
ABSTRACT

Title of Dissertation: AUTOMATED STRUCTURAL AND SPATIAL
COMPREHENSION OF DATA TABLES

Marco David Adelfio, Doctor of Philosophy, 2015

Dissertation directed by: Professor Hanan Samet
Department of Computer Science

Data tables on the Web hold large quantities of information, but are difficult to search,

browse, and merge using existing systems. This dissertation presents a collection of tech-

niques for extracting, processing, and querying tables that contain geographic data, by har-

nessing the coherence of table structures for retrieval tasks. Data tables, including spread-

sheets, HTML tables, and those found in rich document formats, are the standard way of

communicating structured data for typical computer users. Notably, geographic tables (i.e.,

those containing names of locations) constitute a large fraction of publicly-available data

tables and are ripe for exposure to Internet users who are increasingly comfortable interact-

ing with geographic data using web-based maps. Of particular interest is the creation of a

large repository of geographic data tables that would enable novel queries such as “find vaca-

tion itineraries geographically similar to mine” for use in trip planning or “find demographic

datasets that cover regions X, Y, and Z” for sociological research.

In support of these goals, this dissertation identifies several methods for using the struc-

ture and context of data tables to improve the interpretation of the contents, even in the pres-

ence of ambiguity. First, a method for identifying functional components of data tables is

presented, capitalizing on techniques for sequence labeling that are used in natural language

processing. Next, a novel automated method for converting place references to physical

latitude/longitude values, a process known as geotagging, is applied to tables with high ac-

curacy. A classification procedure for identifying a specific class of geographic table, the

travel itinerary, is also described, which borrows inspiration from optimization techniques

for the traveling salesman problem (TSP). Finally, methods for querying spatially similar ta-

bles are introduced and several mechanisms for visualizing and interacting with the extracted

geographic data are explored.

AUTOMATED STRUCTURAL AND SPATIAL
COMPREHENSION OF DATA TABLES

by

Marco David Adelfio

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:

Professor Hanan Samet, Chair

Professor Larry S. Davis

Professor Richard Marciano

Professor David M. Mount

Professor William Rand

Professor Paul M. Torrens

© Copyright by
Marco David Adelfio

2015

Preface

The material in this dissertation is based in part on the following publications. I cer-
tify that I have made substantial contributions to the jointly authored work included in this
document.

Chapter 2:

• M. D. Adelfio and H. Samet. Schema Extraction for Tabular Data on the Web. Pro-
ceedings of the VLDB Endowment, 6(6) Apr. 2013, pp. 421–432.

Chapter 3:

• M. D. Adelfio and H. Samet. Structured Toponym Resolution Using Combined Hier-
archical Place Categories. In Proceedings of the 7th ACM SIGSPATIAL Workshop on
Geographic Information Retrieval (GIR’13). Orlando, FL, Nov. 2013.

• M. D. Adelfio and H. Samet. GeoWhiz: Toponym Resolution Using Common Cat-
egories. In Proceedings of the 21th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (SIGSPATIAL’13). Orlando, FL, Nov.
2013, pp. 542–545.

Chapter 4:

• M. D. Adelfio and H. Samet. Itinerary Recognition: Travelers, like Traveling Sales-
men, Prefer Efficient Routes. In Proceedings of the 8th ACM SIGSPATIAL Workshop
on Geographic Information Retrieval (GIR’14). Dallas, TX, Nov. 2014.

Chapter 5:

• M. D. Adelfio, S. Nutanong, and H. Samet. Similarity Search on a Large Collection
of Point Sets. In Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (GIS’11). Chicago, IL, Nov. 2011,
pp. 132–141.

ii

Chapter 6:

• M. D. Adelfio and H. Samet. Automated Tabular Itinerary Visualization. In Proceed-
ings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL’14). Dallas, TX, Nov. 2014, pp. 593–596.

• M. D. Adelfio, S. Nutanong, and H. Samet. Searching Web Documents as Location
Sets. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Ad-
vances inGeographic Information Systems (GIS’11). Chicago, IL, Nov. 2011, pp. 489–
492.

iii

Acknowledgements

I would like to express my gratitude to the many people who have provided support

and encouragement during my time at Maryland. Arriving at the graduate program with an

appetite for classwork, I leave now with a thorough appreciation for the rigors of research,

which I expect to shape my life and experiences no matter how far I travel from here.

I am principally thankful for the support of Professor Hanan Samet, who inspired me

with the depth and breadth of his work and his persistence in getting things right. His pa-

tience as I learned how to conduct research and his encouragement as my advisor through-

out my graduate career have been invaluable. I would also like to thank Professors Larry

Davis, Richard Marciano, David Mount, William Rand, Paul Torrens, and Amitabh Varsh-

ney for serving on my advisory committees. Most of my time on campus has been spent in

the lab, where a cadre of students and post-docs collaborated on shared projects, especially

NewsStand, and proved to be wonderful colleagues. Brendan Fruin, Shen-Shyang Ho, Hao

Li, Mike Lieberman, Yi Nutanong, Shangfu Peng, Gianluca Quercini, and Jagan Sankara-

narayanan, I am much obliged for your friendship and support. Many others also deserve

recognition for engaging with me in thought-provoking discussions.

My life at school has been immeasurably brightened by my life at home, for which I

have many family and friends to whom I will be ever grateful. In particular, my parents,

Lydia and Marco, were my first teachers and constant sources of guidance and enthusiasm

throughout my academic career. Last, but not least, I would like to thank my daughter Delia

for helping me through the final months of school and my wife Kate, for her unwavering

love, friendship, and encouragement.

iv

Table of Contents

List of Figures viii

List of Tables xii

1 Introduction 1
1.1 Characteristics of Data Tables . 5
1.2 Table Processing . 7
1.3 Table Geotagging . 12
1.4 Itinerary Tables . 16
1.5 Point Set Queries . 19
1.6 Tabular Data Visualization . 22
1.7 Organization of the Dissertation . 26

2 Structured Extraction of Tabular Data 27
2.1 Extraction Preliminaries . 29
2.2 Related Work . 31
2.3 Table Row Classification . 33

2.3.1 Row Classes . 33
2.3.2 Features . 34
2.3.3 Cell Attributes . 34
2.3.4 Logarithmic Binning . 35
2.3.5 Classifying with Conditional Random Fields 40
2.3.6 Row Classifier . 42

2.4 Common Row Patterns . 45
2.5 Evaluation . 46

2.5.1 Datasets . 46
2.5.2 Experimental Setup . 49
2.5.3 Row Classification Evaluation . 51
2.5.4 Full Table Accuracy . 52
2.5.5 Effects of Feature Binning . 53
2.5.6 Row Class Ambiguity . 55
2.5.7 Application to Existing Table Dataset 57

2.6 Discussion of Column Properties . 59
2.7 Summary . 61

v

3 Structured Toponym Resolution 62
3.1 Geographic Tables . 63

3.1.1 Problem Definition . 65
3.2 Geotagging Data Tables . 67

3.2.1 Data Extraction . 67
3.2.2 Taxonomy for Geographic Entities 67
3.2.3 Features . 69
3.2.4 List Categorization . 73

3.3 Evaluation . 75
3.3.1 Dataset . 75
3.3.2 Category Accuracy . 78
3.3.3 Toponym Resolution Accuracy 80

3.4 Demonstration Interface . 82
3.5 Summary . 82

4 Itinerary Recognition 85
4.1 Itinerary Recognition . 87

4.1.1 Importing and Geotagging Tables 87
4.1.2 Identifying Itineraries . 88

4.2 Evaluation . 97
4.2.1 Dataset . 97
4.2.2 Itinerary Detection . 98

4.3 Summary . 105

5 Queries on Extracted Point Sets 106
5.1 Background . 107
5.2 Problem Definition . 110
5.3 Point Set Similarity Search . 111

5.3.1 Incremental Search Algorithm . 112
5.3.2 Lower Bound Computation . 113
5.3.3 Discussion . 117

5.4 Extension: Handling Outliers . 118
5.5 Evaluation . 121

5.5.1 Setup . 122
5.5.2 Accuracy of Estimators . 123
5.5.3 Selecting the number of MBRs . 123
5.5.4 Performance Studies . 126
5.5.5 Performance Distribution . 128

5.6 Summary . 130

6 Data Table Visualizations 131
6.1 Automated Tabular Itinerary Layout . 131

6.1.1 Method . 134
6.1.2 Demonstration System . 137

6.2 Point Set Similarity Search . 138

vi

6.2.1 System Components . 139
6.2.2 Query Examples . 142

6.3 Parallel Detail Views . 144
6.4 Summary . 146

7 Conclusions 148

References 150

vii

List of Figures

1.1 Sample data tables in a variety of formats 9
1.2 Plausible categories of geographic interpretations for a sample table. Many

toponym sets, such as the one shown here, have several plausible geographic
interpretations that fall in distinct place categories, whereas only one de-
scribes the true category of places that was intended by the table’s author.
In this case, each toponym has an interpretation as a capital city in Europe
or as a city in Georgia, USA. Other, less likely categories of geographic in-
terpretations are listed. Our method assigns likelihood estimates to each cat-
egory of geographic interpretations based on features of the categories and
how well it fits the toponym list. 14

2.1 Graphical representation of bin boundaries for the logarithmic binning encod-
ing. For a given attribute α, two rows share a bin (and thus, have a common
feature value) if the logarithm of their r values are equal and the logarithm
of their c values are equal (or r − c values, if c > r/2). 39

2.2 The row labeling process for a sample data table. The list of values on the
right are the resulting row labels. In this case, the classifier correctly identi-
fied the first row as a title row, followed by two non-relational rows, followed
by a header row, etc. 42

2.3 Accuracy of classifiers on full spreadsheet tables and full HTML tables. The
accuracy is measured as the percentage of tables in which correct labels are
assigned to (i) all data and header rows, and (ii) all rows in the table. . . . 52

3.1 Table with a location column containingL = [Alexandria, Arlington, Spring-
field, Vienna], geotagged byWolframAlpha. WolframAlpha interprets each
toponym as the most populated place with the name, so “Alexandria” is asso-
ciated with “Alexandria, Egypt”, “Vienna” with “Vienna, Austria”, “Arling-
ton” with “Arlington, TX, USA”, and “Springfield” with “Springfield, MO,
USA”. 63

3.2 List L, geotagged by our algorithm, which recognizes that the list of to-
ponyms in L are likely to refer to a cluster of nearby cities in the American
state of Virginia. 64

viii

3.3 Simplified fragments of T , the taxonomy for geographic entities that is gen-
erated from gazetteer data. The taxonomy is divided into three dimensions,
TT , TG, and TP , which describe the feature type, geographic container, and
prominence for geographic entities, respectively. Every geographic entity in
the gazetteer belongs to a category c ∈ TT ×TG×TP . Three example entities
are displayed, along with their corresponding locations in each hierarchy. . 66

3.4 A sample table (top) and the resulting ranked list of column categories (bot-
tom). The set of possible categories, along with their coverage and ambiguity
values, is computed using the FindCategories algorithm. Coverage values
below 1.0 indicate that not all toponyms have geographic interpretations that
are described by the category. Conversely, ambiguity values greater than 1.0
indicate that multiple geographic interpretations exist within the category for
at least one of the toponyms. The likelihood values are the Bayesian classi-
fication results. 72

3.5 Place type distribution over nodes in TT in the categorized table dataset. Val-
ues on the right indicate the number of columns that included the correspond-
ing place type as part of their assigned category. 76

3.6 Prominence distribution over nodes in TP in the categorized table dataset. . 78
3.7 Accuracy of our algorithm for categorizing columns of toponyms. Bars are

scaled horizontally to reflect the proportion of results within each group and
scaled vertically to reflect the prevalence of each group within the full dataset. 80

3.8 Screenshot of demonstration system for geotagging using combined hierar-
chical place categories. (1) User enters lists of similar places in the top left
text box. (2) The system returns a ranked list of the most likely categories for
describing the list, shown in the top right. (3) User explores interpretations
within a selected category’s constraints, using both a tree visualization of the
categories in the bottom right and a map interface in the bottom left. Node
labels in the category tree are abbreviated to avoid overlap and full labels are
displayed when the user hovers the mouse pointer over a node. Additional
disambiguation and interface options are available using the lower checkboxes. 84

4.1 An itinerary processing pipeline. 87
4.2 Three sample Italian vacation itineraries found on the Web. 88
4.3 Portions of tables containing possible itineraries. 90
4.4 Itineraries generally follow efficient routes. For this example, we expect

that an itinerary visiting locations a, b, c, and d is more likely to visit them
in the order abcd (shown in (a)) than the order acbd (shown in (b)). Con-
versely, tables containing places that are ordered efficiently are more likely
to be itineraries than tables containing inefficient place orderings. 91

ix

4.5 Visualizations of the tables from Figure 4.3 as itineraries. While the column
headers and cell types of the left and right tables are similar, the topology
that results from treating each table as an itinerary makes it clear that (a)
is unlikely to be an itinerary, while (b) and (c) are both likely to represent
itineraries. In fact, the table visualized in (a) came from a listing of ship-
ments for a company that is certainly not intended as an itinerary. The table
visualized in (b) contains the schedule for a river cruise through eastern Eu-
rope and the table visualized in (c) is the schedule for a motorcycle club’s
ride through several states in the U.S.A., which are both itineraries. 92

4.6 Subpaths examined for efficiency measures of example path. In (a), three
of four subpaths of length two are reasonably ordered, so ϵ1 = 0.75. In (b),
eight of ten subpaths of length greater than or equal to two are reasonably
ordered, so ϵ2 = 0.8. 95

4.7 Density of the (a) ϵ1 and (b) ϵ2 measures. As shown, itineraries are much
more likely to obtain high ϵ1 values (> 0.8) than non-itineraries. The vastly
different curves suggest that the local efficiency measure is a useful feature
for distinguishing between itineraries and non-itineraries. Similar to the dis-
tributions for local efficiency (ϵ1) values, itineraries are much more likely to
have high ϵ2 values than non-itineraries. 99

4.8 Precision, recall, and F1 scores for each of the candidate classifiers on the
itinerary identification task. The decision tree classifier achieves the highest
F1 score, followed by the SVM and Naive Bayes classifier. 99

4.9 Two correctly classified itinerary tables. 102
4.10 Two examples of misclassified tables. Both tables include lists of locations

that are highly efficient by our definition, causing all three classifiers that we
used in our evaluation to label them as itineraries. In (a), the Dewey Decimal
system for book topic classification is shown, which orders states along a
path that resembles a space filling curve. In (b), a listing of coastal Italian
regions presumably follows a path with similarities to some Italian vacations,
but is instead an exhaustive list of such regions and related coastal data. . . 103

5.1 Illustrations of BscLB, EnhLB, and HausDist from A to B ({a1, . . . ,a6}
to {b1, . . . , b6}) . 107

5.2 An example of GetCovMBRs(R) with the requested number n of MBRs of
4, where selected MBRs are highlighted in gray. 117

5.3 Comparison between MHD-BscLB, MHD-EnhLB and MHD from A to B
({a1, . . . ,a6} to {b1, . . . , b6}) . 120

5.4 Top SimSearch results for (a) HausDist and (b) MHD queries. 121
5.5 Accuracy of the two estimators BscLB and EnhLB given as the estimated

distance divided by HausDist where (i) the measured value is the average µ
of 100 runs, and (ii) each error bar represents one standard deviation in either
direction from µ. 123

5.6 Average performance ofEnh andHyb searchmethods on theNA-Test dataset,
for different numbers of sub-MBRs, and k = 1. 124

x

5.7 Average performance of MHD-Enh and MHD-Hyb search methods on the
NA-Test dataset, for different numbers n of sub-MBRs and k = 1. 125

5.8 Average number of full Hausdorff distance computations performed during
SimSearch queries usingBsc, Enh andHyb searchmethods on theNA-Test
dataset, for different values of k. 127

5.9 Average number of distance calculations performed duringSimSearch queries
using Bsc, Enh and Hyb search methods on the NA-Test dataset, for differ-
ent values of k. 128

5.10 Average performance of SimSearch queries usingBsc, Enh andHyb search
methods on the NA-Test dataset, for different values of k. 129

5.11 Histogram of performance improvements for different query point sets. Per-
formance improvement is measured as elapsed search time using the Hyb
method, as a fraction of elapsed search time using Bsc, so smaller values
represent larger speedups. For all tests, n = 140 and k = 1. 129

6.1 Geometric effects of layout parameters (a) d, θ, and (b) r. Label placement
is determined by parameters d and θ, while link curvature is determined by
parameter r. 132

6.2 Six sample itinerary layouts. Each itinerary visits a collection of between 5
and 10 randomly-locatedwaypoints. The layout parameters for each itinerary
are computed independently. 135

6.3 Two itineraries taken from image search results and their reproductions using
our itinerary layout method. The reproductions are shown to the right of the
originals. The map in (a) was created by a blogger to display her European
itinerary. The order of stops and precise stop locations are difficult to dis-
cern in the original, but our automatically generated version addresses both
of these issues by adding labels and using curves for edges. The map in (b)
shows three suggested itineraries in northern Italy. Our method supports lay-
ing out multiple disconnected itineraries, and the simulated annealing algo-
rithm settles on a layout that avoids label overlap even in a somewhat dense
itinerary diagram such as this. 137

6.4 GeoXLS system architecture. 139
6.5 GeoXLS search results where the query points represent (a) the locations of

six universities in the U.S. and (b) the locations of five cities in Africa. The
query points are shown as red markers, the selected search result is high-
lighted in green, and the point set representing the selected search result is
shown using blue markers. The Hausdorff distance is illustrated as a line and
circles around the query points in (b). 143

6.6 (a) Spreadsheet containing data about Major League Baseball stadiums and
(b) corresponding parallel detail view. 145

xi

List of Tables

2.1 Row labels and classes. 33
2.2 Cell attributes by type. 36
2.3 Example feature encodings for raw feature value “3 of 11 row cells are nu-

meric”. The linear encoding method uses real-valued features, while the
other methods use Boolean features. 36

2.4 Most common row patterns in data tables. 45
2.5 Dataset characteristics. 47
2.6 Top-level domains for table sources. 47
2.7 Tables annotated by human judges. 49
2.8 Test set rows classified correctly. 51
2.9 The precision and recall for the CRF-C and CRF-B classification methods

on spreadsheets and HTML tables. The change in F1 score that results from
using the logarithmic binning scheme of the CRF-B method is also shown.
Row classes are ordered by average frequency across table types. 54

2.10 Confusion matrix for CRF-B on spreadsheets. 56
2.11 Confusion matrix for CRF-B on HTML tables. 57
2.12 Limaye dataset: table information. 58
2.13 Limaye dataset: results using CRF-B classifier. 59

3.1 Dataset characteristics. 77
3.2 Toponym Resolution Results. 81

4.1 Dataset characteristics . 100
4.2 Feature evaluation . 104

5.1 Similarity Search Methods . 121
5.2 NA-Test Point Sets . 122

xii

Chapter 1

Introduction

There are billions of data tables on the Web, but most of them do not exist in publicly-

searchable relational databases. Only a small fraction of Internet users who post information

to the Web possess technical skills and consequently many structured datasets are posted in

self-published tabular presentation formats, such as spreadsheets or HTML tables. In com-

parison to prose, graphs, or other ways of presenting data, tables have the advantage of being

data dense, in the sense that more information can be presented in the same amount of space

than prose, while at the same time preserving details about the data (such as precise values)

which can be difficult to discern when a graph visualization is chosen to show trends. As

a result, data tables are able to communicate clear and direct answers to a wide variety of

fact-based questions. Despite this ubiquity and utility, it is difficult to search for and dis-

cover usable data tables or make use of their structure once they are found. The aim of this

dissertation is to address a number of issues in the utilization of data tables, including decom-

posing tables into functional elements, using context to accurately interpret table contents,

identifying specific classes of tables, and interacting with the collective information stored

within them in useful ways.

Our work in processing data tables focuses on a particular domain that is common to

a large portion of published tables: geographic data. Based on a survey of web-accessible

tables, we estimate that one in four spreadsheets and one in six HTML data tables contains

1

names of places, making place references among the most common entity domains found in

tables. Examples of geographic tables include vacation itineraries, conference venue listings,

city and county demographics, voting participation statistics, and school enrollment records.

The process of associating documents containing place names with the corresponding phys-

ical geographic locations has received prior attention in information retrieval settings, where

it is known as geotagging [11, 58, 83, 84]. Several challenges arise when geotagging docu-

ments, due to ambiguities inherent to natural language usage and strings that serve multiple

purposes, in some cases referring to both a place and another type of entity and in other cases

referring to multiple places. Techniques that achieve high accuracy at geotagging tasks on

text documents employ multiple forms of evidence when choosing interpretations for place

name candidates. By comparison, the geotagging of tables relies less on techniques from

natural language processing (NLP) and more on coherence between values within a table.

We note that the results of geotagging data tables have the potential to be more fruitful than

those of geotagging plain text, because each location is associated with an additional set of

attributes that is uniform throughout the table.

One motivation for this dissertation is to address the mismatch between the utility and

accessibility of data tables, particularly geographic data tables, on the Web. While these ta-

bles’ contents can be thought of as a vast, heterogeneous, distributed database, our tools for

exploring this database are relatively primitive. Some search sites, such as Wolfram Alpha

and Google’s experimental Table Search interface, provide a level of support for structured

search queries and results. However, the search functionality generally allows only keyword

searches and the domain of available data in the results are limited. Geographic interpre-

tation of tables is not available except through human-guided processes. A key underlying

problem is that these online data tables are not accompanied by metadata that would allow

programs to easily process them and to understand their structure. Similarly, direct links

between documents are not present, meaning that data found in these tables is isolated from

2

the rich interconnected structure into which the Web is evolving. The absence of primary

and foreign keys, uniqueness constraints, column header specifications, and other standard

pieces of relational metadata, collectively prevent useful querying of this “database”.

To guide the data table extraction process, it is helpful to understand why explicit struc-

tural information is not present in these documents. While tabular data intended for comput-

ers (e.g., XML, RDF) is published in formats that communicate the structure explicitly, in

well-specified ways that allow the data’s schema to be easily accessed by algorithms [57],

data intended for humans (e.g., spreadsheets, HTML tables, PDFs, DOC files) communicates

structural information using implicit visual cues, such as the positioning, styling, and content

of titles, column headers, and data. Consequently, there is no straightforward method for

directly retrieving the structured data that human-oriented documents store. Although many

data publishers recognize this and provide their data in multiple formats to allow for com-

puter or human consumption, a large number of datasets still exist only in human-oriented

formats, and thus lack the necessary metadata for querying.

Similarly, the content within each data table exhibits ambiguity due to expectations

that table authors have of readers which are not fulfilled by automated systems. Specifi-

cally, references to place names can be ambiguous in multiple ways. The two primary forms

of confusion are called geo/non-geo ambiguity and geo/geo ambiguity. Geo/non-geo am-

biguity encompasses situations where toponyms also have common non-geographic inter-

pretations, such as the values [“Caroline”, “Marion”], which could be interpreted as a pair

of given names or as neighboring small towns in Wisconsin. Geo/geo ambiguity arises in

the common case where two places share the same name, as evidenced by the numerous

cities named “Springfield,” “Madison,” or “Clinton” in the United States alone, or named

“London” or “San Antonio” around the world. These ambiguities must be dealt with by

any automated geotagging system. However, existing geotagging systems tend to use either

hand-crafted heuristics with arbitrary thresholds or machine learning methods that require

3

substantial training sets of hand annotated data in order to properly geotag documents.

One of the notable transformative effects of the Internet has been its use as a personal

publishing platform, where individuals can disseminate information regardless of the size of

the audience to whom it is relevant. Like many other types of Web content, data tables are

used to communicate content for a variety of reasons and with a variety of audiences in mind.

At on one end of the spectrum are personal tables, such as listings of an individual’s favorite

bands or a weekly appointment schedules. On the opposite end are common tables, which

are relevant to a broader audience. Common tables include data such as census data, fact

tables about historical figures, or professional sports team schedules. Common tables may

interest a wide audience and be published by several sources or may have an authoritative

source that provides the data in a machine-readable format that could obviate the need for

table extraction. Yet existing automated table extraction research has primarily been directed

at public tables. In order to show the utility of personal tables, one type of table we focus on is

the travel itinerary, which many Internet users post online. Without a service to identify and

expose these itineraries, they remain difficult to search and browse. Our work looks at the

patterns that are used in itinerary creation and which are in turn useful for itinerary detection.

The rest of this chapter is organized as follows. First, we explore characteristics of

data tables and how they inform our strategies for processing them in Section 1.1. With this

context, in Section 1.2, we survey previous work in the area of table processing and outline

an approach for handling tables with complex structure. Section 1.3 provides background

on document geotagging and introduces an approach for geotagging tables that incorporates

their rich structure. Next, in Section 1.4, we discuss amethod for identifying a particular class

of tables: travel itineraries. We then introduce a framework for performing spatial similarity

search on geographic tables in Section 1.5. Finally, we discuss visualization techniques for

interacting with geographic tables in Section 1.6 and outline the remainder of the dissertation

in Section 1.7.

4

1.1 Characteristics of Data Tables

Data tables incorporate various aspects of natural language and structured databases to

express their contents. Since they are constructed by humans, creative uses of their format

and deviations from any formal set of authorship rules are inevitable, which brings to mind

the challenges in parsing natural language. At the same time, data tables would be less useful

if we could not apply some expectation of order and coherence to the interpretation of their

contents, much as we can with more formal relational database systems. Given their semi-

structured nature, it is sometimes helpful to think of data tables as natural language databases

that combine aspects of data, structure, and language.

• Data. Data can be defined broadly as a set of attributes that apply to a set of entities.

In theory, any data can be presented in tabular form, by grouping entities that share

attributes into separate tables, and linking entities with textual references. In practice,

the constraints imposed by the tabular data grid format limits the types of data that can

be displayed, insofar as the displayed list of attributes is shared across multiple entities

and the type of attributes are limited to those that can be displayed in a grid cell.

• Structure. Understanding table structure is crucial for interpreting all but the simplest

of tables. A header row is the most common structural table element, but complex

structures are also found in many tables, including hierarchical headers, nested row

groupings, and aggregation of other values, among others. The structure of a table

dictates the functional role of individual table cells.

• Language. The contents of each cell are determined by the value of the appropriate

attribute, together with the language and formatting constructs used to express it. For

example, highly coupled attributes like city and country may be grouped into a single,

comma-separated cell value. Specific data domains, such as dates, numbers, lists, and

text, come with expectations about formatting and presentation based on the viewer’s

5

experience with processing such values in natural language settings.

Any table processing system should account for the relationship between data, struc-

ture, and language, by specifying the domains that can be handled for each. The body of

available tables that match any constraints within these areas can vary widely, and when sys-

tems only accept simple tables (e.g., with a single header row followed by data rows) with

atomic, textual cell values, they greatly reduce the pool of tables available to them.

While humans process tables much differently than computers, they still require cues

and context in order to understand the contents. Human table authors assume that human table

readers will not look at each cell value in isolation, but instead will be able to infer proper-

ties of an individual cell from its surroundings. The cell’s context provides the means for

disambiguation, the process through which cell values are assigned specific interpretations.

Geographic place names (or toponyms) are commonly ambiguous and can require the use of

context for accurate interpretation. The toponym resolution problem, the focus of Chapter 3,

involves utilizing surrounding context in order to assign geographic interpretations to place

names. Toponyms, or place names, are textual references to geographic entities that are fre-

quently used in place of spatial specifications of the same entities (e.g., latitude and longitude

coordinates of point features, or region boundaries for areas), but introduce ambiguity when

multiple places share the same name. Additionally, table creators employ a variety of layout

and formatting patterns to communicate structural information about a table’s data. Some

patterns are extremely common (such as positioning column headers in the top row, or posi-

tioning the primary entity of each row in the leftmost column) while others are rare (such as

repeating column headers in the bottom row) or are primarily found in tables within a specific

domain (such as the divided rows found in the periodic table of elements).

To understand table composition, it is helpful to remember that table authors havemany

options to present their data, but in many cases tables lie at a sweet spot balancing precision

and density of data. While using natural language (e.g., English) sentences to describe data

6

is possible, it is typically much less compact than a presentation of the same data in tabular

format. On the opposite end of the spectrum are charts, graphs, and diagrams, which can

include thousands of data points in a small space by sacrificing the precision of textually

specified values. The desire for both compactness and precision results in table designs that

require user inferences rather than use extra space to specify a strict schema specification,

while also giving an incentive to table authors to “fill out” the table and include data values

that might otherwise not be included.

1.2 Table Processing

Presentational data tables1 make use of a variety of mechanisms to signal how the

table is structured. In Figure 1.1, a sample of tables found in documents on the Web are

shown, illustrating a variety of table styles and structures. Research on using data tables

has focused on a variety of applications, including ontology generation and expansion [38,

43, 46, 52, 103], question answering [40, 80], correcting spreadsheet errors [36], allowing

search over data tables [19, 20, 21, 67, 70], and data integration [16, 30, 59, 71, 74, 101, 105,

106, 113]. For an overview of table processing paradigms, refer to the surveys by Hurst [50],

Zanibbi et al. [115], Embley et al. [35] and Silva et al. [98]. Table-related tasks depend on the

analysis of particular table structures, including the segmentation of cells in visual media and

PDF documents [12, 44], classification of tables as relational or non-relational [20, 22, 109],

understanding nested table headers [53, 95, 107, 108], detecting row patterns [81], tables in

the form of lists [34], recognizing table roles [27], and summarizing table contents [23]. In

addition to research publications, Google has experimented with public search systems such

as Google’s experimental Table Search2 and the now-deprecated Google Squared project3.
1The term “presentational data tables” is used to distinguish tables found in spreadsheets, HTML pages and

PDF or Microsoft Word documents from table data structures in relational databases. We generally shorten this
to “data tables” or simply “tables” in this dissertation when the meaning is clear from context.

2https://research.google.com/tables
3http://googleblog.blogspot.com/2009/06/square-your-search-results-with-google.html

7

https://research.google.com/tables
http://googleblog.blogspot.com/2009/06/square-your-search-results-with-google.html

Interestingly, different data table formats make different sets of mechanisms available

and tend to adhere to different structural and stylistic norms. Spreadsheets, in particular,

contain various formatting and content generation mechanisms that are not available in other

table media. One aspect unique to spreadsheets, in contrast to document formats which con-

tain tabular elements, is that the grid of cells within a spreadsheet constitutes the entire space

for communicating information. While HTML pages can contain explanatory text accom-

panying an HTML data table and PDF documents frequently contain figure captions that

describe the contents of a table, spreadsheet authors must include explanatory text or con-

textual information within spreadsheet cells. This leads to ambiguity during the automated

parsing of spreadsheets as data tables, because there are frequently non-data values along-

side the data values. This is a primary factor contributing to the lack of attention paid to the

spreadsheet parsing task in prior work. More generally, tables containing non-data elements

have been overlooked in much prior work because the quantity of simpler tables has been

viewed as a large enough corpus for many methods. HTML tables, meanwhile, have their

own set of distinguishing characteristics. One of these is the presence of the <th> tag to

indicate a header cell. Unfortunately, these are frequently misused or omitted so they cannot

be used as reliable indicators of structure. One of the aims of this work is to increase the pool

of usable tables by removing restrictions on complex table structures.

Most of the earliest references to mining presentational tables focus on textual tables,

which are tables created by aligning values into columns using a fixed-width font. This

was the predominant way of presenting tables in computer-based documents before rich text

document formats became more commonly used. Early research explored several challenges

raised by textual table extraction [50, 81, 115]. First, text documents without markup contain

no uniform indicators for the beginning and end of tables, their presence and bounds must be

decided based upon visual differences. A second challenge in this setting is segmenting cells;

since whitespace is used to break both words and cell values, its presence can be ambiguous.

8

Table 3.
CBO's Budget Projections for Fiscal Year 1996
(In billions of dollars)

: May August Change

:

Revenues :
Individual income taxes : 636 652 16
Corporate income taxes : 169 170 1
Social insurance taxes : 504 508 5
Excise taxes : 52 54 2
Other : 67 65 -2

: ----- ----- ---
Total : 1,428 1,450 16

Figure 1.1: Sample data tables in a variety of formats

9

HTML tables were addressed in subsequent research, initially by Chen et al. [22]. As

with many approaches discussed here, theirs involves a multi-stage processing pipeline. In

the first stage, a simple filter is used to weed out “non-tables”, which are tables that are used

for layout, forms, or menus but which do not contain data. The filtering process involves

counting the total number of cells in the table and the number that contain hyperlinks, form

elements, or images. A threshold is applied to each of these counts in order to classify each

encountered table. In the second stage, cell values are compared to the values of neighboring

cells and deemed “similar” if they match according to one or more criteria—by containing

similar characters, containing similar value formats, or both containing numbers. If the total

number of neighboring cells exhibiting similarity does not exceed a selected threshold, the

table is regarded as a “non-table” and discarded. The final phase uses a set of heuristics to

extract value-attribute pairs. In an evaluation on 918 Chinese airline website tables, the table

recognition phases achieve an F-measure of 86.50%. The experiment incrementally adds

similarity metrics and unsurprisingly observes the largest jump in recognition performance

when neighboring numeric cells are treated as similar.

