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Accurate quantification of forest carbon stocks and fluxes is critical for the successful 

modeling and mitigation of climate change. This research focuses on forest carbon stock 

quantification, both in terms of testing emerging remote sensing approaches to forest 

carbon modeling, and examining allometric equations used to estimate biomass stocks in 

field plots. First, we test controversial theoretical predictions of forest allometry through 

the mapping of the allometric variability using field plots across the U.S. we find that 

there is considerable variability in forest allometry across space, largely driven by local 

environment and life history. However, in tall forests, allometries tend to converge 

toward theoretical predictions, suggesting that theory may be a useful constraint on 

allometry in certain forests. Second, we shift to an analysis of empirical allometries by 

developing an algorithm to extract individual crown information from forest systems and 

using it for biomass mapping and allometric equation testing. Third, we test whether 

individual tree structure bolsters biomass modeling capabilities in comparison to 



tradition, plot-aggregated LiDAR metrics. As part of this analysis we also test an 

allometric scaling-based approach to biomass mapping. We find that individual tree-level 

structure only improves biomass models when there is considerable spatial heterogeneity 

in the forest. Also, allometric scaling-based only worked in one study site, and failed in 

the other two sites because there was little or no relationship between basal area and 

maximum canopy height. Finally, we applied LiDAR datasets to an analysis of the effects 

of sample size on empirical allometry development. We found that small samples sizes 

tend to result in an under sampling of large stems, which yields a more linear fit than the 

true allometry. An assessment of the potential carbon implications of this problem 

yielded site-level biomass predictions with biases of 10-178%. We suggest that empirical 

allometric equations developed on small sample sizes, as applied in the U.S., yield 

potentially large errors in biomass and therefore require careful reassessment. In 

combination with our findings regarding the spatial variability of forest allometry, we 

believe that the limiting factor to forest carbon estimation is the use of allometric 

equations. 
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Chapter 1: Introduction 

Overview 

Forest ecosystems play a critical role in global biogeochemical cycling, particularly 

with respect to carbon, and represent the largest terrestrial carbon stock on the planet. 

Indeed, the flux of carbon into forests through photosynthesis and out of forests 

through respiration and degradation largely controls annual fluxes of atmospheric 

carbon (Keeling et al., 1976). Understanding changes to plant growth and disturbance 

is therefore of the utmost importance for improving carbon cycle models and 

mitigating climate change.  

 

One approach to mitigation is the U.N.’s Reduced Emissions from Deforestation and 

Degradation (Gibbs et al., 2007), which involves a market-based strategy designed to 

decrease forest carbon loss. Theoretically, REDD+ works by providing financial 

incentives to land owners who commit to leave forested land undisturbed. The 

magnitudes of incentives are based on the estimated carbon content of the forests in 

question. This program has spurred the development of carbon monitoring efforts, 

particularly with respect to monitoring reporting and verification systems, which are 

critical to the ultimate success of REDD+ (Goetz & Dubayah, 2011). Many 

international research agendas have focused on improving our abilities to map forest 

carbon stocks. These efforts include airborne and spaceborne data acquisitions as well 

as field campaigns to increase the number and range of validation plots. NASA has 

been an active agency in these projects, both collaboratively through initiatives such 
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as Silvacarbon, and directly through the funding of Carbon Monitoring System 

projects, and more recently the selection of the Global Ecosystem Dynamics 

Investigation (GEDI) mission. Additional missions have been selected elsewhere, 

including the BIOMASS mission by the European Space Agency (Le Toan et al., 

2011). Clearly great attention has been focused on the development of technologies 

and methods for mapping forest carbon stock.  

 

Additional attention has been paid to forest carbon flux, either using repeat 

measurements over two time periods (Dubayah et al., 2010, Hopkinson et al., 2008, 

Hudak et al., 2012), or through ecosystem models such as the Ecosystem 

Demography model, that predicts changes in carbon stock based on existing forest 

demographics, environment, and disturbance (Moorcroft et al., 2001, Hurtt et al., 

2002). Both approaches provide rough but meaningful estimates of expected changes 

to future carbon stocks in forests, and as such are integral to carbon management 

initiatives. 

 

Underlying all of these carbon stock and flux activities is the problem of forest 

allometry. Remote sensing and modeling-based maps of forest carbon stock and flux 

are validated and/or locally calibrated with field data. Field datasets are generally 

accepted as the most accurate information available on forest structure, and forest 

carbon maps typically report errors with respect to field estimates. The error of field 

estimates themselves tends to be overlooked in these models, and although 

researchers accept that field estimates are imperfect, data have not been available to 



 

3 
 

quantify field-based errors. Field estimates of carbon are typically based on the 

application of an allometric equation, which relates measurable properties of a tree to 

its aboveground biomass (e.g. Jenkins et al., 2003). Allometric equations are 

developed with limited samples of destructively sampled trees, and often applied 

irrespective of environment. The sensitivity of these equations to sample size, 

sampling strategy, and environment are largely unknown.  

 

Research Goals and Objectives 

This dissertation research addresses forest allometry from both theoretical and 

empirical perspectives. The goals of this research are twofold: first, to determine the 

generality of forest allometric scaling relationships across the United States, and 

second, to apply novel datasets to increase our understanding of the limitations of past 

empirical allometric approaches for biomass modeling. To achieve these goals we 

have addressed the following seven objectives: 

 

First, Objective 1, to determine the spatial variability in forest allometry using 

Forest Inventory Analysis (FIA) data across the United States. This analysis 

allows an understanding of the spatial variability of forest scaling, and the degree to 

which allometric relationships are universal.  

 

Secondly, Objective 2 is to determine the effects of forest age, height, location, 

topography, climate, and forest class on the observed allometric variability. This 
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research expands on the spatial mapping performed under Objective 1 by explaining 

variability as a function of environment and life history.  

 

Third, Objective 3 is to determine the conditions under which Metabolic Scaling 

Theory predictions apply in the United States. If theoretical predictions are valid 

they could provide useful constraints on empirically derived allometries. 

 

Contrasting this theoretical work, the latter chapters of this dissertation address 

questions of empirical allometry. To accomplish this, individual tree information is 

required at greater sample sizes than are available through field datasets. Objective 4, 

therefore, is to develop an algorithm capable of extracting individual tree 

structure from LiDAR datasets across disparate forest environments.  

 

Using LiDAR-based individual tree structure, Objective 5 is to evaluate whether 

LiDAR-based biomass models can be improved through the inclusion of 

individual trees and scaling-based approaches. This objective addresses the 

importance of spatially detailed data for biomass mapping, determining whether 

individual tree-based information bolsters modeling initiatives or if allometric scaling 

can be used to reduce information requirements. 

 

The second application of the individual tree LiDAR dataset is Objective 6, to 

determine the effects of sample size on allometric equation parameterization. 

This research tests the effects of developing tree height to crown radius allometries 
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with small sample sizes in comparison to developing allometries with a full 

‘population’ level dataset.  

 

Objective 7 expands on Objective 6 by using MST predictions to estimate individual 

tree biomass as a function of crown radius, allowing me to assess the biomass 

implications of applying allometric equations based on small sample sizes.  

 

Background 

Forest allometry refers to mathematical equations developed to describe how various 

tree and forest structural and functional measurements relate to one another (Huxley, 

1932). The most common allometric equations used in forestry relate the Diameter at 

Breast Height (DBH) of a tree to its aboveground biomass (AGB). However, 

allometric equations also exist relating DBH to height, growth rate, volume, etc. 

Scores of allometric equations exist for different tree species, species groups, or 

geographic areas (Henry et al., 2013). Allometric equations for biomass are arguably 

the most difficult to develop, as they require the destructive sampling of trees. 

Destructive sampling refers to measurement that requires the felling of trees rather 

than measurements that can be taken directly in the field. These measurements are 

logistically difficult, and require the ability to transport felled trees to laboratory 

facilities. As such, sampling tends to be biased towards small, accessible trees, which 

do not represent the size and structure distribution for which the allometries will be 

applied. Additionally, sample sizes tend to be small, ranging from as few as five trees 

to perhaps a few thousand per species. Many attempts have been made to provide 
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more reasonable allometric equations for practical forest management. These include 

the pooling of datasets to increase sample sizes (Ung et al., 2008), the grouping of 

existing allometric equations for generalized application (Jenkins et al., 2003, 

Chojnacky et al., 2014), or the development of allometric equations for specific 

geographic ranges rather than species (Chave et al., 2005). Regardless of these 

attempts, the accuracies of existing allometric equations for biomass estimation 

outside of model calibration areas remain unknown.  

 

In contrast to empirical work, ecologists have attempted to explain forest structural 

and functional allometries based on theory. The most basic example of this is perhaps 

the pipe model’s prediction that a tree’s leaf mass will scale linearly with the mass of 

non-photosynthetic material (bole mass), as leaves are serviced by a network of 

vascular tubes (Shinozaki, 1964). Similar work predicts the community-level 

allometries of tree size distribution through ‘laws’ of self-thinning, in that the number 

of trees in a size class will scale with that size class to the power of -3/2 (Yoda et al., 

1963). More recently, West, Brown & Enquist (1999) have presented a more 

complete set of theoretical allometric equations based on some explicit, simplifying 

assumptions. Namely, they assume that trees and forests are structured as space-

filling fractals that have evolved to minimize the amount of energy required for the 

distribution of resources. Additionally, they assume that the smallest functional unit 

of plants (the leaves or petioles) of a given species will not vary with the size of the 

plant, and that systems have even distributions of resources, and use all resources 

available to them. Using these assumptions, and fractal geometry, Enquist et al. 
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(2009) present a set of idealized allometric equations relating tree properties such as 

DBH, Height, Volume, Biomass, and growth rate, as well as community level 

properties such as tree size distribution. Coined Metabolic Scaling Theory (MST), 

because the fundamental prediction relates individual metabolism to mass, their 

predictions take the form of precise power law equations. They have predicted that 

MST allometric predictions should apply universally, irrespective of species or 

environment (Enquist & Niklas, 2001). Perhaps because of these bold assertions, or 

because these predictions are relatively easy to test with new datasets, many 

researchers have attempted to prove or disprove metabolic scaling theory’s 

predictions in forest systems (Coomes et al., 2003, Muller-Landau et al., 2006, Lai et 

al., 2013 Price et al., 2007). Although many of these studies have concluded that 

MST is invalid based on local findings, few studies have provided a systematic test of 

MST across environmental gradients. Some ecosystems appear to follow MST 

scaling, while others do not. Although most studies speculate as to why MST 

predictions appear invalid in their sites, data have been generally unavailable to test 

these predictions across wide environmental gradients (Lines et al., 2012). If MST is 

valid in some areas, and discrepancies can be explained by environment, predictions 

may provide much needed theoretical constraints on empirically developed 

allometries. 

 

Dissertation Organization 

The seven objectives outlined above are presented in four original research chapters, 

which are structured as stand alone papers. First, in Chapter 2, we address Objectives 
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1, 2 and 3 through mapping of two forest allometric exponents across the United 

States, in an attempt to better understand the degree and drivers of allometric 

variability.  

 

In chapter 3 we redirect our attention to empirical allometry. Analyses of empirical 

allometries have been limited by small, often destructively sampled datasets. The 

LiDAR remote sensing community has recently developed techniques to extract 

individual tree information. This appeared to be an ideal opportunity to use much 

larger individual tree-level datasets for allometric analyses across multiple forest 

ecosystems. Upon inspection, however, existing algorithms for individual tree-level 

extraction appeared inappropriate for many forest ecosystems in the U.S., particularly 

in closed canopy Eastern forests. In order to produce large area individual tree-level 

datasets, a new individual crown extraction algorithm was required. Therefore, as part 

of this dissertation, we developed a novel three-dimensional crown delineation 

algorithm (Objective 4) the details of which are presented in Chapter 3, which is 

published in Remote Sensing of Environment. 

 

Given the findings from chapters 2, and with the data available from Chapter 3, we 

return to biomass mapping in Chapter 4, addressing Objective 5. This chapter focuses 

on a general assessment of new methods for biomass mapping, both through the 

incorporation of individual tree information, and the testing of universal application 

scaling-based approaches that attempt to incorporate theories such as MST. This 

chapter also addresses the importance of allometric equation selection for field-based 
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biomass estimates, and is under review at Remote Sensing of Environment after two 

rounds of mixed reviews that yielded a recommendation accept after major revision. 

 

Extending on the allometric findings from Chapter 4, we focus on empirical 

allometric analyses in Chapter 5 by using the individual crown information to address 

the effect of sample size on empirical allometric equation parameterization (Objective 

6).  Chapter 5 takes data from six LiDAR study areas across the U.S. and develops 

allometric equations relating tree height to crown radius, as these variables are readily 

available from crown delineation algorithm. This chapter quantifies, for the first time, 

the effects of developing allometric equations with excessively small sample sizes, 

and uses MST equations to translate their results with respect to biomass (Objective 

7). This chapter will be submitted to PNAS. 
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Chapter 2: Assessing the Generality of Forest Allometric 

Scaling Relationships in the United States 

Abstract 

Allometric equations relating various forest structural and functional properties, such 

as used for biomass estimation, are applied in North America irrespective of location. 

This application assumes that the allocation of biomass both within trees and across 

forests is invariant with respect to environment or life history. Similarly, a set of 

theoretical allometric scaling predictions from metabolic scaling theory, MST, are 

hypothesized to be environmentally invariant. We test these assumptions of invariant 

scaling by mapping forest allometry across broad environmental gradients in the U.S. 

using 223,492 forest plots. We find considerable spatial variability in forest 

allometric relationships, which is partially explained as a function of environment, 

forest species composition, and forest height. Forest height, a proxy for successional 

status, is the primary factor controlling allometry, suggesting that different equations 

are needed in forests across gradients of system maturity. Although the majority of 

forest plots deviate from theoretically predicted scaling, MST is generally supported 

in plots exhibiting resource and demographic steady state. Deviations from MST are 

partially explained as a function of environmentally driven recruitment limitations 

and successional status. Future development of MST will therefore need to 

incorporate variation in demographic dynamics in younger successional forests, and 

factors influencing recruitment limitations, to better predict observed variation. 

Greater attention to environment and life history is needed both in the future 
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development of MST and in the application of empirical allometries in order to 

improve carbon mapping initiatives and guide global change models.  

 

Introduction 

Understanding the drivers of forest structure, function and change is a fundamental 

problem both in theoretical ecology (Brown et al., 1999) and in applied forestry for 

carbon mapping and monitoring (Chave et al., 2005, Chojnacky et al., 2014, Van 

Breugel et al., 2011). Estimates of forest aboveground carbon content or biomass, are 

typically based on the application of empirically derived allometric equations. These 

equations are generated with small samples of felled trees, and errors associated with 

their use are largely unknown, particularly in environments outside the range of 

conditions found at model development sites (Chave et al., 2004, Jenkins et al., 

2003).  

 

Currently, in temperate systems, empirically derived allometric equations are applied 

in a widespread fashion, often ignoring environment or forest maturity (Jenkins et al., 

2003). This is due primarily to a lack of available data with which to build more 

complete allometries that consider environment.  Often, a single allometric equation 

relating Diameter at Breast Height (D) and Aboveground Biomass (M) is developed 

either for a species or group of species, and applied irrespective of environment. This 

inherently assumes that a single tree species will have a consistent structural form 

regardless of environment, that is they are spatially invariant. While the theoretical 

basis for relaxing this assumption is not clear, allometries have been created which 



 

12 
 

also include tree height in an attempt to account for observed variability in scaling 

relationships caused by factors such as elevation.  

 

 The assumption of spatial invariance independent of environment is both ubiquitous 

and firmly established, as evidenced by methods such as Jenkins. This view is 

supported by theoretical predictions presented by West, Brown, and Enquist, who 

proposed a general theory for the origin of allometric scaling in biology (Brown et al., 

1999). Broadly known as metabolic scaling theory (MST), it is based on first 

principles of the physical distribution of resources through branching vascular 

networks. MST predicts that allometric relationships, how physiological and 

anatomical attributes of organisms change with changes in their size, should cluster 

around unique mathematical functions regardless of species composition or 

environment (Enquist & Niklas, 2001). If valid, these theoretical predictions could 

serve as constraints on empirically-derived allometries, which are highly limited by 

the small sample sizes used to create them. Thus, theory in one sense could serve as a 

substitute for the enormous difficulty in creating empirically derived equations 

supported by sufficient destructive sampling. However, the general applicability of 

these predictions is the subject of considerable controversy (Coomes et al., 2003, 

Coomes et al., 2007, Kerkhoff & Enquist, 2007, Lai et al., 2013, Lines et al., 2012, 

Muller-Landau et al., 2006, Price et al., 2007). Furthermore, MST also assumes 

spatial invariance (Enquist & Niklas, 2001) and their reconciliation with the limited 

empirical evidence of variability caused by environment and forest maturity is still 

under examination. 
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Applied to plants, MST predicts specific values for the exponents of numerous 

scaling laws relating various structural and functional attributes of individual trees. 

The theory has also been extended to predict scaling at the community level in forest 

systems (Brown et al., 1999, Enquist et al., 2009).  MST deliberately makes several 

simplifying assumptions, including that: (i) forests are in approximate resource and 

demographic steady state; (ii) trees grow and fill up all available space so that the 

forest is space filling, and; (iii) natural selection has shaped the allometry of resource 

use and canopy branching so as to minimize vascular transport resistance but yet 

maximize the scaling of photosynthetic surface areas. The first assumption implicitly 

assumes that there is no recruitment limitation, all tree mortality is from competitive 

thinning, and that there is no external disturbance.  In a forest that adheres to these 

assumptions, several forest- and ecosystem- level scaling relations are predicted 

(Brown et al., 1999, Enquist et al., 2009). Clearly, not all forests will follow these 

assumptions, and therefore we expect some forests to deviate from theoretically 

predicted scaling. The environmental conditions under which MST predictions are 

valid, however, remain unknown.  

 

The overall goal of this research is to provide a continental scale analysis of 

allometric variability, with the goals of determining: (a) whether observed allometric 

relationships are spatially invariant; (b) whether environment can be used to explain 

observed allometric variability and (c) the conditions under which MST predictions 

match observations. Answering these questions requires a comprehensive 
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examination of forest scaling behaviour that spans large variability in species, 

demographic stages, and environmental gradients. One source of such data are the 

U.S. Forest Inventory and Analysis (FIA) program which provides individual tree 

measurements over hundreds of thousands of plots in the U.S. 

 

 

We use two allometric relationships to address these goals. First, we assess the 

allometric scaling relationship between the basal stem diameter of a tree, D, and its 

height, H, predicted by MST as: 

  H ∝ D2/3        (1) 

Second, we test the forest scaling prediction for the scaling of the number or 

frequency of trees (N) as a function of tree size, D,  

N ∝ D-2        (2) 

These particular allometric relationships were selected because tree diameter and 

height can be directly measured in the field, while attributed such as tree volume or 

biomass are estimated through allometry. Although we do not directly test allometries 

for biomass in this study due to data limitations, the general conclusions drawn from 

variability in these other two allometries should apply to allometries for biomass. The 

first predicts scaling at an individual tree level, which should relate to individual tree 

D:M relationships, while the second predicts system level scaling, at the approximate 

aggregate spatial scale (~1ha) that many remote sensing-based biomass maps are 

generated (Asner & Mascaro, 2014). Theoretical constraints on either individual tree-
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level or plot-level allometries would dampen sensitivity to outliers, sampling 

strategies, and localized environmental conditions.  

