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Abstract. A novel approach for the study of the long-term behavior of solu-
tions of continuous time consensus networks is developed. We establish suffi-

cient conditions for convergence to a common equilibrium, under the mildest

possible connectivity conditions, with emphasis on explicit estimates on the
rate of convergence. The discussion ranges from linear to non-linear, decen-

tralized to leader-follower as well as ordinary and time-delayed versions. Our

work extends and unifies past works in the literature. Examples and simula-
tions are presented to support the theoretical results.

1. Introduction. Dynamics of autonomous agents that exchange information over
an abstract communication network is a central topic in the Applied Science. From
Mathematical Biology & Pharmacokinetics to Engineering & Robotics, Social Sci-
ences & Economics the scientific community is persistently interested in the evo-
lution of interconnected systems and the global patterns that emerge out of local
interactions (see [1, 2, 5, 6, 8, 14, 15, 16, 17, 26, 28, 30, 34, 37, 41, 42] and references
therein).

The common denominator of all the aforementioned works is the study of a
certain co-operative dynamic algorithm and the standard objective is for the agents’
states to converge to a common equilibrium state under some global connectivity
conditions. The classic framework considers a finite number of agents labeled as
{1, . . . , N}, each of which possesses a value of interest say xi ∈ R, i = 1, . . . , N that
it is updated under the following scheme:

ẋi(t) =
∑
j

aij
(
xj(t)− xi(t)

)
. (1)

Here aij ≥ 0 model the coupling weights with the non-negativeness to characterize
the co-operative nature of the dynamics and the magnitude to characterize the effect
of agent j on agent i.

2. Related Literature & Contribution. The research on systems like (1) has
been particularly active over the past decade. Consensus systems are proved to serve
as an appropriate mathematical abstraction of co-operative networks of individuals
that seek to coordinate a state of interest out of purely local interaction. Such
systems have been identified as abstract models in disparate scientific disciplines:
One can come across consensus-based dynamic models in biological networks [8,
14, 42], teams of robots [26], synchronization of oscillators [3, 19, 22], opinion or
other gossip social networks [17, 25]. It recently came to the authors’ attention
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the striking similarity of (1) to models studied in Mathematical Biology, known as
compartmental systems [2, 8, 14, 16].

The subject of distributed consensus networks is very well documented. It varies
from continuous to discrete time settings, linear to nonlinear, deterministic to sto-
chastic, ordinary to functional [5, 9, 10, 15, 24, 28, 29, 30, 32, 33, 34]. The underlying
theory distinguishes between symmetric connectivity weights, where spectral graph
theory is preferred [20] or the asymmetric case where nonnegative matrix theory
applies [36]. The main drawback with the latter framework is that it is incompatible
with continuous time dynamics. On the other hand the main objective is to prove
convergence of the proposed control consensus algorithms to a common value. The
literature although extensive, it lacks explicit estimates of rates of convergence. To
the best of our knowledge there are no such rates even for the general linear case
under mild connectivity conditions [30]. This may not be enough in real-world ap-
plications. It is certainly not enough in types of systems, where the contraction rate
is essential in proving convergence [5, 9, 10, 30].

On the other hand, the nonlinar case and the effect of delays in the rate of
convergence for general linear and nonlinear systems is another issue yet to be
investigated [28, 33]. In [27, 32], linear time invariant networks with constant delays
are analyzed with frequency methods. The drawback of this approach is that it does
not apply in time varying or nonlinear systems. In [31] discrete time linear systems
with delays are considered. The discretization method downgrades the problem to
finite dimensions as the delays are multiples of the step time, hence the state-space
can be extended and the problem is essentially reformulated as an ordinary discrete
time problem. This approach can fail to approximate certain nonlinear networks
where the step size must depend on the system’s parameters [5].

The contribution of this paper is three-fold. Firstly, we develop a rigorous theory
for the continuous time distributed consensus systems with the use of standard tools
from the Non-Negative Matrix Theory. We analyze the continuous time setting
and derive asymptotic stability results of the general linear case with emphasis on
the rate of convergence. Our model investigates types of non-uniform asymptotic
stability conditions that depend on the connectivity regime, a special case of which
is uniform (i.e. exponential) asymptotic stability.

Secondly, we consider the case of arbitrary time-dependent delays and we prove
a general exponential stability result under the same mild communication scheme.
Furthermore, we demonstrate, in the example section, that the framework can be
stretched to incorporate unbounded delays. Next, via a stability in variation argu-
ment, the derived results cope with leader-follower communication schemes.

