiu et al. [2010]; Olberg et al. [2000]) and collective

motion (Ballerini et al. [2008b]; Nagy et al. [2010]), and an integral part of this study

involves analysis of relevant parameters of motion (namely curvature, speed, lateral

acceleration etc.). Although the existing techniques for trajectory reconstruction

use cubic splines or smoothing filters, in many cases they lack appropriate physical

justification. From a broader perspective, the problem of recovering a smoothened

signal from noisy observations appears in many areas of science and engineering,

and belongs to a broader class of ill-posed (due to non-uniqueness, high sensitivity

2



to noise) inverse problems.

In our approach, we tackle the lack of well-posedness of this inverse problem

by the method of regularization (Tikhonov [1963]; Wahba [1990]), and embed this

problem into a proper hypothesis space. With an intention to leverage the tech-

niques from optimal control theory, we introduce generative models (governed by

differential equations) with inputs, states and outputs, and construct the hypothesis

space as output of this generative model (given an input). This framework allows

us to turn data smoothing into a continuous time optimal control problem with

intermediate state costs, and the choice for path cost specifies the regularization

imposed on the data.

Some initial works along a similar line have previously been carried out by

Magnus Egerstedt, Clyde Martin and their collaborators. Zhang et al. [1997] have

introduced the idea that spline functions can be constructed using techniques from

linear control theory, and developed polynomial interpolating splines using linear

generative models. Later, by adopting a variational approach for linear time in-

variant generative models, Shan et al. [2000] develops the necessary framework to

recover a smoothing input (scalar) from noisy samples of output data (scalar). How-

ever, this analysis does not provide much insight about extending the results for a

linear multi input multi output system. Later works (Kano et al. [2008]; Zhou et al.

[2005, 2006]) along this line address some related aspects, and a book by Egerstedt

& Martin [2010] provides a nice survey of the key developments along this line.

Alternatively one can describe the trajectory using a nonlinear generative

model (probably evolving on a Lie group), and by choosing appropriate control

3



inputs, this problem can be cast as a data smoothing problem in a sub-Riemannian

setting. Over the last two decades, Peter Crouch, Fatima Silva Leite and their col-

laborators, by adopting a variational approach, have been exploring the problem

of data smoothing in Riemannian contexts wherein the number of control inputs is

same as the dimension of the underlying state space (Crouch & Leite [1991, 1995];

Jakubiak et al. [2006]; Machado et al. [2010]). In a more recent work, Brody et al.

[2012] and Burnett et al. [2013], while studying the data smoothing problem in a

quantum state transfer context, have used higher order Lagrangian (involving higher

order derivatives of control inputs) to impose smoothness of the reconstructed tra-

jectory.

As recently highlighted in the work of Ben-Yosef & Ben-Shahar [2012], this

regularization based approach towards data smoothing can be used to address prob-

lems in computer vision. Drawing inspiration from neuro-physiological aspects of

the primary visual cortex (V1), in particular the ice-cube model [Hubel, 1995], this

recent work suggests that a curve completion problem can be formulated as a data

smoothing problem on SEp2q.

Equipped with an appropriate algorithm for trajectory reconstruction and

parameter extraction, we set our next goal as analyzing flight trajectory data and

exploring feedback laws underlying pursuit and collective motion in natural settings.

Although the history of studying collective motion in nature dates back to the first

half of the last century [Spooner, 1931], studying collective behavior from a reverse

engineering perspective did not start until very recently. Complete understanding

of the sensory perception and motor control governing collective motion (or even

4



pursuit) still remains an open problem. Individual members of the group are believed

to use simple and plausible rules (control laws) which can be represented in a co-

ordinate free manner, or in other words the laws should depend only on the relative

motion information. One of the primary aims of this dissertation is to study the

underlying mechanism of starling flocks. Although researchers have studied different

aspects of flocking behavior in European starlings Ballerini et al. [2008a,b]; Cavagna

et al. [2010]; Young et al. [2013], the interaction laws are not yet understood. By

modelling the individual members as self driven particles under gyroscopic control,

we aim to gather some insight for this relatively unexplored aspect.

The existing models for collective motion can be classified into two distinct

categories: (i) Eulerian or continuum; and (ii) Lagrangian or individualistic. The

Eulerian model uses a set of partial differential equations to describe the spatio-

temporal evolution of the group density of a collective. Although this modeling

approach does not appear to be very relevant in the context of robotic implementa-

tions, it has shown its effectiveness in analyzing densely packed collectives (Kudrolli

et al. [2008]; Topaz et al. [2006]; Zhang et al. [2010]).

On the other hand, in a more individualistic Lagrangian approach the dynam-

ics of each member is influenced by the state of the other members of group (this

survey paper by Vicsek & Zafeiris [2012] provides a comprehensive review of the

research along these lines). Although the first algorithm for collective motion was

developed by Aoki [1982] for simulating the motion of a fish school, it is not the

most well-known paper in the field. Boids algorithm, proposed in a later work by

Reynolds [1987], is more famous in the context of collective motion. However, both
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of these approaches consider three different modes of interaction between the indi-

viduals, namely, (i) velocity alignment with the neighbors; (ii) approach towards the

flock center of mass; and (iii) collision avoidance. It was also noted that collective

behavior emerges in a leaderless manner.

Almost a decade later, Vicsek et al. [1995] introduced the notion of self driven

particles for collective motion. By assuming equal and constant speed for individual

agents, this work demonstrates the emergence of ordered motion in a planar setting.

This flocking behavior is achieved by updating an agent’s direction (at each time

step) by the average direction of motion of its neighbors (i.e., agents within a fixed

distance from the focal agent). Later, Jadbabaie et al. [2003] gave the much needed

theoretical explanation for this flocking behavior. However, a later note by Bertsekas

& Tsitsiklis [2007] has shown that the main convergence results of this work can

be perceived as a special case of some earlier results by Tsitsiklis et al. [1986]. A

more recent work by Cucker & Smale [2007] describes the evolution of a flock by

considering a polynomial decay of the influence between individuals in the flock as

they separate in space. A common theme in this line of works is that individual

agents are assumed to governed by first-order dynamics, which allows us to interpret

the consensus dynamics as a discrete analogue of heat equation.

However, a recent work by Attanasi et al. [2014] suggests that directional

information within a flock propagates with an almost constant speed, which is much

faster than the diffusive transport of information predicted by first-order models with

heat-like aspects. This observation provides sufficient justification to look beyond

first-order consensus algorithms. Interestingly, over the last few years a shift of
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attention towards second-order consensus algorithms has been noticed in the control

community too (Olfati-Saber [2006]; Ren [2008]; Ren & Atkins [2005]; Yu et al. [2010,

2011]). In this dissertation we propose a strategy for collective motion which can

explain how local interactions between neighbors can influence the agents to align

their headings in a single common direction. Moreover, this strategy, which we refer

as topological velocity alignment (TVA), has wave-like aspects and can explain fast

propagation of information across the flock.

1.2 Thesis Outline

In Chapter 2, we define the problem of trajectory reconstruction as a nonlinear

optimization problem and approach it from a mathematical programming perspec-

tive. By assuming the natural Frenet frame equations as the underlying generative

model, and penalizing high rates of change in curvatures and speed, we turn the

trajectory reconstruction problem into a regularized inverse problem. This regular-

ized inverse problem can be viewed as an optimization over an infinite dimensional

function space. We introduce mathematical reparametrization (via Caley trans-

form, exponential mapping etc.) of the underlying variables to make the problem

tractable, and then use a numerical routine (fminunc [fminunc]) to solve the op-

timization. Also, by noting the importance of cross validation in this context, we

perform ordinary cross validation to compute an optimal amount of regularization.

As the previous approach was computationally very demanding, and doesn’t

guarantee minimization in a global sense, we develop an alternative linear formu-
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lation of the trajectory reconstruction problem in Chapter 3. By using a triple

integrator as the underlying generative model for trajectory evolution, we regularize

the problem by trading total fit-error against high values of the jerk path inte-

gral. Then, by using techniques from linear quadratic optimal control theory, this

approach yields an analytic solution for the true minimum of this problem.

In Chapter 4, we develop a framework to address data smoothing problems

arising in a nonlinear setting. Then, by using a modified version of Pontryagin’s

maximum principle, we derive the necessary conditions for a solution of the regu-

larized inversion problem. Moreover, as the natural Frenet frame equations for a

trajectory can be viewed as a left-invariant dynamics on a Lie group, we extend this

result to address data smoothing in a matrix Lie group setting. We end this chapter

by discussing two example problem on (on SOp3q and SEp2q, respectively).

Then we delve into the analysis of natural occurrences of collective motion. In

Chapter 5, we consider the most basic form of collective motion, namely a dyadic in-

teraction between two individuals (conspecific and contraspecific). Here, we analyze

the flight trajectory data provided by our collaborators from Auditory Neuroethol-

ogy Laboratory, Department of Psychology, University of Maryland, and show ev-

idences in favor of context specific switch in bat flight strategy. Our analysis also

provides an estimate of the sensorimotor delay, associated with the pursuit behavior.

Chapter 6 describes the flight strategy analysis of flocking behavior in Euro-

pean starlings. Here, we begin by extracting speed and curvatures from the sampled

dataset of observed positions. Then we perform correlation analysis to investigate

the feedback mechanism for steering control governing coordinate motion of the
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flocks.

Finally, drawing inspiration from our findings in the previous chapter, we pro-

pose a flight strategy, called topological velocity alignment (TVA), along with a

plausible control law in Chapter 7. This strategy can perceived as a restriction in

the underlying state space, wherein each member of the flock align its velocity along

the velocity of its neighborhood of center of mass. We complement our theoreti-

cal analysis of the proposed control law (in some special cases) by providing some

implementation results.

1.3 Mathematical Preliminaries

Now we briefly describe some mathematical concepts which we will use through-

out this thesis.

1.3.1 Self-steering Particle Model

The trajectory of a single particle moving in three dimensional space can

be described by a function r : r0, Tfinals Ñ R
3, where Tfinal ą 0. If t “ tpsq

is a smooth, real valued function and rptq is a curve in R3, we call the curve

βpsq fi rptpsqq a reparametrization of the curve r. We assume rptq to be a reg-

ular curve, i.e. 9rptq ‰ 0 @t P r0, Tfinals. Now we define the arc length parameter as

sptq “
şt
0
‖ 9rpσq ‖ dσ. Under the regularity assumption, sptq is a continuous, strict

monotone increasing function and hence invertible. Therefore a reparametrization

of a curve can be obtained by using the arc length as the parameter and this partic-
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ular parametrization has a special feature. Any curve parametrized using arc length

parameter will have unit speed.

Let rmodpsq be the reparametrization of rptq using arc length parameter. The

evolution of rmodpsq in three dimensional space can be described using the Frenet-

Serret framing of this curve, as this is standard in differential geometry [do Carmo,

1976]. But this approach requires the curve to be at least thrice continuously dif-

ferentiable and we need the curvature (κpsq “‖ r2
modpsq ‖) to be positive to avoid

degeneracy in defining the normal direction. The requirement of non-zero curvature

everywhere poses serious difficulties in this particular problem of our consideration

(as the trajectories, to be reconstructed, may have point of inflection) and hence the

Frenet-Serret framing is not the best choice for our purpose. So we use an alternate

framing of the curve, the Natural Frenet frame, which is also known as the Relatively

Parallel Adapted Frame [Bishop, 1975]. The natural Frenet frame is an alternative

approach to define a moving frame that is well-defined even when the curve has

vanishing second derivative.

The natural Frenet frame is based on the observation that, while the unit

tangent vector xptq for a given curve is unique, we can choose two unit vectors

pyptq, zptqq on the plane perpendicular to xptq such that txptq,yptq, zptqu defines a

right-handed orthogonal frame. The evolution of the frame along the length of the
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xp0qyp0q

zp0q

xpt1q

ypt1q
zpt1qxpt2q

ypt2q

zpt2q

rptq

Figure 1: Natural Frenet frame for a curve in 3-dimensional space.

trajectory is governed by

9rptq “ νptqxptq

9xptq “ νptq puptqyptq ` vptqzptqq

9yptq “ ´νptquptqxptq

9zptq “ ´νptqvptqxptq, (1.1)

where ν is the speed and (u,v) are the natural curvatures of the trajectory. In this

approach for framing a regular curve, we can choose the initial orientation of the

frame at our will as yp0q and zp0q can be chosen arbitrarily, in contrary to the

Frenet-Serret frame equations where all three frame vectors are uniquely defined
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once the curve is given (under a hypothesis of positive curvature). From uptq and

vptq (which can be viewed as Cartesian components of the curvature) we can obtain

the curvature κptq and the torsion τptq using the following set of relations:

κptq “
a
u2ptq ` v2ptq, θptq “ arctan

ˆ
vptq
uptq

˙
, τptq “ dθptq

dt
.

1.3.2 Pursuit Strategies and Feedback Laws

1.3.2.1 Classical pursuit

In classical pursuit (CP) the follower (pursuer) moves directly towards the

evader (target). By representing the evader position by re, pursuer position by rp,

and pursuer direction of motion by xp, we can define a contrast function (Λ) as

Λ “ xp ¨ r

|r| , (1.2)

to measure how closely the leader-follower relationship matches the CP strategy,

where r “ rp ´ re. This contrast function can be interpreted as the cosine of the

angle between the baseline vector and the velocity of the pursuer and Λ “ ´1 implies

that the pursuer is on the CP manifold.

Proposition 1.1 (Galloway et al. [2010], Proposition 1). Let us assume that the

dynamics of the pursuer (rp) and the evader (re) trajectories be governed by the

natural Frenet frame equations, with (νp, up, vp) and (νe, ue, ve) being the speed and
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curvatures, respectively. Consider the feedback control law given by

up “ 1

νp

”
´ µ

`
yp ¨ r

|r|
˘

´ 1

|r|
´
zp ¨

`
9r ˆ r

|r|
˘¯ı

(1.3)

vp “ 1

νp

”
´ µ

`
zp ¨ r

|r|
˘

` 1

|r|
´
yp ¨

`
9r ˆ r

|r|
˘¯ı

where µ ą 0 is the feedback gain. Then Λptq Ñ ´1 as t Ñ 8, whenever Λp0q R

t1,´1u.

Proof. We begin by differentiating Λ along the trajectories of the generative model

for both pursuer and evader.

9Λ “ 9xp ¨ r

|r| ` xp ¨ d
dt

ˆ
r

|r|

˙

“ νp pupyp ` vpzpq ¨ r

|r| ` 1

|r|xp ¨
ˆ

9r ´
ˆ

9r ¨ r

|r|

˙
r

|r|

˙
. (1.4)

Now we define the transverse component of the relative velocity as

w “ 9r ´
ˆ

9r ¨ r

|r|

˙
r

|r| ,

and by using the BAC-CAB identity, a ˆ pb ˆ cq “ b ¨ pa ˆ cq ´ c ¨ pa ˆ bq, for

arbitrary vectors a, b and c, we note that

w “ 9r

ˆ
r

|r| ¨ r

|r|

˙
´ r

|r|

ˆ
r

|r| ¨ 9r

˙

“ r

|r| ˆ
ˆ

9r ˆ r

|r|

˙
. (1.5)

13



As the feedback law is governed by (1.3) and the transverse component of the

relative velocity can be expressed as a vector triple product (1.5), we can re-write

(1.4) as

9Λ “ ´µ
«ˆ

yp ¨ r

|r|

˙2

`
ˆ
zp ¨ r

|r|

˙2
ff

` 1

|r|xp ¨ w

´ 1

|r|

„ˆ
zp ¨

ˆ
9r ˆ r

|r|

˙˙ ˆ
yp ¨ r

|r|

˙
´

ˆ
yp ¨

ˆ
9r ˆ r

|r|

˙˙ ˆ
zp ¨ r

|r|

˙

“ ´µ
«ˆ

r

|r| ¨ r

|r|

˙2

´
ˆ

r

|r| ¨ xp
˙2

ff
` 1

|r|xp ¨ w

´ 1

|r| pzp ˆ ypq ¨
ˆˆ

9r ˆ r

|r|

˙
ˆ r

|r|

˙

“ ´µ
`
1 ´ Λ2

˘
` 1

|r| rxp ¨ w ´ pyp ˆ zpq ¨ ws . (1.6)

Now yp ˆ zp “ xp because txp,yp, zpu forms an orthonormal triad. Therefore, we

have

9Λ “ ´µ
`
1 ´ Λ2

˘
, (1.7)

and it is clear from (1.7) that whenever Λ P p´1, 1q it results in 9Λ ă 0. In fact it

can be concluded that the level sets of tΛ “ 1u and tΛ “ ´1u are two invariant

manifolds under the closed loop dynamics.

Moreover, by assuming Λp0q ‰ ˘1, we have

Λptq “ Ke´2µt ` 1

Ke´2µt ´ 1
(1.8)

where the constant K is defined as K “ Λ0`1
Λ0´1

. Since e´2µt Ñ 0 as t Ñ 8, we have

Λptq Ñ ´1 as t Ñ 8.
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(a) Classical Pursuit (CP). (b) Motion Camouflage (MC).

Figure 2: These figures illustrate the strategies to be examined, namely (a) Classical Pursuit and
(b) Motion Camouflage. The red curve and arrow represents the evader trajectory, along with its
velocity. In a similar way, the blue curve and arrow represents the pursuer trajectory, along with
its velocity. The black lines corresponds to the baselines connecting the pursuer with the evader.

1.3.2.2 Motion camouflage

In motion camouflage (MC) (with respect to infinity) the follower approaches

the leader in such a way that the relative velocity does not have any transverse

component with respect to the baseline vector [Justh & Krishnaprasad, 2006]. Mo-

tion camouflage with respect to infinity is a stealthy pursuit because it nullifies the

motion parallax. Similar to CP one can define a contrast function to measure how

closely the leader-follower relationship matches the MC strategy. One such contrast

function is given by

Γ “ r

|r| ¨ 9r

| 9r| , (1.9)

where the baseline vector is defined as r “ rp ´ re. One can easily check that

Γ is the cosine of the angle between the baseline vector and the relative velocity

15



of the follower with respect to the leader. Moreover Γ “ ´1 implies that the

follower is on the MC manifold. MC is also referred as the constant absolute target

direction strategy (CATD) because the direction of the baseline vector remains fixed

throughout the pursuit. Now we recall the following result by Reddy et al. [2006]

to show finite time accessibility of motion camouflage in three dimensions.

Proposition 1.2 (Reddy et al. [2006]). Let us assume that the dynamics of the

pursuer (rp) and the evader (re) trajectories are governed by the natural Frenet

frame equations, with (νp, up, vp) and (νe, ue, ve) being the speed and curvatures,

respectively. Consider the feedback control law given by

up “ ´µ
´
zp ¨

`
9r ˆ r

|r|
˘¯

(1.10)

vp “ µ
´
yp ¨

`
9r ˆ r

|r|
˘¯
.

Moreover we assume the following hypotheses to be true:

(A1) 0 ă νlowp ď νp ď νhighp ă 8, where νlowp and νhighp are constants.

(A2) 0 ă νlowe ď νe ď νhighe ă 8, where νlowe and νhighe are constants.

(A3) νe{νp ď ν
MAX

ă 1, where ν
MAX

is a constant.

(A4) ue and ve are piecewise continuous, and
a
u2e ` v2e is bounded.

(A5) 9νe and 9νp are piecewise continuous; | 9νe| ă αe and | 9νp| ă αp where αe and αp

are finite constants.

(A6) Γp0q ă 1 and |rp0q| ą 0.
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Then motion camouflage is accessible in finite time using high-gain feedback, i.e. by

choosing µ ą 0 to be sufficiently large.

In a later work Reddy et al. [2007] have shown that motion camouflage is acces-

sible in finite time even when some amount of delay is incorporated into the feedback

law (under some constraints on the feedback gain, delay and relative speed).
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Part I

Reconstruction of Collectives
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Chapter 2: Data Smoothing through Nonlinear Optimization - Math-

ematical Programming

The problem of recovering a smoothened signal from noisy observations ap-

pears in many areas of science and engineering, and belongs to a broader class of

inverse problems. By noting that naive solutions are non-unique and highly sensi-

tive to noise, it can be concluded that this inverse problem is ill-posed. However,

this lack of well-posedness can be tackled through a regularized approach (Tikhonov

[1963]; Wahba [1990]). The main idea behind regularization is to embed the prob-

lem of interest into a hypothesis space and minimize a cost functional expressed as

a sum of two terms: (i) misfit of a hypothesis to observed data; and (ii) a penalty

functional accounting for complexity of a hypothesis. In our context, we build the

hypothesis space by introducing generative models governed by ordinary differential

equations with inputs, states and outputs. This yields the hypothesis as output of

the generative model, given an input (control). This set-up allows us to turn data

smoothing into a continuous time optimal control problem with intermediate state

costs.

Regularization, in our context, necessitates penalizing sharp turns in the tra-

jectory. By assuming an appropriate generative model for trajectory evolution, this
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problem of trajectory reconstruction can be formulated as an optimization prob-

lem, wherein the regularization term is treated as the Lagrangian, and the fit-errors

(between observed data and smoothened data obtained from the generative model)

constitute the intermediate and terminal costs. This problem becomes quite rele-

vant when we attempt to analyze the strategies and feedback mechanisms governing

biological collectives (starling flocks, foraging bats) because the analysis requires

studying parameters of motion (speed, curvatures etc.) and this information is

available only after the inverse problem has been solved.

An important aspect of this approach is to estimate an optimal value for the

relative weight of the regularization term with respect to the sum of fit-errors, and

then use this estimated value to reconstruct the smoothened signal by solving the

optimization problem. In our study, relative weight of the regularization term has

been represented by introducing a smoothing parameter (λ) into the optimization

cost. Clearly, the choice of this smoothing parameter is critical to the nature of a

reconstructed trajectory. It controls the balance between the goodness of fit and

the smoothness of the regression function. The optimization algorithm will produce

a very wiggly estimate for low values of the smoothing parameter, and at large

values the goodness of fit will deteriorate. So a trade-off is required to choose an

appropriate value for the smoothing parameter. As the value of λ varies from 0

to 8, the estimate transforms itself from an interpolant of given data points to a

geodesic best fitting the data points in a least square manner.

The estimation of the smoothing parameter has been done using ordinary

cross validation technique. The main idea behind the cross validation technique
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is the partitioning of given dataset into two subsets, namely the estimation subset

and the validation subset. Once the signal is reconstructed using data from the

estimation subset, the validation subset is used to examine the performance of the

reconstruction. Cross validation attempts to minimize error between the predicted

signal and the original signal over the validation data.

The inherent nonlinearity of the underlying generative model results in the

following interesting features:

• System nonlinearity makes it very difficult to obtain a closed form solution for

the transition matrix of the underlying generative model, and hence we need

to use geometric integration methods.

• Lack of closed form solution for the cross validation cost function forces us to

compute the cost over a finite set of smoothing parameter values.

• The cross validation technique has an inherent parallel structure which can be

exploited to accelerate the computational process.

Although the main ideas that we pursue in this chapter are similar to the ones

developed by Reddy [2007], they differ in the following aspects:

• In contrast to the previous approach we have used the initial position (rp0q) as

an optimizing variable. Earlier work assumed the initial position to be same

as the first data point (r0).

• We have used different ways to parametrize the rotation matrix for initial

frame orientation (Cayley transform, instead of Euler angles) and the speed of

the trajectory (using an exponential function we have shown bijection between

R and R`).
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• The most distinctive difference lies in the way we choose a smoothing param-

eter (i.e. λ in (2.1)). In comparison to previously adopted heuristic approach,

we implemented an algorithmic way (ordinary cross validation) to select an

optimal value for the smoothing parameter.

2.1 Regularized Inversion Problem

Treating the feature point as a self-steering particle in three dimensions, a

natural generative model for its position rp¨q is given by the natural Frenet frame

equations (1.1), and the existence and uniqueness of this generative model has pre-

viously been discussed in the work of Bishop [1975]. Now, drawing inspiration from

findings in biomechanics, we impose regularization by trading total fit-error against

high rates of change in speed and curvatures. Hence, by letting triuNi“0 denote the set

of observed positions, one can formulate trajectory reconstruction as the following

optimal control problem

Minimize
rx,y,zspt0q,
rpt0q,u,v,ν

˜
Nÿ

i“0

}rptiq ´ ri}2 ` λ

tNż

t0

`
9u2 ` 9v2 ` 9ν2

˘
dt

¸

subject to System dynamics: Natural Frenet Frame (1.1),

rx y zspt0q P SOp3q, rpt0q P R
3,

u : rt0, tN s Ñ R, v : rt0, tN s Ñ R, ν : rt0, tN s Ñ R
`,

(2.1)

where the smoothing parameter (λ ą 0) is evaluated through the method of cross

validation.
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Alternatively, we can pack the position vector rptq, along with frame vectors

xptq, yptq and zptq, inside a 4 ˆ 4 matrix gptq defined as

gptq “

»
——–
Rptq rptq

0 1

fi
ffiffifl P SEp3q, (2.2)

where Rptq fi rxptq yptq zptqs P SOp3q represents the frame moving along the

trajectory. Then, by letting ξ0 “ E14; ξ2 “ E13 ´ E31; ξ3 “ E21 ´ E12 represent the

standard basis elements of sep3q, and teiu4i“1 represent the set of standard basis vec-

tors in R4, the nonlinear generative model, i.e. the natural Frenet frame equations,

of a curve (1.1) can be expressed as

9g “ gξ

r “
“
e1 e2 e3

‰T
ge4,

(2.3)

where ξ is given by

ξ “ ν
`
ξ0 ` uξ3 ´ vξ2

˘
“

»
——————————–

0 ´νu ´νv ν

νu 0 0 0

νv 0 0 0

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

. (2.4)

Clearly, this generative model (2.3) can be perceived as a left-invariant dy-

namics on SEp3q, and hence the problem of trajectory reconstruction (2.1) can

be treated as a data smoothing problem in a sub-Riemannian setting wherein the
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number of controls (3) is strictly less than the state-space dimension (6). Although

some initial results along this line has been proposed by Brody et al. [2012] and Dey

& Krishnaprasad [2014a], further work is required before it leads us to a solution

for this problem (2.1). On the other hand, we can treat (2.1) as an optimization

problem with constraints (due to the nonlinear generative model) on SEp3q. Then,

by expressing the trajectory rp¨q as a function of speed (νp¨q) and curvatures (up¨q,

vp¨q), it can be turned into an unconstrained optimization problem. The difficul-

ties associated with obtaining a closed form solution of gp¨q forces us to use special

approximation techniques.

Remark 2.1. It should be noted that λ, the smoothing parameter in the optimization

problem (2.1), is not a unit-free quantity. Rather, it has a dimension of rL4T s where

L and T represents the dimension of length and time, respectively. Also, to avoid a

dimension mismatch inside the integrand of the cost function (2.1), we assume that

a unit scaling factor of dimension rL´4T 2s has been applied to 9ν2.

2.2 Some Practical Issues

2.2.1 Numerical Integration for the Group Dynamics

One can easily check that the solution for natural Frenet frame equation (2.3)

can be expressed as

gptq “ gp0qΦT pt, t0q, t P rt0, tN s, (2.5)
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where the state transition matrix Φpt, t0q is computed as the limit point of the

following Peano-Baker series

Φpt, t0q “ I4 `
tż

t0

ξT pσ1qdσ1 `
tż

t0

ξT pσ1q
σ1ż

t0

ξT pσ2qdσ2dσ1 ` ¨ ¨ ¨ , t ě t0. (2.6)

However, finding a closed form solution for Φpt, t0q for any general ξp¨q is very

challenging, and this difficulty forces us to adopt a numerical approach. As the

dynamical constraint evolves over SEp3q, special care has to be taken while choosing

a suitable numerical approach because otherwise numerical computation might force

gptjq to leave the manifold for some j P t0, 1, 2, ¨ ¨ ¨ , Nu.

To address this issue we adopt a geometric integration method which ensures

that the solution will lie on SEp3q at every sample point. However, this advantage

is gained at the cost of some freedom on the choice of speed and curvatures, in

particular by assuming the speed and curvatures to be piecewise-constant functions.

Now we consider a refined partition of the time interval rt0, tN s, given by tt0 “ t0r ă

t1r ă t2r ă ¨ ¨ ¨ ă tKr
“ tNu, where the length of these Kr number of equal intervals

is given as δ “ tN´t0
Kr

. By using the semi-group property of state transition matrices,

we have

Φptkr , t0q “ Φptkr , tpk´1qrqΦptpk´1qr , tpk´2qrq ¨ ¨ ¨Φpt2r , t1rqΦpt1r , t0q,
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and this provides a recursive representation of gptkrq, given by

gptkrq “ gptpk´1qrqΦT ptkr , tpk´1qrq. (2.7)

Now, by exploiting the piecewise-constant nature of speed and curvatures, we assume

uptq “ uk, vptq “ vk and νptq “ νk over the interval rtk´1r , tkrq. These assumptions

make ξp¨q constant on rtk´1r , tkrq, and as a consequence the state-transition matrix

ΦT ptkr , tpk´1qrq can be represented as

Φptkr , tpk´1qrq “

»
——————————–

cospδαkνkq uk
αk

sinpδαkνkq vk
αk

sinpδαkνkq 0

´uk
αk

sinpδαkνkq pv2
k

`u2
k
cospδαkνkqq
α2

k

ukvkpcospδαkνkq´1q
α2

k

0

´ vk
αk

sinpδαkνkq ukvkpcospδαkνkq´1q
α2

k

pu2
k

`v2
k
cospδαkνkqq
α2

k

0

1
αk

sinpδαkνkq ukp1´cospδαkνkqq
α2

k

vkp1´cospδαkνkqq
α2

k

1

fi
ffiffiffiffiffiffiffiffiffiffifl

, (2.8)

where αk “
a
u2k ` v2k. Finally, by using the expressions from (2.2) and (2.8), (2.7)

yields the following recursive equations to represent evolution of the trajectory rp¨q,

along with the natural Frenet frame Rp¨q,

Rptkq “ Rptk´1q

»
——————–

cospδαkνkq ´uk
αk

sinpδαkνkq ´ vk
αk

sinpδαkνkq

uk
αk

sinpδαkνkq pv2
k

`u2
k
cospδαkνkqq
α2

k

ukvkpcospδαkνkq´1q
α2

k

vk
αk

sinpδαkνkq ukvkpcospδαkνkq´1q
α2

k

pu2
k

`v2
k
cospδαkνkqq
α2

k

fi
ffiffiffiffiffiffifl

(2.9)

rptkq “ rptk´1q ` 1

α2
k

rαk sinpδαkνkqxptk´1q ` ukp1 ´ cospδαkνkqqyptk´1q

`vkp1 ´ cospδαkνkqqzptk´1qs . (2.10)
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Thus we have have solved the differential equation and a closed form solution

for the trajectory has been achieved under the piecewise constant assumption.

2.2.2 Parametrization of SOp3q Using Cayley Transform

Moreover, we let initial orientation of the natural frame (Rpt0q) to be another

variable for optimization. But Rpt0q lies on a nonlinear manifold (SOp3q), and

an optimization on a manifold is not as straightforward as an one on a Euclidean

space Rn. This forces us to adopt a suitable way to parametrize SOp3q. Although

there are various methods for parametrizing SOp3q, we choose the approach using

Cayley transform. There is another popular approach using the Euler angles but

this approach suffers from the singularity issue which arises from the fact that SOp3q

and S1 ˆ S1 ˆ S1 are not equivalent topologically.

Clearly, for any Θ P SOp3q and any x P R3, we have

ă Θx,Θx ą“ă x,ΘTΘx ą

ñ ă Θx,Θx ą“ă x, x ą as Θ P SOp3q

ñ ă Θx,Θx ą ´ ă x, x ą“ 0

ñ ă pΘ ` I3qx, pΘ ´ I3qx ą“ 0. (2.11)

Now we introduce a new variable z defined as z “ pΘ ` I3qx. By assuming ´1 not

to be an eigen-value of Θ, we can show that pΘ ` I3q is invertible and its column
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space is the full space R3. Then (2.11) can be equivalently represented as

ă z, pΘ ´ I3qpΘ ` I3q´1z ą“ 0, @z P R
3. (2.12)

It can easily be concluded from (2.12), that pΘ´ I3qpΘ` I3q´1 is a skew-symmetric

matrix. Hence we introduce Ψ P sop3q defined as

Ψ “ pΘ ´ I3qpΘ ` I3q´1, (2.13)

and thus we have shown that almost every element in SOp3q (excluding a small set)

can be mapped to sop3q.