Methods 

Data 

Our research is based on the U.S. Forest Service’s Forest Inventory Analysis (FIA, 

Reams et al., 2005) data for individual tree structural information. The FIA program 

routinely measures key biophysical parameters of individuals across thousands of 

spatially extensive plots in the U.S. FIA plots span gradients of climate and land use 

history and differ dramatically in species composition (Reams et al., 2005). In 

addition, forests sampled by FIA encompass various demographic stages, from 

secondary early succession to older growth forests. 

 

We relate allometries derived from FIA date to environmental attributes from both the 

FIA data and the North American Regional Reanalysis  (NARR) dataset (Li et al., 

2005). The primary data taken from FIA are individual tree diameters (D) and heights 

(H). Diameter is measured for every tree in every plot, although different states adopt 

different forest sampling practices. We filter the data at each plot to D  >=10 cm to 

ensure consistency among FIA plots. Topographic information, stand age, forest 

species class, and disturbance type are also obtained from the FIA dataset.  

 

The North American Regional Reanalysis dataset is a 32 km gridded set of 

environmental data, including monthly precipitation, incident Photosynthetically 

Active Radiation (PAR), and temperature (Li et al., 2005). We use a thirty-year 



 

16 
 

monthly average from 1979-2010 for these three environmental variables, producing 

12 monthly average values for each variable. We additionally calculate the annual 

averages, maximums, totals, and standard deviations. For each environmental 

attribute (e.g. precipitation), there are 16 associated inputs to our environmental-

based models of allometric exponents. 

 

Allometric Curve Fitting 

For the relationship between D and H, equation (1), we fit the scaling exponent as the 

slope of a log-log linear relationship using OLS in model 2 regression analysis (Fig. 

2-1a). OLS was selected because the error in H measurement is much greater then 

three times the error in D (Legendre, 1998). For the forest size-frequency distribution, 

equation (2), we used the maximum likelihood estimator (Clauset et al., 2009) to fit a 

pareto distribution over a range of D values (Fig. 2-1b). 
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Figure 2-1. Visualization of two methods for allometric equation fitting. For a 
log-log linear relationship is fit (a) while for tree size distribution a maximum 
likelihood power law is fit using KS statistics.  
 

When applying power law fits to tree size distributions in FIA plots, often there were 

fewer small individuals in the smaller size classes (close to 10 cm D) than expected. 

In these plots, it would be inappropriate to fit a Pareto distribution over the full range 

of D size classes measured. Thus theoretical predictions do not apply to smallest size 

classes in these forests, as the smaller size classes do not fit a power law. Our 

analyses do show, however, that scaling relationships do apply to forest size 

distributions above a certain size class. We followed the Clauset method (Clauset et 

al., 2009) to fit power law exponents with an assigned minimum D value. Allowing 

full flexibility to the assignment of D, the xmin value is set to the value of D that 

maximizes the KS statistic comparing observed data to a power law distribution. 

However, this value of D was often large enough to reduce the sample size above D 

to an inappropriately low number for power law fitting (n<25). To balance the trade 

off between maximizing sample size and ensuring statistically significant power law 

fits, we iteratively calculated the KS statistic for increasing values of D and selected 

the smallest D that yielded a KS statistic with a 95th percentile probability that the 

data fit a power law. These values of xmin were used to classify plots as having 

apparent recruitment limitation (xmin >=20 cm) or without apparent recruitment 

limitation (xmin<20 cm). Additionally, these xmin values were used to develop random 

forest models of recruitment limitation (Table 2-1). 
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For every FIA plot across the U.S. an exponent was fit for equation (1) if there were 

more than 10 H measurements taken, and equation (2) if there were more than 25 D 

measurements taken. The discrepancy between minimum number of trees sample is 

due to the different fitting techniques used for each equation. When a plot was 

sampled over multiple years, the most recent year was taken. Although the total 

number of FIA plots across the US is over a million, the total number of FIA plots 

that met our analysis criteria was only 223,492. 

 

Random Forest Modeling 

Random forest regression is a nonparametric statistical technique based on combining 

many classification or regression trees, each generated with a different bootstrapped 

subset of the original data (Breiman, 2001). We developed random forest models of 

the two scaling exponents as well as our proxy for recruitment limitation (xmin) to 

understand variability as a function of environmental. Here, we filter FIA plots again 

to include only those with statistically significant scaling fits (p>0.05 for equation 

(1)) or errors expected to be <20% (more than 25 trees above the fitted xmin value for 

equation (2)) (Clauset et al., 2009). Predictor variables are latitude, longitude, stand 

age, slope, aspect, elevation, forest type, maximum tree height, monthly averages and 

annual total, mean, and standard deviation of monthly PAR, temperature, and 

precipitation.  

 

We use random forest variable importance to determine the relative impact of 

environmental attributes. Variable importance is calculated as the change in model 

accuracy (mean squared error) when a given variable is randomly permuted in the 
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out-of-bag samples (Genuer et al., 2010). Variable importance is normalized by the 

maximum variable importance for each random forest model (Table 2-1).  

 
 

Results 

We observe spatial variability in both scaling relationships across the U.S. Mapping 

these exponents shows spatial patterns in the allometries for D to H (equation (1), Fig. 

2-3) and tree size distribution (equation (2), Fig. 2-4). These patterns suggest that the 

structural allometry of forests varies strongly as a function of location. The median 

scaling exponents for equation (1) and equation (2) were 0.55 and -2.77 (Fig. 2-2), 

and deviate from the theoretical predictions of 2/3 and -2.0 (Enquist et al., 2009), 

respectively. 

 

Our random forest models explain 35% and 40% of the variability in the allometric 

diameter-height scaling exponent, equation (1), and forest size distribution scaling 

exponent, equation (2), respectively. These results imply that at least some of the 

observed variability in allometry is a function of environmental conditions. For 

equation (1), forest species composition, temperature variability, longitude, maximum 

forest height and elevation were the most important variables used by the random 

forest model (Table 2-1). D to H scaling exponents in young forests between 5-35 

meters become steeper (in log-log space) with increasing H. For forests taller than 

about 35 m, the exponents asymptotically converge to a single value, though this 

value is different for broadleaf forests than for conifer forests (Fig. 2-5). Broadleaf 
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forests asymptotically converge approximately to the MST prediction of 2/3, while 

conifer forests asymptote at ~0.7.  

 

For equation (2), forest maximum height is the most important driver of tree size 

distribution, while forest species composition and location were also important 

variables (Table 2-1). Size distribution scaling exponents become shallower with 

increases in maximum forest height but then asymptote at the theoretical prediction of 

-2, observed across taller (about 35 m and beyond), mature forests, regardless of 

forest species type. 

 

In approximately 10% of FIA plots, the tree size distribution did not take the form of 

a power law when considering the full range of stem sizes. This was due to a lack of 

small stems in these plots, where a statistically significant power law was only found 

when considering trees over a certain stem size (xmin ) (see Methods). We can 

interpret xmin as a loose proxy for recruitment limitation, as it indicates the relative 

absence of small stems in a given forest plot. Modeling xmin as a function of our 

environmental and forest attributes (r2=0.45) we found that elevation, the standard 

deviation of temperature, and the standard deviation of precipitation were the largest 

drivers of variability in xmin. In plots with an xmin >=20 cm D,  we see that scaling 

exponents for equation (2) are considerably steeper, or more negative, than plots 

without an apparent dearth of small stems.  

Testing the conditions under which MST predictions match observations is one goal 

of this study. However, how does one classify whether a forest plot follows MST? 
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Other researchers (Muller-Landau et al., 2006a) have focused on calculating a 95% 

confidence interval of tree size distributions through the bootstrapping of many 

spatially correlated plots. This approach violates the bootstrapping assumption of 

uncorrelated samples, and therefore likely estimates overly narrow confidence 

intervals. Regardless, we do not have data available over large contiguous areas with 

which to develop confidence intervals in this way. From our curve fitting procedures 

we calculate confidence intervals on fitted exponents, but the widths of these intervals 

are related to the number of trees included in each fit. Because FIA plots typically 

sample less than 50 trees, the confidence intervals around fitted exponents are wide, 

and consequently we would likely over report the number of plots that follow MST if 

we were to follow such an approach. We therefore refrain from confirming or refuting 

MST predictions at a plot level, and instead focus our study on trends in exponents as 

a function of environment.  
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Figure 2-2. Distribution of fitted scaling exponents for Equation 1 (a) and 
Equation 2 (b). Red dotted lines represent the MST predictions for the two 
allometries.  
 

 

Figure 2-3. D to height scaling exponents mapped across the US. The greener 
regions of the map are shallower (smaller) exponents, indicating shorter trees for 
a given D. The redder regions of the map are steeper (larger) exponents, 
indicating taller trees for a given D. 
 



 

23 
 

 
Figure 2-4. Plot-level tree size distribution scaling exponents mapped across the 
US. Steeper exponents (yellow and red) are forests where there are 
proportionally more small trees with respect to big trees. Shallower exponents 
(green) are forests with proportionally less small tree with respect to large trees.   
 

 
Figure 2-5. . D to H scaling exponents as a function of forest maximum height 
and tree species class. The bars on this plot represent the 10th to the 90th 
percentiles of scaling exponents in each height bin. Conifer-dominated forests 
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have a higher stabilization, generally growing taller for a given D.

 
Figure 2-6. Forest tree size distribution scaling shown as a function of forest 
height and tree species class. The bars on this plot represent the 10th to the 90th 
percentiles in each height bin. This figure does not include the 10% of the forests 
plots exhibit apparent recruitment limitations (Fig. 2-7). 
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Figure 2-7. Forest tree size distribution scaling exponents in plots with and 
without apparent recruitment limitation, as a function of forest height. Apparent 
recruitment limitation is based on the xmin value of Pareto fits (see Methods). We 
assume that low values of xmin (10-20 cm) correspond to systems with no 
recruitment limitation, while values of xmin > 20 cm indicate forests within which 
the success of small trees is limited. 
 

Table 2-1. Standardized relative importance of predictor variables in the 
random forest models of scaling exponents and recruitment limitation proxy 
(xmin). Each importance value from the random forest models has been divided 
by the maximum importance observed, therefore the variable with the highest 
importance has a value of 1.00. More important variables (>0.5) are presented in 
bold. Note that some input variables are correlated, which may affect their 
relative importance rankings (Gregorutti et al., 2014).  
 

Environmental 
Variable 

H:D Tree Size 
Distribution 

Recruitment Limitation Proxy 
(xmin) 

Latitude 0.43 0.63 0.72 

Longitude 0.87 0.53 0.81 



 

26 
 

Age 0.12 0.2 0.59 

Slope 0.07 0.07 0.07 

Aspect 0.03 0.04 0.03 

Elevation 0.55 0.41 0.68 

Annual Total Temp 0.40 0.46 0.29 

Mean Annual Temp 0.43 0.44 0.29 

SD Monthly Temp 0.65 0.45 0.54 

Total Annual Precip 0.24 0.29 0.27 

Mean Annual Precip 0.26 0.29 0.29 

SD Monthly Precip 0.18 0.23 0.62 

FIA Forest Type 
Code 

1.0 0.72 0.44 

Total Annual PAR 0.27 0.46 0.45 

Mean Annual PAR 0.29 0.46 0.43 

SD Monthly PAR 0.44 0.32 0.37 

Max Forest Height 0.60 1.0 1.0 
 

Discussion 

The goals of this research are to determine whether forest scaling is spatially 

invariant, whether any observed variation is a function of environment, and the 

conditions under which MST predictions appear to be consistent with observations. 

We find considerable spatial variability in both individual tree-level scaling (equation 

1) and plot level scaling (equation 2). Variables associated with environmental 

conditions account for about 35%-40% of this variability. Both scaling relationships 

appear to asymptote with increasing forest height. This suggests that while shorter, 

younger forests may take on a variety of scaling exponents, mature forests (i.e. tall 

forests) exhibit consistent scaling exponents. 
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Height to Diameter Scaling 

We find no evidence of a universal scaling relationship for equation (1). Indeed, H:D 

scaling exponents in young forests between 5-35 meters become steeper (in log-log 

space) with increasing forest maximum height. However, for forests taller than about 

35 m, the exponents asymptotically converge to a single value, although this value is 

different for broadleaf forests than for conifer forests (Fig. 2-5). Broadleaf forests 

asymptotically converge around the theoretical prediction of 2/3, while conifer forests 

converge around 0.7 (differing from MST). 

 

This discrepancy between conifer and broadleaf forests is observed consistently, and 

may be attributable to differences in wood density (Dietze et al., 2008). Lower wood 

density in conifer trees may allow for increased vertical biomass allocation without 

approaching critical buckling height while greater wood density may promote 

horizontal branching in broadleaf angiosperm trees (Iida et al., 2012). If we consider 

forest height as a proxy for light availability, then trees in taller, light-limited forests 

are expected to allocate biomass preferentially to height to compete for light (Koch et 

al., 2004), although this competition is likely to vary with environment (Lines et al., 

2012). In contrast, trees in shorter, more open forests are not expected to allocate 

biomass to height expansion and instead allocate a larger proportion of their biomass 

to lateral expansion (Iida et al., 2012).  

 

Our findings with respect to H:D allometries are similar to other studies, both in 

tropical and Mediterranean systems. Our median scaling exponent, 0.56, is close to 
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the value of 0.593 found at BCI in Panama (Muller-Landau et al. 2006a), 0.609 for 

aggregated species from the Spanish Forest Inventory (Lines et al., 2012), and within 

the range of 0.485-0.617 found for continental aggregates in a pantropical study 

(Feldpausch et al., 2011). Additionally, our finding that large conifer trees have 

higher H:D scaling exponents than their broadleaf counterparts is consistent with 

Spanish forests (Lines et al., 2012).  

 

Thus, to summarize, there is considerable spatial variability in H:D scaling 

exponents, some of this variability appears to be related to environmental variables, 

and there is some support that mature forests follow MST scaling predictions, but 

even here there is deviation from theory based on broadleaf vs. conifer forests. 

 

Tree Size Distribution Scaling 

Regarding the second allometric relationship we consider, tree size distribution, we 

again find no evidence of a universal allometry; forest allometry in the U.S. varies 

considerably across the landscape as a function of local environment and life history. 

We find the tree size distribution scaling exponent to be  sensitive to changes in forest 

height (Table 2-1) in young, maturing forests, while size distributions appear more 

stable in tall forests that have may have reached resource and demographic steady 

state (Fig. 2-6). This corroborates findings from other studies that show shallower 

slopes as forests mature (Enquist et al., 2009). Other studies have rejected MST’s 

prediction for tree size distribution because they did not find an exponent of precisely 

-2.0 in their field sites (Coomes et al., 2003, Muller-Landau et al., 2006b, Coomes et 
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al., 2007, Lai et al., 2013). In our study, deviations from MST are observed in forests 

that presumably do not follow the inherent assumptions of MST. For example, MST 

assumes that a system has met resource and demographic steady state, and that there 

is no recruitment limitation. Young, shorter forests are unlikely to meet these criteria 

because they have not had time to occupy all available physical and resource space. 

Additionally, forests with a dearth of small stems likely exhibit recruitment 

limitations. Therefore the highly idealized conditions requisite for MST to hold are 

rarely exhibited in the U.S.  

 

Our findings regarding apparent recruitment limitation are of particular ecological 

interest. In differing environments, the establishment and growth of seedlings and 

saplings can be limited by cold temperatures, light limitations (Muller-Landau et al., 

2006b), ground fires, or herbivory. Our proxy for recruitment limitation appears 

ecologically reasonable, as about 45% of the variability in xmin is explained by 

environment in our random forest model, with elevation, forest height, and 

temperature and precipitation variability yielding the highest importance values. 

Small trees and saplings are known to be less successful at high elevation, in tall, 

dense forests, and in areas with highly variable climates.  

 
In forests with size distributions consistent with apparent recruitment limitation 

(about 10% of our plots) we find forest tree size-frequency exponents steeper than 

predicted by MST (Fig. 2-8). Studies in tropical forests have also found steeper than 

expected scaling exponents when considering only trees >20 cm (Muller-Landau et 

al., 2006b). This may seem counter intuitive, as steeper exponents indicate a larger 



 

30 
 

relative proportion of small stems. However, we only fit scaling exponents above the 

smallest size class that yields power law scaling, and therefore small stems in these 

cases are stems close in size to the selected xmin. In these ‘recruitment-limited’ plots, 

steep scaling exponents could indicate (a) more medium sized trees than expected, or 

(b) fewer large trees than expected. We believe these plots are being affected by size 

dependent mortality, with disturbance preferentially affecting larger trees (Coomes et 

al., 2003, Lai et al., 2013, Fellows & Goulden, 2008, Lines et al., 2010). It has been 

demonstrated that there is a U-shaped relationship between mortality rate and tree 

size in the Eastern U.S. (Lines et al., 2010) with both small and large stems exhibiting 

higher mortality rates. Differential disturbances from external forces are not currently 

included in MST (Enquist et al, 2009, Price et al., 2007).  

 

In summary, with respect to tree size distribution, there is spatial variability in 

exponents that can be partially explained by environmental variables, particularly 

forest maximum height. In tall, presumably mature forests, exponents asymptote to 

approximately the MST prediction of -2. In plots exhibiting apparent recruitment 

limitation, however, exponents are steeper than MST predictions.  Although MST 

may be theoretically valid, most forests in the U.S. do not follow predicted scaling, 

potentially due to the violation of MST assumptions that forests are in resource and 

demographic steady state with no recruitment limitation or size dependent mortality. 
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Conclusions 

For both of the relationships we tested, we see that forest allometries are not invariant 

with respect to environment or life history. Rather, in short, presumably maturing 

forests, there is considerable spatial variability in allometric relationships that can be 

partially explained as a function of environment and forest structure. Therefore, 

neither empirically nor theoretically derived allometric equations should be applied 

without a careful consideration of environment. With respect to theoretical 

allometries, from MST, we find that the vast majority of U.S. forest plots do not 

follow predicted scaling. This does not, however, mean that MST is theoretically 

invalid. The D:H allometric exponents asymptote in tall forests at approximately the 

MST prediction of 2/3 for broadleaf forests, but asymptote at a higher value in conifer 

systems. For the plot-level tree size distribution exponents, both broadleaf and conifer 

forests asymptote at approximately the MST prediction of -2 in tall forests.  

 

This study does not negate the findings of other researchers who rejected MST, but 

rather contextualizes them as samples from a relatively tight range of environments 

that may not follow MST scaling. Forests should naturally shift toward MST 

predictions with time, provided there is no persistent perturbation consistently 

preventing the system from entering steady state, e.g. a recruitment limitation. 

However, most forests across the U.S. are still recovering from disturbance and have 

not yet reached the demographic steady state necessary for theoretical predictions to 

apply. Indeed, some forests may never follow MST scaling if they are perpetually 

disturbed. 
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Our main conclusions are two-fold. First, empirically derived allometries should be 

developed across ranges of environmental gradients, and caution should be taken 

when applying an allometry outside the range of conditions under which it was 

developed. Second, MST appears theoretically valid, but requires updating to apply to 

the ranges of environmental conditions and successional states found in U.S. forests. 