Wang and Hu [109] build on the “non-table” filtering work of Chen et al. to focus

on the task of detecting “genuine” vs “non-genuine” tables. They define genuine tables as

tables where “a two dimensional grid is semantically significant in conveying the logical

relations among the cells”. This is a crucial distinction for any system that makes use of

HTML tables, since the vast majority do not contain data. Rather, tables have commonly

been used as a means of controlling layout on HTML pages, aligning web forms, displaying

calendars, positioning menus, and many other uses that do not present relational data. Wang

and Hu define layout, content type, and word group features as input for a classifier. Both

decision tree and support vector machine models were trained on a manually annotated set of

tables and evaluated for classifying genuine from non-genuine tables, and the results showed

a substantial improvement over a similar classifier based on heuristics.

10

An important early contribution to the structural analysis of tables was the introduc-

tion of a notation to describe the relationships between nested headers (for both rows and

columns) and the individual attribute values that they apply to, which is now known as Wang

notation after its creator [107]. The key idea of Wang notation is to capture an abstract,

layout-independent view of a table’s data. The presentation form of a table is the concrete

grid of cell values that serves as an instantiation of the abstract table. Later efforts make use

of this notation for user-guided conversion of abstract tables from concrete tables [53] and for

extracting category trees among column and row headers that can be used to index individual

data cells [95].

Cafarella et al. [19, 20, 21] introduced WebTables, a system for extracting data from

the 14.1 billion HTML tables found by Google’s general-purpose web crawler. The WebTa-

bles extraction method uses a pair of rule-based classifiers to make two decisions regarding

each encountered table. First, tables are determined to be “relational” or “non-relational”,

using similar definitions as the genuine vs. non-genuine decision of Wang and Hu and the

actual vs. non-table decision of Chen et al. Non-relational tables are discarded at this stage.

Next, the first row of each relational table is classified as a “header” or not; based on a hand-

marked sample, they find that 71% of true relational tables include a header in the first row.

Importantly, the classifier used in the WebTables method “is tuned to give very high recall at

the cost of lower precision” to allow asmany tables as possible to pass through to downstream

applications, which can perform additional filtering if the high quantity of non-relational ta-

bles is detrimental. This emphasis leads to an observed precision of only 41% for recognizing

relational tables in an evaluation corpus.

The WebTables method’s prioritization of recall over precision is well-justified in the

sense that applications that make use of the extracted table data must make decisions about

which tables are relevant, but cannot make such a decision if the table is judged to be non-

relational and hence discarded to begin with. A contribution of this dissertation is a method

11

for further increasing the pool of usable tables beyond the work of WebTables. In particular,

our table extraction method focuses on structural components of spreadsheets that have thus

far prevented them from serving as high-quality sources of structured data for data mining

and retrieval. Given that the WebTables method serves as the table extraction technique

underlying several other recent research efforts [105], we expect that improvements to its

capabilities will be valuable for future work.

1.3 Table Geotagging

Place names commonly occur within lists and data tables, whose authors frequently

omit qualifications (such as city or state containers) for place names because they expect

the meaning of individual references to be obvious from context. This results in ambiguity,

since when that context is not included, the toponyms must be disambiguated solely by look-

ing at other toponyms in the list or table. Consequently, a transformation from toponym to

geographic coordinates must occur before any spatial processing is possible. By interpreting

each place name as a specific geographic entity (a process known as toponym resolution),

the document containing the list or table is geotagged with the locations it references. While

toponym resolution and geotagging are common topics in current research, the results can be

inaccurate when place names are not well-specified (that is, when place names are not fol-

lowed by a geographic container, such as a country, state, or province name). One aim of this

work is to utilize the context of other places named within the table or list to disambiguate

place names that have multiple geographic interpretations.

Geographic references are a very common component of data tables that can occur in

both (1) the case where the primary entities of a table are geographic (such as demographic

tables where the entities are nations and attribute values are the populations of those nations)

or (2) the case where the primary entities of a table have geographic attributes (such as a table

of marathon results where the entities are the runner’s names and the runners’ hometowns are

12

listed as attribute values). In many cases, the geographic references are not well qualified (for

example, when “Paris, Texas, USA” is being referred to in a list of other towns in northern

Texas, it may simply be presented as “Paris”). In order to resolve the location references

to their intended geographic interpretations, we must make use of the context, which in this

case is composed of the other toponyms in the same table column. In this sense, the table

geotagging task is differentiated from the task of geotagging place names that are found in

plain-text documents, as the place names in table columns are typically more homogeneous.

In particular, we expect that there is an underlying place category which can describe the

toponyms within a single column. Examples of place categories include “states/provinces

in North America”, “large cities in Bavaria, Germany”, or “airports in Italy”. Figure 1.2

shows an example list of toponyms and potential place categories for different geographic

interpretations of those toponyms. By identifying likely place categories for toponym lists,

we can reduce the ambiguity of resolving individual place names.

Our approach for table geotagging relies on a category formulation that we call “com-

bined hierarchical place categories” in order to geotag tables that contain ambiguous place

names with little or no qualifying context. We use a Bayesian likelihood model to assign

geographic categories to toponym lists or individual table columns. This ensures coherence

among the interpretations of toponyms that are expected to have a consistent theme (called

column coherence), due to the tabular structure in which they were found. For example, as-

signing a coherent category to a list improves the odds of resolving “Washington” to mean

“the State ofWashington” when it appears in a list containing the values [Washington, Idaho,

Oregon] (which are all names of American states) while resolving “Washington” to signify

“Washington, DC” when it appears in a list containing the values [Washington, New York,

San Francisco] (American cities).

We use a gazetteer (specifically, the GeoNames geographical database [39]) to iden-

tify possible geographic interpretations for each toponym in a table. For each entity in the

13

Location Date Sales
Rome … …
Athens … …
Dublin … …

European Capitals Cities in Georgia, USA

• Administrative Regions in Europe

• Places in Pennsylvania, USA

• Places in Missouri, USA

• Places in New York, USA

• Places in Kentucky, USA

• Places in Ohio, USA

Other Geographic Interpretations? ?

?

Figure 1.2: Plausible categories of geographic interpretations for a sample table. Many to-
ponym sets, such as the one shown here, have several plausible geographic interpretations
that fall in distinct place categories, whereas only one describes the true category of places
that was intended by the table’s author. In this case, each toponym has an interpretation as a
capital city in Europe or as a city in Georgia, USA. Other, less likely categories of geographic
interpretations are listed. Our method assigns likelihood estimates to each category of geo-
graphic interpretations based on features of the categories and how well it fits the toponym
list.

14

database, the gazetteer provides several descriptive attributes, such as the place type (e.g.,

“capital city”), geographic containers (e.g., the country in which the interpretation is found),

and the population of the place. We create what we call a category taxonomy that represents

all possible combinations of these three attributes. The values of each attribute are encoded

in a tree where the root can describe all interpretations found in the gazetteer, whereas lower

levels can only describe subsets of the interpretations. Using the category taxonomy, we

find all possible categories that describe an individual place name interpretation by finding

each attribute of the interpretation in the attribute trees and taking the Cartesian product of

all possible path prefixes of each attribute. For example, the city of Washington, DC can be

described as a “place on Earth with population ≥ 0”, but that is not a very useful category.

It could also be described as a “city in North America with population ≥ 100”, which is a

slightly more discriminating category. There are many other ways to describe it within our

system of categorization that lead up to the most discriminating category for Washington,

DC, which is “Capital of an independent political entity, located in the District of Columbia,

USA, with population ≥ 100,000”. The key concept is that many categories within our tax-

onomy can be used to describe multiple interpretations from our gazetteer, but for a given list

or column of place names, there is one category that is simultaneously both discriminating

and broad enough to describe an interpretation for each place name.

The Bayesian approach of our method involves measuring certain characteristics of a

small sample of training data and using that data to identify characteristics that are more likely

to occur in true categories for a list or table column. As a concrete example, the statistics

taken from our training data show that interpreting a set of toponyms in a way that they

all have populations greater than 10,000,000 is about 18% more likely to be the expected

way of interpreting them, rather than interpreting them as places that all have populations

greater than 1,000,000, when the population is viewed as an isolated feature. The algorithm

computes several such likelihood values and combines them for an aggregate likelihood score

15

that a specific category of interpretations leads to the expected geotagging results.

Traditional systems that use geotagging, such as Web-a-Where [11], STEWARD [65],

and NewsStand [102], along with general systems for mapping Web content [73], accept

plain-text documents or web pages as the input for a geotagging algorithm. Due to various

types of ambiguity that have been identified [83], geotagging plain-text documents com-

monly involves some level of natural language processing (NLP) to accurately identify indi-

vidual toponyms and reason about the relationships between them. Various forms of evidence

and inference have been applied to geotagging problems [18, 78, 87]. In particular, geo-

tagging accuracy improves when incorporating the assumption of coherence between place

names in several ways. For example, some systems attempt to infer a geographic focus of

individual document sources, known as a local lexicon that can be used to resolve otherwise

ambiguous toponyms [63, 86]. In other work, incorporating the interpretation of toponyms

that appear close together in text was shown to improve toponym resolution accuracy [61].

Additionally, some work has shown that sentence structure, such as place names appear-

ing in comma-separated groups, can be utilized to improve accuracy [66]. However, all of

these methods apply fairly loose definitions of consistency because plain-text documents are

unstructured and heterogeneous. Our aim is to take advantage of the presumed coherence

between entities and attributes that appear in a single data table by asserting a stronger notion

of consistency in our approach.

1.4 Itinerary Tables

For anyone researching travel options for an upcoming vacation in a new part of the

world, the advice and experience of previous visitors can be invaluable. Travel guidebooks,

travel agencies, and online resources fulfill this role in many cases, however it is often dif-

ficult to get a sense of the wide variety of travel options available in a region of interest.

Map-based interfaces for browsing uploaded travel itineraries could substantially improve

16

travel research methods, which currently involve searching for travel suggestions using key-

words, then visiting each search result to verify that it matches the geographic constraints of

the travelers.

Developing such an itinerary browser and search system requires a reliable method

for recognizing and extracting travel itineraries from Web-accessible documents. No prior

research has focused on the specific problem of itinerary detection and retrieval from tables

or text documents. While itineraries exist in a variety of formats, including plain text, we

focus on detecting and extracting itineraries from spreadsheets and tables, which have a more

regular structure and are more likely to contain metadata associated with each stop along the

route.

The primary challenge we address is differentiating between itineraries and other ge-

ographic tables. While textual clues (i.e., the presence of the word “itinerary” in the title of

a worksheet or the caption of an HTML table) can serve as useful indicators, a classification

technique based only on text features would identify many false positives and fail to identify

many false negatives. Additional criteria, such as whether the table includes a column of

dates, may also have a strong correlation with the type of table being processed, but is still

far from conclusive evidence that a table is an itinerary.

Our hypothesis is that spatial analysis is the missing feature for enabling effective

itinerary detection. Specifically, for humans, determining whether or not a table contains

an itinerary frequently becomes easier when the locations in the table are viewed on a map,

with lines connecting consecutive locations, because a variety of real-world constraints on

time, money, and fuel encourage human travel that does not include unnecessarily long or

inefficient routes. Instead, maps representing true itineraries typically follow spatially effi-

cient routes (a concept that we formalize in Section 4.1.2). To measure the efficiency of an

itinerary, our approach makes use of an optimization technique that was originally developed

to generate approximate solutions for the traveling salesman problem (TSP). This optimiza-

17

tion technique, known as 2-opt, functions by removing two edges from a sequential path

through n points and determining whether a shorter overall path can be achieved by substi-

tuting edges with swapped endpoints [28, 68]. In Section 4.1, we restate this optimization in

terms of reasonably ordered subpaths—subpaths that, when reversed, lead to a longer total

path length—and show how the presence or absence of such subpaths is a powerful feature

for determining whether a table contains an itinerary.

In addition to harnessing spatial properties of itineraries, a separate challenge is the

sparsity of itineraries, as a fraction of documents on the Web, or even as a fraction of geo-

graphic tables on the Web. This level of sparsity suggests that amassing a reasonably-sized

collection of itineraries will require crawling large portions of the Web. Furthermore, reli-

ably extracting table data and assigning geographic interpretations to place names within the

tables are prerequisites for accurate identification and extraction of itineraries.

Our work on itinerary detection complements other work in information retrieval that

seeks to expose geographically rich content. While we primarily focus on the spatial, rather

than temporal, aspects of itineraries, research on document-based spatio-temporal extractors

addresses some related tasks. Strötgen et al. [99] described a system for extracting ⟨time,

location⟩ pairs from unstructured text documents, to support browsing the documents as tra-

jectories (for example, following the path of explorers as described on theirWikipedia pages).

A trajectory browser displays the extracted trajectories on a map and provides relevant text

snippets for selected stops. The emphasis of this work is on building accurate spatial and

temporal profiles of targeted documents, so it does not address ways of identifying which

documents contain trajectories. Spatio-temporal extraction systems also exist for a variety of

other source documents, such as RSS feeds [72].

Systems for inferring itineraries from metadata, rather than documents, have been de-

veloped on top of various data sources, including geotagged photo streams [31] and GPS

tracks [114]. These efforts have a rather different focus than ours, stemming from the fact

18

that the locations in these efforts are specified numerically (e.g., as latitude / longitude pairs)

rather than textually, and are presumed to be personal itineraries based on the nature of the

data source. Yoon et al. [114] use GPS logs to identify stops (called “stay points”) and tran-

sitions between clusters of stops, which allow them to recommend itineraries based on time

constraints and the popularity of the stops. The periodic and granular location information

provided by GPS tracks make them a valuable source for itinerary data. However, captur-

ing this data requires that users upload large quantities of GPS tracks to the system or to a

public location, so privacy concerns may hinder its accessibility. Additionally, extracting

segments of GPS tracks that are relevant as itineraries requires addressing a whole other set

of challenges.

1.5 Point Set Queries

Existing spatial search systems (e.g., Google Maps, Yelp, Zillow) allow users to find

points of interest by using a proximity query, such as “find the 3 nearest gas stations with

respect to one’s location q”. This problem can be formalized as the nearest neighbor (NN)

query problem. That is, given a setD of gas stations and a query location q, the nearest neigh-

bor (NN) query [47, 91] identifies a point p in D which minimizes the distance Dist(q,p).

The NN query can also be generalized to the aggregate NN query [79] and the distance

join query [25, 48, 97, 112]. The aggregate NN query finds the point in a point set that

minimizes the aggregate distances to all points in the query set, while the distance join query

finds the point in a point set that is closest to any of the points in the query set. The queries

are similar in that they both involve identifying a closest point p in D that minimizes the

distance to a query object Q which is a set of locations rather than a single location. For

example, given a setQ of stations of a train line and a setD of bus stops of a bus route, find a

stop p inD which minimizes the distance to any train station inQ for transfer purposes. Both

queries can also be extended to top-k variants where multiple results are returned, ranked by

19

the appropriate distance measure.

To support similarity search between extracted point sets, we extend the concept of NN

search further, to the case where (i) the dataset D comprises sets of locations, (ii) the query

object Q is also a set of locations, and (iii) we want to find the k most similar sets in D with

respect to Q using measures described later in this section. Example applications that may

benefit from this method include:

• Given a geographical distribution of a current disease outbreak represented as a location

set Q, an epidemiologist may wish to find k occurrences of outbreaks (from a set D of

historical outbreak distributions) that are most similar to Q. These results can then be

used to help identify correlations between the outbreak in question and other outbreaks.

• Let Q denote a location set of warehouses of one logistics company and D denote a

collection of location sets of gas stations where each location set contains locations

of gas stations owned by a specific gas company. To form a partnership with a gas

company, the logistics company may wish to find the gas company whose location set

S minimizes the average distance from each warehouse in Q to the nearest station in

S.

The similarity between point sets can be measured using the Hausdorff distance, a mea-

sure that is commonly employed in spatial and geometric matching problems in a variety of

contexts, such as shape- or image-matching, geometric modeling, model rendering, and im-

age recognition [9, 41, 76, 100]. In these contexts, the Hausdorff distance is used to measure

how well two shapes, images, or polygonal meshes resemble each other (i.e., A matches B

within a maximum discrepancy of δ). The problem of computing Hausdorff distances be-

tween pairs of point sets, polygons, or meshes is a well-studied problem. For two point sets

with total cardinality O(n), the naive approach computes all pairwise distances to find the

MaxMin distance of the two sets, which has a running time of O(n2). Some approaches to

achieve more efficient performance involve calculating the Voronoi diagram of one point set,

20

and then performing plane sweep [10]. In applications where object locations are not fixed

such as image/shape matching, a more robust use of the Hausdorff distance involves the cal-

culation of the minimum Hausdorff distance under rotation and translation [9, 51]. These

approaches become computationally intractable in high dimensions [100]. Some methods

attempt to improve efficiency by introducing randomization [10] or providing approximate

solutions [100].

Computing the Hausdorff distance is naturally related to executing a nearest neighbor

query, as the Hausdorff distance from point set A to point set B is determined by the max-

imum distance of a point in A to its nearest neighbor in B. Thus it is not surprising that

an approach similar to the one used for solving the k-nearest neighbors (kNN) problem can

also be useful in calculating the Hausdorff distance between two point sets. Nutanong et

al. [76] proposed an algorithm for computing the Hausdorff distance in the context of tra-

jectory matching, which is based on the branch-and-bound approach used for solving the

k-nearest neighbors (kNN) problem. The branch-and-bound search method involves incre-

mentally proceeding through a search tree, and re-ranking and pruning the candidate solu-

tions as the process continues. Tang et al. [100] discuss the difficulties of computing the

exact Hausdorff distance between polygons efficiently in R3, and present an approximation

algorithm that uses a similar branch-and-bound technique that stops when the bounds are

within the specified approximation factor.

In order to support similarity search queries, our goal is not one of finding the most

efficient method of computing the Hausdorff distance, but instead one of reducing the num-

ber of times that the Hausdorff distance is computed. This is done by improving Hausdorff

distance estimates used in a branch-and-bound search to provide a greater pruning capability.

The branch-and-bound principle is widely adopted for similarity search problems [49].

Classic examples of branch-and-bound search in spatial databases are the depth-first [91] and

best-first [47] algorithms to search for nearest neighbors (NNs) over a point set indexed in a

21

hierarchical index, such as the R-Tree [14, 42]. These algorithms use an optimistic estimator

to provide the order in which index nodes are visited and to disregard index nodes containing

points that clearly cannot be resultant NNs.

For example, the best-first NN algorithm uses a priority queue to sort index nodes N

according to the minimum distance MinDist from the query point q, which serves as an

optimistic estimate of the distance from q to any object in N . In this way, index nodes with

large MinDists are scheduled to be visited later than those with smaller MinDists. When a

data point is retrieved from the priority queue, the MinDist estimator guarantees that none

of the nodes currently in the priority queue can produce an object closer to q. As a result,

the search can be used to incrementally find NNs and terminate when a desired number k of

data points are retrieved from the priority queue.

The best-first search principle can also be used to process aggregate NN queries [79],

which are multiple query point generalizations of the NN query. Specifically, given a dataset

D, the aggregate NN of a query point set Q is the data object p in D, which minimizes the

distance to Q according to an aggregate function: min, max, or sum. One can calculate an

optimistic estimate as the smallest possible aggregate distance of any data point in the node

N to Q. For example, an optimistic estimate of max-aggregate from Q to objects in a node

N is given as max{MinDist(q, N) : q ∈ Q}. A best-first search can then be conducted by

visiting nodes N in ascending order of the optimistic estimates. In the next subsection, we

show how the same concept can be applied to similarity search over a collection of point sets.

1.6 Tabular Data Visualization

Geographic data tables can be useful as standalone tables, but as with most geographic

systems, a spatial visualization can quickly boost understanding of the data. We explored

three separate tabular visualization problems, along with the ways in which table context can

be exploited for this purpose.

22

The first domain we analyze are itinerary visualizations. Due to the tabular sources

from which the itineraries are extracted, we can obtain a listing of stops, but unlike GPS

routes or trajectory visualizations, we do not have knowledge of intermediate points or the

paths taken between those stops. In fact, we argue that these are not as important to com-

municate within the framework of an itinerary diagram as the set of stops, their names, and

their connectivity. Our goal is to overlay an itinerary visualization over a map in a way that

allows viewers to easily discern the ordering and location of points on the itinerary. The

process of creating an itinerary visualization is equal parts graph drawing and map labeling,

with additional constraints and optimization criteria that differentiate it from both. A funda-

mental difference from many graph-drawing scenarios is that the locations of the waypoints

are fixed to correspond to their locations on a map, whereas graph-drawing techniques typ-

ically allow for moving nodes to optimize the layout. Another difference is that we allow

for the usage of curved edges for itineraries, which is uncommon in graph-drawing contexts.

Unfortunately, presenting itineraries from these datasets requires a more useful visualization

than a simple map mash-up, which does not communicate the connectivity or the sequence

of visited locations.

Automated itinerary layout bears a resemblance to several existing problem domains

in computer science, including the well-studied areas of graph drawing and map labeling and

the more specific sub-area of route rendering. The canonical graph drawing problem [13,

37] takes as input a graph G = (V,E) (with vertices V and edges E) and seeks to find

an appropriate visual representation of the graph, usually by assigning each vertex v ∈ V

coordinates in the 2D plane. While finding an optimal visual representation of a graph is

a somewhat subjective task, there are common criteria that are used to approximate visual

and aesthetic priorities that are emphasized in manual graph drawing. Some of the primary

considerations are to have an even distribution of nodes and edges, to use uniform or near-

uniform edge lengths, to display isomorphic substructures uniformly, and to minimize the

23

number of edge crossings [45].

A visualization’s utility depends on the amount of information it communicates to

viewers. Usability studies have evaluated user preferences for graph layouts that empha-

size specific priorities. Purchase [82] concluded that “reducing the crossings is by far the

most important aesthetic, while minimizing the number of bends and maximizing symmetry

have a lesser effect.” This is especially relevant in the context of the itinerary layout prob-

lem since translating waypoints is not possible, meaning the only avenue for reducing edge

crossings is by adding bends (i.e., curvature) to the edges.

One approach to drawing general graphs is to use a force-directed layout in which node

and edge pairs are assigned attractive and repulsive forces and a physical simulation is per-

formed to obtain an appropriate layout [37]. Another uses simulated annealing, whereby

layouts are iteratively chosen to either improve upon a previous layout or with some prob-

ability that approaches zero as the process continues [55]. Simulated annealing is designed

to model the physical process of heating a material, then cooling it until it reaches a stable

equilibrium state.

Several efforts have looked at automated map layouts for specialized purposes. Route

map generalization [8] combines aspects of both graph drawing and map labeling and aims

to improve the usability of computer-generated route maps by applying cartographic princi-

ples to their design. The focus of these maps is to communicate information that is helpful

for navigating between places. LineDrive [8] uses simulated annealing to optimize the route

representation, based on a variety of cartographic criteria. Similar efforts have been made

with bike maps [88]. More general “origin-destination” maps, including the bicycle flow

maps [111] strive to show dense connectivity between nodes overlaid on a map, using asym-

metric Bézier curves to emphasize imbalances in bike traffic between two stations. Unlike

in itinerary visualization, these maps do not attempt to avoid overlaps between edges or to

provide labels for important locations.

24

The second visualization setting that we explore is for point set similarity search. Many

existing online map services allow users to interact with locational data in an intuitive man-

ner. For example, users can zoom into an area of interest and issue a query to display primary

schools in the area. The system then displays results ranked according to the distance from

the center of the zoomed area. This type of system works well with cases where each data

entry can be represented as a single location (e.g., a school or a gas station). However, for

cases where each data entry may comprise multiple locations, a single query point or a simple

range query may be insufficient to fully specify a search query. For example, a search for

disease outbreaks that spread geographically in a similar manner to a new outbreak requires

entering a set Q of locations from the new outbreak and comparing Q to a database of pre-

vious outbreaks. There are many other circumstances where doing a full “point set to point

set” query fits the problem definition most closely. To accommodate queries such as these,

we developed a geographic search system called GeoXLS, based on the point set similarity

search methods outlined in Section 1.5.

The third type of visualization we present is called the parallel detail view. The view

turns a geographic table into a collection of satellite images of the table’s locations, which al-

lows inspection of common visible attributes of each geographic location. For example, this

type of view could be applied to a table of Major League Baseball stadiums, state houses, or

islands in Boston Harbor. The resulting visualization is composed of a grid of static satellite

images, one centered on each location listed in the table. In contrast to typical map-based

visualizations of geographic location sets, which enable analysis of the spatial distribution

of the locations, the parallel detail view promotes comparisons between the local geographic

features of each location. Users can draw conclusions about the orientation of baseball sta-

diums, the relative sizes of state houses, and the range of human development present on

islands. One challenge addressed in the development of this visualization was the need for

precise geotagging. Additionally, different types of geographic features are visible at differ-

25

ent zoom levels, so consideration must be given to the relationship between zoom level and

feature type.

1.7 Organization of the Dissertation

The remainder of this dissertation is organized as follows. First, we explore table struc-

tures and patterns of row organization in Chapter 2. Chapter 3 details amethod for geotagging

tables by making use of the consistency we expect of entities found in a single table column.

In Chapter 4, we make use of the geotagging results to identify a particular class of geo-

graphic table, the travel itinerary. A novel method of point set similarity search is explored

in Chapter 5, with applications for large collections of point sets that result from assigning

locations to table rows. Chapter 6 demonstrates several visualization methods for tabular

geographic data, while Chapter 7 provides conclusions and directions for future work.

26

Chapter 2

Structured Extraction of Tabular Data

Existing systems for extracting structure and information from data tables, such as the

well-known technique of Google’s WebTables [20, 21], generally rely on the high quantity

of data tables that have simple structure, in order to avoid dealing with those data tables with

more complex structure. We say a table has simple structure if it consists of one row of header

values, followed by one or more rows containing data values. The values in the header row

describe the domain of values in the data rows beneath it, while the data rows contain tuples

that roughly correspond to rows in a relational database. Many tables exhibit simple struc-

ture, which may justify the focus placed on them by WebTables and others. However, many

tables are more complex. As one example of a more complex structure, tables that contain

geographic data about cities are commonly organized into groups by state/province. These

groups may be designated in several ways, but one popular technique is to insert a group

header row containing the name of the state/province as a single value, directly above the

data rows that it includes. This row is not a data row like the others in the table. Our approach

involves classifying each row based on its function to guide our extraction process. The row

functions that we consider are given in Section 2.3.1. In addition to achieving high accu-

racy rates when classifying the function of individual rows, our focus on handling complex

structure results in very high accuracy rates for correctly interpreting full tables.

Our method utilizes visual attributes of table cells as input for a trained classifier based

27

on conditional random fields [56], a graphical model that can be used for sequence labeling

tasks. The classification procedure involves extracting attributes of individual cells, com-

bining them using a novel logarithmic binning method that we introduce, and processing

them with the classifier. The classifier’s output allows us to discern between relational and

non-relational tables, and furthermore to identify the structural composition of the relational

ones — that is, to classify the constituent rows of each relational table as either header rows,

data rows, non-relational metadata rows, or rows of a few other types that we have identi-

fied. As our experimental evaluation reveals, we improve on the commonly-used WebTa-

bles extraction method by accounting for more complex table structure so that any row can

be recognized as a header row. We perform tests on a new corpus of spreadsheet tables and

HTML tables that we crawled from theWeb, along with an existing corpus collected by other

researchers [67]. In tests on both our new corpus and the existing corpus, the ability of our

method to correctly interpret full tables without error is particularly apparent when compared

to alternatives.

This chapter includes the following contributions. First, we define a set of row classes

that encompasses a broader range of row functions than previous work, enabling more com-

plete post-processing techniques for using the data in other applications. Second, we apply

a novel logarithmic binning scheme to encode collections of individual cell attributes as row

features and show that this performs better than techniques presented in previous work [20,

81]. Third, in addition to HTML tables, we apply table extraction techniques to spreadsheets,

which we believe are a more challenging, but potentially more rewarding, source of tabular

data. Fourth, our method is self-contained and does not depend on outside knowledge bases

or lookup tables as some prior methods have [20]. Finally, our evaluation shows substan-

tial improvements over alternative methods, especially when measuring our method’s ability

to correctly interpret full tables (that is, correctly classifying every row in a table with no

errors). We believe that these aspects of our approach, in combination, provide the best

28

available technique for extracting structured data from the enormous collection of available

data tables.

The rest of this chapter is organized as follows. Section 2.1 provides background on

table processing. Section 2.2 surveys prior work and describes our chosen classification

method, conditional random fields. Section 2.3 presents our schema extraction method while

Section 2.4 discusses common table patterns and their relevance for table extraction accuracy.

Section 2.5 provides an evaluation of our method’s application to spreadsheets and HTML

tables. Section 2.6 presents a description of properties for describing table columns. Finally,

Section 2.7 highlights the benefits of our approach and adds concluding remarks.

2.1 Extraction Preliminaries

Documents in a variety of formats can contain one or more tables. These typically

correspond to individual worksheets of a spreadsheet or individual HTML tables in an HTML

page. Each relational data table has a schema, which, in our context, consists of attribute

names, values, and types, where attribute names are column titles, attribute types are the types

of values in the column, and attribute values correspond to data values in the column’s cells.

Column names are stored in a special row or rows, usually near the head of the table, called

header rows, while the data is stored in rows referred to as data rows. The data table may also

contain descriptions of data, which we refer to as metadata. Metadata appears for several

reasons, such as table titles, notes about the original source of the data, and aggregations

such as column subtotals. Some metadata rows are valuable in interpreting the table’s data,

such as when table data is grouped and a row with a single value serves as a group header,

describing a category for the following rows. The goal of our schema extraction process is

to identify valid data tables along with their associated schemas and data values, which can

be subsequently stored in a relational database or processed for a custom application.

Both spreadsheets and HTML pages can contain tabular data. While spreadsheets con-

29

sist entirely of data tables, HTML pages can contain additional content, as well as data tables

in the form of HTML tables. HTML tables are defined by the <table> tag, and consist of

a collection of rows and cells, denoted by <tr> and <th>/<td> tags, respectively. HTML

tables have similar layout options to spreadsheets, including merged cells (through the use

of rowspan and colspan attributes), header positioning, and metadata row inclusion. In ad-

dition, unlike spreadsheets, HTML tables support the inclusion of some additional structure

relevant to our task, namely the <thead> and <th> tags, which serve to mark header regions

and cells in tables. However, while the presence of these tags is a useful feature in determin-

ing the type of rows they occur in, they are often used for controlling layout and style, rather

than for defining relational header rows in HTML tables. We also found that many HTML

tables do not make use of these tags, as was also observed in prior work [80, 115]. An added

complexity when processing HTML tables is the determination of which visual styles apply

to the text in each cell. Our system for importing HTML documents incorporates Cascad-

ing Style Sheets to address this, including inline, embedded, and external style sheets, when

evaluating the visual attributes of table cells. However, we observed that the external style

sheets only yield modest improvements in accuracy, at the cost of slower processing speeds

due to the increased number of resources that must be downloaded for each document.

Another consideration that must be made is how to handle tables that are not a simple n

xm grid of table cells. Merged table cells (via the colspan and rowspanHTML attributes or

a spreadsheet’s merge cells feature) and nested HTML tables are two ways that this situation

arises. Tables with either of these structures are accepted by our implementation. Our clas-

sifier includes features indicating the presence of merged cells, and after classification takes

place, multiple copies of merged cell values are substituted for the original cell in header

and data rows, so that each cell contains an appropriate string. Finally, unlike some previous

work [109], we attempt to extract schemas from all HTML tables, including nested tables

(i.e., not just leaf tables).

30

2.2 Related Work

Many techniques for processing data tables have been presented (e.g., [22, 38, 52, 64,

70, 81, 105, 109]. See [35] for a survey). The initial challenge of processing tables is to

determine whether a given table contains usable data that is in a suitable format for extraction.