On the other hand, for every Ψ̃ P sop3q, we can define Θ̃ “ pI3 ´ Ψ̃q´1pI3 ` Ψ̃q

(as the eigen-values of Ψ̃ are pure imaginary). As Θ̃ doesn’t have any eigen value at

-1, Ψ̃ can be represented as Ψ̃ “ pΘ̃ ´ I3qpΘ̃ ` I3q´1. Then for any x P R3, we have

ă x, pΘ̃ ´ I3qpΘ̃ ` I3q´1x ą“ 0. (2.14)

Now we introduce z “ pΘ̃ ` I3q´1x, and this allows us to express (2.14) as

ă pΘ̃ ` I3qz, pΘ̃ ´ I3qz ą “ 0 for any z P R
3,

or equivalently, Θ̃T Θ̃ “ I3. (2.15)
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Moreover, we have detpΘ̃q “ 1. Thus we can conclude that the map

f : sop3q Ñ SOp3q

Ψ ÞÑ pI3 ´ Ψq´1pI3 ` Ψq
(2.16)

is injective, but not surjective. A thin set U on SOp3q, defined as U fi tΘ P

SOp3q : detpΘ ` I3q “ 0u, does not have any inverse image under this f . Thus the

parametrization of SOp3q using Cayley transform does not suffer from singularity

issues. As each element in sop3q can be identified with an element in R3 (through the

inverse hat operator) and vice-versa, we can reformulate an optimization problem

over SOp3qzU as an optimization problem over R3.

2.2.3 Customization for Mathematical Programming

As the speed (νp¨q “ | 9rp¨q}) is allowed only to be positive, we introduce a new

variable ν̃ defined as ν̃p¨q “ lnpνp¨qq. In other words νp¨q “ eν̃p¨q. This parametriza-

tion along with the usage of Cayley transform and assumption for piecewise constant

control inputs allows us to transform the original optimization problem (2.1) into

an equivalent optimization problem over Rl, where l is a large integer of appropri-

ate value. Now we assume uniform sampling of the trajectory and let rtk´1, tks

be partitioned into M equal sub intervals, i.e. tk ´ tk´1 “ Mδ where δ is de-

fined as δ “ tN´t0
MN

. We define U to be the sequence of piecewise constant curvatures

tu1, u2, u3, ¨ ¨ ¨ , uNMu. In a similar fashion, V and Ξ represent the sequences of piece-

wise controls tv1, v2, v3, ¨ ¨ ¨ , vNMu and tν̃1, ν̃2, ν̃3, ¨ ¨ ¨ , ν̃NMu, respectively. Now, by
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letting qRp0q P R3 define the initial orientation of the natural Frenet frame through

Cayley transform, the equivalent optimization problem can be written as:

min

U P RNM ,V P RNM ,Ξ P RNM

qRp0q P R3, rp0q P R3

˜
Nÿ

j“0

Cj

¸
(2.17)

subject to the constraints

Rptkq “ Rptk´1q

»
——————–

cospδkαkeν̃kq ´uk
αk

sinpδkαkeν̃kq ´ vk
αk

sinpδkαkeν̃kq

uk
αk

sinpδkαkeν̃kq pv2
k

`u2
k
cospδkαke

ν̃k qq
α2

k

ukvkpcospδkαke
ν̃k q´1q

α2

k

vk
αk

sinpδkαkeν̃kq ukvkpcospδkαke
ν̃k q´1q

α2

k

pu2
k

`v2
k
cospδkαke

ν̃k qq
α2

k

fi
ffiffiffiffiffiffifl

rptkq “ rptk´1q ` 1

α2
k

“
αk sinpδkαkeν̃kqxptk´1q ` ukp1 ´ cospδkαkeν̃kqqyptk´1q

`vkp1 ´ cospδkαkeν̃kqqzptk´1q
‰

where αk “
a
u2k ` v2k. Moreover, the cost associated with each interval is given by

Cj “ }rptjq ´ rj}2 ` λ

jMÿ

i“pj´1qM`1

1

δ

“
pui ´ ui´1q2 ` pvi ´ vi´1q2 ` e2ν̃ipν̃i ´ ν̃i´1q2

‰

for any j P t1, 2, 3, ¨ ¨ ¨ , N ´ 1, Nu and

C0 “‖ rpt0q ´ r0 ‖
2 .
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Thus, as a consequence of these numerical adjustments (reformulation over a re-

stricted search space of piecewise constant functions) and various reparametriza-

tions (Cayley transform, exponential function), we end up solving an optimization

problem over R3NM`6.

2.2.4 Multi-stage Approach for Optimization

We adopt a multi resolution approach for achieving faster convergence in the

optimization problem. In this approach, we first sample the data points, i.e. rj ’s at

a coarse resolution and run the optimization routine to yield a better control input.

Then we use the midpoint rule to interpolate the optimized control inputs and use

this finer set as an initial search point for the next step optimization with higher

resolution. Another important fact requires attention while going into a finer data

set. If the finer data set consisted of even number of data points, then we have to

include an extra data point at the end. The curvature and speed value from the last

interval of the coarse data set are extended to handle this situation. This process

has been explained pictorially in Fig 3. We keep on repeating this process until all

the data points are used.

Once all the data points are taken into consideration we focus our attention

to the missing data points1 within a trajectory, and by introducing some virtual

points (as shown in Fig.(4)) we attempt to have uniformly sampled curvature and

speed data. These set of virtual points equipartition the whole duration of the

1As three-dimensional position data, in most of the cases, is obtained via stereo-reconstruction
from multiple planar images, occlusion gives rise to missing data points in the raw dataset. Also,
leaving-out-one strategy for OCV is another source of missing data points.
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Application of Midpoint Rule

Application of Midpoint Rule

Optimization Routine

Cinii`2

C
opt
i`1

Cinii`1

C
opt
i

Fine Data

Coarse Data

Figure 3: This figure illustrates the multi resolution approach used in solving the optimization
problem (2.17). The original data set (with 23 data points) is downsampled twice to yield a coarse
data set with 6 data points. Once the control inputs are optimized for the coarse data set, we apply
mid-point rule, along with extrapolation, to generate the initial search points for the intermediate
resolution data set with 12 data points. Then, after optimization has been carried out for this stage,
we apply mid-point rule to obtain the initial search points for the original data set.

trajectory without incurring any extra fitting cost, but we consider the smoothness

cost associated with them. As a result the optimization yields better result.

We also proceed beyond the given resolution by dividing the interval between

two consecutive data points (real or virtual) into smaller sub-intervals, i.e. our

approach is capable of up-sampling. Thus we obtain more finely interpolated values

of speed (ν) and curvatures (u and v).
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Optimization Routine

Inclusion of Virtual Points

C
opt
i`1

Cinii`1

C
opt
i

Virtual Data Point

Real Data Point

Figure 4: This figure illustrates the inclusion of virtual points to take care of the missing data
points.

2.3 Ordinary Cross Validation for the Regularized Inversion Problem

Ordinary cross validation (OCV) was first proposed by Allen [1974] (in the

context of regression) and Wahba & Wold [1975] (for smoothing splines). The main

idea behind cross validation is to use a subset of the given dataset to obtain a

parameter estimate and to use the rest of the data to validate the performance

under that estimate. However, cross validation does not use one subset solely for

one purpose (estimation or validation); it allows each data point to be used for both

purposes. For instance, we can divide the data set into m subsets; compute an

estimate from all the subsets but one; and validate the estimate using the left-out

subset. Then, we perform the estimation-validation after leaving out a different
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subset. This process is repeated multiple times until every possible subset has been

considered for validation. In our work we use “leaving-out-one” strategy for perform

OCV. Here, an estimate for the trajectory is obtained using all but one data points

(by solving an optimization problem), and then the prediction error is computed at

the left out data point. Once this process has been repeated for each data point,

the prediction errors are summed to yield the ordinary cross validation cost, and

an optimal value of the regularization parameter (λ) is chosen in such a way that it

minimizes the OCV cost.

In what follows we provide a brief description of the ordinary cross validation

procedure for the regularized inversion problem of our interest (2.1). Let rkλp¨q be a

minimizer of the following optimization problem:

min

¨
˚̋ Nÿ

j“0
j‰k

}rptjq ´ rj}2 ` λ

tNż

t0

`
9u2pσq ` 9v2pσq ` 9ν2pσq

˘
dσ

˛
‹‚ (2.18)

subject to the dynamical constraint given by (2.3), where gptq and ξptq are defined

in (2.2) and (2.4), respectively. It it worth mentioning here that we solve this

optimization problem (2.18) for ordinary cross validation, by transforming it into

an equivalent optimization over a high dimensional Euclidean space with discrete

constraints (following the guidelines described in Section 2.2). Then the ordinary

cross validation cost V0pλq is defined as

V0pλq “ 1

N ` 1

Nÿ

j“0

}rjλptjq ´ rj}2, (2.19)
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and the corresponding OCV estimate for λ is given by

λ˚ “ argmin
λą0

pV0pλqq . (2.20)

2.4 Numerical Results

As a demonstration of concept for our proposed approach, we devise six toy

problems related to reconstruction of a circular helix with radius r “ 0.2 and pitch

2πh with h “ 0.25. Hence the helix can be parametrized as pr sinpωtq, r cospωtq, hωtq

with ω “ 1?
r2`h2 being a speed normalizing factor. 46 equi-spaced noisy observations

are made along the length of the helix (from t0 “ 0 to tN “ 3.6 time units). These

six toy problems under consideration vary only in terms of observation noise, which

is independent and identically distributed zero mean Gaussian in each of these six

cases. The variance varies from problem to problem which is equivalent to a changing

the Signal-to-Noise ratio (SNR).

As expected, our numerical experiments show that there is a strong relation-

ship between SNR and an OCV estimate for the smoothing parameter pλ˚q (Ta-

Prob. No. Noise Std. Deviation (σ) OCV Estimate of λ (λ˚) SNR

1 0.005 1.50 ˆ 10´6 40
2 0.010 2.50 ˆ 10´6 20
3 0.015 9.00 ˆ 10´6 13.33
4 0.020 7.50 ˆ 10´6 10
5 0.040 1.50 ˆ 10´5 5
6 0.050 2.60 ˆ 10´4 4

Table 2.1: Variation of OCV estimate of λ with different values of signal-to-noise ratio (SNR).
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Figure 5: This figure illustrates the reconstruction of a circular helix (standard deviation of the
zero-mean observation noise 0.020).

ble 2.1). Moreover, from these observations, we can conclude that λ˚ varies almost

proportionally with the inverse of SNR for higher values of SNR.

Once we obtain an OCV estimate for the smoothing parameter (λ˚), we recon-

struct the trajectory from the observed data points. The reconstructed trajectory

for one of the problems is shown in Fig 5.

2.5 Conclusion

In this chapter, we have formalized the inverse problem of trajectory recon-

struction. Using a nonlinear generative model, we have defined this data smoothing

problem as an optimization problem, and treated it from a mathematical program-

ming perspective. Although lack of integrability refrains us from getting a semi-
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analytic solution, we have been able to reformulate the problem over a restricted

search space of piecewise constant functions, and then, by exploiting numerical

reparametrization (Cayley transform, exponential function), we solved it numeri-

cally over a very high dimensional Cartesian space. However, this numerical op-

timization is non-convex, computationally very demanding, and can at best lead

to a local minimum. Finally, we would like to conclude this chapter by mentioning

that this algorithm has been applied to reconstruct flight trajectories of bat foraging

events (as discussed in Chapter 5).
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Chapter 3: Data Smoothing through Linear Quadratic Optimal Con-

trol

Earlier we have noticed (in Chapter 2) that lack of an integrability theory

prevents us from solving the trajectory reconstruction problem (with natural Frenet

frame as the underlying generative model) in an analytic way. Although we have

solved it numerically over a restricted search space of piecewise constant functions,

this numerical optimization problem is non-convex, computationally very demand-

ing, and can at best lead to a local minimum.

On the other hand, by noting that the steering controls can be expressed in

terms of lateral acceleration 9x, we present an alternative linear generative model (in

Section 3.1), and exploit the well-developed integrability theory of linear-quadratic

optimal control to obtain an analytic solution. Our proposed generative model is

fundamentally a triple integrator driven by jerk, the derivative of acceleration, as

the control input, and we impose regularization by trading total fit-error against

high values of the jerk path integral.1

1A preliminary version of this work can be found in a previous paper by Dey & Krishnaprasad
[2012]. Also, a significant portion of this chapter has been taken verbatim from a pre-print by Dey
& Krishnaprasad [2014b].
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3.1 Problem Formulation

The primary objective of this work is to reconstruct a trajectory and extract

relevant parameters of motion (namely speed, curvatures, etc.) from a given time

series of observed positions (from motion capture system, GPS data) in a three

dimensional space. To ensure smoothness of the reconstructed trajectory we penal-

ize high values of the jerk path integral which is very significant in the context of

physiological movement. As described in the literature of locomotion and manipu-

lation (Flash & Hogan [1985]; Todorov & Jordan [1998]), the 2/3-power law 2 can

be interpreted as a consequence of the minimization of jerk path integral.

Let triuNi“0 be the set of observed positions. Then we are interested in finding

a trajectory r : rt0, tN s Ñ R3 to minimize the following cost:

Nÿ

i“0

}rptiq ´ ri}2 ` λ

tNż

t0

}rp3qptq}2dt

where p¨qpkq implies the k-th derivative of a function, if it exits. Similar to the

nonlinear optimization problem (2.1) mentioned in Section 2.1, the regularization

parameter λ forces a balance between goodness of fit and smoothness of the trajec-

tory. The trajectory dynamics, or in other words the underlying generative model,

2The power law says that the speed of an endpoint is inversely proportional to the 1/3-rd power
of curvature of the end effector.
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is given by

9rptq “ vptq

9vptq “ aptq (3.1)

9aptq “ uptq

where vp¨q, ap¨q and up¨q represent the velocity, acceleration and jerk respectively.

Then the cost can be expressed as:

Nÿ

i“0

}rptiq ´ ri}2 ` λ

tNż

t0

}uptq}2dt.

Now we define a state-vector x : rt0, tN s Ñ R9 as:

x fi

»
——————–

r

v

a

fi
ffiffiffiffiffiffifl
. (3.2)

Moreover, the input and output of the underlying dynamical system is represented

by u : rt0, tN s Ñ R3 and y : rt0, tN s Ñ R3, respectively. Clearly, u “ u and y “ r

for the problem under consideration. Therefore the underlying generative model for

a trajectory can be represented in the following compact form,

9xptq “ Axptq ` Buptq

yptq “ Cxptq,
(3.3)
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where

A “

»
——————–

0 I3 0

0 0 I3

0 0 0

fi
ffiffiffiffiffiffifl
;B “

»
——————–

0

0

I3

fi
ffiffiffiffiffiffifl
;C “

„
I3 0 0


. (3.4)

It is obvious that the system dynamics (3.3) is both controllable and observable.

Now we can pose our trajectory reconstruction problem as a special case of the

following linear-quadratic optimal control problem with intermediate state costs:

Minimize
xpt0q,u

Jpxpt0q, uq “
Nÿ

i“0

}yptiq ´ ri}2 ` λ

tNż

t0

uT ptquptqdt

subject to System dynamics (3.3),

xpt0q P R
9, u P U ,

(3.5)

where U is the space of real-valued functions defined on the interval rt0, tN s.

Now we establish a relationship between the linear (3.1) and non-linear (1.1)

generative models for trajectory evolution. First we show that the velocity, acceler-

ation and jerk of a trajectory can be expressed in terms of the parameters of motion

obtained from the nonlinear generative model (2.1), namely speed, curvatures and

the frame vectors.

v “ νx

a “ 9νx ` uν2y ` vν2z

u “ p:ν ´ ν3pu2 ` v2qqx ` p3uν 9ν ` 9uν2qy ` p3vν 9ν ` 9vν2qz.

,
//////.
//////-

(3.6)

From (3.6) it becomes clear that the particular penalty term in (3.5) carries a similar,
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although not the same, effect as the penalty term considered in (2.1). Alternatively,

speed and curvatures can be expressed in terms of velocity, acceleration and jerk

of the trajectory, and it enables us to use the results of (3.5) for curvature based

analysis of strategies and steering control laws. This inverse map is given by,

ν “ }v}

x “ v

}v}

9x “ 1
ν

pa ´ pa ¨ xqxq

κ “ } 9x}
ν

τ “ v¨paˆuq
}vˆa}2 ,

,
//////////////.
//////////////-

(3.7)

where κ and τ denote the classical curvature and torsion of the trajectory, respec-

tively. One can view (3.6) and (3.7) as a dictionary between two alternative view-

points for trajectory generation.

3.2 A Control Theoretic Approach

As λ has a positive value, the constrained optimization in (3.5) can be viewed

as a relaxed version of the well-studied fixed endpoint optimal control problem. We

begin by applying a standard tool from the theory of least squares, namely the

path independence lemma for trajectories of linear systems [Brockett, 1970]. Now

onwards, we will not show explicit time dependence for brevity of notation wherever

doing so does not create any ambiguity.

In this section we consider a broader class of generative models whose dynamics
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is governed by a linear time invariant system (3.3), with A P Rnˆn, B P Rnˆm and

C P R
pˆn (i.e. an m-input, p-output system with n-states). We only assume that

the pair rA,Bs is controllable and the pair rA,Cs is observable.

3.2.1 Path Independence Lemma and Its Application to Data Smooth-

ing

Consider the quadratic form xT ptqKptqxptq, where K : rt0, tN s Ñ R
nˆn is a

symmetric matrix-valued function. Then, along any trajectory of the underlying

dynamical system (3.5), we have

t´i`1ż

t`i

d
`
xTKx

˘
“

t´i`1ż

t`i

ˆ
xTK pAx` Buq ` pAx ` BuqT Kx ` xT 9Kx

˙
dt

ñ
t´
i`1ż

t`i

»
——–
x

u

fi
ffiffifl

T »
——–
ATK ` KA ` 9K KB

BTK 0

fi
ffiffifl

»
——–
x

u

fi
ffiffifl dt

` xT ptiqKpt`i qxptiq ´ xT pti`1qKpt´i`1qxpti`1q “ 0. (3.8)

Adding (3.8) over pt`0 , t´1 q, ¨ ¨ ¨ , pt`N´1, t
´
Nq we obtain

tNż

t0

»
——–
x

u

fi
ffiffifl

T »
——–
ATK ` KA` 9K KB

BTK 0

fi
ffiffifl

»
——–
x

u

fi
ffiffifl dt` xT pt0qKpt´0 qxpt0q

`
Nÿ

i“0

xT ptiq
`
Kpt`i q ´ Kpt´i q

˘
xptiq ´ xT ptNqKpt`NqxptN q “ 0. (3.9)
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As the quantity given by (3.9) equals to zero for any u P U and any K differentiable

over pt`i , t´i`1q @i P t0, 1, 2, ¨ ¨ ¨ , N ´ 1u, a multiple of it can be added to the cost

Jpxpt0q, uq without incorporating further changes. Hence we have,

Jpxpt0q, uq “ λxT pt0qKpt´0 qxpt0q ´ λxT ptNqKpt`N qxptNq `
Nÿ

i“0

`
rTi ri ´ 2xT ptiqCT ri

˘

`
Nÿ

i“0

xT ptiq
“
λ

`
Kpt`i q ´ Kpt´i q

˘
` CTC

‰
xptiq

` λ

tNż

t0

»
——–
x

u

fi
ffiffifl

T »
——–
ATK ` KA` 9K KB

BTK Im

fi
ffiffifl

»
——–
x

u

fi
ffiffifl dt. (3.10)

As (3.10) holds true for any choice of K, at this point we make the following as-

sumptions on K,

9Kptq “ ´ATKptq ´ KptqA ` KptqBBTKptq,

Kpt`N q “ 0, (3.11)

Kpt`i q ´ Kpt´i q “ ´1

λ
CTC.

With these assumptions (3.11), the cost Jpxpt0q, uq can be represented as

Jpxpt0q, uq “ λxT pt0qKpt´0 qxpt0q `
Nÿ

i“0

`
rTi ri ´ 2xT ptiqCT ri

˘

` λ

tNż

t0

}BTKptqxptq ` uptq}2dt. (3.12)
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Now consider the linear functional xT ptqηptq, where η : rt0, tN s Ñ Rn is a

vector valued function. Then,

t´i`1ż

t`i

d
`
xTη

˘
“

t´i`1ż

t`i

`
xT 9η ` pAx ` BuqTη

˘
dt

ñ
t´i`1ż

t`i

»
——–
x

u

fi
ffiffifl

T »
——–
AT η ` 9η

BT η

fi
ffiffifl dt` xT ptiqηpt`i q ´ xT pti`1qηpt´i`1q “ 0. (3.13)

Adding (3.13) over pt`0 , t´1 q, pt`1 , t´2 q, ¨ ¨ ¨ , pt`N´1, t
´
N q we obtain

tNż

t0

»
——–
x

u

fi
ffiffifl

T »
——–
ATη ` 9η

BTη

fi
ffiffifl dt` xT pt0qηpt´0 q `

Nÿ

i“0

xT ptiq
`
ηpt`i q ´ ηpt´i q

˘

´ xT ptNqηpt`Nq “ 0. (3.14)

As the quantity given by (3.14) equals to zero for any u P U and any η differentiable

over pt`i , t´i`1q @i P t0, 1, 2, ¨ ¨ ¨ , N ´ 1u, a multiple of it can be added to the cost

Jpxpt0q, uq in (3.12) without causing any change. Hence we have,

Jpxpt0q, uq “ λ
`
xT pt0qKpt´0 qxpt0q ` xT pt0qηpt´0 q

˘
´ λxT ptNqηpt`Nq

`
Nÿ

i“0

xT ptiq
“
λ

`
ηpt`i q ´ ηpt´i q

˘
´ 2CT ri

‰
`

Nÿ

i“0

rTi ri

` λ

tNż

t0

¨
˚̊
˝

»
——–
x

u

fi
ffiffifl

T »
——–
ATη ` 9η

BTη

fi
ffiffifl ` }BTKx` u}2

˛
‹‹‚dt. (3.15)
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As (3.15) holds true for any choice of η, we make the following assumptions on η,

9ηptq “ ´
`
AT ´ KptqBBT

˘
ηptq,

ηpt`N q “ 0, (3.16)

ηpt`i q ´ ηpt´i q “ 2

λ
CT ri.

With these assumptions (3.16), the cost Jpxpt0q, uq can be represented as

Jpxpt0q, uq “ λ
“
xT pt0qKpt´0 qxpt0q ` xT pt0qηpt´0 q

‰
´ λ

4

tNż

t0

}BTηptq}2dt

`
Nÿ

i“0

rTi ri ` λ

tNż

t0

}uptq ` BT

ˆ
Kptqxptq ` 1

2
ηptq

˙
}2dt. (3.17)

From (3.17) it is clear, that by choosing

uptq “ u
opt

ptq fi ´BT

ˆ
Kptqxptq ` 1

2
ηptq

˙
, (3.18)

we have

Jpxpt0q, u
opt

q “ λ
`
xT pt0qKpt´0 qxpt0q ` xT pt0qηpt´0 q

˘
`

Nÿ

i“0

rTi ri ´ 1

4
λ

tNż

t0

}BTηptq}2dt.

(3.19)

As λ ą 0, it is apparent from (3.19), that the necessary and sufficient condition for

the cost to be minimized is,

u “ u
opt

and xT pt0qKpt´0 qxpt0q ` xT pt0qηpt´0 q be minimized over xpt0q P Rn.
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Therefore,

x
opt

pt0q “ arg min
xpt0qPRn

`
xT pt0qKpt´0 qxpt0q ` xT pt0qηpt´0 q

˘
,

or in other words, the optimal initial state satisfies the following condition

“
Kpt´0 q

‰
x

opt
pt0q ` 1

2
ηpt´0 q “ 0. (3.20)

Hence, we have

J
min

“
Nÿ

i“0

rTi ri ´ λ

»
–xT

opt
pt0qKpt´0 qx

opt
pt0q ` 1

4

tNż

t0

}BTηptq}2dt

fi
fl . (3.21)

It is clear from definition (3.5) that the cost is never negative, and hence

J
min

ě 0

or in other words

xT
opt

pt0qKpt´0 qx
opt

pt0q ` 1

4

tNż

t0

}BTηptq}2dt ď 1

λ

Nÿ

i“0

rTi ri.

Proposition 3.1 (Brockett [1970]). A Riccati equation of the form

9Kptq “ ´KptqA´ ATKptq ` KptqBBTKptq (3.22)

KpT q “ Q,

has a symmetric, positive semi-definite solution Kptq for t ď T whenever the termi-
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nal value Q is symmetric, positive semi-definite, and the pair rA,Bs is controllable.

Moreover, the solution can be represented as

Kptq “ e´AT pt´T q

˜
Q´ Q

„`
Gpt, T q

˘´1 ` Q

´1

Q

¸
e´Apt´T q (3.23)

where Gpt, T q is a controllability Grammian-like quantity.

Proof for Proposition.3.1. The adjoint system corresponding to the Riccati equation

(3.22) is

d

dt

»
——–
η1

η2

fi
ffiffifl “

»
——–
A ´BBT

0 ´AT

fi
ffiffifl

»
——–
η1

η2

fi
ffiffifl

and the associated transition matrix can be represented as

»
——–
φ11 φ12

φ21 φ22

fi
ffiffifl pt, T q “ φpt, T q “

»
——–
eApt´T q eApt´T qGpt, T q

0 e´AT pt´T q

fi
ffiffifl

where,

Gpt, T q fi ´
tż

T

eApT´σqBBT eA
T pT´σqdσ

is positive definite for any t ă T because of controllability of the pair rA,Bs.

Hence the solution for (3.22) can be represented as,

Kptq “
„
φ21pt, T q ` φ22pt, T qQ

„
φ11pt, T q ` φ12pt, T qQ

´1

“ e´AT pt´T qQ

„
eApt´T q`

In ` Gpt, T qQ
˘´1

“ e´AT pt´T qQ

ˆ
In ` Gpt, T qQ

˙´1

e´Apt´T q.
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Now by applying the matrix inversion lemma,

`
E ´ FH´1G

˘´1 “ E´1 ` E´1F
`
H ´ GE´1F

˘´1
GE´1,

and by letting E “ In, F “ ´In, G “ Q and H “
`
Gpt, T q

˘´1
we obtain

ˆ
In ` Gpt, T qQ

˙´1

“ In ´
ˆ`

Gpt, T q
˘´1 ` Q

˙´1

Q.

As Gpt, T q ą 0 for any t ă T , its inverse is also positive definite for any t ă T .

Then positive definiteness of
“`
Gpt, T q

˘´1 ` Q
‰´1

is directly implied from the fact

that the terminal condition Q is positive semi-definite.

By defining Mptq fi
`
Gpt, T q

˘´1
, we have

Kptq “ e´AT pt´T qQ

„
Q´ Q

“
Mptq ` Q

‰´1
Q


Qe´Apt´T q.

As M ą 0 (implicit dependency on time t is not shown for the sake of clarity) and

Q “ QT ě 0, there exists a non-singular matrix P such that

P TQP “ Λ

P T
MP “ In

where Λ is a diagonal matrix with non-negative entries. With the above expressions
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from simultaneous diagonalization, we have

Q ´ Q
“
M ` Q

‰´1
Q “ pP T q´1

„
Λ ´ Λ

`
In ` Λ

˘´1
Λ


P´1. (3.24)

Now, by assuming Λ “ diagpλ1, ¨ ¨ ¨ , λnq, λi ě 0, we obtain

`
In ` Λ

˘´1 “ diagp 1

1 ` λ1
, ¨ ¨ ¨ , 1

1 ` λn
q

ñΛ
`
In ` Λ

˘´1
Λ “ diagp λ21

1 ` λ1
, ¨ ¨ ¨ , λ2n

1 ` λn
q

ñΛ ´ Λ
`
In ` Λ

˘´1
Λ “ diagp λ1

1 ` λ1
, ¨ ¨ ¨ , λn

1 ` λn
q.

Therefore Λ ´ Λ
`
In ` Λ

˘´1
Λ is a positive semi-definite diagonal matrix, and hence

from (3.24), Q ´ Q
“
M ` Q

‰´1
Q is a symmetric positive semi-definite matrix.

Hence, Kptq is symmetric, positive semi-definite for any t ă T .

With assurance on the existence of solution, we make the following claim

regarding the form of the Riccati equation solution.

Lemma 3.2. The solution of the Riccati equation (3.11) assumes the form

Kpt´i q “ 1

λ

Nÿ

k“i
ΦΣpti, tkqCTCΦTΣpti, tkq

for any i P t0, 1, ¨ ¨ ¨ , Nu where Σptq “ ´pA´ 1
2
BBTKptqqT and ΦΣ is the transition

matrix for Σ.

Proof for Lemma.3.2. We will use mathematical induction to prove the above claim.

From the boundary and jump conditions in (3.11) it is obvious that the claim holds
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true for i “ N .

Now we assume that it holds true for i “ m ` 1, or in other words

Kpt´m`1q “ 1

λ

Nÿ

k“m`1

ΦΣptm`1, tkqCTCΦTΣptm`1, tkq.

Using uniqueness of solution, one can easily verify that

Kptq “ ΦΣpt, tm`1qKpt´m`1qΦTΣpt, tm`1q

satisfies the Riccati differential equation

9Kptq “ ´ATKptq ´ KptqA` KptqBBTKptq

for any t P ptm, tm`1q.

Therefore,

Kpt´mq “ Kpt`mq ` 1

λ
CTC

“ ΦΣptm, tm`1qKpt´m`1qΦTΣptm, tm`1q ` 1

λ
CTC

“ 1

λ

Nÿ

k“m`1

ΦΣptm, tkqCTCΦTΣptm, tkq ` 1

λ
ΦΣptm, tmqCTCΦTΣptm, tmq

“ 1

λ

Nÿ

k“m
ΦΣptm, tkqCTCΦTΣptm, tkq.

Hence the claim is proved, as it holds true for i “ m.

Now we concentrate on the dynamics of η given by (3.16) and introduce a new
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time-varying matrix

Σ̃ptq “ ´pA´ BBTKptqqT .

Then the dynamics of η can be represented as

9ηptq “ Σ̃ptqηptq (3.25)

for any t P pti, ti`1q, i P t0, 1, ¨ ¨ ¨ , N´1u. By letting ΦΣ̃ denote the transition matrix

for (3.25), we can make the following claim regarding the solution for η variables.

Lemma 3.3.

ηpt`i q “ ´2

λ

Nÿ

k“i`1

ΦΣ̃pti, tkqCT rk

ηpt´i q “ ´2

λ

Nÿ

k“i
ΦΣ̃pti, tkqCT rk

Proof for Lemma.3.3. We will use mathematical induction to prove the above claim.

From the boundary and jump conditions in (3.16) it is obvious that the claim holds

true for i “ N as,

ηpt`Nq “ 0

ηpt´Nq “ ´2

λ
CT rN .
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Now we assume that it holds true for i “ m ` 1, or in other words

ηpt`m`1q “ ´2

λ

Nÿ

k“m`2

ΦΣ̃ptm`1, tkqCT rk

ηpt´m`1q “ ´2

λ

Nÿ

k“m`1

ΦΣ̃ptm`1, tkqCT rk.