There is great potential for linking theoretical and empirical allometry, but applying 

MST to problems such as carbon stock and flux mapping will require its expansion to 

include considerations of system maturity, recruitment limitations, and size-

dependent disturbance.   
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Chapter 3: An Efficient, Multi-layered Crown Delineation 

Algorithm for Mapping Individual Tree Structure Across 

Multiple Ecosystems 

 

Abstract 

Deriving individual tree information from discrete return, small footprint LiDAR data 

may improve forest aboveground biomass estimates, and provide tree-level 

information that is important in many ecological studies. Several crown delineation 

algorithms have been developed to extract individual tree information from LiDAR 

point clouds or rasterized Canopy Height Models (CHM), but many of these 

algorithms have difficulty discriminating between overlapping crowns, and also may 

fail to detect understory trees. This approach uses a watershed-based delineation of a 

CHM, which is subsequently refined using the LiDAR point cloud. Individual tree 

detection was validated with stem mapped field data from the Smithsonian 

Environmental Research Center (SERC), Maryland, and on a plot and stand level 

through comparisons of stem density and basal area to delineated metrics at both 

SERC and a study area in the Sierra Nevada, California. For individual tree detection, 

the algorithm correctly identified 70% of dominant trees, 58% of codominant trees, 

35% of intermediate trees and 21% of suppressed trees at SERC. The algorithm had 

difficulty distinguishing between crowns of small, dense understory trees of 

approximately the same height. Delineated crown volume alone explained 53% and 
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84% of the variability in basal area at the SERC and Sierra Nevada sites, respectively. 

The algorithm produced crown area distributions comparable to diameter at breast 

height (DBH) size class distributions observed in the field in both study sites. The 

algorithm detected understory crowns better in the conifer-dominated Sierra Nevada 

site than in the closed-canopy deciduous site in Maryland. The ability for the 

algorithm to reproduce both accurate tree size distributions and individual crown 

geometries in two dissimilar and complex forests suggests great promise for 

applicability to a wide range of forest systems. 

 

Introduction 

LiDAR has become the dominant technology for mapping 3D forest structure 

(Wulder et al., 2012, Zoltros et al., 2013). Discrete return and waveform LiDAR have 

been widely applied for forest height, crown volume and biomass estimation. While 

medium or large footprint (20-70 m) LiDAR data are useful for characterizing the 

vertical distribution of canopies at the resolution of the footprint, small footprint  

(10’s of cm) LiDAR provides both vertical and horizontal information at the scale of 

individual trees (Wulder et al., 2012). Estimates of forest biomass have largely 

ignored the highly detailed spatial information from discrete return LiDAR and 

focused on metrics such as canopy height and cumulative vertical distributions at plot 

level. Providing more spatially detailed information such as the number, location, 

spacing, and size distribution of individual trees may improve biomass estimation at 

varying spatial resolutions, and should provide a more ecologically meaningful 

structural description of a forest. 
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Various methods for extracting individual tree information from high resolution 

LiDAR datasets have been developed. These techniques generally fall into three 

categories: local maxima detection and expansion (Maltamo et al., 2004, Persson et 

al., 2002, Popescu and Wynne, 2004, Kaartinen et al., 2012, Vastaranta, 2011, Leckie 

et al., 2003), watershed-based delineation (Koch et al., 2003, Chen et al., 2006, Kwak 

et al., 2007, Breidenbach et al., 2012), and point-cloud clustering (Ferrez et al., 2012, 

Rahman et al., 2012). Local maxima algorithms typically involve the selection of a 

search radius and detection of local maxima from a CHM. Popescu and Wynne 

(2004) used both circular and square windows with site-specific window sizes to 

increase local accuracy of maxima detection. Leckie et al. (2003) applied a valley-

following approach to isolate crowns based on CHM topography that yielded both 

tree locations and crown geometries with 80% accuracy. However, the trees in this 

study were well spaced and easily visible in the CHM. Vastaranta et al. (2011), used a 

minimum curvature approach with local maxima detection for a boreal forest and 

although they did not present an individual tree accuracy, they used delineated 

crowns to predict basal area (R2=0.48) and volume (R2=0.71). Maltamo et al. (2004), 

also worked in a boreal forest with a local maxima detection algorithm and reported 

that while as much as 80% of dominant crowns were correctly detected, the total 

accuracy was 40% due to issues identifying understory crowns. Although local 

maxima techniques are computationally the fastest and simplest algorithms, these 

algorithms often fail to detect understory and overlapping trees in structurally 
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complex forests, and have difficulty detecting crown edges, typically oversimplifying 

crown geometry (Kaartinen et al., 2012).  

 

Watershed-based delineations offer an improvement for crown geometries, and 

function on inverted CHMs by segmenting neighboring crowns along lines of local 

minima (Chen et al., 2006). Watershed approaches can be combined with local 

maxima detection to limit the number of local maxima within a segment to one. Koch 

et al. (2003) used a modified watershed approach, allowing for merging and 

refinement of delineations with apriori knowledge of forest structure. They found that 

for conifer trees, approximately 87% of trees were correctly identified using this 

technique but for deciduous species only 50% were correctly delineated, with errors 

arising from understory and overlapping crowns. Breidenbach et al. (2012) also found 

that their watershed approach could not detect understory or overlapping crowns 

when local maxima were undetected.  

 

Point cloud based techniques are the newest and most computationally demanding of 

the three delineation approaches. Point cloud-based techniques use the full 

information content from discrete return LiDAR datasets and therefore offer great 

promise for future advancement in this field. However, current point cloud-based 

techniques have focused on small areas within a single study site and may not be 

applicable across a range of forest types. Rahman et al. (2012) use the density of 

LiDAR returns for crown detection, while Ferraz et al. (2012) use an iterative 

clustering approach based on a mean shift algorithm to detect trees in 3D space. 
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Ferraz et al (2012) reported that although 99% of overstory trees were detected by 

their algorithm, only 12.8% of suppressed trees were, suggesting that even detailed 

site-specific point cloud methods have difficulty detecting understory trees.  

 

Most algorithms for crown delineation have remained focused on conifer dominated, 

boreal forests, with plot level validation. Kaartinen et al. (2012) conducted an 

analysis of several delineation algorithms in boreal systems and reported accuracies 

range from 40-95% accuracy for open conifer trees, 5-45% for trees neighboring a 

larger tree, and less than 20% for intermediate or suppressed canopies. Boreal forests 

are less structurally complex than temperate or tropical broadleaf forests, and 

therefore algorithms developed in boreal areas may be less effective in more complex 

forests. Current crown delineation algorithms inadequately identify understory and 

overlapping trees, and have rarely been tested across different biomes. There is 

consequently a need for an understory-sensitive algorithm that can be efficiently 

applied to LiDAR datasets with a range of point densities in a variety of ecosystems. 

The goal of this paper is to present the development and testing of a novel crown 

delineation algorithm that offers both applicability over varying forest types and 

improvement for understory and overlapping tree detection. 

Methods 

Study Areas 

This delineation algorithm is tested in the eastern and western USA. The first study 

site is a broadleaf dominated experimental forest in Maryland managed by the 

Smithsonian Environmental Research Center (SERC). SERC is located near 
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Edgewater, Maryland, adjacent to a sub-estuary of the Chesapeake Bay. The area is 

generally comprised of two forest types; mature secondary upland forest and 

floodplain forests. Dominant species in the upland forest include tulip poplar, several 

species of oak, beech, and several species of hickory, with mid canopy red maple and 

sour gum and understory American hornbeam, spicebush and paw-paw. Dominant 

species in the flood plain area are ash, sycamore, and American elm. Both the upland 

and the floodplain forests have been relatively undisturbed for approximately 120 

years.   

 

The second study site is the Teakettle Experimental Forest in the western Sierra 

Nevada mountain range, California. Dominant species include California black oak, 

white fir, ponderosa pine and red fir (Hunsaker et al., 2002). The elevation ranges 

from approximately 1000 m to 2500 m, with aboveground biomass values averaging 

~ 200 Mg/ha with individual trees up to 20.0 Mg. The forest is mature, featuring 

clusters of trees in flatter areas of the land with thicker soils, and rocky outcrops in 

steeper areas (Swatantran et al., 2011).  

 

Field Data 

In the SERC study area, field data were taken from the SIGEO field acquisition, in 

which a 16.0 ha plot was laid out and every tree greater than 1 cm DBH was sampled 

and stem mapped between 2008-2011 (http://www.sigeo.si.edu/). Tree location, 

species, DBH, crown class (dominant, codominant, intermediate or suppressed) and 

crown condition were recorded. Dead and damaged trees were eliminated from the 

dataset prior to comparison with delineation results due to a lack of description of the 
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type of damage. For validation, the 16 ha stem map was subset into 16, 90 meter 

square subplots. The stem map at SERC is based on georegistered based on a series of 

monumented posts that were located every 200 m on a true N-S geographic grid. The 

location of these posts had an accuracy of less than 1-2 meters. Additional posts were 

located at 10 by 10 meter spacing within the SIGEO area, and trees were stem 

mapped using measuring tapes. The additional posts were laid out using a 

combination of laser rangefinders and compasses, as well as a total station (Parker, 

G., Pers. Comm.). 

 

In the Teakettle forest area, 90 m square sample plots were collected in the summer of 

2008 (n=12). The DBH, species and condition of all trees were recorded. Dead trees 

were removed from the analysis. Within each central sub plot the location and height 

of trees were also recorded. However, given issues with georegistering tree locations 

to LiDAR data, stem mapped data were not used to pursue an individual-based tree 

validation for the Sierra Nevada site.  

 

LiDAR Data 

LiDAR data for SERC were collected with NASA Goddard’s LiDAR, Hyperspectral 

and Thermal Imager (Cook et al., in press) instrument. G-LiHT uses a 300 kHz multi-

stop scanning LiDAR with a 60° field of view and 10 cm diameter footprint, and the 

site was flown with 50% overlap in north-south and east-west directions to achieve a 

mean return density of up to 50 laser pulses/m2. Leaf-off and leaf-on data were 

acquired during March, 2012 and June, 2012, respectively.  
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LiDAR data for the Sierra Nevada site were flown in the summer of 2008 with the 

University of Florida’s OPTECH GEMINI ALSM unit, operating at 100-125 kHz 

with a maximum 25°!scanning!angle.!Data!were!flown!~6005750!m!above!ground,!

with!50%575%!swath!overlap!yielding!an!average return density of approximately 

18 pts/m2.  

Algorithm Development 

Figure 3-1 shows the processing framework applied by this algorithm. The only 

inputs to the algorithm are raw LiDAR point cloud files. These LiDAR point clouds 

are preprocessed adding a 20 m buffer to LiDAR tiles to ensure that tile edges do not 

affect the outputs. The algorithm generates a series of rasters with a 0.5 m pixel size. 

The first raster, a Digital Terrain Model (DTM), is generated using all returns with a 

moving window and local minima detection and smoothing.  The second raster, a 

Canopy Height Model (CHM), is generated by finding the maximum Z value (from 

all returns) in each pixel and subtracting the corresponding DTM value (Figure 3-

1.1). This raw CHM is then smoothed using a customized moving window average 

filter (Figure 3-1.2). The window size can be varied, but a 5 by 5 window was used 

here.  
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Figure 3-1. Processing flow of algorithm. First a CHM is generated. Second, the 
CHM is smoothed and internal crown gaps are filled. Third, a preliminary 
watershed delineation is applied. Fourth, the raw LiDAR returns from each 
segmented area are extracted and binned vertically, a trough finding algorithm 
is applied, and returns are classified as either overstory or understory. Fifth, 
overstory and understory CHMs are generated. Sixth, the overstory and 
understory CHMs are segmented. Steps 4-6 are applied iteratively. Finally, tree 
statistics are generated. 
 
The customized smoothing algorithm is described as follows. First, pixels are 

classified as canopy or ground pixels using 2 m as a separation between canopy and 

potential ground hits. Ground pixels are not included in averaging to avoid 

underestimating tree heights. For each ‘ground’ pixel, the algorithm searches 

neighboring pixels to determine whether the pixel is within a crown or outside of a 

crown. If four or more neighboring pixels are canopy pixels, the central pixel will be 

classified as a within crown low return. These pixels are assigned the average value 
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of their neighboring crown pixels to reduce over segmentation of crowns due to either 

high return density LiDAR or sparse canopies. It should be noted that the 2 m height 

filter means that this algorithm does not detect understory vegetation at less than 2 m 

of height. !

 

After smoothing, a preliminary delineation is conducted using an inverted CHM and a 

watershed function (Figure 3-1.3). Every pixel in the image is assigned the ID 

number of the associated watershed. Pixels with an elevation less than 2 m are 

assigned as ground pixels, and set to a value of zero.  

 

The preliminary watershed segments may represent a single tree or a cluster of trees. 

To separate returns from understory trees, the raw point cloud data are extracted for 

the area overlapping each preliminary segment (Figure 3-1.4). These raw points are 

binned with a vertical resolution of 10 cm, generating a LiDAR height histogram for 

each preliminary segment. A trough finding algorithm smoothes the height histogram 

and detects troughs by determining when there is a continuous decrease and 

subsequent continuous increase in bin magnitude for a moving window of 9 bins 

(Figure 3-2). When multiple troughs are detected the highest trough is selected as the 

point of return separation. It is assumed that there will be no significant troughs found 

in height histograms returned from a single tree, and that there will be a trough found 

before the peak return from lower trees in the case of tree clusters. Figure 3-2 shows 

four examples of this point cloud refinement.  
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Figure 3-2. Four examples of point cloud extraction and binning showing the 
preliminary segment location under the red crosshairs, the extracted LiDAR 
returns with red indicating distance in Y, and the corresponding vertically 
binned pseudo waveforms. a) and b) were determined to be individual trees 
while c) and d) were flagged as multiple trees. The returns below the indicated 
troughs were separated for generation of an understory CHM. 
 

The LiDAR returns below each detected trough are separated from the higher LiDAR 

returns. Each set of returns is then used to generate two new CHMs for the entire 

area, one of higher canopies, and one of lower canopies (Figure 3-1.5). These 

secondary canopy height models are then segmented with another watershed 

delineation, resulting in the separation of tree clusters and the delineation two layers 

of tree crowns (Figure 3-1.6). If there are only two layers in a system, an overstory 

and an understory set of tree crowns will be detected. In the case of multilayered 

forests, the process of generating height histograms, separating vertical returns, and 

generating understory canopy height models, is iterated until no further understory 

trees are detected. Therefore this algorithm is capable of detecting infinite layers of 

tree crowns, however in both of the systems in this study, three layers were detected. 

d) 

c) a) 

b) 

trough 

trough 
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Therefore the first layer is referred to as an ‘overstory’ layer, the second as a 

‘midstory’ layer, and the third as an ‘understory’ layer.  

 

The location, height, area, and radius of trees are generated from the algorithm 

(Figure 3-1.7). Crown area is calculated as the number of pixels in the crown 

multiplied by the area per pixel (0.25 m2). Crown radius was computed as the mean 

crown radius along the north-south and east-west directions. Tree heights were 

extracted from the unsmoothed CHM corresponding to the canopy layer. For 

example, if the algorithm is run for three layers, tree segments from the highest layer 

are assigned heights from the overstory CHM, tree segments from the middle layer 

are assigned heights from the mid layer CHM, and tree segments from the lowest 

layer are assigned heights from the lowest, or understory, CHM.  

 

Figure 3-3 illustrates the potential power of multilayered crown delineation. A few 

tall trees in the original CHM resulted in preliminary segments representing clusters 

of trees rather than individuals. Separating the tall trees for processing as overstory 

crowns allowed for shorter crowns to be correctly detected and delineated.  

 

Figure 3-3. a) Smoothed CHM b) preliminary segmentation c) understory CHM 
and d) understory segmentation. The shorter trees seen in the c) and d) were not 
apparent in the original CHM because of taller overstory trees. 
 

c) a) b) d) 
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Although this algorithm is computationally demanding, it has been optimized for use 

in parallel computing systems resulting in computational efficiency. 32 cores (CPUs), 

each with 2GB RAM processed the SERC dataset in 1.5 hours and the Sierra Nevada 

dataset in 30 minutes. The algorithm is written in IDL and GDL, and could be run in 

serial however it would take at least 32 times longer to run (~32 hours) for these 

relatively small areas. This algorithm was run on NASA’s Pleiades supercomputing 

system through affiliations with the NASA Earth Exchange (https://c3.nasa.gov/nex/). 

 

Results 

Individual Tree-level Validation 

At SERC, the number of trees correctly detected in each crown class in June, as a 

percentage of number of stems in the field dataset, is 70% dominant trees, 58% 

codominant trees, 35% intermediate trees and 21% of suppressed trees (Table 3-1, 

Figure 3-4).  

 

To test the algorithm’s sensitivity to leaf-off versus leaf-on LiDAR data collection, 

two data collection periods were compared. Figure 3-5 shows the accuracy of 

individual tree detection in SERC during the leaf-off period. Overall, the algorithm 

performs similarly in both leaf-on and leaf-off condition (Table 3-1). However, 14% 

fewer dominant trees are correctly detected during leaf off, while 8% more 

suppressed trees are correctly identified.  

Table 3-1. Individual tree level reported accuracies at the SERC study site. The 
% correct is the number of corrected identified stems divided by the total 
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number of stems from the field dataset. The % Estimated is the number of total 
identified stems (correct and errors of commission) divided by the total number 
of stems in the field. 
 

 March June 
% 
Correct 

Dominant 56% 70% 
Codominant 52% 58% 
Intermediate 32% 35% 
Suppressed 29% 21% 

% 
Estimated 

Dominant 56% 70% 
Codominant 98% 103% 
Intermediate 199% 201% 
Suppressed 58% 50% 

 

Figure 3-4. The individual tree-based accuracy assessment at SERC during the 
leaf-on period showing the number of trees correctly classified as well as errors 
of omission and commission. a) comparisons for dominant, co-dominant and 
intermediate classes and b) suppressed and total errors.  
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Figure 3-5. Individual tree-based accuracy assessment during leaf-off period at 
SERC. a) shows comparisons for dominant, co-dominant and intermediate 
classes and b) shows suppressed and total errors.  
 

Plot-level Validation 

The utility of the algorithm for plot-level ecological properties such as stand density 

and basal area is demonstrated in Figures 3-6 and 3-7. Stem density was 

underestimated at both the SERC and Sierra Nevada sites. On average stem density is 

underestimated by 20% at the SERC site (Figure 3-6a) and 32% at the Sierra Nevada 

site (Figure 3-6b), the majority of this estimation being from undetected small trees. 

 

There is a stronger relationship between plot level cumulative delineation metrics and 

basal area at Teakettle than at SERC (Figure 3-7). R2 values between basal area and 

crown area were 0.36 and 0.81 at SERC and Teakettle, respectively. R2 values were 

higher for crown volume: 0.53 and 0.84, at SERC and Teakettle, respectively.  
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Figure 3-6. Number of stems in the field compared to number of stems estimated 
by the algorithm at the 90 meter plot level in a) the SERC site and b) the Sierra 
Nevada site.  The dotted line shows the 1:1 line, illustrating an underestimation 
of stem density at both sites. This is attributed to the algorithm failing to detect 
some small stems. 
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Figure 3-7. Field estimates of basal area compared to cumulative crown area at 
a) SERC site, b) Teakettle  and cumulative crown volume (area*height) at c) 
SERC and d) Teakettle.  
 