In database terms, we call such tables relational and other tables non-relational. Relational

tables are defined by the relational model introduced by Codd [24], wherein a relational table

consists of a set of attributes (typically found in a header row, such as “Name, Gender, Age”)

and a collection of one or more “tuples” (represented as data rows where each cell value is

a member of its column’s attribute domain, such as “John, Male, 30”). Tables containing

relational data can also include values that do not fit into the relational model (i.e., non-

relational values), such as a title, blank rows, aggregations (e.g., subtotals), and more. In this

chapter, we regard these tables as relational, whereas most prior work has treated these tables

as non-relational. In our view, non-relational values that serve to supplement a relational

table should not disqualify the table from being relational. As an example, we do not want to

discard tables in which the first row contains a table title as non-relational. However, there

are also many tabular grids that are created for purposes other than displaying relational data,

such as HTML tables used for page layout and spreadsheets used as forms. These table

types do not contain relational data that can be processed using relational operators such as

projection or selection, so they should be discarded.

Several techniques focus on the relational/non-relational decision problem. Chen, Tsai,

and Tsai [22] count the number of cells that are similar to their neighbors in terms of text

length and datatypes, and use thresholds on these values to perform relational/non-relational

classification on a set of tables from airline web sites. Instead of using a rule-based approach,

Wang and Hu [109] treat the task of identifying relational data tables as a machine learning

classification problem. They develop several features based on the layout of an HTML table

and the distributions of cell lengths and content types, which serve as inputs to decision tree

31

and support vector machine classifiers. In other work, relational tables are alternatively called

“genuine tables” [109] or tables containing “true relations” [21].

Other methods go further and attempt to categorize the data found within data tables

based on its function. The well-known approach of WebTables [19, 20, 21] builds upon

prior work by using a machine learning classifier to distinguish between relational and non-

relational HTML tables on theWeb. The classifier is tuned for recall over precision, counting

on subsequent processing to filter out non-relational table values. For relational tables, it

attempts to extract any embedded metadata such as the labels and types of the columns,

thereby learning the schema for the table. However, in WebTables, only the first row of

a table is considered a candidate for the table header. In essence, this is due to the simple

table structure assumed by WebTables and derived methods, including the work of Limaye

et al. [67], which extracts relations from HTML tables, but depends on HTML formatting

methods to indicate header cells. As we show in our evaluation, such an assumption discards

a significant number of tables that have more complex structures. Our approach is designed

to handle such complexities, thereby increasing the number of tables available for systems

that process them. Some work on table extraction also relies on external knowledge sources,

such as YAGO [67] or custom fact databases extracted from text on the Web [105]. Our

approach does not include such data, thereby allowing it to run accurately even on tables

with contents that are not so globally relevant that they appear in knowledge bases.

Systems that rely on techniques like these are proliferating. Such systems use data

extracted from data tables for different purposes, from search engines over structured data

documents [80], to database augmentation using “facts” garnered from web tables [113], to

automated ontology construction [52]. These systems handle tables with simple structure

only, and consequently exclude large quantities of valuable table data. The approach pre-

sented in this chapter is more comprehensive, and would provide larger and cleaner sets of

data tables for applications such as these, or more general attempts at schemamatching across

32

a heterogeneous collection of data tables from the web, such as those introduced by Bernstein

et al. [16].

2.3 Table Row Classification

2.3.1 Row Classes

The vast majority of table rows serve functions that can be divided into a small set

of row classes (each identified by a single-letter row label), which we describe here. Each

represents the classification for individual rows of a data table, as defined in Table 2.1. A

minimal fraction of rows we observed (less than .01%) did not fit cleanly into one of these

classes, such as rows containing notes beside cells that otherwise contain data values. In

these cases, we assign the row label of the dominant class of the row.

Table 2.1: Row labels and classes.

Label Description

H Header rows contain cell values that describe the values con-
tained in the subsequent data rows of that column.

D Data rows contain data records (or tuples in relational parlance).
T Title rows describe the entire data collection found in the data

table.
G Group header rows provide categories for subsequent rows, for

example a table containing demographic data about cities may be
grouped by country.

A Aggregate rows contain (typically numeric) summaries of pre-
ceding rows, such as totals/subtotals.

N Non-relational metadata, such as a note, clarification, or any text
that does not contribute data or structure to the data table.

B Blank rows contain only empty cells.

33

2.3.2 Features

As with many machine learning tasks, a large factor in our classifier’s accuracy is

the quality of the input features. A difficulty with the current formulation of our extraction

problem is that we desire a label for each row, yet each row consists of constituent cells,

which can exhibit differing sets of attributes. Our approach to feature selection involves

extracting a collection of attributes for individual cells, then combining attributes from all

cells in the row using a novel binning scheme, in order to construct a set of row features.

We first describe the cell attributes, followed by our method for combining them into row

features.

2.3.3 Cell Attributes

We use a large battery of individual cell attributes as the basis for our features. These

cell attributes fall into the following three broad categories, with specifics of each feature

given at the end of this subsection.

• Layout attributes. Header rows often contain merged table cells with centered text,

whereas data rows rarely contain merged cells and are typically right- or left-justified,

so we make sure to include these properties as cell attributes. Title rows tend to appear

among the first non-blank rows of a table, and often contain values in only a few of

the columns. Group header rows serve as a divider between groups of data rows, and

typically contain only one or two non-blank cells. Additionally, for HTML tables,

we incorporate the effects of tags like <thead> and <th> tag on the alignment of text

within their cells (centered by default).

• Style attributes. Various font styles aremore common in header rows or title rows than

data rows, such as bold, italic, or underlined text. Differences in text and background

colors and variations in date and number formats can also be used to differentiate be-

34

tween rows of distinct classes, so such attributes are extracted in our method.

• Value attributes. Header rows often contain relatively short textual values, rather

than numbers or dates. While data rows may contain many empty cells, header rows

typically contain few to zero blank cells across the full width of the table. Aggregate

rows often indicate that the row contains a total or subtotal, so we include an attribute

to match the case insensitive string total. All of these traits are extracted from data

tables and used as cell attributes.

• Similarity attributes. Similarity attributes are formed as conjunctions of attributes

of neighboring cells. For each cell c, neighboring cell c′ (within the same column),

and attribute α, we compute two similarity attributes for c, cα,A and cα,B. We define

cα,A = cα ∧ c′α and cα,B = cα ∧ ¬c′α. These similarity attributes express similarities

and differences between cells in neighboring rows, which are good indicators for row

classes. (Note that for non-Boolean attribute α, cα,A = 1 iff cα = c′α and cα,B is not

defined).

The full list of individual cell attributes is given below. Boolean attributes are prefixed

with “Is” and end with “?”. Other attributes take discrete textual values. The short text and

long text attributes are given to text cells that contain text shorter or longer than one standard

deviation from mean cell text length in a sample of data tables. Similarity attributes are

conjunctions of individual cell attributes across multiple rows and are not listed below.

2.3.4 Logarithmic Binning

As with any machine learning-based approach, the goal of the training process is to

generalize the training data so that new, previously unseen data can be correctly classified.

In the case of classifying rows in data tables, we encounter additional challenges to achieve

high generalization of our classifier. As an example, upon encountering a 10-column spread-

sheet where one of the rows contains 7 columns with centered text, a classifier should make

35

Table 2.2: Cell attributes by type.

Layout Style Value

IsMerged IsBold? IsEmpty?
Alignment IsItalic? IsText?

IsUnderlined? IsNumeric?
IsColored? IsDate?

Font IsShortText?
Format IsLongText?

IsTotal?

an informed decision on how to label this row based on rows from a training set that share

similar characteristics. In this case, it is important that other 10-column rows with 7 cen-

tered columns share a feature with this row, but we may also want an 11-column row with 8

centered columns to help inform the classifier’s decision. Classifiers achieve highest accu-

racy when fed discriminative features, so we must decide on a feature encoding that properly

respects these similarities.

Table 2.3: Example feature encodings for raw feature value “3 of 11 row cells are numeric”.
The linear encoding method uses real-valued features, while the other methods use Boolean
features.

Encoding Feature Name Value

Linear “Percent numeric” 0.27
Threshold “< 50% of cells are numeric” 1
Direct “3 of 11 cells are numeric” 1
Logarithmic “2 to 3 cells are numeric of 8 to 15 cells” 1

One way to encode cell attributes into row features is with a linear encoding. That

is, the percentage of cells in a row that share a cell attribute is used as a real-valued (i.e.,

non-Boolean) feature, with a value between 0 and 1. Linear feature encodings are used in

several previous approaches to data table extraction, including the “CRFContinuous”method

described by Pinto et al. [81]. However, using percentages for feature values can have some

drawbacks. Indeed, the distribution of row classes is unlikely to change linearly in step with

36

the fraction of row cells that exhibit a specific attribute.

An alternative is to use a threshold encoding, which converts these fractional values

into Boolean features. This encoding is used in the “CRF Binary” method presented by Pinto

et al. [81]. Specifically, their system sets thresholds for various percentage features, such as

an “Alphabet Characters” feature which is considered true if more than 60% of characters in

a line are letters from the alphabet. The choice of threshold values for their system appears

to be ad hoc for each feature, not systematic. More importantly, a single percentage-based

threshold ignores differences between uniform and non-uniform rows.

Both the linear and threshold encodings can be problematic when used universally

across tables with varying widths. “Narrow” tables with few columns exhibit different char-

acteristics from “wide” tables with many columns, and should be treated differently when

encoding features. That is, the cardinality of the columns exhibiting a specific attribute and

the total number of columns in a row both matter, not just their ratio. For example, when 33%

of a row’s cells share an attribute in a 3-column table, the distribution of row labels can differ

greatly from rows where 33% of a row’s cells share the same attribute within a 15-column

table.

To account for the drawbacks of linear and threshold encodings, we could use a direct

encoding, which assigns a unique feature to each unique combination of (c, r), where c is the

number of cells exhibiting an attribute and r is the number of cells in the row. However, this

encoding greatly increases the number of possible row features and thus reduces the chances

of each feature occurring in the tables of the training set, which will significantly reduce row

classification accuracy, especially on wide tables.

We address the drawbacks of linear, threshold, and direct encodings by introducing a

new “binning” scheme. A binning scheme partitions the space of possible raw feature values

into bins, where each bin is assigned a representative feature value. The objectives of our

binning scheme are given here.

37

• Differentiate Between Table Widths. Since tables with different widths generate

different distributions of row labels, their features should be divided into separate bins.

• Aggregate Wide Tables. Tables with 2–6 columns are much more prevalent than

wider tables. To account for the sparsity of some features on wider tables, bins for

wider tables should also be larger.

• Highlight Uniform Rows. Rows where all cells either lack or share an attribute α

should be in separate bins from non-uniform rows. Also, nearly-uniform rows should

be in separate bins from more heterogeneous rows.

These goals led to the encoding we present here, which we call logarithmic binning.

The objective of logarithmic binning is to find an appropriate definition of “similar” in the

table classification context. In the end, we say that two rows Rx and Ry are similar with re-

spect to a certain cell attribute α if the logarithms of their widths are equal and the logarithms

of the number of cells exhibiting or lacking attribute α are equal (all logarithms are base 2).

This is implemented by assigning each row a representative feature for each attribute, based

on these two log values. Formally, for row Ri of length r in which c cells exhibit a specific

cell attribute α, we assign feature “Rα = (a, b)” to Ri ((a, b) is denoted as its bin), where a

and b are computed as follows.

a =

0, if c = 0

⌊log2(c) + 1⌋, if 0 < c ≤ r/2

⌊log2(r − c) + 1⌋−, if r/2 < c < r

0−, if c = r

(2.1)

b = ⌊log2(r)⌋ (2.2)

38

The superscript minus sign in some values of a represents that it is computed based on

r − c rather than c.

Figure 2.1: Graphical representation of bin boundaries for the logarithmic binning encoding.
For a given attribute α, two rows share a bin (and thus, have a common feature value) if the
logarithm of their r values are equal and the logarithm of their c values are equal (or r − c
values, if c > r/2).

Figure 2.1 provides a visual representation of the bin layout induced by logarithmic

binning. In particular, it gives a visualization of the region of combinations of c and r values

that are represented by each bin. The horizontal axis represents r and the vertical axis repre-

sents c/r. Horizontal partitions are made based on the logarithm of the number of columns

in a row, while vertical partitions are made based on the number of cells within a row that

exhibit (or lack) an attribute, given by the definition of a above. So R1 from the previous

example would fall into the bin for rows containing 4 to 7 cells (b = 2), of which 2 to 3 cells

exhibit a specific attribute (a = 2). R2 would also fall into this bin, and thus the two rows

share a feature under this binning scheme.

In the table extraction setting, the goal of logarithmic binning is to generalize the feature

distributions better than the other encodings, and our experimental evaluation confirms that

39

the schema extraction process benefits from its use.

2.3.5 Classifying with Conditional Random Fields

After collecting the feature set for each row in a table, we can assign a row label to each

row using a CRF-based classifier. CRF’s are a popular method for classifying sequences in

various domains such as natural language processing and computational biology.

More formally, conditional random fields (CRFs) are undirected graphical models in-

troduced by Lafferty et al. [56] that can serve as classifiers for sequence labeling tasks. Fre-

quently used for natural language processing, such as part-of-speech tagging, CRFs have

become a popular technique showing accuracy improvements over Hidden Markov Models

(HMMs) and Maximum Entropy Models (MEMs) in many scenarios [56, 81].

CRFs are designed to maximize the probability of a sequence of labels Y , given an

observation sequenceX . The estimated joint probability is defined to be:

P (Y |X) =
1

Z(X)
exp

(∑
j

λjfj(Yi−1,Yi,X, i) +
∑
k

µkgk(Yi,X, i)

)
.

Here i is an index for the sequencesX and Y . F =
∪

j fj andG =
∪

k gk are families

of binary-valued feature functions. Although arbitrary functions may be used, we employ

the independence assumptions of linear chain CRFs, where each fj is active for a distinct

bigram of labels (i.e., a distinct pair of consecutive labels) and each gk is active for a specific

combination of a label and observation. Valuesλj andµk are estimatedmodel parameters that

are computed from training data. Normalization factorZ(X) ensures that the probabilities of

all label sequences sum to 1 for a given observation sequenceX . As Lafferty et al. showed,

computing Z(X) is tractable without considering every possible observation sequence [56].

In the data table scenario, X represents the list of rows in the table, and Y represents the

40

corresponding row classes. As an example, a transition function fj may correspond to the

transition from a header row to a data row, while a state function gk could be active for header

rows that contain no numeric values (the row features used by our method are described in

Section 2.3.2).

Training a CRF model involves estimating the λj and µk parameters using one of sev-

eral training methods. For our table extraction procedure, we use the limited-memory BFGS

algorithm [96], an iterative process that scales well for large datasets, as implemented by the

CRFsuite toolkit [77]. After a CRF is trained, classifying a new sequence is straightforward

and fast, using a dynamic programming algorithm. In previous work, Pinto et al. [81] applied

CRFs to the task of labeling rows in data tables, but limited their focus to ASCII tables from

plain text documents. ASCII tables are useful, but we believe the quantity of other sources

of data tables and the ease of identifying and extracting data from HTML tables and spread-

sheets makes them more intriguing targets. Their study includes many row types that are

specific to ASCII documents, while other generic row types, such as aggregate rows (e.g.,

containing a subtotal) are not treated separately from data rows. In addition, the variety of

structures that are possible in other formats introduces different extraction challenges that are

discussed later in this thesis. In Section 2.3.6, we detail our method for using CRFs in the

table extraction task.

We use CRFs in our system to assign row labels to each row in a new table. First, we

collect a large collection of tables with human-annotated row labels to serve as a training

set. The CRF is trained on this data using the limited-memory BFGS method [96] to deter-

mine optimal values for the model parameters. The logarithmic binning scheme results in a

large number of possible features, however, the training time remains relatively low. One

attribute of CRF classifiers that is beneficial given our choice of cell attributes is that CRFs

can perform well even when multiple features are statistically correlated [96], as ours likely

are. Using the CRF model parameters, dynamic programming is used to compute an optimal

41

sequence of labels to assign to new data tables. This results in row label sequences, such

as “TNNHGDDDAGDDDABN” for Figure 2.2, which we process in the following schema

construction phase.

Figure 2.2: The row labeling process for a sample data table. The list of values on the right
are the resulting row labels. In this case, the classifier correctly identified the first row as a
title row, followed by two non-relational rows, followed by a header row, etc.

2.3.6 Row Classifier

The crux of our technique involves extracting relevant row features to represent each

row of a data table, and then classifying each row using one of several row classes that we

have defined. As with natural language sentences, data tables are constructed in accordance

with general principles that make it easy for viewers of the tables to interpret the data without

explicit instructions for how to do so. These widely-understood principles allow the commu-

nication of schema information based on implicit rules for formatting and positioning of data

cells. We introduce a collection of features that preserves the formatting information present

in data tables and a collection of row classes that more formally encapsulates these princi-

ples. A system built on these components can extract schema information that describes the

42

structure of a data table in a fully automated manner.

To find data blocks and extract their schemas, we employ techniques similar to, though

more general than, those used by WebTables [21]. WebTables determines whether a given

table is relational by using machine learning techniques to train a classifier that labels tables

as relational or non-relational, based on several holistic features of the table. In WebTables,

tables classified as non-relational are discarded. Then, tables classified as relational are sub-

jected to additional machine learning-based classification to detect whether the first row of

the table serves as a header for the table. As we see in collecting a corpus of data tables

from the Web, assuming that column headers appear in the first row of a table disregards ap-

proximately 32% of tables, which are more complicated, in a collection of annotated HTML

tables. Furthermore, this assumption is invalid for an alarming 75% of spreadsheets. In other

words, the WebTables approach only applies to a fraction of all data tables (68% and 25%

of HTML tables and spreadsheets, respectively), due to its assumptions of simplicity for the

structure of the data being processed.

From our analysis of a large number of downloaded spreadsheets and HTML tables,

we observed that headers, data, and other row types are frequently intermixed throughout a

single data table. As a result, our approach is based on a collection of row classes that we

have created to describe the function of rows in nearly all true relational data tables that we

have encountered. For instance, one row class represents data rows with the label “D”, while

the label “H” represents a header row. Based on a large collection of hand-annotated data

tables that we use as a training set, we use supervised classification in the form of a CRF

to estimate the correlation between row features and row labels, and also to determine the

relative likelihoods of transitioning from one row class to another. These estimates are used

by the CRF to assign labels to rows outside of our training set.

Processing individual tableswith our CRF-based classifier allows us to determinewhich

tables contain truly relational data and to extract schema information by utilizing assigned

43

row classifications. The first distinction is necessary because people use spreadsheets and

HTML tables for many creative purposes that do not communicate structured data. For ex-

ample, spreadsheets can be used as forms or instruction manuals, while HTML tables are

used far more often for controlling page layout than for actual data representation. We con-

sider these tables to be non-relational, since they do not contain records of consistent types,

and they are not useful to our schema extraction endeavor. As a result, given an input doc-

ument, our technique can be applied to all data tables, but low scoring tables are treated as

non-relational and discarded.

After determining that a table is relational, the row classes assigned by our classifier

can be used to augment the original table with a more strictly relational structure, which can

then be processed in a variety of ways. The most obvious approach is to concentrate on

the data by simply discarding specific types of rows that are not relevant. In this way, our

procedure can be used as a preprocessing phase to maximize the pool of usable tables that are

accessible to downstream applications. This is the primary motivation for our method, as it

allows the handling of tables that are outside the scope of the WebTables method. Of course,

the results of our method are useful beyond serving as a simple filter for data rows. For

example, when a table of city-level statistics is partitioned by state and this is indicated by a

“group header row” before each partition, the state names will be lost if data rows are treated

individually. This is analogous to database normalization, in a sense, because the state name

appears only once, yet it applies to many data rows. Thus, to output a more complete table,

one can “denormalize” this data by appending a column to the resulting table that contains

the state name. The conversion of tables to a fully relational structure is not the primary focus

of this work, but should be an interesting area to explore in the future.

The schema extraction process is visualized in Figure 2.2. In the rest of this section, we

introduce data table terminology and concepts, define row classes that we attempt to identify

within each table, describe the row features that we use as input for our classifier along with

44

the details of the classifier itself, and finally outline how the output of the classifier can be

used to interpret the data tables.

2.4 Common Row Patterns

In this section, we present common row patterns. Using a large corpus of data tables

with human-judged row labels, we analyzed the sequences of row labels for patterns (the

corpus is described in detail in the next section). We are interested in common table structures

in the form of row label sequences.

Table 2.4: Most common row patterns in data tables.

HTML Spreadsheets

1 HD THD
2 THD HD
3 HDA TBHD
4 THDA THDN
5 H(GD)* HDN
6 H(BD)* TBHD(BN)*

Table 2.4 shows a listing of the six most common row label sequences for both HTML

and spreadsheet tables, using the row labels defined in Table 2.1. Consecutive instances of

the same label are omitted to make the patterns more obvious. Patterns that involve repeated

subsequences denote this with an asterisk. As expected, tables with one or more header rows

followed by one or more data rows are very common in both table formats. Additionally,

tables with a title row preceding the header and data are also common. Spreadsheets are

more likely to contain blank or non-relational rows, so the other patterns are not common to

both lists.

45

2.5 Evaluation

In this section, we present details of our evaluation of the row classification method as

applied to datasets of spreadsheets and HTML tables from the Web.

2.5.1 Datasets

Since previous work has concentrated on extracting data from tables with simple struc-

ture, we found no previously created dataset that was adequate to test the accuracy of our

method on complex tables. Instead, we created a new dataset of spreadsheets and HTML

tables downloaded from the Web. In collecting our datasets, we sought a sample of tabu-

lar data from many different web sites and data sources so that we could test our methods’

applicability across different data domains. To find relevant web sites containing tabular

data, we performed several keyword searches, such as “spreadsheet” and “data table”. For

spreadsheets, we also explicitly searched for spreadsheet files with a .xls extension. These

searches resulted in a list of Web sites, which we then crawled for spreadsheets as well as

for pages containing HTML tables. Because spreadsheets and HTML pages often contain

multiple tables, we consider them separately. Also, note that our current implementation ac-

cepts spreadsheets in .xls format, the default file format through Microsoft Excel 2003. The

newer .xlsx file format is an ISO standard based on XML and serves as the default for newer

versions of Microsoft Excel. However, based on several simple search engine queries at the

time of writing, Web-accessible spreadsheets in the older .xls format appear to outnumber

those in the newer .xlsx format by a ratio of roughly 50 to 1, meaning that we draw our corpus

from a pool containing the vast majority of spreadsheets on the Web.

Characteristics of our collected datasets are listed in Table 2.5. Both are of compara-

ble size in terms of number of documents and number of tables. However, several differ-

ences are apparent. The HTML collection contains many more tables per document than the

46

Table 2.5: Dataset characteristics.

Spreadsheets HTML

Document count 14669 7883
Table count 46408 63009
Row count 5113070 215735
Unique domains 3636 4957

Table 2.6: Top-level domains for table sources.

Spreadsheets HTML

.gov 3476 .com 4835

.us 2829 .org 795

.uk 2710 .edu 576

.com 1592 .net 438

.org 1363 .gov 412

.edu 546 .uk 241

spreadsheet collection, due to HTML tables’ frequent use for page layout, rather than for

data presentation. Also, the total number of rows in the spreadsheet collection far outnum-

bers the number of rows in the HTML collection, since spreadsheets tend to be used for data

manipulation and aggregation, while HTML tables tended to be used for data presentation.

Furthermore, analysis of the domain suffixes of data sources in each collection (shown in

Table 2.6) reveals that most spreadsheets were collected from government sources, while

HTML tables were more frequently collected from commercial and organization domains.

However, both collections have good source and content variety. Spreadsheets were sampled

from 3636 distinct sources, and HTML tables from 4957 distinct sources. The data in these

collections come from a broad range of websites, and span many different topics, including

election results, product lists, radio stations, parking lot lat/long values, demographic data,

and many others.

After creating our collections of spreadsheets and HTML tables, we randomly sampled

47

a subset of these tables for manual annotation. An additional goal in the creation of our test-

ing dataset was to exceed the size of hand-annotated table datasets used in previous work.

The largest datasets found in work that we surveyed came from the WebTables paper and

the work of Limaye et al. [67]. The former was tested on “a large sample of 1000 relations”

judged by humans [20], while the latter was evaluated on collections of 437 hand-annotated

tables, alongwith 6,085machine-annotated tables. Our experimental dataset size is far larger,

as we hand-annotated 16,048 tables (2,259 from spreadsheets and 13,789 from HTML doc-

uments), of which 1,976 were relational (1,048 and 928, respectively) and required manual

annotation of each row. We annotated each row of each table with the label corresponding to

its row class: “H” for header, “D” for data, etc. Furthermore, we annotated the entire table as

relational if it contained at least one header and one data row, and non-relational otherwise.

Statistics from our annotations are listed in Table 2.7.

While the number of annotated documents is similar for both sets, there are consider-

able differences as well. Spreadsheet tables are much more frequently relational than HTML

tables, consisting of 46% and 7% relational tables, respectively. This large difference is not

overly surprising, since most HTML tables were used for page layout or other purposes. Fur-

thermore, 7% relational HTML tables seems at a first glance quite small, but is comparable

to the 1% relational HTML tables of WebTables [20]. The larger percentage is likely due to

the targeted manner in which our datasets were created. Examining the number and types of

annotated rows shows that spreadsheet tables tended to be far larger, in terms of the number

of rows, than HTML tables in the collection. We also studied the schema complexity of rela-

tional tables in our collections, in terms of several factors. First, we searched for tables with

simple schemas—tables with a single header row followed by one or more data rows—and

found that there was a much larger fraction of simple HTML tables than simple spreadsheet

tables. We also found that more spreadsheet tables contained multiple header rows than

HTML tables, and that more spreadsheet tables contained other (i.e., non-data, non-header)

48

Table 2.7: Tables annotated by human judges.

Spreadsheets HTML

Annotated documents 1117 1204

Annotated tables 2259 13789
Relational tables 1048 (46%) 928 (7%)
Non-relational tables 1211 (54%) 12861 (93%)

Annotated rows 435160 20537
Header rows 1479 (<1%) 978 (5%)
Data rows 425195 (98%) 18906 (92%)
Other row classes 8486 (2%) 653 (3%)

Relational tables:
“Simple” schema 257/1048 (25%) 632/928 (68%)
Multiple header rows 157/1048 (15%) 63/928 (7%)
Other row classes 784/1048 (75%) 263/928 (28%)

row classes than HTML tables. These three observations indicate that spreadsheet tables tend

to have more complex structure than their HTML counterparts.

Note that the schema classifications as relational or non-relational are somewhat of a

simplification, as in reality, examined tables were often not completely relational or non-

relational. For example, we found a multitude of nearly-empty spreadsheet tables that were

intended to be printed out and used as fill-in forms, which we classified as non-relational.

Web-based calendars likewise use HTML tables for formatting, and have a quasi-relational

structure but do not contain usable data. Additionally, some tables could be formatted as

relations, but are not, such as tables that present street addresses using multiple table rows

instead of multiple columns, and again we classified these as non-relational for our purposes.

2.5.2 Experimental Setup

Weperformed 10-fold cross validation on our collection of relational HTMLand spread-

sheet tables to obtain our classification results. The dataset was divided into 10 equally-sized

49

groups, then 10 classifiers were trained on each subset of 9 groups, before running experi-

ments on the remaining group. The reported results are averages from the 10 testing runs.

The HTML and spreadsheet tests were performed separately in order to expose differences

between the two table formats. Results were recorded for the following four separate classi-

fication methods.

• WT. WebTables results were obtained using the “Header Detection” features and rule-

based classifier from the Weka toolkit as described in the original WebTables pa-

per [20]. Although theWebTables features for header detection are only defined for the

first row, the extension to cover other rows in a table or spreadsheet can be performed

by recomputing theWebTables features for rows after the first. An additional contribu-

tion of our work is the adaptation of theWebTables classifier to work with spreadsheets

along with the HTML tables that they were originally designed to process.

• B+A. The “Bayes + Automaton” method serves as a baseline method that incorporates

global table structure. As in WebTables, a Bayesian classifier computes the estimated

likelihood of each row being assigned each row label. But rather than choosing the

most likely row label in isolation, a custom automaton is used to find the sequence of

row labels with the highest aggregate likelihood that also adheres to the common table

patterns discussed in Section 2.4, such as H(GD)*.

• CRF-C. The CRF method with continuous features uses a linear feature encoding to

form the input to a CRF. This is a similar encoding to the one used by the “CRF Con-

tinuous” method tested by Pinto et al. [81], but uses the cell attributes and row classes

we developed for spreadsheets and HTML tables.

• CRF-B. The CRF method with binned features uses the full row classification method

given in Section 2.3, including the use of the logarithmic binning from Section 2.3.4

before performing row classification with the trained CRF.

50

The cross-validation sets are partitioned by document (not by table) to avoid using one

table in a training partition when another similar table in the same document is in the testing

partition. The reported accuracy, precision, and recall rates are averages over the 10 training

and testing runs using each method.

2.5.3 Row Classification Evaluation

For our first evaluation, we tested the accuracy of the classifiers at the row classification

task described in Section 2.3. This process yields the assignment of a row class to each row

that represents our best guess of the row’s purpose within the table (selected from our set

of row classes in Section 2.3.1). The correct classification of table rows is a difficult task

because a large number of tables in our corpus are not in a simple tabular format, such as

those with one header row followed by a sequence of data rows. Instead, we found that

many blocks are bordered by non-relational metadata, contain multi-row headers, or include

subtotals or other noisy sections within a single schema block. However, the purpose of our

row labeling procedure is to handle these cases, and our experiments show that it performs

well.

Table 2.8: Test set rows classified correctly.

WT B+A CRF-C CRF-B

Spreadsheets 97.6% 96.7% 99.3% 99.3%
HTML Tables 92.3% 92.7% 98.2% 98.1%

As shown in Table 2.8, the CRF-based methods obtain the best classification accuracy

for both spreadsheets and HTML tables, ahead ofWT andB+A. The higher scores on spread-

sheet rows is a result of the higher proportion of data rows found in spreadsheets, as listed in

Table 2.7. The row-level accuracy is an important metric for schema extraction. However,

the gains are not fully illustrated when all methods have such high scores. If a hypothetical

classifier were to label all rows as data rows (D), it would achieve a 97.7% accuracy rate on

51

spreadsheets and 92.1% accuracy rate on HTML tables, since those are the fractions of rows

in our test corpus that are data rows. Yet this classifier would be useless in the sense that all

tables would contain misclassifications for non-data rows. We conclude that high row-level

accuracy may hide the true power of these methods so we now look at full-table accuracy

rates.

H&D Correct Full Table Correct
0

20

40

60

80

34.1

24.2

58.7

41.9

73.1

47.3

76.0

56.3

A
cc
ur
ac
y
(%

)

WT B+A CRF-C CRF-B

(a) Spreadsheets

H&D Correct Full Table Correct
0

20

40

60

80

46.2
41.2

68.1 67.4

77.4 76.7

85.3 84.6

A
cc
ur
ac
y
(%

)

WT B+A CRF-C CRF-B

(b) HTML Tables

Figure 2.3: Accuracy of classifiers on full spreadsheet tables and full HTML tables. The
accuracy is measured as the percentage of tables in which correct labels are assigned to (i)
all data and header rows, and (ii) all rows in the table.

2.5.4 Full Table Accuracy

We evaluated the accuracy of the four classification methods on full data tables, be-

cause while individual row accuracy is important, errors anywhere within a document may

well affect the usability of the data table in downstream applications. Correctly classifying

individual rows is important. However, even a small number of incorrect row classifications

can potentially lead to significant errors during schema extraction. Thus, we focused this

experiment on the performance of our classifier on entire data tables. The goal, of course,

is perfect classification of each row. However, the schema extraction applications we en-

vision require highest accuracy for data rows, followed by header rows. If all of those are

correctly classified, we can interpret the table relationally, even without correctly classifying

52

the remaining rows (alternatively, we can treat them all as “non-relational”).

The full table accuracy test measures the number of tables in which all rows are cor-

rectly classified and the number of tables in which all data and header rows are correctly

classified (i.e., no false positives or false negatives for those classes). We make a distinction

between these two cases because errors in header and data are critical to classify correctly for

many purposes, while other row types may be “nice-to-have” for some applications, but are

not always crucial. The results are shown in Figure 2.3. For both spreadsheets and HTML

tables, the CRF-B method achieves the best accuracy for parsing full tables correctly. Even

when only header and data rows are considered, which are what the WebTables features are

designed to distinguish between, the WT method is significantly outperformed by the others.