Using the dynamics of η, given by (3.25), we have the following relationship

ηpt`mq “ ΦΣ̃ptm, tm`1qηpt´m`1q “ ´2

λ
ΦΣ̃ptm, tm`1q

Nÿ

k“m`1

ΦΣ̃ptm`1, tkqCT rk

“ ´2

λ

Nÿ

k“m`1

ΦΣ̃ptm, tkqCT rk. (3.26)

Using the jump condition at tm, we obtain

ηpt´mq “ ηpt`mq ´ 2

λ
CT rm

“ ´2

λ

Nÿ

k“m`1

ΦΣ̃ptm, tkqCT rk ´ 2

λ
ΦΣ̃ptm, tmqCTrm

“ ´2

λ

Nÿ

k“m
ΦΣ̃ptm, tkqCT rk. (3.27)

From (3.26) and (3.27) it is clear that the claim holds true for i “ m.

Hence the claim is proved.

Now we focus into the problem of our interest, i.e. the problem of trajectory

reconstruction through minimization of the jerk path integral. By exploiting the

particular structure of A, B and C (given by (3.4)), namely the triple-integrator

property, we claim observability for the p´ΣT , Cq pair.
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Proposition 3.4. p´ΣT , Cq forms an observable pair for the trajectory reconstruc-

tion problem (3.3,3.4).

Proof for Proposition.3.4. K is a symmetric matrix by definition, and hence one

can assume the following block structure for K,

Kptq “

»
——————–

K11ptq K12ptq K13ptq

KT
12ptq K22ptq K23ptq

KT
13ptq KT

23ptq K33ptq

fi
ffiffiffiffiffiffifl
.

With this particular structure for K, we have the following expression of ΣT ptq for

the jerk path integral minimization problem,

ΣT ptq “

»
——————–

0 ´I3 0

0 0 ´I3

1
2
KT

13ptq 1
2
KT

23ptq 1
2
K33ptq

fi
ffiffiffiffiffiffifl
. (3.28)

Now, for the sake of convenience, we use Silverman-Meadows rank condition [Sil-

verman & Meadows, 1967] to prove our claim. To do so, we define the matrix Qobv

as

Qobvptq “
“
S0ptq S1ptq ¨ ¨ ¨ Sn´1ptq

‰

where Siptq’s are computed recursively using

Sk`1ptq “ ´ΣptqSkptq ` 9Skptq, S0ptq “ CT . (3.29)
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The Siptq’s will assume the following form,

S0ptq “

»
——————–

I3

0

0

fi
ffiffiffiffiffiffifl
, S1ptq “

»
——————–

0

I3

0

fi
ffiffiffiffiffiffifl
, S2ptq “

»
——————–

0

0

I3

fi
ffiffiffiffiffiffifl
, S3ptq “ ´1

2

»
——————–

K13ptq

K23ptq

K33ptq

fi
ffiffiffiffiffiffifl
,

and so on. Hence it can be immediately concluded that the pair p´ΣT , Cq is ob-

servable as the rank of Qobvptq is 9 for any t P R` Y t0u.

Theorem 3.5. For the trajectory reconstruction problem (3.3,3.4), the optimal ini-

tial condition (given by (3.20)) is uniquely solvable for almost any time index set

ttiuNi“0.

Proof for Theorem.3.5. From proposition 1 we have,

Kpt´0 q “ 1

λ

Nÿ

k“0

ΦΣpt0, tkqCTCΦTΣpt0, tkq

“ 1

λ

Nÿ

k“0

ΦT´ΣT ptk, t0qCTCΦ´ΣT ptk, t0q

“ 1

λ

»
——————————–

C

CΦ´ΣT pt1, t0q
...

CΦ´ΣT ptN , t0q

fi
ffiffiffiffiffiffiffiffiffiffifl

T »
——————————–

C

CΦ´ΣT pt1, t0q
...

CΦ´ΣT ptN , t0q

fi
ffiffiffiffiffiffiffiffiffiffifl

“ 1

λ
CTC.

Now we investigate the rank of C because the solvability of (3.20) is equivalent to
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the fact of C having full rank. To do so we consider the following system

9ξptq “ ´ΣT ptqξptq

γptq “ Cξptq,
(3.30)

which is observable (proposition 3.3 ). We can easily show that the j-th derivative

of its output can be represented as

γpjqptq “ STj ptqΦ´ΣT pt, tiniqξptiniq

where Sjptq’s are defined in (3.29).

Let ξ1 ‰ ξ2 be two different choice of initial state ξpt0q for the system (3.30) and

γiptq be its output corresponding to the initial condition ξpt0q “ ξi. Now we define,

Yi fi

»
——————————–

γipt0q

γipt1q
...

γiptNq

fi
ffiffiffiffiffiffiffiffiffiffifl

“ Cξi.

Now we claim that the outputs of (3.30), corresponding to two different initial

conditions ξ1 ‰ ξ2, do not match identically over any interval T Ă R` Y t0u, or in

other words, there is no such interval T Ă R` Y t0u such that γ1ptq “ γ2ptq for any

t P T.
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We can prove our claim by contradiction. Let

CΦ´ΣT pt, t0qξ1 “ CΦ´ΣT pt, t0qξ2

for all t belonging to some interval T. Then the derivatives, when they exist, should

match for any t˚ in the interior of T, i.e.

dj

dtj

ˆ
CΦ´ΣT pt, t0qξ1

˙ˇ̌
ˇ̌
t˚

“ dj

dtj

ˆ
CΦ´ΣT pt, t0qξ2

˙ˇ̌
ˇ̌
t˚

ñ

»
——————————–

ST0 ptq

ST1 ptq
...

STn´1ptq

fi
ffiffiffiffiffiffiffiffiffiffifl

Φ´ΣT pt˚, t0qξ1 “

»
——————————–

ST0 ptq

ST1 ptq
...

STn´1ptq

fi
ffiffiffiffiffiffiffiffiffiffifl

Φ´ΣT pt˚, t0qξ2

ñQT
obvptqΦ´ΣT pt˚, t0q

ˆ
ξ1 ´ ξ2

˙
“ 0

ñξ1 “ ξ2.

But it contradicts our initial assumption about inequality of ξ1 and ξ2, thereby

proves the claim. Hence Cξ1 ‰ Cξ2 for almost any time index set ttiuNi“0. Therefore

Kpt´0 q is positive definite almost surely because C has full rank almost surely.

When the rank condition fails, i.e. Cξ1 “ Cξ2, we can consider an arbitrary close

perturbation of the original time index. For any given ǫ ą 0 we can choose a
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perturbed time index set tt̃iuNi“0, such that the following conditions holds true,

t0 “ t̃0,

Nÿ

i“1

|ti ´ t̃i| ă ǫ,

and,

»
——————————–

C

CΦ´ΣT pt̃1, t̃0q
...

CΦ´ΣT pt̃N , t̃0q

fi
ffiffiffiffiffiffiffiffiffiffifl

has full rank.

Therefore (3.20) can be uniquely solved, for almost any time index set ttiuNi“0.

As Kpt´0 q is shown to be a symmetric, invertible and positive definite matrix,

for almost any time index set ttiuNi“0, the optimal initial condition can be represented

as

x
opt

pt0q “ ´1

2

“
Kpt´0 q

‰´1

ηpt´0 q “ 1

λ

“
Kpt´0 q

‰´1
Nÿ

k“0

ΦΣ̃pt0, tkqCT rk. (3.31)

Remark 3.1. The work by Magnus Egerstedt, Clyde Martin and their collabora-

tors (Egerstedt & Martin [2010]; Kano et al. [2008]; Shan et al. [2000]; Zhou et al.

[2005, 2006]) provides an alternative view for exploiting linear optimal control for

smooth interpolation. Their work provides a framework to recover a scalar input

from sampled observations of scalar output data by solving a regularized optimal con-

trol problem, similar to the one given in (3.5). However, this work uses a variation

approach and makes some extra assumption to ensure smoothness. This variational

approach can also be viewed from a learning theoretic perspective. On the other hand,
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our approach exploits the integrability of linear-quadratic optimal control problems,

and the observations introduce jumps in the optimal control input. Moreover, our

results can be used to construct control theoretic splines for multi-input multi-output

systems if the optimal initial condition is uniquely solvable from (3.20).

Remark 3.2. Moreover, our results can be generalized to reconstruct any trajec-

tory whose evolution is governed by a linear time invariant generative model. Given

the pair rA,Bs (rA,Cs) is controllable (observable) and the optimal initial condition

(x
opt
) is uniquely solvable from 3.20, one can use our approach for data smoothing.

In particular, trajectory reconstruction by penalizing high values of the snap, crackle

or pop (4th, 5th or 6th derivative of position, respectively) path integrals, will not af-

fect the structure for higher order integrators, and hence it can be easily shown that

Prop 3.4 holds true for those cases. Therefore our approach has a natural exten-

sion to tackle trajectory reconstruction through penalizing higher order derivatives

of motion.

3.2.2 Linearity of Reconstruction

Under the action of an optimal control input u
opt

the system dynamics can be

represented as

9xptq “
“
A´ BBTKptq

‰
xptq ´ 1

2
BBTηptq “ ´Σ̃T ptqxptq ´ 1

2
BBTηptq, (3.32)
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or in other words it can be viewed as a time-varying linear system with η being the

input, and the state xptq can be expressed as

xptq “ Φ´Σ̃T pt, t0qxopt
pt0q ´ 1

2

tż

t0

Φ´Σ̃T pt, σqBBTηpσqdσ

“ ΦT
Σ̃

pt0, tqxopt
pt0q ´ 1

2

tż

t0

ΦT
Σ̃

pσ, tqBBTηpσqdσ. (3.33)

Therefore the reconstructed states can be represented (at sampling time instances

ttiuNi“0) as,

xptkq “ ΦT
Σ̃

pt0, tkqxopt
pt0q ´ 1

2

tkż

t0

ΦT
Σ̃

pσ, tkqBBTηpσqdσ

“ ΦT
Σ̃

pt0, tkqxopt
pt0q ´ 1

2

kÿ

i“1

»
–

tiż

ti´1

ΦT
Σ̃

pσ, tkqBBTηpσqdσ

fi
fl

“ ΦT
Σ̃

pt0, tkqxopt
pt0q ´ 1

2

kÿ

i“1

»
–

tiż

ti´1

ΦT
Σ̃

pσ, tkqBBTΦΣ̃pσ, tiqηpt´i qdσ

fi
fl

“ ΦT
Σ̃

pt0, tkqxopt
pt0q ´ 1

2

kÿ

i“1

»
–

tiż

ti´1

ΦT
Σ̃

pσ, tkqBBTΦΣ̃pσ, tiqdσ

fi
fl ηpt´i q

“ ΦT
Σ̃

pt0, tkqxopt
pt0q

` 1

λ

kÿ

i“1

« tiż

ti´1

ΦT
Σ̃

pσ, tkqBBTΦΣ̃pσ, tiqdσ ˆ
˜

Nÿ

j“i
ΦΣ̃pti, tjqCT rj

¸ ff

“ ΦT
Σ̃

pt0, tkqxopt
pt0q

` 1

λ

Nÿ

i“1

«
minti,kuÿ

j“1

¨
˚̋

tjż

tj´1

ΦT
Σ̃

pσ, tkqBBTΦΣ̃pσ, tjqdσ

˛
‹‚ˆ ΦΣ̃ptj , tiq

ff
CT ri.
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As the optimal initial condition is linear in observed data points, the smoothened

position at time tk can also be expressed as a linear combination of observed posi-

tions.

rptkq “ 1

λ

Nÿ

i“0

“
CF

λ
pk, iqCT

‰
ri (3.34)

where

F
λ
pk, iq “ ΦT

Σ̃
pt0, tkq

“
Kpt´0 q

‰´1
ΦΣ̃pt0, tiq `

minti,kuÿ

j“1

¨
˚̋

tjż

tj´1

ΦT
Σ̃

pσ, tkqBBTΦΣ̃pσ, tiqdσ

˛
‹‚

(3.35)

Remark 3.3. As the coefficients Fpk, iq’s depend only on the sampling time in-

stances, namely t0, ¨ ¨ ¨ , tN , and the underlying system dynamics, these coefficients

can be pre-computed.

Remark 3.4. This approach can be perceived as a global alternative to Savitzky-

Golay smoothing filters (Savitzky & Golay [1964]; Schafer [2011]), wherein the fil-

tered outputs are obtained by fitting a least square polynomial (locally) through the

observed data points. In our approach the local nature is absent, instead each of the

filtered outputs depends on the complete data set. But because of this global nature

our approach has its own drawback. This method, in its true form, cannot be used

in real-time as it requires all the observations together.

Remark 3.5. The significance of the word “smoothing” is twofold in this context.

Firstly this approach penalizes high values of jerk path integral and thereby yields a

smoothened trajectory. Moreover, it uses data from both past and future to estimate

the present position and thus justifies the usage of “smoothing” in estimation context.
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Remark 3.6. The formulation of the problem is an example of fixed interval smooth-

ing. One can use this as a building block and proceed to obtain a fixed lag smoothing

algorithm. The path is quite intuitive.

3.3 An Alternative Co-state Based Approach

Although we have developed an analytic method to solve data smoothing, the

procedure is computationally demanding because it involves solving a differential

Riccati equation. Now, to make computations more tractable, we represent the

solution in terms of co-state variables, defined as,

pptq fi Kptqxptq ` 1

2
ηptq. (3.36)

Then the optimal control input (3.18) and system dynamics (3.3) will have the form

u
opt

ptq “ ´BTpptq

9xptq “ Axptq ´ BBTpptq,

and the dynamics of the co-states is given by

9pptq “ 9Kptqxptq ` Kptq 9xptq ` 1

2
9ηptq “ ´ATpptq. (3.37)
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Therefore the optimal trajectory between two observation times can be viewed as

the base integral curve of the following system

d

dt

»
——–
xptq

pptq

fi
ffiffifl “

»
——–
A ´BBT

0 ´AT

fi
ffiffifl

»
——–
xptq

pptq

fi
ffiffifl . (3.38)

From (3.38) it is apparent that the dynamics of p is decoupled from that of x.

Now we’ll focus on the jump conditions for the co-states

ppt`i q ´ ppt´i q “
“
Kpt`i q ´ Kpt´i q

‰
xptiq ` 1

2

“
ηpt`i q ´ ηpt´i q

‰
“ 1

λ
CT pri ´ rptiqq .

(3.39)

We also have the following terminal condition

ppt`N q “ Kpt`NqxptN q ` 1

2
ηpt`Nq “ 0

as both Kpt`N q and ηpt`Nq are equal to zero, and by letting xpt0q “ x
opt

pt0q, (3.20)

yields,

ppt´0 q “ Kpt´0 qxpt0q ` 1

2
ηpt´0 q “ 0.

Now we introduce a new variable, namely incremental time, defined as ∆i fi
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ti`1 ´ ti i P t0, 1, ¨ ¨ ¨ , N ´ 1u. From (3.38) we have

pptq “ e´AT pt´tiqppt`i q t P pti, ti`1q (3.40)

ppt`i`1q “ ppt´i`1q ` 1

λ
CT pri`1 ´ Cxpti`1qq

“ e´AT∆ippt`i q ´ 1

λ
CTCxpti`1q ` 1

λ
CT ri`1 (3.41)

for i P t0, 1, ¨ ¨ ¨ , N ´ 1u. From the dynamics of x in (3.38), we have

xpti`1q “ eApti`1´tiqxptiq ´
ti`1ż

ti

eApti`1´σqBBTppσqdσ

“ eA∆ixptiq ´
ti`1ż

ti

eApti`1´σqBBT e´AT pσ´tiqppt`i qdσ

“ eA∆ixptiq ´ eA∆i

»
–
ti`1ż

ti

eApti´σqBBT e´AT pσ´tiqdσ

fi
fl ppt`i q. (3.42)

From (3.41) and (3.42) we obtain the following matrix representation for forward-

propagation of xptiq and ppt`i q

»
——–
xpti`1q

ppt`i`1q

fi
ffiffifl “

»
——–

eA∆i ´eA∆iWi

´ 1
λ
CTCeA∆i

”
e´AT∆i ` 1

λ
CTCeA∆iWi

ı

fi
ffiffifl

»
——–

xptiq

ppt`i q

fi
ffiffifl

`

»
——–

0

1
λ
CT

fi
ffiffifl ri`1 (3.43)
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where Wi is defined as

Wi “
ti`1ż

ti

eApti´σqBBT e´AT pσ´tiqdσ “
∆iż

0

e´AτBBT e´AT τdτ pτ “ σ ´ tiq. (3.44)

From (3.44) it is apparent that the controllability Gramian Wi depends only on

the inter-sample intervals, not explicitly on the sampling instances. Moreover,the

Gramian is invertible as the underlying system (3.3) is controllable.

By defining a discrete time state vector as zi “
“
xT ptiq pT pt`i q

‰T
, (3.43) can

be represented as the following discrete time system

zi`1 “ Λizi ` Γri`1 (3.45)

where Λi and Γ are defined as

Λi “

»
——–

eA∆i ´eA∆iWi

´ 1
λ
CTCeA∆i

”
e´AT∆i ` 1

λ
CTCeA∆iWi

ı

fi
ffiffifl

Γ “

»
——–

0

1
λ
CT

fi
ffiffifl .

Lemma 3.6. Λi is invertible for any i P t0, 1, ¨ ¨ ¨ , N ´ 1u.
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Proof for Lemma.3.6.

Λi “

»
——–

eA∆i ´eA∆iWi

´ 1
λ
CTCeA∆i

”
e´AT∆i ` 1

λ
CTCeA∆iWi

ı

fi
ffiffifl

“

»
——–

In 0

´ 1
λ
CTC In

fi
ffiffifl

»
——–
eA∆i ´eA∆iWi

0 e´AT∆i

fi
ffiffifl

“ MΥi (3.46)

(3.46) gives a block LU-factorization for Λi and both M and Υi are invertible for

any i.

Hence, Λi is invertible for any i.

From (3.45) we obtain

zk “
˜
k´1ź

i“0

Λi

¸
»
——–

xpt0q

1
λ
CT pr0 ´ Cxpt0qq

fi
ffiffifl `

kÿ

i“1

˜
k´1ź

j“i
Λj

¸
Γri

“
˜
k´1ź

i“0

Λi

¸ ´
»
——–

In

´ 1
λ
CTC

fi
ffiffiflxpt0q ` Γr0

¯
`

kÿ

i“1

˜
k´1ź

j“i
Λj

¸
Γri

“
˜
k´1ź

i“0

Λi

¸
»
——–

In

´ 1
λ
CTC

fi
ffiffiflxpt0q `

kÿ

i“0

˜
k´1ź

j“i
Λj

¸
Γri (3.47)

where
ś

represents left multiplication. As ppt`Nq “ 0, xpt0q can be obtained by
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solving the following equation

r0 Ins
˜
N´1ź

i“0

Λi

¸
»
——–

In

´ 1
λ
CTC

fi
ffiffifl xpt0q “ ´ r0 Ins

Nÿ

i“0

˜
N´1ź

j“i
Λj

¸
Γri. (3.48)

From the way (3.48) has been obtained, it can be inferred that (3.48) is an alternative

form of (3.20). Hence, it can be concluded from Theorem 3.4 that for the trajectory

reconstruction problem (3.3,3.4) of our interest, (3.48) yields a unique solution for

the optimal initial condition for almost any time index set ttiuNi“0. Once xpt0q is

obtained by solving (3.48), the trajectory can be reconstructed using (3.38) and the

jump conditions given by (3.39).

Remark 3.7. The limiting case of λ “ 0 signifies the exact fitting problem, and

hence can be represented as an optimal control problem with both initial and final

points lying on an affine space. Although this problem can be solved by applying

suitable transversality conditions, it will result in non-unique state trajectories.

Remark 3.8. The proposed algorithm for data smoothing is fast, with complexity

of the order of sample size (OpNq).

3.4 Ordinary Cross Validation for Optimal λ Selection

As discussed earlier (in Section 2.3), ordinary cross validation (OCV) performs

reconstruction by considering a subset of the whole data set, and then computes the

fit-error at left-out data points. After this step has been repeated for all possible

subsets, the fit errors are summed up. This sum of errors can be perceived as a
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Algorithm 1 Algorithm for trajectory smoothing

Data: Time index - ttiuNi“0; Data - triuNi“0; Smoothing Parameter - λ ą 0
Define: A, B and C
for i = 0 to N ´ 1 do

∆t Ð ti`1 ´ ti

Compute the Gramian W “
∆tż

0

e´AσBBT e´ATσdσ

—Due to special structures in A and B, W have a closed form solution (involving
polynomial functions of ∆t).

Υi Ð
„
eA∆t ´eA∆tW
0 e´AT∆t



end

M Ð
„

I 0
´ 1
λ
CTC I



Γ Ð
„

0
1
λ
CT



Initialize: P0 Ð I

Initialize: S0 Ð Γr0
for i = 1 to N do

Pi Ð M ˚ Υi´1 ˚ Pi´1

Si Ð M ˚ Υi´1 ˚ Si´1 ` Γri
end

Define: A Ð
“
0 I

‰
˚ PN ˚Mp:, 1q

Define: B Ð
“
0 ´ I

‰
˚ SN

Solve optimal initial condition: x
opt

pt0q “ A
´1
B.

for i = 0 to N ´ 1 do
zi Ð Pi ˚Mp:, 1q ˚ x

opt
pt0q ` Si

xptiq Ð
“
I 0

‰
˚ zi

end
Result: Compute reconstructed position - rptiq “ CXptiq, i P t0, 1, . . . , Nu.

sampled variance of the estimator for that particular amount of regularization. Our

objective is to pick the amount of regularization (λ-parameter) which minimizes

this sample variance. In our case, we have adopted the leaving-out-one strategy for

OCV, wherein all-but-one data point is used for reconstruction.

Now we’ll briefly discuss the ordinary cross validation procedure for the tra-

jectory smoothing problem. Let
`
xkλpt0q, ukλp¨q

˘
be a minimizer of the following op-
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timization problem:

Minimize
xpt0q,u

¨
˚̋ Nÿ

j“0
j‰k

}yptjq ´ rj}2 ` λ

tNż

t0

uT pσqupσqdσ

˛
‹‚ (3.49)

subject to the constraints given by (3.3). Then the ordinary cross validation cost

V0pλq is defined as

V0pλq “ 1

N ` 1

Nÿ

k“0

}rk ´ Cxkλptkq}2. (3.50)

Finally we pick up an optimal value of the regularization parameter as

λ˚ “ argmin
λą0

pV0pλqq . (3.51)

For the problem under consideration, the special structure of the underlying dynam-

ical system yields a nice form for the ordinary cross validation cost.

Now we solve the optimization problem (3.49) by following the path described

in Section 3.3. By following the co-state approach we can conclude that the optimal

trajectory will be a base integral curve of the associated Hamiltonian vector field,

with suitable jump conditions on the co-state variables. It can be easily observed

that the co-state variables are continuous at the left-out point, without any jump.

Then with a little bit of algebra we can show that xkλp0q, an optimal initial condition,
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will satisfy a modified form of (3.48), in particular

r0 Ins
˜
N´1ź

i“k
MΥi

¸
Υk´1

˜
k´2ź

i“0

MΥi

¸
»
——–

In

´ 1
λ
CTC

fi
ffiffifl xkλp0q

“ ´ r0 Ins
k´1ÿ

i“0

˜
N´1ź

j“k
MΥj

¸
Υk´1

˜
k´2ź

j“i
MΥj

¸
Γri

´ r0 Ins
Nÿ

i“k`1

˜
N´1ź

j“i
MΥj

¸
Γri (3.52)

where Υi’s are obtained by factorization of Λi’s, as mentioned in Lemma 4.1. There-

fore the reconstruction error encountered at the k-th data point can be represented

as

rk ´ Cxkλptkq

“ rk ´ C

»
——–

In

0

fi
ffiffifl

T

Υk´1

¨
˚̊
˝
k´2ź

i“0

MΥi

»
——–

In

´ 1
λ
CTC

fi
ffiffifl xkλp0q `

k´1ÿ

i“0

˜
k´2ź

j“i
MΥj

¸
Γri

˛
‹‹‚

(3.53)

when we start the trajectory from xkλpt0q and apply the optimal input ukλ. From

(3.52) it is quite clear that λ affects xkλpt0q through M , Γ and
“
In ´ 1

λ
CTC

‰
, and

hence the reconstruction error is a vector of rational functions in λ. Now we can

represent the cross validation cost, V0pλq, associated with this particular problem as

V0pλq “ 1

N ` 1

Nÿ

k“0

ˆ
rTk rk `

`
xkλptkq

˘T
CTCxkλptkq ´ 2rTk Cx

k
λptkq

˙
. (3.54)
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As we have the (somewhat) closed form for the OCV cost, given by (3.54), we are

now ready to write down the first order necessary condition for the optimality of

the regularization parameter λ. We can easily check that the optimal value, λ˚, will

satisfy the following first order condition

Nÿ

k“0

¨
˚̊
˝

`
Cxkλ˚ptkq ´ rk

˘T
C

»
——–

In

0

fi
ffiffifl

T

Υk´1

˛
‹‹‚

ˆ
˜

B
Bλ

«
k´2ź

i“0

MΥi

»
——–

In

´ 1
λ
CTC

fi
ffiffifl xkλp0q `

k´1ÿ

i“0

˜
k´2ź

j“i
MΥj

¸
Γri

ff

λ˚

¸
“ 0. (3.55)

Remark 3.9. The optimal value of the regularization parameter (λ˚) depends on

the signal-to-noise ratio (higher SNR will cause a lower value for λ˚). In many

practical applications SNR might not be constant during data capture (in case of

position measurement using multi-camera network this might occur because of poor

calibration around the edges of the capture volume), and in that case using the same

λ will result in an erroneous reconstruction. However our algorithm works fine for

piecewise constant values of λ, with transitions occurring at the sampling instances

ttiuNi“1 (this can be shown rigorously with a little modification in the application of

path independence lemmas). In that case the optimal values for λ (for different

segments of the trajectory) can be computed by minimizing the OCV cost over a grid

of possible λ-values (each dimension signifying a particular segment of the flight).
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Figure 6: This figure illustrates the reconstruction of a curve on a sphere.
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(a) This subplot shows the distance of the re-
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tion based approach yields a curve which is
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Figure 7: The proposed algorithm, when applied to reconstruct a spiral on a sphere, performs
better than the nonlinear optimization based algorithm.
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3.5 Numerical Results

First we test our algorithm on a synthetic data set; the sampled trajectory data

is obtained by adding an i.i.d. Gaussian noise (mean = 0, and standard deviation

= 0.15) to a spiral on a sphere of radius 5, and the number of samples used was

N “ 201. The reconstruction (Fig 6) through nonlinear optimization yields an

average fit error of 0.0599, whereas the proposed approach (3.5) yields an average fit

error of 0.0684. However, we compute two other metrics for performance comparison,

namely the distance of the curve from the center of the sphere (Fig 7a) and the

curvature of the reconstructed trajectory (Fig 7b). By analyzing these two metrics

it can be concluded that the proposed approach does a better job in trajectory

reconstruction.

Next, with permission from Kaushik Ghose and Cynthia Moss at the Auditory

Neuroethology Laboratory (BATLAB), Department of Psychology, University of

Maryland, we apply our algorithm to reconstruct a bat-insect trajectory pair. The

trajectory data was collected by Kaushik Ghose, and has previously been reported

in the context of prey capture flight strategies by echolocating bats [Ghose et al.,

2006]. The particular event, that we consider, had a flight duration of around

1.93s, and the corresponding data capture rate was set at 240fps. In this case, the

average fit error for the reconstruction of bat trajectory (Fig 8) through nonlinear

optimization is 2.2401ˆ 10´4, whereas the proposed approach yields a smaller error

of 7.6142 ˆ 10´5. Similarly, for the insect trajectory, our approach gives a better

fit (2.3913 ˆ 10´5 compared to 1.2966 ˆ 10´4). From Fig 10a and Fig 10b we can
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Figure 8: This figure illustrates the reconstruction of a bat-insect trajectory pair.

notice that the reconstructed speeds from two different regularization approaches

are almost equal for both trajectories, while the same does not hold true for the

evolution of curvature (Fig 9a and Fig 9b).

3.6 Conclusion

Using a simple linear generative model for trajectories (a triple integrator, with

jerk as the control input), we have developed a tool to obtain analytic solutions to

the inverse problem of trajectory reconstruction. Our approach casts the problem

in a linear framework with quadratic cost, and solve it by using techniques from

linear quadratic optimal control theory. Moreover, it has been shown that the
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Figure 9: There is noticeable difference in the curvature profile obtained from two different ap-
proaches.
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Figure 10: The reconstructed speeds from two different approaches are almost the same.

reconstructed positions can be expressed as a linear combination of measured data.

After trying the algorithm on synthetic data, we have applied it to reconstruct flight

trajectories of European starling flocks (as discussed in Chapter 6). Although this

approach overcomes the issues associated with the numerical optimization based
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technique, it should be noted here that not all problem can be cast in a linear

quadratic framework, and that provides motivation for the next chapter.
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Chapter 4: Data Smoothing through Nonlinear Optimization - Max-

imum Principle

As discussed earlier, the problem of reconstructing an underlying smooth signal

from sampled noisy observations arises in many areas of science and engineering (e.g.

trajectory reconstruction [Dey & Krishnaprasad, 2012], control theoretic splines

[Egerstedt & Martin, 2010] and quantum splines [Brody et al., 2012]), and in many

cases the underlying generative model, along with the regularizing penalty term, do

not allow us to cast the data smoothing problem in a linear quadratic framework.

One such example is the nonlinear version of the trajectory reconstruction problem

[(2.1), discussed in Section 2.1]. A quick reference to (3.6) reveals that this problem

can never be cast in a linear quadratic framework, and one needs appropriate tools

for data smoothing in nonlinear settings. However, the previous results towards

this direction are restricted to problems in a Riemannian setting (Burnett et al.

[2013]; Crouch & Leite [1991, 1995]; Jakubiak et al. [2006]; Machado et al. [2010]).

Although these works use calculus of variation based techniques, our earlier works

on data smoothing in a linear quadratic framework (in particular, Section 3.3) has

provided some insight about the applicability of Pontryagin’s maximum principle

[Pontryagin et al., 1962; Sussmann & Willems, 1997] in a sub-Riemannian setting.
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This chapter1 focuses its attention on the nonlinear aspects of data smoothing,

and develops a general framework to address data smoothing problems from a control

theoretic perspective. Section 4.1 of this chapter presents a modified version of the

maximum principle to solve data smoothing problems on Rn, and this modified

maximum principle introduces jump discontinuities in the costate variables. Later,

in Section 4.2 we extend our result to address data smoothing problems in finite

dimensional Lie group settings. This framework, being a modified (extended) version

of Pontryagin’s maximum principle, can easily be exploited to solve problems in sub-

Riemannian setting as well (as demonstrated in Sections 4.4 and 4.5).

4.1 Data smoothing in a Euclidean setting

In this section we propose the modified maximum principle to address data

smoothing problems in a Euclidean setting. By introducing a nonlinear generative

model as

9qptq “ f
`
t, qptq, uptq

˘
, (4.1)

1A significant portion of this chapter has been reproduced from a paper by Dey & Krishnaprasad
[2014a].

78



the data smoothing problem can be formulated as the following optimal control

problem on R
n:

Minimize
qpt0q,u

Jpqpt0q, uq “
tNż

t0

L
`
t, qptq, uptq

˘
dt`

Nÿ

i“0

F pqptiq, qiq

subject to System dynamics (4.1),

xpt0q P R
n, u P U ,

(4.2)

where U is the space of piecewise continuous functions defined on the interval rt0, tN s.

Moreover, F pqptiq, qiq denotes the fit-error incurred at the i-th data point qi (at time

ti), and the Lagrangian Lpt, q, uq introduces regularization into the data smoothing

problem.