Stand-level Validation 

The shape of the tree size distributions is well captured at both study sites, as seen in 

the histograms of crown area and DBH (Figures 3-8,3-9). To make a more direct 

comparison between field and delineated datasets, two species independent DBH-

crown diameter models were applied. The relationship between DBH and crown 

diameter at SERC was diameter=(0.39*DBH)*(1-exp(-DBH*0.44)). The relationship 

developed between crown diameter and DBH at Teakettle was 

diameter=2.5+1.8*DBH^0.65 (R2=0.72, RMSE=0.69, n=281). Each model was 

applied to the respective field dataset to produce field estimates of crown radius and 

area. Figure 3-10 shows quantile-quantile plots of delineated crown areas against 

field-estimated areas at a) SERC and b) Teakettle.  
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Figure 3-8. Histograms of delineated crown area (left) and DBH (right) for 
SERC site showing that the shape of the histograms matches closely although 
there is an underestimation in the smallest trees by the algorithm. 
 

 

Figure 3-9. The histograms of delineated crown area (left) and DBH (right) for 
the Sierra Nevada site, showing that the shape matches well and DBH in cm is 
approximately comparable to area in m2. 
 

At SERC the algorithm tends to underestimate crown area while at Teakettle there is 

a slight overestimation. However it is noteworthy that the near linear relationships 

shown in Figure 3-10 indicate that stand level distributions were well captured at both 

sites. Only at very large (~150-200 m2) crown sizes do the relationships between field 

and delineated distributions begin to falter. These results indicate that tree size 

distributions over large areas can be accurately estimated with the algorithm. 
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Figure 3-10. Quantile-quantile plots of delineated crown areas against field 
estimated crown areas at a) SERC and b) Teakettle. The linear patterns 
observed in these figures suggest that the algorithm produces crown area 
distributions with the same shape as field derived distributions, with a slight 
underestimate in crown are at SERC and overestimate in crown area at 
Teakettle. 
 

Discussion 

Individual Tree Validation 

The individual tree accuracies (Figure 3-4, 3-5) compare favorably with other crown 

delineation results in deciduous systems that report ~50% accuracy for deciduous 

crowns (Koch et al., 2003). Intermediate and understory results are comparable to 

results from conifer-dominated systems that report less than 20% accuracy 

(Kaartinen et al. 2012). The algorithm therefore performs best for dominant and 

codominant trees, while intermediate trees are over predicted (commission) and 

understory trees are often undetected (omission).  
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Errors of commission are likely caused by the complex canopy structures found at 

SERC. In a closed deciduous forest, such as SERC, a single tree may be delineated 

into multiple crowns due to isolated branching units being falsely identified. This will 

be less common in conifer-dominated forests with conical crowns for which trees 

typically yield only one local maxima. Conversely, errors of omission at SERC are 

likely caused either by overlapping crowns of neighboring trees, or small understory 

trees from which few or no LiDAR hits are returned. In the first case, this algorithm 

may identify a cluster of trees as a preliminary segment (Figure 3-3b) and the point 

cloud refinement may fail to subsequently separate these crowns. The utility of the 

point cloud refinement is strongly dependent on individual crowns yielding separate 

signals in vertical profile. Neighboring trees of a similar height with overlapping 

crowns will be merged by the algorithm because they will neither be separated by 

watershed segmentation (due to overlapping crowns) nor point cloud refinement (due 

to similar heights). This is one explanation for the overestimation of intermediate 

crowns: multiple neighboring suppressed trees in dense understory may be detected 

as an intermediate-sized crown rather than several smaller crowns. In the second case, 

the detection of small trees under dense canopies is limited for all airborne-based 

LiDAR delineations, without further improvements in technology and algorithms.  

 

Understory tree detection is slightly improved when using leaf-off LiDAR data, but at 

the cost of decreasing the delineation accuracy of large crowns. This improvement is 

likely caused by the greater penetration of LiDAR hits both to the understory and the 

ground in leaf-off conditions. However, the increased penetration also causes more 
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gaps within larger crowns, yielding more errors involving the detection of multiple 

crowns for a single large tree. Essentially, branching units are more likely to be 

detected as individual crowns when leaves are not present to fill in gaps between 

branches. This tradeoff should be considered when designing data collection 

campaigns focused on individual tree level information.  

 

Despite difficulties detecting small crowns, 21% of all suppressed trees greater than 5 

cm DBH are correctly identified at SERC. Given that SERC represents a challenging, 

closed-canopy forest these results suggest that this algorithm has utility across varies 

forest systems. If stem mapped data were available at Teakettle, accuracies at the 

individual level would likely be much higher, as suggested by numerous studies in 

conifer forests. 

 

Plot Level Validation 

Basal area is a structural attribute that has been widely studied due to both its 

commercial importance in forestry and high correlation to aboveground biomass for 

carbon mapping initiatives. The cross sectional area of a tree trunk should scale 

linearly with crown area, while basal area should scale with crown volume in the 

form of a power law with an exponent of 3/4 (Enquist, 2002). Therefore comparing 

crown areas and volumes to basal area is not only a reasonable approach for plot-level 

algorithm validation, but also allows for an assessment of how useful crown 

delineation might be for forestry and carbon mapping applications.  
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The relationship between basal area and crown area will depend largely on light 

environment. In an open system, tree crowns are not spatially limited and basal area 

increases will be reflected by corresponding increases in crown area and volume. In a 

closed-canopy environment, however, crown growth is often limited to light 

availability, and increases in biomass may be allocated disproportionally to stem 

vertical growth. Additionally, plot level cumulative canopy area will likely remain 

constant as basal area continues to increase, because crowns are limited in terms of 

lateral growth by their neighbors. Therefore discrepancies between plot level basal 

and crown area at SERC (Figure 3-7a) are not solely explained by algorithm error. 

The stronger relationship at Teakettle can be explained either by higher algorithm 

accuracy in an open conifer site, or by a tighter link between crown and basal area in 

an open light environment.  

 

Crown volume accounts for both increases in tree height and crown area as trees 

accumulate biomass. Therefore crown volume to basal area were also compared with 

improved results (Figure 3-7c, 3-7d). There is a stronger relationship at both sites 

between basal area and crown volume than with crown area. Again, the Sierra 

Nevada site shows a stronger relationship with crown volume than the SERC site, 

indicating that this algorithm performs better in the open conifer site. However, 53% 

of the basal area can be explained solely with delineated crown volume at the SERC 

site, suggesting that this approach may be useful for forestry and carbon applications 

even in closed canopy deciduous forests that present some of the most problematic 

conditions for crown delineation. In contrast, Lefsky et al. (1999) explained 69% of 
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variability in basal area in a lower biomass area of SERC using stepwise regression of 

LiDAR-derived height and density metrics while 53% were explained with a single 

metric. This result, along with the strong relationship shown in Figure 3-7d, suggests 

that this approach may be useful for biomass estimation and should be further 

explored for detailed carbon mapping initiatives. 

 

Stand Level Validation 

The algorithm reproduced the shape of the distribution of crown sizes observed in the 

field datasets at both sites. However, there was an apparent underestimation in crown 

area at SERC and overestimation at Teakettle. This was caused either by algorithm 

error, or error in the DBH-crown area equations developed from limited field data 

acquisitions at both sites. At Teakettle, for example, the DBH-crown area relationship 

was derived using 281 individual crowns, which did not capture the entire distribution 

of crown sizes across the stand. Additionally, the relationship was tighter for smaller 

crowns with great variability at larger stem sizes. Therefore the apparent 

overestimation in crown area from the algorithm may have been caused by an 

underestimation from the field dataset.  

 

However, it is logical that there would be an underestimation in crown area at SERC. 

Closed canopy crowns often extend into neighboring crowns, potentially causing 

truncations in crown segmentation. This issue would not occur in open conditions 

such as found at Teakettle, explaining the discrepancy between the two systems. 
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Regardless of slight over or underestimations of crown areas, the linear relationships 

observed in the quantile-quantile plots demonstrate that stand level tree size 

distributions can be accurately produced from the crown delineation algorithm for 

both ecosystems.  

 

This algorithm was developed with collaboration with NASA Ames and the NASA 

Earth Exchange (NEX). NEX is a program that allows scientists to take advantage of 

the large datasets and computing facilities available at NASA through remotely 

accessing their system. Although the goal of this paper was on algorithm 

development and validation rather than operationalization, large datasets could be 

processed using this algorithm, providing data to ecologists or forest managers 

interested in expanding the spatial scope of field data collections, adding crown-

specific information that can be difficult to assess from the ground, or allowing 

consistent analysis of forest change through repeat pass LiDAR.  

 

Conclusions 

Airborne LiDAR remote sensing systems are increasingly being used to map large 

forested areas at high point density. The point clouds from these data result from the 

interaction of laser energy with trees, that are well-defined, discrete objects. It is 

therefore not surprising that so much effort has gone into the inverse problem of 

organizing these clouds back into trees. For a variety of applications, from habitat 

structure, to fire modeling, to biomass estimation, there are sound ecological reasons 

for doing so. However, the problem is a difficult one, and finding an algorithm with 
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general efficacy across ecosystem structures has been challenging. The algorithm 

presented here is one further step in this direction.   

Closed canopy broadleaf forests, such as SERC, and needle-leaf conifer forests, such 

as Teakettle, span a wide range of species functional types that result in markedly 

different spatial and vertical canopy structures, and as a result provided a reasonable 

test of accuracy and applicability. Considering there was no change in 

parameterization between the two sites, the algorithm shows promise for wide 

applicability, with the potential to accurately extract crown information across 

systems. As computing capabilities and data storage facilities continue to improve, 

and high-resolution LiDAR datasets are increasingly available, trade-offs between 

spatial detail and area of coverage may no longer be necessary. The algorithm, in 

tandem with high end computing, could be used to extract individual tree information 

at regional or even national levels given data availability. This algorithm therefore 

represents a shift toward detailed mapping over large areas, with the potential to 

provide unprecedented volumes of highly detailed structural information of great 

value for forest management, carbon and habitat mapping.   
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Chapter 4: The Importance of Spatial Detail: Assessing the 
Utility of Individual Crown Information and Scaling 
Approaches for LiDAR-Based Biomass Density Estimation 
 

 

Abstract 

LiDAR remote sensing has emerged as one of the best technologies for mapping 

aboveground biomass in forest systems. Recent developments in LiDAR instruments, 

computer processing power, and algorithm development have enabled the mapping of 

individual tree structure from LiDAR remote sensing, yet the utility of individual tree 

metrics has not been fully explored for aboveground biomass mapping. Conversely, 

scaling-based approaches using minimal data inputs have been presented as an 

alternative method for mapping regional biomass. These two emerging avenues of 

LiDAR-based biomass mapping are compared to traditional, plot-aggregated biomass 

modeling techniques. Three forested ecosystems were assessed:  a mature, closed-

canopy deciduous broadleaf forest; a mature evergreen needleleaf forest; and a 

Loblolly pine plantation with a range of even-aged stands. For individual tree based 

approaches, individual tree metrics improve explanatory power from R2=0.77 to 

R2=0.84 and R2=0.82 to R2=0.97 in the deciduous and open conifer sites, 

respectively. With large field sample sites in areas of open canopy cover, individual 

tree metrics can significantly improve aboveground biomass (AGB) estimation as 

they directly take into account stand density. Regarding scaling-based approaches, 

proposed methods are currently unsuitable in forests without a tight relationship 
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between canopy top height and basal area, as seen in two of the study areas. 

Individual tree information shows more promise for improving AGB modeling 

capabilities, and may also facilitate scaling-based approaches, but further research 

regarding the application of allometric equations and the spatial scale of models is 

also necessary to continue advancing the field of forest biomass accounting. 

Introduction 

Earth’s forests represent one of the largest carbon sinks on the planet, yet the 

magnitude and location of the sink is largely unknown, and likely shifts with 

changing land use (Pan et al., 2011). Monitoring carbon stocks is therefore critical for 

modeling climate change, and providing important information to mitigation 

strategies such as Reduced Emissions from Deforestation and Degradation (REDD+, 

Corbera and Schroeder, 2011). However, there remain considerable uncertainties in 

current AGB maps (Houghton et al., 2001, Baccini et al., 2012). There is an 

increasingly large and variable suite of AGB estimation methods involving a wide 

range of remote sensing technologies, statistical techniques, and spatial scopes. Large 

area AGB maps have been generated using a combination of spaceborne LiDAR, 

radar and passive optical data (Baccini et al., 2008, Boudreau et al., 2008, Goetz et 

al., 2009, Saatchi et al., 2011); however, there are discrepancies between these 

products and they require reliable local maps for validation. Airborne LiDAR has 

emerged as the premier technology for producing accurate local to regional AGB 

maps (Wulder et al., 2012, Lefsky et al., 2005, Pflugmacher et al., 2008, Ni-Meister 

et al., 2010). Airborne LiDAR can serve to provide either detailed contiguous maps 
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for local carbon accounting (Goetz and Dubayah, 2011; Swatantran et al., 2011) or be 

used in a sampling scheme for wider area mapping (Asner, 2009, 2011).  

  

LiDAR-based AGB maps are traditionally generated through statistical modeling of 

field estimated AGB using LiDAR metrics derived from either discrete return or full 

waveform systems (Wulder et al., 2008, Næsset, 2004, Lim et al., 2003, Dubayah and 

Drake, 2000, Næsset et al. 1997). Both discrete return and waveform datasets are 

typically processed in similar fashions: plot-level height and density metrics are 

derived from point clouds or waveforms and regressed against plot-scale field AGB 

estimates (Drake et al., 2002). Other studies have adopted variations to height and 

density metrics by using voxel-based LiDAR density metrics (Lefsky et al., 1999a, 

Lefsky et al., 1999b, Coops et al., 2007), using landscape segments as modeling areas 

(van Aardt et al., 2006), or using individual tree based metrics (Suárez, 2013, Bortolot 

and Wynne, 2005, Popescu et al., 2003, Popescu & Zhao, 2008, Zhao et al., 2012). 

Few studies, however, have directly compared different estimation techniques or 

developed models for multiple forest types.  

 

Individual tree-based AGB approaches theoretically overcome many of the scale-

related issues seen in wide area AGB mapping. This is because individual tree 

approaches are theoretically scale invariant (Zhao et al., 2009) as plot or regional 

AGB is a simple sum of the individual tree biomass found within the plot or region. 

Individual tree-based biomass mapping has been conducted in a few studies using 

Canopy Height Model (CHM)-based delineated crowns (Bortolot and Wynne, 2005, 
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Popescu et al., 2003). These studies showed that individual tree-based AGB maps in 

pine plantations yield comparable results to other LiDAR-based AGB modeling 

techniques. However, few comparisons have been made between individual tree-

based LiDAR metrics and point cloud or waveform-based AGB metrics. Ferster et al. 

(2009), conducted a comparison between delineated metrics from the software 

TreeVaw (Popescu et al., 2002) and LiDAR percentile height and density metrics in 

complex coastal conifer forests on the east coast of Vancouver Island. They found 

that individual tree metrics from TreeVaw were less useful than traditional metrics. 

However, TreeVaw detects crowns based on a CHM, and in high biomass complex 

forests fails to detect most mid and understory crowns (Ferster et al., 2009). Further, 

only TreeVaw height and density metrics were used in this study, ignoring the 

potential predictive power of crown diameter, area or volume. Finally, Zhao et al. 

(2012), found that individual tree-based metrics were more useful than plot-aggregate 

metrics for AGB model development in the Sierra Nevada, California. Considering 

the increasing availability of high resolution LiDAR data and improvement of crown 

delineation algorithms (Breidenbach et al., 2010, Kaartinen et al., 2012, Vastaranta, 

2011, Duncanson et al., 2014, Reitberger et al., 2009), individual tree-based AGB 

models should be more thoroughly explored as they present a theoretically more 

robust and transferable, scale-invariant approach to AGB mapping (Zhao et al., 

2009).  

 

Other approaches to AGB modeling are emerging at the opposite end of the spatial 

detail spectrum. Recently, Asner and Mascaro (2014) developed a single equation for 
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plot-level AGB estimation based on allometric scaling and regionally calibrated 

coefficients. This method provides an alternative to traditional empirically driven 

biomass mapping by fusing empiricism and scaling theory. Based on the dependency 

of biomass on tree height, basal area, and wood density, Asner and Mascaro use 

LiDAR canopy top height, a regional equation to relate basal area to LiDAR canopy 

height, and a regional wood specific density (Asner and Mascaro, 2014) to estimate 

AGB. This approach facilitates computationally consistent and simple wide area 

mapping, and could be of great use to the biomass mapping community. However, 

this technique remains untested across a range of ecosystem types. Specifically, the 

assumption that basal area can be accurately modeled as a function of canopy top 

height requires verification in temperate forests. 

 

As demonstrated by these two emerging approaches (individual tree-based biomass 

modeling and scaling-based approaches), there remains a tension in the LiDAR 

community between detailed localized techniques and wider area mapping of AGB. 

Collecting higher point density, contiguous data is costly, and storing and processing 

this data can be problematic. Conversely, collecting lower point density LiDAR over 

larger areas (often as transects) facilitates large area mapping but at the potential risk 

of losing accuracy. This study has three goals: (1) test individual tree-based methods 

for aboveground biomass density estimation, (2) explore the applicability of scaling-

based approaches and (3) explain the utility of the two approaches as a function of 

forest structure and allometry in three structurally distinct forest ecosystems.  
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Methods 

Study Areas and Field Data 

In this paper AGB density is modeled from individual tree metrics and a scaling 

equation, and compare these models to traditional LiDAR-based models, in three 

structurally and ecologically different forests in the United States. The first study site 

is a high biomass conifer dominated forest in the Sierra Nevada, California. The 

second is a closed canopy broadleaf dominated forest on the east coast of Maryland. 

The third is an area in North Carolina comprised of both mature, high biomass 

broadleaf stands and heavily managed conifer plantations. Field and LiDAR data 

information for the three study areas is provided in Table 4-1.  

Table 4-1. Description of traditional and delineated LiDAR metrics 
 Teakettle,  

California 
Parker Tract, 

North Carolina 
SERC,  

Maryland 
Field Date 2008 2011 2008-2011 

Number of Plots 12 33 16 
Plot Size 90 m square Variable Radius 90 m square 

Forest Type High biomass 
conifer 

Mature broadleaf 
stands and conifer 

plantations 

Closed-canopy 
broadleaf/mixed 

LiDAR Date 2008 2011 2012 
LiDAR 

instrument 
Optech Gemini 

ALS 
G-LiHT G-LiHT 

LiDAR pt density 18 returns/ m2 ~40 returns/ m2 ~50 returns/ m2 
 

The Teakettle study site is located in the Western Sierra Nevada Mountain range in 

California. Dominant species include Abies Concolor (white fir), Pinus Ponderos 

(ponderosa pine), Abies Magnifica (red fir) and Quercus Kelloggii (California black 

oak) (Honaker et al., 2002). The elevation range of the site is approximately 1000 m 

to 2500 m above sea level, with AGB values averaging 200 Mg ha-1 with individual 
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tree values up to 20 Mg tree-1. The forest is mature, with rocky outcrops intermixed 

between clusters of trees. AGB density values have been observed as high as 1000 

Mg ha-1 in Giant Sequoia stands (Swatantran et al., 2011).  