Third, we explain how increased connectivity among the agents leads to a simple
proof of the consensus problem in the spirit of the framework developed in the
preceding sections. Next, we extend the linear theory to three non-linear models.
The first class is this of passive systems, used in synchronization problems [1, 19, 33]
and the second is this of monotonic consensus networks introduced in [34] from
the control community but have also been previously considered in the field of
mathematical biology [2, 8, 14, 16]. We will show via elementary direct linearization
arguments that the systems can generate solutions indistinguishable from linear
models. The third class is this of flocking networks of Cucker-Smale type and we
freely draw results from [38, 39] so as to highlight the importance of the developed
framework to such networks.
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Our ultimate objective is to demonstrate how a large variety of networks can
be treated under a theory that can provide solid convergence results in a unified
perspective.

2.1. Organization of the paper. In §3 the basic notation and preliminary theory
is introduced. In §4 the linear model (6), together with the fundamental hypothe-
ses is stated. In §5 we make a number of observations concerning the connectivity
properties of graphs that correspond to non-negative matrices, we prove a few pre-
liminary results on a vital adaptation of the coefficient of ergodicity and on the
behavior of the solutions of our model. The analysis of the ordinary version of (6)
is held in §6. We provide convergence results in the non-uniform sense as well as
we show that uniform coupling weights imply exponential convergence. In §7, we
elevate on the full version of (6) and provide exponential stability estimates. In
§8, we illustrate the main results by examples and simulations and conclude by
demonstrating how the theory could include unbounded delays. In §9 we take a di-
gression and provide a very simple proof of the undelayed problem under increased
connectivity assumption with the use of the contraction coefficient. Furthermore,
we explain through a variational stability argument that the theory can be adapted
to leader-follower scenarios. We conclude with applications to non-linear systems.
A concluding discussion on a number of points that were touched and need clari-
fication is held in §10. For the sake of readability, the most important proofs are
placed in the Appendix section at the end. For the full version and the detailed
proofs the reader is directed to [40].

3. Notations & Definitions. For any natural number N ∈ N, V will denote
the set {1, 2, . . . , N}. The upper integer part of c ∈ R is denoted by [c]. The N -
dimensional Euclidean space is denoted by RN and any x ∈ RN is considered to be
a column vector, unless otherwise stated. The spread of x ∈ RN is

S(x) = max
i
xi −min

j
xj (2)

This quantity is a pseudo-norm and will be used in the stability analysis. Denote
by 1 the N -dimensional column vector with all entries equal to 1. Then S(x) = 0 if
and only if x = 1k for some k ∈ R. The agreement or consensus space ∆ is defined
as the subset of RN such as

∆ =
{
x ∈ RN : x1 = x2 = · · · = xN

}
.

Next, || · ||p defines the p-norm in RN whereas we shall use the notation || · ||∞ for
the maximum norm. By I we understand the N × N identity matrix. For I ⊂ R,
L1(I,RN ) denotes the space of integrable functions defined on I and taking values
in RN . Similarly Cl(I,RN ) denotes the space of functions with l ≥ 0 continuous
derivatives defined accordingly. For x ∈ L1 or x ∈ Cl we define the spread

SI(x) = max
i

max
s∈I

xi(s)−min
i

min
s∈I

xi(s) (3)

which is a straightforward generalization of (2) as it serves as a pseudonorm with
respect to the agreement functional subspace

∆I =
{
x ∈ L1(I,RN ) : xi(t) = xj(t), t ∈ I

}
. (4)

For these linear spaces the norm is defined to be |x| = supt∈I |x(t)|. Due to potential

discontinuities in the systems’ parameters, d
dt or “·” denote the right Dini derivative

[11]. Also, δ(·) will denote the delta function.
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The delay with which agent i observes the state of j is τij ∈ C1([t0,∞),R+).
For t ≥ t0 set τ(t) := maxij τij(t). Also a subset of interest in the real line is
It := [t−τ(t), t]. We will occasionally use the convenient notation λij(t) := t−τij(t)
and λ(t) = t− τ(t) with the nth composition as λ(n)(t) := λ

(
λ(n−1)(t)

)
.