It is also noteworthy that the document-level accuracy is higher for HTML tables, for

all methods, despite the lower row-level accuracy in Table 2.8. This is likely due to the higher

proportion of “simple tables” that exist in the HTML corpus, in combination with the lower

overall proportion of rows that are data rows.

2.5.5 Effects of Feature Binning

The accuracy benefits of the CRF-based methods over WebTables and our automaton

method are clear from the previous subsection. Now we examine the differences between

the CRF methods, CRF-C and CRF-B in order to measure the effects of logarithmic binning.

Since the only difference between the two methods is the feature encoding scheme, we can

conclude that it is the sole cause of any changes in accuracy. The results of this test are

displayed in Table 2.9. We use the standard precision and recall definitions, where precision

is the proportion of all classifications of a specific row class that are true members of that

row class (based on the human annotations), and recall is the fraction of all true members of

a row class that were classified as such. The F1 score is computed as (2 ·P ·R)/(P +R) for

precisionP and recallR, and the change inF1 score betweenCRF-C andCRF-B is displayed.

53

Table 2.9: The precision and recall for the CRF-C and CRF-B classification methods on
spreadsheets and HTML tables. The change in F1 score that results from using the logarith-
mic binning scheme of the CRF-Bmethod is also shown. Row classes are ordered by average
frequency across table types.

Row CRF-C CRF-B Change in
Class Count Precision Recall Precision Recall F1 Score

Spreadsheets

D 425376 .999 .999 .998 .998 −.001
H 1486 .937 .915 .945 .915 +.007
B 3792 .874 .862 .908 .974 +.071
T 702 .739 .756 .766 .822 +.046
G 1312 .669 .480 .758 .385 −.048
N 1877 .576 .709 .446 .639 −.111
A 615 .965 .703 .991 .890 +.123

HTML Tables

D 18920 .988 .995 .991 .995 +.001
H 979 .921 .908 .911 .939 +.011
B 214 .852 .719 .984 .953 +.188
T 154 .702 .717 .875 .913 +.184
G 112 .667 .353 .545 .176 −.195
N 69 .667 .095 .120 .143 −.037
A 89 .059 .074 .706 .444 +.479

The results show some increases and some decreases in the F1 scores for individual

row classes. The high precision and recall of data rows is a result of their frequency in both

spreadsheets and HTML tables. Both classification methods produce similar F1 scores on

these rows. At the opposite end, we note that the low precision and recall rates for group

header rows, aggregate rows and non-relational rows in HTML tables is mainly due to the

small number of tables containing rows of these types—which is the case because HTML

table authors have the ability to place notes or explanations or other metadata within the

document, but outside of the table. In contrast, all visible text in a spreadsheet is placed in

spreadsheet cells, so there is no other place for notes to appear.

54

Although the use of logarithmic binning does not universally increase the F1 score

across all row classes, we emphasize that it does achieve our main objective of increased full

table accuracy. The primary value of these precision/recall results is to examine how row-

level accuracy is affected by the use different feature encoding methods. To that end, we

see that for both table types, CRF-B improves on CRF-C for blank rows, header rows, title

rows, and aggregate rows, while the F1 score is reduced in the cases of group header rows and

non-relational rows. The logarithmic binning scheme was not designed for the recognition of

specific row classes, so the fact that the same row classes show improvements and reductions

in accuracy for both spreadsheets and HTML tables is somewhat surprising. A common trait

of both non-relational rows and group header rows is that they often contain a single non-

blank cell in the leftmost column of a table, while the other cells are blank. Consequently,

the divisions of cell features based on the number of total cells in a row may impede feature

generalization and reduce the accuracy for these row classes. Examination of more complex

binning schemes that address this is left as future work.

2.5.6 Row Class Ambiguity

One way to identify aspects of our approach that may need improvement is to examine

the number of rows of each class that are confused for rows of each other class. We do this

using the confusion matrix shown in Tables 2.10 and 2.11. Each cell of the matrix shows

the percentage of all classified rows that were actually of the class with the label shown in

the leftmost column, but were assigned the row label shown in the top row by the CRF-

B classifier. The shaded cells along the diagonal show correct row classifications, while

the surrounding cells show incorrect classifications. Row classes are ordered by average

frequency across table types. Totals for each row and column are also displayed.

Error-free classification would result in zeroes for all of the non-shaded values (i.e.,

off of the diagonal). However, since our method does result in some misclassified rows, we

55

Table 2.10: Confusion matrix for CRF-B on spreadsheets.

Row label (assigned) Row
SumD H B T G N A

R
ow

la
be
l(
tru
e)

D 97.54% 0.00% 0.04% 0.00% 0.01% 0.16% 0.00% 97.75%

H 0.02% 0.31% 0.00% 0.00% 0.01% 0.00% 0.00% 0.34%

B 0.01% 0.00% 0.84% 0.00% 0.00% 0.01% 0.00% 0.87%

T 0.00% 0.00% 0.00% 0.13% 0.00% 0.03% 0.00% 0.16%

G 0.04% 0.00% 0.00% 0.00% 0.12% 0.14% 0.00% 0.30%

N 0.05% 0.01% 0.04% 0.04% 0.02% 0.28% 0.00% 0.43%

A 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.14%

Col Sum 97.66% 0.33% 0.93% 0.18% 0.15% 0.62% 0.13%

can see where the errors lie. From the confusion matrix for spreadsheets, we observe that

two of the non-diagonal cells have relatively high values. These are the cases of (D,N)

(where the true row class is D, but the row class assigned by CRF-B is N) and (G,N). The

fact that misclassified rows are often interpreted to be non-relational (N) is not surprising,

since non-relational rows are fairly heterogeneous (especially in spreadsheets), and come in

a variety of forms. That they are mistaken for data (D) and group header (G) rows is also

not surprising, given the overall prevalence of data rows, and the frequent similarity between

non-relational rows (such as notes) and group header rows, which both appear commonly

with a single value in the first column of a row. True non-relational rows are also frequently

misclassified.

The confusion matrix for classifying rows in HTML tables shows that the largest errors

arise for (D,H), (G,N), (H,D), (A,D), and (N,D). These HTML row misclassification

rates are all higher than their counterparts in spreadsheet rows. This has multiple causes,

but is primarily due to the size differences between average HTML tables and average tables

found in spreadsheets. Second, HTML tables are generally narrower, which results in less

contrast between the row types and higher levels of confusion. Finally, although the relative

56

Table 2.11: Confusion matrix for CRF-B on HTML tables.

Row label (assigned) Row
SumD H B T G N A

R
ow

la
be
l(
tru
e)

D 91.64% 0.34% 0.02% 0.00% 0.02% 0.03% 0.08% 92.12%

H 0.24% 4.47% 0.00% 0.03% 0.02% 0.00% 0.00% 4.76%

B 0.05% 0.00% 0.99% 0.00% 0.00% 0.00% 0.00% 1.04%

T 0.00% 0.05% 0.00% 0.68% 0.02% 0.00% 0.00% 0.75%

G 0.08% 0.02% 0.00% 0.03% 0.10% 0.32% 0.00% 0.55%

N 0.19% 0.03% 0.00% 0.03% 0.03% 0.05% 0.00% 0.34%

A 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.44%

Col Sum 92.45% 4.91% 1.00% 0.78% 0.18% 0.41% 0.28%

proportion of some row classes (i.e., G, A, and N) is higher in the HTML tables of our corpus

than in the spreadsheet tables, the absolute number of rows of these classes is less, so there

are fewer training examples. Many of the pairs of confused row labels for HTML tables are

similar to those for spreadsheets. Additionally, both data rows and header rows are confused

for each other, which can be attributed to the higher proportion of header rows in HTML

tables. The errors on aggregate rows could potentially be reduced by incorporating more

text indicators into our feature set, including words like “Average” and “Sum”, which we

observed in aggregate rows in our corpus of data tables.

2.5.7 Application to Existing Table Dataset

Our final experiment illustrates the accuracy of the CRF-Bmethod on one of the largest

pre-existing published table datasets, from the work of Limaye et al. [67] (we found no

such dataset for spreadsheets). The Limaye dataset contains four types of relations, three

of which are full HTML tables containing headers (the “Wiki_Manual”, “Web_Relations”,

and “Wiki_Link” collections). The vast majority of these exhibit simple table structure and

contain only header and data rows. Since the original classification goals of this dataset were

57

different from ours, the existing annotations were not sufficient for our purposes, so we an-

notated each table in the dataset by hand for our row classification task. The statistics for

each table collection are shown in Table 2.12. While Wiki_Manual and Web_Relations are

small, Wiki_Link is very large, comprising nearly 6,000 relational tables. Tables with simple

schemas make up a large percentage of each collection, which is expected since a method

similar to WebTables was used to select them.

Table 2.12: Limaye dataset: table information.

Collection # Relational # Rows % Simple Schemas

Wiki_Manual 38 1423 86.8%

Web_Relations 28 1837 78.6%

Wiki_Link 5753 120765 98.0%

We trained the CRF-B classifier on the dataset that was described in Section 2.5.1,

and then tested that classifier on the three collections of HTML tables. The results, listed

in Table 2.13, display the percentage of all rows that were correctly classified, along with

the percentage of tables in which all H and D rows were correct and the percentage of tables

that were entirely correct. Two important observations are worth highlighting. First, each

collection in the Limaye dataset contains a larger percentage of simple schemas than is found

in our own corpus of HTML tables. This means that using our method to detect and process

tables could potentially increase the pool of accessible tables for applications such as the one

described by Limaye et al. [67]. Second, even for the tables that were included in this dataset,

and that are assumed to have simple structure, our method is valuable, since the full table

accuracy numbers in Table 2.13 exceed the percentages of tables with simple schemas. This

is because a non-trivial number of tables with aggregates, row groupings, and non-relational

data rows are present in this dataset and are accurately detected by our CRF-B classifier, but

are not dealt with by simpler methods.

As one example of the benefit of our approach, we examined a table in the Wiki_Link

58

Table 2.13: Limaye dataset: results using CRF-B classifier.

Collection Rows Tables - H&D Tables - Full

Wiki_Manual 99.9% 100% 97.4%

Web_Relations 99.1% 89.3% 89.3%

Wiki_Link 99.9% 99.1% 99.1%

collection that contains data about population density in regions of Italy. There are columns

for Region, Population, Area, and Density, and data rows for every Italian region, followed

by an aggregate row for the same statistics for all of Italy, with the string “Italy” in the Region

column. The final row is correctly detected as an aggregate row by our CRF-B method, due

to its bold font formatting, which allows it to be treated differently from the other rows in

the table. However, if the row is not segregated from the others, methods such as the least

common ancestor (LCA) method evaluated by Limaye et al. would be adversely affected

when determining the column type and cell entity assignments. Even algorithms that are

flexible enough to handle multiple types in a single column could benefit from having less

noise from aggregates such as this example, or group headers and non-relational row text.

Thus, the use of our method as a preprocessor could improve accuracy of table extraction

methods like this by filtering rows that do not fit with the data rows in the table.

2.6 Discussion of Column Properties

Here we present a collection of properties for describing table columns. While our pri-

mary concern has been the identification of table row patterns, thereby isolating data rows

from other structural row types, table columns likewise exhibit a variety of functional prop-

erties, and the sequence of such properties follow common patterns. Unlike with row classes,

which were used to describe each row in the raw table, the column classes apply only to the

data portions of tables, and thus must be assigned after row classification has been performed.

• Primary Entity Columns are analogous to primary key columns in a relational database.

59

Typically they are a single column, but they can also be multiple columns or zero

columns. Each row should contain a unique value or combination of values compared

to the other rows of the table, but as with all data from the Web, this may not be strictly

followed by all table authors.

• Attribute Columns constitute the majority of columns in data tables. Each cell contains

a value that can be viewed as an attribute of the primary entity column value for the

row. The majority of tables contain one or more primary entity columns and one or

more attribute columns.

• Ranking Columns allow viewers to see the row’s position within the table at a glance

and typically consist of a sequence of non-decreasing integers (1, 2, 2, 4, …) or mono-

tonic integers if there are ties by the ranking criteria (1, 2, 2, 4, …).

• Ordered Columns are columns whose values determine the ordering of rows in the

table. Tables are commonly ordered alphabetically, numerically, or by date/time, but

occasionally by an external ordering of entities (e.g., Sunday, Monday, Tuesday, …).

• Secondary Entity Columns are similar to foreign key columns in a relational database.

They differ from primary entity columns because not all attributes in the table describe

a secondary entity.

• Cascading Columns are sparse columns where values are understood to apply to mul-

tiple rows. For example, a table containing county-level demographic data may be

organized by state and have the state column populated only for the first row where it

applies.

• Geographic Columns contain references to geographic locations. Many data tables de-

scribe geography, often specified textually. The values within one geographic column

are usually members of a single geographic type, such as cities, countries, or postal

codes. Many tables includemultiple geographic columns, in which case the geographic

60

cells in each row typically exhibit a containment relationship.

• Non-relational Columns contain values that are not associated with data values in the

row (e.g., notes, asides).

• Blank Columns contain no data, but their presence may indicate transitions that are

useful for determining the function of neighboring columns.

The primary entity and attribute columns are the most common and most useful to

detect. The others vary in the degree of difficulty required for proper identification. Unlike

with row classes, it is common for a single column to have more than one of these properties

(e.g., when a column is both ordered and geographic). Many classifiers, such as the CRF

model we employed for row classification, can be adapted to deal with multi-label data [32,

104].

2.7 Summary

We first developed a set of row classes that represent the most common functions of

individual rows in a data table. We then identified cell attributes that are combined us-

ing the novel logarithmic feature binning technique to serve as input to a classifier based

on conditional random fields. The classifier outputs the sequence of row labels with maxi-

mum likelihood based on these inputs, thus determining the row classifications that are used

for extracting data and structure from the table. This method was shown to lead to a sig-

nificant improvement over the existing WebTables approach, and our logarithmic binning

scheme shows improvements over alternative feature selection methods. Specifically, our

CRF method with logarithmic binning showed substantial improvement over all alternatives

in the full table extraction test, which demonstrates our method’s ability to process arbitrary

tables.

61

Chapter 3

Structured Toponym Resolution

In this chapter, we explore a technique for place name disambiguation (also known

as toponym resolution) that uses Bayesian inference to assign categories to lists or tables

containing place names, and then interprets individual toponyms based on the most likely

category assignments. The categories are defined as 3-tuples of nodes in a place taxonomy

composed of three orthogonal hierarchies: place types (e.g., cities, capitals, rivers, etc.), ge-

ographic containers, and prominence (e.g., based on population). The algorithm is validated

on a collection of geographic tables, where it is shown to achieve higher accuracy than alter-

native methods which do not make use of the full taxonomy. The table geotagging process

associates geographic tables with metadata that is essential for enabling spatial indexing and

browsing operations.

The rest of this chapter is organized as follows. Section 3.1 discusses various chal-

lenges involved in the interpretation of place names in tables. Section 3.2 presents the to-

ponym resolution algorithm. Section 3.3 describes experiments showing our method’s cate-

gorization and toponym resolution accuracy. In Section 3.4, a demonstration system is pre-

sented, which visualizes the geotagging process. Section 3.5 contains some concluding re-

marks.

62

Figure 3.1: Table with a location column containingL = [Alexandria, Arlington, Springfield,
Vienna], geotagged byWolfram Alpha. Wolfram Alpha interprets each toponym as the most
populated place with the name, so “Alexandria” is associated with “Alexandria, Egypt”, “Vi-
enna” with “Vienna, Austria”, “Arlington” with “Arlington, TX, USA”, and “Springfield”
with “Springfield, MO, USA”.

3.1 Geographic Tables

The table geotagging problem can be formalized as follows. Given a grid of data cells,

each containing a character string, determine which cells contain geographic references (the

toponym recognition task) and provide the most likely geographic interpretation for each

selected cell (toponym resolution) in the context of the other cells in the grid.

Our method is motivated by the following model of how table authors construct lists

and tables that contain geographic information. First, the author recognizes that one or more

geographic locations are associated with each entity in the table. The entity for each rowmay

itself be a geographic entity, but this situation need not be treated as a special case. After de-

ciding on the geographic entities that will appear in the table, the author includes a column

with the most descriptive geographic references for each entity. In some cases, the author

includes multiple columns per geographic reference, with the additional columns providing

geographic containers for entities in the primary geographic column. In other cases, the au-

thor assumes the contrast of nearby values can be used to disambiguate the toponyms [110].

63

Figure 3.2: List L, geotagged by our algorithm, which recognizes that the list of toponyms
in L are likely to refer to a cluster of nearby cities in the American state of Virginia.

In the table setting, the context comes in the form of coherent categories of toponyms within

the geographic columns, such as “provinces in Canada”, or “parks in Texas” or “prominent

cities in Europe”. There are multiple dimensions to these categories: the feature type, geo-

graphic container, and feature prominence.

Unfortunately, many places share names, a well-known geotagging challenge known

as entity-entity ambiguity [75] or geo-geo ambiguity [11, 15]. Some place names, such as

“Victoria”, “San Antonio”, and “Rome”/“Roma”, are reused for hundreds of places in dozens

of countries. Additionally, even within a small geographic area, a name can be used to de-

scribe a variety of places, such as “Rappahannock”, which describes a county, cemetery,

mountain, and river in the American state of Virginia. The process of resolving this ambi-

guity is known as toponym resolution [11, 64] and in this section we explore a method for

toponym resolution in the context of tables. This is in contrast to the related problem of to-

ponym recognition [62], where we are interested in determining whether a reference is to be

interpreted as a toponym or not (i.e., is “Jordan” the name of a person or a location).

In contrast to toponyms in plain-text documents, the toponyms that appear within a list

or table column are much more likely to have strong consistency among their types, geo-

64

graphic containers, or prominence, or a combination of all three. Several publicly-available

Web systems support geotagging data from a spreadsheet or list, such as Google Fusion

Tables1 and Wolfram Alpha2, along with special purpose systems such as BatchGeo3 and

MapAList4. Each of these systems performs well when fed documents with well-specified

locations, such as mailing addresses. But the results are poor for individual toponyms, as

shown in Figure 3.1, which demonstrates the result of resolving each toponym individually,

as done by Wolfram Alpha. This can be improved by categorizing possible interpretations,

as shown in Figure 3.2. The more specific problem of geotagging data tables has been ad-

dressed in some settings, such as for ontology extraction [29] and entity discovery in Fusion

Tables [85]. Additionally, some prior work by Lieberman et al. [64] investigates methods for

geotagging spreadsheets, by employing heuristics to determine if a collection of toponyms

can be viewed as either (1) all prominent, (2) all nearby, or (3) all similar place types. These

methods use thresholds to determine which places were prominent or nearby, which we aim

to eliminate using a probabilistic Bayesian method.

3.1.1 Problem Definition

We are given a data table D from a spreadsheet or HTML document that includes one

or more columns of place names. The table contains a two-dimensional grid of data values,

where di,j represents the character string in the i-th column and j-th row of the data values.

A gazetteer G is used to identify place names from the table. Each geographic entity gi ∈ G

is associated with several attributes by the gazetteer: name, alternate names, feature type,

geographic container, population, and coordinates. The goal is to discover the mapping

F : D → G ∪ ∅ that resolves each di,j ∈ D to a geographic entity gi ∈ G or to nothing

(indicating that the string value is not a reference to a place).
1http://tables.googlelabs.com/
2http://wolframalpha.com/
3http://batchgeo.com/
4http://mapalist.com

65

http://tables.googlelabs.com/
http://wolframalpha.com/
http://batchgeo.com/
http://mapalist.com

Place

Water
Feature

StreamLake

Populated
Place

City

Capital
City

Administrative
Area

CountyState/
Province

TT : Feature Type

Earth

North
America

USA

California

Canada

Europe

SwitzerlandItaly

TG: Geographic Container
Population ≥ 0

Population ≥ 100

Population ≥ 101

Population ≥ 105

Population ≥ 106

Population ≥ 109

TP : Prominence

T : Taxonomy for Places

Example Geographic Entities: Tuscany Sacramento Lake Geneva

Figure 3.3: Simplified fragments of T , the taxonomy for geographic entities that is generated
from gazetteer data. The taxonomy is divided into three dimensions, TT , TG, and TP , which
describe the feature type, geographic container, and prominence for geographic entities, re-
spectively. Every geographic entity in the gazetteer belongs to a category c ∈ TT ×TG×TP .
Three example entities are displayed, along with their corresponding locations in each hier-
archy.

66

3.2 Geotagging Data Tables

We view a toponym d as a character string with one or more possible geographic in-

terpretations. The set of possible interpretations, Geo(d) = {g ∈ G | g is a geographic

interpretation of d}, is determined by the entities of the gazetteer G. For example, the in-

terpretations of the string “Washington” include the city of Washington, D.C., the American

state ofWashington, the city ofWashington, England, along with dozens of other, less promi-

nent interpretations. The exact collection of interpretations depends on how strictly names

are matched, such as whether gazetteer entries for “Mount Washington” or “Washington

County” are included as interpretations for the string “Washington”.

3.2.1 Data Extraction

In order to improve the quality and consistency of the dataset upon which this method

is applied, input tables are preprocessed using the CRF-based row classifier, as described

in Chapter 2. This preprocessing phase makes it possible to handle complex spreadsheets

and HTML tables that contain structures such as multiple header rows, sub-total rows, and

notes/footnotes or non-relational rows, which might otherwise cause errors in the geotagging

process. The input to the preprocessor is a table in either spreadsheet format (.xls) or an

HTML file that includes table elements. For relational tables that contain at least one data

row, the preprocessor outputs a list of row classes that describe the functions of the rows

within each table, which are then used to isolate the cells that contain data values from the

other components of the table. The remainder of our method is applied to the data cells only.

3.2.2 Taxonomy for Geographic Entities

The properties that are provided by the gazetteer are used to generate a taxonomy T

for describing geographic entities, which is partially depicted in Figure 3.3. The taxonomy

is defined by hierarchies that represent properties along three orthogonal dimensions.

67

• Feature Type. The feature type describes the class of objects that an entity belongs

to, such as “Capital City” or “Park” or “Stream” or “County”. Feature types belong to

a type hierarchy TT .

• Geographic Container. The geographic container is an administrative region in which

the entity appears. Geographic containers belong to a geographic container hierarchy

TG, in which counties or minor regions are contained by states or provinces, which in

turn are contained by their countries. For example, a category could describe entities

that are in South Africa, or in Shanghai, China.

• Prominence. For our purposes, an entity’s prominence is derived from its population.

Our formulation uses the log10(pop) as the prominence for a place with population pop.

We view the prominence hierarchy TP as having multiple levels, but no branches.

The tree structure of these hierarchies is not directly available from the GeoNames

database. However, it can mostly be generated from the attributes of individual places. The

place type hierarchy consists of levels for the GeoNames’ feature class and feature code at-

tributes, along with an additional level for groups of similar types. The geographic container

hierarchy is derived from the administrative containers listed in GeoNames and an added

level representing continents as the parents of country containers. We note that many ge-

ographic categorizations are handled by the geographic container dimension, but properly

recognizing proximity relationships that cross borders is not directly supported in the current

approach, unless the most likely category includes the common ancestor of the locations in

the container hierarchy. The difficulty arises because proximity relationships lack the regular

structure of a proper containment hierarchy, meaning that the inclusion of such information

into our place taxonomy would lead to an intractable number of possible categories (e.g.,

“cities within 200 miles of Berlin” where Berlin could be replaced with any location on the

globe and the distance threshold could also vary). However an extension to our method that

utilizes proximity relationships should be considered in future work.

68

We define taxonomy T as the Cartesian product TT × TG × TP and an element c ∈ T

is called a category, which has three components, one for each dimension of T . Each entity

g ∈ G has a specific category. For example, “Franklin County” is a county in Ohio, USAwith

population > 1,000,000. The category for this entity, denoted Cat(g), is ⟨County, Ohio,

Population ≥106⟩ with the English description “counties in Ohio, USA, with population ≥

1,000,000”. In addition, this entity could satisfymany other, less-restrictive categories, such

as c′ =“places in USA with population≥ 10,000”. The Boolean function Sat(g, c) is defined

to be true if and only if entity g satisfies category c in this way.

3.2.3 Features

The following measures are useful for estimating how well a list of toponyms is de-

scribed by a specific category.

Coverage. The coverage of a category c over a set of column values D is defined as

the fraction of values in the column with interpretations that satisfy the category.

Cov(D, c) = |{d ∈ D | ∃g ∈ Geo(d) : Sat(g, c)}| / |D| (3.1)

For example, for D = [Washington, New York, Miami] and c = ⟨City, United

States, Population ≥ 106⟩, we have Cov(D, c) = 1.0 because all entries in D are names

of large cities in the United States. For c′ = ⟨State/District, United States, Popula-

tion ≥ 106⟩, Cov(D, c′) ≈ 0.67 because there is no state of Miami in the United States, so

no interpretation of Miami satisfies the category.

Ambiguity. One way to differentiate between categories for describing a set of place

names D is to estimate how specifically each category describes D. For example, the cate-

gory ⟨Place, Earth, Population≥ 0⟩ is satisfied by any valid set of place names. However,

this is not a very specific category, and results in a lot of ambiguity when trying to resolve

69

place names within the category. To encapsulate this concept quantitatively requires defining

the ambiguity of a category c over a set of string values D as the average number of inter-

pretations for each string value that satisfy the category. That is, the ambiguity is equal to

the total number of possible combinations of interpretations, normalized over |D| (i.e., the

geometric mean).

Amb(D, c) =

(∏
d∈D

|{g | g ∈ Geo(d), Sat(g, c)}|

)1/|D|

(3.2)

As an example, the cities of Conway, Lockhart, Oakland, and Oak Ridge are suburbs

of Orlando with populations greater than 1,000. However, there exist larger cities that share

those names across the United States. In particular, there are three cities named Conway,

along with two each named Lockhart, Oakland, and Oak Ridge in the United States with

populations greater than 10,000. Thus there are 3 ·23 = 24 possible combinations of interpre-

tations for these place names in this category, resulting in an ambiguity value of 241/4 ≈ 2.21.

By contrast, for the suburb interpretations, there is exactly one city of population greater than

1,000 with each of those names in Orange County, Florida, so that category has an ambiguity

value of 1. This matches our expectation that the intended categories for a toponym lists

have low ambiguity, all else being equal. However, rather than enforce the direction of the

correlation, we leave it to a Bayesian model.

The algorithm for computing the coverage and ambiguity of place categories for a given

list of toponyms is shown in Algorithm 1. It takes a list of toponymsD as input, and returns

a list of candidate place categories C, augmented with the coverage and ambiguity measures

defined above. The algorithm begins by initializing the return set C (line 1) and Column-

Counts lists (line 2), which will accumulate a sequence of values for each category. The

purpose of these values is to count the number of interpretations of each toponym that satisfy

the category. The algorithm proceeds by iterating through each string value in D and deter-

70

Algorithm 1: FindCategories(D). Given a list of toponyms, return a set of corre-
sponding place categories, with coverage and ambiguity values.

input : List of toponyms D
output : Set of categories C

1 C ← ∅
2 Initialize ColumnCountsc ← empty list for all c ∈ T
3 for each d ∈ D do
4 Initialize CellCountsc ← 0 for all c ∈ T
5 I ← {i | i is a geographic interpretation for d}
6 for i ∈ I do
7 (cT , cG, cP)← GetSpecificCategory(i)
8 pT ← GetAncestors(cT) ∪ {cT}
9 pG ← GetAncestors(cG) ∪ {cG}
10 pP ← GetAncestors(cP) ∪ {cP}
11 for c ∈ pT × pG × pP do
12 CellCountsc ← CellCountsc + 1

13 for c ∈ T where CellCountsc > 0 do
14 Append CellCountsc to ColumnCountsc

15 for c ∈ T where ColumnCountsc is not empty do
16 c.cov← |ColumnCountsc|/|T |
17 c.amb← (

∏
ColumnCountsc)1/|T |

18 C ← C ∪ {c}
19 return C

71

Location Date Sales
Rome … …
Athens … …
Dublin … …

Category Coverage Ambiguity Normalized
Likelihood

country capitals with population ≥ 100,000 in Europe 1.00 1.00 70.13%
county seats with population ≥ 10,000 in Georgia, USA 1.00 1.00 15.07%
administrative regions with population ≥ 100,000 in Europe 1.00 1.26 13.88%
populated places with population ≥ 100 in Pennsylvania, USA 1.00 1.00 0.60%
populated places in Ohio, USA 1.00 2.15 0.05%
places in Missouri, USA 1.00 1.00 0.04%
farms in Limpopo, South Africa 1.00 2.47 0.04%
administrative regions with population ≥ 1,000,000 in Europe 0.67 1.41 0.03%
third-order administrative divisions with population ≥ 100,000 in Europe 0.67 1.00 0.03%
… … … …

Figure 3.4: A sample table (top) and the resulting ranked list of column categories (bottom).
The set of possible categories, along with their coverage and ambiguity values, is computed
using the FindCategories algorithm. Coverage values below 1.0 indicate that not all to-
ponyms have geographic interpretations that are described by the category. Conversely, am-
biguity values greater than 1.0 indicate that multiple geographic interpretations exist within
the category for at least one of the toponyms. The likelihood values are the Bayesian classi-
fication results.

72

mining how many interpretations of each string value satisfy the possible place categories.

For each interpretation of a string value, the function GetSpecificCategory(i) returns the

most specific satisfying category based on the gazetteer attributes and the components of that

category are stored separately (line 7). Each component represents a node in one of the hierar-

chies of the taxonomy T , and the function GetAncestors(n) returns all ancestors of a given

node within the taxonomy (lines 8 to 10). The collection of ancestors within each dimension

are combined using the Cartesian product to get the set of all categories that are satisfied by

the interpretation being examined (line 11). This step makes use of the important property of

our taxonomy that anything that satisfies a node n in one of the dimension hierarchies will

also satisfy Parent(n). Once the full list of satisfying categories is computed, the number of

interpretations is counted (line 12) and the counts are accumulated (lines 13 and 14). Finally,

the accumulated counts are used to compute the coverage and ambiguity of each category

with respect to the values in D (lines 15 to 18) and the resulting set of categories is returned

(line 9).

3.2.4 List Categorization

Having computedCov(D, c) andAmb(D, c) for every possible place category, we pro-

ceed by identifying which of those categories is most probably the correct one. A Bayesian

classifier determines the estimated likelihood that each category c is the intended category

for a set of string values D. Namely, for each c ∈ T , we compute an estimate of p(CD =

c | c, Amb(D,C), Cov(D, c)), where CD represents the intended category for the toponyms

in D. In practice, many categories are not satisfied by any interpretation of any of the

string values, so the space of possible categories is a small portion of the full category

space. The example toponym list [Rome, Athens, Dublin] has at least one interpretation

in 2,141 categories, which appears to be a large number for a three toponym list, but is

dwarfed by |T |, the total number of possible categories. To estimate each category’s like-

lihood, the components of the category c = ⟨cT , cG, cP ⟩ are treated separately so we have

73

lc(D) = p(CD = c | cT , cG, cP , Amb(D, c), Cov(D, c)). We want to separate the in-

fluence of each term on the final likelihood estimate. However, the effect of each term is

very dependent on the coverage value. So, we apply a assumption of independence between

all conditions except for Cov(D, c). This allows us to estimate the joint probability as the

product of four factors, p(CD = c|cT , Cov(D, c)) · p(CD = c|cG, Cov(D, c)) · p(CD =

c|cP , Cov(D, c)) · p(CD = c|Amb(D, c), Cov(D, c)). We can employ the chain rule of

probabilities to show that p(A|B,C) = p(C|A,B)p(A|B)/p(C|B), which we apply to the

individual factors of the likelihood estimate to transform them into a form that we can ap-

proximate using relative frequencies found in a training dataset.

Some transformations are performed to increase the generality of the training instances.

First, the depth within TG, rather than the node itself, is used to match a category candidate

with categories in the training data, which avoids geographic bias in our model. Second,

the values of Amb(D, c) are discretized in order to emphasize categories that are completely

unambiguous (i.e., when Amb(D, c) = 1.0). Finally, the likelihood of a category coverage

value, given one of the category components or the ambiguity value, is modeled as a truncated

normal distribution over the [0, 1] interval, whose mean and standard deviation are computed

from training data [54]. For our system, training data comprised a randomly selected set of

20 toponym lists along with their proper categories. The actual number of training instances

is actually much larger than this, as the 20 lists each have interpretations in a large number

of categories (between 280 and 6,097 categories per toponym list), where all but one serve

as negative training examples.