 

At Teakettle, 90 m (~1 ha) square sample plots were established during summer of 

2008 (n=12). The DBH, species and condition (live, dead, broken) of all trees were 

recorded. Dead trees were removed from the analysis. Generalized allometric 

equations were applied to estimate total aboveground dry biomass as a function of 

Diameter at Breast Height (DBH) (Jenkins et al., 2003).  

 

The Smithsonian Environmental Research Center (SERC) study site is located near 

Edgewater, Maryland, adjacent to a sub-estuary of the Chesapeake Bay. The area is 

generally comprised of two forest types: mature secondary upland forest, and lowland 

forests. Dominant species in the upland forest include Liriodendron Tulipifera (tulip 

poplar), Fagus (beech), several species of oak, and hickory, with mid canopy Acer 

Rubrum (red maple) and Nyssa Sylvatica (black tupelo) and understory Carpinus 

Caroliniana (American hornbeam), Lindera Benzoin (spicebush) and Asimina Triloba 

(paw-paw). Dominant species in the lowland areas are Fraxinus (ash), Platanus 

Occidentalis (sycamore), and Ulmus Americana (American elm). Both the upland and 

the floodplain forests have been relatively undisturbed for approximately 120 years.  

 

In the SERC study area, a 16.0 ha plot was laid out and every tree greater than 1 cm 

DBH was measured and stem mapped between 2008-2011. This forms part of the 
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Smithsonian Institution Global Earth Observatories (SIGEO, 2013). Tree location, 

species, DBH, crown class (dominant, codominant, intermediate or suppressed) and 

crown condition were recorded. Dead and damaged trees were eliminated from the 

dataset prior to comparison with delineation results due to a lack of description of the 

type of damage. The 16 ha plot is split into 16, 90 m subplots in order to compare 

results to Teakettle. It is assumed that minimal change occurred between the field 

acquisition and the LiDAR acquisition date the following summer. 

 

Aboveground biomass was calculated with the SERC field dataset using a 

combination of the so-called “Jenkins equations” (Jenkins et al., 2003) and region 

appropriate species-specific allometric equations. Species-specific equations were 

applied for Red Maple (Fatemi et al., 2011), Northern Red oak (Pastor et al., 1984), 

Dogwood and Black Gum (Phillips 1981), Hickory species, Chestnut Oak and White 

Oak (Martin et al., 1998), Beech (Siccama et al., 1994), White Ash (Monteith et al., 

1979), Green Ash and Sweetgum (Clark et al., 1985), American Elm and Sycamore 

(Clark et al., 1986), Loblolly pine (Naidu et al., 1998), Cherry species and Sassafras 

(Williams and McClenanhan, 1984), Black Locust (Clark and Schroader, 1986), and 

Tulip Poplar (local SERC study). Two sets of AGB estimates were calculated, the 

first comprised of the combined generalized and regional allometries, and the second 

using only the Jenkins generalized allometries. This allowed an examination of the 

sensitivity of AGB estimation to allometry at ~1 ha.  
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The Parker Tract study site is located near Plymouth in North Carolina, USA.  It is 

largely a commercially managed Loblolly Pine plantation (Pinus taeda) although 

some stands have a mixed composition, containing native broadleaf species. One 

segment of the site is retained as natural forest.  Being at an elevation of 

approximately 8 m a.s.l., the site suffers from poor drainage and a network of 

drainage channels assist this within the clearly defined stands.   

 

Field data were collected at Parker Tract by the Weyerhauser Company during July 

2011. Species and DBH were recorded for all trees above 2.54 cm DBH in 33 plots of 

7.3m radius within the range of stand ages.  General biomass equations (Jenkins et 

al., 2003) were then used to calculate biomass using DBH for each plot. 

 

AGB density was calculated for each plot by summing individual tree biomass per 

plot, and dividing by the plot area. Basal area was calculated by translating DBH to 

cross sectional area for each tree, summing these tree basal areas and dividing by the 

plot area.  

 

LiDAR Data 

LiDAR data at Teakettle were flown in the summer of 2008 with the University of 

Florida’s OPTECH GEMINI ALTM unit, operating at 100-125 kHz with a maximum 

25° scanning angle. Data were flown ~600-750 m above ground, with 50%-75% 

swath overlap yielding an average return density of approximately 18 returns/m2.  
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LiDAR data for SERC and Parker Tract were collected with NASA Goddard’s 

LiDAR, Hyperspectral and Thermal Imager (G-LiHT; Cook et al., 2013) instrument. 

G-LiHT uses a 300 kHz multi-stop scanning LiDAR operating at 1550 nm with a 60° 

field of view and 10 cm diameter footprint.  The site was flown from an altitude of 

335 m AGL with 50% overlap in north-south and east-west directions to achieve a 

mean return density of up to 50 returns m-2. Leaf-off and leaf-on data at SERC were 

acquired during March 2012 and June 2012, respectively. G-LiHT data were 

collected for Parker Tract in August 2011. 

 

Plot Aggregate LiDAR metrics 

The plot-aggregated LiDAR metrics are Relative Height (RH) and Density Decile 

(DD) metrics (Table 4-2). Relative height metrics were calculated as the heights 

above ground below which a certain percentage of LiDAR points are returned. 

Conversely, relative density decile metrics were calculated as the number of returns 

in a height bin as a given percentage of maximum canopy height, divided by the total 

number of LiDAR returns (Figure 4-1). Mean elevation and maximum relief were 

also included based on a DEM generated from the LiDAR data. 
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Fig 4-1. Traditional metrics used in this research were Relative Height (RH) 
metrics and density decile (D) metrics. These metrics are calculated at the plot 
level, so all LiDAR hits are aggregated and for ease of visualization represented 
as a waveform here.  
 

For each study area, the LiDAR point cloud was extracted to match the area of field 

plots. At Teakettle, LiDAR data were extracted to match the 12, 90 m square plots. At 

SERC, data were extracted for each of 16, 90 m square plots subset from the 16.0 ha 

area of coverage. Finally, at Parker Tract, LiDAR points were extracted to match 7.3 

m diameter circles centered on the field plot centroid.  
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Individual Tree-Based LiDAR Metrics 

Individual tree metrics were derived from the LiDAR point cloud through a 

multilayered canopy delineation algorithm (Duncanson et al., 2014). The algorithm 

performs a preliminary delineation on a smoothed Canopy Height Model (CHM) 

using a watershed delineation (0.25 m2 pixels). Preliminary segments are then refined 

using the LiDAR point cloud to search for understory returns within each preliminary 

segment. Through this process the entire LiDAR point cloud is separated into 

overstory and understory returns. Each of these datasets is used to produce a new 

CHM. Both the understory and overstory CHM are then segmented, yielding a multi-

layered crown delineation product. This process is iterated until no further understory 

trees are detected. The outputs of this algorithm are individual crown locations, 

heights, radii, crown areas, and volumes. Crown area is the 2D area calculated by 

summing the pixels in each delineated crown. Crown volume is calculated by 

multiplying the crown area and height. Note that this is a simplification, and ignores 

crown shape, providing a near conical proxy of crown volume. 

 

The canopy delineation algorithm was validated at both the SERC and Teakettle in a 

previous study (Duncanson et al., 2014). Parker Tract data were not available at the 

time this study was conducted. At SERC, validation was performed at an individual 

crown level using 16.0 ha of stem mapped tree data > 5cm DBH from the SIGEO 

program for both leaf-off and leaf-on LiDAR data acquisition. At both SERC and 

Teakettle, validations were also performed at the plot and stand level, comparing 

basal area, stem density and tree size distribution from field datasets to algorithm 
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output. At SERC, 70%, 58%, 35%, and 21% of dominant, codominant, intermediate, 

and suppressed trees, respectively, were correctly identified by the algorithm. 

Cumulative crown volume from the algorithm explained 53% and 84% of the 

variability in field observed basal area at SERC and Teakettle, respectively. There 

was no difference in algorithm parameterization between the two sites, suggesting 

that this algorithm holds promise for wide scale applicability across many different 

forested ecosystems. This does not mean, however, that it will perform comparably in 

all systems, as some systems are more structurally amenable to crown delineation. 

Indeed, the algorithm performed better in open conifer systems than closed-canopy 

deciduous systems, and this will likely impact the utility of individual tree metrics for 

AGB estimation. Errors of commission and omission were comparable, and therefore 

at a 1 ha plot scale these errors will balance and should not greatly impact AGB 

modeling results. Errors would have a greater impact, however, on the smaller plots at 

Parker Tract.  For further details on algorithm development and validation refer to 

Duncanson et al. (2014). 

 

Individual Tree-based and Plot Aggregate AGB Modeling 

AGB models were produced by fitting both traditional and delineated sets of metrics 

to field observed AGB (Table 4-2). Topographic metrics of mean elevation and relief 

were also used for the analysis. Several of the 20 relative height metrics and 20 

density decile metrics were highly correlated. In order to maximize predictive 

capability of the models without producing errors from multicollinearity, Partial Least 

Squares (PLS) regression was employed. PLS regression recombines input metrics 

using principal components, producing new, non-correlated metrics that are linear 
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combinations of the original metrics. These new metrics are then used in multiple 

linear regressions to develop models of field-observed AGB. PLS regression can over 

fit data if too many components (new metrics) are used for prediction (Abdi, 2010). 

To minimize the likelihood of over fitting the model, Leave-One-Out cross-validation 

(LOOCV) was performed, and a predicted Root Mean Squared Error (RMSE) was 

calculated from using one to ten components for modeling fitting. The number of 

components that minimizes the LOOCV RMSE was selected for each model. 

LOOCV is a method used to estimate the error of a model if test data independent 

from the model training data are not available. Here, it was used not only to select the 

most useful number of components in PLS, but also as a statistic for comparing 

traditional and delineated models, and model robustness between sites. 

Table 4-2. Description of traditional and delineated LiDAR metrics 
 Metric Description 

Traditional 

RH05, RH10, RH15, …. 
RH100 

Relative height metrics calculated as the height 
below which some percentage of LiDAR 

returns fall  

D05, D10, D15…. D100 Density decile metrics are the number of returns 
that fall within a given percentile height bin 

Delineated 

Cumulative Volume 
(Cvol) 

The sum of the product of individual tree area 
and individual tree height 

Cumulative Area 
(Carea) The sum of all individual crown areas in a plot 

Max Height (T_max_ht) The maximum LiDAR height observed in the 
plot 

Max Area The maximum crown area observed in a plot 
Max Radius The maximum crown radius observed in a plot 

Max Volume The maximum individual crown volume (area 
multiplied by radius) 

Pseudo Lorey’s Height The average crown height divided by crown 
area 

Number of Trees The number of delineated crowns in a plot 

Topography 
Elevation The average DEM elevation 

Relief The maximum minus minimum DEM elevation 
in a plot 
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To determine whether differences between the traditional and delineated LiDAR 

metrics models are statistically significant, PLS was used to predict plot level AGB, 

and these predictions were fit to field estimated AGB using a normal linear 

regression. This model fitting was bootstrapped using 100 iterations to calculate the 

90% confidence interval for the R2 values using the R package ‘boot’.  

 

Scaling Approaches 

To evaluate the potential efficacy of the AGB modeling approach presented by Asner 

and Mascaro (2014), their method was followed to estimate AGB as a function of 

canopy top height, basal area, and a regional wood specific density: 

AGB=a+bTCHc + dBAe + fpBA
g          (1) 

Where BA is basal area estimated from TCH, and pBA is basal area weighted wood 

specific gravity, and TCH is the mean height of pixels in a 1 m Canopy Height 

Model. BA was estimated from RH100 using OLS regression, and estimated average 

wood specific gravity per plot from field datasets. Exponents were fit in equation 1 

using multiple linear regression of log transformed data, as follows: 

ln(AGB)=b(lnTCH) + d(lnBA) + f(lnpBA)                      (2) 

AGB estimates were back transformed and multiplied by MSE/2, following Asner 

and Mascaro (2014). Finally, scalars were fit for each variable with a second multiple 

linear regression. One such scaling model was produced for each of the three study 

sites. 
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This scaling approach makes the assumptions that (a) basal area scales predictably 

with canopy top height and (b) regional wood specific density is sufficient for model 

calibration. To test the first assumption, models of basal area were examined as a 

function of TCH. Additionally, basal area was modeled as a function of a single 

individual tree-based metric, cumulative volume, in an attempt to address whether 

individual tree information may help facilitate the application of LiDAR-based wide 

area scaling approaches. For wood specific gravity, two of the study sites had wood 

density values that did not vary across the site (in the case of a single wood density 

for all trees at Teakettle, and the same species distribution in contiguous plots at 

SERC). At Parker Tract, however, wood specific gravity varied between pine 

plantation plots and mature deciduous plots. Consequently the median tree-based 

wood specific gravity per plot was assigned for testing scaling approaches at Parker 

Tract. These scaling-based biomass models will be optimistic, as wood specific 

gravity directly is directly extracted from the field datasets. 

Results 

This section summarizes individual tree-based and the scaling-based models at each 

site, and compares them to traditional LiDAR models. Table 4-3 lists the metrics used 

in the AGB models along with the associated model accuracies.  
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Table 4-3. Model performance summaries for AGB models. The metrics used in 
each PLS model are listed, in order of importance for the tree metrics. All 
traditional models used all 20 of the relative height metrics. The number of PLS 
components, the corresponding leave one out cross validation coefficient, and the 
90% confidence intervals for r2 are provided. PLS components and LOOCV are 
not reported for scaling models, which were generated using multiple linear 
regression. 

Model Metrics r2 Std. Error 
(Mg/ha) 

n PLS 
Comps r2 90% CI LOO CV 

Teakettle: 
Traditional RH05:RH100 0.824 59.2 3 0.54-0.92 100.45 

Teakettle: 
Delineation 

Cumulative volume, 
maximum volume, 
cumulative area, 
elevation, releaf, 
maximum area, 

cumulative radiusm, 
number of trees 

0.975 22.1 5 0.94-0.99 55.2 

Teakettle: 
Scaling-Based TCH 0.08 174.4 NA 0.003-

0.43 NA 

Parker Tract: 
Traditional 

RH05:RH100, 
DD65:DD85 0.873 32.1 5 0.8-0.93 43.68 

Parker Tract: 
Delineation 

Cumulative volume, 
maximum volume 0.802 40.1 5 0.6-0.86 51.09 

Parker Tract: 
Scaling-Based TCH 0.63 55.82 NA 0.39-0.75 NA 

SERC: 
Traditional RH05:RH100 0.773 14.5 4 0.48-0.89 33.98 

SERC: 
Delineation 

Cumulative volume, 
maximum volume, 

cumulative area 
0.838 12.2 4 0.67-0.93 16.39 

SERC: 
Scaling-Based TCH 0.31 20.4 NA 0.14-0.62 NA 

 

 
 
 
 



 

75 
 

Individual Tree-Based Models 

Teakettle 
 
At the California site, there was a greater difference between the individual tree-based 

and plot-aggregate models (r2=0.975, 0.824, respectively, Figure 4-2), and this 

difference was statistically significant despite the small sample size (Table 4-3). All 

20 of the relative height metrics were recombined into three principal components for 

modeling. The associated LOOCV RMSE was the highest out of any of the models, 

indicating that the plot-aggregate model at Teakettle was sensitive to individual 

observations. Therefore the plot aggregate metrics may be over fitting the model, 

which is unsurprising given the small sample size of only 12 plots. The individual 

tree metrics, conversely, showed a LOOCV RMSE reduction of almost 50% against 

the plot-aggregate metrics, indicating that this model was more robust. Therefore at 

Teakettle the individual tree-based LiDAR metrics outperformed the plot aggregate 

LiDAR metrics for AGB modeling. 



 

76 
 

 
Figure 4-2. Teakettle PLS biomass models using traditional metrics (a) and 
delineation metrics (b). Delineation metrics were able to capture within plot 
spatial distributions of biomass, as well as the vertical distribution. This suggests 
that delineation metrics perform well in open canopies. 
 
SERC 
 

At SERC, the individual tree metrics explained a larger percentage of the variance in 

AGB than the plot-aggregated metrics (r2=0.838, 0.773, respectively, Figure 4-3). 

However, this increase in r2 was not statistically significant, as indicated by the 90% 

confidence intervals in Table 4-3. There was little variation in AGB across this site, 

likely due to the subsetting of a relatively spatially contiguous 16.0 ha area. As at 

Teakettle, all 20 of the relative height metrics were recombined into three principal 

components for modeling. None of the relative density decile metrics were useful at 

this site. While 20 metrics were used from the plot-aggregated dataset, only 3 metrics 

were used in the individual tree dataset: cumulative volume, maximum tree volume, 

and cumulative crown area. Although the improvement in model performance seen by 
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the individual tree metrics was not statistically significant due to the small sample 

size used in this study, the higher range in r2 values and lower LOOCV RMSE show 

promise for delineation metrics in closed canopies. 

 
Figure 4-3. SERC PLS biomass models using traditional metrics (a) and 
delineation metrics (b). Traditional metrics (a) explained less variability in AGB 
than delineation-based metrics (b) at SERC. However, this difference is not 
statistically significant. 
 

Parker Tract 
 
At Parker Tract, the results from Teakettle are reversed. The plot-aggregate LiDAR 

metrics performed better than the individual tree-based LiDAR metrics (r2=0.873, 

0.802, respectively, Figure 4-4). However, as at SERC, this difference was not 

statistically significant based on the 90% confidence intervals (Table 4-3). As at 

SERC and Teakettle, all 20 RH metrics were used for the plot-aggregate AGB model 

at Parker Tract. Additionally, the Density Decile (DD) metrics DD65, DD70, DD75 

150 200 250 300 350

15
0

20
0

25
0

30
0

35
0

Field Measured Biomass (Mg/ha)

P
LS

 P
re

di
ct

ed
 B

io
m

as
s 

(M
g/

ha
)

RMSE = 14.5

r2 = 0.773

a)

150 200 250 300 350

15
0

20
0

25
0

30
0

35
0

Field Measured Biomass (Mg/ha)

P
LS

 P
re

di
ct

ed
 B

io
m

as
s 

(M
g/

ha
)

RMSE = 12.2

r2 = 0.838

b)



 

78 
 

and DD85 were used in the model. Estimating AGB with five non-autocorrelated 

principal components yielded an R2 of 0.87 with an associated RMSE of 32.1 Mg/ha. 

Only two individual tree-based metrics were used at Parker Tract – cumulative 

volume and tree maximum volume. The individual tree-based model yielded an R2 of 

0.80 with an associated RMSE of 40.1. There was a 7.3% reduction in LOOCV 

RMSE for the plot-aggregate dataset, indicating that at Parker Tract the plot-

aggregate metrics yield higher accuracies and more robust models.  

 
Figure 4-4. Parker Tract PLS biomass models using traditional metrics (a) and 
delineation metrics (b). At this site the traditional metrics performed better for 
biomass estimation, likely because of edge effects related to the small field data 
collection sites.  
 

Scaling-based AGB Modeling 

At Teakettle and SERC the scaling based approach was unsuccessful, only explaining 

8% and 31%, of the variability in field AGB, respectively. At Parker Tract, however, 

the scaling approach seemed more successful, explaining 63% of the variability in 
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field AGB. These results are explained by the relationship between canopy top height 

and basal area at each study cite. There was no statistically significant correlation 

between TCH and basal area at Teakettle or SERC (Figure 4-5a, 4-5e). However, at 

Parker Tract, there was a good fit between TCH and basal area (Figure 4-5c). Scaling-

based approaches will not be successful unless LiDAR can be used to successfully 

predict basal area. An individual tree-based metric was used to predict basal area 

instead of canopy top height, and we found a good fit between cumulative volume 

and basal area at Teakettle (Figure 4-5b), a reasonable fit at Parker Tract (Figure 5-

5d), and a poor but statistically significant relationship at SERC (Figure 4-5f). 