Before going into the details of necessary conditions for a sub-Riemannian op-

timal control problem, we focus on a special case, namely the Riemannian dynamics

given by fpt, q, uq “ u. Clearly, for this special case, (4.2) can be perceived as a

calculus of variation problem. Clearly, first variation of the cost can be expressed as

δJ “
tNż

t0

«ˆBL
Bq

˙T

δq `
ˆBL

B 9q

˙T

δ 9q

ff
dt`

Nÿ

i“0

ˆ BF
Bqptiq

˙T

δqptiq. (4.3)

By summing up the identity (from exact differential)

t´i`1ż

t`i

«ˆBL
B 9q

˙T

δ 9q ` d

dt

ˆBL
B 9q

˙T

δq

ff
dt “

„BL
B 9q

pt´i`1q
T
δqpti`1q ´

„BL
B 9q

pt`i q
T
δqptiq
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over the intervals pt`0 , t´1 q, pt`1 , t´2 q, ¨ ¨ ¨ , pt`N´1, t
´
Nq, we obtain

tNż

t0

ˆBL
B 9q

˙T

δ 9qdt “
„BL

B 9q
pt´Nq

T
δqptNq `

N´1ÿ

i“1

„BL
B 9q

pt´i q ´ BL
B 9q

pt`i q
T
δqptiq

´
„BL

B 9q
pt`0 q

T
δqpt0q ´

tNż

t0

d

dt

ˆBL
B 9q

˙T

δqdt. (4.4)

Then, by using the relationship given by (4.4), the first variation (4.3) can be ex-

pressed as

δJ “
tNż

t0

„BL
Bq ´ d

dt

ˆBL
B 9q

˙T
δqdt`

„BL
B 9q

pt`N q
T
δqptN q

`
Nÿ

i“0

„BL
B 9q

pt´i q ´ BL
B 9q

pt`i q ` BF
Bqptiq

T
δqptiq ´

„BL
B 9q

pt´0 q
T
δqpt0q. (4.5)

Therefore, first order necessary conditions (δJ “ 0) for minimality (in this special

Riemannian case, fpt, q, uq “ u) can be expressed as

(EL)
d

dt

ˆBL
B 9q

˙
´ BL

Bq “ 0, t P pti, ti`1q, i “ 0, 1, ¨ ¨ ¨ , N ´ 1

(JC-1)
BL
B 9q

pt`i q ´ BL
B 9q

pt´i q “ BF
Bqptiq

, i “ 0, 1, ¨ ¨ ¨ , N (4.6)

(BC-1)
BL
B 9q

pt´0 q “ 0, and
BL
B 9q

pt`Nq “ 0.

Now we consider second order necessary conditions for optimality. From (4.3)
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we can note that the second variation of the cost can be represented as

δ2J “
tNż

t0

„
pδqqT

ˆ B2L

BqBq

˙
pδqq ` 2pδqqT

ˆ B2L

BqB 9q

˙
pδ 9qq ` pδ 9qqT

ˆ B2L

B 9qB 9q

˙
pδ 9qq


dt

`
Nÿ

i“0

pδqptiqqT
ˆ B2F

BqptiqBqptiq

˙
pδqptiqq, (4.7)

and by summing up the identity (from exact differential)

t´i`1ż

t`i

„
2pδqqT

ˆ B2L

BqB 9q

˙
pδ 9qq ` pδqqT

ˆ
d

dt
¨ B2L

BqB 9q

˙
pδqq


dt

“
`
δqpti`1q

˘T
„ B2L

BqB 9q
pt´i`1q

 `
δqpti`1q

˘
´

`
δqptiq

˘T
„ B2L

BqB 9q
pt`i q

 `
δqptiq

˘

over the intervals pt`0 , t´1 q, pt`1 , t´2 q, ¨ ¨ ¨ , pt`N´1, t
´
Nq, we obtain

tNż

t0

2pδqqT
ˆ B2L

BqB 9q

˙
pδ 9qqdt

“
`
δqptNq

˘T
„ B2L

BqB 9q
pt´N q

 `
δqptNq

˘
´

`
δqpt0q

˘T
„ B2L

BqB 9q
pt`0 q

 `
δqpt0q

˘

`
N´1ÿ

i“1

`
δqptiq

˘T
„ B2L

BqB 9q
pt´i q ´ B2L

BqB 9q
pt`i q

 `
δqptiq

˘

´
tNż

t0

pδqqT
ˆ
d

dt
¨ B2L

BqB 9q

˙
pδqqdt. (4.8)
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Hence, the second variation (4.7) can be expressed as

δ2J “
tNż

t0

pδqqT
„ B2L

BqBq ´ d

dt
¨ B2L

BqB 9q


pδqqdt`

tNż

t0

pδ 9qqT
„ B2L

B 9qB 9q


pδ 9qqdt

`
Nÿ

i“0

`
δqptiq

˘T
„ B2L

BqB 9q
pt´i q ´ B2L

BqB 9q
pt`i q ` B2F

BqptiqBqptiq

 `
δqptiq

˘

`
`
δqptNq

˘T
„ B2L

BqB 9q
pt`Nq

 `
δqptNq

˘
´

`
δqpt0q

˘T
„ B2L

BqB 9q
pt´0 q

 `
δqpt0q

˘
. (4.9)

This leads us to express second order necessary conditions (δ2J ě 0) as

(LE)
B2L

B 9qB 9q
ě 0, t P pti, ti`1q, i “ 0, 1, ¨ ¨ ¨ , N ´ 1

(JC-2)
B2L

BqB 9q
pt`i q ´ B2L

BqB 9q
pt´i q “ B2F

BqptiqBqptiq
, i “ 0, 1, ¨ ¨ ¨ , N (4.10)

(BC-2)
B2L

BqB 9q
pt´0 q “ 0, and

B2L

BqB 9q
pt`Nq “ 0.

At this point we introduce the adjoint/co-state variable (p) and define the

pre-Hamiltonian as

Hpt, q, p, uq “ pTu´ Lpt, q, uq, (4.11)

and therefore

BH
Bp “ u,

BH
Bq “ ´BL

Bq ,

BH
Bu “ p ´ BL

Bu ,
B2H

Bu2 “ ´B2L

Bu2 .

It is worth mentioning here that we are focusing on regular extremals, i.e. B2L
B 9qB 9q

‰ 0

along any solution of the Euler-Lagrange (EL) equation (4.6). Now we assume that
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t ÞÑ q˚ptq is a trajectory of the system 9q “ fpt, q, uq “ u which solves the optimal

control problem (4.2) with control given as u˚ptq “ 9q˚ptq, and define

pptq “ BL
Bu pt, q˚ptq, 9q˚ptqq. (4.12)

Then by applying the Euler-Lagrange condition (EL) from (4.6) we obtain

9pptq “ BL
Bq pt, q˚ptq, 9q˚ptqq “ ´BH

Bq pt, q˚ptq, pptq, 9q˚ptqq, (4.13)

and clearly we have

9q˚ptq “ u˚ptq “ BH
Bp pt, q˚ptq, pptq, 9q˚ptqq. (4.14)

Also from the definition of the adjoint variable we have

BH
Bu pt, q˚ptq, pptq, 9q˚ptqq “ 0, (4.15)

and the Legendre condition (LE) yields

B2H

Bu2 pt, q˚ptq, pptq, 9q˚ptqq ă 0 (4.16)

because of the regularity property. As, (4.15) and (4.16) maximize the pre-Hamiltonian,

we have

Hpt, q˚ptq, pptq, 9q˚ptqq “ Max
u

Hpt, q˚ptq, pptq, uq (4.17)
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A generalization of the above results leads us to an alternative version of the Pon-

tryagin’s maximum principle, which is tailored for the data smoothing problem.

Theorem 4.1 (PMP for data smoothing). Consider an optimal control problem

on Rn, given as

Minimize
qpt0q;u

Jpqpt0q, uq “
tNż

t0

Lpt, qptq, uptqqdt`
Nÿ

i“0

F
`
qptiq, qi

˘

subject to: 9qptq “ fpt, qptq, uptqq,

q : rt0, tN s Ñ R
n,

u P U : rt0, tN s Ñ U Ă R
m, u ´ piecewise continuous.

(4.18)

Now we assume that u˚ is an optimal control input for (4.18), and q˚ denotes the

corresponding state trajectory. Then there exists a costate trajectory p : rt0, tN s Ñ

R
n such that

9q˚ptq “ BH
Bp pt, q˚ptq, pptq, u˚ptqq

9pptq “ ´BH
Bq pt, q˚ptq, pptq, u˚ptqq

(4.19)

during t P pti, ti`1q, i “ 0, 1, . . . , N , and

Hpt, q˚, p, u˚q “ max
uPU

Hpt, q˚, p, uq (4.20)

for t P rt0, tN sztt0, t1, ¨ ¨ ¨ , tNu, where the pre-Hamiltonian is defined asHpt, q, p, uq “

xp, fpt, q, uqy ´ Lpt, q, uq. Moreover, the intermediate state cost terms require jump

discontinuities in the costate variables, and the jump conditions and the boundary
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values are given as

ppt´0 q “ 0,

ppt`i q ´ ppt´i q “ BF
`
qptiq, qi

˘

Bqptiq
, i “ 0, 1, . . . , N,

ppt`Nq “ 0.

(4.21)

Remark 4.1. A quick revisit to the trajectory reconstruction problem [ (3.5), dis-

cussed in Section 3.1] illustrates the control theoretic formulation (4.18) of a data

smoothing problem on Rn. It is easy to verify that this trajectory reconstruction

problem can be treated as a special case of (4.18) by introducing the following cor-

respondences

Lagrangian: L “ λuTu

Generative Model: f
`
t, qptq, uptq

˘
“ Aqptq ` Buptq, qptq P R

9, uptq P R
3

Fit Error: F pqptiq, riq “ }Cqptiq ´ ri}2

“ qT ptiqCTCqptiq ´ 2xT ptiqCT ri ` rTi ri,

where ri denotes the measured position at time ti and C P R
3ˆ9 maps the states into

the outputs.

Remark 4.2. It is worth mentioning here that the fit cost enters the problem through

the jump conditions in the co-state variables; while the flow of the system between

two consecutive data points is dictated by the path cost (penalty term) only.
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Now we venture into the detailed proof of Theorem 4.1, and by adopting an

approach similar to the one taken in the book by Liberzon [2011], we develop the

proof using needle (strong) variation.

Proof. At the outset we introduce a new state variable q̃ : rt0, tN s Ñ R with its

dynamics governed by

9̃qptq “ Lpt, qptq, uptqq, t P pti, ti`1q,

q̃pt`i q ´ q̃pt´i q “ F
`
qptiq, qi

˘
, i “ 0, 1, . . . , N,

q̃pt´0 q “ 0,

(4.22)

and this leads us to an augmented system. By introducing

yptq fi

¨
˚̊
˝

q̃ptq

qptq

˛
‹‹‚P R

n`1, (4.23)

the dynamics of this augmented system (4.23) can be represented as

9yptq “

¨
˚̊
˝

Lpt, qptq, uptqq

fpt, qptq, uptqq

˛
‹‹‚fi gpt, yptq, uptqq, (4.24)

with the initial condition ypt´0 q “

¨
˚̊
˝

0

qpt0q

˛
‹‹‚. The corresponding jump conditions
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in y can be expressed as

ypt`i q ´ ypt´i q “

¨
˚̊
˝

F pqptiq, qiq

0

˛
‹‹‚.

As a consequence, the cost functional (in 4.18) can be expressed as

Jpqpt0q, uq “ q̃pt`Nq “ Jpypt0q, uq. (4.25)

Clearly, an optimal trajectory q˚ (generated by u˚) of the original system (4.18) can

be retrieved from an optimal trajectory y˚ of the augmented system (4.23) through

a projection onto Rn along the q̃-axis.

Now, let a ą 0, b P R be such that Iǫ “ pb ´ ǫa, bs Ă pt0, tNq, ti R pb ´ a, bs @i,

and u˚ is continuous on Iǫ, @ǫ P p0, 1s and at b. Next we introduce a needle variation

(a perturbation pulse of short duration) by defining the perturbed control as

uw,Iǫptq fi

$
’’&
’’%

u˚ptq if t R Iǫ

w if t P Iǫ
, (4.26)

where w P U . Then, by letting k denote the index such that Iǫ Ă ptk´1, tkq, we have

yptq “ y˚ptq ` ǫΦ˚pt, bqδpw, a, bq ` Opǫ2q (4.27)

for b ď t ď t´k [Liberzon, 2011, Section 4.2.4]. Here, the perturbation term δpw, a, bq
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is defined as

δpw, a, bq “ a
´
g

`
b, y˚pbq, w

˘
´ g

`
b, y˚pbq, u˚pbq

˘¯
, (4.28)

and Φ˚ denotes the state transition matrix for the linearized dynamics governed by

9ψptq “

»
——–

0
`
Lqpt, q˚ptq, u˚ptqq

˘T

0nˆ1 fqpt, q˚ptq, u˚ptqq

fi
ffiffiflψptq.

Now we introduce a matrix Γk, defined as

Γk “

»
——–

1

ˆBF
Bq

`
q˚ptkq, qk

˘˙T

0nˆ1 Inˆn

fi
ffiffifl ,

to capture the effect of jump discontinuities on the perturbed trajectory y, where

BF
Bq denotes the partial derivative of F with respect to its first argument. This

enables us to express ypt`k q as

ypt`k q “ y˚pt`k q ` ǫΓkΦ˚ptk, bqδpw, a, bq ` Opǫ2q. (4.29)

Proceeding this way the terminal point of the perturbed trajectory can be expressed

as

ypt`Nq “ y˚pt`Nq ` ǫΓNΦ˚ptN , tN´1q ¨ ¨ ¨ΓkΦ˚ptk, bqδpw, a, bq ` Opǫ2q. (4.30)

Now, ǫΓNΦ˚ptN , tN´1q ¨ ¨ ¨ΓkΦ˚ptk, bqδpw, a, bq can be interpreted as an infinites-
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imal perturbation of the terminal state caused by the needle variation in the control

input (uw,Iǫ), and its direction depends only on b and w (4.28,4.30). By letting

ρpw, bq denote the ray in this direction originating at y˚pt`N q, we define ~P as the

union of the rays ρpw, bq for all possible values of w and b. It can be noticed that

the cone ~P is not convex in general, and hence we concatenate different needle vari-

ations to generate a larger cone with the same vertex. These concatenations yield

a larger cone which contains the convex combinations of the points in ~P [Liberzon,

2011, Section 4.2.5], and we call it the terminal cone (TC
`
y˚pt`N q

˘
). Therefore, there

exists a nonzero vector µ P Rn`1 such that

µT
`
ypt`Nq ´ y˚pt`N q

˘
ě 0 (4.31)

for any perturbed trajectory y such that ypt`Nq ´ y˚pt`Nq P TC
`
y˚pt`N q

˘
[Tits, 2013,

Theorem B.3]. Then, by following the arguments given in [Liberzon, 2011, Sec-

tion 4.2.6], we can claim that (4.31) must be satisfied for the choice of

µ˚ “

»
——–

1

0nˆ1

fi
ffiffifl , (4.32)

because otherwise there exists a ypt`Nq which would violate the optimality of y˚. By

using this choice of µ “ µ˚ for the perturbed trajectories of the form (4.30), (4.31)

can be represented as

“
ΦT˚ ptk, bqΓTk ¨ ¨ ¨ΦT˚ ptN , tN´1qΓTNµ˚‰T

δpw, a, bq ě 0. (4.33)
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Now we introduce ξ : rt0, tN s ÞÑ Rn`1, and by letting the dynamics of ξ be

governed by

9ξptq “

»
——–

0 0nˆ1

´Lqpt, q˚ptq, u˚ptqq ´
`
fqpt, q˚ptq, u˚ptqq

˘T

fi
ffiffifl ξptq, (4.34)

we define an adjoint system on Rn`1. Moreover, we define ξpt`Nq “ µ˚, and introduce

the interface conditions given by

ξpt´i q “

»
——–

1 01ˆn

BF
Bq

`
q˚ptkq, qk

˘
Inˆn

fi
ffiffifl ξpt`i q (4.35)

at tN , tN´1,¨ ¨ ¨ ,t0. This adjoint system allows us to represent (4.33) as

ξT pbq
´
g

`
b, y˚pbq, w

˘
´ g

`
b, y˚pbq, u˚pbq

˘¯
ě 0 (4.36)

for all w P U and b P rt0, tN sztt0, ¨ ¨ ¨ , tNu.

It can be easily verified that the first component of 9ξ is identically zero (4.34),

and the jump discontinuity doesn’t exist for the first component of ξ (4.35). Then it

directly follows from (4.32) that the first component of ξ is set constant at 1. This

enables us to decompose ξptq into

ξptq “

»
——–

1

´pptq

fi
ffiffifl . (4.37)

90



This decomposition of ξ yields the dynamics, boundary values and jump conditions

for p : rt0, tN s ÞÑ R
n as:

9pptq “ ´Lqpt, q˚ptq, u˚ptqq `
`
fqpt, q˚ptq, u˚ptqq

˘T
pptq (4.38)

and

ppt`N q “ 0

ppt`i q ´ ppt´i q “ BF
Bq

`
q˚ptkq, qk

˘
.

(4.39)

Using the fact that the pre-Hamiltonian is defined as

Hpt, q, p, uq “ xp, fpt, q, uqy ´ Lpt, q, uq, (4.40)

the dynamics of p (4.38) can be expressed as

9pptq “ ´BH
Bq pt, q˚, p, u˚q. (4.41)

Moreover, by using the fact that qpt0q is free and minimizes the cost, it can be

concluded that ppt´0 q “ 0 [Liberzon, 2011, Section 4.3.1]. Also, the dynamics of

the optimal state trajectory q˚ can be derived straightforward from (4.40). Now we

focus to (4.36) to show maximality of the Hamiltonian. By using the decomposition

of ξ, (4.36) can be represented as

»
——–

1

´pptq

fi
ffiffifl

T »
——–
L

`
t, q˚ptq, w

˘
´ L

`
t, q˚ptq, u˚ptq

˘

f
`
t, q˚ptq, w

˘
´ f

`
t, q˚ptq, u˚ptq

˘

fi
ffiffifl ě 0,
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or equivalently

H
`
t, q˚ptq, pptq, u˚ptq

˘
ě H

`
t, q˚ptq, pptq, w

˘
(4.42)

for t P rt0, tN sztt0, ¨ ¨ ¨ , tNu. This concludes our proof for Theorem 4.1.

Remark 4.3. The maximum principle, when applied to the trajectory reconstruction

problem (referred in Remark 4.1), gives rise to the Hamiltonian dynamics given by

d

dt

»
——–
q˚ptq

pptq

fi
ffiffifl “

»
——–
A 1

2λ
BBT

0 ´AT

fi
ffiffifl

»
——–
q˚ptq

pptq

fi
ffiffifl ,

and the corresponding optimal control can be expressed as

u˚ptq “ 1

2λ
BTpptq.

Moreover, the boundary values and jump conditions for the costate p are computed

as

ppt´0 q “ ppt`Nq “ 0

ppt`i q ´ ppt´i q “ 2CT
“
Cqptiq ´ ri

‰
.

Although it appears slightly different from the solutions obtained in (3.38,3.39), this

discrepancy can be avoided by introducing the following change of variable

p̃ “ ´ 1

2λ
p.
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Remark 4.4. It is worth mentioning here that jump discontinuities in optimal con-

trol problems are not new. In the context of calculus of variation, they can be traced

back to the time of Weierstrass (Weierstrass-Erdmann corner condition [Liberzon,

2011]). More recently, they arise in hybrid optimal control when the associated dy-

namics undergo switching (Shaikh & Caines [2007]; Taringoo & Caines [2013]).

4.2 Data smoothing problems in a Finite Dimensional Matrix Lie

group setting

In this section we extend our result to tackle data smoothing problems in finite

dimensional matrix Lie group settings. For example, by using natural-Frenet frame

equations [Bishop, 1975] as the underlying generative model and penalizing high

rates of change in speed and curvatures, trajectory reconstruction can be formu-

lated as a data smoothing problem on SEp3q ˆ R3 [Reddy, 2007]. Also, trajectory

smoothing on a sphere can be posed as a data smoothing problem on SOp3q (similar

to the problem discussed by Brody et al. [2012]).

We begin by considering a finite dimensional matrix Lie group G and a left

invariant vector field defined on G. Before defining left invariance we introduce left

action by letting Lg : G Ñ G, h ÞÑ gh denote the left translation by g P G and

ThLg : ThG Ñ TghG denote its tangent map (linearization).

Definition 4.1 (Left invariant vector field). Given the left action Lg defined on a
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Lie group G, a vector field X : G Ñ TG, h ÞÑ ph, vhq will be called left invariant if

ThLgpvhq “ vgh @h P G.

This allows us to define a left invariant control system by letting ve (referred

as ξ henceforth) be a control curve in the Lie algebra gp“ TeG, tangent space to the

Lie group G at the group identity element e). Then the dynamics takes the form

9gptq “ TeLgptq ¨ ξuptq (4.43)

where each control input w defines an element ξw of g.

Now we consider the following optimal control problem on G:

Minimize
gpt0q;u

Jpgpt0q, uq “
tNż

t0

L
`
uptq

˘
dt`

Nÿ

i“0

F pgptiq, giq

subject to: 9g “ TeLg ¨ ξu “ gξu, (4.44)

g : rt0, tN s Ñ G, u P U ,

where F pgptiq, giq denotes the fit error at sampling instant ti and U is the space of

piecewise continuous functions over rt0, tN s. The control curve is defined as ξu “

X0 ` řk

i“1 uiXk where tXiuni“1 is a basis of the Lie algebra g, k ă n and X0 P

spantXk`1, Xk`2, ¨ ¨ ¨ , Xnu. Clearly, the Lagrangian is assumed to be left invariant.
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We also assume that the fit cost F pgptiq, giq is invariant under the left action, i.e.

F pgptiq, giq “ F pLg ¨ gptiq, Lg ¨ giq

for any g P G, and uptq, t P rt0, tN s takes value in U Ă Rk.

Theorem 4.2 (PMP for data smoothing on a finite dimensional matrix

Lie Group). Consider an optimal control problem on a finite dimensional matrix

Lie group G, given as

Minimize
gpt0q;u

Jpgpt0q, uq “
tNż

t0

L
`
uptq

˘
dt`

Nÿ

i“0

F pgptiq, giq

subject to: 9gptq “ TeLgptq ¨ ξuptq “ gptq
`
X0 `

kÿ

i“1

uiptqXk

˘
,

g : rt0, tN s Ñ G,

u P U : rt0, tN s Ñ U Ă R
k, u ´ piecewise continuous.

(4.45)

Now we assume that u˚ is an optimal control input for (4.45). Then, corresponding

state trajectory g˚ is the base integral curve pg˚, pq of a Hamiltonian vector field

XHpg˚,p,u˚q on T
˚G, where the pre-Hamiltonian is defined as

Hpg, p, uq “ xp, TeLg ¨ ξuy ´ Lpuq “ xp, 9gy ´ Lpuq,

and an optimal control input maximizes H (which clearly is G invariant), i.e.

Hpg˚, p, u˚q “ Max
u

Hpg˚, p, uq.
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Moreover, intermediate state penalties require jump discontinuities in p and the

corresponding boundary values and jump conditions are given as

ppt´0 q “ ppt`N q “ 0

and, ppt`i q ´ ppt´i q “ Dg˚ptiqF, i “ 0, 1, ¨ ¨ ¨ , N

where Dg˚ptiqF represents the Frechet derivative of the fit-error at g˚ptiq P G.

Proof. Here we adopt a variational approach to derive necessary conditions for opti-

mality, and as a first step express the cost functional in terms of the pre-Hamiltonian.

Clearly, the cost can be represented as

Jpgpt0q, uq “
tNż

t0

`
xp, 9gy ´ Hpg, p, uq

˘
dt`

Nÿ

i“0

F pgptiq, giq. (4.46)

As our focus is restricted to matrix Lie groups, the pairing x¨, ¨y should be interpreted

as a trace inner-product in an appropriate matrix space.

Let u˚ be an optimal control (piecewise continuous) and g˚ be the correspond-

ing optimal trajectory of the system. First we consider perturbed controls of the

form

uǫ “ u˚ ` ǫδu (4.47)

where δu is continuous in the intervals pti, ti`1q, and let ξǫ “ ξu˚ ` ǫδξu denote

the associated perturbed control curves on g. Then, the corresponding perturbed
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trajectory can be represented as

gǫ “ g˚ ` ǫδg ` Opǫ2q (4.48)

where δg “ g˚δξu.

We begin by considering the first variation of the cost functional J , and show

that the first variation δJ can be expressed as

δJ “
tNż

t0

´
xp, δ 9gy ´ x∇gH

`
g˚, p, u˚˘

, δgy ´ x∇uH
`
g˚, p, u˚˘

, δuy
¯
dt

`
Nÿ

i“0

xDg˚ptiqF, δgptiqy, (4.49)

where Dg˚ptiqF represents the Frechet derivative at g˚ptiq P G. Next we show that

the first integrand in the first variation (4.49) can be expressed as

tNż

t0

xp, δ 9gydt “
N´1ÿ

i“0

t´i`1ż

t`i

xp, δ 9gydt

“
N´1ÿ

i“0

´
xppt´i`1q, δgpt´i`1qy ´ xppt`i q, δgpt`i qy ´

t´i`1ż

t`i

x 9p, δgydt
¯

“
N´1ÿ

i“0

´
xppt´i`1q, δgpti`1qy ´ xppt`i q, δgptiqy

¯
´

tNż

t0

x 9p, δgydt

“ xppt`Nq, δgptNqy `
Nÿ

i“0

xppt´i q ´ ppt`i q, δgptiqy ´ xppt´0 q, δgpt0qy

´
tNż

t0

x 9p, δgydt. (4.50)
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Then by replacing (4.50) into (4.49), the first variation can be represented as

δJ “ xppt`Nq, δgptNqy `
Nÿ

i“0

xppt´i q ´ ppt`i q ` Dg˚ptiqF, δgptiqy ´ xppt´0 q, δgpt0qy

´
tNż

t0

x 9p` ∇gH
`
g˚, p, u˚˘

, δgydt´
tNż

t0

x∇uH
`
g˚, p, u˚˘

, δuydt. (4.51)

Now, first-order necessary condition for optimality dictates that δJ (4.51) must

be zero for any perturbation in control (δu) or initial condition (δgpt0q), and this

condition holds true for every p. Now, we make a special choice and assume the

following structure on p:

‚ 9p “ ´∇gH
`
g˚, p, u˚˘

‚ ppt`N q “ 0

‚ ppt`i q ´ ppt´i q “ Dg˚ptiqF, @i P t1, 2, ¨ ¨ ¨ , Nu.

(4.52)

These assumptions allow us to represent the first variation around an optimal tra-

jectory as

δJ “ ´xppt´0 q, δgpt0qy ´
tNż

t0

x∇uH
`
g˚, p, u˚˘

, δuydt, (4.53)

and first-order necessary condition for optimality requires δJ “ 0 (4.53) for any

perturbation δu or δgpt0q. Thus, first-order necessary condition implies

‚ ∇uH
`
g˚, p, u˚˘

“ 0

‚ ppt´0 q “ 0.

(4.54)
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Moreover, the definition of the pre-Hamiltonian let us represent the dynamics of g˚

as

9g˚ “ ∇pH
`
g˚, p, u˚˘

(4.55)

Next we focus on the second variation of J , show that a second order necessary

condition can be expressed as

∇uuH
`
g˚, p, u˚˘

ď 0. (4.56)

Now, by narrowing our focus to regular extremals, i.e. ∇ 9g 9gL ‰ 0 along any solution

of the pg˚, pq-dynamics, (4.54) and (4.56) yield the following maximality condition

H
`
g˚, p, u˚˘

“ Max
u

H
`
g˚, p, u

˘
(4.57)

This concludes our proof for Theorem 4.2.

4.3 A Quick Revisit to Lie-Poisson Reduction

This section provides a brief introduction to Lie-Poisson reduction. Interested

readers may refer the works of Krishnaprasad [1985, 1993] and Marsden & Ratiu

[2003] for further details.

As there exists a bundle isomorphism between the cotangent bundle (T ˚G) of a

Lie group G and the product Gˆg˚, we can easily introduce two bundle projections,
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defined as

π : T ˚G Ñ g˚

π̃ : T ˚G Ñ G.

(4.58)

Moreover, any vector from a tangent space of the cotangent bundle T ˚G can be

translated to a vector in the Lie algebra (via consecutive action of appropriate

tangent lifts, as shown in Fig 11). These two facts provide a natural choice for a

one-form on T ˚G, namely the Poincaré one-form (T ˚G Q a ÞÑ Θa P T ˚
a pT ˚Gq),

defined as

Θa

´
v

¯
“

A
π

`
a

˘
, Tπ̃paqLπ̃paq´1 ¨

`
Taπ̃ ¨ v

˘E
, (4.59)

for any v P TapT ˚Gq, a P T ˚G. Then, by using exterior derivative of this one-form,

we can define a symplectic form on T ˚G (ω “ ´dΘ) [Marsden & Ratiu, 2003].

Clearly, this symplectic form associates a Hamiltonian vector field to each smooth

real-valued function (Hamiltonian) on T ˚G.

Now, by letting C8pT ˚Gq denote the space of smooth real-valued functions on

T ˚G, we can introduce a Poisson bracket t¨, ¨u : C8pT ˚Gq ˆ C8pT ˚Gq Ñ C8pT ˚Gq,

φ, ψ ÞÑ tφ, ψu “ ωpHφ,Hψq, where Hφ is the Hamiltonian vector field associated

with the smooth function φ. It can be easily verified that if φ,ψ P C8pT ˚Gq are

invariant under left translation, then tφ, ψu is also G-invariant. As the pullback of

any function on g˚ by π will define a G-invariant function on T ˚G, this enables us

to define the Lie-Poisson bracket t¨, ¨ug˚ : C8pg˚q ˆ C8pg˚q Ñ C8pg˚q as

π˚th1, h2ug˚ “ th1, h2ug˚ ˝ π “ tπ˚h1, π
˚h2u (4.60)
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Figure 11: This figure illustrates Lie-Poisson Reduction.

where π˚ denotes the pullback by π and h1, h2 P C8pg˚q.

Next, we introduce µ “ TeL
˚
g˚ ¨p to represent the dual control curve on g˚ and

formalize the mapping of the integral curve pg˚, pq of a left invariant Hamiltonian

vector field onto the dual of the Lie algebra. By letting tX5
i uni“1 denote the dual basis

for g˚, µ can be represented as µ “ řn
i“1 µiX

5
i . On the other hand, a left-invariant

Hamiltonian H
`
g˚, p, u˚˘

projects to a reduced Hamiltonian (h) on g˚. Now, h

defines a Hamiltonian vector field through the Lie-Poisson bracket, thus defining

the dynamics for µ. Finally, through an explicit computation of the Lie-Poisson
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bracket, we can derive the reduced dynamics as

9µi “ ´
nÿ

j“1

nÿ

k“1

µkΓ
k
ij

Bh
Bµj

, (4.61)

where Γkij denote the structure constants associated with the Lie algebra g.

4.4 Example I: Data Smoothing on SOp3q

First we consider a left-invariant dynamics on SOp3q governed by

9g “ g
`
u1X1 ´ u2X2

˘
“ gξu,

g P SOp3q, ξu P sop3q,
(4.62)

where u1, u2 denote curvature control inputs (for curvature), and

X1 “

»
——————–

0 ´1 0

1 0 0

0 0 0

fi
ffiffiffiffiffiffifl
, X2 “

»
——————–

0 0 1

0 0 0

´1 0 0

fi
ffiffiffiffiffiffifl
, X3 “

»
——————–

0 0 0

0 0 ´1

0 1 0

fi
ffiffiffiffiffiffifl
,

define a basis for the associated Lie algebra sop3q. Clearly, by assuming only two

controls for a system evolving on a three dimensional manifold, we have cast the

problem in a sub-Riemannian setting.

Now we consider a data smoothing problem on SOp3q which attempts to find

a curve g : rt0, tN s Ñ SOp3q to traverse (approximately) through the sequence of

targeted orientations g0 Ñ g1 Ñ ¨ ¨ ¨ Ñ gN at time t0, t1, t2, and so on, respectively.
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Our approach imposes regularization to this inverse problem by trading total fit-

error against high values of the curvature path integral, and therefore the smoothing

problem can be expressed as the following optimal control problem:

Minimize
gpt0q,u1,u2

Nÿ

i“0

}I3 ´ gptiqgTi }2F ` λ

tNż

t0

`
u21 ` u22

˘
dt

subject to 9g “ g
`
u1X1 ´ u2X2

˘
,

g : rt0, tN s Ñ SOp3q, u1, u2 P U ,

(4.63)

where U is the space of real valued functions on rt0, tN s and I3 denotes a 3 ˆ 3

identity matrix. λ (ą 0) is the regularization parameter which maintains a balance

between goodness of fit and smoothness of the reconstructed trajectory on SOp3q.