As shown in Figure 3.4, the result of this process is a collection of potential categories

with corresponding likelihood values. The final steps of our algorithm are to select the most

likely category c based on the computed likelihood values and to resolve each toponym d ∈ D

by selecting the most prominent interpretation g ∈ Geo(d) such that Sat(g, c).

74

3.3 Evaluation

To evaluate the effectiveness of our table geotagging algorithm, we developed a system

to process tables from the Web. In this section, we describe our dataset, analyze its spatio-

textual composition, evaluate the effectiveness of ourmethod for categorization, and compare

its accuracy to that of alternative methods for table geotagging.

3.3.1 Dataset

Our experimental table dataset was selected from our large corpus of spreadsheet docu-

ments (inMicrosoft Excel format) andHTML tables. Non-relational tables were discarded by

the preprocessing phase, as described in Section 3.2.1. From the remaining tables, we sam-

pled 20,000 spreadsheets and 20,000 HTML tables. To avoid biasing our dataset towards

large documents with many tables (i.e., spreadsheets with multiple worksheets or HTML

documents with many table elements), at most one table was selected from each document.

As an initial filter, we identified columns that contain text values that match place names

in GeoNames. To do so, we discarded any column containing fewer than three toponyms

that matched GeoNames entities, within the first 100 values in the column. We then applied

our algorithm to the remaining columns in order to identify those that can be described by

a category from our taxonomy. This resulted in a collection of 12,861 columns from 8,422

tables. The automated processing of these columns by our algorithm results in a large array

of categories, which we describe here.

The distribution of the place types (from TT) of columns in our dataset is shown in Fig-

ure 3.5. As expected, the most common place types found in the columns of our table corpus

are populated places (i.e., cities) and administrative areas (i.e., countries, states, provinces,

counties, etc.). Other, less common place types we observed include schools; airports; coun-

try, state/province, and region capitals; continents; hospitals; and rivers and streams.

75

Places ..1640
Administrative ..693

Political Entities ..540
Independent ...1393

Regions ...214
Divisions ...15
Level 1 ...2754
Level 2 .. 287
Level 3 .. 113
Level 4 ...1

Hydrological ... 29
Lakes ..4
Reservoirs ..2
Streams .. 18

Intermittent ...2
Land Features ..38

Areas ...10
Continents ...10
Parks ..3
Reserve ..1
Region ...1

Economic ..1
Populated

Populated Places ... 4348
Capitals of Political Entities ..25
Populated Localities ...6
Seats of Level 1 Admin Regions ..89
Seats of Level 2 Admin Regions106
Seats of Level 3 Admin Regions ...8
Sections of Populated Places ..6

Roads or Railroads
Streets ..6

Spots, Buildings, or Farms ..157
Air Transport Facilities ..26

Airports ..18
Buildings ..14
Churches .. 1
Cemeteries ..2
Farms ..7
Gas/Oil Plants ...3
Houses ...1
Hospitals ..12
Hotels ..10
Military Installations ..2
Libraries ...4
Hydroelectric Plants ..1
Railroad Stations ..1
Schools ...215
Triangulation Stations ..2

Topographic ...13
Islands ..6
Mountain Ranges ..1
Peaks ..1
Ridges ...1

Figure 3.5: Place type distribution over nodes in TT in the categorized table dataset. Values
on the right indicate the number of columns that included the corresponding place type as
part of their assigned category.

76

Table 3.1: Dataset characteristics.

Spreadsheets HTML

Documents 20,000 20,000
Data column count 234,776 108,795
Data row count 11,984,929 992,309
Data cell count 122,291,632 5,053,901

Geographic tables 5,117 3,305
Geographic columns 7,072 5,789

Many columns were classified with non-leaf types, which occurs when places in the

column have a variety of specific types. For example, in American Baseball, there are some

teams that represent states (e.g., Texas and Colorado, which are identified as administrative

regions in GeoNames) and others that represent cities (e.g., New York and Chicago, which

are identified as populated places), so a column containing these values would be categorized

using the root node of the place type hierarchy. The root node represents generic places and

was part of the assigned category for 1,640 columns according to our classifier. Another

example of a generic place column is from a spreadsheet in our corpus that describes the

itinerary of a trip to China, containing cell values such as “Great Wall of China”, “Beijing”,

“Yangtze River”, and “Shanghai”.

Many place types are not found or are found only rarely in our table dataset. In most

cases, these place types are relatively rare in Web tables, but in others the places are com-

monly represented in shorthand that is not found in GeoNames and consequently they are

not identified by our algorithm. For example, some tables in our dataset contain information

about National Parks, but use the park name without the qualifier, for example, “Yosemite”

instead of “Yosemite National Park”, and the GeoNames gazetteer does not contain this as

an alternate name.

A large number of distinct nodes in the geographic container hierarchy TG were present

in the categories assigned to columns in our dataset. In total, 361 different geographic con-

77

tainers were chosen. The full distribution is too large display in full, but we note that 39.7%

of all geographic containers were “Earth”, 9.8% were at the continent level, 41.6% were at

the country level, 7.4% were at the state/province level, and 1.5% were at the country/region

level. One hundred seventeen countries were part of at least one geographic container, so the

dataset was geographically diverse.

The final component of our taxonomy, the TP prominence hierarchy, contains only 10

nodes (since the population of the world is currently less than 10 billion and the prominence

hierarchy nodes are keyed to powers of 10), with the distribution shown in Figure 3.6.

0

500

1000

1500

2000

2500

3000

0 100 101 102 103 104 105 106 107 108

N
um

be
ro
ft
ab
le
co
lu
m
ns

Population ≥

Figure 3.6: Prominence distribution over nodes in TP in the categorized table dataset.

3.3.2 Category Accuracy

Next, we sampled from the full dataset to obtain a smaller dataset that could be hand-

annotated by human judges and evaluated for correctness. To ensure that a wide variety

of geographic columns were evaluated, columns with a variety of place types were chosen

randomly. In total, 200 columns were chosen for evaluating the category classifications,

balanced over different areas of the place type dimension TT . Fifty columns eachwere chosen

from the following groups:

• ADM: Administrative Features (or a descendant),

78

• POP: Populated Places (or a descendant),

• GP: Generic Places (i.e., the root of TT),

• OTH: Other places types (e.g., schools, airports, etc.).

For each column/category, a human judge determined whether the category that was

returned by our algorithmmatched the values in the column. Results are shown in Figure 3.7.

Overall, 148 of the 200 columns were correctly categorized, with 2 mis-categorized, and

50 that were wrongly chosen as geographic columns. Columns that were categorized as

Administrative or Populated Places achieved the best accuracy rates, with 49 (98%) and 45

(90%) of the columns given the proper categories, respectively.

Since the four groups make up different portions of the full table dataset, we can ex-

trapolate the overall accuracy rate by incorporating the relative prevalence of each group

throughout the larger dataset. We measured the fraction of the full dataset that was catego-

rized into each of the four groups, and found that 46.7% of column categories are administra-

tive (ADM), 35.7% are populated places (POP), 12.8% are generic places (GP), and 4.8% are

other place types (OTH). Weighting the accuracy results by these proportions lets us estimate

an overall accuracy rate of 88.9%.

Most errors were due to non-geographic columns being assigned a place category,

which suggests that we can improve upon our toponym recognition phase to filter out words

that are ambiguous. The most common non-geographic words that were interpreted as to-

ponyms were proper names of people (15 columns). However, the results for columns that

did contain toponyms were promising, with a total of only two incorrect categories out of

148 columns.

79

OTH: 4.8%
GP: 12.8%

POP: 35.7%

ADM: 46.7%

0% 20% 40% 60% 80% 100%

Correct Incorrect Non-Geo

98%

90%

60%

70%

2%-

2%-

2%-

8%

38%

30%

Figure 3.7: Accuracy of our algorithm for categorizing columns of toponyms. Bars are scaled
horizontally to reflect the proportion of results within each group and scaled vertically to
reflect the prevalence of each group within the full dataset.

3.3.3 Toponym Resolution Accuracy

Our final experiment measures our toponym resolution accuracy. From the 200 cat-

egorized columns analyzed in Section 3.3.2, we selected the 148 true geographic columns.

From each column, one cell value was picked at random for inspection. A human judge was

presented with the other values in the column for context and was asked to choose the most

likely interpretation out of all available interpretations for the string that were present in the

gazetteer. If none of the interpretations were valid, but the string was indeed a toponym, the

string was marked as an “unmatched toponym”. Or if the string was not a toponym, the string

was marked as a “non-toponym”.

The results were compared to the toponym resolution output of three algorithms. The

first, Prom, considers only the prominence of the possible interpretations when resolving

each toponym. The second, 2D, is a combination of three classifiers that each only uses two

of the dimensions in our taxonomy T . Each classifier is trained separately with a subset

80

of our feature set. To arrive at a resolution for toponyms, we choose the category with the

highest likelihood value out of the three and pick the most prominent interpretation within

that category. Finally, the third method, 3D, is our full method, which considers features

from all three dimensions of the place taxonomy. The results of this experiment are shown

in Table 3.2.

Table 3.2: Toponym Resolution Results.

Method Accuracy

Prom 101/148 (0.682)
2D 130/148 (0.878)
3D 144/148 (0.973)

As expected, considering more dimensions improves the toponym resolution accuracy.

The Prom method manages to resolve over two-thirds of the toponyms correctly, which is

possible due to the large number of country, state, and metropolis occurrences in our dataset.

The 2D variant improves upon this to achieve nearly 90% accuracy, since the addition of

other attributes allows this method to recognize coherent types and geographically contained

columns. Our full algorithm increases the accuracy rate further, where in all but 4 of the cases,

the interpretation selectedmatched the interpretation that was assigned by our algorithm. This

represents a 97.3% accuracy rate (144/148) for the toponym resolution task on geographic

columns. In both columns that were assigned incorrect categories, the assigned interpretation

did not match the ground truth. And in two other cases, the category was correct, but the

toponym was still ambiguous within the category and a less prominent interpretation was the

correct one (whereas out method chooses the more prominent interpretation in the face of

ambiguity within a category). This result demonstrates the value of using our full taxonomy

of hierarchical place categories for toponym resolution.

81

3.4 Demonstration Interface

We developed a browser-based DHTML interface for demonstrating the combined hi-

erarchical place categories method for geotagging columns of toponyms. Users can submit

place lists or tables and explore the likely categories returned by the classifier and their associ-

ated toponym interpretations. A sample session is shown in Figure 3.8, in which the toponym

list is on the left and the corresponding output of the category classifier is shown to the right.

The category listing includes the plain-English description of each category, along with the

category coverage and ambiguity values over the input strings and the normalized likelihood

that the category was the intended category for the input. In this case the results show that

the most likely category for the toponyms in the input list is “populated places with popula-

tion ≥ 1,000 in Florida, United States”. This describes a consistent set of interpretations for

the input list Orlando, Conway, Lockhart, Oakland, and Oak Ridge. However, alternative

interpretations are possible, such as the second most likely category returned, “cities with

population ≥ 10,000 in the United States”.

3.5 Summary

We introduced and studied the utility of combined hierarchical place categories for

identifying and resolving toponyms in structured datasets. Lists and table columns contain-

ing spatio-textual references can be difficult to geotag correctly because standard contextual

clues, such as geographic containers, are sometimes omitted when the table author expects

the interpretation of the references to be clear from context. However, making use of the

context that is present in a list or column of similar places has not been thoroughly studied

before. Here, we take the approach that the common thread of a list of toponyms can have

varying specificity over multiple dimensions, namely the place type of the locations, their

geographic container, and their prominence. To address this, we showed how to construct a

list of possible categories that can be used to describe the list of toponyms, along with sev-

82

eral measures of each category’s applicability. A Bayesian classifier is used to identify the

most likely category based on observations made from a training data set. Our experimental

analysis shows that the algorithm is effective at categorizing and resolving toponym lists that

come from a large dataset of tables from the Web.

83

Fi
gu
re
3.
8:

Sc
re
en
sh
ot
of

de
m
on
st
ra
tio
n
sy
st
em

fo
rg

eo
ta
gg
in
g
us
in
g
co
m
bi
ne
d
hi
er
ar
ch
ic
al
pl
ac
e
ca
te
go
rie
s.

(1
)U

se
re
nt
er
s
lis
ts
of

si
m
ila
rp
la
ce
si
n
th
e
to
p
le
ft
te
xt
bo
x.
(2
)T

he
sy
st
em

re
tu
rn
sa

ra
nk
ed

lis
to
ft
he

m
os
tl
ik
el
y
ca
te
go
rie
sf
or
de
sc
rib
in
g
th
e
lis
t,
sh
ow

n
in

th
e
to
p
rig
ht
.(
3)
U
se
re
xp
lo
re
si
nt
er
pr
et
at
io
ns
w
ith
in
a
se
le
ct
ed

ca
te
go
ry
’s
co
ns
tra
in
ts
,u
si
ng

bo
th
a
tre
e
vi
su
al
iz
at
io
n
of
th
e
ca
te
go
rie
si
n

th
e
bo
tto
m
rig
ht
an
d
a
m
ap

in
te
rf
ac
e
in
th
e
bo
tto
m
le
ft.

N
od
e
la
be
ls
in
th
e
ca
te
go
ry
tre
e
ar
e
ab
br
ev
ia
te
d
to
av
oi
d
ov
er
la
p
an
d
fu
ll
la
be
ls

ar
e
di
sp
la
ye
d
w
he
n
th
e
us
er
ho
ve
rs
th
e
m
ou
se
po
in
te
ro
ve
ra

no
de
.A

dd
iti
on
al
di
sa
m
bi
gu
at
io
n
an
d
in
te
rf
ac
e
op
tio
ns

ar
e
av
ai
la
bl
e
us
in
g

th
e
lo
w
er
ch
ec
kb
ox
es
.

84

Chapter 4

Itinerary Recognition

Itineraries come inmany formats and presentation styles, making it challenging to iden-

tify them and distinguish them from other data tables that contain listings of place names.

Such a decision is necessary because clearly there are many geographic datasets online that

include place names, but which do not intend those place names to be interpreted as a series of

stops in an itinerary. For example, tables containing demographic datasets or listings of cus-

tomer addresses fall into this category. For our purposes, the term itinerary describes a table

containing places which are intended to be visited in the listed order, while a non-itinerary is

a table which does not have this property. We formalize the problem of identifying itineraries

as follows:

Definition 1. Let L be the set of all valid latitude / longitude locations. Then, given an

ordered collection I = l1, l2, . . . , ln of locations li ∈ L, the itinerary decision problem

(IDP) is to determine whether I represents an itinerary.

Unfortunately, the problem is difficult to solve accurately, even for humans, so the

expected confidence in an algorithm’s solutions must be tempered. However, as we show in

Section 4.1, there are reasonably effective means of addressing this problem, even when the

only availably indicators are lists of geographic coordinates.

We can re-formulate the problem to include additional context alongwith each location,

85

given that our source documents are tables and spreadsheets, not simple lists of geographic

coordinates.

Definition 2. Let T be a table containing an ordered set of relations r1, r2, . . . , rn, where

each relation ri has an associated location li. The table itinerary decision problem (TIDP)

is to determine whether T represents an itinerary.

Both the location-only IDP and context-inclusive TIDP can be addressedwith statistical

and machine learning methods, by incorporating several indicators that have a correlation to

the outcomes of the decision problems. The following types of features are included in our

implementation.

• Efficiency of stop ordering (applies to IDP and TIDP). In general, travel itineraries are

designed with some constraints on the time and effort required to travel between all the

stops, which results in nearby stops being visited consecutively. In place listings where

spatial relationships are not taken into account, the expected length of an itinerary vis-

iting each place in order will be distributed according to the total travel length required

to visit those places in a random order.

• Returning to the start (IDP and TIDP). Itineraries are frequently “round-trips” where

the starting and ending locations are the same.

• Ordering columns (TIDP only). Itinerary tables frequently contain an ordering columns

such as the date that the corresponding location will be visited, or an ordinal number

representing which day within the trip the location will be visited.

• Presence of travel terminology (TIDP only). Some words and phrases are commonly

found in itineraries (e.g., the text “at sea” appears often in itineraries for cruise ships)

and can serve as indicators of the subject of the document.

The diagram in Figure 4.1 shows the processing pipeline for our itinerary extractor.

Documents are initially taken from aWeb crawl and all tables are extracted to an abstract table

86

table crawler

table geo-
tagger

itinerary
identifier

Internet

database

visualization
and search
interface

Figure 4.1: An itinerary processing pipeline.

format. The table geotagger identifies place references in table rows and assigns geographic

interpretations to them. Our primary focus is the next phase, the itinerary identifier, where we

classify geographic tables as either itineraries or non-itineraries. An itinerary search system

could use the results of this phase to enable browsing and searching over a large database

of itineraries, allowing users to visualize and compare itinerary options, like those shown in

Figure 4.2. Targeting tables for itinerary retrieval has the added benefit that metadata for each

stop (such as the date of the stop, any activities performed there, and lodging or transportation

information), if present, is easy to associate with the stop since it is likely to appear in the

same table or spreadsheet row as the stop’s location name.

4.1 Itinerary Recognition

4.1.1 Importing and Geotagging Tables

We employ the table extraction method from Chapter 2 to identify the data and header

sections of candidate tables. Next, the Combined Hierarchical Place Categories method of

Chapter 3 is used to identify geographic tables and assign geographic interpretations to rows

containing toponyms. We modify the geotagging method slightly for this application, using

a different “tie-breaker” procedure in situations where multiple interpretations of a toponym

exist within a list’s assigned category, in order to emphasize the geographical coherence

of itineraries. Instead of selecting the most highly populated interpretation, we select the

87

Figure 4.2: Three sample Italian vacation itineraries found on the Web.

interpretation that is nearest to the geographic centroid of the other toponyms’ interpretations.

In cases where multiple toponyms have ambiguous interpretations within a category, we use

a greedy approach that iteratively selects interpretations closest to the geographic centroid of

all already-selected interpretations.

4.1.2 Identifying Itineraries

The primary concern of this research is identifying itineraries from among the vast

array of geographic tables and spreadsheets. This identification step is necessary because,

while the output of the table geotagger is a collection of geographic tables along with in-

terpretations of their place references, the vast majority of these tables are not intended to

be itineraries — rather, they are tables that include entities with geographic attributes, not a

travel path. Examples of non-itinerary geographic tables are demographic tables, sports team

88

standings, or listings of people that include a column containing each person’s hometown.

Many itineraries share common characteristics with non-itineraries, but the characteristics,

when viewed as a whole, allow us to discern itineraries from non-itineraries in many cases.

Figure 4.3 shows fragments of several representative tables that were found by our

table crawler and determined to include geographic columns. In this example, the tables

share similarities in terms of column headings, data types of nearby columns, and place name

formatting. In this case, the table on the left is not intended as an itinerary, which becomes

more evident when viewing the plotted locations from each table in Figure 4.5. The fact that

the left and right tables share several textual similarities (such as the “Date” and “Location”

column headers and the comma-based place name formatting), but only one is an itinerary,

suggests that rule-based methods or methods that rely on column header text or data types

of nearby columns will have difficulties making the determination. Further, the difference

between the mapped visualizations of the tables led us to believe that spatial analysis of the

tables was an important component in accurately addressing the TIDP.

Using these observations, we developed several heuristics to act as indicators for a

machine learning classifier. The most useful indicators are based on the observation that

itineraries tend to be fairly efficient at visiting stops, in comparison to an ordering of the

stops that is not based on their spatial proximity. This is due to the fact that trip planners

take costs of transportation and travel time into account. In particular, the tendency to prefer

a shorter ordering of stops is measurable by comparing the route length of the original route

to that of an alternate route that visits the same stops, but in a different order. Instead of

comparing with a globally optimal route, which is intractable to compute for even relatively

short itineraries (since the TSP is NP-hard) and does not model true travel itineraries, we

use an interchange procedure that underlies the commonly-used 2-opt method for generating

approximate solutions for the traveling salesman and other optimization problems [28]. Fig-

ure 4.4a shows an example, where an alternate permutation of the location list could reverse

89

Date Location Delivery #

12/16/04 Oestrich-Winkel, DE 20031
03/17/05 Lavera, FR 20053
03/17/05 Lavera, FR 20054
04/27/05 Marl, DE 20065
05/25/05 Beringen, BE 20104
06/23/05 Schwechat-Mannswörth, AT 20112
09/08/05 Dordrecht, NL 20131
11/21/06 Litvinov, CZ 20142
11/10/05 Pasir Gudang, Johor, MY 20152
11/10/05 Pasir Gudang, Johor, MY 20153
12/14/05 Antwerpen, BE 20177
11/16/05 Tehran, IR 20179
12/19/05 Brüssel, BE 20183
01/19/06 Torre Boldone (BG), IT 20186
01/19/06 Torre Boldone (BG), IT 20187

… … …

Day Dest Activities

1 Vienna Hotel check-in
2 Vienna City tour
3 Vienna Transfer to Budapest

Budapest City tour
4 Mohacs Pecs excursion

Villany Wine tasting
5 Vukovar Yugoslav Civil War tour

Novi Sad Walking tour
6 Belgrade City tour
7 Iron Gates Full day cruising
8 Vidin Belogradchik excursion
9 Giurgiu Palace of Parliament

10 Rousse Disembarkation
Plovdiv Walking tour

11 Erdine Lunch stop
12 Istanbul City tour
13 Istanbul Tour Topkapi Palace
14 Istanbul Return flight home

Date ETA Location Notes

9/19/07 8:00 Splendora FBC Depart
10:11 Nacogdoches, TX Gas Stop
12:09 Marshall, TX Gas Stop & Lunch
14:51 Texarkana, AR
15:22 Hope, AR Gas Stop
15:57 Gum Springs, AR
16:23 Arkadelphia, AR Stop

9/20/07 7:30 Arkadelphia, AR Depart
7:39 Caddo Valley Gas

11:16 Dardanelle, AR Gas Stop
13:06 Jasper, AR Lunch
14:26 Dogpatch USA Scenic/Photos
14:42 Harrison, AR Gas Stop & Lunch
16:33 Francis, AR
16:49 Eureka Springs, AR Stop & Gas

9/21/07 9:00 Eureka Springs, AR Depart
10:48 Ozark, AR
11:17 Van Buren, AR Gas & Lunch
12:53 Fort Smith, AR
12:55 Entering Oklahoma
15:10 Sunset Corner, OK
16:04 Entering Arkansas

… … … …

Figure 4.3: Portions of tables containing possible itineraries.

90

a
b

c

d

(a) path abcd

a
b

c

d

(b) path acbd

Figure 4.4: Itineraries generally follow efficient routes. For this example, we expect that an
itinerary visiting locations a, b, c, and d is more likely to visit them in the order abcd (shown in
(a)) than the order acbd (shown in (b)). Conversely, tables containing places that are ordered
efficiently are more likely to be itineraries than tables containing inefficient place orderings.

the order of stops b and c. As shown in Figure 4.4b, this results in a longer total route length

than the original, so is less likely (though still possible) to be chosen as part of an itinerary.

We call location lists with many pairs of points whose reversal results in longer path lengths

locally efficient, meaning that the listing could not be made into a shorter route by simply re-

arranging neighboring stops. Similarly, location lists with many sequences of points whose

reversal results in longer path lengths are said to be generally efficient.

The edge interchange procedure is the basis for two efficiency measures that we use

as features in our itinerary identification algorithm. The first, ϵ1, measures efficiency at the

local level — essentially counting how many consecutive pairs of stops are in the order that

results in the shortest path. The second, ϵ2, measures stop order efficiency over longer se-

quences of locations— counting subsections of the full stop list that could be more efficiently

reconnected to the remainder.

To formalize our concepts of efficiency, we define a preliminary indicator function.

For an ordered set of locations L = l1l2 . . . ln, indexes i, j ≤ n, and d(li, lj) = great circle

91

(a)

(b) (c)

Figure 4.5: Visualizations of the tables from Figure 4.3 as itineraries. While the column
headers and cell types of the left and right tables are similar, the topology that results from
treating each table as an itinerary makes it clear that (a) is unlikely to be an itinerary, while (b)
and (c) are both likely to represent itineraries. In fact, the table visualized in (a) came from
a listing of shipments for a company that is certainly not intended as an itinerary. The table
visualized in (b) contains the schedule for a river cruise through eastern Europe and the table
visualized in (c) is the schedule for a motorcycle club’s ride through several states in the
U.S.A., which are both itineraries.

92

distance between li and lj , let

δi,j(L) =

1 if (d(li, li+1) + d(lj, lj+1)) ≤

(d(li, lj) + d(li+1, lj+1))

0 otherwise.

(4.1)

The δi,j value indicates whether the combined lengths of the edge from li to li+1 and the

edge from lj to lj+1 is shorter than (or equal to) the combined lengths of edges with swapped

endpoints, li to lj and li+1 to lj+1. Equivalently, this indicates whether a permutation of the

location list that reverses the order of locations li+1 . . . lj has a shorter overall path length than

the initial permutation. If not, we say that the subpath from li to lj is reasonably ordered,

because a trivial reversal of the subpath order does not shorten the overall path length. We use

this to define two efficiency measures based on the fraction of subpaths that are reasonably

ordered. For itinerary recognition, these definitions do not consider subpaths that include the

start and end points, because for many trips these points are fixed.

• Local efficiency is the fraction of consecutive stop pairs whose reversal would lead to

a longer total route distance. That is, for locations L = l1l2 . . . ln,

ϵ1(L) =
1

n− 3

n−3∑
i=1

δi,i+2(L). (4.2)

• General efficiency is the fraction of all unique, non-consecutive edge pairs that would

result in a longer total route if their endpoints were swapped. For locations L =

l1l2 . . . ln,

ϵ2(L) =
1(

n−2
2

) n−3∑
i=1

n−1∑
j=i+2

δi,j(L). (4.3)

Each efficiency formula counts the number of valid swaps that result in a longer to-

tal path length, which is then normalized by the total number of valid swaps. For exam-

93

ple, assume we have a table containing five locations (L = l1l2 . . . l5). Then ϵ1(L) =

1
2
(δ1,3(L) + δ2,4(L)) and ϵ2(L) = 1

3
(δ1,3(L) + δ2,4(L) + δ1,4(L)). An example with more

stops is demonstrated in Figure 4.6. Here, there are seven stops (this is a round-trip route, so

a is counted twice). Of the four subpaths with length two that do not connect to the first/last

stop, three are reasonably ordered, resulting in a local efficiency value ϵ1 = 0.75. General

efficiency considers subpaths of length two or greater, of which there are ten, with eight rea-

sonably ordered, resulting in ϵ2 = 0.8. Although ϵ1 and ϵ2 take on similar values for this

path, this is not always the case.

Using terminology from TSP literature [68], if reversing any sub-sequence of L results

in a longer path length, we say that L is 2-optimal. From the definition of ϵ2, we can say that

L is 2-optimal if and only if ϵ2(L) = 1.0. In general, the goal of the efficiency measures

is to quantify the presence of efficient stop ordering. Consequently, we expect itineraries to

exhibit high efficiency values (although values less than one are expected, given that many

travel itineraries do not follow optimal paths), while non-itineraries will tend to have moder-

ate efficiency values clustered near 0.5.

In addition to efficiency measures, we also use several other features when deciding

whether or not a given table represents an itinerary. These include the following ordering

features and text features.

• fr(t) = 1 iff the primary location column of the table includes the same location in the

first and last positions. We call this a round trip table and expect that round trip tables

will be more common in itineraries than non-itineraries.

• fod(t) = # of ordered date/time columns found in the table. Since itineraries are tem-

poral objects, itineraries in tables commonly include a date/time column.

• fon(t) = # of ordered numeric columns found in the table. While ordered numeric

columns are a component of some itinerary tables (such as the center table in Fig-

94

reasonably ordered
not reasonably ordered

first/last stop

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

(a) Local efficiency

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

a
b

c

d

ef

(b) General efficiency

Figure 4.6: Subpaths examined for efficiency measures of example path. In (a), three of four
subpaths of length two are reasonably ordered, so ϵ1 = 0.75. In (b), eight of ten subpaths of
length greater than or equal to two are reasonably ordered, so ϵ2 = 0.8.

95

ure 4.3), they are also common in non-itineraries. We expect this feature to have a

smaller effect on accuracy than the others.

• fa(t) = # of text columns found in the table that are sorted alphabetically. Unlike the

previous two ordering features, we expect that tables containing alphabetically sorted

columns are unlikely to be itineraries, since it is rare for a table to be arranged both

spatially and alphabetically.

• f⃗t(t) = a term vector of words commonly found in itineraries. Currently, we use

a list of 40 words and phrases that we found to have the highest difference in their

TF/IDF values in itineraries versus non-itineraries. Such terms include “itinerary”,

“trip”, “travel”, “airport”, “hotel”, “cruise”, month names, and others.

To account for the loose constraints inherent in manually generated tables, columns are

treated as ordered or alphabetic if at least 90% of the values in the column are greater than or

equal to the preceding value or at most one value is out of order in columns with fewer than

10 values.

We construct a feature vector f⃗(t) for each table t using the features listed above, and

then apply a binary classifier to compute Pr(t is an itinerary|f⃗(t)). Given that our collection

of features includes a variety of feature types (fractional, binary, integer, and term vector),

this is not a clear fit for any one specific machine learning classification model, so we ex-

amine three: (i) a Naive Bayes classifier [33], (ii) a decision tree [17, 89], and (iii) a support

vector machine [26]. We preprocess each feature based on the expected input format for

each specific classification model, giving binary features to the Naive Bayes classifier, raw

numeric values to the decision tree, and standardized (mean- and variance-adjusted) values

to the support vector machine.

96

4.2 Evaluation

4.2.1 Dataset

The tables for our evaluation were taken from a two million page Web crawl that tar-

getedMicrosoft Excel spreadsheets and HTML pages containing tables. Similar to the corpus

creation procedure in previous chapters, we seeded the crawl with search results for queries

of the form “⟨data term⟩ ⟨geo term⟩ ⟨random term⟩ ⟨filetype⟩”. Each term was randomly

selected from a hand-selected set of values or omitted, as our goal was to use a range of

queries to uncover a wide variety of documents. The data term was randomly chosen from

a list of terms that are often found in documents containing tables (such as “table”, “stats”,

etc.). The geo term was randomly chosen from a large collection of place names found in

the GeoNames gazetteer. The random term was a letter, number, or both, chosen at random,

which is used to induce a variety of results for a static combination of the other terms. And

the filetype component was set to “filetype:xls” or “filetype:xlsx” to search for Excel spread-

sheets, or omitted to search for HTML documents containing tables. Statistics for the full

table corpus are shown in Table 4.1. A table extraction module removed tables that were not

found to be data tables (also known as “true” or “relational” tables), resulting in 662 thou-

sand documents. Since some HTML documents contain multiple tables, and spreadsheets

can likely contain multiple worksheets, the aggregate number of data tables in our corpus

was 2.1 million. After running our geotag module to locate toponyms in the tables and as-

sign interpretations to them, we obtained a set of 130 thousand documents containing 235

thousand tables. The geographic tables contained many more rows on average, as there were

around 53 cells per column, compared to 28 cells per column in the full dataset.

The evaluation was performed using a subset of the full corpus where each table was

manually annotated as either an itinerary or non-itinerary. For a table to qualify as an itinerary,

there must be implied travel along the edges between consecutive pairs of places. This defi-

97

nition results in several tables being called itineraries that would not be considered itineraries

for the purposes of a sightseeing trip, but which have the implied-edge property, such as a

listing of exits along a section of highway or stops made by a regional train. For our purposes,

these are all types of itineraries.

In all, we annotated 300 tables as either itineraries or non-itineraries. The first 200 were

selected at random from our full dataset, of which only 3 were true itineraries. The next 100

were chosen from tables with a large number of stops (n ≥ 10) and a high efficiency value

(ϵ1 ≥ 0.8) to ensure an adequate number of itineraries were included in the evaluation corpus

(the number would otherwise be low due to the sparsity problem mentioned earlier). Later

in this chapter, we account for the non-random sampling by scaling measurements based

on the relative frequency of similar efficiency values within the full dataset. Of the 300

annotated tables, 60 were classified as itineraries, and 240 were classified as non-itineraries.

The itineraries had a mean number of stops of 29 and a median of 22, while non-itineraries

had a mean of 27 and a median of 14.

4.2.2 Itinerary Detection

Our evaluation of itinerary detection involved analyzing (i) the discriminatory power

of the efficiency measures, (ii) the overall accuracy of our itinerary detector, and (iii) the

contribution of individual features to classification accuracy.