Therefore scaling could be used to successfully predict biomass at Parker Tract, and 

could be used with inclusion of more detailed LiDAR at Teakettle. However scaling 

approaches could not be used at SERC where there is a decoupling of LiDAR derived 

structure and basal area. 
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Figure 4- 5. Relationships between top canopy height (TCH) and basal area at 
Teakettle (a), Parker Tract (c) and SERC (e) compared to individual tree 
volume and basal area at Teakettle (b), Parker Tract (d) and SERC (f) show that 
individual tree information is more useful for basal area modeling than 
maximum canopy height alone. 
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The Impact of Allometry 

In order to help understand observed differences between individual tree-based and 

plot-aggregate LiDAR methods for AGB estimation, and applicability of scaling-

based approaches, it is necessary to consider drivers of model error. Of the three 

study areas both the AGB and basal area modeling attempts were least successful at 

SERC. The relationship between field measured basal area and field estimated AGB, 

at SERC, was weaker than at both Teakettle and Parker Tract (Figure 4-6). At SERC, 

AGB was estimated using regional equations (Figure 4-7b), which had a larger range 

of exponents than the Jenkins equations because they are often species-specific 

(Figure 4-7c). This is demonstrated by a comparison between the allometric equations 

used at Teakettle, where the field sites only included softwood trees and all but two 

trees used a single generalized allometric equation (Figure 4-7a). A comparison 

between regional-based allometries, Jenkins generalized allometries, and basal area 

(Figure 4-7c,d) further suggests that allometry may explain the disconnect between 

basal area and AGB at SERC. The generalized allometries, overall, estimated lower 

AGB quantities, reducing the estimated AGB from 275.8 Mg/ha to 215.2 Mg/ha 

(~20% reduction).  



 

82 
 

 
Figure 4-6. The relationship between field-estimated biomass and basal area is 
nearly 1:1 at Parker Tract (a) and Teakettle (b), while there is discrepancy at 
SERC (c, d). The relationship is weaker using regional equations (c) than 
Jenkins generalized equations (d) suggesting that using a wider range of 
allometric equations yields a larger discrepancy between field estimates of AGB 
and basal area at a 1 ha level. 
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Figure 4-7. At Teakettle, a single allometric equation was used to predict 
individual tree biomass in the field for the majority of trees (a). At SERC, 
regional allometries (b) and generalized allometries from Jenkins et al. (2003) (c) 
were both used to estimate biomass in the field. For a given DBH there is a 
larger range of possible AGB values in the mixed forests at SERC, and this 
range is dependent on the set of allometric equations selected. 
 

 

Aboveground biomass density models at SERC were also run using the Jenkins 

generalized allometric equations. Models fitting the generalized AGB estimates to the 

two sets of LiDAR metrics explained less variability (Figure 4-8) than the models of 

AGB density estimated from regional allometries.  
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Figure 4-8. Modeling AGB at SERC using Jenkins generalized allometric 
equations reduced the percentage of explained variation from ~80% to ~50%. 
Traditional LiDAR metrics (a) perfomed slightly better than delineation metrics 
(b) when predicting Jenkins-based field AGB estimates, but the difference is not 
statistically significant. 
 

Discussion 

Individual Tree-based Mapping 

Individual tree-level biomass mapping at regional scales is increasingly possible. 

However, the question remains whether such methods show demonstrative 

improvements over plot-based estimates using summary LiDAR statistics, and if so 

under what conditions. Conversely, scaling-based approaches have emerged from 

increased interest in allometric scaling by the theoretical ecology community. The 

work here has in a limited fashion tested whether these technological and theoretical 

advancements have potential to improve AGB modeling capabilities. 
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The results varied considerably across the three study areas in question. At Teakettle, 

the results suggest that individual tree-based LiDAR metrics have a higher predictive 

power in open conifer canopies than plot-aggregated LiDAR metrics. The spatial 

distribution of trees in a high AGB, open forest is not fully captured by the plot-

aggregated metrics. This suggests that crown delineation, when available, should 

bolster AGB estimates in conifer systems. Swatantran et al. (2011) explored LVIS 

LiDAR data for AGB mapping in a structurally similar area of the Sierra Nevada. 

LVIS data should provide comparable information to the traditional, plot-aggregated 

metrics. They found that 77% of variability in AGB was explained by LVIS metrics, 

and models improved to explain 84% of variability after species based stratification.  

The traditional metric AGB model shows comparable results with these LVIS-based 

results. Therefore, these models are performing as expected and that the improvement 

observed with the delineation metrics is significant. Additionally, the field sites at 

Teakettle were populated primarily by fir and hemlock species with little difference in 

wood specific density, yielding the use of a single generalized allometric equation for 

almost all trees. Therefore, from an AGB estimation standpoint, these were 

homogeneous plots, which may be an additional factor in the utility of crown 

delineation for AGB modeling at Teakettle.  

 

At Parker Tract, the delineation metrics did not perform as well as the plot-aggregated 

metrics, although this result is not statistically significant. That the delineation 

metrics did not perform better at Parker Tract may be explained in part by the small 
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plot size and field geolocation issues. The much smaller plot size (7.3 m radius) 

encompasses far less trees than the larger plots (~1 ha) at the other sites. When 

extracting delineated crowns for inclusion in AGB modeling, the crown centroid was 

used. Due to both crown geometries and geolocation errors in the field, it is likely that 

some trees near the edge of plots were falsely included in the analysis, and others 

were excluded. This added a source of error at Parker Tract that was minimal at 

SERC and Teakettle given the larger plot size at those sites.  

 

At SERC, the AGB models explained less variability than at the other sites, and the 

delineation-based metrics had more explanatory power than the traditional metrics but 

the difference between the two models was not statistically significant at 90% 

confidence. Both sets of metrics yielded a lower percentage of explained variability 

than the models at the other two sites, although results were comparable to a previous 

study conducted in the same study area (Lefsky et al., 2003). 

 

There are several factors that explain why individual tree-based metrics do not 

perform better than traditional metrics at SERC. In theory, if every tree was 

delineated correctly, and there was a perfect relationship between crown dimensions 

and tree biomass, individual tree-based methods would be indisputably superior to 

plot-aggregated methods. However, the relationship between tree crowns and AGB is 

imperfect. This is demonstrated through an analysis of the field data, as the 

relationship between basal area and AGB should be a proxy for the relationship 

between crown dimensions and AGB. Additionally, a tight relationship between basal 
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area and AGB would bolster the applicability of the scaling-based approaches 

provided basal area can be modeled from RH100. At SERC the relationship between 

AGB and basal area was poor. This is likely due to allometry, because scaling AGB 

to 1 ha reduces the influence of individual trees on plot level AGB and basal area. As 

tree level biomass is a direct function of tree DBH, this disconnect between basal area 

and AGB is likely a function of the wider range of allometric equations used at SERC 

in comparison to the other sites.  

 

The selection of allometric equations also appears to be important in these forests, as 

the generalized allometric equations produced on average a 20% decrease in plot-

level AGB as compared to regional equations. Interestingly, two studies by 

Chojnacky et al., (2014) and Domke et al. (2012) compared Jenkins-based biomass 

estimates to FIA volume-based estimates and show that Jenkins estimates are 

approximately 16% and 20% lower than those produced from FIA approaches. The 

similar difference found in this research (20%) may indicate that the Jenkins 

equations are systematically low-biased. Indeed, the regional equations yielded much 

higher correlations to both traditional and individual-based LiDAR metrics, 

suggesting that they are more appropriate for AGB modeling at SERC. This 

sensitivity of modeling to allometric equations further suggests that allometric 

variability is high at SERC. LiDAR data alone will only provide physical structure, 

not wood density, and therefore will always have a somewhat limited capability for 

AGB modeling in forests with a large range of wood densities. Fusion of LiDAR with 

species-sensitive hyperspectral data may allow increased individual-tree level 
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biomass modeling capabilities. The results at SERC suggest that individual tree data 

show promise for AGB modeling, but that more research is needed regarding the 

applicability of field-based allometric equations, and the effects of species diversity 

on AGB modeling. 

 

Another confounding issue that may explain the increased performance of delineation 

metrics at Teakettle is delineation algorithm performance. Duncanson et al. (2014) 

demonstrated that although approximately 71% of dominant crowns are correctly 

delineation at SERC, the overall algorithm performance was higher at Teakettle. This 

was explained by both crown geometry (conifers are easier to delineate using 

watershed functions than deciduous trees which have irregular canopy surfaces) and 

canopy closure (the open conditions at Teakettle are ideal for delineation). Therefore 

it is possible that given improved delineation algorithms for closed-canopy broadleaf 

systems, individual tree-based biomass models would also improve.  

 

Overall, individual tree-based approaches for AGB estimation only improved 

modeling at one site. At the other two sites, the traditional methods performed 

comparably. This is largely due to the open canopies at teakettle, where the spatial 

distribution of biomass within plots is important for modeling. In closed-canopy 

plots, improvement was not seen. Given the high computational demands of 3D 

crown delineation, individual tree-based methods may not currently be a 

systematically feasible, nor cost-effective solution for AGB mapping across all 

biomes.   
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Scaling-based Approaches 

Scaling-based approaches were ineffective in two of the three study sites due to a 

decoupling of top canopy height and basal area. However, there might be an 

opportunity to use individual tree-based information to facilitate the application of 

wide area mapping. As noted earlier, there is a tension between the acquisition of 

higher density LiDAR data and the ability to map AGB across large areas. For many 

applications, a spatial resolution of one hectare for AGB mapping seems appropriate 

as it captures fine scale heterogeneity caused by disturbance, but also reduces error 

that occurs when smaller plot sizes are used (Zolkos et al., 2013). Asner & Mascaro 

addressed this by formulating a scaling relationship between plot level AGB and 

canopy top heights for 1 ha plots, thereby avoiding any need for high density laser 

point coverage to facilitate tree-based segmentation. Their method is based, however, 

on the ability to derive accurate, regional relationships between canopy height and 

basal area. While they show strong relationships in some areas, in other areas these 

relationships are weak or non-existent. Our results showed that top of canopy height 

alone could not be used to estimate basal area at a one-hectare scale in two of the 

three ecosystems studied. However, delineation metrics improved basal area 

estimates for these. This suggests a potential pathway for marrying individual tree 

based methods with scaling approaches. 

 

In such an approach, limited field data would be used with tree-based methods to 

derive a relationship between LiDAR-derived cumulative tree volume and basal area.  

This relationship would then be applied wherever tree based segmentation data were 
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available and thus serve as a proxy for basal area. Then relationships between canopy 

height and proxy-derived basal area could be developed.  But instead of relying only 

on tens of field plots, would instead have thousands to tens of thousands of proxy 

basal area estimates (i.e. those derived from the spatially-limited tree-based 

delineations) to create height to basal area relationships and more fully define the 

variability in these relationships. Height metrics from lower density LiDAR data 

could then be used to map basal area and AGB everywhere following the method of 

Asner and Mascaro. This approach follows the standard procedure of matching field 

data to high-resolution remote sensing data, and subsequently extrapolating for wide 

area coverage (e.g. Duncanson et al., 2010, Wulder and Seemann, 2003, Baccini et 

al., 2008, Saatchi et al., 2011). It is uncertain if many more observations of proxy-

derived basal area will show stronger relationships with canopy height when applied 

over large areas, but this is likely the case. At any rate further research is required to 

explore these questions across gradients of forest structure and environment. 

Conclusions 

Individual tree and scaling-based approaches have been presented as two contrasting 

methods to improve the accuracy and/or extent of AGB modeling initiatives. The 

utility of both approaches was tested in three structurally disparate forests across the 

US. Airborne LiDAR technology has advanced to the point of capturing crown level 

detail, but crown level information is only beginning to be used in ecological 

applications of LiDAR data. It was found that while individual tree metrics can 

improve AGB models, the amount of this improvement is dependent on the physical 

structure and species distribution of the forest in question. These metrics are most 
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useful in systems with open canopies that are dominated by conifers, and have a small 

range of wood densities. The results at SERC illuminated the importance of 

allometric equations for field-based estimates of AGB. No matter how high-quality 

remote sensing data and methods are, AGB models will always be limited to the 

quality of the field-based AGB estimates. More research is required to determine 

when generalized allometric equations are applicable, and what controls this 

applicability.  

 

Another factor that affected the utility of individual tree methods was the spatial scale 

of modeling. The results at Parker Tract suggest that individual tree information may 

not be applicable at a 15 m plot level, likely because of edge effects related to crowns 

overlapping the edges of field plots. The individual tree information improved 

modeling at Teakettle, where models were developed at a 1 ha level. At SERC, there 

was a decoupling of field-based basal area and AGB, which was attributed to the 

wide range of species found at that site, and within species structural variability. In 

eastern forests, modeling at 1 ha may complicate the relationship between field and 

remote sensing structure, and careful attention to scale is advised.  

 

As crown delineation algorithms become more refined and LiDAR technologies 

continue to develop, individual tree based-biomass mapping will become increasingly 

feasible, and should be considered as an option to increase accuracies in some forest 

systems.  
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Scaling-based approaches, on the other hand, were not feasible in two out of three of 

these study areas due a decoupling of basal area and maximum forest height. These 

approaches are inherently dependent on the ability to model basal area as a function 

of canopy top height, however to estimate basal area at SERC and Teakettle more 

structural detail is required than canopy top height alone. Scaling-based approaches 

are attractive for their simplicity and ease of utility but must include the development 

of local basal area equations for application in spatially heterogeneous, structurally 

complex forests. In the discussion section, one potential method to fuse scaling 

approaches with individual tree data is presented. Although this method presents an 

interesting and potentially useful solution to the limitations of scaling-based 

approaches it remains untested, and further research is required to address its 

applicability.  

 

In conclusion, LiDAR applications for AGB modeling continue to improve both in 

terms of their theoretical basis, spatial detail, and extent. Both individual tree and 

scaling-based approaches show promise as emerging techniques, but further research 

is required to explore their limitations with larger field datasets over a greater range 

of environmental conditions. This is particularly relevant as more countries are now 

undertaking regional or national airborne LiDAR surveys.  
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Chapter 5:  Small Sample Sizes Yield Biased Allometric 
Equations in Temperate Forests 

 

Abstract 

Accurate quantification of forest carbon stocks is critical for successful modeling of 

climate change. Many methods have been applied to model and map forest 

aboveground biomass across wide areas, but the accuracy of these methods is 

inherently dependent on the accuracy of the field biomass estimates used to calibrate 

models. In temperate forests, field estimates are typically based on the application of 

allometric equations that estimate the aboveground biomass of trees based on stem 

diameter and species. These allometric equations are developed by destructively 

sampling trees for a given species and/or environment, typically with small sample 

sizes. Insufficient attention has been paid to the accuracy and applicability of these 

allometric equations due to a dearth of appropriate data. In this study, we provide a 

quantitative assessment of the potential effects of sample size on allometric equations 

in temperate systems. We use LiDAR remote sensing from six study sites in the U.S. 

to isolate 10,000 - 1,000,000 tree height and crown radii measurements per site. We 

fit allometric equations to the full dataset at each site, and then apply two sampling 

strategies to estimate average allometric parameters at sample sizes from 10 to 2000. 

We find that fitted allometric parameters are highly sensitive to sample size. 

Allometric exponents are consistently overestimated, and allometric scalars are 

underestimated at small sample sizes. When applied to the full sample of trees at each 

site, heights are overestimated for a given crown radius. We extended our analysis to 
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biomass through the application of Metabolic Scaling Theory predictions, and show 

that site-level biomass bias may range from -4% to +178% given the small sample 

sizes used in many biomass mapping initiatives. Errors decrease with increasing 

sample size, and we suggest that sampling several hundred trees per site is required to 

produce accurate allometries.   

 

Introduction 

Global forests cover approximately 30% of the land’s surface and have been 

estimated to store approximately 1.03 million metatons (Mt) of carbon (Nabuurs et 

al., 2007). These estimates are not only important inputs to global carbon cycle and 

climate change models, but integral to the mitigation of climate change through 

market based initiatives such as REDD+ (Corbera & Schroader, 2011, Gibbs et al., 

2007). Mapping forest carbon stocks (Lefsky, 2010, Saatchi et al., 2011, Simard et 

al., 2011, Baccini et al., 2012) yield high errors and there are significant discrepancies 

between many global forest height and biomass products (Mitchard et al., 2011, 

2013). Most work in this field has focused on the development and application of data 

and statistical techniques to match remote sensing products to field-based biomass 

estimates (Goetz et al., 2009, Asner, 2009). Considerably less attention has focused 

on the accuracies of the field-based estimates themselves, due primarily to data 

limitations (Chave et al., 2004, Van Breugel et al., 2011).  

 

Remote sensing-based forest aboveground carbon stock estimates are typically 

generated through a combination of field-based carbon estimation and extrapolation 
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using remote sensing datasets (Goetz et al., 2009, Goetz & Dubayah, 2011). Virtually 

all field estimates rely on the application of allometric equations relating properties 

that can be measured in the field to individual tree carbon stock (Jensen et al., 2003). 

These allometric equations are typically derived through the destructive sampling of a 

relatively small number of trees that are measured and felled to assess their carbon 

stock. Forest allometric equations relate individual tree Diameter at Breast Height 

(DBH) alone or in combination with tree height, to tree carbon content. Equations are 

generated either for individual species (e.g. Gholz et al., 1979, Clark et al., 1986), 

groups of species (Jenkins et al., 2003, Chovjacky et al., 2011) or for geographic 

regions (Chave et al., 2005). Additionally, online tools are available that archive 

international allometric equations and assist in the selection of the most appropriate 

equation for a given species and environment (Henry et al., 2013). In a 

comprehensive assessment of errors in tropical biomass estimates, Chave et al. (2004) 

demonstrate that allometric equation selection is the primary source of error in 

tropical field-based biomass estimates, and that the sample size of trees used to 

generate allometric equations is one of the primary drivers of this error (Chave et al., 

2004).  

 

In the United States, Jenkins et al. (2003) performed a literature review and combined 

over 100 allometric datasets to produce generalized equations for various species 

groups. These so-called ‘Jenkins equations’ have become popular for field biomass 

estimation in North America due to their generality and simplicity. We revisited each 

of the papers used in Jenkins et al. (2003) and, where available, recorded the number 
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of trees felled in each study to produce the allometric equation. The mean number of 

trees felled to generate a species-specific allometry was 39.3. The median is lower, at 

only 23 trees, which is indicative of the few studies that reported larger number of 

trees destructively sampled (Bajrang et al., 1996, n=161, Barclay et al., 1986, n=96, 

Harding and Griagl, 1985, n=115, Ker and Van Raalte, 1981, n=298). Although 

Jenkins et al. (2003) provides generalized equations for all of North America, a more 

specific set of equations relevant to Canada was published through the Canadian 

Forestry Service (Lambert et al., 2005, Ung et al., 2008). Due to pooling individuals 

across large areas, the allometries generated by these studies are built on larger 

sample sizes, with a mean of 215.6 trees and a median of 81 trees. These two sets of 

allometric equations represent the most common method by which to estimate field 

biomass in North America. The U.S. Forest Service, conversely, has shifted to a 

‘component ratio method’, which is based on estimating tree volume, and multiplying 

by estimated wood specific gravity (Woodall et al., 2010).  This method is also 

fundamentally limited to the number of trees used to calibrate the volume models, 

which are highly parameterized functions of DBH, site index, and site basal area. 