3.1. Elements of Non-Negative Matrix Theory [12, 36]. By a topological
directed graph G we understand the pair (V,E) where V is the set of vertices,
E = {(i, j) : i, j ∈ V : i 6= j} is the set of edges. The degree Ni of a vertex i is the
number of adjacent edges to i. The graph G is routed-out branching if there exists a
vertex i ∈ V such that for any j 6= i ∈ V there is a path of edges (lk, lk−1)|mk=0 such
that l0 = i and lm = j. For two graphs G1 = (V,E1) and G2 = (V,E2), we say that
G1 is a sub-graph of G2 if E1 ⊂ E2. Two vertices i, j ∈ V communicate if there is a
path form i to j and a path from j to i. A vertex is essential if whenever there is a
path from i to j then there is a path from j to i. A vertex is called inessential if it
is not essential. All essential vertices are divided into communication classes and all
inessential vertices that communicate with at least one vertex may be divided into
inessential classes such that all vertices within a class communicate. All such classes
are self-communicating. Each remaining inessential vertex communicates with no
vertices and individually forms an inessential class called non self-communicating.
By S we denote the family of topological graphs with fixed N vertices and self-
edges on every vertex and by T ⊂ S the set of graphs each of which is routed-out
branching.

A non-negative matrix P = [pij ] is such that pij ≥ 0 for all i, j3 and P is called
generalized stochastic, or m-stochastic, if

∑
j pij = m for all i ∈ V . The family

of m ≥ 0 stochastic matrices is denoted by M. For m = 1 we have the standard
stochastic matrix.

The properties of stochastic matrices and their products play a crucial role in the
analysis to follow and the standard approach is through graph theory: Any non-
negative (and in particular stochastic) matrix P can be represented as a graph GP
with its adjacency matrix AP the elements of which satisfy the property Aij = 1⇔
Pij 6= 0. For two stochastic matrices P1 and P2, we write P1 ∼ P2 if GP1

= GP2
.

The main tool to study the contraction rate of stochastic matrices with respect
to ∆ is the coefficient of ergodicity which we will state for generalized stochastic
matrices. Given an m-stochastic matrix P = [pij ] the non-negative number

ρ(P ) =
1

2
max
i,j∈V

N∑
s=1

|pis − pjs| = m− min
i,j∈V

N∑
s=1

min{pis, pjs} (5)

is the generalized coefficient of ergodicity of P .

Theorem 3.1. [12] Let P be an m-stochastic matrix. Then for any z ∈ RN ,

S(Pz) ≤ ρ(P )S(z)

with equality for some z.

The coefficient of ergodicity measures the averaging effect of stochastic matrices
and it is the central concept behind many convergence results in linear consensus
algorithms. Its history dates back to one of Markov’s first papers [23] and in the
literature there exist an abundance of similar tools (for a recent review we refer to
[13]).

3Unless otherwise specified each matrix is supposed to be square and of dimension N ×N .
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Traditionally, ρ applies to discrete time dynamics of the type zn+1 = Pnzn where
Pn is stochastic for any n ∈ Z+. We will show how ρ can be extended to apply in
general linear operators that act on L1(I,RN ).

A non-negative matrix P is called irreducible if GP consists of a single essential
class and a stochastic matrix P is called regular if GP is routed-out branching.
Now, the classical theory studies products of stochastic matrices; a setting that is
readily applicable to the discrete time case. In continuous time dynamics we will
encounter the following type of products of matrices:

Pp,h(t) =

∫
Ip+h

C(t, s1)

∫
Ip+h−1(s1)

C(s1, s2) · · ·
∫
Ip+1(sh−1)

C(sh−1, sh) dsh . . . ds1

for some appropriate matrix functions C(t1, t2) so that Pp,h(t) is stochastic for every
p ≥ 0, h ≥ 1.

Regardless the time setting, a crucial point is to ask for what elements pij of
an m-stochastic matrix it holds that mini,j

∑
s min{pis, pjs} > 0. It can be easily

verified that ρ(P ) < m if and only if P possesses at least one strictly positive
column. An m-stochastic matrix P with the property that ρ(P ) < m is called
scrambling. A standard result in the theory of products of stochastic matrices is
that for a regular matrix P there is a power of it that makes it scrambling: i.e.
∃ γ ≥ 1 : ρ(P γ) < 1 and from the sub-multiplicative property P t → 11

T k for
some k ∈ R, as t → ∞. The power of P that makes it scrambling is known as the
scrambling index for which the symbols γ and σ are reserved.