The observed probability density functions of the efficiency measures are shown in

Figure 4.7. The curves are smoothed using kernel density estimation [90] to reveal trends (and

to avoid uninformative peaks at common fractional values such as 0.5, 0.75, 0.666 . . ., etc.).

Figure 4.7a shows the estimated distribution of ϵ1 values for itineraries and non-itineraries in

our training set. The estimates were calculated by scaling each ϵ observation by the relative

frequency of similar efficiency values within the full dataset.

Evaluation of each classifier on the table itinerary decision problem was performed

98

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Local Efficiency (ϵ1)

D
en
si
ty

Itineraries
Non-Itineraries

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

General Efficiency (ϵ2)

D
en
si
ty

Itineraries
Non-Itineraries

(b)

Figure 4.7: Density of the (a) ϵ1 and (b) ϵ2 measures. As shown, itineraries are much more
likely to obtain high ϵ1 values (> 0.8) than non-itineraries. The vastly different curves sug-
gest that the local efficiency measure is a useful feature for distinguishing between itineraries
and non-itineraries. Similar to the distributions for local efficiency (ϵ1) values, itineraries are
much more likely to have high ϵ2 values than non-itineraries.

Naive Bayes Decision Tree SVM
0

0.2

0.4

0.6

0.8

1

0.38

0.72

0.62

0.79 0.78
0.85

0.51

0.73 0.72

Classifier

Precision Recall F1

Figure 4.8: Precision, recall, andF1 scores for each of the candidate classifiers on the itinerary
identification task. The decision tree classifier achieves the highest F1 score, followed by the
SVM and Naive Bayes classifier.

99

Table 4.1: Dataset characteristics

Full Dataset

Documents 2,000,000
containing data tables 662,511

Data tables 2,128,032
Columns 10,142,785
Cells 280,170,694
After removing non-geographic tables

Documents 130,294
Data Tables 235,433
Columns 1,527,890
Cells 80,432,927

using five-fold cross validation against the annotated data set. For each classifier, we com-

puted the average precision (P), recall (R), and F1 score. Using TP as the number of true

positives (true itineraries correctly classified as itineraries), FP as the number of false neg-

atives (non-itineraries incorrectly classified as itineraries), and FN as the number of false

negatives (true itineraries incorrectly classified as non-itineraries), then P = TP/(TP +FP),

R = TP/(TP + FN), and F1 = 2PR/(P +R). The results are displayed in Figure 4.8. The

decision tree classifier achieves the best F1 score of 0.73, perhaps due to strong interdepen-

dence between the features, which decision trees can exploit. This is followed closely by the

SVMwith an F1 score of 0.72. The Naive Bayes classifier achieves the worst F1 score based

on a very low precision score.

Figure 4.9 shows two examples of correctly classified itinerary tables that appear com-

monly in our corpus—cruises and road trips. Other types of itineraries that appeared included

tour dates and venues for bands and highway exit locations. As an example of the limitations

of our method, two tables that were incorrectly classified by all three classifiers are shown

in Figure 4.10. The first is a table of Dewey Decimal class numbers for books that focus

on individual U.S. states. Interestingly, although this system for organizing books in a li-

brary pre-dates computers or computerized search systems, its choice of ordering leads to

100

a path used by many computer-based geographic indices: a space-filling curve. This effi-

cient path leads to high values of ϵ1 and ϵ2, which cause the classifiers to deem the table an

itinerary, incorrectly. Similarly, the second table is a listing of coastal Italian regions and

various related statistics (only the coastline column is included in the figure). The ordering

of regions is clearly influenced by their spatial location, but like the Dewey Decimal table,

there is no implied edge between consecutive locations in the table, and it is therefore not an

itinerary. The existence of tables such as these, which can be described as spatially-arranged

non-itineraries, explains much of the classification error observed in our evaluation. This

suggests that other spatial features or non-spatial features may be required to successfully

detect and classify them as non-itineraries.

Next, we analyzed the contribution of individual features and combinations of features

to the accuracy of the decision tree classifier (for the rest of this section, we use the decision

tree classifier, as it was the top performer in classification accuracy). We ran the classifica-

tion test repeatedly, while holding out individual features, and compared the results of each

test to the results when all features were included and tabulated the results in Table 4.2. As

expected, the classifier performed no better when features were removed, with the biggest

change coming when we withheld the both efficiency measures. ϵ1. The F1 score in this

case fell from 0.73 to 0.44, a drop of 0.29, which we call the marginal contribution of ϵ1

and ϵ2 to the F1 score. This is a substantial difference in the F1 score and suggests that the

efficiency measures are quite discriminative, in ways that the other features are not. Some-

what surprisingly, the local efficiency score, ϵ1 causes a much larger drop than the general

efficiency score, ϵ2, when withheld individually. We see two potential explanations for this.

First, from a statistical perspective, the nature of the general efficiency measure may be less

informative than the local efficiency measure, as the fraction of itineraries with ϵ2 > 0.8 is

relatively lower, while the fraction of non-itineraries with ϵ2 > 0.8 is relatively higher. Sec-

ond, from a data analysis perspective, it may be that the nature of itineraries leads to more

101

(a) Mediterranean cruise.

(b) Road trip through Africa (table is truncated).

Figure 4.9: Two correctly classified itinerary tables.

102

Dewey
Decimal
Number State
974.1 Maine
974.2 New Hampshire
974.3 Vermont
974.4 Massachusetts
974.5 Rhode Island

… …

(a) Dewey Decimal classes for states in the U.S.A.

Region Coastline
Imperia 62.7 km
Savona 80.5 km
Genova 109.2 km
Massa Carrara 13.0 km
Lucca 20.5 km
… …

(b) Coastal Italian regions.

Figure 4.10: Two examples of misclassified tables. Both tables include lists of locations
that are highly efficient by our definition, causing all three classifiers that we used in our
evaluation to label them as itineraries. In (a), the Dewey Decimal system for book topic
classification is shown, which orders states along a path that resembles a space filling curve.
In (b), a listing of coastal Italian regions presumably follows a path with similarities to some
Italian vacations, but is instead an exhaustive list of such regions and related coastal data.

103

Table 4.2: Feature evaluation

Marginal
F1 Without Contribution

Feature Feature to F1 score

ϵ1 0.62 +0.11
ϵ2 0.70 +0.03

ϵ1 and ϵ2 0.44 +0.29
fr 0.71 +0.02
fod 0.69 +0.04
fon 0.72 +0.01
fa 0.69 +0.04
f⃗t 0.72 +0.01

non-efficiency 0.66 +0.07

local efficiency than general or global efficiency. That is, given the scheduling constraints

that can shape itineraries, people may be inclined to travel efficiently for short periods, but

not aim for a perfectly efficient route from start to finish. Such priorities would explain the

disparate impact of these two efficiency features on our classification accuracy.

Other features all contribute to the performance of the classifier, with the ordered date

column indicator fod and the alphabetic column indicator fa both contributing 0.04 to the

F1 score. The least impact is attributable to the ordered numeric column indicator, fon, and

the text vector, ft, whose removal only caused a decrease of 0.01 in the F1 score. This is

somewhat surprising, since ordered numeric columns are much more prevalent in itineraries

than non-itineraries. By manual inspection of the annotated table corpus, we see that 44%

of true itineraries contain an ordered numeric columns, while they are found in only 15% of

non-itineraries. This may be explained by the presence of temporal words in the term vector

for f⃗t, whose presence may offset the gains otherwise attributable to a numeric column. Still,

the small differences in the impact of these features is overshadowed by the impact of the

efficiency features.

Finally, we looked at the number of itineraries found in our full table corpus. The

decision tree model classified 1,206 itineraries out of the 235,433 geographic tables in our

104

corpus, a total of 0.5%. This is consistent with our expectation that itineraries would be rare,

but prevalent enough that a more complete crawl of the Web would result in a large quantity

of itineraries to allow for map-based browsing.

4.3 Summary

We have presented itinerary retrieval as a new area for geographic data extraction and

implemented a pipeline of processing methods to evaluate our approach, which uses a ma-

chine learning classifier to decide whether a candidate table contains an itinerary. The core of

our method involves computing spatial efficiency measures of the locations listed in a table,

which match our notions of efficiency and were shown to have a substantial impact on the

accuracy of our classifier.

105

Chapter 5

Queries on Extracted Point Sets

Geospatial attributes provide a rich domain of data which can support a plethora of

queries. As the previous chapters have laid out, a collection of geotagged data tables from

theWeb can be treated as a repository of geographic point sets. There are many natural spatial

queries to perform on such a repository, but here we focus on one that is particularly useful

against this type of data. In particular, we look at a set of queries for finding “similar” point

sets to a query point set (that could be specified geographically on a map interface or textu-

ally using place references that are then geotagged). For example, if the collection includes

tables that list documented instances of diseases including locations, a user could run a query

to identify k historical outbreaks with similar spatial distributions as a current outbreak. The

query uses the Hausdorff distance measure, along with a variant called the modified Haus-

dorff distance, to describe the similarity (or more precisely, the dissimilarity) between two

point sets. To avoid computing the Hausdorff distance for all point sets in the repository,

we can compute an optimistic estimate (i.e., lower bound value) of the actual Hausdorff dis-

tance, and rule out point sets whose optimistic estimates are worse than other known values.

As we show, the way in which the optimistic estimate is computed and its resulting accuracy

can have a substantial effect on the execution time of queries. Consequently, we propose a

method that produces a tighter estimate than a method based on the commonly-used mini-

mum bounding rectangles (MBRs) and use this to develop a similarity search algorithm that

106

(a) BscLB is 32.6% of HausDist (b) EnhLB is 82.7% of HausDist

Figure 5.1: Illustrations of BscLB, EnhLB, and HausDist from A to B ({a1, . . . ,a6}
to {b1, . . . , b6})

efficiently finds point sets from the large collection that are similar to the query.

5.1 Background

We use the Hausdorff distance HausDist as a dissimilarity measure of a set A with

respect to another set B. The Hausdorff distance HausDist(A,B) can be regarded as the

worst-case discrepancy of A with respect to B. Specifically, the distance HausDist(A,B)

is defined as the maximum value of the distance from each point a in A to its nearest point

in B, i.e.,

HausDist(A,B) = max{min{Dist(a, b) : b ∈ B} : a ∈ A}. (5.1)

Under this measure, a set A is considered similar to B if and only if each point in

A is close to at least one point in B. We note that HausDist is asymmetric (and thus is

not technically a distance function; however, we will refer to it as a distance function in

the interest of brevity). We define a related symmetric relation SymHausDist(A,B) as

max{HausDist(A,B),HausDist(B,A)}. That is, two sets A and B are considered sim-

ilar to each other if A is similar to B and B is similar to A.

A naive method to identify a point set in a collection D of point sets which min-

imizes the HausDist from Q is to compute HausDist(Q,S) for each point set S in D

107

and identify a point set that yields the smallest HausDist. One may reduce the number

of HausDist computations by computing a lower bound value (an optimistic estimate) of

the actual distance HausDist(Q,S) for each S to rule out sets that are obviously dissimilar

to Q. Ideally, we want this lower bound to provide an estimate that is close to the actual

distance HausDist(Q,S), while keeping the computation cost low with respect to that of

HausDist(Q,S). Hence, the challenge of formulating a Hausdorff lower bound lies in the

trade-off between the quality of the estimate and its computation cost.

Traditionally, a lower bound on HausDist(A,B) can be computed as the MaxMin

distance [93] from the minimum bounding rectangle (MBR) of A to the MBR of B. Our

research is based on the observation that this basic lower bound (BscLB) may be inaccurate

when the MBR that covers A significantly overlaps the MBR that covers B. In such a case,

the inaccuracy of BscLB may result in a large number of HausDist computations which can

be highly undesirable when the number of point sets is large. Based on this observation, we

propose a novel method which decomposes the two MBRs into sub-MBRs and computes a

lower bound using sub-MBRs of the two sets. We call this new method the enhanced lower

bound (EnhLB). Our experimental results show that EnhLB provides an estimate that is

significantly closer to the actual HausDist than BscLB, which results in a greater pruning

capability. Although EnhLB incurs a greater computation cost than BscLB, a significant

overall performance improvement is obtained.

Figure 5.1 provides a comparison between BscLB and EnhLB (computed using the

methods described in Section 5.3). In Figure 5.1a, the value of BscLB from A to B is cal-

culated as the MaxMin distance from the MBR that encloses A to the MBR that encloses

B. An edge pair that yields the BscLB value of 3 is highlighted in grey. In Figure 5.1b, the

value of EnhLB from A to B is calculated using the sub-MBRs of those in Figure 5.1a. An

edge pair that yields the EnhLB value of 7.62 is highlighted in grey. In this example, EnhLB

is 2.54 times closer to the actual HausDist than BscLB.

108

It can be seen that the accuracy ofEnhLB(A,B) depends on how theMBRs ofA andB

are decomposed into sub-MBRs as well as the number n of sub-MBRs. Hence, we formulate

an algorithm to find appropriate MBRs for each point set S. Specifically, we propose an

algorithm which utilizes an R-Tree index R to hierarchically organize the data points in S.

The algorithm traverses R starting from the root and decomposes larger MBRs into sub-

MBRs (MBRs of their children) until a desired number n of sub-MBRs is reached. We also

present an empirical study to choose an appropriate value of n in Section 5.5.

In addition to HausDist, which is a measure of maximum discrepancy, we extend the

concept ofEnhLB to support a measure of average discrepancy called themodified Hausdorff

distance (MHD).We then formulate an incremental search algorithm which can be applied to

bothHausDist andMHD. We also use this search algorithm to demonstrate the effectiveness

of EnhLB in comparison to BscLB.

The contributions of our work are summarized as follows.

• An improved method (EnhLB) of calculating a HausDist lower bound that provides

a greater pruning capability than the basic method (BscLB).

• An incremental search algorithm that utilizes BscLB and EnhLB and can be applied

to both HausDist and MHD.

• Performance evaluations of our search algorithm in terms of the (i) total response time,

(ii) I/O cost, and (iii) processing cost.

The rest of this chapter is organized as follows. Section 5.2 contains a definition of our

research problem. Our lower bound computationmethod and corresponding search algorithm

are given in Section 5.3. Section 5.4 shows how our method can be extended to support the

modified Hausdorff distance, an outlier-resistant variant of HausDist. In Section 5.5, we

report our experimental results, while Section 5.6 provides conclusions and directions of

future research.

109

5.2 Problem Definition

Wemodel the problem of similarity search over a collection of point sets as aHausDist

minimization problem. This is similar to the formulation of the k-nearest neighbor problem

for finding similar points, except that the query object and collection comprise point sets

rather than individual points, and our similarity measure is the Hausdorff distance rather

than a point-to-point distance measure. Formally, we define our similarity search function as

follows.

Definition 1 (Similar Point Set Query). The query accepts a point set Q, a collection D of

point sets and the number k of resultant point sets. As output, the function returns a listA of

point sets such that

(i) each element of A is a member of D;

(ii) |A| is equal to min{k, |D|};

(iii) for each S in A and each T in D \ A,

HausDist(Q,S) ≤ HausDist(Q, T);

(iv) for each Si and Sj in A where i is less than j,

HausDist(Q,Si) ≤ HausDist(Q,Sj).

This query can be processed by separating the resultant list A of point sets from the

rest (D \ A). To avoid computing HausDist for every point set in D, we can compute

an optimistic estimate for each point set S in D. Specifically, an optimistic estimator of

HausDist(Q,S) is a function which returns a distance guaranteed to be less than or equal

to HausDist(Q,S). We use this optimistic estimate to provide the search order and to rule

110

out entries that clearly cannot be in the result A. Ideally, we want this estimator to produce

a value as close to HausDist(Q,S) as possible. At the same time, we also want to keep the

computation cost low with respect to that of HausDist(Q,S).

To avoid computing an optimistic estimate for every point set, we can index the point

sets in D as rectangular objects (using their respective MBRs) in a hierarchical structure like

the R-Tree. In this case, an optimistic estimate of the Hausdorff distance fromQ to an R-Tree

node N is a value guaranteed to be smaller than the Hausdorff distance from Q to any point

set in N .

The objectives of our investigation are given as follows: (i) to improve the accuracy of

the existing Hausdorff estimator without introducing an excessive computation cost; and (ii)

to formulate a search algorithm which utilizes this estimator. This estimator improvement

and the search algorithm are described in the next section.

5.3 Point Set Similarity Search

In this section, we introduce a method which improves the accuracy in computing an

optimistic estimate (a lower bound) of HausDist(A,B) using the MBRs of A and B. We

observe that real-world geographic point sets have a tendency to cluster around key locations

like big cities or industrialized coastal areas. Our solution is formulated based on a hypothesis

that the accuracy in estimating HausDist(A,B) can be improved by using the sub-MBRs,

MBRs of such clusters.

We use the R-Tree index to store all point sets in the collectionD where each point set

S is represented as a rectangular object using its MBR. We use two types of R-Trees. The

first type, primary R-Tree, is used to store a collection of point sets where each point set is

represented by its MBR. The second type, secondary R-Tree, is used to store points in each

point set. Note that the root node of a secondary R-Tree is equivalent to its representative

MBR in the primary R-Tree.

111

5.3.1 Incremental Search Algorithm

Our search algorithm (Algorithm 2) makes use of the two optimistic estimators BscLB

and EnhLB to help search for k similar point sets with respect to a query point setQ. Specif-

ically, we use BscLB for preliminary search ordering and EnhLB to refine the search order.

Our rationale behind this practice is that BscLB, which is cheaper to compute than EnhLB,

can provide a reasonable estimate of HausDist(Q,S)whenQ and S are far from each other.

Hence, BscLB can be used as a preliminary pruning criterion to rule out point sets with large

BscLB values.

We now consider the algorithm description (Algorithm 2). The algorithm finds k point

sets inD which minimize the HausDists from a query point setQ. An environment variable

n specifies the resolution inwhichEnhLB is computed and is shared throughout the algorithm

descriptions in this section.

The initialization steps are given by Lines 1 to 8. We create two levels of R-Trees (as

described in Section 5.2) to index all point sets. The primary R-Tree is used to index all

point sets and data points in each point set are in turn indexed in a secondary R-Tree. The

remaining steps of initialization include (i) creating an R-Tree QueryRT for the query point

set; (ii) initializing a priority queue PQ; and (iii) creating an empty list A to store resultant

point sets.

The control loop is given by Lines 9 to 25. At the beginning of each iteration (Line

10), we retrieve the head entry (N , d, LB-Stage) from PQ, where N is the node which has

the smallest estimated HausDist d. The value of LB-Stage identifies the nature in which the

current value of d has been calculated: “0” denotes BscLB, “1” denotes EnhLB, and “2”

denotes an actual HausDist. The rest of the control loop is organized into the two following

cases:

• NodeN contains only one secondary R-Tree SecRT. In this case, we check the value of

112

LB-Stage. If LB-Stage is “0”, then d is currently a BscLB value. Hence, we reset d to

a EnhLB value and insert the entry back into PQ with an LB-Stage of “1”. If LB-Stage

is “1”, then d is currently a EnhLB value. Hence, we compute the actual HausDist

and assign it to d. Then, we insert the entry back into PQ with an LB-Stage of “2”.

Otherwise LB-Stage is “2”, which means that d is final and SecRT can be included as

a query result in A.

• NodeN contains multiple children C. In this case, for each child node C, we compute

an estimate d using BscLB and then we insert a priority queue entry (C, d, LB-Stage)

into PQ where LB-Stage is set to “0”.

The control loop terminates when A contains k objects or when PQ is exhausted.

5.3.2 Lower Bound Computation

In this subsection, we describe how BscLB and EnhLB used by Algorithm 2 are com-

puted. Traditionally, a lower bound of HausDist(A,B) can be computed as the MaxMin

distance [93] from the MBR which encloses A to the MBR which encloses B. This is be-

causeHausDist(A,B) can be considered as theMaxMin distance fromA toB. We formally

define this lower bound function as follows.

Definition 2 (Basic Hausdorff Lower bound). Let MA and MB denote the MBRs of A and

B, respectively.

BscLB(MA,MB) = max{MinDist(fa,MB) : fa ∈ FacesOf(MA)}.

That is, we exploit the minimum enclosing property of MBRs and assume that each

MBR face touches at least one object. We then compute a lower bound value of each face

using MinDist. The maximum of these lower bound values becomes the resultant estimate

and is guaranteed to be smaller than or equal to the actual HausDist.

113

Algorithm 2: SimSearch(Q, D, k)
input : Query point set Q, Collection D of point sets, and Number k of results
output : k point sets with the smallest HausDists with respect to Q
environment : Number n of MBRs used to compute EnhLB

1 PrimRT ← Create an empty R-Tree;
2 for each Point Set S in D do
3 SecRT ← Create an R-Tree of S;
4 Insert SecRT into PrimRT ;
5 QueryRT ← Create an R-Tree of Q;
6 Priority Queue PQ← Create an “ascending order” PQ;
7 Insert (RootOf(PrimRT), 0, 0) into PQ;
8 List A← Create an empty list;
9 while PQ is not empty do
10 PQ-Entry(N, d,LB-Stage)← Dequeue(PQ);
11 if N contains one secondary R-Tree SecRT then
12 if LB-Stage is 0 then
13 d← EnhLB(QueryRT, SecRT);
14 Insert (N , d, LB-Stage=1) into PQ;
15 else if LB-Stage is 1 then
16 d← HausDist(QueryRT, SecRT);
17 Insert (N , d, LB-Stage=2) into PQ;
18 else
19 Insert the point set from SecRT into A;
20 if A contains k point sets then
21 return A;

22 else
23 for each Child C of N do
24 Distance d← BscLB(RootOf(QueryRT), C);
25 Insert (C, d, 0) into PQ;

26 return A;

114

We now present our method for computing an optimistic estimate of HausDist(A,B)

using MBRs of subsets of A and B. First, we describe our algorithm Algorithm 3 to find n

MBRs which cover the point set S indexed in an R-TreeR. Our algorithm utilizes the R-Tree

index which organizes objects in a hierarchy of MBRs and accepts an R-Tree R of a point

set and the number of MBRs to be selected from R. The objective here is to find a list of

MBRs which cover the point set S. We formulate an algorithm which traverses the R-Tree

R according to the areas of MBRs in the hierarchy. Specifically, we decompose the largest

MBRs because smaller MBRs are likely to provide tighter estimates than large ones.

In the initialization steps, we create an empty list L to store the resultant MBRs (Line

1), then initialize a priority queue PQ to arrange MBR entries according to their areas in

descending order (Line 2) and insert the root of R as the first entry (Line 3).

At the beginning (line 5) of each iteration of the control loop, the R-Tree node N with

the largest area a is retrieved from the priority queue. IfN contains points, thenN is inserted

into the resultant list L since there are no R-Tree nodes beneath N . Otherwise, child entries

of N are inserted into PQ. The control loop terminates when PQ is exhausted or there are at

least n entries in PQ and L. Finally, all entries in PQ are inserted into L, and L is returned

as output.

Figure 5.2 demonstrates an example run of Algorithm 3. The figure contains a three-

level R-Tree R, where the top level (Level 3) corresponds to the root node and the bottom

level (Level 1) comprises nodes whose immediate children are data points. Assume that the

n value is 4. At the initialization, the resultant list L is initialized to an empty list and the

root node is inserted into the priority queue PQ which arranges MBRs in descending order

according to their areas. In the first iteration of the control loop, the root node is retrieved

from the head of PQ. Then, we expand the root node by inserting its immediate childrenM1,

M2, andM3 into PQ. Since the size of PQ is 3 and L is still empty, we need to further explore

R to meet the minimum requirement of n MBRs. In the second iteration, M3, which is the

115

Algorithm 3: GetCovMBRs(R)

input : R-Tree R of data points
output : List L of MBRs
environment : Requested number n of MBRs in L

1 List L← Create an empty list of nodes (MBRs);
2 Priority Queue PQ← Create a “descending order” PQ;
3 Insert (RootOf(R), 0) into PQ;
4 while SizeOf(PQ) + SizeOf(L) < n and PQ is not empty do
5 PQ-Entry (Node N , Area a)← Dequeue(PQ);
6 if N contains points then
7 Insert N into L;
8 else
9 for each Child C of N do
10 Area a← AreaOf(C);
11 Insert (C, a) into PQ;

12 for each (Node N , Area a) in PQ do
13 Insert N into L;
14 return L;

largest MBR, is retrieved from PQ. Then, we expandM3 by inserting the childrenM10,M11

andM12 into PQ. At this point there are 5 MBRs in PQ which is greater than the n value of

4. Hence, all these MBRs are inserted into A and returned as query results.

Note that the actual length l of the resultant list Lmay not exactly match the requested

number n of MBRs. Specifically, the length l of L depends on how the conditions in Line

4 are broken, i.e., whether n MBRs are obtained or PQ is exhausted first. If n MBRs are

obtained first, l must be greater than or equal to n but smaller than (n + b) where b is the

branching factor of R. This is because, at each iteration we can add at most b MBRs into

PQ. In the case where PQ is exhausted first, i.e., we do not have enough MBRs to satisfy the

request, l is less than n.

We now present our algorithm (Algorithm 4) to compute an optimistic estimate of

HausDist(A,B) using MBRs of subsets of A and B. The algorithm accepts R-Trees RA

and RB of two point sets and the number n of MBRs from each R-Tree that will be used to

calculate a lower bound. Specifically, we useGetCovMBRs (Algorithm 3) to select nMBRs

116

Figure 5.2: An example of GetCovMBRs(R) with the requested number n of MBRs of 4,
where selected MBRs are highlighted in gray.

fromRA and another nMBRs fromRB, and store them in listsLA andLB respectively (Lines

1 and 2). The resultant distance is computed as the MaxMin distance from faces of MBRs

in LA to the MBRs in LB (Lines 4 to 12). Specifically, for each face FA of MBRs in LA

we compute the minimum distance from FA to all MBRs B in LB. The resultant distance is

calculated as the maximum of these minimum distances computed in the while loop (Lines

8 to 10). Note that the while loop may not need to iterate through the entire LB if it is found

that the minimum distance of the current FA to LB cannot affect dmax. That is, the current

dmin is less than or equal to the current dmax.

5.3.3 Discussion

As we have described, our similarity search algorithm (Algorithm 2) uses BscLB for

preliminary sorting and uses EnhLB to refine the estimate initially given by BscLB. Con-

sequently, we only compute EnhLB values for those point sets whose BscLB values are

insufficient to rule them out from the search. However, by introducing EnhLB as an inter-

mediate step, each of the resultant point sets has to be considered three times, i.e., once for

each of BscLB, EnhLB and the actual HausDist. This incurs an overhead in terms of prior-

117

Algorithm 4: EnhLB(RA, RB)

input : R-Trees RA and RB of two point sets, and the number n of MBRs used to
compute the result

output : Optimistic Estimate of the HausDist from points in RA to points in RB

environment : Number n of MBRs used to compute EnhLB

1 MBR-List LA← GetCovMBRs(RA);
2 MBR-List LB ← GetCovMBRs(RB);
3 Distance dmax← 0;
4 for eachMBR A in LA do
5 for each Face FA in A do
6 Distance dmin←∞;
7 B ← First MBR in LB;
8 while dmin ≤ dmax and B is not null do
9 dmin← min{dmin,MinDist(FA, B)};
10 B ← Next MBR in LB;
11 dmax← max{dmax, dmin};

12 return dmax;

ity queue operations. To provide a better insight into performance evaluation, we compared

this method to methods that use BscLB or EnhLB alone in our experiments (Section 5.5).

5.4 Extension: Handling Outliers

Since HausDist(A,B) is a measure of maximum discrepancy of A with respect to B,

the measure can be sensitive to outliers. Specifically, if there is only one object a in A that

is far away from B, then the distance from that object a to B will be used as the resultant

distance. That is, the measure disregards the majority of points inAwhich are much closer to

B. Tomitigate this problem, a variant of theHausdorff distance called themodifiedHausdorff

distance (MHD) [69] can be used to spread out the effect of outliers over the entire point set

A. A formal definition of MHD can be given as

MHD(A,B) =

∑
{min{Dist(a, b) : b ∈ B} : a ∈ A}

|A|
.

118

In this section, we extend our concept of lower bound calculations to support the MHD mea-

sure.

SinceMHD(A,B) is the average of the distances from points inA to their nearest point

in B, the HausDist lower bound computed as the MaxMin distance from the MBRs of A

and B is not guaranteed to be smaller than or equal to MHD(A,B). As a result, we have to

use MinDist as our MHD basic lower bound (MHD-BscLB) in this case.

In a similar manner as the enhanced lower bound for the Hausdorff distance, an MHD

enhanced lower bound can be computed fromMBRs of subsets inside the point setsA andB.

Algorithm 5 displays our MHD modification of Algorithm 4. Specifically, we can represent

the point sets A in B as lists LA and LB of sub-MBRs, respectively (Lines 1 and 2). We can

then compute a weighted sum of MinDist of MBRs in LA to LB based on the point count

of the node corresponding to each MBRs in LA (Lines 3 to 11). The resultant distance is the

sum divided by the total number of points (Line 12).

Algorithm 5:MHD-EnhLB(RA, RB)
input : R-Trees RA and RB of two point sets
output : Optimistic Estimate of the HausDist from points in RA to points in RB

environment : Number n of MBRs used to compute EnhLB

1 MBR-List LA← GetCovMBRs(RA);
2 MBR-List LB ← GetCovMBRs(RB);
3 Distance ctotal← 0;
4 Distance dsum← 0;
5 for eachMBR A in LA do
6 Distance dmin←∞;
7 Count c← Number of points in A;
8 for eachMBR B in LB do
9 dmin← min{dmin,MinDist(A,B)};
10 dsum← dsum + dmin · c ;
11 ctotal← ctotal + c;
12 return dsum/ctotal;

Figure 5.3 provides a comparison between MHD-BscLB, MHD-EnhLB and the ac-

tual HausDist from one point set to another. It can be seen that MHD-BscLB which is

119

Figure 5.3: Comparison between MHD-BscLB, MHD-EnhLB and MHD from A to B
({a1, . . . ,a6} to {b1, . . . , b6})

computed as MinDist yields an estimate of 0 units due to the overlap. On the other hand,

we can decompose the root MBRs of A and B into sub MBRs where MA1 corresponds to

{a1,a2,a3},MA2 corresponds to {a4,a5,a6},MB1 corresponds to {b1,b2,b3}, andMB2 cor-

responds to {b4,b5,b6}. MHD-EnhLB can be computed using Algorithm 5, where LA and

LB are {MA1,MA2} and {MB1,MB2}, respectively. In this case, MHD-EnhLB yields an

estimate of 3 units which is much closer to the actual MHD of 7.23 units than MHD-BscLB.

To form a similarity search algorithm, we can modify Algorithm 2 by replacingBscLB

with MHD-BscLB, EnhLB with MHD-EnhLB, and HausDist with MHD. In our experi-

mental studies, we compare a method which uses both MHD-BscLB and MHD-EnhLB to

ones which use MHD-BscLB or MHD-EnhLB alone. The difference between the similarity

measures HausDist and MHD are shown as example query results in Figure 5.4. A query

point set Q is shown, which comprises locations in Illinois, along with two of the top re-

sults (point sets A and B) when searching with the symmetric measures SymHausDist and

SymMHD in the NA-Test dataset (described in Section 5.5). SymHausDist(Q,A) of 1.01

units is lower than SymHausDist(Q,B) of 1.32 units. For the SymMHD, the results are

reversed. That is, SymMHD(Q,A) is 0.26 units which is greater than SymMHD(Q,B) of

0.22 units. We observe that B has a large collection of points near query points in the top

right corner but has a few outliers near the bottom which are far away from the query points.

120

Using MHD means that the effects of these outliers are reduced by the averaging nature of

the distance function. Hence, B is considered nearer to Q than A according to MHD.

37

38

39

40

41

42

43

-92 -91 -90 -89 -88 -87

Query Point Set Q
Point Set A

(a) Point Set A

37

38

39

40

41

42

43

-92 -91 -90 -89 -88 -87

Query Point Set Q
Point Set B

(b) Point Set B

Figure 5.4: Top SimSearch results for (a) HausDist and (b) MHD queries.

5.5 Evaluation

In this section, we evaluate the effectiveness of our method. As shown in Table 5.1,

we compare methods which use only BscLB or EnhLB to Algorithm 2 which uses a hybrid

of BscLB and EnhLB. To emphasize this contrast, this method is referred to as Hyb in this

section.