By comparing this optimal control problem (4.63) with the one mentioned in the

statement of maximum principle (4.45) we have

Lpuq “ λpu21 ` u22q “ λxξu, ξuysop3q

F pgptiq, giq “ }I3 ´ gptiqgTi }2F

where the inner-product on sop3q is defined as xv1, v2ysop3q “ 1
2
TrpvT1 v2q “ 1

2
Trpv1vT2 q

for v1, v2 P sop3q.
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4.4.1 Maximum Principle

Restricting our attention to normal extremals, we define the pre-Hamiltonian

as

Hpg, p, uq “ xp, TeLg ¨ ξuy ´ Lpuq (4.64)

where p P T ˚
g SOp3q, and TeLg represents the tangent lift of the left translation by

a group element g on SOp3q. Now we introduce µ at the dual of the Lie algebra

(so˚p3q), defined as µ “ TeL
˚
g ¨ p. By letting X5

i , i “ 1, 2, 3 denote a dual basis for

so˚p3q (corresponding to the primal basis tXiu3i“1), µ can be represented as

µ “
3ÿ

i“1

µiX
5
i .

Therefore, by exploiting left-invariance of the generative model (4.62), the pre-

Hamiltonian can be expressed as

Hpg, p, uq “ xTeL˚
g ¨ p, ξuy ´ Lpuq “ x

3ÿ

i“1

µiX
5
i , pu1X1 ´ u2X2

˘
y ´ Lpuq

“ u1µ1 ´ u2µ2 ´ λpu21 ` u22q. (4.65)

As both ξu and Lpuq are differentiable with respect to u, an optimal control input

(u˚) can be obtained by solving

BH
Bui

ˇ̌
ˇ̌
ui“u˚

i

“ 0, i “ 1, 2. (4.66)
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Then (4.65) and (4.66) yield the optimal control inputs as

¨
˚̊
˝

u˚
1

u˚
2

˛
‹‹‚“ 1

2λ

¨
˚̊
˝

µ1

´µ2

˛
‹‹‚, (4.67)

and by substituting the optimal controls into the pre-hamiltonian, (4.65) yields an

SOp3q-invariant hamiltonian. Hence we have the reduced hamiltonian on so˚p3q,

given by

h “ 1

4λ
pµ2

1 ` µ2
2q. (4.68)

4.4.2 Frechet Derivative of the Fit Error

On the other hand, we need to evaluate the Frechet derivative of the fit-error

in order to compute the jump conditions for µ. By using the definition of Frobenius

norm, the fit error (4.63) can be expressed as

F pgptiq, giq “ }I3 ´ gptiqgTi }2F gptiq, gi P SOp3q

“ Tr
”`
I3 ´ gptiqgTi

˘T `
I3 ´ gptiqgTi

˘ı

“ 2Tr
“
I3 ´ gig

T ptiq
‰
. (4.69)
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Now we assume h to be a tangent vector at gptiq P SOp3q, and hence h can be

parametrized as h “ gptiqφ where φT “ ´φ P sop3q. Therefore we have

F
`
gptiqeǫφ, gi

˘
“ 2Tr

“
I3 ´ gi

`
eǫφ

˘T
gT ptiq

‰

“ 2Tr
“
I3 ´ gi

`
I3 ` ǫφT ` Opǫ2q

˘
gT ptiq

‰
. (4.70)

From (4.69) and (4.70) we can compute the Frechet differential of F along h in the

following way

DgptiqF
`
h

˘
“ lim

ǫÑ0

1

ǫ

´
F

`
gptiqeǫφ, gi

˘
´ F

`
gptiq, gi

˘¯

“ lim
ǫÑ0

2

ǫ
Tr

´
´ ǫgiφ

TgT ptiq ` Opǫ2q
¯

“ ´2Tr
´
giφ

TgT ptiq
¯

“ 2Tr
´
gT ptiqgiφ

¯
. (4.71)

Now we recall the fact that for a skew-symmetric matrix B “ ´BT P Rnˆn

we have

Tr
`
AB

˘
“ 1

2
Tr

`
pA´ AT qB

˘

for any A P Rnˆn, and by using this fact the differential of F : SOp3q Ñ R (4.71)
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can be represented as

DgptiqF
`
h

˘
“ Tr

´“
gT ptiqgi ´ gTi gptiq

‰
φ

¯

“ Tr
´“
gT ptiqgigT ptiq ´ gTi

‰
h

¯

“
@
2
`
gptiqgTi gptiq ´ gi

˘
, h

D
gptiq , (4.72)

and hence we have DgptiqF “ 2
`
gptiqgTi gptiq ´ gi

˘
. By noting that h P TgptiqSOp3q

can be expressed as TeLgptiq ¨ φ, we get

TeL
˚
gptiq ¨ DgptiqF “ 2

`
gTi gptiq ´ gT ptiqgi

˘
. (4.73)

4.4.3 Reduced Dynamics and Jump Discontinuities on so˚p3q

Next we focus on the derivation of reduced dynamics and associated jump

conditions. By following the path laid out by Krishnaprasad [1993], the reduced

dynamics on so˚p3q can be computed as

9µiptq “ ´
3ÿ

j“1

3ÿ

k“1

µkptqΓkij
Bh
Bµj

ptq, i “ 1, 2, 3, (4.74)

where the temporal variable t lies in the open intervals ptl, tl`1q, l “ 0, ¨ ¨ ¨ , N´1, and

Γkij denote the structure constants associated with the Lie algebra sop3q. Moreover,

the corresponding jump conditions for µ can be obtained via Frechet derivative of

the fit-error.
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By computing the corresponding Lie brackets on sop3q as

rX1, X2s “ ´X3, rX2, X3s “ ´X1, rX3, X1s “ ´X2, (4.75)

the associated structure constants (the nonzero ones) can be expressed in the fol-

lowing way

Γ3
12 “ ´1, Γ1

23 “ ´1, Γ2
31 “ ´1, (4.76)

and Γkij “ ´Γkji, 1 ď i, j, k ď 3. Then, by exploiting (4.96), the reduced dynamics

on the dual of Lie algebra can be expressed as

¨
˚̊
˚̊
˚̊
˝

9µ1

9µ2

9µ3

˛
‹‹‹‹‹‹‚

“ 1

2λ

¨
˚̊
˚̊
˚̊
˝

µ2µ3

´µ3µ1

0

˛
‹‹‹‹‹‹‚
, t P ptk, tk`1q, (4.77)

along with the jump conditions

µipt`k q ´ µipt´k q

“
@
TeL

˚
gptkq ¨DgptkqF,Xi

D
I3PSOp3q i “ 1, 2, 3

“
@
2
`
gTk gptkq ´ gT ptkqgk

˘
, Xi

D
I3PSOp3q

“ Tr
`
gT ptkqgkXi ´ gTk gptkqXi

˘
, (4.78)

where k “ 0, 1, ¨ ¨ ¨ , N ´ 1.
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4.4.4 Explicit Solution of the Reduced Dynamics

In what follows, we develop a closed form solution (involving trigonometric

functions) for the reduced dynamics. Clearly, (4.77) yields an explicit solution of

the form

µ1ptq “ Ak sinpCkt` φkq

µ2ptq “ Ak cospCkt ` φkq

µ3ptq “ 2λCk

t P ptk, tk`1q, (4.79)

where the piecewise constant parameters Ak, Ck and φk can be computed using

the boundary values and jump conditions of µ. As optimality (ppt´0 q “ 0) causes

µpt´0 q to be equal to 0, we can compute the initial values of the solution parameters

(Ck, Ak, φk) as

C0 “ 1

2λ
Tr

´`
gT pt0qg0 ´ gT0 gpt0q

˘
X3

¯

A0 “ 2

c´
Tr

`
I3 ´ pgT pt0qg0q2

˘¯2

´ λ2C2
0 (4.80)

φ0 “ atan2
´
Tr

``
gT pt0qg0 ´ gT0 gpt0q

˘
X2

˘
,Tr

``
gT pt0qg0 ´ gT0 gpt0q

˘
X1

˘¯
´ C0t0.

Now we focus on the jump conditions for the solution parameters. Clearly, the

jumps in µ3 can be translated to an equivalent condition for Ck, given by

Ck ´ Ck´1 “ 1

2λ
Tr

´`
gT ptkqgk ´ gTk gptkq

˘
X3

¯
, (4.81)
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where k P t1, 2, ¨ ¨ ¨ , N ´ 1u. However, there is no straightforward way to represent

the jump discontinuities in Ak and φk. Instead, the following equations should be

used to update these parameters

Ak sinpCktk ` φkq “ Tr
´`
gT ptkqgk ´ gTk gptkq

˘
X1

¯
` Ak´1 sinpCk´1tk ` φk´1q

Ak cospCktk ` φkq “ Tr
´`
gT ptkqgk ´ gTk gptkq

˘
X2

¯
` Ak´1 cospCk´1tk ` φk´1q.

Finally, the terminal value of the costate variable yields the following terminal con-

dition for the solution parameters:

CN´1 “ ´ 1

2λ
Tr

´`
gT ptN qgN ´ gTNgptNq

˘
X3

¯

AN´1 “ 2

c´
Tr

`
I3 ´ pgT ptNqgNq2

˘¯2

´ λ2C2
N´1 (4.82)

φN´1 “ atan2
´
Tr

``
gT ptNqgN ´ gTNgptNq

˘
X2

˘
,Tr

``
gT ptNqgN ´ gTNgptNq

˘
X1

˘¯

´ CN´1tN .

It is clear at this point that the optimal control inputs (4.67), along with their

boundary values and intermediate jump conditions, can be evaluated using (4.79)-

(4.82).

As the sinusoidal optimal control inputs are in phase quadrature, they can

be interpreted as the natural curvatures for a circular helix, and hence it is pos-

sible to write down explicit solutions for the group dynamics on SOp3q [Justh &

Krishnaprasad, 2011]. Finally, an optimal initial condition is selected in such way

that the terminal values of the solution parameters (4.82) are consistent with their
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initial values (4.80) and intermediate update rules (4.82). Thus, we have turned an

optimal control problem over an infinite dimensional space (SOp3q ˆ U ˆ U) into a

two-point boundary value problem, which can be tackled by adopting an appropriate

multiple-shooting method [Morrison et al., 1962].

4.5 Example II: Data Smoothing on SEp2q

We begin our discussion about data smoothing on SEp2q by considering the

dynamics of a unicycle moving on a plane. By letting px, yq P R2 and θ P S1

denote position and heading angle of the unicycle, the underlying dynamics can be

expressed as

9xptq “ u1ptq cos θptq

9yptq “ u1ptq sin θptq (4.83)

9θptq “ u2ptq

where u1 and u2 denote the speed and steering rate, respectively. These equations

pose a nonholonomic constraint on the system, namely 9x sin θ “ 9y cos θ, prohibiting

any side-slip of the unicycle. Alternatively, by packing the position vector px, yq,

along with the heading direction (disguised through cos θ, sin θ), inside a 3ˆ3 matrix
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gptq defined as

gptq “

»
——————–

cos θptq ´ sin θptq xptq

sin θptq cos θptq yptq

0 0 1

fi
ffiffiffiffiffiffifl
,

the dynamics of the unicycle (4.83) can be expressed as a left-invariant dynamics

on SEp2q. Now, by letting

X1 “

»
——————–

0 ´1 0

1 0 0

0 0 0

fi
ffiffiffiffiffiffifl
, X2 “

»
——————–

0 0 1

0 0 0

0 0 0

fi
ffiffiffiffiffiffifl
, X3 “

»
——————–

0 0 0

0 0 1

0 0 0

fi
ffiffiffiffiffiffifl
,

denote a basis for the associated Lie algebra sep2q, the dynamics of the unicycle

Figure 12: This figure illustrates the state variables associated to the dynamics of an unicycle.

can be represented as

9g “ g
`
u2X1 ` u1X2

˘
“ gξu, g P SEp2q, (4.84)

where ξu defines a control curve on the Lie algebra.
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Given a set of planar positions triuNi“0 Ă R2, we focus on finding a curve

g : rt0, tN s Ñ SEp2q which would traverse (approximately) through the sequence of

targeted positions r0 Ñ r1 Ñ ¨ ¨ ¨ Ñ rN at time t0, t1, t2, and so on, respectively.

Our approach imposes regularization to this inverse problem by trading total fit-error

against high values of the sum of speed and steering path integrals, and therefore the

data smoothing problem can be expressed as the following optimal control problem

on SEp2q:

Minimize
gpt0q,u1,u2

Nÿ

i“0

}rptiq ´ ri}2 ` λ

tNż

t0

`
u21 ` u22

˘
dt

subject to 9g “ g
`
u2X1 ` u1X2

˘
,

g : rt0, tN s Ñ SEp2q, u1, u2 P U ,

(4.85)

where U is the space of real valued functions on rt0, tN s, and λ (ą 0) maintains the

balance between goodness of fit and smoothness of the path. This data smoothing

problem can also be interpreted as a trajectory reconstruction problem for planar

curves, where regularization is imposed by penalizing high values of the speed and

steering rate path integrals.

Now, by comparing this data smoothing problem (4.85) with the optimal con-

trol problem mentioned in maximum principle statement (4.45), we have

Lpuq “ λpu21 ` u22q “ λxξu, ξuysep2q

F pgptiq, riq “ }Agptiqe3 ´ ri}2

where A “ re1 e2sT , and teiu3i“1 denotes a standard basis vector in R3. Moreover,
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the inner-product on sep2q is defined as xv1, v2ysep2q “ Trpv1MvT2 q for v1, v2 P sep2q,

where

M “

»
——————–

1
2

0 0

0 1
2

0

0 0 1

fi
ffiffiffiffiffiffifl

is a symmetric, positive definite matrix.

4.5.1 Maximum Principle

Restricting our attention to normal extremals, we define the pre-Hamiltonian

as

Hpg, p, uq “ xp, TeLg ¨ ξuy ´ Lpuq (4.86)

where p P T ˚
g SEp2q, and TeLg represents tangent lift of the left translation by a

group element g on SEp2q. Now we introduce µ at the dual of the Lie algebra

(se˚p2q), defined as µ “ TeL
˚
g ¨ p. By letting X5

i , i “ 1, 2, 3 denote a dual basis for

se˚p2q (corresponding to the primal basis tXiu3i“1), µ can be represented as

µ “
3ÿ

i“1

µiX
5
i .
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Therefore, by exploiting left-invariance of the underlying dynamics (4.84), the pre-

hamiltonian can be expressed as

Hpg, p, uq “ xTeL˚
g ¨ p, ξuy ´ Lpuq “ x

3ÿ

i“1

µiX
5
i , pu2X1 ` u1X2

˘
y ´ Lpuq

“ u2µ1 ` u1µ2 ´ λpu21 ` u22q. (4.87)

As both ξu and Lpuq are differentiable with respect to u, an optimal control input

(u˚) can be obtained by solving

BH
Bui

ˇ̌
ˇ̌
ui“u˚

i

“ 0, i “ 1, 2. (4.88)

Then, from (4.87) and (4.88), the optimal control inputs can be expressed as

¨
˚̊
˝

u˚
1

u˚
2

˛
‹‹‚“ 1

2λ

¨
˚̊
˝

µ2

µ1

˛
‹‹‚, (4.89)

and by substituting the optimal controls into the pre-hamiltonian (4.87) yields an

SEp2q-invariant hamiltonian. Hence we have the reduced hamiltonian on se˚p2q,

given by

h “ 1

4λ
pµ2

1 ` µ2
2q. (4.90)

4.5.2 Frechet Derivative of the Fit Error

Now we shift our attention towards computing the Frechet derivative of the

fit-error. It is easy to check, that the fit error between data and the reconstructed

115



position (4.85) can be expressed as

F pgptiq, riq “ }Agptiqe3 ´ ri}2 gptiq P SEp2q, ri P R
2

“ eT3 g
T ptiqATAgptiqe3 ´ 2rTi Agptiqe3 ` rTi ri. (4.91)

Now we assume h to be a tangent vector at gptiq P SEp2q, and hence it can be

parametrized as h “ gptiqφ where φ P sep2q. Therefore, a perturbed value of the

fit-error (at time ti) can be expressed as

F
`
gptiqeǫφ, gi

˘
“ eT3

`
eǫφ

˘T
gT ptiqATAgptiq

`
eǫφ

˘
e3 ´ 2rTi Agptiq

`
eǫφ

˘
e3 ` rTi ri

“ eT3
`
I3 ` ǫφT ` Opǫ2q

˘
gT ptiqATAgptiq

`
I3 ` ǫφ ` Opǫ2q

˘
e3

´ 2rTi Agptiq
`
I3 ` ǫφ ` Opǫ2q

˘
e3 ` rTi ri. (4.92)

From (4.91) and (4.92) we can compute the Frechet differential of F along h as

DgptiqF
`
h

˘
“ lim

ǫÑ0

1

ǫ

´
F

`
gptiqeǫφ, gi

˘
´ F

`
gptiq, gi

˘¯

“ lim
ǫÑ0

1

ǫ

“
2ǫeT3 φ

TgT ptiqATAgptiqe3 ´ 2ǫrTi Agptiqφe3 ` Opǫ2q
‰

“ 2
“
Agptiqe3 ´ ri

‰T “
Ahe3

‰

“ 2Tr
´“
Agptiqe3 ´ ri

‰“
Ahe3

‰T¯

“ 2Tr
´
AT

“
Agptiqe3 ´ ri

‰
eT3 h

T
¯

“
@
2AT

“
Agptiqe3 ´ ri

‰
eT3M

´1, h
D
gptiq , (4.93)
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and hence we have DgptiqF “ 2AT
“
Agptiqe3 ´ ri

‰
eT3M

´1. Alternatively, by noting

that the differential can be expressed as

DgptiqF
`
h

˘
“ 2Tr

´
AT

“
Agptiqe3 ´ ri

‰
eT3 φ

TgptiqT
¯

“ 2Tr
´
gptiqTAT

“
Agptiqe3 ´ ri

‰
eT3 φ

T
¯

“
@
2gptiqTAT

“
Agptiqe3 ´ ri

‰
eT3M

´1, h
D
gptiq , (4.94)

it can be concluded that

TeL
˚
gptiq ¨DgptiqF “ 2gptiqTAT

“
Agptiqe3 ´ ri

‰
eT3M

´1. (4.95)

4.5.3 Reduced Dynamics and Jump Discontinuities on se˚p2q

Next we focus on the derivation of reduced dynamics and associated jump

conditions. By following the path laid out by Krishnaprasad [1993], the reduced

dynamics on se˚p2q can be computed as

9µiptq “ ´
3ÿ

j“1

3ÿ

k“1

µkptqΓkij
Bh
Bµj

ptq, i “ 1, 2, 3, (4.96)

where the temporal variable t lies in the open intervals ptl, tl`1q, l “ 0, ¨ ¨ ¨ , N´1, and

Γkij denote the structure constants associated with the Lie algebra sep2q. Moreover,

the corresponding jump conditions for µ can be obtained via Frechet derivative of

the fit-error.
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By computing the Lie brackets on sep2q as

rX1, X2s “ X3, rX2, X3s “ 0, rX3, X1s “ X2, (4.97)

the associated structure constants can be expressed in the following way

Γ3
12 “ 1, Γ2

31 “ 1, (4.98)

with Γkij “ ´Γkji, 1 ď i, j, k ď 3, and the rest of the structure constants are zero. As

a result, the reduced dynamics on se˚p2q can be expressed as

¨
˚̊
˚̊
˚̊
˝

9µ1

9µ2

9µ3

˛
‹‹‹‹‹‹‚

“ 1

2λ

¨
˚̊
˚̊
˚̊
˝

´µ2µ3

µ3µ1

´µ1µ2

˛
‹‹‹‹‹‹‚

t P ptk, tk`1q, (4.99)

and the corresponding jump conditions are given by

µipt`k q ´ µipt´k q

“
@
TeL

˚
gptkq ¨ DgptiqF,Xi

D
I3PSEp2q i “ 1, 2, 3

“
@
2gptkqTAT

“
Agptkqe3 ´ rk

‰
eT3M

´1, Xi

D
I3PSEp2q

“ Tr
`
2gptkqTAT

“
Agptkqe3 ´ rk

‰
eT3X

T
i

˘
, (4.100)

where k “ 0, 1, ¨ ¨ ¨ , N ´ 1.
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4.5.4 Explicit Solution of the Reduced Dynamics

Now we attempt to obtain a closed form solution for the reduced dynamics

(4.99). It is easy to check that the reduced Hamiltonian (4.90) is a conserved

quantity. Furthermore, by introducing

C “ 1

4λ

`
µ2
2 ` µ2

3

˘
, (4.101)

we can show that C is also conserved along the trajectories of (4.99). Then, by

exploiting the constants of motion, namely the reduced Hamiltonian h (4.99) and

the Casimir C (4.101), the dynamics of µ2 can represented as

9µ2 “ 1

2λ

b
p4λh´ µ2

2qp4λC ´ µ2
2q

“ 2
?
hC

dˆ
1 ´ µ2

2

4λh

˙ ˆ
1 ´ h

C

µ2
2

4λh

˙
. (4.102)

Then it is straightforward to show that (4.102) yields an explicit solution involving

Jacobi’s elliptic sine function. Whenever h ď C, the solution can be expressed as

µ2ptq “ 2
?
λh Sn

˜c
C

λ
pt` φkq,

c
h

C

¸
, (4.103)
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where Snp¨, ¨q denotes Jacobi’s elliptic sine function and t P ptk, tk`1q. Now, by

exploiting the standard identities for elliptic functions, we can express µ1 and µ3 as

µ2
1 “ 4λh Cn2

˜c
C

λ
pt` φkq,

c
h

C

¸

µ2
3 “ 4λC Dn2

˜c
C

λ
pt` φkq,

c
h

C

¸
,

(4.104)

and the appropriate signs will depend on the initial/boundary conditions. A similar

solution exists for the situation when h ą C. Now, by exploiting the fact that

both µpt´0 q and µpt`Nq are equal to zero, we turn it into a two-point boundary value

problem, and solve it via an appropriate multiple-shooting method [Morrison et al.,

1962]. Finally, an optimal state trajectory can be obtained by integrating the group

dynamics along with an optimal initial condition and optimal control inputs.

4.6 Conclusion

In this chapter, we have developed a framework (based on a modified version

of the maximum principle) to solve data smoothing in a semi-analytic way, and our

results are applicable to problems in both Euclidean and finite dimensional matrix

Lie group settings. We demonstrate the pertinence of this approach by solving an

example problem, wherein the generative model is governed by a left invariant vector

field on a matrix Lie group (SEp2q) and regularization is imposed through a left

invariant path cost (Lagrangian). In this special case Lie-Poisson reduction leading

to explicitly integrable dynamics brings in further simplification into the problem,

and we get closed-form solutions (in terms of Jacobi’s elliptic functions).
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Part II

Analysis of Collectives
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Chapter 5: Analysis of Bat Foraging in Two Different Contexts

Research in bat echolocation has yielded a rich trove of insight into how the

bat perceives the world through active acoustic probing (Griffin et al. [1960]; Sim-

mons et al. [1979]). Yet surprisingly little is known about how perception is turned

into action such as steering towards a target in foraging. Limited availability of

suitable high speed motion capture technology hindered earlier efforts to address

this question. More recently, trajectory analysis in the work by Ghose et al. [2006]

showed that the big brown bat, Eptesicus fuscus, essentially maintains constant ab-

solute target direction (CATD) while chasing a free flying target, a species of praying

mantis (Parasphendale agrionina). However, in a later study of competitive forag-

ing for a single tethered food source [Chiu et al., 2010], evidence emerged that a

big brown bat resorts to directing its flight towards a competitor, thus employing

classical pursuit (CP).

In this present work1, using geometric and statistical analysis and control

theory, we describe a comparative study of how foraging context shapes bat flight

strategy. The current study examines two different flight control strategies, namely

classical pursuit (CP) and constant absolute target direction (CATD). The CP strat-

1A significant portion of this chapter has been reproduced verbatim from a pre-print by Dey
et al. [2014].
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egy refers to a configuration in which the follower always points its velocity vector

towards the position of a target (Galloway et al. [2010]; Wei et al. [2009]). The

CP strategy can also be viewed as a special case of constant bearing (CB) pursuit

strategy, which has gaze heuristic [McBeath et al., 1995] as one of its manifestation.

On the other hand, CATD is a stealth strategy in which the follower approaches

the target in such a manner that from the target’s point of view the follower always

appears to be at the same bearing [Srinivasan & Davey, 1995]. This strategy is also

known as motion camouflage (MC) strategy as it nullifies the transverse component

of the relative velocity, and therefore the follower’s optic flow vanishes to zero in the

target’s field of vision [Justh & Krishnaprasad, 2006]. This work also provides some

insight about the behavioral latency associated with a bat-flight.

In one of the earliest works by Ghose & Moss [2006], investigating sensori-

motor transformation in a foraging bat, it was possible to simultaneously record what

the bat perceived through its acoustic gaze, and its response through steering action.

The behavioral context here - a single bat trained to seek, localize and capture a

tethered mealworm hanging from the ceiling of a darkened flight room - is simpler

than that in either of the two later studies (Chiu et al. [2010]; Ghose et al. [2006])

that constitute the focus of the present paper. The resulting bat flight trajectories

are essentially planar. A main result of the study by Ghose & Moss [2006] is the

discovery of a feedback law that relates planar turning rate of the bat to acoustic

gaze angle, and the observation that the gain parameter in the law is modulated

by the echolocation pulse production rate (PPR) - higher the PPR, greater is the

gain. This observed adaptive linkage of flight motor output to spatial auditory
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information about the target (stationary food item) was suggested as a compromise

between uncoupling gaze direction and flight control (possibly conserving energy)

and tight coupling to ensure accuracy needed for successful taking of the food item.

While not emphasized by Ghose & Moss [2006], the feedback law is consistent with

executing what we call the CP strategy in this paper, thus indicating that the

foraging bat has CP strategy in its repertoire of flight behavior. Besides CP and

CATD other strategies such as following a boundary may also be identifiable as

being part of the repertoire of an echolocating bat.

5.1 Experiment Details and Reconstruction of Trajectories

In this work we have analyzed the flight data collected from a series of experi-

ments conducted by students of Prof. Cynthia Moss at the Auditory Neuroethology

Laboratory (BATLAB), Department of Psychology, University of Maryland, and

performed a comparative analysis of the underlying flight strategies and feedback

mechanism for steering control. The bat flight experiments were carried out in a

large flight room with two high-speed cameras (Kodak MotionCorder CCD-based

cameras, running at 240 frames/s) placed in adjacent corners of the room. A com-

mercially available motion analysis software (Motus, Peak Performance Technolo-

gies, Englewood, CO) was used to recover 3-D position data from high-speed stereo

images. Finally we use the regularized inversion approach (Section 2.1) to smoothen

the individual trajectories and extract their speed and curvatures. Furthermore, all

animal care and experimental procedures were approved by the Institutional Animal
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Figure 13: This figure shows reconstructed trajectories for a particular pursuit event along the
with raw data. It also shows the variation of cross validation cost as a function of the smoothing
parameter.

Care and Use Committee at the University of Maryland, College Park.

At the initial stage of our study of bat-mantis interactions, eight bats were

trained to catch both free flying and tethered insects, and the room walls and ceiling

of the indoor flight arena were covered with sound-absorbent foam. Later during the

experiments, the praying mantis was released by hand as the bat was flying around

in the room. Moreover the ultrasound triggered diving behavior of the mantises were

suppressed by plugging Vaseline into their ears. For these bat-mantis experiments

we analyzed 18 successful trials wherein the bat eventually catches the insect. As the

number of trials were not very high we performed ordinary cross-validation (OCV)

for each trajectory in each of the trials, and used the result of OCV in reconstructing

the corresponding trajectory.
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On the other hand, five big brown bats, forming four pairs, were used in the

experiments for studying the bat-bat interactions. The experiments were conducted

between July and September in 2005 and 2006. After being trained to capture a

tethered mealworm individually, two bats were released simultaneously from the

same spot in the flight room to compete for a single tethered mealworm. The trials

ended whenever one bat made contact with the mealworm. For this set of bat-

bat experiments we had 154 trials at our disposal. As the computational time for

cross-validation and trajectory reconstruction is quite significant (around 2 days on

a 12-core workstation, for a trajectory with 400 data points and 50 discrete values

of λ-parameter), we decided to perform OCV and trajectory reconstruction over

a subset of the whole data-set. This required extra care in picking the individual

trials for reconstruction. So, we randomly selected 30 Bat-1 trajectories (through
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(b) Distribution of optimal values of λ for Bat-
1 trajectories.

Figure 14: This figure shows the distribution of optimal values of regularization parameter (λ˚)
used to reconstruct trajectories for bat-bat interactions.
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a uniform random sampling) from a pool of 154 Bat-1 trajectories, and performed

OCV on these trajectories. Then we chose the most frequent value of optimal λ for

reconstructing Bat-1 trajectories. Similar approach was adopted to choose a λ-value

for reconstructing Bat-2 trajectories. Next, we randomly selected 30 trials (out of

154) through a uniform random sampling, and this sampling was independent to

the previous selections (for OCV). Finally we reconstructed the Bat-1 and Bat-2

trajectories for these 30 trials using the previously chosen λ-values.
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Figure 15: This figure shows the distribution of optimal values of regularization parameter (λ˚)
used to reconstruct trajectories for bat-mantis interactions.

5.2 Pre-processing of Trajectory Data

In the work by Ghose & Moss [2006], key aspect of data analysis is to recognize

that flight behavior can be demarcated into segments. While the bat is initially

ignorant of the location of the target (presented by opening a ceiling trapdoor at
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a random location at random times), it goes through a sequence of stages from

search/approach to tracking to attack of the mealworm, ending the trial. This

demarcation of stages of flight was suggested by examination of histograms of PPR

of the echolocation calls which show three clear peaks corresponding to the stages.

Further in the course of a trial, increasing PPR is associated to increasing accuracy

in localization of target prior to capture. The demarcation into stages was then used

in the temporal segmentation of trajectory properties (turning rate, acoustic gaze

angle etc.) for the purposes of statistical fitting of steering feedback laws in each

segment.

In the setting of a single bat engaged in three-dimensional pursuit of a free-

flying insect as in the work of Ghose et al. [2006], similar trajectory segmentation

is possible, guided by echolocation PPR. In his dissertation, Reddy [2007] has used

such segmentation in fitting feedback laws, focusing essentially on attack segments.

In multiple trials highly maneuvering behavior is exhibited by the insect prey (whose

sensitive hearing of bat sonar is (only partially) disabled to reduce the incidence of

evasive action). Restricting data fitting mainly to segments characterized by PPR as

attack segments misses important components of pursuit behavior taking place over

the full course of a trial. In the setting of competitive prey capture the interaction

between competing bats appears to be of great relevance to the outcome. During the

course of such competitive interactions vocalization information is confounded by

the presence of interspersed social calls to possibly communicate intent of one bat to

another [Wright et al., 2014]. There are also periods of silence (as observed by Chiu

et al. [2008]) of one or more of the bats. Thus there is a need for disambiguation
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between echolocation and social calls, appropriate for use in flight segmentation,

whereas in the context of single bat prey capture flights this consideration does

not arise. In this paper we side-step this disambiguation problem, by adopting an

approach to segmentation that does not use vocalization patterns in either context,

and instead is based on a geometric criterion described below.