4. The Model. For fixed t0 ∈ R, we consider the initial value problem

i ∈ V :

{
ẋi(t) =

∑
j aij(t)

(
xj(λij(t))− xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0
(6)

where φ =
(
φ1(t), . . . , φN (t)

)
∈ L1(It0 ,RN ) are given initial data aij are the con-

nectivity weight at which vertex j affects i. By di(t) :=
∑
j aij(t) we understand

the cumulative effect weight on i from the rest of the network at time t ≥ t0. Next,
τij(t) is the imposed delay with which i receives the state of j at time t. The solu-
tion of (6) x(t, t0,φ) =

(
x1(t), . . . xN (t)

)
is an absolutely continuous vector valued

function that is defined in [λ(t0),∞) and it takes values in RN . This relaxation
on the smoothness of x is considered in order to incorporate possible switching
couplings and although it deviates from the classical theory it, however, does not
affect either of the fundamental properties of existence or uniqueness, or the integral
representation of the solutions [35].

The delays τij are known as propagation delays. Another type is this of the
processing delays and they regard the time it takes for agent i to process their own
information. This feature is modeled with xi on the right hand side of (6) to be time
delayed as well. The dynamics in the event of processing delays are fundamentally
different and may lead to instability [28]. This point will be revisited in §10.

4.1. Hypotheses. Let us now state the assumptions to accompany (6).

Assumption 4.1. ∀ i 6= j ∈ V and I ⊂ [t0,∞) bounded, aij ∈ L1
(
I, [0,∞)

)
. Also

aii = 0.

Additionally, the weight functions aij are assumed to satisfy the dwelling time
condition [15]:
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Assumption 4.2. For any t ≥ t0 there exists ε > 0 independent of t such that
aij(t) 6= 0 implies that there exist a neighborhood of t, N(t) ⊂ [t0,∞) of length
ε such that aij(s) ≥ f(s) > 0 for any s ∈ N(t) and f ∈ L1

(
[t0,∞), (0,∞)

)
is

non-increasing.

The above assumption allows aij to asymptotically vanish, extending the ma-
jority of current results, to non-uniform type of convergence to consensus. With
this simple setup, we are allowed to establish explicit contraction estimates of the
solution with respect to ∆ that depend on the type of the switching signal.

The final assumption concerns the nature of the propagation delays:

Assumption 4.3. For all i 6= j it holds that τij ∈ C1([t0,∞),R+) so that 1 −
τ̇ij(t) > 0 for t ≥ t0 and

sup
t≥t0

∫ t

λ(t)

aij(s) ds <∞.

The last condition on Assumption 4.3 implies that whenever aij is bounded from
below then τ is necessarily bounded from above.

5. Preliminaries. In this section, we review a number of underlying results most
of which are already known in the literature, yet a thorough discussion is essential
for a consistent presentation of the general theory. The first result concerns a
classification of graphs with respect to scrambling index and the crucial lower bound
on the edges one needs to add on one graph to decrease its scrambling index. The
second result is a novel extension of ρ and a generalization of Theorem 3.1. These
tools set the ground for the study of the long-term behavior solutions of (6), an
important property of which concludes this section.

5.1. Graphs and Non-Negative Matrices. We recall the set S and its subset T .
Let R = R(N) denote the cardinality of T . Each member Gi of it, has a scrambling
index γi. In fact T can be partitioned in such mutually disjoint subsets: T =

⊔
v Yv

so that for G1 ∈ Yz1 , G2 ∈ Yz2 , z1 6= z2 if and only if γz1 6= γz2 . Consequently, we
can enumerate

1 = γ0 < γ1 < · · · < γmax ≤
[
N

2

]
For instance, Y0 is the subclass of routed-out branching graphs, each member GY0

of which has scrambling index, γ0 = 1, i.e. there exist i such that [GY0
]ji ∈ EGY0

for
all j ∈ V . Next we note that for any G1,G2 ∈ T with G2 being a sub-graph of G1,
it holds that γ1 ≤ γ2 and thus we deduce that by adding an edge to any graph, the
scrambling index may only decrease. In particular, there exists a sufficient number
of new edges that will decrease the scrambling index. Fix j < i. Then for any
Gi ∈ Yi there exists a positive number qi,j such that the graph Gj formed out of Gi
with qi,j additional edges will be a member of

⋃j
v=0 Yv, in which case γj ≤ γi − 1.

Remark 5.1. The minimum number of edges needed to be added on an arbitrary

member of Yi so that the resulting graph is a member of
⋃i−1
v=0 Yv, is denoted by

l∗ := maxi{qi,i−1}.