The rest of this section is organized as follows. We first describe the dataset used

for testing. Next, we study the impact of adjusting the number n of sub-MBRs selected for

each point set on the performance of the three methods. Finally, we show the performance

improvements achieved using Hyb for our sample datasets.

Table 5.1: Similarity Search Methods

Search Method Preliminary Sort Refinement

Bsc BscLB -
Enh EnhLB -
Hyb BscLB EnhLB

121

5.5.1 Setup

Evaluating our Hausdorff search algorithm requires running the algorithm on a collec-

tion of point sets, which we created by geotagging a large number of tables extracted from

spreadsheets in our table corpus. The geotagging method used for these tables was a prelim-

inary version of our algorithm, not the full algorithm based on combined hierarchical place

categories from Chapter 3.

After spreadsheet extraction and geotagging, we sampled a subset of the point sets for

our evaluation in which there was a large degree of overlap between the point set MBRs

and each set contained a large number of points. Specifically, we selected only point sets

containing over 300 points in North America to form a test dataset that we callNA-Test. Note

that the Hyb search method exhibits fast performance on the full data set as well—however,

small point sets were excluded because they cause the Hausdorff distance computation to

become less expensive, so differences between the methods are negligible. As shown in

Table 5.2, the resulting collection contains 923 point sets, with an average point set size of

955 points.

Table 5.2: NA-Test Point Sets

Number of Point Sets 923
Minimum Point Count 300
Maximum Point Count 5,796
Total Point Count 881,713

In our implementation, HausDist(A,B) and MHD(A,B) are computed by iterating

through the pairwise distances {Dist(a, b) : a ∈ A, b ∈ B}, which is sufficiently fast for

these point sets, given that the average size is less than 1,000 points.

122

5.5.2 Accuracy of Estimators

Figure 5.5 shows the accuracy of BscLB and EnhLB as we vary the number k of re-

turned point sets. For smaller k values, EnhLB produces estimates which are much closer to

the actual HausDist (normalized as 1). As k increases (which means that HausDist(Q,S)

increases), the difference between EnhLB and BscLB diminishes. As a result, when sorting

point sets S with respect toQ, we can use BscLB to rule out point sets that are obviously far

away from Q and use EnhLB for point sets that require further examinations before calcu-

lating the HausDist.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Number k of resultant point sets

BscLB
EnhLB

Figure 5.5: Accuracy of the two estimators BscLB and EnhLB given as the estimated dis-
tance divided by HausDist where (i) the measured value is the average µ of 100 runs, and
(ii) each error bar represents one standard deviation in either direction from µ.

5.5.3 Selecting the number of MBRs

The motivating hypothesis behind the Enh and Hyb search methods is that using mul-

tiple sub-MBRs to calculate a lower bound of the Hausdorff distance is substantially more

accurate than using a single MBR (i.e., the root MBR). To test this hypothesis, we now look

at the performance of the SimSearch algorithm using varying numbers of sub-MBRs.

Figure 5.6 shows the performance of the SimSearch algorithm on the NA-Test dataset,

123

using different values of n. For this test, we randomly selected a sample of 100 point sets to

serve as our collection of query point sets QuerySets. For each Q ∈ QuerySets, we perform

SimSearch with the number k of results set to 1 and the number of MBRs set to n. The

average running time for each value of n is displayed. The tests were performed using the

Enh and Hyb methods for 20 ≤ n ≤ 240, and using the Bsc method. Since the Bsc method

is equivalent to using either of the other methods with n = 1, the Bsc result is displayed

as num MBRs = 1 in the figures. The running time for each value of n is broken into three

components: (i) LB Time, (ii)HausDist Time, and (iii) PQ Time. These correspond to (i) time

spent generating lower bound estimates, (ii) time spent computing exact Hausdorff distances,

and (iii) time spent maintaining the priority queue of the collection of point sets, NA-Test.

0
100
200
300
400
500
600
700
800
900

1000

1 20 40 60 80 100
120
140
160
180
200
220
240

1 20 40 60 80 100
120
140
160
180
200
220
240

m
s

Number n of MBRs

LB Time
HausDist Time

PQ Time

HybEnh

Figure 5.6: Average performance of Enh and Hyb search methods on the NA-Test dataset,
for different numbers of sub-MBRs, and k = 1.

We can see that the worst performance, in terms of total running time, occurs when

n = 1 (the Bsc case). The majority of this time is spent computing exact Hausdorff distances

between the query set Q and other point sets in NA-Test. PQ Time is relatively small in

this case, as it is for all other values of n, so we focus our discussion on the LB Time and

HausDist Time factors. When n = 1, LB Time is also small, since only the BscLB value

is being computed for candidate point sets. However, as expected, BscLB alone does not

provide a particularly accurate ranking of point sets in NA-Test, so identifying the set with

124

the smallest Hausdorff distance to Q requires performing a large number of exact Hausdorff

distance calculations.

The value of n has a positive correlation with LB Time. This is because calculating

EnhLB requires visiting each sub-MBR in the query and candidate point sets. However,

HausDist Time has a negative correlation with n due to the accuracy improvement. This

dominates the effect of n on LB Time. As a result, we observe an overall decrease in the total

running time as n increases.

The same experiment was performed using MHD instead of HausDist, as shown in

Figure 5.7. The total computation time is generally one order-of-magnitude greater than

for the HausDist search experiment on the same data set. The slower behavior is caused

by the inherent differences in the distance measures, which we observed in Section 5.4. In

particular, since the lower bound computations are based on MinDist instead of MaxMin,

the bounds are generally much smaller than their HausDist counterparts. This means that

many more candidate point sets must be considered before we identify point sets that have a

MHD value that is less than the minimum remaining BscLB or EnhLB in the priority queue

of SimSearch.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 20 40 60 80 100
120
140
160
180
200
220
240

1 20 40 60 80 100
120
140
160
180
200
220
240

m
s

Number n of MBRs

LB Time
HausDist Time

PQ Time

MHD-HybMHD-Enh

Figure 5.7: Average performance of MHD-Enh and MHD-Hyb search methods on the
NA-Test dataset, for different numbers n of sub-MBRs and k = 1.

125

Despite the overall increase in running time for performing SimSearch with MHD,

there is still a large increase in performance as n increases from small values. The perfor-

mance of the Enh andHyb searchmethods is nearly identical, which shows that usingBscLB

provides very little benefit in the SimSearch procedure.

In summary, the most significant outcomes of this experiment are (i) the performance

of SimSearch benefits greatly from using EnhLB, and (ii) choosing an appropriate value of

n does not require extreme precision. The first outcome is clear from the reduced running

time for any n value greater than 1, whereas the second follows from the nearly flat behavior

of the Hyb graphs for sufficiently large values of n. In this case, the flat behavior starts at

the n value of 140. Hence, we choose 140 as the default value of n hereafter.

5.5.4 Performance Studies

Next, we focus on the performance improvements achieved by the Hyb method under

various queries and query parameters. The performance improvements can be evaluated

using multiple measures, as displayed in Figures 5.8-5.10, which show how the performance

of SimSearch changes for different values of the k parameter, while fixing n to the default

value of 140MBRs. The experiment involved running SimSearch once against theNA-Test

dataset for each combination of the following parameters:

• every Q ∈ QuerySets (cardinality: 100)

• every search method (Bsc, Enh, and Hyb)

• every odd value of k from 1 to 19

• both HausDist and MHD

For each combination, we recorded the following measures:

• number of point set to point set Hausdorff distance computations performed

• number of point-to-point and MBR-to-MBR distance calculations performed

126

• total search time

Each measure was averaged over all Q in QuerySets. Figure 5.8 plots the increase

in the total number of Hausdorff distance computations performed using each lower bound

method, for increasing values of k. The results show that the Bsc method consistently re-

quires the greatest number of Hausdorff distance computations, while Enh and Hyb both

require significantly fewer calculations. In fact, Enh and Hyb require exactly the same num-

ber of Hausdorff distance computations in each case. This result is due to the fact that both

methods use the EnhLB value to order the search priority queue before computing the Haus-

dorff distance between point sets. The results also show that for every lower bound method,

the number of distance calculations increases as k increases, since the results of searching

with a larger k value will be a superset of the results with a smaller k value. An interest-

ing observation from this experiment is that the relative performance improvement from Bsc

to both Enh and Hyb decreases as k increases, which means that the largest reduction in

Hausdorff distance computations occurs when k is equal to 1.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19

#d
is

ta
nc

e
ca

lc
ul

at
io

ns
(×

10
6)

Number k of resultant point sets

Bsc
Enh
Hyb

(a) HausDist

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19

#d
is

ta
nc

e
ca

lc
ul

at
io

ns
(×

10
6)

Number k of resultant point sets

MHD-Bsc
MHD-Enh
MHD-Hyb

(b) MHD

Figure 5.8: Average number of full Hausdorff distance computations performed during
SimSearch queries using Bsc, Enh and Hyb search methods on the NA-Test dataset, for
different values of k.

Figure 5.9 shows the total number of distance calculations that occur during search

for increasing values of k. The number of distance calculations includes both point-to-point

distance calculations performed during Hausdorff distance computations, andMBR-to-MBR

127

distance calculations performed during lower bound computations. In the chart, we see a

similar result to Figure 5.8, except that Enh and Hyb are slightly separated, representing the

fact that measuring the total distance calculations also takes the lower bound computations

into account. Hence, this is a more complete measure of the total computation costs than

Hausdorff distance computations alone.

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

#d
is

ta
nc

e
ca

lc
ul

at
io

ns
(×

10
6)

Number k of resultant point sets

Bsc
Enh
Hyb

(a) HausDist

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19
#d

is
ta

nc
e

ca
lc

ul
at

io
ns

(×
10

6)
Number k of resultant point sets

MHD-Bsc
MHD-Enh
MHD-Hyb

(b) MHD

Figure 5.9: Average number of distance calculations performed during SimSearch queries
using Bsc, Enh and Hyb search methods on the NA-Test dataset, for different values of k.

Figure 5.10 plots the average time required to return the k point sets from QuerySets

with the lowest Hausdorff distance from each Q. The elapsed time has a strong correlation

to the number of distance calculations performed, as shown in Figure 5.9. However, here we

see the average time required for each search, which ranges between 275 ms and 684 ms for

the Hyb method using the Hausdorff distance, and between 3468 ms and 5459 ms for the

Hyb method using the Modified HausDist (MHD). These times were recorded on an Intel

i7-2720QM@ 2.20 GHz with 8GB RAM.

5.5.5 Performance Distribution

To gain a better insight into the performance of Hyb relative to Bsc, we show distribu-

tions of performance improvements using histograms in addition to the average performance

presented previously in Sections 5.5.3 and 5.5.4. The histogram in Figure 5.11a presents the

relative performance of Hyb with respect to Bsc for 923 query point sets. The x-axis of the

128

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19

m
s

Number k of resultant point sets

Bsc
Enh
Hyb

(a) HausDist

3000

4000

5000

6000

7000

8000

9000

1 3 5 7 9 11 13 15 17 19

m
s

Number k of resultant point sets

MHD-Bsc
MHD-Enh
MHD-Hyb

(b) MHD

Figure 5.10: Average performance of SimSearch queries using Bsc, Enh and Hyb search
methods on the NA-Test dataset, for different values of k.

histogram represents the relative search time, i.e., the total search time ofHyb divided by that

of Bsc for each query point set. For example, a relative performance value of 0.2 means that

Bsc takes 5 times as long as Hyb to process the same query. The x values are organized into

11 bins, where the leftmost bin represents a relative performance range of [0.0, 0.1) and the

rightmost bin represents a relative performance range of [1.0, 1.1). The y-axis represents the

count for each bin. We set k and n to the default values of 1 point set and 140 MBRs, respec-

tively. The same setup also applies to Figure 5.11b which presents the relative performance

of MHD-Hyb with respect to MHD-Bsc.

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

C
ou

nt

Relative search time

Hyb

(a) HausDist

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

C
ou

nt

Relative search time

MHD-Hyb

(b) MHD

Figure 5.11: Histogram of performance improvements for different query point sets. Perfor-
mance improvement is measured as elapsed search time using the Hyb method, as a fraction
of elapsed search time using Bsc, so smaller values represent larger speedups. For all tests,
n = 140 and k = 1.

129

The distribution of relative search times for Hausdorff distance searches is shown in

Figure 5.11a. The vast majority ofHyb searches take only 0.1 to 0.5 of the original Bsc time,

corresponding to a 50% to 90% reduction in search time, which is a significant improvement.

73.7% of queries result in Hyb search times that are at least 50% less than the corresponding

Bsc search time. A small fraction of query point sets (1.4%) suffer an increased search time,

which occurs when using the EnhLB does not result in a better ordering of point sets in the

priority queue.

Using the Hyb method for modified Hausdorff distance searching (MHD-Hyb) also

achieves significant speedup factors, although the distribution is different, as shown in Fig-

ure 5.11b. In particular, all queries are sped up using Hyb, and a larger fraction achieve

speedup factors higher than 90% (i.e., a search time that is less than one tenth of the original

Bsc search time). However, only 48.8% of queries result inHyb search times that are at least

50% less than the corresponding Bsc search time.

5.6 Summary

This chapter presented a new approach for similarity search over a large collection of

point sets, where similarity is measured using the Hausdorff distance. Our method constructs

an ordering of the collection of point sets using a new lower bound estimation technique called

EnhLB, which allows us to rule out dissimilar point sets without computing the full Haus-

dorff distance between them and our query set. We also applied this technique to searches

using the modified Hausdorff distance, an outlier-resistant variant. On a dataset of geotagged

spreadsheets from theWeb, similarity search times improved substantially using our method,

for both distance measures.

130

Chapter 6

Data Table Visualizations

As we have observed, the set of Web-accessible geographic tables can be treated as a

heterogeneous collection of geographic feature sets. Tables vary in terms of the scale of the

features they describe, the proximity of their locations, the presence (or absence) of implied

travel between locations, and in other ways, and this heterogeneity requires a similarly broad

variety of visualizations for analyzing and interacting with them. In this chapter, we look at

three specific visualization and interactivity challenges that stem from the extraction of in-

formation from geographic data tables and explore three corresponding techniques to address

them. Section 6.1 presents an itinerary layout algorithm that is useful for exposing itineraries

such as those identified in Chapter 4 to user inspection. In Section 6.2, we look at an interface

for performing Hausdorff and modified Hausdorff distance queries on extracted point sets,

which allows the identification of tables with specified geographic distributions. Section 6.3

describes a strategy for supporting visual comparisons between locations in a table, rather

than spatial comparisons, while Section 6.4 concludes the chapter.

6.1 Automated Tabular Itinerary Layout

In its basic form, the itinerary visualization problem is to produce a visual encoding

of a graph G = (V,E) where V represents the waypoints and E represents edges between

consecutive waypoints. Each waypoint w ∈ V is represented as a tuple (x, y, i, name) where

131

w

d

θ

(a)

w1

w2

c
r∥−−−→w1w2∥

(b)

Figure 6.1: Geometric effects of layout parameters (a) d, θ, and (b) r. Label placement is
determined by parameters d and θ, while link curvature is determined by parameter r.

x and y are the Cartesian coordinates describing the location of the waypoint (usually in

projected or screen coordinates), i is the index of the waypoint in the current itinerary, and

name is a string value containing the place name (or other description) for the waypoint

that should be included in the visualization. Note that we can treat all point locations as

Cartesian coordinates. In case of coordinates encoded as latitude/longitude pairs, we convert

to Cartesian coordinates using a suitable geographic projection (e.g., the Mercator).

An interesting aspect of itinerary visualization is that, since edges connecting consecu-

tive waypoints are not meant to track a precise route, the intentional imprecision can be made

clear to viewers. One way to achieve this is with simple curves that mimic artistic renderings

of itineraries. So, rather than straight edges used in many types of graph visualization, we

allow curved edges, where the curvature of the edges is determined by layout parameters.

As shown in Figure 6.1, the degrees of freedom in our itinerary layout algorithm in-

volve the positioning of the text label associated with each waypoint and the curvature of

paths representing journeys between consecutive pairs of waypoints. Thus, we have two pa-

rameters (θ and d) for each label and one parameter (r) for each edge, resulting in a total of

3n− 1 parameters for an itinerary consisting of n waypoints.

1. Label position. The positions of text labels are determined based on a direction (θ) and

distance (d) from the waypoint location. The label is positioned such that the centroid

of the label is along the line extending in direction θ from the waypoint, but so that the

132

nearest point on the label’s bounding box is at distance d from the waypoint.

2. Curvature. Each segment between consecutive waypoints is drawn as a quadratic

Bézier curve. The control point of the curve is placed along the perpendicular bisector

of the straight line segment connecting the waypoints. For consecutive waypoints w1

and w2 and curvature parameter r, control point c is positioned on the perpendicular

bisector of −−−→w1w2 at a distance of r∥−−−→w1w2∥ from the segment’s midpoint. For positive

(negative) values of r, the control point is positioned to the left (right) while traveling

from w1 to w2.

Other potentially usable parameters are discussed in Section 6.4. However, segment

curvature and label position address the most common adjustments that we noticed in a col-

lection of itineraries found on the web that were created by human cartographers. Addition-

ally, the size of the layout search space is exponentially related to the number of available

parameters, so we prefer to keep that number small.

The quality of a layout is measured based on the presence or absence of several factors.

We observe that the following factors detract from the suitability of an itinerary layout.

1. Labels outside the visible map area

2. Edges overlapping non-incident waypoints

3. Labels overlapping other labels

4. Edges overlapping other edges

5. Labels overlapping edges

6. Labels overlapping waypoints

7. Small angles between incident edges

8. Deviation of segment curvature ratios from target

133

9. Distance of labels from corresponding waypoints

Our goal is to identify a layout that minimizes the presence of these factors by varying

the available parameters, so it can be treated as an optimization problem. The layout con-

straints lead to numerous local minima in the objective function, which may act as attractors

for a greedy approach. We avoid these by developing a layout method based on simulated

annealing.

6.1.1 Method

In the simulated annealing context, the value of the objective function for a specific can-

didate is called its energy. We compute the energy of a candidate layout as a weighted sum

of negative factors. Formally, we measure energy e =
∑9

i=1 αifi, where each fi corresponds

to one of the undesirable factors listed above (e.g., the number of edge-edge intersections)

and αi represents the corresponding weight. Weights were chosen by evaluating user pref-

erences on a small set of sample itineraries and recording an order of weights assigning the

highest penalty to the least desirable layouts (factors are listed in order, starting with most

undesirable). Lower energy values indicate more desirable layouts.

The most computationally expensive components of the energy computation procedure

involve detecting intersections between Bézier curves that represent edges and other edges,

as well as the intersection of these curves with waypoint nodes and text labels. One method

is interval subdivision, which evaluates the curve equation at several points and uses the

convex hull properties of Bézier curves to test the bounding box for intersections. Other

methods for detecting intersections between Bézier curves include curve implicitization and

clipping [94]. However, these methods introduce complexity into the layout algorithm for

only modest speed improvements over interval subdivision when the Bézier curves are of

low degree (such as the quadratic curves used in our method).

We use the standard simulated annealing formulation, whereby the progression of the

134

Figure 6.2: Six sample itinerary layouts. Each itinerary visits a collection of between 5
and 10 randomly-located waypoints. The layout parameters for each itinerary are computed
independently.

algorithm is controlled by a temperature variable. A high initial temperature is iteratively

reduced, simulating the cooling process that takes place in physical annealing scenarios. As

the temperature decreases, parameter changes that result in higher energy layouts are less

likely to be chosen as the next state of the system. The acceptance probability for a partic-

ular parameter change is based on the Metropolis criterion, a standard simulated annealing

acceptance test [55]. The process terminates when the temperature falls below a specified

threshold.

The simulated annealing algorithm is shown in Algorithm 6. It takes the input graph,

represented as a set of waypoints P and a set of edges E, and augments the input graph with

layout parameters (for curvature and label position). The algorithm begins by initializing the

temperature variable t and energy variable e (line 1). For several iterations, the temperature

decreases by ratio tdecay (line 8) until the temperature falls below the taccept threshold (line 2).

In each iteration, a candidate state is chosen (line 3) by picking parameter values for the layout

using the candidate function, which applies a stochastic update to a single layout parameter.

135

The candidate state’s energy is computed by computeLayoutEnergy (line 4). Candidate

layouts that reduce the energy are always accepted, while those that increase the energy are

accepted according to the Metropolis criterion (line 5). When a candidate layout is accepted,

its parameters and energy are copied to be used for subsequent comparisons (lines 6 and 7).

Finally, the resulting layout is returned (lines 9).

Algorithm 6: FindLayout(P , E). Augment a collection of waypoints and edges
with layout parameter values.

input : List of waypoints P , list of edges E
output : Lists P,E, augmented with layout parameters

1 t← t0; e←∞;
2 while t > taccept do
3 PC , EC ← candidate(P,E);
4 e′ ← computeLayoutEnergy(PC , EC);
5 if e′ < e OR exp((e− e′)/t) < random() then
6 P,E ← PC , EC ;
7 e← e′;
8 t← t× tdecay;
9 return (P,E);

The number of iterations taken by simulated annealing here is logtdecay(taccept/t0). Since

we expect that each layout parameter requires a consistent number of stochastic updates to

arrive at an acceptable value, we update the tdecay value in order to maintain a consistent ratio

of iterations to layout parameters. In particular, we set taccept = ϕ1/n, where ϕ is the desired

tdecay value for an itinerary with a single waypoint and n is the number of waypoints.

Figure 6.2 shows the results of our algorithm on six randomly-generated itineraries.

The visualizations minimize the least desirable layout factors, with no occluded labels and

minimal overlap of labels, edges, and waypoints. Minor layout issues are visible, such as the

placement of labels for Stop B and Stop D in the bottom right diagram. Here, a better layout

would involve switching the positions of the two labels. However, swapping them would

have required several fortuitous parameter changes by the candidate function in order to

climb out of a local minimum in the energy function, which did not occur.

136

(a) (b)

Figure 6.3: Two itineraries taken from image search results and their reproductions using
our itinerary layout method. The reproductions are shown to the right of the originals. The
map in (a) was created by a blogger to display her European itinerary. The order of stops and
precise stop locations are difficult to discern in the original, but our automatically generated
version addresses both of these issues by adding labels and using curves for edges. The map
in (b) shows three suggested itineraries in northern Italy. Our method supports laying out
multiple disconnected itineraries, and the simulated annealing algorithm settles on a layout
that avoids label overlap even in a somewhat dense itinerary diagram such as this.

6.1.2 Demonstration System

A demonstration system illustrates the effectiveness of our itinerary layout algorithm.

It consists of three primary components: (1) a geotagging module, (2) a mapping module,

and (3) an itinerary visualization module. The geotagging module uses the method outlined

in Chapter 3 to return geographic coordinates for place names that have geographic interpre-

tations. The mapping module renders the map base layer, upon which the itinerary visualiza-

tion is displayed. The system currently allows for Google Maps (with the standard Mercator

projection) or one of several static map projections. A challenge for this module is pick-

ing appropriate bounds for the geographic window. To avoid a specialized solution for each

projection, we use a generic algorithm that projects each waypoint into screen coordinates,

computes a bounding box in projected coordinates, then scales and transforms the active re-

gion in the projection to fill the available space for the map. The resultant screen locations

are used as inputs to the next module, which generates the itinerary layout. The visualiza-

tion module takes the projection waypoint coordinates, along with the waypoint names and

137

edge topology, and generates layout parameters d, θ, and r for the corresponding waypoints

and edges using the algorithm in Section 6.1.1. The system uses the actual screen sizes of

waypoint label text to do accurate overlap tests. Once the simulated annealing algorithm’s

iterations are done, the resultant layout parameters are used to render the itinerary on the map.

The system accepts direct input of itineraries, by allowing users to enter names of

waypoints, but any itinerary gathering technique could be substituted, such as supplying

the extracted itineraries from Chapter 4 or supplying structured itineraries based on travel

site content. Figure 6.3 shows two itineraries taken from the internet along with reproduced

visualizations generated by our system.

6.2 Point Set Similarity Search

In this section, we present GeoXLS, an implementation of the search query algorithms

described in Chapter 5 that enables users to submit a set of locations as a query objectQ and

to find data tables containing locations similar to those inQ. The results are ranked according

to their similarity to Q, using one of several user-selected similarity measures related to the

Hausdorff distance. The data tables that were indexed for this system include spreadsheets

that were crawled from theWeb and describe a wide variety of geographic features, including

lists of universities, airports, and national parks. We use this collection to demonstrate how

GeoXLS can be used to “complete the set” by identifying sets containing similar locations.

To demonstrate the versatility of GeoXLS, we also show that it can be applied to two

other types of geotagged web documents in addition to spreadsheets and HTML tables. First,

we apply GeoXLS to a collection of disease outbreak data. Users can specify a setQ of loca-

tions and find disease outbreaks that contain locations similar to those in Q. Second, we use

a collection of geotagged news articles where each article may contain multiple locations.

Using this dataset, users may issue a query like “Find events that are related to these n ge-

ographic locations.” For example, to understand interactions between the United States and

138

China related to military activities in Libya, a user can place points in Washington, Beijing,

and Tripoli as a search query, which returns multiple relevant articles.

6.2.1 System Components

As shown in Figure 6.4, GeoXLS consists of the following components: (i) document

geotagger, (ii) RDBMS, (iii) Hausdorff spatial index, and (iv) web application.

Figure 6.4: GeoXLS system architecture.

Before users can search for web documents, those documents must be processed and

stored. This is accomplished by the document geotagger module, which performs different

actions depending on the data source (e.g., spreadsheets, news articles, disease outbreaks,

etc.). Table geotagging has been discussed extensively in Chapter 3. We have developed

similar submodules for geotagging news articles and disease outbreak documents based on

the geotagging components of the NewsStand [60, 92, 102] and related STEWARD [65]

systems.

The results of the document geotagging process are stored in a relational database man-

agement system (RDBMS) which maintains information about each geotagged document and

its associated points. For example, in the case of data tables this includes the original source

URI and title of each document, as well as the row number, place name, and lat/long for each

associated point. This enables efficient ad hoc access to each web document’s attributes

without requiring that the original documents be read during every GeoXLS query.

In addition to the RDBMS, we developed a Python and C++ module to perform Haus-

139

dorff searches, which effectively serves as a Hausdorff spatial index over our database of

point sets. That is, the Hausdorff spatial index component is used to answer questions of the

following general form for a specified query point set q (note that we express the query using

SQL syntax, but the Hausdorff index is not actually integrated into the RDBMS):

1: SELECT pt_set

2: FROM collection

3: WHERE NumPoints(pt_set) < maxPoints

4: ORDER BY HausDist(q, pt_set)

5: LIMIT k;

The search system accepts the following parameters:

• q. Query points can either be specified as a set of lat/long values or by using another

point set that already exists in the index.

• k ≥ 1, specifies the number of search results to return.

• maxPoints ≥ 1, the maximum point set size to consider for the search. Some docu-

ments have tens of thousands of points with wide geographic coverage. Without this

parameter, these documents can cause search results to be full of large, mostly irrele-

vant point sets.

The distance function (Line 4) and the order of its arguments are determined by two ad-

ditional parameters: Hausdorff Type andDirection. The following table shows how different

combinations result in different settings.

Direction Hausdorff Type
HausDist MHD

FromQuery HausDist(q, pt_set) MHD(q, pt_set)
ToQuery HausDist(pt_set, q) MHD(pt_set, q)
Symmetric SymHausDist(q, pt_set) SymMHD(q, pt_set)

The Hausdorff spatial index is reconstructed periodically to incorporate additions to

140

each document collection, and is kept in memory to support efficient query response times.

The final component, which connects the RDBMS and Hausdorff spatial index to the

end-user, is the GeoXLS web application. The application is composed of a back-end server

written in Python, and a client-side web application written in JavaScript. The main function

of the web application server is to generate the HTML pages that the client interacts with and

handle asynchronous requests for data from the client. The current implementation of the

server handles two types of asynchronous HTTP requests: search query requests, and docu-

ment information requests. Search query requests are submitted with the array of parameters

listed earlier in this section, and then passed to the Hausdorff index to execute the query. The

server takes the resulting list of document identifiers and adds relevant information (such as

the URI of the document or other metadata). The combined results are used to generate an

HTML listing of search results. Document information requests are submitted when a user

selects a document in the search result listing. To handle these requests, the server queries

the RDBMS for a list of points associated with that document, and returns that list along with

any point-specific attributes.

The client-side web application serves as the user interface for GeoXLS. It provides

HTML input elements for user-specified search parameters, communicates with the web ap-

plication server to perform search queries, and provides a Google Maps-based interface for

entering query points and browsing the point sets of search result documents. A search query

session typically consists of the following user actions:

• Specify query points. This is done by (i) clicking “Start Drawing Points”; (ii) clicking

appropriate locations in the map pane to add those to an array of query points; and then

(iii) clicking “Done Drawing Points”.

• Select query parameters. Users can specify the direction for the Hausdorff search,

whether to use MHD or HausDist, the maximum point set size to consider in the

search, and the number of results to display.

141

• Execute search. After users click the “Search” button, the search parameters are sent

to the server. Results are displayed in tabular format.

• Select display options. When browsing search results, additional map overlays can

assist users in interpreting the results. In particular, the Hausdorff distance can be

displayed as: (i) a line between the points that determine the Hausdorff distance, or (ii)

a circle around one or all of the markers in the appropriate point set.

• Browse search results. When users select documents from the search results, the appli-

cation makes document information requests to the server, which returns the associated

locations and their attributes. These are displayed on the map as blue markers, and ad-

ditional overlays are rendered depending on the currently selected display options.

6.2.2 Query Examples

A screenshot of GeoXLS is shown in Figure 6.5a. The user has specified the loca-

tions of six universities in the U.S. as query points and executed a search using the modified

Hausdorff distance. Based on the values of the selected search parameters, the search result

listing contains 30 data tables with 100 or fewer points, ordered by each document’s mod-

ified Hausdorff distance from the query point set. When executing a FromQuery search,

GeoXLS returns point sets containing but not restricted to locations similar to the query

points. Since documents mentioning these six universities are likely to include other univer-

sities, the search results contain documents with locations of various universities including

those near the query set. Note that this containment relationship is reversed for ToQuery

and the containment relationship is bidirectional for Symmetric.

Figure 6.5b shows another example of search results. The chosen query locations are

large cities in Africa, possibly where the user’s organization has international headquarters.

The search results consist of many data tables that focus on Africa, potentially published by

other groups that the user’s organization can partner with. The line and circle overlays illus-

142

(a)

(b)

Figure 6.5: GeoXLS search results where the query points represent (a) the locations of six
universities in the U.S. and (b) the locations of five cities in Africa. The query points are
shown as red markers, the selected search result is highlighted in green, and the point set
representing the selected search result is shown using blue markers. The Hausdorff distance
is illustrated as a line and circles around the query points in (b).

143

trate the geometric properties of this measure. The yellow line connects the two points that

determine the symmetric Hausdorff distance in this example, and the grey circles around the

query points use the Hausdorff distance as their radii. Due to the definition of the Hausdorff

distance, this means that each circle contains at least one point in the result set (blue marker).

6.3 Parallel Detail Views

A third visualization technique that can be applied to geographic tables involves show-

ing a collection of individual, detailed views of each location associated with a table row.

We call this the parallel detail view. In this visualization, we are exploiting the expected

coherence between objects that appear within a table, in order to show a detailed view of

each individual location. Unlike full map visualizations that show the spatial relationships

between geographic objects, the parallel detail view enables a visual comparison of the ob-

jects. Specifically, given a set of geographic coordinates, the parallel detail view supplies a

detailed satellite view of each location. The current system displays views using the Google

Static Maps API, however with the proliferation of imagery such as Bing Bird’s Eye imagery

or Google Street View, multiple options could be supplied.

The parallel detail view requires very precise geotagging and would not be appropriate

for larger geographic features, such as cities or administrative regions. However, for land-

marks or features with a distinctive satellite appearance, it can be useful to see a collection

of such objects using detailed satellite imagery of each in tandem. We note that the choice

of zoom level can affect the clarity of the visualization, as geographic features of different

types may be too large or too small to inspect visually unless they are appropriately sized with

the zoom level of the map. We find that few locational features are visually recognizable at

scales smaller than 1:300,000 (roughly corresponding to Google Maps API zoom level 12

for moderate latitudes on a monitor with standard pixel density). The interface defaults to a

zoom level of 14 and allows manual adjustment by the user. In the future, the selection of

144

(a)

(b)

Figure 6.6: (a) Spreadsheet containing data about Major League Baseball stadiums and
(b) corresponding parallel detail view.