In preparation for segmentation of trajectories as needed in the analysis of

flight behavior, we introduce two geometric concepts, namely following and con-

vergence, to assist us in understanding the individual roles in a dyadic (bat-mantis

or bat-bat) interaction. By letting ri and xi (respectively rj and xj) denote the

position and normalized velocity of the individual i (respectively the individual j)

in a dyadic interaction, these two notions can be defined as:

Definition 5.1 (Following Property). The flight behavior of an individual i (inter-

acting with individual j) is called “following” when its velocity vector has a negative

projection on its relative position vector rji (“ ri ´ rj), i.e.

rji
|rji|

¨ xi ă 0. (5.1)

Definition 5.2 (Convergence). The flight behavior of an individual i is called “con-

verging towards the individual j” if the distance between the individuals is shrinking,

i.e.

rji
|rji|

¨ 9rji ă 0, (5.2)

where the time derivative 9rji denotes the relative velocity.
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Clearly, these two notions split a flight into the following four different regimes:

• Class I : Following and Converging,

• Class II : Following but Not Converging,

• Class III : Not Following but Converging, and

• Class IV : Neither Following nor Converging,

depending on the angle between the baseline vector and the velocity vectors of

the individuals. We should note that the convergence property is symmetric with

respect to individual roles. Any particular flight trial will have a number of different

contiguous segments characterized by the properties of following and convergence.

In Fig 16, we display distribution functions across all trials of the durations of

contiguous segments which are simultaneously following and converging. Averaging

over multiple flight trials, we designate an individual as follower (pursuer) in a

dyadic interaction, if it obeys the following condition for a duration longer than

that for the other individual (which we designate as pursuee).

The pie-chart in Fig 17a shows the percentage of all the four classes in the

flight data collected for Bat-2. From this pie-chart one can notice that Bat-2 follows

Bat-1 for more than 66% of the time. On the contrary Bat-1 follows Bat-2 for

only 27% of the time. Therefore we consider Bat-2 to be the follower of Bat-1 for

further analysis. This methodology for classification reveals that in spite of the setup

being symmetric there is a strong evidence of leader-follower relationship when a

bat competes for a single food source with another conspecific.

On the other hand the pie-chart in Fig 18 shows the percentage of all four

classes in the flight data from bat-mantis trajectory pairs. From this pie-chart it is
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(a) Bat-bat interactions (Pursuer: Bat-2, Pur-
suee: Bat-1).
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(b) Bat-mantis interactions (Pursuer: Bat,
Pursuee: Mantis).

Figure 16: This figure shows the CDF for contiguous durations of following and converging (Class
I) flight segments.

38.1229

28.2881

10.1109

23.4781

 

 

Class I Class II Class III Class IV

(a) Percentage of four classes of flight behavior
for the competitive interaction between two bats.

17.8791

9.7152

30.3547

42.051

 

 

Class I Class II Class III Class IV

(b) Effect of role reversal on the segmentation
of flight behavior for the bat-bat interaction.

Figure 17: This figure illustrates the fact that in a competitive interaction between two big brown
bats one of the bats leads the other.

clear that the bat follows the target for around 75% of the time. It also converges

towards the praying mantis for more than 70% of the time.
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5.3 Analysis of Flight Strategy

Once we have segmented each trajectory into four classes (following and con-

verging ; following, but not converging ; not following, but converging ; and neither

following nor converging), we examine the trajectory data to weigh support for or

against the pursuit strategies CP and CATD. This is done by computing contrast

function values (Λ for CP and Γ for CATD/MC, Section 1.3.2) associated with the

data, and comparing the value distributions. A value close to ´1 for a contrast

function means strong support for the associated strategy. On the other hand a

value of `1 denotes maximum departure from the associated strategy. In order to

determine how long a trailing bat remained in the CP or CATD state, we consider

the duration of the flight when the contrast function value goes below ´0.9, i.e.

it lies in the range r´1,´0.9s. This duration of interest can be easily computed

as a percentage of the total flight duration by paying attention to the cumulative

61.0468

13.1282
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16.6798
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Figure 18: This figure shows the percentage of four flight behavior classes in bat-mantis pursuit
events.
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distribution of contrast function values. The rationale behind choosing the thresh-

old at ´0.9 is based on the principle that outcome of a statistical hypothesis test

should not depend on a test parameter. It should be noted here that, as a means for

closer inspection, we also restrict our focus on those flight regimes which are both

following and converging (Class I), and recompute the statistics. This provides a

common base for comparison, ensuring that neither of the contrast function values

become non-negative.

Initially we analyze the bat-bat pursuit strategy for the complete set of re-

constructed flight data, and the corresponding histograms of Λ and Γ are shown in

Fig 19. The closer the contrast function is to -1, the more the bats’ flight behavior

approaches a particular pursuit strategy. The peak of the CP contrast function is

positioned around -1, which indicates that the following bat mostly relies on the CP

strategy to pursue the leader (another conspecific). On the other hand, the CATD

contrast function is more evenly distributed between ´1 and 1, indicating lack of ev-
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(a) CP (Contrast Function: Lambda).
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(b) CATD (Contrast Function: Gamma).

Figure 19: Distribution of contrast function values shows dominance of CP during bat-bat inter-
actions. The frequency (y-axis) is normalized by the maximum count (considering both strategies).
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(a) CP (Contrast Function: Lambda).
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(b) CATD (Contrast Function: Gamma).

Figure 20: Distribution of Λ and Γ values shows dominance of CP during the following and
converging segments (class I) of bat-bat pursuit events. The frequency (y-axis) is normalized by
the maximum count (considering both strategies)

idence in favor of the CATD pursuit strategy. Moreover, the data show that 25.32%

of the time the following bat stays in the CP state, while on contrary it stays in

CATD state for only 3.79% of the time. This difference between evidence for each of

the individual strategies becomes more prominent if we focus on the following and

converging flight behavior, i.e. if data points from only class I are considered for

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Values for Contrast Function

C
D
F

 

 

Λ Γ

(a) Comparison of CDFs of the contrast func-
tions for CP and CATD (whole data set).
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(b) Comparison of CDFs of the contrast func-
tions for CP and CATD (during class I).

Figure 21: Comparison of CDFs for the contrast functions shows dominance of classical pursuit
during bat-bat interactions.
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(a) CP (Contrast Function: Lambda).
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(b) CATD (Contrast Function: Gamma).

Figure 22: Distribution of Λ and Γ shows dominance of CATD/MC during bat-mantis interac-
tions. The frequency is normalized by the maximum count (considering both strategies).

strategy analysis. In that case the following bat stays in the CP state for 47.83%

of the time, against 7.48% of the time spent in the CATD state. The associated

histograms are shown in Fig 20. Therefore our present work reconfirms the findings

by Chiu et al. [2010], i.e. bats do not apply CATD while pursuing conspecifics, rather

they use CP strategy to follow another bat.

On the other hand, Fig 22 shows the histograms of Λ and Γ for the complete
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(b) CATD (Contrast Function: Gamma).

Figure 23: Distribution of Λ and Γ shows dominance of CATD/MC during the following and
converging segments (class I) of bat-mantis pursuit events. The frequency is normalized by the
maximum count (considering both strategies)
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(b) Comparison of CDFs of the contrast func-
tions for CP and CATD (during class I).

Figure 24: Comparison of CDFs for the contrast functions shows dominance of CATD/MC during
bat-mantis interactions.

set of bat-mantis trajectory pairs. From this figure one can notice that the data

indicates strong evidence in favor of CATD pursuit strategy. Quantitatively, the bat

stays in the CATD state for 22.05% of the time in comparison to 9.12% of the time

in the CP state. Now we narrow our focus to the following and converging segments

of the flight, i.e. data points from only class I are considered for strategy analysis.

In that case the bat stays in the CATD state for 32.72% of the time, against 14.42%

of the time in the CP state (Fig 23). Therefore our analysis provides support for

bats’ use of CATD for pursuing a free flying mantis.

However, at this level of flight strategy analysis (through studying the distri-

bution of associated contrast function values), the significance of distinction between

CP and CATD is less sharply delineated for bat-mantis interactions than for bat-bat

interactions. This leads us to the next part of our analysis, i.e. comparison at the

level of feedback laws for steering control.
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5.4 Analysis of Steering Control

A bat executes a pursuit strategy by continually adjusting the curvature of its

trajectory based on its perception of the relative motion of the target. Such strategy-

specific steering feedback control laws have been a subject of applied mathematical

research (Galloway et al. [2010]; Justh & Krishnaprasad [2006]; Reddy [2007]; Reddy

et al. [2006]). Here we investigate steering controls that underlie a bat’s pursuit

strategy by comparing empirical values of trajectory curvature with predictions from

theoretically well-founded feedback control laws (Table 5.1), and provide evidence

at the level of the steering control mechanism as well.

By letting, puem, vemq denote the empirical curvatures obtained from trajec-

tory smoothing and puth, vthq denote the curvature values computed using feedback

laws indicated in Table 5.1, we formalize this analysis as the following mismatch

minimization problem

Minimize
µą0,δPN

¨
˚̋ 1ř

jPS

`
|Ej| ´ δ

˘
ÿ

jPS

ÿ

tkPEj

”`
uemptkq ´ uthptk ´ δ∆q

˘2 `
`
vemptkq ´ vthptk ´ δ∆q

˘2ı
˛
‹‚.

(5.3)

Here, N, Ej and S represent the set of natural numbers, the set of time indices

associated with reconstructed trajectories for the j-th trial, and the index set of all

trials under consideration, respectively. It is essential to incorporate delays (δ∆)

into the theoretical curvature terms in the mismatch minimization problem, to take

into account the latency present in the sensorimotor feedback loops and to estimate

it from the data. We should also note that the discreteness of delay values (in
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Strategy Steering Feedback Law

CATD/MC: uth “ ´ µ

νp

´
zp ¨

`
9r ˆ r

|r|
˘¯

vth “ µ

νp

´
yp ¨

`
9r ˆ r

|r|
˘¯

CP: uth “ ´ µ

νp

´
yp ¨ r

|r|
¯

´ 1

νp|r|
´
zp ¨

`
9r ˆ r

|r|
˘¯

vth “ ´ µ

νp

´
zp ¨ r

|r|
¯

` 1

νp|r|
´
yp ¨

`
9r ˆ r

|r|
˘¯

Table 5.1: Theoretically plausible feedback laws for constant absolute target direction (CATD/MC)
and classical pursuit (CP).

(5.3)) arises only because of data availability at a finite sample rate (with sampling

interval ∆). Clearly, in addition to gathering evidence for a particular pursuit

strategy, this approach also yields an estimate of behavioral latency (sensorimotor

delay) associated with the pursuit events.

Proposition 5.1. Let takuNk“0 and tãkuNk“0 be two finite sequences, and consider the

following optimization problem:

Minimize
µą0,δPN,ηPR

˜
1

N ` 1 ´ δ

Nÿ

k“δ
}apkq ´ µãpk ´ δq ´ η}2

¸
. (5.4)

Then (5.4) can be approximated by the following optimization problem

Maximize
δPN

Corrpa, ãδq, (5.5)

where ãδ represents a δ-shifted copy of tãku, i.e. ãδpkq “ ãpk ´ δq.
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Moreover, the optimal values of µ and η are given by

µ “ Covpa, ãδq
Varpãδq (5.6)

η “ 1

N ` 1 ´ δ

Nÿ

k“δ

´
apkq ´ µãpk ´ δq

¯
(5.7)

Proof. One can notice that (5.4) can be expressed as

Minimize
δPN

˜
Minimize
µą0,ηPR

˜
1

N ` 1 ´ δ

Nÿ

k“δ
}apkq ´ µãpk ´ δq ´ η}2

¸¸
, (5.8)

and this formulation enables us to solve the optimization problem through a two-

step process. Now, for a given δ, we define aavg “ 1
N`1´δ

Nř
k“δ

apkq and ãavg “

1
N`1´δ

N´δř
k“0

ãpkq. Then, for that particular choice of δ, we have

Nÿ

k“δ
}apkq ´ µãpk ´ δq ´ η}2

“
Nÿ

k“δ

´`
apkq ´ aavg

˘
´ µ

`
ãpk ´ δq ´ ãavg

˘
`

`
aavg ´ µãavg ´ η

˘¯2

“
Nÿ

k“δ

´
bpkq ´ µb̃pk ´ δq `

`
aavg ´ µãavg ´ η

˘¯2

“
Nÿ

k“δ

`
b2pkq ´ 2µbpkqb̃pk ´ δq ` µ2b̃2pk ´ δq

˘
`

Nÿ

k“δ

`
aavg ´ µãavg ´ η

˘2

` 2
Nÿ

k“δ

`
bpkq ´ µb̃pk ´ δq

˘`
aavg ´ µãavg ´ η

˘
(5.9)

where bpkq fi apkq ´ aavg and b̃pkq fi ãpkq ´ ãavg (k P tδ, . . . , Nu) are two zero mean
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sequences. As the third term of (5.9) ceases to zero, one can notice that (5.9) get

minimized by choosing

η “ aavg ´ µãavg “ 1

N ` 1 ´ δ

Nÿ

k“δ

`
apkq ´ µãpk ´ δq

˘
(5.10)

µ “

Nř
k“δ

bpkqb̃pk ´ δq
Nř
k“δ

b̃2pk ´ δq
“ Covpa, ãδq

Varpãδq . (5.11)

Replacing µ and η with their optimal values, (5.9) can be expressed as

Nÿ

k“δ

˜
b2pkq ´ 2

Covpa, ãδq
Varpãδq bpkqb̃pk ´ δq `

ˆ
Covpa, ãδq
Varpãδq

˙2

b̃2pk ´ δq
¸

“ pN ` 1 ´ δq
˜
Varpaq ´ 2

Covpa, ãδq
Varpãδq Covpa, ãδq `

ˆ
Covpa, ãδq
Varpãδq

˙2

Varpãδq
¸

“ ´pN ` 1 ´ δqVarpaq
˜ `

Covpaãδq
˘2

VarpaqVarpãδq ´ 1

¸
(5.12)

as both b and b̃ zero mean sequences. By using the minimum value from the inner

optimization (5.12), the problem of our interest can be expressed as

Maximize
δPN

˜
Varpaq

˜ `
Covpa, ãδq

˘2

VarpaqVarpãδq ´ 1

¸¸

ô Maximize
δPN

Varpaq
´`

Corrpa, ãδq
˘2 ´ 1

¯
. (5.13)

Assuming the delay to be sufficiently small compared to the length of the sequence

(δ ! N), we can ignore the effect of δ on the empirical (sample) variance of a (first

factor of the cost). As a consequence, the original optimization problem can be
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approximated as

Maximize
δPN

Corrpa, ãδq. (5.14)

One can readily recognize that solving the minimization problem (5.3) is com-

putationally demanding. However, this computational complexity can be tackled by

approximating it with a correlation maximization problem (as shown via Proposi-

tion 5.1). In this alternative approach, we compute the correlation between empirical

data (natural curvatures uem, vem stacked in a single array) and the theoretically

predicted curvature values (uth, vth stacked in a single array), as a function of de-

lay. Then, the delay which maximizes this correlation provides an estimate for the

behavioral latency.

For the bat-bat pursuit events the variation of correlation is shown in Fig 25,

and the corresponding values of optimal gain (µ˚) and optimal delay (δ˚) are pro-
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(a) Correlation between empirical curvatures
and the curvatures obtained from the CATD
feedback law.
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and the curvatures obtained from the CP feed-
back law.

Figure 25: Variation of correlation between empirical and theoretical curvatures shows dominance
of classical pursuit during bat-bat pursuit events.
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Figure 26: Variation of residual for a CATD feedback law (Bat-Bat pursuit events). The residual
values (color-coded) are shown in log 10 scale.

Figure 27: Variation of residual for a CP feedback law (Bat-Bat pursuit events). The residual
values (color-coded) are shown in log 10 scale.
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CATD CP

Maximum Correlation (ρmax) 0.5307 0.6159
Delay (δ˚) [ms] 272.9167 166.6667
Linear Gain (µest) 0.7156 1.9792

λ1 0.6256 0.3378
λ2 0.1607 0.0188

σ1 79.5584 94.7238
σ2 20.4416 5.2762

Table 5.2: Summary of the statistical analysis of steering control laws for bat-bat pursuit events.
λ1 and λ2 represent the principal component variances, i.e., eigenvalues of the covariance matrix.
σ1 and σ2 represent the percentage of total variance explained by principle components.

CATD CP

Minimum Value of Mismatch 0.3429 0.2010
Normalized Mismatch 1.0396 0.6216

Linear Gain 0.7165 1.9658
Delay (δ˚) [ms] 277.0833 177.0833

Table 5.3: Summary of the residual analysis of steering control laws for bat-bat pursuit events.
The mismatch is normalized by the product of rms values of empirical and theoretical curvatures.

vided in Table 5.2. One can notice that the correlation between the theoretical

and empirical values of the curvatures (u-v stacked together) attains maximum (at
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(b) Correlation between empirical curvatures
and the curvatures obtained from the CP feed-
back law.

Figure 28: Variation of correlation between empirical and theoretical curvatures shows dominance
of CATD pursuit strategy during a bat-mantis chase.
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Figure 29: Variation of residual for a CATD feedback law (Bat-Mantis pursuit events). The
residual values (color-coded) are shown in log 10 scale.

Figure 30: Variation of residual for a CP feedback law (Bat-Mantis pursuit events). The residual
values (color-coded) are shown in log 10 scale.
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0.6159) with the CP feedback law, and the corresponding delay is 166.67ms. We

also perform a principal component analysis to confirm that the data is directional.

The results show that the variance of one of the components is very high compared

to the other. We also show the variation of the residual (mismatch defined in (5.3))

as a function of gain and delay. From Table 5.3 one can conclude that CP feedback

laws yield a better match, and the corresponding gain and delay are similar to the

ones obtained through correlation maximization.

On the other hand, we show the variation of correlation for bat-mantis pursuit

events in Fig 28, and the corresponding values of optimal gain (µ˚) and optimal

delay (δ˚) are mentioned in Table 5.4. It can be noticed from the table that the cor-

relation between the theoretical and empirical values of the curvatures (u-v stacked

together) gets maximized (at 0.7403) by choosing the CATD feedback law, and the

corresponding delay is 120ms. A principal component analysis of the curvature

data shows that the variance of one of the components is very high compared to the

other. In addition to computing the variation of correlation as a function of delay,

we also analyze the variation of the residual as a bi-variate function of gain and

delay (Fig 29 and Fig 30).

We can observe that the empirical curvature values of the trailing bat in a bat-

bat pursuit event are better correlated with a the CP feedback law; while on the

other hand the empirical curvature values of the bat in a bat-mantis chase are better

correlated with the theoretical feedback law which makes the interaction approach

the CATD state. We have also found that the latency associated with the pursuit

of a free flying target p« 120msq is significantly smaller than the latency associated
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CATD CP

Maximum Correlation (ρmax) .7403 0.0314
Delay (δ˚) [ms] 120 64
Linear Gain (µest) 1.2457 8.2354 ˆ 10´7

λ1 0.5480 374938355.1287
λ2 0.0586 0.25895

σ1 90.3439 100
σ2 9.6561 6.9066 ˆ 10´8

Table 5.4: Summary of the statistical analysis of steering control laws for bat-mantis pursuit
events. λ1 and λ2 represent the principal component variances, i.e., eigenvalues of the covariance
matrix. σ1 and σ2 represent the percentage of total variance explained by principle components.

CATD CP

Minimum Value of Mismatch 0.2029 2.8964 ˆ 104

Normalized Mismatch 0.0511 7.6092 ˆ 103

Linear Gain 1.2457 0.0100
Delay (δ˚) [ms] 118 102

Table 5.5: Summary of the residual analysis of steering control laws for bat-mantis pursuit events.
The mismatch is normalized by the product of rms values of empirical and theoretical curvatures.

with a competitive prey capture p« 170msq. This delay can be attributed to the

combined effect of neural processing delay and motor action delay.

5.5 Discussion

The results of this study demonstrate that the echolocating bat allows room

for flexibility in its flight strategy. It adapts the underlying strategy and feedback

mechanism for steering control to the context and goal of the task. Our analysis,

built on geometric notions and control-theoretic methods, shows that single bats

employ CATD while pursuing insect prey. On the other hand, when tasked to

compete for a single food source, a bat does not apply CATD to chase a conspecific.

Rather, it uses CP strategy while pursuing a competitor.
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This work introduces two important notions, namely following property and

convergence of a trajectory, to better understand the individual roles in a dyadic in-

teraction. One distinguishing feature of these notions, similar to the ones introduced

by Chiu et al. [2008], is that they are completely based on the geometry of flight

trajectories, in particular individual positions and velocities; our approach does not

consider the patterns of vocalization (for echolocation and warning conspecifics).

Here, we have adopted a two stage approach for analysis of the trajectory data.

Besides analyzing the distribution of relevant contrast function (Λ and Γ) values,

we have also compared the empirical values of trajectory curvatures to the ones

predicted by theoretically well-founded and biologically plausible feedback control

laws. While analyzing the histograms of contrast function values, we noticed that the

significance of distinction between CP and CATD is higher for bat-bat interactions

than for bat-insect interactions. On the other hand, by performing the analysis

at the level of steering control law, the dominance of CATD during a bat-insect

interaction can be concluded in a much stronger way than the dominance of CP

during a bat-bat interaction. This observation emphasizes the indispensability of

a two stage approach to achieve a better understanding of the interactions and to

evaluate which strategy prevails.

During the trials involving two competing bats, our data shows emergence of

a pursuer-pursuee relationship. The approach taken here does not address how this

shift to asymmetry arises out of a symmetric setup. It has been known for some

time that food-associated vocalization may be responsible for the emergence of such

asymmetry (either by attracting or repelling conspecifics). Recent work by Wright
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et al. [2014] suggests that this occurs in competitive foraging, when one of the bats

(exclusively male) emits a type of social call - frequency-modulated bout (FMB) -

to signify territoriality and food claiming. It would be of interest to find signatures

in flight steering of such FMB-induced shifts.
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Chapter 6: Analysis of Flocking in European Starlings

Collective behavior in animal groups is quite fascinating and ubiquitous in

nature, and over the decades had drawn attention of researchers from various fields

of science. However, until recently it was very difficult to conduct any quantitative

analysis for large groups of animals which are quite common in natural settings.

This lack of studies, primarily caused by inadequacy of appropriate motion capture

techniques to track common flocks, used to pose a serious problem as an analysis

for a small group cannot be generalized for larger groups. The boundary effect is

much more dominant for smaller groups.

Equipped with advanced tools from stereometry and statistical analysis, Cav-

agna et al. [2008a,b] developed a way to collect three-dimensional position and

velocity data for large flocks of starling with number of birds varying from couple

of hundreds to couple of thousands. One of their initial contribution was to show

that local interactions, the building block for group level flocking behavior, does

not depend on metric distance, rather on the topological distance [Ballerini et al.,

2008a]. Based on the empirical data, they discovered that individual starlings in-

teract with six/seven nearest neighbors (on average), rather than with all neighbors

within a fixed radius. A more recent work, by suggesting that the flock maximizes
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its robustness to uncertainty by interacting with six or seven neighbors, provides

a justification for individual starlings to interact with six/seven nearest neighbors

[Young et al., 2013]. Later, by measuring the correlation between velocity fluctua-

tions of different birds, Cavagna et al. [2010] have shown that behavioral correlations

are scale free, i.e. the behavioral change of an individual affects and is affected by

that of all other members of the flock, independent of flock size. In the most recent

work from this research group, Attanasi et al. [2014] have shown that directional

information within a flock propagates with an almost constant speed, and this linear

growth of information can be explained by models with wave-like aspects. However,

these studies do not provide much insight about the agent-level steering control laws

which give rise to flocking behavior.

In this work of ours we attempt to uncover the flight strategies and underlying

control laws by analyzing different parameters of motion, namely velocity, speed,

curvatures etc. For that purpose we assume each starling to be a point particle,

and apply the tools developed in Chapter 3 to extract speed and curvatures from

the sampled dataset of observed positions. Then we perform correlation analysis

to investigate the feedback mechanism for steering control governing coordinate

motion of the flocks. Our analysis also provides estimates of the sensorimotor delay

associated with the flocking behavior.
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6.1 Experiment Details and Trajectory Reconstruction

This work analyzes the flight data from a series of data collection events con-

ducted by Dr. Andrea Cavagna and his collaborators from the Collective Behaviour

in Biological Systems (COBBS) group at the Institute for Complex Systems (ISC-

CNR), University of Rome “La Sapienza”. These time-sampled flight data were

taken from the roof of Palazzo Massimo, Museo Nazionale Romano, in the city cen-

ter of Rome, in front of one of the major roosting sites used by starlings during

winter. Starlings spend the day feeding in the countryside, and before settling on

the trees for the night they gather in flocks to perform aerial display, an apparently

purposeless dance where flocks move and swirl in a remarkable way. Interested read-

ers can refer to the work by Attanasi, A. and Cavagna, A. and Del Castello, L. and

Giardina, I. and Jelic, A. and Melillo, S. and Parisi, L. and Shen, E. and Silvestri,

E. and Viale, M. [2013] for further details about the experimental setup and the

sophisticated algorithm for stereo reconstruction.
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Figure 31: This figure shows the distribution of optimal regularization parameters (λ˚) for dif-
ferent flocks. The distribution corresponding to a particular flocking event is sharply peaked at a
distinct value, and therefore emphasizes the strong dependence of λ˚ on the signal-to-noise ratio.

Our work involves analysis of eight distinct flocking events captured during

the winter months of 2011. We begin our analysis by reconstructing the flight tra-

jectories using the smoothing algorithm (Algorithm 1) developed in Chapter 3. In

contrast to our earlier work with bat trajectories, here we have performed cross-

validation for individual trajectories and the corresponding optimal value of regu-

larization parameter (λ˚) has been used for trajectory reconstruction. Fig 31 shows

the distribution of λ˚, and thereby emphasizes that λ˚ has a strong dependence on

the signal-to-noise ratio. The flocking events that we analyze are quite distinct in

nature; while some of them (Fig 32d, Fig 32h) are minimally maneuvering flights,

some involve coordinated turning (Fig 32a, Fig 32f, Fig 32g). The following table

(Table 6.1) enlists the events under consideration along with the associated details

(duration, flock size and frame-rate of data capture).
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(a) Flock: 2011 02 08 ACQ3 (N=180) (b) Flock: 2011 11 24 ACQ1 (N=125)

(c) Flock: 2011 11 25 ACQ1 (N=50) (d) Flock: 2011 12 01 ACQ3 (N=489)

(e) Flock: 2011 12 07 ACQ1 (N=109) (f) Flock: 2011 12 14 ACQ4 (N=162)

(g) Flock: 2011 12 15 ACQ1 (N=401) (h) Flock: 2011 12 20 ACQ2 (N=200)

Figure 32: Within the scope of this current work we have analyzed the flight data of eight flocks.
This figure shows the reconstructed trajectories for all these flocking events. Here “N” represents
the number of birds in a particular flock.
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Flocking Event Flock Size Duration Data Capture Rate
(N) (seconds) (frames/second)

2011 02 08 ACQ3 180 5.4875 80
2011 11 24 ACQ1 125 1.8176 170
2011 11 25 ACQ1 50 5.6118 170
2011 12 01 ACQ3 489 2.3471 170
2011 12 07 ACQ1 109 3.8824 170
2011 12 14 ACQ4 162 4.1588 170
2011 12 15 ACQ1 401 5.7353 170
2011 12 20 ACQ2 200 1.7588 170

Table 6.1: Our study analyzes eight particular flocking events. This table enlists the details of
the individual events.

6.2 Analysis of Flight Strategy and Underlying Steering Control

One can easily notice (from Fig 32) that individuals in a starling flock fly

in such a way that there is not much variation between the individual directions

of motion (at least when they are involved in a coordinated turn or undergoing a

minimally maneuvering path). This perception forms the basis for our analysis, and

we introduce appropriate quantitative notions to investigate the applicability of this

idea.

We begin the analysis by computing the average cosine of the angle between

the velocity of a focal bird i and velocity of the center of mass of its neighborhood

(Ni). By letting vi denote the velocity of the i-th individual, the direction of motion

of its neighborhood at time tk can be defined as

xNi
ptkq “

ř
jPNiptkq

vjptkq

| ř
jPNiptkq

vjptkq| , (6.1)

whenever the neighborhood center of mass velocity does not vanishes to zero. Then
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the average cosine of the angle (between vi and xNi
) can be computed as

Ci “ 1

|E |
ÿ

kPE

viptkq
|viptkq| ¨ xNi

ptkq, (6.2)

where E represents the set of time indices associated with the flight duration. As

Ci can be interpreted as a measure of how coherently a bird is moving with respect

to its neighbors, Ci is named as the coherence for bird i.

This work constructs the neighborhood of a focal bird i by considering its K-

nearest neighbors. Then, by definition, Ni has a cardinality of K, and each node in

the underlying attention graph1 has an out-degree of value K. For this particular

choice for the neighborhood structure, we evaluate Ci for every member of the flock,

and compute the flock averaged coherence by averaging it over the flock members.

Clearly, this quantity is a property of the whole flock, and it depends only on the

neighborhood size (K). Fig 33 shows the variation of flock averaged coherence as a

function of the neighborhood size (K).

It can readily be noticed from this set of figures that the flock averaged coher-

ence gets maximized by considering 5-7 nearest neighbors. While some of the flocks

(Fig 33c, Fig 33e, Fig 33f) attain the maximum coherence by picking K-values in the

range (5-7), for rest of them, the gain/increase in flock averaged coherence becomes

insignificant if one goes beyond this range of nearest neighbors. Thus our analysis

1As the nearest neighborhood relationship is not symmetric, it can be illustrated by a directed
graph, wherein an edge exists from node-i to node-j if the individual j is one of the K-nearest
neighbors of individual i (i.e., individual i is paying attention to individual j). This graph is called
the underlying attention graph. Clearly, this graph changes over time, depending on the relative
position of the group members.

155



reconfirms the findings by Ballerini et al. [2008a].

Next we focus on investigating the underlying steering control mechanism by

comparing empirical values of trajectory curvature with predictions from theoreti-

cally justifiable feedback control laws (discussed in detail in Chapter 7). By letting,

puem, vemq denote the empirical curvatures obtained from trajectory smoothing and

puth, vthq denote the curvature values computed using theoretical feedback laws, we

formalize this analysis as the following mismatch minimization problem

Minimize
µą0,δPN

¨
˚̋ 1ř

jPS

`
|Ej| ´ δ

˘
ÿ

jPS

ÿ

tkPEj

”`
uemptkq ´ uthptk ´ δ∆q

˘2 `
`
vemptkq ´ vthptk ´ δ∆q

˘2ı
˛
‹‚,

(6.3)

Here, N, Ej and S represent the set of natural numbers, the set of time indices

associated with the flight duration of individual j, and the index set of all starlings

belonging to a particular flock, respectively. This mismatch minimization problem

incorporates delays into the theoretical curvature terms to account for the behav-

ioral latency present in the sensorimotor feedback loops. Moreover this approach

also provides an estimate of the sensorimotor delay. We should also note that the

discreteness of delay values (in (5.3)) arises only because of data availability at a

finite sample rate (with sampling interval ∆). Now, before going into the details of

analysis, it is worth mentioning the theoretically plausible feedback laws (although

the detailed analysis will be discussed later). By letting νi denote the speed of the
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(a) Flock: 2011 02 08 ACQ3
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(b) Flock: 2011 11 24 ACQ1
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(c) Flock: 2011 11 25 ACQ1
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(d) Flock: 2011 12 01 ACQ3
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(e) Flock: 2011 12 07 ACQ1
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(f) Flock: 2011 12 14 ACQ4
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(g) Flock: 2011 12 15 ACQ1
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(h) Flock: 2011 12 20 ACQ2

Figure 33: This figure illustrates the variation of flock averaged coherence as a function of the
neighborhood size (K), i.e. the number of individuals a focal bird is paying attention to.
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(a) Flock: 2011 11 24 ACQ1

(b) Flock: 2011 12 01 ACQ3

(c) Flock: 2011 12 20 ACQ2

Figure 34: This figure, through a heat map, illustrates the variation in correlation between the
empirically observed curvature of a focal bird and the curvature values predicted by a theoretically
plausible feedback mechanism (6.4), as a bivariate function of neighborhood size and delay.
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i-th individual, the feedback law is given by

ui “ µ

„
xNi

¨ yi
νi



vi “ µ

„
xNi

¨ zi
νi


,

(6.4)

where xNi
denotes the normalized velocity vector of the neighborhood center of

mass, and yi, zi carry their usual meaning of frame vectors associated with the

individual. As discussed earlier (in Section 5.4), the computational complexity

involved in solving the mismatch minimization problem (6.3) can be avoided by

approximating it with an equivalent correlation maximization problem (as shown

via Proposition 5.1). In this alternative paradigm, we compute the correlation be-

tween empirical data (natural curvatures uem, vem stacked in a single array) and

the theoretically predicted curvature values (uth, vth stacked in a single array), as

a function of neighborhood size and (sensorimotor) delay. Then, the neighborhood

size and delay which maximizes this correlation provides an estimate for the number

of nearest neighbors (an individual is paying attention to) and behavioral latency.