Allometric equations for volume are typically based on higher numbers of 

destructively sampled trees, in the range of a few hundred, but the number varies 

considerably based on species and study area (Chojnacky, 1988, MacLean et al., 

1976, Curtis et al., 1968).  

 

In this research, we attempt to quantify the effect of sample size on allometric 

equation parameterization. We use high resolution LiDAR datasets in tandem with a 
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crown delineation algorithm to produce spatially contiguous individual tree structure 

maps across six structurally disparate forests in the United States. Our goals are to (a) 

determine the error on fitted parameters as a function of sample size (b) determine 

whether small samples produce a systematic bias and (c) assess the potential carbon 

implications of small sample sizes for allometric equation generation in temperate 

forests.  

 

Methods 

Study Areas 

We use forested areas in the United States, selecting sites with a range of species 

compositions, ages, and management practices in order to determine how variable the 

effects of sample size are on allometric equations across disparate conditions. High-

resolution airborne LiDAR data were acquired over each study site and processed 

through an individual tree detection algorithm (Duncanson et al., 2014). No field data 

is used in our study as the algorithm has already been tested in a variety of forests. 

The purpose of the study is to measure every tree within each area of LiDAR 

coverage to test the effects of sample size on allometric equation parameter 

estimation, and evaluate the resulting implications for carbon stock estimation.  

 

Teakettle, Sierra Nevada, California 

The Sierra Nevada site is located in the Western Sierra Nevada Mountain range in 

California. Dominant species include Abies concolor (white fir), Pinus ponderos 

(ponderosa pine), Abies magnifica (red fir) and Quercus kelloggii (California black 
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oak) (Honaker et al., 2002). The elevation range of the site is approximately 1000 m 

to 2500 m above sea level, with aboveground biomass values averaging 200 Mg ha-1 

with individual tree values up to 20 Mg tree-1. The forest is mature, with rocky 

outcrops intermixed between clusters of trees. Fire is the primary disturbance 

affecting the ecosystem.  

 

SERC, Maryland 

The Smithsonian Environmental Research Center (SERC) study site is located near 

Edgewater, Maryland, adjacent to a sub-estuary of the Chesapeake Bay. The area is 

generally comprised of two forest types: mature secondary upland forest, and lowland 

forests. Dominant species in the upland forest include Liriodendron tulipifera (tulip 

poplar), Fagus (beech), several species of oak, and hickory, with mid canopy Aacer 

rubrum (red maple) and Nyssa sylvatica (black tupelo) and understory Carpinus 

Caroliniana (American hornbeam), Lindera benzoin (spicebush) and Asimina triloba 

(paw-paw). Dominant species in the lowland areas are fraxinus (ash), Platanus 

occidentalis (sycamore), and Ulmus Americana (American elm). Both the upland and 

the floodplain forests have been relatively undisturbed for approximately 120 years.  

 

Parker Tract, North Carolina 

The Parker Tract study site is located near Plymouth in North Carolina, USA.  It is 

largely a commercially managed Loblolly Pine plantation (Pinus taeda) although 

some stands have a mixed composition, containing native broadleaf species. One 

segment of the site is retained as natural forest.  
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Gus Pearson, Arizona 

Gus Pearson Experimental forest is a mature conifer forest located near Flagstaff, 

Arizona. The site is comprised primarily of ponderosa pine (Pinus ponderosa). The 

primary disturbance at this site is from thinning and burning experiments that have 

effectively decreased the frequency of small trees, shifting the tree size distribution 

toward larger individuals (Bailey & Covington, 2002).  

 

Howland Forest, Maine 

The Howland Research Forest is a conifer-dominated mixed forest located in central 

Maine. The site is dominated by Red Spruce, Eastern Hemlock, and White Cedar. 

The site is mature, with stand ages ranging from 45 to 130 years. Although it has been 

used for studying the effects of acid rain and carbon flux, management has not 

significantly altered the natural tree size distribution.  

 

Hubbard Brook, New Hampshire 

The Hubbard Brook Experimental Forest is the largest study area examined in this 

study. The area is a mixed forest site located near Woodstock, New Hampshire, and is 

primarily dominated by second-growth northern hardwoods, red spruce, and balsam 

fir. The site exhibits considerably ecological variation across topographic gradients 

(Thomas et al., 2008).  
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LiDAR Data 

LiDAR data were acquired by NASA Goddard’s LiDAR, Hyperspectral and Thermal 

Imager (G-LiHT, Cook et al., 2013). G-LiHT uses a 300 kHz multi-stop scanning-

LiDAR operating at 1550 nm with a 60° field of view and 10 cm diameter footprint.  

Sites were typically flown from an altitude of 335 m AGL with 50% overlap in north-

south and east-west directions to achieve a mean return density of up to 50 laser 

pulses m-2.  

Canopy Delineation 

Individual tree metrics are gleaned from the LiDAR point cloud through a 

multilayered canopy delineation algorithm (Duncanson et al., 2014). The algorithm 

performs a preliminary delineation on a smoothed Canopy Height Model (CHM) 

using a watershed-based delineation. Preliminary segments are then refined using the 

LiDAR point cloud to search for understory returns within each preliminary segment. 

Through this process the entire LiDAR point cloud is separated into overstory and 

understory returns. Each of these datasets is used to produce a new CHM. Both the 

understory and overstory CHM are segmented, yielding a multi-layered crown 

delineation product. This process is iterated until no further understory trees are 

detected. The outputs of this algorithm are individual crown locations, heights, radii, 

crown areas, and volumes. Crown radius is the average of crown dimensions in north-

south and east-west directions.  
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The algorithm is run on the Pleiades supercomputer at NASA Ames as part of the 

NASA Earth Exchange.  

Allometric Equation Fitting 

Relationships between tree structural properties such as DBH, height and biomass 

have been demonstrated to linearly scale in the form of power laws (Enquist et al., 

2009, Feldpausch et al., 2011, Ketterings et al., 2001). Ideally, individual tree-based 

DBH to biomass allometries would be explicitly tested in our study. However, these 

variables are not directly extractable from LiDAR datasets. Instead, we use the 

structural allometry of individual tree height to crown radius. This can be 

theoretically translated to DBH to biomass allometry through the application of 

allometric scaling relationships (Enquist et al., 2009), as described below. 

 

Individual tree heights and crown radii are extracted from the LiDAR point cloud at 

each study area. Crown radii are filtered as CR<12 m, the expected maximum crown 

radius in any of our study sites based on field data. Each of our study areas includes a 

very high number of delineated crowns, with a differing tree size distribution. To 

remove the influence of tree size distribution on our analyses, we binned our data by 

calculating the median tree height in 0.25 m crown radius bins. Log-log linear models 

have been demonstrated as the best descriptions of the relationship between DBH and 

Height (Feldpausch et al., 2011).  Accordingly, we fit a model in the form of a power 

law using the full tree dataset at each study site to produce a set of site-level scaling 

parameters. Each power law model is fit using Model 2 regression on log 

transformed, binned data with ranged major axis (RMA). RMA is used because errors 
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exist in the estimation of both tree heights and radii (Legendre, 1998). B is the scaling 

parameter, a is the fitted exponent, as follows: 

 
 H=b*CRa        (1) 

Where H is height and CR is crown radius. The allometric parameters that are 

calculated using the full population of delineated trees at each site are assumed to be 

the true scaling parameters representing the allometry at each site. We then extract 

samples from the full dataset to assess the influence of sample size on the fitted 

parameters. From the literature, studies either do not report how they selected trees to 

fell, or report that they selected trees that appeared representative of the apparent size 

distribution. In this paper, we present two sampling strategies: (1) random sampling, 

and (2) stratified random sampling. 

 

Random sampling 

For our random sampling approach, we iteratively generate samples from our full 

dataset in each study area, selecting trees randomly with sample sizes increasing from 

10 to 2000, with increments of 10. For each randomly sampled set of trees, we follow 

the model fitting procedure used for the site-level analysis, as outlined above. As 

random sampling produces highly variable fitted parameters, we iterate the random 

sampling 500 times for each sample size, and calculate the average parameter over 

the 500 iterations. Therefore we produce a single average estimate of a and b for each 

sample size.  

 

Stratified Random Sampling 
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In an attempt to simulate a more realistic approach to sampling in the field, we also 

apply a technique that samples trees that are taken from plots. We adopt a stratified 

sampling scheme we believe is approximately representative of field mensuration. It 

should be noted, however, that sampling for biomass equation development varies 

considerably, often based on arbitrary decisions made in the field. In our stratified 

sampling approach, we simulate sampling at a pseudo plot-level. We randomly select 

locations within each study area, and extract all trees in a 30 m plot corresponding to 

each randomly selected location. We then select five trees from within each plot, 

taken at the 10th, 30th, 50th, 70th, and 90th percentiles of crown radii. A sample size of 

five consequently corresponds to one pseudo plot. Sample size is increased by 

selecting more plot locations, and extracting five trees from each new plot. For each 

sample size, the data are pooled, binned, and a model is fit following the methods for 

the site-level and random sampling analysis.  

Carbon Implications 

As discussed, we test the allometry between crown radius and height rather than 

between DBH and biomass. In an attempt to translate our results to the relationship 

between DBH to biomass, we use theoretical predictions from Metabolic Scaling 

Theory (MST, Enquist et al., 2009). MST presents a set of power law equations 

relating various forest structural and functional properties, as follows: 

 
 H ∝ DBH2/3        (1) 

 DBH ∝ M3/8        (2) 

 H ∝ M1/4        (3) 
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 DBH ∝ CR        (4) 

 

Where H is height, DBH is Diameter at Breast Height, M is aboveground tree 

biomass, and CR is crown radius. Combining these three equations allows us to 

translate errors in the estimation in exponents relating CR and H to the relationship 

between CR and M. This is a theoretical translation and only allows a general 

understanding of the importance of sample size on biomass estimation rather than a 

precise quantification.  

 
 H = bCR a        (5) 

 M = b4CR 4a        (6) 

To estimate site-level biomass we use Equation 6 to calculate the individual tree level 

biomass for each 25 cm CR bin in each study site, and multiply by the number of 

trees within that bin. The biomass in all CR bins is summed to estimate site level 

biomass. First, we estimate site-level biomass with the site-level allometric 

parameters, followed by parameters corresponding to sample sizes of 30, 50, 80, 100, 

150, 200, and 500 for each sampling strategy (random and stratified). The biomass 

estimates corresponding to each sample size are divided by the biomass estimate 

using the site-level allometry to give a percentage over or underestimate of biomass 

for each site as a function of sample size.   



 

105 
 

Results 

Site-Level Allometries 

In general, small trees follow near linear scaling but then continue to grow laterally 

while increases in height slow (Fig 5-1). In each study site, there is considerable 

variability in these relationships, represented by the blue bars in Fig. 5-1 that show 

the 10th to 90th percentiles of height for each crown radius bin. Ignoring the variability 

in these relationships, they can be simplified as power laws describing the average 

(median) height in each crown radius bin. Fig. 5-2 shows these average site-level 

allometries, with the red line representing the site-level allometric equation. Pooling 

the six site-level allometries (Fig. 5-3) we see that there is considerable variance 

between our study sites, as expected because we purposefully selected structurally 

disparate forests from across the U.S. 
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Figure 5-1. The relationships between crown radius and tree height at each 
study site. The number of delineated crowns at each site is displayed in the top 
left of each figure. The blue bars represent the 10th to 90th percentiles of heights 
in each crown radius bin, while the black bars represent the median tree height 
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in each bin, at a) Sierra Nevada, b) SERC, c) Howland, d) Parker Tract, e) 
Hubbard Brook and f) Gus Pearson, respectively. 
 

 
Figure 5-2. The black dots represent the median tree height in each 25 cm crown 
radius bin, roughly representative of the black bars in Figure 5-1. The red lines 
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are power law curves fit to each distribution. The parameters of these red curves 
are assumed to represent the true, or site-level allometry at each site. 

 
Figure 5-3. Combining the six allometric equations displayed in Figure 5-2, the 
range of allometric variability is seen across the six study sites. The color of each 
line corresponds to the color of the text representing each study area.  
 

The effects of Sampling on Allometric Parameters 

Random Sampling 
 
The average scaling parameters for a given sample size are presented in Fig. 5-4 and 

Fig. 5-5, with vertical red bars representing site-level parameters. With our random 
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sampling approach, as sample size increases there is a consistent decrease in a (Fig. 

5-4) a corresponding increase of b (Fig. 5-5). These trends are consistent across our 

study sites. Taken alone, an overestimation of a would yield an overestimation in 

height for a given crown radius, while an underestimation of b would yield an 

underestimation of height. To better interpret the relative importance of these two 

trends, we standardized the parameters with respect to the site-level parameters (Figs. 

5-6 and 5-7). We see that a can be overestimated by up to 100% at very small sample 

sizes, while b is only underestimated by ~10%. Therefore we expect sample size to be 

more important for the fitting of the allometric scaling exponent, a, than the scalar, b.  

 

It is apparent that even at a sample size of 2000, parameters do not match site-level 

fitted parameter values. The fitted parameters shown in Figs. 5-4 and 5-5 represent 

the average parameter over 500 random samples for each sample size. Therefore the 

probability that rare, large trees are included in the sample increases with sample size, 

and is reflected by the convergence toward site level values with increasing sample 

size. Although 2000 is a large sample when considering destructively sampling trees, 

it still only represents a small fraction of the trees at each site.  
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Figure 5-4. The average allometric power law exponent, a, for a given sample 
size at from the random sampling approach at a) Sierra Nevada, b) SERC, c) 
Howland, d) Parker Tract, e) Hubbard Brook, and f) Gus Pearson. In general, 
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we see that the exponent decreases as the sample size increases, approaching an 
value representing the true or site-level allometry. 
   

 
Figure 5-5. The average allometric power law scalar, b, for a given sample size at 
a) Sierra Nevada, b) SERC, c) Howland, d) Parker Tract, e) Hubbard Brook and 
f) Gus Pearson, using the random sampling approach. In general, we see that the 
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scalar increases as the sample size increases, approaching a value representing 
the true or site-level allometry.  , at a) Sierra Nevada, b) SERC, c) Howland, d) 
Parker Tract, e) Hubbard Brook and f) Gus Pearson, respectively. 
 

 
Figure 5-6. The pooled deviation from site-level allometry for the allometric 
exponent, a with the random sampling approach. A value of 1.2 of the 
standardized a represents an overestimation of the parameter by 20%.  
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Figure 5-7. The pooled deviation from site-level allometry for the allometric 
scalar, b with the random sampling approach. A value of 0.95 of the 
standardized scaling parameter represents an underestimation of the parameter 
by 5%.  
 
 
 
Stratified Sampling 
 
For our more realistic sampling approach, our results are generally very similar to 

those found with random sampling, suggesting that our trend of overestimating a, and 

underestimating b at small sample sizes is not a function of sampling strategy. 
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However, the fitted parameters have different values using stratified sampling than 

random sampling (Fig. 5-8, 5-9). In most sites, parameters approach higher values of 

a and lower values of b. This represents more linear relationships (higher a) between 

height and crown radius, with shallower slopes (lower b). Again, to analyze the 

relative importance of sample size on the two parameters, we pool these results with 

respect to site-level parameters (Figs. 5-10, 5-11). Deviations from site-level 

parameters are generally larger with stratified sampling than with random sampling. 
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Figure 5-8. The average allometric power law exponent, a, for a given sample 
size at a) Sierra Nevada, b) SERC, c) Howland, d) Parker Tract, e) Hubbard 
Brook and f) Gus Pearson, using the stratified sampling approach. Red vertical 
lines represent site-level allometric parameters. 
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Figure 5-9. The average allometric power law scalar, b, for a given sample size at 
a) Sierra Nevada, b) SERC, c) Howland, d) Parker Tract, e) Hubbard Brook and 
f) Gus Pearson, from the stratified sampling approach. Vertical lines represent 
site-level allometric parameters. 
 



 

117 
 

Figure 5-10. The pooled deviation from site-level allometry a, using the stratified 
sampling approach. A value of 1.2 of the standardized a represents an 
overestimation of the parameter by 20%. 
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Figure 5-11. The pooled deviation from site-level allometry for the allometric 
scalar, b. A value of 0.95 of the standardized scaling parameter represents an 
underestimation of the b by 5%.  
 

Carbon Implications 

To address potential biomass implications, we use Equation 4 to estimate tree 

biomass as a function of crown radius and our allometric parameters, a and b.  

Summing these tree level estimates over the number of trees found in each study area, 

we estimate the deviation from site-level biomass as a function of sample size for 
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random sampling (Table 5-2) and stratified sampling (Table 5-3). To assign values of 

a and b for a given sample size, we fit a smoothing spline to the curves in Figs. 5-4, 

5-5, 5-8 and 5-9 and extracted the parameter values corresponding to each selected 

sample size. Results vary considerably across our six study sites and between our two 

sampling strategies. However, we generally overestimate site-level biomass when 

using allometric equations developed from small sample sizes.  

 
Table 5-2. Percentage deviation from site-level biomass estimation as a function 
of the sample size used to develop allometric equations, using random sampling. 
Values are presented as % under or overestimation. 
 

Sample'n' Sierra' SERC' Howland' Parker' Hubbard'
Brook'

Gus'
Pearson'

30' 60 223 29 83 21 @4 
50' 44 162 18 47 12 @6 
80' 39 107 10 36 7 @7 
100' 36 88 8 25 5 @8 
150' 23 67 6 16 1 @7 
200' 26 53 3 13 0 @8 
500' 19 33 1 6 @2 @7 

 
Table 5-3. Percentage deviation from site-level biomass estimation as a function 
of the sample size used to develop allometric equations, using stratified 
sampling. Values are presented as % under or overestimation. 
 
 
Sample'

n' Sierra' SERC' Howland' Parker' Hubbard'
Brook' Gus'Pearson'

30' 178 138 31 70 7 10 
50' 159 86 23 63 5 20 
80' 129 89 17 41 0 5 
100' 115 67 13 34 0 4 
150' 94 52 12 26 0 4 
200' 87 42 9 27 0 1 
500' 68 28 6 16 @3 @5 
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Discussion 

Our analysis shows that the parameterization of allometric equations varies 

considerably as a function of sample size. Our results corroborate the findings of 

Chave et al. (2004) but illuminate that in some forests, the potential impact of using 

allometric models based on small sample sizes for biomass prediction extends well 

above 30% error, in some cases causing overestimations of more than double the 

presumed biomass, if our simulations are correct. This overestimate of biomass is due 

to the non-linear relationships between both crown radius and height, and crown 

radius and biomass. If we only sample smaller trees, we tend to fit a more linear 

relationship, which extended over the full tree size distribution of an area will 

overestimate the height and biomass of large individuals. It is therefore important to 

sample the full tree size distribution over which allometric equations will be applied.  