145

zoom level could potentially be automated using the feature types returned by the gazetteer.

However, there is a wide variety of scales, even within the same feature classes. For exam-

ple, baseball stadiums and public parks exist at different physical scales and would require

different zoom levels of satellite imagery to perform useful visual inspections, but both are

commonly listed as parks in the GeoNames gazetteer.

Figure 6.6 shows a spreadsheet containing factual information about Major League

Baseball stadiums. While the tabular representation is useful for many purposes, questions

such as “How many stadiums in Major League Baseball face to the East?” are easier to

answer with the parallel detail view shown below. Other questions, such as “Which stadiums

are located in urban centers?” could be answered by adjusting the zoom level of the satellite

view.

As with the two visualizations looked at earlier in this chapter, parallel detail views

have applications outside of table data, especially given the need for precise coordinates for

each data point. Our implementation additionally supports Wikipedia categories as a way

of specifying a location set, and associates each Wikipedia page in the category with the

geographic coordinates on that page.

6.4 Summary

First, we presented an algorithm and system for generating automated itinerary visual-

izations. In the future, itinerary layout could be adapted to allow increased realism through

options for paths along great circles (approximating flight paths) or along various land or sea

transportation routes. The high-level framework that we introduced allows for the addition

of such constraints. Additionally, the layout procedure itself could be adapted to include

a force-directed component that performs with lower latency (although force-directed ap-

proaches are prone to settling at local minima). Further changes involving spatial distortion

around waypoint locations, as in LineDrive [8], could also be used.

146

Next, we described GeoXLS, a novel system for searching collections of point sets.

The search results are not based on proximity of a single query point or a single result point

to others, but rather they are based on the overall similarity of the query and result point sets.

GeoXLS supports multiple similarity measures related to the Hausdorff distance, and has

been used to search several large collections of geotagged web documents.

Finally, we described a type of visualization that is well-suited to the task of visually

inspecting and comparing the geographic locations found in a data table: the parallel detail

view. While this view is only suitable for a subset of tables whose locations exhibit visually

interesting features at a constant zoom level, the view provides a valuable way of inspecting

that subset. The existing support for satellite imagery could potentially be augmented with

options to view aerial or street-view imagery to take advantage of the geographic pervasive-

ness of geo-located visual media that is now available on the Web.

147

Chapter 7

Conclusions

In this dissertation, we have explored the usage of table structure to achieve better un-

derstanding of table contents. Geographic tables, in particular, were shown to be a previously

untapped resource, while supporting a rich set of metadata annotations, query types, and vi-

sualizations. In this chapter, we summarize our contributions and suggest several avenues

for further work.

Chapter 2 introduced our structural decomposition method for tables, based on the ex-

pectation of coherence between cells that appear in the same functional areas within tables.

Several row classification methods were discussed, including a probabilistic grammar and

others that used conditional random fields. The classification accuracy was improved by

adopting a logarithmic binning feature encoding and was experimentally validated by show-

ing a substantial increase in accuracy when compared with Google’s WebTables technique

on classifying row functions in a complete table. This method served as the basis for data

table extraction in each of the following chapters.

In Chapter 3, we examined a new approach to document geotagging, the CHPCmethod,

which took advantage of the presumed consistency between entities that appear in a single ta-

ble. The method involved selecting a geographic category for a table from a place taxonomy,

based on how well the category fit with potential geographic interpretations of the toponyms,

148

and individual toponyms are then resolved within the chosen category. This method was

shown to perform with much higher accuracy than alternative methods that do not make use

of the full place taxonomy.

Chapter 4 focused on a particular type of data table: the travel itinerary. We applied

some domain knowledge about common itinerary traits in order to effectively classify tables

as itineraries or non-itineraries. The most useful features in making this determination were

related to the ordering of table rows—specifically, whether the order in which locations ap-

peared resulted in an efficient path. Path efficiency was quantified using a technique that had

previously been developed as an optimization for the traveling salesman problem, and the

method was able to successfully identify many itineraries from a large corpus of data tables.

Treating geographic tables as point sets gives rise to several interesting queries. In

Chapter 5, a scheme was presented for identifying point sets with a similar distribution to

a query point set. The technique relied on an optimistic estimate of the Hausdorff distance

between two point sets and used a branch-and-bound technique to limit the computation re-

quired for similarity queries. An evaluation of the performance of our method showed a

substantial improvement over an alternative method using a weaker lower bound estimate,

both for the Hausdorff distance and the outlier-resistant modified Hausdorff distance.

Finally, we developed several means of visualizing and interacting with geographic ta-

bles, which were presented in Chapter 6: (i) automated itinerary layout, (ii) similarity search-

ing on geotagged tables, and (iii) parallel detail views for visual inspection of location sets

found in tables. Each visualization method aided in the spatial or visual inspection of geo-

graphic tables by presenting a corresponding map-based view.

Several open problems persist in the area of table understanding, of which we draw

attention to three of the most important. First, while our method for functional analysis

of complex tables improves on prior art, there remains a need for a unified theory of table

composition (and decomposition). An ideal theory would apply a hierarchical representation

149

of table structures that includes both high-level structures that cover many table cells and

fine-grained structures within individual cells, in order to explain the rich variety of structures

found in the constituent parts of a data table. As we believe that table generation mechanisms

are closer to natural language sentence processes than they are to formal grammar rules,

taking inspiration from NLP’s grammar induction methods may be helpful.

Second, we wonder if there is a probabilistic model of column coherence that is general

enough to simultaneously apply to disparate knowledge domains. The CHPC method is es-

pecially well-formulated for geographic disambiguation because geographic entities can be

described and compared using a small number of attributes (i.e., their geographic containers,

geographic types, and prominence). Other types of entities vary in more subtle and less clear

ways, making comparisons between and categorizations of sets of entities more difficult.

Existing ontologies that cover broad knowledge domains could provide a starting point for

understanding the ways in which entities are related and thus support accurate disambiguation

of entities in data tables.

Third, just as the spreadsheet brought data tables to light as a popular method for com-

municating structured data on a computer, a system for interacting with generic data tables

that achieves broad appeal could spur increased interest in methods of utilizing data tables

on the Web. Such a system would make it easy to search and browse data tables, support

primitives that we expect of standard relational databases such as joining data from multiple

sources, and allow interacting with tables of known types in a manner that we expect based

on the knowledge domain (such as map-based systems for geographic data).

In spite of some unresolved challenges, as the prevalence of data tables continues to

increase, there is no choice but to develop better tools for understanding, processing, and

interacting with the data that they hold. I hope and expect that the techniques described here

will influence the development of future research that can harness data tables as a valuable

resource.

150

References

[1] M. D. Adelfio, S. Nutanong, and H. Samet. Searching Web Documents as Loca-
tion Sets. In Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (GIS’11). Chicago, IL, Nov. 2011,
pp. 489–492.

[2] M. D. Adelfio and H. Samet. GeoWhiz: Toponym Resolution Using Common Cat-
egories. In Proceedings of the 21th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (SIGSPATIAL’13). Orlando, FL, Nov.
2013, pp. 542–545.

[3] M. D. Adelfio and H. Samet. Schema Extraction for Tabular Data on the Web. Pro-
ceedings of the VLDB Endowment, 6(6) Apr. 2013, pp. 421–432.

[4] M. D. Adelfio, S. Nutanong, and H. Samet. Similarity Search on a Large Collection of
Point Sets. In Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (GIS’11). Chicago, IL, Nov. 2011,
pp. 132–141.

[5] M. D. Adelfio and H. Samet. Automated Tabular Itinerary Visualization. In Proceed-
ings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL’14). Dallas, TX, Nov. 2014, pp. 593–
596.

[6] M. D. Adelfio and H. Samet. Itinerary Recognition: Travelers, like Traveling Sales-
men, Prefer Efficient Routes. In Proceedings of the 8th ACM SIGSPATIALWorkshop
on Geographic Information Retrieval (GIR’14). Dallas, TX, Nov. 2014.

[7] M. D. Adelfio and H. Samet. Structured Toponym Resolution Using Combined Hi-
erarchical Place Categories. In Proceedings of the 7th ACM SIGSPATIAL Workshop
on Geographic Information Retrieval (GIR’13). Orlando, FL, Nov. 2013.

[8] M. Agrawala and C. Stolte. Rendering Effective Route Maps: Improving Usability
Through Generalization. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’01). LosAngeles, CA,Aug. 2001,
pp. 241–249.

[9] H. Alt, B. Behrends, and J. Blömer. Approximate Matching of Polygonal Shapes. In
Proceedings of the 7th Annual Symposium on Computational Geometry (SoCG’91).
North Conway, NH, June 1991, pp. 186–193.

[10] H. Alt, P. Brass, M. Godau, C. Knauer, and C. Wenk. Computing the Hausdorff
Distance of Geometric Patterns and Shapes. Discrete and Computational Geometry,
25 2003, pp. 65–76.

151

[11] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-Where: GeotaggingWeb Con-
tent. In Proceedings of the 27th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR’04). Sheffield, UK, July
2004, pp. 273–280.

[12] E. Bart. Parsing Tables by ProbabilisticModeling of Perceptual Cues. InProceedings
of the 10th IAPR International Workshop on Document Analysis Systems (DAS’12).
IEEE. Gold Coast, Queensland, Australia, Mar. 2012, pp. 409–414.

[13] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

[14] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data (SIGMOD’90).
Atlantic City, NJ, May 1990, pp. 322–331.

[15] I. Bensalem and M. K. Kholladi. Toponym Disambiguation by Arborescent Rela-
tionships. Journal of Computer Science, 6(6) June 2010, pp. 653–659.

[16] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic Schema Matching, Ten Years
Later. Proceedings of the VLDB Endowment, 4(11) Aug. 2011, pp. 695–701.

[17] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen.Classification and Regression
Trees. New York: Chapman & Hall, 1984.

[18] D. Buscaldi and P. Rosso. Map-Based vs. Knowledge-Based Toponym Disambigua-
tion. In Proceedings of the 5th ACMWorkshop on Geographic Information Retrieval
(GIR’08). Napa Valley, CA, Oct. 2008, pp. 19–22.

[19] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data Integration for the Rela-
tional Web. In Proceedings of the 35th International Conference on Very Large Data
Bases (VLDB’09). Lyon, France, Aug. 2009, pp. 1090–1101.

[20] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Uncovering the
Relational Web. In Proceedings of the 11th International Workshop on Web and
Databases (WebDB’08). Vancouver, Canada, June 2008.

[21] M. J. Cafarella, A. Halevy, D. Z.Wang, E.Wu, and Y. Zhang.WebTables: Exploring
the Power of Tables on theWeb. In Proceedings of the 34th International Conference
on Very Large Data Bases (VLDB’08). Auckland, New Zealand, Aug. 2008, pp. 538–
549.

[22] H.-H. Chen, S.-C. Tsai, and J.-H. Tsai.Mining Tables fromLarge Scale HTMLTexts.
In Proceedings of the 18th International Conference on Computational Linguistics
(COLING’00). Saarbrücken, Germany, July 2000, pp. 166–172.

[23] J. Chen, J.-Y. Pan, and S. Papadimitriou. TSum: Fast, Principled Table Summariza-
tion. In Proceedings of the Seventh International Workshop on Data Mining for On-
line Advertising (ADKDD’13). Chicago, IL, Aug. 2013.

[24] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communica-
tions of the ACM, 13(6) June 1970, pp. 377–387.

[25] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest Pair
Queries in Spatial Databases. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’00). Dallas, TX, May 2000,
pp. 189–200.

152

[26] C. Cortes and V. Vapnik. Support-Vector Networks.Machine Learning, 20(3) Sept.
1995, pp. 273–297.

[27] E. Crestan and P. Pantel. Web-Scale Table Census and Classification. In Proceed-
ings of the Fourth ACM International Conference on Web Search and Data Mining
(WSDM’11). Hong Kong, China, Feb. 2011, pp. 545–554.

[28] G. A. Croes. A Method for Solving Traveling-Salesman Problems. Operations Re-
search, 6(6) Nov. 1958, pp. 791–812.

[29] I. F. Cruz, V. R. Ganesh, and S. I. Mirrezaei. Semantic Extraction of Geographic Data
from Web Tables for Big Data Integration. In Proceedings of the 7th Workshop on
Geographic Information Retrieval (GIR’13). Orlando, FL, Nov. 2013, pp. 19–26.

[30] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F.Wu, R. Xin, and C. Yu. Find-
ing Related Tables. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’12). Scottsdale, AZ, May 2012, pp. 817–
828.

[31] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi, R. Lempel, and C. Yu.
Automatic Construction of Travel Itineraries Using Social Breadcrumbs. In Proceed-
ings of the 21st ACM Conference on Hypertext and Hypermedia (HT’10). Toronto,
Canada, June 2010, pp. 35–44.

[32] M. Dredze, P. P. Talukdar, and K. Crammer. Sequence Learning from Data with
Multiple Labels. In Proceedings of the 1st International Workshop on Learning from
Multi-Label Data at ECML/PKDD. Bled, Slovenia, Sept. 2009.

[33] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Second. New York:
Wiley Interscience, 2000.

[34] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting Relational Tables from Lists
on the Web. Proceedings of the VLDB Endowment, 2(1) Aug. 2009, pp. 1078–1089.

[35] D. W. Embley, M. Hurst, D. P. Lopresti, and G. Nagy. Table-Processing Paradigms:
A Research Survey. International Journal on Document Analysis and Recognition,
8(2) June 2006, pp. 66–86.

[36] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. Automatic Genera-
tion and Maintenance of Correct Spreadsheets. In Proceedings of the 27th Interna-
tional Conference on Software Engineering (ICSE’05). St. Louis, MO, May 2005,
pp. 136–145.

[37] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-Directed Place-
ment. Software: Practice and Experience, 21(11) Nov. 1991, pp. 1129–1164.

[38] W. Gatterbauer, P. Bohunsky,M. Herzog, B. Krüpl, and B. Pollak. Towards Domain-
Independent Information Extraction from Web Tables. In Proceedings of the 16th
International Conference onWorldWideWeb (WWW’07). Banff, Canada,May 2007,
pp. 71–80.

[39] GeoNames. http://geonames.org/.
[40] R. Gupta and S. Sarawagi. Answering Table Augmentation Queries from Unstruc-

tured Lists on the Web. Proceedings of the VLDB Endowment, 2(1) Aug. 2009,
pp. 289–300.

[41] M. Guthe, P. Borodin, and R. Klein. Fast and Accurate Hausdorff Distance Calcula-
tion Between Meshes. Journal of WSCG, 13(2) 2005, pp. 41–48.

153

http://geonames.org/

[42] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proceed-
ings of the 1984 ACM SIGMOD International Conference on Management of Data
(SIGMOD’84). Boston, MA, June 1984, pp. 47–57.

[43] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi. RDF123: From Spreadsheets to
RDF. In Proceedings of the 7th International Semantic Web Conference (ISWC’08).
Karlsruhe, Germany, Oct. 2008, pp. 451–466.

[44] T. Hassan and R. Baumgartner. Table Recognition and Understanding from PDF
Files. In Proceedings of the Ninth International Conference on Document Analysis
and Recognition (ICDAR’07). Vol. 2. Curitiba, Brazil, Sept. 2007, pp. 1143–1147.

[45] I. Herman, G. Melancon, and M. Marshall. Graph Visualization and Navigation in
Information Visualization: A Survey. IEEE Transactions on Visualization and Com-
puter Graphics, 6(1) Jan. 2000, pp. 24–43.

[46] G. Hignette, P. Buche, J. Dibie-Barthélemy, and O. Haemmerlé. Fuzzy Annotation
of Web Data Tables Driven by a Domain Ontology. In Proceedings of the 6th Euro-
pean Semantic Web Conference on The Semantic Web: Research and Applications
(ESWC’09). Heraklion, Crete, Greece, May 2009, pp. 638–653.

[47] G. R. Hjaltason and H. Samet. Distance Browsing in Spatial Databases. ACM Trans-
actions on Database Systems, 24(2) June 1999, pp. 265–318.

[48] G. R. Hjaltason and H. Samet. Incremental Distance Join Algorithms for Spatial
Databases. In Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data (SIGMOD’98). Seattle, WA, June 1998, pp. 237–248.

[49] G. R. Hjaltason andH. Samet. Index-Driven Similarity Search inMetric Spaces.ACM
Transactions on Database Systems, 28(4) Dec. 2003, pp. 517–580.

[50] M. F. Hurst. “The Interpretation of Tables in Texts”. PhD thesis. Edinburgh, Scot-
land: University of Edinburgh, 2000.

[51] D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On Dynamic Voronoi Diagrams
and the Minimum Hausdorff Distance for Point Sets Under Euclidean Motion in the
Plane. In Proceedings of the 8th Annual Symposium on Computational Geometry
(SoCG’92). Berlin, Germany, June 1992, pp. 110–119.

[52] D. Jannach, K. Shchekotykhin, and G. Friedrich. Automated Ontology Instantiation
from Tabular Web Sources—The AllRight System.Web Semantics, 7(3) Sept. 2009,
pp. 136–153.

[53] P. Jha. “Wang Notation Tool: A Layout Independent Representation of Tables”. MA
thesis. Rensselaer Polytechnic Institute, Department of Electrical Engineering, 2008.

[54] G. H. John and P. Langley. Estimating Continuous Distributions in Bayesian Classi-
fiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelli-
gence (UAI’95). Montreal, Canada, Aug. 1995, pp. 338–345.

[55] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598) May 1983, pp. 671–680.

[56] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the
18th International Conference onMachine Learning (ICML’01).Williamstown,MA,
June 2001, pp. 282–289.

[57] O. Lassila. The Resource Description Framework. IEEE Intelligent Systems, 15(6)
Nov. 2000, pp. 67–69.

154

[58] J. L. Leidner. “Toponym Resolution in Text: Annotation, Evaluation and Applica-
tions of Spatial Grounding of Place Names”. PhD thesis. Edinburgh, Scotland: Uni-
versity of Edinburgh, School of Informatics, 2007.

[59] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the Structure of Web Sites
for Automatic Segmentation of Tables. In Proceedings of the 2004 ACM SIGMOD
International Conference onManagement of Data (SIGMOD’04). Paris, France, June
2004, pp. 119–130.

[60] M. D. Lieberman and H. Samet. Supporting Rapid Processing and Interactive Map-
Based Exploration of StreamingNews. InProceedings of the 20th ACMSIGSPATIAL
International Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL’12). Redondo Beach, CA, Nov. 2012, pp. 179–188.

[61] M. D. Lieberman and H. Samet. Adaptive Context Features for Toponym Resolution
in Streaming News. In Proceedings of the 35th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’12). Portland, OR,
Aug. 2012, pp. 731–740.

[62] M. D. Lieberman and H. Samet. Multifaceted Toponym Recognition for Streaming
News. In Proceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’11). Beijing, China, July 2011,
pp. 843–852.

[63] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging with Local Lex-
icons to Build Indexes for Textually-Specified Spatial Data. In Proceedings of the
26th International Conference on Data Engineering (ICDE’10). Long Beach, CA,
Mar. 2010, pp. 201–212.

[64] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling. Spatio-Textual
Spreadsheets: Geotagging via Spatial Coherence. In Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems (GIS’09). Seattle, WA, Nov. 2009, pp. 524–527.

[65] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling. STEWARD: Ar-
chitecture of a Spatio-Textual Search Engine. InProceedings of the 15th ACMSIGSPA-
TIAL International Conference on Advances inGeographic Information Systems (GIS’07).
Seattle, WA, Nov. 2007, pp. 186–193.

[66] M. D. Lieberman, H. Samet, and J. Sankaranayananan. Geotagging: Using Proximity,
Sibling, and Prominence Clues to Understand Comma Groups. In Proceedings of the
6th Workshop on Geographic Information Retrieval (GIR’10). Zurich, Switzerland,
Nov. 2010, 6:1–6:8.

[67] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and Searching Web Tables
Using Entities, Types and Relationships. Proceedings of the VLDB, 3(1) Sept. 2010,
pp. 1338–1347.

[68] S. Lin and B. W. Kernighan. An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research, 21(2) Mar. 1973, pp. 498–516.

[69] R. Lipikorn, A. Shimizu, and H. Kobatake. A Modified Exoskeleton and a Haus-
dorff Distance Matching Algorithm for Shape-Based Object Recognition. In Pro-
ceedings of the International Conference on Imaging Science, Systems and Technol-
ogy (CISST’03). Las Vegas, NV, June 2003, pp. 507–511.

155

[70] Y. Liu, K. Bai, P. Mitra, and C. L. Giles. TableSeer: Automatic Table Metadata Ex-
traction and Searching in Digital Libraries. In Proceedings of the 7th ACM/IEEE
Joint Conference on Digital Libraries (JCDL’07). Vancouver, Canada, June 2007,
pp. 91–100.

[71] J.Madhavan, P. Bernstein, K. Chen, A.Halevy, and P. Shenoy. Corpus-based Schema
Matching. In Proceedings of the 19th International Conference on Data Engineering
(ICDE’03). Bangalore, India, Mar. 2003, pp. 57–68.

[72] B. Martins, H. Manguinhas, and J. Borbinha. Extracting and Exploring the Geo-
Temporal Semantics of Textual Resources. In Proceedings of the 2nd IEEE Interna-
tional Conference on Semantic Computing (ICSC’08). Santa Clara, CA, Aug. 2008,
pp. 1–9.

[73] K. S. McCurley. Geospatial Mapping and Navigation of the Web. In Proceedings of
the Tenth International World Wide Web Conference (WWW’01). Hong Kong, May
2001, pp. 221–229.

[74] V.Mulwad, T. Finin, and A. Joshi. A Domain Independent Framework for Extracting
Linked Semantic Data from Tables. In Search Computing. Vol. 7538. 2012, pp. 16–
33.

[75] D. Nadeau, P. Turney, and S. Matwin. Unsupervised Named-Entity Recognition:
GeneratingGazetteers andResolvingAmbiguity. InCanadian AI. QuebecCity, Canada,
June 2006, pp. 266–277.

[76] S. Nutanong, E. H. Jacox, and H. Samet. An Incremental Hausdorff Distance Calcu-
lation Algorithm. Proceedings of the VLDB Endowment, 4(8) May 2011, pp. 506–
517.

[77] N.Okazaki.CRFsuite: A Fast Implementation of Conditional RandomFields (CRFs).
http://www.chokkan.org/software/crfsuite/. 2007.

[78] S. E. Overell and S. M. Rüger. Using Co-Occurrence Models for Placename Disam-
biguation. International Journal of Geographical Information Science, 22(3) Mar.
2008, pp. 265–287.

[79] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate Nearest Neighbor
Queries in Spatial Databases. ACM Transactions on Database Systems, 30(2) June
2005, pp. 529–576.

[80] R. Pimplikar and S. Sarawagi. Answering Table Queries on the Web using Column
Keywords. Proceedings of the VLDB Endowment, 5(10) June 2012, pp. 908–919.

[81] D. Pinto, A.McCallum, X.Wei, andW. B. Croft. Table Extraction Using Conditional
Random Fields. In Proceedings of the 26th Annual International Conference on Re-
search and Development in Information Retrieval (SIGIR’03). Toronto, Canada, July
2003, pp. 235–242.

[82] H. C. Purchase. Which Aesthetic Has the Greatest Effect on Human Understand-
ing? In Proceedings of the 5th International Symposium on Graph Drawing (GD’97).
Rome, Italy, Sept. 1997, pp. 248–261.

[83] R. S. Purves, P. Clough, C. B. Jones, A. Arampatzis, B. Bucher, D. Finch, G. Fu, H.
Joho, A. K. Syed, S. Vaid, and B. Yang. The Design and Implementation of SPIRIT:
A Spatially Aware Search Engine for Information Retrieval on the Internet. Inter-
national Journal of Geographical Information Science, 21(7) Aug. 2007, pp. 717–
745.

156

http://www.chokkan.org/software/crfsuite/

[84] T. Qin, R. Xiao, L. Fang, X. Xie, and L. Zhang. An Efficient Location Extraction
Algorithm by Leveraging Web Contextual Information. In Proceedings of the 18th
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems. San Jose, CA, Nov. 2010, pp. 53–60.

[85] G. Quercini and C. Reynaud. Entity Discovery and Annotation in Tables. In Pro-
ceedings of the 16th International Conference on Extending Database Technology
(EDBT’13). Genoa, Italy, Mar. 2013, pp. 693–704.

[86] G. Quercini, H. Samet, J. Sankaranarayanan, and M. D. Lieberman. Determining the
Spatial Reader Scopes of News Sources Using Local Lexicons. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic Information
Systems (GIS’10). San Jose, CA, Nov. 2010, pp. 43–52.

[87] E. Rauch, M. Bukatin, and K. Baker. A Confidence-Based Framework for Disam-
biguating Geographic Terms. In Proceedings of the HLT-NAACL 2003 Workshop on
Analysis of Geographic References (GEOREF’03). Edmonton, Canada, May 2003.

[88] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and M. Srivastava. Bike-
tastic: Sensing and mapping for better biking. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (SIGCHI’10). Atlanta, GA, Apr.
2010, pp. 1817–1820.

[89] L. Rokach and O. Maimon. Data Mining with Decision Trees: Theory and Applica-
tions. New York: World Scientific, 2008.

[90] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function.
The Annals of Mathematical Statistics, 27(3) Sept. 1956, pp. 832–837.

[91] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. In Proceed-
ings of the 1995 ACM SIGMOD International Conference on Management of Data
(SIGMOD’95). San Jose, CA, May 1995, pp. 71–79.

[92] H. Samet, J. Sankaranarayanan, M. D. Lieberman, M. D. Adelfio, B. C. Fruin, J. M.
Lotkowski, D. Panozzo, J. Sperling, and B. E. Teitler. Reading News with Maps
by Exploiting Spatial Synonyms. Communications of the ACM, 57(10) Oct. 2014,
pp. 64–77.

[93] H. Samet. Foundations of Multidimensional and Metric Data Structures. San Fran-
cisco: Morgan-Kaufmann, 2006.

[94] T. W. Sederberg and S. R. Parry. Comparison of Three Curve Intersection Algo-
rithms. Computer Aided Design, 18(1) Jan. 1986, pp. 58–63.

[95] S. Seth, R. Jandhyala, M. Krishnamoorthy, and G. Nagy. Analysis and Taxonomy of
Column Header Categories for Web Tables. In Proceedings of the 9th IAPR Interna-
tional Workshop on Document Analysis Systems (DAS’10). Boston, MA, June 2010,
pp. 81–88.

[96] F. Sha and F. C. N. Pereira. Shallow Parsing with Conditional Random Fields. In
Proceedings of the Human Language Technology Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics (HLT-NAACL’03).
Edmonton, Canada, May 2003, pp. 213–220.

[97] H. Shin, B. Moon, and S. Lee. Adaptive Multi-Stage Distance Join Processing. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data (SIGMOD’00). Dallas, TX, May 2000, pp. 343–354.

157

[98] A. C. e Silva, A. M. Jorge, and L. Torgo. Design of an End-to-End Method to Extract
Information from Tables. International Journal of Document Analysis and Recogni-
tion, 8(2-3) June 2006, pp. 144–171.

[99] J. Strötgen, M. Gertz, and P. Popov. Extraction and Exploration of Spatio-Temporal
Information in Documents. In Proceedings of the 6th Workshop on Geographic In-
formation Retrieval (GIR’10). Zurich, Switzerland, Feb. 2010, pp. 16–23.

[100] M. Tang, M. Lee, and Y. J. Kim. Interactive Hausdorff Distance Computation for
General Polygonal Models. ACM Transactions on Graphics, 28(3) Aug. 2009.

[101] C. Tao and D.W. Embley. Automatic Hidden-Web Table Interpretation, Conceptual-
ization, and Semantic Annotation.Data & Knowledge Engineering, 68(7) July 2009,
pp. 683–703.

[102] B. Teitler,M. D. Lieberman, D. Panozzo, J. Sankaranarayanan, H. Samet, and J. Sper-
ling. NewsStand: A New View on News. In Proceedings of the 16th SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS’08).
Irvine, CA, Nov. 2008, pp. 144–153.

[103] Y. A. Tijerino, D. W. Embley, D. W. L. Y. Ding, and G. Nagy. Towards Ontology
Generation from Tables.World Wide Web, 8(3) Sept. 2005, pp. 261–285.

[104] G. Tsoumakas and I. Katakis. Multi-Label Classification: An Overview. Interna-
tional Journal of Data Warehousing and Mining, 3(3) 2007, pp. 1–13.

[105] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao, and C. Wu.
Recovering Semantics of Tables on the Web. Proceedings of the VLDB Endowment,
4(9) June 2011, pp. 528–538.

[106] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu. Understanding Tables on the Web. In
Proceedings of the 31st International Conference on Conceptual Modeling (ER’12).
Florence, Italy, Oct. 2012, pp. 141–155.

[107] X. Wang. “Tabular Abstraction, Editing, and Formatting”. PhD thesis. University of
Waterloo, Department of Computer Science, 1996.

[108] X.Wang andD.Wood. AnAbstractModel for Tables.Communications of the TEXUsers
Group (TUGboat’93), 14(3) Oct. 1993, pp. 231–237.

[109] Y. Wang and J. Hu. A Machine Learning Based Approach for Table Detection on
the Web. In Proceedings of the 11th International Conference on World Wide Web
(WWW’02). Honolulu, HI, May 2002, pp. 242–250.

[110] S. Winter and C. Freksa. Approaching the Notion of Place by Contrast. Journal of
Spatial Information Science, 5(1) July 2012, pp. 31–50.

[111] J. Wood, A. Slingsby, and J. Dykes. Visualizing the Dynamics of London’s Bicycle-
Hire Scheme.Cartographica: The International Journal for Geographic Information
and Geovisualization, 46(4) Nov. 2011, pp. 239–251.

[112] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An Efficient Method for KNN Join
Processing. In Proceedings of the Thirtieth International Conference on Very Large
Data Bases (VLDB’04). Toronto, Canada, Sept. 2004, pp. 756–767.

[113] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri. InfoGather: Entity Aug-
mentation and Attribute Discovery by Holistic Matching with Web Tables. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of
Data (SIGMOD’12). Scottsdale, AZ, May 2012, pp. 97–108.

158

[114] H. Yoon, Y. Zheng, X. Xie, and W. Woo. Smart Itinerary Recommendation Based
on User-Generated GPS Trajectories. In Ubiquitous Intelligence and Computing.
Vol. 6406. Oct. 2010, pp. 19–34.

[115] R. Zanibbi, D. Blostein, and J. R. Cordy. A Survey of Table Recognition: Models,
Observations, Transformations, and Inferences. International Journal on Document
Analysis and Recognition, 7(1) Mar. 2004, pp. 1–16.

159

	List of Figures
	List of Tables
	Introduction
	Characteristics of Data Tables
	Table Processing
	Table Geotagging
	Itinerary Tables
	Point Set Queries
	Tabular Data Visualization
	Organization of the Dissertation

	Structured Extraction of Tabular Data
	Extraction Preliminaries
	Related Work
	Table Row Classification
	Row Classes
	Features
	Cell Attributes
	Logarithmic Binning
	Classifying with Conditional Random Fields
	Row Classifier

	Common Row Patterns
	Evaluation
	Datasets
	Experimental Setup
	Row Classification Evaluation
	Full Table Accuracy
	Effects of Feature Binning
	Row Class Ambiguity
	Application to Existing Table Dataset

	Discussion of Column Properties
	Summary

	Structured Toponym Resolution
	Geographic Tables
	Problem Definition

	Geotagging Data Tables
	Data Extraction
	Taxonomy for Geographic Entities
	Features
	List Categorization

	Evaluation
	Dataset
	Category Accuracy
	Toponym Resolution Accuracy

	Demonstration Interface
	Summary

	Itinerary Recognition
	Itinerary Recognition
	Importing and Geotagging Tables
	Identifying Itineraries

	Evaluation
	Dataset
	Itinerary Detection

	Summary

	Queries on Extracted Point Sets
	Background
	Problem Definition
	Point Set Similarity Search
	Incremental Search Algorithm
	Lower Bound Computation
	Discussion

	Extension: Handling Outliers
	Evaluation
	Setup
	Accuracy of Estimators
	Selecting the number of MBRs
	Performance Studies
	Performance Distribution

	Summary

	Data Table Visualizations
	Automated Tabular Itinerary Layout
	Method
	Demonstration System

	Point Set Similarity Search
	System Components
	Query Examples

	Parallel Detail Views
	Summary

	Conclusions
	References