Event ID 2011 11 24 ACQ1 2011 12 01 ACQ3 2011 12 20 ACQ2

Max. Correlation .2797 0.4103 0.1278
Delay [ms] 138.8235 141.1765 135.2941
Neighborhood Size 12 40 16
Linear Gain (µest) 2.4462 4.1689 1.33

λ1 1271.1725 57592.5342 3505.8485
λ2 15.2880 462.4669 31.8121

σ1 98.8116 99.2034 99.1008
σ2 1.1884 0.7966 0.8992

Table 6.2: Summary of the statistical analysis of steering control laws for starling flocks. λ1 and
λ2 represent the principal component variances, i.e., eigenvalues of the covariance matrix. σ1 and
σ2 represent the percentage of total variance explained by the principle components.
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The variation of correlation as a bivariate function of neighborhood size and

delay is shown in Fig 34, and the associated values of relevant parameters (optimal

gain, neighborhood size and delay, along with correlation values) are mentioned in

Table 6.2. It can be noticed from the three subfigures that, although the correlation

value (between theoretical prediction and empirical observation) is itself not very

high, there is an unmistakable consistency in the neighborhood size and delay values

which maximize the correlation. These three subfigures shows the correlation vari-

ation for the minimally maneuvering flocks (Flock ID: 2011 11 24 ACQ1, Flock ID:

2011 12 01 ACQ3, and Flock ID: 2011 12 20 ACQ2), and hence it can concluded

that the proposed feedback mechanism (6.4) plays an important role in governing

the steering control for flocking behavior

6.3 Discussion

In this study of ours, we have analyzed the flight data of European starling

flocks, and have provided some insight into the underlying flight strategies and steer-

ing control mechanism. Here, the attention graph has been constructed by ranking

the neighbors according to their distances from the focal bird and then considering

the first K-nearest neighbors. However, recent studies by Bhagavatula et al. [2011]

and Kane & Zamani [2014] have shown that optic flow plays an important role in

the context of perception in avian flights. Therefore, it seems reasonable to extend

the current work by considering attention graphs constructed by ranking the neigh-

bors according to the magnitude of optic flow at the focal bird’s eyes caused by
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their motion. Also, it is worth mentioning here that the feedback law, that we have

introduced here, is responsible for aligning the individual velocities. A more general

form of the control law (although restricted to planar settings and uniformly moving

individuals) with three different components for attraction, repulsion and alignment

have been proposed earlier by Justh & Krishnaprasad [2002, 2004]. It would be in-

teresting to investigate the applicability of that control law in this context. Another

key aspect of this study is that the proposed control law (6.4) carries an wave-like

aspect which is necessary to explain a linear growth of information within a flock.
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Part III

Synthesis of Collectives
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Chapter 7: Flocking through Topological Velocity Alignment (TVA)

Now, drawing inspiration from our analysis of starling murmuration events, we

consider the problem of synthesizing a collective motion wherein each of the individ-

uals (birds in a flock, UAVs in swarm) controls its steering action in such a way that

their directions of motion remain parallel. It is worth mentioning that earlier works

of Justh & Krishnaprasad [2003, 2004] have considered a very similar form of the

proposed control law with three components for attraction (while the agents are far

away), repulsion (to avoid collision) and velocity alignment. However, the control

law introduced in this current study considers only velocity alignment, but extends

the scope by considering multiple agents in a three dimensional environment inter-

acting via a state-dependent (nearest neighbors based) attention graph. Moreover,

it relaxes the assumption on uniform speed of the collective by allowing the agents

non-uniform and time-varying speed profiles. This relaxation plays an important

role in the context of applying this control law to a group of heterogeneous agents.

This chapter introduces a strategy, named topological velocity alignment (TVA),

wherein each agent aligns its velocity along the direction of motion of its neighbor-

hood center of mass [Halder & Dey, 2015]. After introducing this strategy and the

associated steering feedback law, Section 7.2 and Section 7.3 provide a theoretical
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analysis of this strategy in two special cases (two-agents, and N -agents interacting

in a cyclic way, respectively). Later, in Section 7.4 we propose a discrete-time al-

gorithm to implement the TVA strategy on a group of robotic agents. Finally we

conclude this chapter by showing some implementation results in Section 7.5.

7.1 Topological Velocity Alignment (TVA) Strategy

Here we treat the agents (of the collectives of size N) as self steering particles,

and use natural Frenet frame equations (Section 1.3.1) to model their dynamics.

Therefore, by letting ri denote the instantaneous position of the i-th agent, its

dynamics can be expressed as

9riptq “ νiptqxiptq

9xiptq “ νiptq
`
uiptqyiptq ` viptqziptq

˘

9yiptq “ ´νiptquiptqxiptq

9ziptq “ ´νiptqviptqxiptq

(7.1)

where xi is the unit tangent vector to its trajectory, and pyi, ziq form an orthonor-

mal basis for the plane perpendicular to xi. Moreover the natural curvatures pui, viq

are the steering controls, and the speed pνiq is a time function dictated by propul-

sive/lift/drag mechanisms. It can also be noted that pxi,yi, ziq form a local or-

thonormal frame which evolves along the length of the trajectory. Furthermore,

this model also carries a nice geometric interpretation because (7.1) can alterna-

tively be viewed as a left invariant control system evolving on the Lie group SEp3q
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of rigid motion in three dimension.

x1

y1

z1

r1
x2

y2

z2

r2

x3

y3

z3

r3

Trajectory # 1

Trajectory # 2

Trajectory # 3

Figure 35: Individual trajectories along with their frame vectors.

By assuming the steering control pui, viq of an agent-i (or the focal bird in a

flock) to be dependent on the motion of its neighbors, we introduce the notion of

topological velocity alignment (TVA), wherein each agent moves parallel to the center

of mass of its neighborhood. We also derive the steering control law necessary to

achieve this goal. We begin by letting Ni denote the neighborhood of the i-th agent.

Then, by assuming identical mass for every agent, the velocity of the neighborhood

center of mass (COM) can be expressed as

viCOM “ 1

|Ni|
ÿ

jPNi

vj “ 1

|Ni|
ÿ

jPNi

νjxj . (7.2)

Moreover, we assume that viCOM does not vanish to zero1. Then, with this assump-

1It should be noted that vi
COM becomes zero over a thin set in the underlying state space. As

the chance of getting into this thin set is essentially zero, we can overlook this situation for all
practical purposes.
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tion, we can define the direction of the center of mass motion as

xNi
“ viCOM

|viCOM | “

ř
jPNi

vj
ˇ̌
ˇ̌
ˇ

ř
jPNi

vj

ˇ̌
ˇ̌
ˇ

. (7.3)

Now, we define the following contrast function associated with the i-th agent

Θi “ 1

2
pxNi

´ xiq ¨ pxNi
´ xiq , (7.4)

and use it as a quantitative measure of the difference between heading of the i-th

agent and direction of the center of mass motion for its neighborhood Ni. If the

i-th agent moves in the same direction as the center of mass of its neighborhood Ni,

then the contrast function assumes its minimum value, i.e. Θi “ 0. On the other

hand, it assumes the maximum value (Θi “ 2) whenever the i-th agent moves in

a direction opposite to that of the center of mass motion. And, if the i-th agent

moves perpendicular with respect to direction of motion of the center of mass of

its neighborhood, then we have Θi “ 1. Fig 36 shows the variation of Θi as a

function of the angle between heading of the i-th agent pxiq and the direction of the

center of mass motion for its neighborhood pxNi
q. As we can observe, Θi increases

monotonically with increase in the angle between xi and xNi
. Alternatively, it can

also be expressed as

Θi “ 1 ´ xi ¨ xNi
, (7.5)

as both xi and xNi
are unit vectors. xi ¨xNi

, being a dot product of two unit vectors,
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essentially represents the cosine of the angle between them, and gets maximized

when they are aligned in the same direction. Thus, Θiptq can be interpreted as a

quantitative measure of departure from our goal of achieving alignment between

heading of the i-th agent (xiptq) and the direction of motion of its neighborhood

center of mass (xNi
ptq).

 

 2

1.5

1

0.5

0

0

´0.5

´1 π{4 π{2 3π{4 π

Θi
xi ¨ xNi

Angle between xi and xNi

Figure 36: Variation of the contrast function (Θi) with change in angle between xi and xNi
.

Assuming a well-defined xNi
, we propose a steering control law of the form

uiptq “ µ

„
xNi

ptq ¨ yiptq
νiptq



viptq “ µ

„
xNi

ptq ¨ ziptq
νiptq


,

(7.6)

where µ ą 0 denotes a feedback gain. A physical intuition for the steering control law

(7.6) can be obtained by shifting focus to the corresponding feedback law for lateral

acceleration. With this particular choice of control laws, the lateral acceleration can
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be expressed as

alati ptq “ νiptq 9xiptq

“ µνiptq
“
xNi

ptq ¨ yiptq
‰
yiptq ` µνiptq

“
xNi

ptq ¨ ziptq
‰
ziptq

“ µνiptq
´
xNi

ptq ´
“
xNi

ptq ¨ xiptq
‰
xiptq

¯
. (7.7)

From (7.7) it is quite apparent that the lateral acceleration is proportional to the

difference between direction of motion of the center of mass and the component of

its own tangent vector along the desired direction.

Remark 7.1. Although there has been a long history of control algorithms for flock-

ing, almost every model of collective motion (Reynolds [1987]; Vicsek et al. [1995])

predicts diffusive transport of information. But, contrary to the existing models,

recent findings by Attanasi et al. [2014] from starling flocks suggest that directional

information within a flock propagates with an almost constant speed, and this linear

growth of information can be explained by models with wave-like aspects. Our pro-

poses strategy, i.e. topological velocity alignment (TVA), conforms to this criterion

and can explain how information about local neighbors can influence the agents in a

flock to align their headings in a single common direction.

7.2 TVA Strategy for a Planar 2-agent System

Before going into the analysis of an N -agent system we consider a very special

case for a 2-agent system wherein the motion is restricted onto a two dimensional
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Cartesian plane. As we are considering a 2-agent system the neighborhood of a

particular agent comprises of the other agent, and hence the speed of neighborhood

center of mass never vanishes to zero (due to regularity of the model).

7.2.1 State Space and Its Reduction onto Shape Space

By exploiting natural Frenet frame equations restricted to a planar setting,

the dynamics of the two agent system can be expressed as

9riptq “ νiptqxiptq

9xiptq “ νiptquiptqyiptq

9yiptq “ ´νiptquiptqxiptq i P t1, 2u

(7.8)

where ri and xi denote the position and normalized velocity of the i-th agent, re-

spectively. yi is the unit frame vector normal to xi (uniqueness is guaranteed by

defining yi as the orthogonal rotation of xi in the counter-clockwise direction). We

also assume r1 ‰ r2 to avoid singularity of the shape variables (to be introduced

later). Moreover, a planar equivalent of (7.6) is chosen as the underlying feedback

law for steering control.

Alternatively, by packing ri,xi,yi inside a matrix gi P SEp2q, the special

Euclidean group of rigid motions in a plane, the state space for the 2-agent system

(7.8) can be defined as

Mstate “
!
g1, g2 P SEp2q ˆ SEp2q

ˇ̌
ˇg1e3 ‰ g2e3

)
(7.9)
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where e3 “ r0 0 1sT and gi “

»
——–

xi yi ri

0 0 1

fi
ffiffifl. In terms of the lie-group formulation

the system dynamics can be represented as

9gi “ giξipuiq “ gi
`
A1uiνi ` A2νi

˘
(7.10)

where A1 “

»
——————–

0 ´1 0

1 0 0

0 0 0

fi
ffiffiffiffiffiffifl

and A2 “

»
——————–

0 0 1

0 0 0

0 0 0

fi
ffiffiffiffiffiffifl

are two linearly independent

elements of sep2q, the Lie algebra of SEp2q. Moreover A1 and A2 can generate the

lie-algebra under bracketing. As we are interested in steering laws which leave our

system dynamics invariant under rigid motion, we can formulate a reduction to the

shape space, a quotient manifold Mstate{SEp2q of relative positions and velocities

of the agents. By defining g P SEp2q as

g “ g´1
1 g2 “

»
——————–

x1 ¨ x2 x1 ¨ y2 x1 ¨ r

y1 ¨ x2 y1 ¨ y2 y1 ¨ r

0 0 1

fi
ffiffiffiffiffiffifl
, (7.11)

the shape space for the planar two-agent system can be defined as

Mshape “ Mstate{SEp2q “
!
g P SEp2q

ˇ̌
ˇg213 ` g223 ‰ 0

)
, (7.12)

where r fi r2 ´ r1 denotes the baseline vector. Moreover, g assumes a left-invariant
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dynamics on SEp2q as

9g “ gξ (7.13)

where ξ “ ξ2pu2q ´ g´1ξ1pu1qg P sep2q, and the proposed control law (7.6) depends

only on the shape variable g as

ui “ µ

„
gīi

νi


, i, ī P t1, 2u, i ‰ ī. (7.14)

Therefore it can be concluded that the reduced dynamics (7.13) evolves on the shape

space Mshape [Justh & Krishnaprasad, 2004].

r “ r2 ´ r1

y1

x1

r1

y2

x2

r2
θ1

θ2

ψ

φ

ϑ

Figure 37: Illustration of scalar shape variables (ρ, ψ, φ) used to parametrize the shape space
Mshape.

7.2.2 Shape Dynamics

Now we introduce some geometrically meaningful scalar variables to parametrize

the shape space. By identifying punctured R
2 with the punctured complex plane,

we define

r “ r2 ´ r1 “ ρeiϑ. (7.15)
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Moreover the unit vectors x1 and x2 are represented as

x1 “ eiθ1, x2 “ eiθ2.

These scalar shape variables are illustrated in Fig 37. Now we introduce ψ and

φ to represent the relative orientation of the velocity vectors. ψ “ π ´ ϑ ` θ1

represents the relative orientation of x1 with respect to the baseline vector r, and

φ “ θ1 ´θ2 represent the mismatch in velocity direction. From (7.11) one can notice

that g P Mshape can be represented in terms of the scalar shape variables as

g “

»
——————–

cos φ sinφ ´ρ cosψ

´ sinφ cosφ ρ sinψ

0 0 1

fi
ffiffiffiffiffiffifl
. (7.16)

Differentiating both sides, (7.15) yields

9ρ cosϑ ´ ρ 9ϑ sin ϑ` i
`

9ρ sinϑ ` ρ 9ϑ cos ϑ
˘

“ 9r

“ ν2x2 ´ ν1x1

“ ν2
`
cos θ2 ` i sin θ2

˘
´ ν1

`
cos θ1 ` i sin θ1

˘
, (7.17)
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and then by equating the real and imaginary parts of (7.17) we have

9ρ cosϑ ´ ρ 9ϑ sin ϑ “ ν2 cos θ2 ´ ν1 cos θ1 (7.18)

9ρ sin ϑ` ρ 9ϑ cosϑ “ ν2 sin θ2 ´ ν1 sin θ1. (7.19)

Solving (7.18) and (7.19) we obtain

9ρ “ ν2 cospϑ ´ θ2q ´ ν1 cospϑ´ θ1q

“ ν1 cosψ ´ ν2 cospψ ´ φq, (7.20)

and

ρ 9ϑ “ ν2 sinpθ2 ´ ϑq ´ nu1 sinpθ1 ´ ϑq

“ ν1 sinψ ´ ν2 sinpψ ´ φq. (7.21)

On the other hand, yk is obtained by a 90˝ rotation of xk in the counter

clockwise direction, i.e. yk “ ei
π
2 xk. Therefore by using the fact that 9xk “ ieiθk 9θk “

eipθk`π
2
q 9θk, the dynamics for the scalar variables θ1 and θ2 can be represented as

9θ1 “ ν1u1

9θ2 “ ν2u2,

(7.22)
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and hence the associated shape dynamics on Mshape are given by

9ρ “ ν1 cosψ ´ ν2 cospψ ´ φq

9ψ “ ν1u1 ´ 1

ρ

“
ν1 sinψ ´ ν2 sinpψ ´ φq

‰
(7.23)

9φ “ ν1u1 ´ ν2u2.

7.2.3 Analysis of TVA Feedback Law

Here we consider a particular context of the two-agent planar system wherein

each agent employs the strategy for topological velocity alignment (TVA), i.e. each

agent keeps moving in the same direction as the other. In terms of the original state

variables the contrast functions take the form

Θi “ 1

2
pxī ´ xiq ¨ pxī ´ xiq , i P t1, 2u (7.24)

and the i-th agent is declared to attain the TVA strategy if Θi “ 0. From (7.24) one

can notice equality of the contrast functions for both agents, and hence we define

a common contrast function Θ “ Θ1 “ Θ2. Noting x1 ¨ x2 “ cosφ, the common

contrast function can be represented in terms of scalar shape variables as

Θ “ 1

2

`
x2 ´ x1

˘
¨

`
x2 ´ x1

˘

“ 1 ´ x1 ¨ x2

“ 1 ´ cosφ, (7.25)
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and hence we have

Θ “ 0 ô φ “ 0. (7.26)

Therefore for a two-agent planar system wherein each agent employs the strat-

egy for topological velocity alignment (TVA), we define the 2-dimensional topolog-

ical velocity alignment manifold MTV A Ă Mshape as

MTV A “
!
ρ, ψ, φ P Mshape

ˇ̌
ˇφ “ 0

)
. (7.27)

A steering control law designed to attain the TVA strategy has been proposed (7.6)

in earlier sections of this chapter. Moreover from (7.14) one can observe that this

feedback law can be expressed in terms of shape variables, taking the form

u1 “ ´
ˆ
µ

ν1

˙
sinφ

u2 “
ˆ
µ

ν2

˙
sinφ.

(7.28)

From (7.26) we can observe that once the TVA strategy has been attained, i.e.

Θ “ 0, the steering control becomes identically zero, and as a consequence the

mismatch in velocity direction remains identically zero (7.23). Now we will formally

introduce the notion of invariance.

Definition 7.1 (Invariant Manifold). A manifold M is said to be invariant under

the flow of a vector field X on M if for any m P M, Ftpmq P M for small t ą 0,

where Ftp¨q is the flow of X. One can show that this condition is equivalent to X

being tangent to the manifold to M.
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Figure 38: Illustration of topological velocity alignment (TVA) strategy for a 2-agent system.

If both agents employ a steering control of the form (7.28), the closed loop

dynamics for a two-agent planar system can be represented as

9ρ “ ν1 cosψ ´ ν2 cospψ ´ φq

9ψ “ ´µ sinφ ´ 1

ρ

“
ν1 sinψ ´ ν2 sinpψ ´ φq

‰
(7.29)

9φ “ ´2µ sinφ.

We should note that prohibition on collocation, i.e. ρ ą 0, is not enforced by these

dynamics.

Proposition 7.1. The topological velocity alignment manifold MTV A Ă Mshape is

invariant under the closed loop shape dynamics (7.29). Moreover if γptq P Mshape is

a trajectory of (7.29) which does not have a finite escape time, and Θp0q ‰ 2, then

Θptq Ñ 0 as t Ñ 8, (7.30)

i.e. γptq converges asymptotically to MTV A.
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Proof. From (7.25) and (7.29) we have

9Θ “ 9φ sinφ “ ´2µ sin2 φ “ ´2µΘ
`
2 ´ Θ

˘
, (7.31)

and hence MFL Ă Mshape is an invariant manifold under the shape dynamics. In

fact, from (7.31) it can be concluded that Θp0q “ 2 ñ Θptq “ 2 @t ě 0.

By assuming Θp0q ‰ 0, 2, we have

Θptq “ 2e´4µt

K ` e´4µt

where the constant K is defined as K “ 2
Θp0q ´ 1. Since e´4µt Ñ 0 as t Ñ 8, we

have Θptq Ñ 0 as t Ñ 8.

We can formulate the restricted dynamics on the flocking manifold MTV A by

substituting φ “ 0 into (7.29) to obtain

9ρ “
`
ν1 ´ ν2

˘
cosψ

9ψ “ ´1

ρ

`
ν1 ´ ν2

˘
sinψ.

(7.32)

Now we define f “ ν1 ´ ν2. By assuming f to be non-zero and differentiable

177



(7.32) can be alternatively represented as

:ρ “ 9f cosψ ´ f 9ψ sinψ

“ 9f cosψ ` 1

ρ
f 2 sin2 ψ

“
˜

9f

f

¸
9ρ ` 1

ρ

`
f 2 ´ 9ρ2

˘
. (7.33)

Remark 7.2. If f is a non-zero constant then we can show that a Lagrangian

function

LTV A “ 1

2
ρ2

`
9ρ2 ` f 2

˘

has (7.33) as its Euler-Lagrange equation. Hence it can be interpreted as a spring-

mass system with a negative spring constant.

By assuming ν1´ν2 ą 0 we define, τ “
tş
0

`
ν1pσq´ν2pσq

˘
dσ to introduce a non-

uniform time-scaling. As a result the restricted dynamics (7.32) can alternatively

be represented as

dρ

dτ
“ cosψ

dψ

dτ
“ ´1

ρ
sinψ.

(7.34)

Fig 39 shows the phase portrait of the restricted dynamics with a non-uniform time

scaling. From this figure one can notice that the region {ρ ą 0, π ą ψ ą 0} (or

similarly {ρ ą 0, 0 ą ψ ą ´π}) is closed under the restricted dynamics (7.34), i.e.

no trajectory can enter or leave the region. One can notice that the trajectories

of (7.32) and (7.34) are essentially the same on the phase plane, they differ only

on the speed of system evolution along any particular trajectory. Hence it can be
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concluded that the trajectories of (7.32) are also closed within {ρ ą 0, π ą ψ ą 0}

(or similarly within {ρ ą 0, 0 ą ψ ą ´π}).
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Figure 39: Phase portraits for the restricted dynamics (7.34).

Alternatively, by assuming ν1´ν2 ‰ 0, the evolution of a phase plane trajectory

can be represented as

dρ

dψ
“ ´ρ cosψ

sinψ
, (7.35)

and through integration with appropriate initial condition (7.35) yields

ρptq sinψptq “ ρpt0q sinψpt0q. (7.36)

From (7.36) one can notice that the phase plane trajectories are level sets of “ρ sinψ”

and hence it is clear that the region {ρ ą 0, π ą ψ ą 0} (or similarly {ρ ą 0, 0 ą

ψ ą ´π}) is closed under the restricted dynamics (7.32).
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7.2.4 Extension to a Three Dimensional Setting

The analysis of topological velocity alignment for a 2-agent system has a nat-

ural extension from planar to a three-dimensional setting, with the underlying state

space being

Mstate “ SEp3q ˆ SEp3q. (7.37)

For a 2-agent system, the neighborhood of both the agents contains only the other

one (N1 “ t2u and N2 “ t1u), and as a consequence we have Θ1 ” Θ2, because

Θ1ptq “ 1

2
pxN1

ptq ´ x1ptqq ¨ pxN1
ptq ´ x1ptqq

“ 1

2
px2ptq ´ x1ptqq ¨ px2ptq ´ x1ptqq (7.38)

and, Θ2ptq “ 1

2
pxN2

ptq ´ x2ptqq ¨ pxN2
ptq ´ x2ptqq

“ 1

2
px1ptq ´ x2ptqq ¨ px1ptq ´ x2ptqq . (7.39)

By choosing the steering the control law as the one prescribed in (7.6), we

have

9Θ1 “ px2 ´ x1q ¨ p 9x2 ´ 9x1q

“ ´ν2 pu2y2 ¨ x1 ` v2z2 ¨ x1q ´ ν1 pu1y1 ¨ x2 ` v1z1 ¨ x2q

“ ´µ
`
py2 ¨ x1q2 ` pz2 ¨ x1q2

˘
´ µ

`
py1 ¨ x2q2 ` pz1 ¨ x2q2

˘

“ ´µ
`
1 ´ px1 ¨ x2q2

˘
´ µ

`
1 ´ px2 ¨ x1q2

˘

“ ´2µΘ1p1 ´ Θ1q, (7.40)
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and similarly the dynamics of Θ2 is given by

9Θ2 “ ´2µΘ2p1 ´ Θ2q. (7.41)

From (7.40) and (7.41) it becomes obvious that 9Θi ă 0 whenever Θi P p0, 2q, i “ 1, 2.

For this flock of 2-agents, wherein each agent employs the TVA strategy, we define

the p2 ˚ 6 ´ 1)-dimensional TVA manifold MTV A Ă Mstate as

MTV A “ tr1, rx1,y1, z1s , r2, rx2,y2, z2s P Mstate|Θ1 ” Θ2 “ 0u

“ tr1, rx1,y1, z1s , r2, rx2,y2, z2s P Mstate|x1 “ x2u. (7.42)

Then, through a way similar to Proposition 7.1, it can be concluded that Θiptq Ñ 0

as t Ñ 8 whenever Θip0q ‰ 2, for i “ 1, 2. Or in other words, almost any trajectory

in Mstate converges to MTV A asymptotically.

7.3 TVA Strategy for an N -agent System with Cyclic Interaction

Now we intend to consider the particular context of N -agent cyclic interaction

(illustrated in Fig 40) systems in which each agent employs the topological veloc-

ity alignment (TVA) strategy. In this setup agent i interacts with agent pi ` 1q

mod N , or in other words the neighborhood of agent-i (Ni) is a singleton set. As

a consequence the neighborhood center of mass velocity never ceases to zero (due

to regularity of individual trajectories), and each agent aligns its velocity along the

velocity of the next agent.
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Figure 40: Illustration of an N -agent cyclic interaction system. The direction of influence is
conveyed through the direction of arrow-heads.

7.3.1 State Space and Its Reduction onto Shape Space

In an approach similar to the one in Section 7.2.1, we assume our agents to

be unit-mass particles tracing out twice continuously-differentiable curves in R2,

and model our dynamics using the natural-Frenet frame equations. Therefore our

N -agent system can be thought of as evolving on the product space of N copies

of the Lie group SEp2q. As we are interested in implementing topological velocity

alignment (TVA) strategy under a cyclic interaction framework, it is necessary to

define the neighbor for agent N . This is done through introduction of an additional

element gN`1 P SEp2q to our system state and imposing the closure constraint

gN`1 “ g1. Therefore the state space for our N -agent system can be defined as

Mstate “
!
g1, g2, . . . , gN`1 P SEp2q ˆ SEp2q ˆ ¨ ¨ ¨ ˆ SEp2ql jh n

pN ` 1q-copies

ˇ̌
ˇ

gN`1 “ g1; gie3 ‰ gi`1e3, i “ 1, 2, . . . , N
)
, (7.43)
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where e3 “ r0 0 1sT and gi “

»
——–

xi yi ri

0 0 1

fi
ffiffifl. In this sense, one can think of our

system as a G-snake which bites its tail [Krishnaprasad & Tsakiris, 1994].

As we are interested in steering laws (7.6) which leave our system dynamics

invariant under rigid motion, we can formulate a reduction to the shape space by

defining g̃i P SEp2q as

g̃i “ g´1
i gi`1 “

»
——————–

xi ¨ xi`1 xi ¨ yi`1 xi ¨ pri`1 ´ riq

yi ¨ xi`1 yi ¨ yi`1 yi ¨ pri`1 ´ riq

0 0 1

fi
ffiffiffiffiffiffifl
, (7.44)

and the closure constraint “gN`1 “ g1” can be expressed in the shape space repre-

sentation as
Nź

i“1

g̃i fi g̃1g̃2 . . . g̃N “ 1. (7.45)

Therefore the shape space (of relative positions and velocities of the agents) for our

N -agent system can be defined as

Mshape “ Mstate{SEp2q “
!
g̃1, g̃2, . . . , g̃N P SEp2q ˆ SEp2q ˆ ¨ ¨ ¨ ˆ SEp2ql jh n

N-copies

ˇ̌
ˇ

Nź

i“1

g̃i “ 1; pg̃iq213 ` pg̃iq223 ‰ 0, i “ 1, 2, . . . , N
)
.

(7.46)

It has been shown by Justh & Krishnaprasad [2004] that the shape variable g̃i
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assumes a left-invariant dynamics on SEp2q as

9̃gi “ g̃iξ̃i (7.47)

where ξ̃i “ ξi`1pui`1q ´ g̃´1
i ξipuiqg̃i P sep2q, and the proposed control law (7.6)

depends only on the shape variable g̃i as

ui “ µ

„pg̃iq21
νi


. (7.48)

The following result from the work of Galloway [2011] allows us to analyze the

shape space dynamics (7.47) as a system of unconstrained dynamics on the product

space of N copies of the Lie group SEp2q with the closure constraint (7.45) viewed

as a constraint on the initial conditions.

Proposition 7.2 (Proposition 2.2.1, Galloway [2011]). The constraint
śN

i“1 g̃i “ 1

is preserved by the shape dynamics (7.47).

7.3.2 Shape Dynamics

Similar to the analysis for a two-agent system (Section 7.2.2), we introduce

geometrically meaningful scalar variables by identifying punctured R
2 with the punc-

tured complex plane. First, we define ri`1 ´ ri “ ρie
iϑi and xi “ eiθi to parametrize

the shape space. Now one can notice that g̃i P Mshape can be represented in terms
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of the scalar shape variables as

g̃i “

»
——————–

cosφi sinφi ´ρi cosψi

´ sinφi cosφi ρi sinψi

0 0 1

fi
ffiffiffiffiffiffifl
, (7.49)

where φi “ θi ´ θi`1 and ψi “ π ´ ϑi ` θi (illustrated in Fig 41).

ρi−1 = |ri − ri−1|

xi

φi

φi−1

ψi

φi

ψi+1

xi+1

xi−1

ri−1

ri

ψi−1
ri+1

φi−1

ρi = |ri+1 − ri|

Figure 41: Illustration of scalar shape variables (ρ, ψ, φ) used to parametrize the shape space
Mshape.

Proposition 7.3 (in a spirit similar to Proposition 2.2.3, Galloway [2011]). Using

shape variables (ρi, ψi, φi) the constraint equation (7.45) can be represented as

R
´ Nÿ

i“1

φi

¯
“ 1 (7.50)

Nÿ

i“1

ρiR
´
ψi `

i´1ÿ

j“1

φj

¯
“ 0, (7.51)

where Rp¨q is a 2 ˆ 2 rotation matrix.
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Proof. The closure constraint (7.45) can alternatively be represented as

g̃N g̃1g̃2 . . . g̃N´1 “ 1. (7.52)

By defining

R
`
α

˘
“

»
——–

cosα ´ sinα

sinα cosα

fi
ffiffifl , α P r0, 2πq

we can represent g̃i P Mshape as

g̃i “

»
——–
R

`
´ φi

˘
ρiR

`
π ´ ψi

˘
e1

0 1

fi
ffiffifl .