 

There are three important trends visible in Tables 5-2 and 5-3. First, as sample size 

increases, errors in biomass estimation decrease. Importantly, in all sites but Gus 

Pearson, biomass is overestimated with small sample sizes, and this overestimation 

decreases as more trees are sampled. Secondly, stratified sampling typically yields 

lower overestimations than random sampling, presumably because more large trees 

are sampled in our stratified sampling scheme. Third, there is considerable variability 

in overestimations between sites, and this variability also decreases with increasing 

sample size.  

 



 

121 
 

Focusing on the results from stratified sampling, as these are likely more 

representative of real world forest mensuration, we see that at a sample size of 30, 

consistent with the average sampling from Jenkins et al., (2003), there is an 

overestimation of site level biomass ranging from 7% at Hubbard Brook to 178% at 

our Sierra Nevada site. The two largest overestimations, at SERC and Sierra Nevada, 

are likely because these are the sites with the largest trees, and biomass 

overestimation will increase with tree size. Therefore although parameters fits deviate 

more from site level values at Hubbard Brook than at the Sierra Nevada site, the 

higher proportion of large trees at the Sierra Nevada site yields larger site level 

overestimation of biomass.  

 

There are several caveats to the work we have presented. First, our crown delineation 

algorithm is imperfect. It has been tested both in coniferous and deciduous forests (at 

the Sierra Nevada and SERC sites presented in our study) and performs better in 

coniferous forests. However, we found at SERC that errors in individual crown 

delineation were unbiased, and that ~71% of the dominant stems were correctly 

identified (Duncanson et al., 2014).  

 

Our second major caveat involves the application of Metabolic Scaling Theory 

equations for translating between allometries. This is a highly contested theory, and 

although previous work has indicated that the theory is valid in resource and 

demographic steady state forests in the U.S., the forests in our study do not 

necessarily fit this description. In fact, the predicted MST exponent relating crown 
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radius and height is 0.66, which is higher than we found in any of our sites. We are 

confident in our assumption that crown radius scales linearly with height, as has been 

demonstrated at our Sierra Nevada and SERC sites through field measurement of 

crown radii, and is generally accepted in the literature (Pers. Comm. David Harding). 

The assertion that height will scale with biomass as in Equation 3 is uncertain, as 

limited data has been available to test this prediction. However, our goals were to 

determine the effect of sample size on parameterization, and the associated potential 

carbon implications. Applying MST predictions is the simplest way to translate 

between allometries and therefore our precise over or underestimates of biomass 

should not be directly used to correct for existing carbon estimates. Instead, these 

results should suggest care be taken when applying allometric equations that have 

been developed with small sample sizes.  

 

These are not novel concerns. Researchers in this field have stressed the importance 

of developing allometric equations for different environments (Chave et al., 2004, 

Vieilledent et al., 2012) or the grouping of species into more theoretically appropriate 

groupings (Chovnacky, 2014). Further, we are not criticizing the work conducted by 

those who have developed generalized allometric relationships, as in Jenkins et al., 

(2003). These relationships are the best available in North America and as such are 

understandably widely applied. Unfortunately, given the observed allometric 

variability across the U.S. (Duncanson et al., submitted) and the compounding issue 

of small sample sizes, we believe that a new approach is required to accurately map 

forest aboveground biomass in the field.  
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We suggest that new sampling for allometries focus on volume estimates rather than 

biomass estimates, as in FIA, but that volume allometries are built over much larger 

sample sizes and a wider range of environmental conditions. The limiting factor here 

has always been the destructive sampling of trees. We believe that that may no longer 

be a requirement. Given recent advances in LiDAR technologies, particularly highly 

portable ground-based LiDAR (Strahler et al., 2008), highly precise estimates of 

individual tree volumes are increasingly available. These estimates do not require the 

destructive sampling of trees, and can be conducted in a systematic fashion in the 

field. As such, much higher sample sizes can be acquired, including samples of very 

large trees for which destructively sampling would be logistically impractical. In 

tandem with an increased understanding of the variability of wood densities (Chave et 

al., 2006, Muller-Landau et al., 2004), these individual tree volume estimates could 

be used to produce the sample sizes necessary to reduce biomass error at the 

individual tree level. With appropriate sampling and campaign design, a system could 

be developed to sample in situ tree volume across environmental gradients. Although 

this approach would require a commitment of considerable finances and personnel, 

we believe that this presents the best solution to outstanding problems in forest 

allometry.  

 

Conclusions 

We show here that allometric parameters are sensitive to sample size, and that 

parameters are systematically biased as a function of small sample sizes across six 
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forested sites in the United States. Our analysis on the carbon implications of these 

results suggest that we may be systematically overestimating field carbon stocks in 

North America through the application of allometric equations developed with 

excessively small samples sizes. This problem has been unavoidable in the past, and 

we have not previously been able to quantify the potential carbon implications of 

these small sample sizes in temperate systems. Through simulations, we predict that 

in six forest systems small sample sizes yield substantial (10-178%) potential 

overestimates of aboveground biomass. Although these values are based on 

theoretical allometric equations, and therefore may not represent precise biomass 

errors, the magnitude of these findings warrants a more thorough analysis of forest 

allometry. We believe that field estimates of aboveground biomass may be the 

limiting factor for reducing errors in remote sensing-based estimates of forest 

aboveground carbon and that a new approach to field biomass estimation is required. 

We have proposed a framework based on non-destructively sampling tree volumes 

with ground-based LiDAR. Building such a framework would take considerable 

effort, but quantifying carbon stocks on Earth is critical to the mitigation of climate 

change and therefore of great importance.  
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Chapter 6:  Conclusions 
 

Summary of Principal Findings 

Chapter 2 

In Chapter 2, we mapped the variability of forest structural allometry across the 

United States and modeled allometric parameters as a function of forest environment 

and life history. In this chapter we discovered that forest structural allometries vary 

significantly across space, and that different allometries have different spatial 

patterns. Approximately 40% of allometric variability could be explained as a 

function of environment and life history.  

 

With respect to Metabolic Scaling Theory, our research shows that environment 

limits the applicability of theoretical predictions. However, allometric variability 

decreases with increasing forest height, and appears to asymptote at approximately 

theoretical predictions. The relationship between tree size distribution and forest 

height is particularly obvious, with both conifer and broadleaf dominated systems 

exhibiting the same trend and asymptote value. With respect to the relationship 

between DBH and tree height, conifers asymptote at a higher value indicating that 

they grow taller for a given DBH. This is logical, as lower wood densities would 

mean that the physical weight of trees would be lower at a given height, allowing 

conifers to grow taller with a reduced buckling constraint. However, this remains 

speculative and may also be the result of a higher proportion of conifers in mature 

forests in the western U.S.  
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Maximum forest height was the most important attribute for explaining allometric 

variability. As forests grow taller it is likely that trees allocate more of their biomass 

vertically to compete for light. Shorter, more open forests contain trees that grow 

broader for a given DBH. With respect to tree size distribution, shorter forests 

allocate more of their biomass to small trees, likely due to a lack of system maturity, 

which may allow a more stable tree size distribution including larger stems. As 

forests age, they undergo a self thinning type mechanism whereby small trees are out 

competed by their neighbors until a consistent tree demography is maintained. After 

about 35-40 meters in height, tree size distribution scaling becomes fairly consistent 

in the U.S. This does not mean that the same tree sizes will be found in all forests 

above 35 m, but that the same relative distribution with respect to size is maintained.  

 

In approximately 10% of the FIA plots, there were so few trees in the smallest size 

classes that a power law no longer described tree size distributions with inclusion of 

small tree classes. To include these plots, a minimum size class was fit above which 

tree size distributions do, indeed, follow power law scaling. The exponents for tree 

size distribution allometry in these plots were more negative than other plots at the 

same height. This suggests that when there are fewer small trees than expected, there 

are either more medium sized trees or less large trees. This observation is important 

for understanding forest demography – there is something that is affecting tree size 

distributions in areas with fewer small trees that is not currently accounted for by 

MST. We speculate that this is caused by size dependent mortality, as many papers 
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have suggested that mortality rates increase with size (Muller-Landau et al., 2006, 

Coomes et al., 2003, Lines et al., 2010).  

 

Metabolic Scaling Theory provides a simple set of scaling predictions that have been 

rejected by many forest ecologists. We argue that although allometric scaling is not 

universal, and does vary with environment, MST predictions are valid in forests that 

adhere to MST assumptions (optimized, fractal distribution networks, equal 

distribution of resources, no recruitment limitation, etc.). MST may therefore be of 

future use for constraining allometric relationships in forests systems, potentially 

serving as a set of prior predictions in Bayesian type models of forest allometry. This 

research is therefore important both for the theoretical ecology community and the 

practical forest management community as these findings may spur future research 

into the utility of MST predictions as theoretical constraints on empirically derived 

allometries. 

Chapter 3  

Chapter 3 contrasts with Chapter 2 in that it is the most technical paper in the 

dissertation and does not directly address science questions. Rather, it presents the 

development and validation of a LiDAR-based crown delineation algorithm capable 

of resolving individual tree structure across large areas and disparate forest types. The 

main findings in Chapter 3 relate to the validation of the algorithm, demonstrating 

that the algorithm performs best in open-conifer systems. However, it is still capable 

of accurately resolving dominant and co-dominant trees in closed-canopy broadleaf-

dominated systems, as at SERC.  
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The validation procedure at SERC was novel, matching individual trees based on 

their crown dimensions and locations to trees measured in the field. It assumed a 

relationship between tree DBH and crown radius, and that there was minimal 

displacement in location from mapped stems to the center of their crowns. 

Considering allometric variability at SERC, issues with location accuracy in the field, 

and leaning trees, this validation was fairly conservative at it is likely that the 

reported accuracies were lower than reality.  

 

This algorithm and its validation across systems contribute to the development of 

individual tree detection from LiDAR and high-resolution optical systems in general. 

This is a growing field in the LiDAR community, and many algorithms have been 

presented, although most of them focus on relatively small conifer trees, as seen in 

boreal forests. To our knowledge, no other algorithms have been applied to multiple 

temperate forest systems without local parameterization. We believe that other 

algorithms are likely more accurate in their sites of development but they typically 

depend on local calibration. These may be more useful for detailed, local ecological 

studies but will not be able to produce accurate estimates in other forests, or across 

wide study areas. Although this paper does not focus on science questions it was 

essential for addressing the questions in Chapters 4 and 5, and therefore is integral to 

this dissertation. 
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Chapter 4 

Chapter 4 addressed the importance of spatial detail for biomass modeling in three 

forested ecosystems. Two novel approaches were tested in comparison to ‘traditional’ 

LiDAR-based biomass mapping. The first used the outputs from Chapter 3 to address 

the utility of individual crown information for biomass mapping. The second tested a 

novel allometric scaling based approach presented by Asner & Mascaro (2014) to use 

minimal input data for wide area mapping. The two approaches present the most 

extreme examples of data inputs to biomass models. We found that individual tree 

data only improves models when there is a large degree of spatial heterogeneity in 

biomass distributions. For fairly homogeneous sites, plot-aggregated LiDAR metrics, 

as typically used for biomass modeling, were equally capable of explaining variation 

in field-estimated biomass. In contrast, the scaling-based approach was only useful in 

one study site. It failed in the other two sites because basal area could not be 

accurately predicted from top of canopy height. This chapter contributes to the 

ongoing development of best practices for LiDAR-based biomass modeling and 

mapping.  

 

Chapter 5 

Chapter 5 focused on determining the sensitivity of empirical allometric equations to 

sample size. Using the individual tree structure derived from Chapter 3, six LiDAR 

study sites were used to assess both the sensitivity of allometric parameters to sample 

size, and the potential associated carbon implications. In all six study sites, the 

relationships between allometric parameters and sample size are similar, with the 
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allometric coefficient increasing, and the allometric exponent decreasing, as a 

function of sample size. At these six sites, power laws are good fits to the relationship 

between crown radius and tree height. In general, small trees are more likely to be 

selected for sampling than large trees. If a relationship is fit only to the smaller size 

classes in a given study area, the fit will tend to be more linear than a fit to the entire 

dataset. Applying a more linear relationship to larger trees yields overestimates of 

tree heights, and related overestimates of biomass. Therefore, at sites that exhibit 

power law scaling with relatively small exponents (very non linear), small sample 

sizes lead to the underestimation of biomass in larger stems.  

 

The potential carbon implications for the parameterization at each site are also 

provided. Large deviations from site level parameters will not necessary yield a large 

difference in site-level AGB. For example, at Hubbard Brook, despite an over 50% 

increase in the scaling exponent with a sample size of 30, site-level biomass is only 

overestimated by approximately 7%, which is much lower than the overestimates at 

SERC where similar relationships between scaling exponents and sample size are 

exhibited. This suggests that small sample sizes capture the majority of biomass 

variability at Hubbard Brook, and that either large trees are rare, or underestimates in 

the scaling coefficient compensate for overestimates in the scaling exponent. SERC, 

Parker Tract and Sierra Nevada, conversely, show overestimations in site level AGB 

with random sampling by 70-178%. These precise quantities should not be used 

without appropriate caveats, as we made several simplifying assumptions to convert 

between CR:H allometries to CR:AGB allometries. However, the ultimate findings of 
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this chapter are that allometric parameters, and associated AGB estimates, are highly 

sensitive to sample size. In general, we believe that temperate biomass stocks in 

forests are overestimated, but the magnitude of that overestimation varies 

considerably between sites. We need to develop more robust allometries with much 

greater sample sizes in order to accurately map and monitor forest carbon.  

Implications of Principal Findings 

The goals of this research were to determine the generality of forest allometric scaling 

relationships and to increase our understanding of the limitations of empirically 

derived allometries. We have demonstrated that forest allometry varies considerably 

across space in the United States, partially as a function of environment, and that 

existing empirically-derived allometric equations are sensitive to sample size. 

Therefore future allometric equation development should consider both sample size 

and environment. 

 

Theoretical constraints from MST appear valid in mature, steady-state forests. 

Therefore, the predictions of MST may serve as useful theoretical constraints on 

empirically-derived allometries. It should be noted, however, that the vast majority of 

forest plots in the U.S. deviated considerably from MST predictions, presumably 

because most forests in the U.S. violate one or more of assumptions underlying MST. 

System maturity, in particular, is violated in forests recovering from any type of 

disturbance. Additionally, this research only provided coarse resolution 

environmental variables for comparison, and a more mechanistic study would provide 

a richer understanding of the limitations of MST.  
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That being said, this research suggests that a single allometric equation will not 

describe forests in all environments. Allometric equations that have been developed 

without the inclusion of environment or disturbance should be reexamined in the light 

of this research and the maps presented here should be indicators of the applicability 

of existing allometries in a given environment. Additionally, this research should 

inform future sampling campaigns which can focus stratified samples within observed 

groupings of allometric parameters. 

Future Research 

Metabolic Scaling Theory 

This research addressed two of the predictions of MST and tested them across the 

U.S. with respect to environment and life history. However, the conclusions with 

respect to the limitations of MST are fairly speculative. Using a mechanistic 

ecosystem model, such as the Ecosystem Demography model (ED, Hurtt et al., 2002), 

could greatly increase the mechanistic understanding of these limitations, particularly 

with respect to size-dependent mortality. Future research using ED could map ED’s 

predictions of tree size distribution across the U.S. and compare these predictions 

with the observations from this dissertation. Further, if ED could allow changes to 

size dependent mortality rates, the sensitivity to size dependence morality could be 

specifically addressed.  

 

Other expansions of this dissertation research with respect to MST include the testing 

of MST’s prediction of canopy spacing. MST predicts that the spacing of trees within 
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a given size class will scale with the size of that class. This prediction has not 

garnered the attention of other MST predictions (such as those presented in this 

research), again because of limited datasets. However, the LiDAR datasets generated 

from the delineation algorithm are ideal for the testing of this prediction. The 

sensitivity of tree size distribution to spatial scale can also be tested with the LiDAR 

datasets, which will provide a much richer spatial understanding of MST that field-

based datasets cannot easily capture.  

Biomass Mapping 

Chapter 4 of this dissertation directly tests two emerging avenues of biomass 

mapping, however the sample sizes are small and we only use three study sites. 

Further research into individual tree applications may be warranted in other study 

areas, particularly when large spatial heterogeneity in biomass is observed (for 

example in suburban areas). Scaling-based approaches also deserve more attention, 

largely because of the novelty and simplicity of the ideas presented by Asner & 

Mascaro (2014). Although we demonstrate that scaling-based approaches, in their 

current form, are generally inapplicable, it is possible that the general framework of 

the approaches could be maintained and they may become applicable using other 

LiDAR metrics rather than relying on canopy top height alone.  

 

Allometric Equation Generation 

In Chapter 5 we proposed the non-destructive sampling of thousands of trees using 

ground-based LiDAR. This is a conceptual proposal, the logistics of which remain 

unclear. However, the general idea is to increase the sample size used to develop 
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allometric equations, and conduct sampling across a range of environments. The 

logistics involved in destructively sampling a sufficient number of trees across wide 

ranges of environmental gradients is prohibitive. Therefore, ground-based LiDAR 

could be used to rapidly and systematically measure the volume of individual trees in 

field plots. In combination with wood density information, this volume-based 

sampling approach should enable an enormous increase in sample size, as necessary 

for accurate field-based AGB estimation. This should be conducted both within the 

U.S. and globally, and ideally individual tree data could be shared internationally 

through online tools that are already available (e.g. GlobAllomTree, Henry et al., 

2013). Within the U.S., sampling should be conducted across areas exhibiting similar 

allometries. To conduct this sampling, a map is required that pools allometrically 

similar forests. Geographically Weighted Regression (GWR, Brunsdon et al., 1998) is 

one statistical approach that uses environment and location to predict spatial patterns. 

GWR could be used to produce maps that inform allometric sampling campaigns. In 

tandem with newly developed sampling techniques (described above), new, robust, 

and environmentally reasonable allometric equations can be developed for biomass 

estimation in forests.  

 

Concluding Thoughts 

Remote sensing science is unique. Throughout the history of scientific enquiry 

analyses have been limited by data availability, and statistics have been developed to 

overcome limitations involved with small sample sizes. With remote sensing, we 

have an abundance of airborne and spaceborne data, with technological 
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improvements allowing us to approach questions at sub meter spatial resolution, 

nanometer spectral resolution, and up to ~40 years of temporal resolution. New 

sensors are being launched every year, and new data are being collected every day, 

increasing this wealth of information about our natural planet – a wealth that is only 

beginning to be tapped. In a few short decades we have already learned so much 

about the natural cycles and anthropogenically-forced changes on our planet. We 

believe remote sensing will continue to enable an understanding of Planet Earth at 

spatial and temporal scales never before available.  

 

This dissertation focuses on one small area of forest science, that of forest allometry, 

but demonstrates the potential of novel remote sensing datasets to address old 

research questions in new and powerful ways. That being said, with the plethora of 

data available it is tempting to focus entirely on empirical analyses, without 

incorporating a theoretical understanding of Earth science. Our analysis of MST was 

conducted largely as an attempt to merge the overtly empirical field of forest remote 

sensing with the data limited field of theoretical ecology. Data can be used to help 

develop theory, and theory in turn can inform the design of future science questions. 

For example, MST may serve as a set of theoretical constraints to empirical 

allometric analysis, while empirical data can help refine MST. Similar fusions are 

already in existence, for example between LiDAR and Ecosystem Modeling, as in the 

Ecosystem Demography model. We believe this marriage of theory and data is the 

best approach to improving our understanding of forest structure and function.  
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