Therefore by letting Bi “ R
`

´ φi
˘
and qi “ ρiR

`
π ´ ψi

˘
e1, we have

g̃N

N´1ź

i“1

g̃i “

»
——–
BN qN

0 1

fi
ffiffifl

»
——–

śN´1

i“1 Bi q1 ` řN´2

i“1

´ śi

j“1Bj

¯
qi`1

0 1

fi
ffiffifl

“

»
——–
BN

śN´1

i“1 Bi qN ` BNq1 ` BN

řN´2

i“1

´ śi
j“1Bj

¯
qi`1

0 1

fi
ffiffifl . (7.53)
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Noting that

BN

N´2ÿ

i“1

´ iź

j“1

Bj

¯
qi`1 “ R

`
´ φN

˘N´2ÿ

i“1

´ iź

j“1

R
`

´ φj
˘¯
ρi`1R

`
π ´ ψi`1

˘
e1

“
N´2ÿ

i“1

ρi`1R
`

´ φN
˘
R

`
π ´ ψi`1 ´

iÿ

j“1

φj
˘
e1

“
N´2ÿ

i“1

ρi`1R
`
ϑi`1 ´ θi`1 ´ pθ1 ´ θi`1q

˘
R

`
´ φN

˘
e1

“
N´1ÿ

i“2

ρiR
`
ϑi ´ θ1

˘
R

`
´ φN

˘
e1

and

BNq1 “ R
`

´ φN
˘
ρ1R

`
π ´ ψ1

˘
e1 “ ρ1R

`
ϑ1 ´ θ1

˘
R

`
´ φN

˘
e1,

we have

qN ` BNq1 `BN

N´2ÿ

i“1

´ iź

j“1

Bj

¯
qi`1

“ ρNR
`
π ´ ψN

˘
e1 ` ρ1R

`
ϑ1 ´ θ1

˘
R

`
´ φN

˘
e1 `

N´1ÿ

i“2

ρiR
`
ϑi ´ θ1

˘
R

`
´ φN

˘
e1

“ ρNR
`
ϑN ´ θ1 ´ φN

˘
e1 `

N´1ÿ

i“1

ρiR
`
ϑi ´ θ1

˘
R

`
´ φN

˘
e1

“
Nÿ

i“1

”
ρiR

`
π ´ ψi ` θi ´ θ1

˘ı
R

`
´ φN

˘
e1

“ ´
Nÿ

i“1

”
ρiR

T
`
ψi `

i´1ÿ

j“1

φj
˘ı
R

`
´ φN

˘
e1. (7.54)

We also have

BN

N´1ź

i“1

Bi “ R
`

´ φN
˘N´1ź

i“1

R
`

´ φi
˘

“ R
`

´
Nÿ

i“1

φi
˘

“ RT
` Nÿ

i“1

φi
˘
. (7.55)
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Using (7.54) and (7.55), (7.53) can be simplified into

»
——–
RT

` řN

i“1 φi
˘

´ řN

i“1

”
ρiR

T
`
ψi ` ři´1

j“1 φj
˘ı
R

`
´ φN

˘
e1

0 1

fi
ffiffifl ,

and the closure constraint (7.45) can alternatively be represented as

R
` Nÿ

i“1

φi
˘

“ 1 (7.56)

Nÿ

i“1

”
ρiR

T
`
ψi `

i´1ÿ

j“1

φj
˘ı
R

`
´ φN

˘
e1 “ 0. (7.57)

Now we recall the fact that a linear combination of SOp2q matrices is singular if

and only if it is a zero matrix. By using this fact one can conclude from that

Nÿ

i“1

ρiR
`
ψi `

i´1ÿ

j“1

φj
˘

“ 0, (7.58)

as R
`

´ φN
˘
e1 ‰ 0.

Now we adopt an approach similar to the one in Section 7.2.2, and derive the

dynamics of the scalar shape variables as

9ρi “ νi cosψi ´ νi`1 cospψi ´ φiq

9ψi “ νiui ´ 1

ρi

“
νi sinψi ´ νi`1 sinpψi ´ φiq

‰
i P t1, 2, ¨ ¨ ¨ , Nu (7.59)

9φi “ νiui ´ νi`1ui`1.
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7.3.3 Analysis of TVA Feedback Law

In this particular context of an N -agent planar, cyclic interaction system,

individual contrast functions take the form

Θi “ 1

2
pxi`1ptq ´ xiq ¨ pxi`1 ´ xiq

“ 1 ´ xi ¨ xi`1

“ 1 ´ cosφi, (7.60)

and the i-th agent is considered to attain the TVA strategy if Θi “ 0. From (7.60)

one can notice that

Θi P r0, 2s

and, Θi “ 0 ô φi “ 0.

(7.61)

Therefore for this N -agent planar system wherein each agent employs the strat-

egy for topological velocity alignment (TVA), we define the p2N ´ 3q-dimensional

topological velocity alignment manifold MTV A Ă Mshape as

MTV A “
!
ρ1, ψ1, φ1, . . . , ρN , ψN , φN P Mshape

ˇ̌
ˇΘi “ 0, i P t1, 2, ¨ ¨ ¨ , Nu

)
. (7.62)

Now we introduce an alternative (holistic) contrast function defined as

Θtotal “
Nÿ

i“0

Θi “
Nÿ

i“0

`
1 ´ cosφi

˘
. (7.63)
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Using the fact given by (7.61), it can be concluded that Θtotal “ 0 if and only if

individual contrast functions are equal to zero. Therefore we can represent the TVA

manifold (MTV A) in terms of the holistic contrast function as

MTV A “
!
ρ1, ψ1, φ1, . . . , ρN , ψN , φN P Mshape

ˇ̌
ˇΘtotal “ 0

)
. (7.64)

Now we focus on a particular steering control law, a planar equivalent of

the one given by (7.6), to analyze its effectiveness in attaining the TVA strategy.

Moreover from (7.48) we can notice that the feedback law can be expressed in terms

of shape variables as

ui “ ´
ˆ
µ

νi

˙
sinφi, i P t1, 2, ¨ ¨ ¨ , Nu. (7.65)

From (7.61) we can observe that once the TVA strategy has been attained, i.e.

Θtotal “ 0, the steering control becomes identically zero, and as a consequence the

mismatch in velocity direction remains identically zero (7.59). If each agent employs

a steering feedback of the form (7.65), the closed loop dynamics can be expressed

as

9ρi “ νi cosψi ´ νi`1 cospψi ´ φiq

9ψi “ ´µ sinφi ´ 1

ρi

“
νi sinψi ´ νi`1 sinpψi ´ φiq

‰
i P t1, 2, ¨ ¨ ¨ , Nu (7.66)

9φi “ µ
`
sinφi`1 ´ sin φi

˘
.
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Proposition 7.4. The topological velocity alignment manifold MTV A Ă Mshape is

invariant under the closed loop shape dynamics (7.66).

Proof. From (7.63) and (7.66) we have

9Θtotal “ µ

Nÿ

i“0

sinφi
`
sin φi`1 ´ sinφi

˘

“ ´µ

2

Nÿ

i“0

`
sin2 φi ´ 2 sinφi sinφi`1 ` sin2 φi`1

˘

“ ´µ

2

Nÿ

i“0

`
sinφi ´ sin φi`1

˘2
. (7.67)

Therefore it can be concluded that MTV A is invariant under the shape dynamics

because φi “ 0 @i on MTV A Ă Mshape. In fact, from (7.67) it is clear that 9Θtotal ď

0.

Proposition 7.5. Consider the set E defined as

E “
!

pφ1, . . . , φNq P S1 ˆ ¨ ¨ ¨ ˆ S1

l jh n
N-copies

ˇ̌
ˇ 9Θtotal “ 0, R

` Nÿ

i“1

φi
˘

“ 1

)
, (7.68)

and assume N not to be a multiple of 4. Then E has a finite cardinality.

Proof. From the closure constraint (7.50) we have

Nÿ

i“1

φi “ 2kπ, k P Z. (7.69)
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On the other hand, 9Θtotal “ 0 if and only if

sinφi “ sinφi`1, i P t1, 2, ¨ ¨ ¨ , Nu, (7.70)

and (7.70) holds true if and only if either of the conditions is satisfied

φi`1 “ φi, or φi`1 “ π ´ φi. (7.71)

Therefore by assuming φ1 “ φ˚, we can construct the following tree wherein each

branch correspond to a solution for 9Θtotal “ 0.

φ˚

φ˚

φ˚

...

φ˚ÑφN

...

φ3 Ñ

φ2 Ñ

φ1 Ñ

π ´ φ˚

...

π ´ φ˚

...
...

π ´ φ˚

φ˚

...
...

π ´ φ˚

...
...

φ˚ π ´ φ˚

Now we assume that along a particular branch of the tree there are M number of

φ˚-nodes and pN ´ Mq number of pπ ´ φ˚q-nodes. Therefore from (7.69) we have

Mφ˚ ` pN ´Mqpπ ´ φ˚q “ 2kπ, k P Z, φ˚ P r0, 2πq, M P t1, ¨ ¨ ¨ , Nu. (7.72)
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Assuming 2M ´ N ‰ 0 we solve (7.72) to obtain

φ˚ “
ˆ
2k ` M ´ N

2M ´ N

˙
π, (7.73)

and as φ˚ P r0, 2πq we have,

k P

$
’’’’’’’&
’’’’’’’%

„
N ´ M

2
,
3M ´ N

2

˙
X Z if, M ą N

2

„
3M ´ N

2
,
N ´ M

2

˙
X Z if, M ă N

2
.

(7.74)

Now if N is a odd number then M can never be equal to N
2
, and hence for

each M P t1, ¨ ¨ ¨ , Nu, we will have finite number choices for φ˚. On the other hand,

it can be noted from the tree that a finite number of branches contain M number

of φ˚-nodes. Combining these two facts we can conclude that E has finite number

of elements.

Now we assume N to be a multiple of 2, but not a multiple of 4. In that case the

closure condition (7.69) gets violated forM “ N
2
because it causes a contradiction in

(7.72), and thereby yields no solution for that particular M . For every other value

of M , (7.72) yields finite number of φ˚. Therefore, the corresponding E has finite

cardinality.

However, if N is assumed to be a multiple of 4, then for M “ N
2
, (7.72)

holds true over a continuum of φ˚. As a consequence E will have uncountably many

elements.
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Remark 7.3. Narrowing our attention to the shape dynamics on MTV A, we can

show that the restricted dynamics can be expressed as

9ρi “ pνi ´ νi`1q cosψi

9ψi “ ´ 1

ρi
pνi ´ νi`1q sinψi

for every i P t1, 2, ¨ ¨ ¨ , Nu. This dynamics is essentially same as the restricted

dynamics for a two-agent system (7.32), and hence, by following the discussion in

Section 7.2.3, we can show that the phase plane trajectories of the reduced dynamics

are level sets of “ρi sinψi”.

7.4 Algorithm for anN -agent System in a Three-Dimensional Setting

In this section we focus toward topological velocity alignment in its true sense,

and assume that each agent pays attention to its K-nearest neighbors. However, in

this context of state-dependent attention graph, the possibility of viCOM becoming

zero cannot be ruled out, and we tackle this issue by bringing in an additional

neighbor (for the i-th agent) into consideration whenever viCOM becomes zero. As

each of the agents has non-zero speed, inclusion of an additional agent into the

neighborhood ensures that viCOM no longer remains zero. Moreover, it doesn’t

affect connectivity of the underlying attention graph. The following discrete time

algorithm provides a methodical way to implement TVA in a multi-agent robotic

system.

It is worth mentioning here that this algorithmic way towards flocking can
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Algorithm 2 Topological Velocity Alignment (3D, Nearest Neighbors)

Data:

Initial Time ´ tinitial;
Final Time ´ tfinal;
Sampling Interval ´ ∆;
Number of Agents ´ N ;
Initial Position and Orientation ´ tgiuni“1;
Neighborhood Size ´ K

begin
Initialize: tcurrent ÐÝ tinitial
for i = 1 to n do

Initialize: State - Xi ÐÝ gi

while tcurrent ď tfinal do
for i = 1 to n do

Define: Ni - the set of K-nearest neighbors
Compute: Neighborhood center of mass velocity - viCOM
if viCOM “ 0 then

Define: Ni - the set of K ` 1-nearest neighbors
Compute: Neighborhood center of mass velocity - viCOM

Compute: Steering control - ui, vi
Implement: Steering Control - tui, viuni“1

Update: State - tXiuni“1

Update: Time - tcurrent ÐÝ tcurrent ` ∆

easily be modified to implement TVA in a planar setting, and this is done by con-

sidering the natural curvature ui alone (vi is ignored). By restricting (7.6) to a

planar setting, ui can be expressed as

uiptq “ µ

„
xNi

ptq ¨ yiptq
νiptq


, (7.75)

where all the variables carry their usual meaning.
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7.5 Implementation on Mobile Robot Testbed

In what follows we present implementation results of the TVA control law in

a planar setting. Our implementation avoids the singularity issue (i.e. viCOM “ 0)

by following Algorithm 2.

7.5.1 Experimental Setup

Our experimental test-bed is comprised of Pioneer 3 DX wheeled robots (Fig 42)

from Adept MobileRobots [P3-DX]. These compact differential-drive mobile robots

are equipped with reversible DC motors, high-resolution motion encoders and 19cm

wheels. The onboard computation is done via a 32-bit Renesas SH2-7144 RISC mi-

croprocessor, including the P3-SH microcontroller with ARCOS. The sensors on the

robot include eight forward-facing ultrasonic (sonar) sensors. ARIA [Aria] provides

an interface for controlling and receiving data from the robot, and communication

with the robot for sending control commands (forward velocity and turning rate) is

done via 802.11-b/g/n networking. The width of the robot is 380 mm and it has a

swing radius of 260 mm.

Algorithm implementation (i.e, feedback law computation) has been done in

C++ using ROS along with ROS-ARIA, as the interfacing robotics middleware.

The experiments have been carried out in a laboratory environment equipped with

a sub-millimeter accurate Vicon motion capture system [ViCoN]. We use a Dell

workstation to run ROS, and this computer is connected to the Vicon server via a

dedicated Ethernet connection (Fig 43).
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Figure 42: Pioneer 3-DX Mobile Robot with Two-wheel Differential and Caster.

The Vicon system captures the motion of the robots and sends out the position

and heading data to the computer running ROS. The control law program listens to

this data, computes the curvature values, and finally transmits the individual turning

rates over a Wi-Fi network. All these operations are carried out at a frequency of 25

Hz. As the robot velocity ( 9rki , with k denoting the time index) is directed along the

robot heading, xki and yki can be directly computed from the heading data. Then,

the curvature variable uki is evaluated from the corresponding control laws (7.75),

and the turning rate ωki pi “ 1, 2, . . . , Nq (in degrees/sec) is computed as:

ωki “
ˆ
180

π

˙
νki u

k
i , (7.76)

where νki is the speed of the i-th agent at the k-th time instant.

Next we will present our implementation results from three different exper-

iments (refer [YouTube-Video] for implementation videos). In these experiments,

the sonar sensors on the robots were activated to sense any obstacle in the direction

of motion of the robots and if any robot can sense such an obstacle, it will simply
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ARIA

Robot Operating System (ROS)S)

Pioneer 3-DX

Vicon Motion  Capture

Figure 43: Illustration of the Experimental Setup at Intelligent Servosystems Laboratory, Uni-
versity of Maryland, College Park.

apply a maximum turning rate (ωsat) to avoid collision. The sonars are programmed

to detect an obstacle only in close proximity („ 300 mm) of the robots. In all our

experiments ωsat is set at be 50 rad/sec, and the value of the feedback gain µ is cho-

sen to be 1 Hz. It should be noted that although the control law allows non-uniform

and time-varying forward speed of the robots, here we are presenting sample runs

for which the speeds of individual agents are same (60 mm/sec).

7.5.2 Experiment I

A system eight agents is considered, and we apply the same TVA law to all

of them. The neighborhood size is taken to be three (i.e. K “ 3). The robots are

initially placed in arbitrary positions and directions. The footprints of the robots
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are shown in Fig 44a. The initial and final directions of the robots are shown using

arrows and the final positions of the robots are denoted using dots. It can be seen

from Fig 44b that the contrast function decays to zero very quickly which indicates

perfect velocity alignment within the swarm.
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Figure 44: Results from Experiment I (8 agents, Flocking).

7.5.3 Experiment II

Next we decreased the neighborhood size, and set it at K “ 1, so that each

robot ‘communicates’ only with its closest neighbor. We chose the initial positions

in such a way that they may form sub-clusters instead of moving as a single swarm.

This behavior is called ‘splitting ’ in a swarm. From Fig 45a, we can clearly see that

the swarm of eight robots gradually split from each other and form three different

clusters. It is to be noted that even if all the agents are not going in the same

direction, the contrast function still converges to zero (Fig 45b). This happens

because each of the robots are aligned with their nearest neighbors, and hence each
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of the individual contrast functions (Θiptq) are zero. This experiment may explain

the splitting phenomenon observable in nature.
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Figure 45: Results from Experiment II (8 agents, Splitting).

7.5.4 Experiment III

Lastly, we combined the above two experiments, and conducted an experiment

using six robots in a swarm and another robot as a predator. A separate computer

was used for manual control of the ‘predator’ robot.

At the beginning, neighborhood size is set at K “ 3, such that the ‘communi-

cation’ graph among the robots stays connected and they move as an entire swarm

in a common direction. When the swarm comes close to the predator, the neigh-

borhood size is decreased to one. As we are not using any onboard visual sensing

and the sonar sensing is done only in very close region („ 300 mm), the change in

neighborhood size is made manually. From Fig 46b, we can see that the change in

neighborhood size takes place at around 20 seconds and we can also see a tiny jump

200



in the contrast function value at that time. The predator then slowly approaches

to one of the agents in the swarm, which abiding to its collision avoidance rule,

turns to avoid the predator. In Fig 46a, the trajectories of the agents are drawn

in dashed lines before the occurrence of this event and in solid lines afterwards.

The trajectory of the predator robot in not shown in the figure. After creating

the initial perturbation, the predator is slowly moved through the swarm causing

some subsequent disturbances. These perturbations create a noticeable impact in

the swarm. As the attacked agent turns, its neighbor also tries to align itself with

that agent and so does its neighbor. This goes on until the communication graph

becomes disconnected, and then a split in the swarm is observed (refer [YouTube-

Video]) similar to the one in Experiment 2. As we can see in Fig 46a, the swarm is

divided in two groups after the attack of the predator. The jumps in the contrast

function plot (Fig 46b) symbolize the perturbations caused by the external agent.

The contrast function eventually converges to zero after the members are aligned
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Figure 46: Results from Experiment III (6 agents, Perturbation).
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with their neighbors within each subgroup.
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Chapter 8: Conclusion and Future Works

The key focus area of this dissertation has been to demonstrate how compre-

hensive knowledge about the underlying mechanism behind pursuit and collective

motion in natural settings can be leveraged to synthesize decentralized control al-

gorithms for collective motion (to be applied to a group of robotic agents). Along

the way, we have also developed appropriate algorithms to extract parameters of

motion, namely speed, curvatures, lateral acceleration etc., from a discrete set of

observed (perhaps noisy) position data.

In the following section, we summarize the key contributions of this disserta-

tion and propose some topics for further research along these lines.

8.1 Summary of Contributions and Future Directions of Research

8.1.1 Reconstruction of Collectives

As access to the parameters of motion constitutes a necessary step towards

uncovering flight strategies and control laws behind collective motion in nature (for-

aging bats, starling flocks), in “part I” of this dissertation, we identified the need for

appropriate algorithms to reconstruct trajectories from a data-set of observed posi-

tions. As this problem of recovering a smoothened signal from noisy observations is
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an ill-posed one, we introduce regularization to tackle lack of well-posedness. First,

to govern the evolution of a trajectory, we introduce generative models (expressed

via ODEs) with inputs, states and outputs. Then we impose regularization onto the

problem by penalizing appropriate functionals of the control input. Thus we have

turned this into a continuous time optimal control problem with intermediate state

costs (as shown in Chapter 2). A distinctive feature of this approach lies in the fact

that our choice of penalty term has been influenced by findings in bio-mechanics.

In Chapter 2, we have tackled this data smoothing problem from a mathemat-

ical programming perspective, and have overcome lack of integrability by adopting

a numerical approach. The methodologies developed in this chapter has been used

later in Chapter 5 to reconstruct flight trajectories for bat foraging events. We

have also proposed an ordinary cross validation approach, based on leaving-one-

out strategy, to select an optimal amount of regularization, which plays a crucial

role in maintaining a proper balance between goodness of fit and smoothness of the

trajectory.

However, as leaving-one-out requires the reconstruction to be carried out mul-

tiple times (same as the data-set size) by dropping out a single observation every

time, implementation of ordinary cross validation is quite demanding from a com-

putational perspective. It would be interesting to investigate if a computationally

efficient alternative can replace this algorithmic approach for optimal amount of

regularization. Unbiassed risk estimators (Li [1985]; Solo [1996]) based on Charles

Stein’s work [Stein, 1981] on mean estimation for multivariate normal distribution,

appears very relevant in our context.
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In Chapter 3, we have introduced a linear generative model (basically a triple

integrator), and imposed regularization by trading total fit error against high values

of jerk (i.e. third derivative of position) path integral. Then, by exploiting integra-

bility of the generative model and quadratic nature of the cost functional, we have

derived a closed form solution. Moreover, we have shown that the reconstructed

position, velocity and acceleration can be expressed a linear combination of the

observed position data. By choosing appropriate linear generative model, one can

easily show that smoothing splines can be posed as a special case in this framework.

The trajectory reconstruction algorithm developed in this chapter has later been

used in Chapter 6 to reconstruct flight trajectories of starling flocks.

Our numerical example in this chapter (Section 3.5) attempted to reconstruct

a curve on a sphere from a set of discrete and noisy observations. Although this

approach yields a satisfactory performance in terms of enforcing the reconstructed

trajectory to lie on the sphere, it would be exciting to construct data smoothing

algorithms to reconstruct trajectories which lie on a lower dimensional algebraic

manifold in the ambient space. Another potential extension of this work lies in the

area of reconstructing periodic curves.

In Chapter 4, we have exploited the theory of Pontryagin’s maximum princi-

ple to solve data smoothing posed as a continuous time optimal control problem.

The proposed results are capable of dealing with data smoothing problems in both

Euclidean (Rn) and matrix Lie group (G) settings, and they yield result in a semi-

analytic way. Example problem demonstrates that this theory enables us to turn an

optimal control problem over an infinite dimensional function space into a two-point
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boundary value problem, which can be tackled via an appropriate multiple-shooting

method [Morrison et al., 1962]. It is worth mentioning here that this regularized

inversion problem can also be viewed from the perspective of waypoint tracking. If

someone attempts to achieve reduction in some path cost, by sacrificing exactness

in its traversal of way-points, that problem can easily be cast in this framework.

However, there are some issues which requires attention before we attempt to

broaden the scope of this framework. One obvious direction along this line is to

consider penalty functionals involving derivatives of control inputs. Although this

issue can be addressed by augmenting new states to the system, some care should

be taken to set up the associated symplectic framework in a proper way. Another

pressing concern lies in the singularity issues of the Hamiltonian. The following data

smoothing problem exemplifies this issue in an efficient way.

Let us consider the generative model, governed by the natural Frenet frame

equations, for evolution of a trajectory in a three-dimensional space. As discussed

in Section 1.3.1, we can pack the position vector and the associated frame vectors,

inside a 4 ˆ 4 matrix gptq defined as

gptq “

»
——–

xptq yptq zptq rptq

0 0 0 1

fi
ffiffifl P SEp3q.
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Now, by letting

X1 “

»
——————————–

0 ´1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

, X2 “

»
——————————–

0 0 1 0

0 0 0 0

´1 0 0 0

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

, X3 “

»
——————————–

0 0 0 0

0 0 ´1 0

0 1 0 0

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

,

X4 “

»
——————————–

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

, X5 “

»
——————————–

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

, X6 “

»
——————————–

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

,

denote a basis for the associated Lie algebra sep3q, the underlying generative model

can be expressed as the following left-invariant dynamical system on SEp3q,

9g “ gξu “ g
`
νpX4 ` uX1 ´ vX2q

˘
(8.1)

where u, v are natural curvatures (steering control) and ν is the speed of the trajec-

tory. Then, by letting triuNi“0 denote the set of observed positions, and by imposing

regularization via trading total fit error against high values of the curvatures and

speed path integral, one can formulate the trajectory reconstruction problem as the

207



following optimal control problem

Minimize
gpt0q,u,v,ν

Nÿ

i“0

}rptiq ´ ri}2 ` λ

tNż

t0

`
u2 ` v2 ` ν2

˘
dt

subject to gpt0q P SEp3q, u, v P U , ν P U`

9g “ g
`
νpX4 ` uX1 ´ vX2q

˘
“ TeLg ¨

`
νpX4 ` uX1 ´ vX2q

˘
,

(8.2)

where U(U`) is the space of real(positive) valued functions on rt0, tN s and λ ą 0 acts

as a regularization parameter for the inverse problem. By comparing this optimal

control problem (8.2) with the one mentioned in the statement of maximum principle

(4.45) we have

Lpuq “ λpu2 ` v2 ` ν2q

fpgptiq, riq “ }Agptiqe4 ´ ri}2

where A “ re1 e2 e3sT and teiu4i“1 denotes a standard basis vector in R4. By

following an approach similar to the one adopted for the previous example problems,

we define the pre-Hamiltonian as

Hpg, p, uq “ xp, TeLg ¨ ξuy ´ Lpuq (8.3)

where p P T ˚
g SEp3q and TeLg represents the tangent map of the left translation

by g on SEp3q. Now we introduce µ P se˚p3q defined as µ “ TeL
˚
g ¨ p. By letting
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X5
i , i “ 1, ¨ ¨ ¨ , 6 denote a dual basis for se˚p3q, µ can be represented as

µ “
6ÿ

i“1

µiX
5
i .

Then, by leveraging the left-invariance of the dynamics (8.1), the pre-hamiltonian

can be expressed as

Hpg, p, uq “ xTeL˚
g ¨ p, ξuy ´ Lpuq

“ x
6ÿ

i“1

µiX
5
i , νpX4 ` uX1 ´ vX2qy ´ Lpuq

“ νpµ4 ` uµ1 ´ vµ2q ´ λpu2 ` v2 ` ν2q. (8.4)

As both ξu and Lpuq are differentiable with respect to the control inputs, the optimal

control can be derived by solving

BH
Bu

ˇ̌
ˇ̌
pu˚,v˚,ν˚q

“ ν˚µ1 ´ 2λu˚ “ 0

BH
Bv

ˇ̌
ˇ̌
pu˚,v˚,ν˚q

“ ´ν˚µ2 ´ 2λv˚ “ 0 (8.5)

BH
Bν

ˇ̌
ˇ̌
pu˚,v˚,ν˚q

“ µ4 ` u˚µ1 ´ v˚µ2 ´ 2λν˚ “ 0.

Hence the optimal control inputs can be expressed by

¨
˚̊
˚̊
˚̊
˝

u˚

v˚

ν˚

˛
‹‹‹‹‹‹‚

“ 1

4λ2 ´ pµ2
1 ` µ2

2q

¨
˚̊
˚̊
˚̊
˝

µ1µ4

´µ2µ4

2λµ4

˛
‹‹‹‹‹‹‚
, (8.6)
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and by substituting the optimal controls into the pre-hamiltonian, (4.87) yields an

SEp2q-invariant reduced hamiltonian, given by

h “ λµ2
4

4λ2 ´ pµ2
1 ` µ2

2q
. (8.7)

Now, we can derive the reduced dynamics on se˚p3q by computing ∇µh and the

associated structure constants. However from (8.7) one can notice that the reduced

hamiltonian becomes singular whenever µ2
1 ` µ2

2 “ 4λ2. With this perspective, it

would be interesting to seek answer for such questions as:

• Is the submanifold Msing “ tpµ1, ¨ ¨ ¨ , µ6q P R6|µ2
1 `µ2

2 “ 4λ2u invariant under

the reduced dynamics?

• Does this submanifold (Msing) attract any trajectory originating outside the

submanifold? Under what conditions one can avoid the singularity?

8.1.2 Analysis of Collective Behavior in Nature

Following the main flow of this dissertation, we set out to explore the underly-

ing mechanism behind pursuit and collective motion in natural settings in “part II”

of this dissertation, and performed analysis on the flight trajectory data of echolocat-

ing bats (demonstrating pursuit) and European starlings (demonstrating flocking).

Our study adopts a two-pronged approach to investigate the underlying flight strate-

gies and feedback mechanism for steering control - first we study the statistics of

appropriate contrast functions, and then we compare the empirical values of steer-
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ing control to the values obtained from theoretically plausible feedback laws. This

approach is also capable of providing an estimate for the associated sensorimotor

delay.

In Chapter 5, we have performed flight data analysis for big brown bats

(Eptesicus fuscus) in two different foraging contexts. This analysis has shown

quantitative evidence in favor of a context-specific switch in flight strategy. Ac-

cording to our findings, bats apply constant absolute target direction (CATD), also

known as motion camouflage (MC) in the context of visual insects, while chasing

a free flying insect (praying mantis in our study). But if the scenario is modified

into a competitive setting with another bat foraging for the same stationary food

source (meal-worm in this set of experiments), flight data show evidence that the

trailing bat resort to classical pursuit (CP) to follow the other bat. Moreover, by

comparing empirically observed curvature values with the ones obtained from the-

oretically plausible feedback laws, this study sheds light upon the steering control

mechanisms and the associated sensorimotor delay.

Recent developments by Galloway & Dey [2015] in decentralized control have

analyzed cyclic constant bearing (CB) pursuit [Galloway et al., 2013] strategy in

a multi-agent system wherein each agent pays attention to a neighbor (moving)

and a beacon (fixed). As classical pursuit can be interpreted as a special case of

the CB pursuit strategy, it would be worthwhile to study this interaction between

the stationary prey (tethered meal-worm) and the flying bats from this perspective

(each bat having its own priority level for the stationary food source). It is worth

mentioning here that our analysis does not assume any internal model of target
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motion, and the steering control mechanism is assumed to be based on pure reaction

to the target motion. However a recent study by Mischiati et al. [2014] has shown

that, internal model and reactive pursuit strategy, both play an important role in

generating the prey interception trajectories by dragonflies (P lathemis lydia). So

it would be interesting to design appropriate experiments and investigate if such

internal models are involved in bat foraging too.

Chapter 6 describes our ongoing work on the flight strategy analysis of Eu-

ropean starling (Sturnus vulgaris) flocks. This study has revealed that the flock-

averaged coherence (the average cosine of the angle between the velocities of a focal

bird and its neighborhood center of mass, averaged over the entire flock) gets max-

imized by considering 5-7 nearest neighbors. In addition to reconfirming a previous

result highlighting the importance of topological notion of distance in starling flocks,

this study has also provided some insight about the steering control actions adopted

by the individual starlings.

However, our current approach for constructing an interaction graph (based on

a set of nearest neighbors) is oblivious to sensory perceptions by the focal individual

and spatial distribution of the neighbors. Future works will attempt to explore other

possibilities for the interaction graph based on visual cues [Strandburg-Peshkin et al.,

2013] and statistical causality (Granger causality [Granger, 1969], directed mutual

information [Massey, 1990]).
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8.1.3 Synthesis of Collective Motion

Statistical analysis of flight behavior in European starling flocks has revealed

that the individuals in a flock tend to fly parallel to each other. This observa-

tion led us towards proposing a decentralized algorithm (called topological velocity

alignment) to make the individuals move in the same direction without colliding into

each other (in Chapter 7), and the global behavior emerges through local interac-

tion between neighbors. The fact, that the proposed feedback law does not assume

any uniformity in the individual speeds and the attention graph is directed, makes

our approach distinct from the existing models of flocking. Moreover, this proposed

control strategy has wave-like aspects, conforming to the criterion of linear growth

of information observed in starling flocks [Attanasi et al., 2014].

Numerical simulations and implementations have shown that whenever a sub-

group of agents in the flock are provided additional instruction (e.g. to follow

predefined paths, avoid obstacles, etc.) for steering control, the effect spreads across

the whole flock (without any change in the way the uninformed agents interact

with its neighbors). These observations demand further analysis, and future work

in this area will explore how these covert leaders (agents with extra information)

in a collaborative swarm affect the group behavior. This framework can also be

exploited to design a collaboration of heterogeneous agents wherein a small group

of agents are capable of sensing the environmental cue and others just interact with

their neighbors.
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