A GENERAL FRAMEWORK FOR CONSENSUS NETWORKS: TECHNICAL REPORT 7

5.2. An extension of the coefficient of ergodicity. Let us, now, extend Theo-
rem 3.1 to the case where P acts as an abstract linear operator on members of L1.
For B ≥ 0, t ≥ t0 +B and s ∈ [t−B, t] consider the matrix

C(t, s) = e−mBδ(s− (t−B))I + e−m(t−s)W (s)

with W (s) = mI−D(s) +A(s).

Proposition 5.2. Let m > sups≥t0 maxi∈V di(s). Then for any B > 0, l ≥ 1,
t ≥ t0 +B the matrix

P
(l)
B (t) :=

{∫ t
t−B C(t, s) ds, l = 1∫ t
t−B C(t, s)P

(l−1)
B (s) ds, l > 1

whenever defined, is stochastic.

Theorem 5.3. Let I be a compact subset of R and assume that for any compact
I ′ ⊂ I, WI′ =

∫
s∈I′ P (s) ds ∈M and WI is m-stochastic. If w =

∫
s∈I P (s)z(s) ds,

then
S(w) = ρ(WI)S(z∗)

for some z∗ =
(
z1(s1), . . . zN (sN )

)
for si ∈ I and

ρ(WI) =
1

2
max
h,h′

N∑
k=1

∫
s∈I
|phk(s)− ph′k(s)| ds

= m−min
h,h′

N∑
k=1

min

{∫
s∈I

phk(s) ds,

∫
s∈I

ph′k(s) ds

}
Remark 5.4. Similarly, for the expression

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q) dqds

one can show, along the lines of the proof of Theorem 5.3 that if

W
(2)
I =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q) dqds

is stochastic, then

S(w) ≤ ρ(W
(2)
I )S(z∗)

for some z∗ =
(
z1(s

(1)
(ij)), z2(s

(2)
(ij)), . . . , zN (s

(N)
(ij))

)
all s

(l)
(ij) of which are in I1 ∪ I2.

5.3. Bounds on x(t, t0,φ).

Lemma 5.5. Under Assumption 4.1 the solution x = x
(
t, t0,φ

)
, t ≥ t0 of (6)

satisfies
min
j∈V

min
s∈It0

φj(s) ≤ xi(t) ≤ max
j∈V

max
s∈It0

φj(s)

∀ t ≥ t0, i ∈ V .

Remark 5.6. It holds that SIt1 (x) ≤ SIt2 (x) for any t1 ≥ t2 ≥ t0
Remark 5.7. If τ(t) ≡ 0 it holds that S(x(t1)) ≤ S(x(t2)) for any t1 ≥ t2 ≥ t0.

Another fact from the boundedness of the solutions is stated in the following
result:

Lemma 5.8. If x = x(t, t0,φ), t ≥ t0 is the solution of (6) such that SIt
(
x
)
→ 0

as t→∞, then the forward limit set ω(φ) is a singleton in ∆I .
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6. Convergence rates of the undelayed version. The un-delayed version of
(6) is this with τ(t) ≡ 0 and it reads

i ∈ V :

{
ẋi(t) =

∑
j aij(t)

(
xj(t)− xi(t)

)
, t ≥ t0

xi(t) = x0
i , t = t0

and in vector form {
ẋ(t) = −L(t)x(t), t ≥ t0
x(t) = x0, t = t0

(7)

where L(t) = D(t)−A(t) is the time-varying laplacian matrix [26].
The first result is based on the additional property of f , as defined in Assumption

4.2 that it asymptotically vanishes. Then a (non-uniform) asymptotic stability
result with respect to ∆ can be provided, based on the rate at which f is allowed
to vanish. The importance of this result is to be discussed in §10.

Theorem 6.1. Let Assumptions 4.1 and 4.2 to hold with f as defined in Assump-
tion 4.2 to satisfy f(t)→ 0 as t→∞. If there exists B > 0 and M ≥ t0 so that for
any t ≥M the graph GPB(t) that corresponds to PB(t) is routed-out branching, then
unconditional asymptotic consensus for the solution of the system (7) is achieved if
there exists a sequence tn ≥M with tn+1 − tn ≥ σB, such that∑

n

fσ(tn) =∞.

with σ = l∗([N/2] + 1) and l∗ with the meaning of Remark 5.1.

The rate of convergence is dictated by the non-summability of
∑
n f

σ(tn) and in
the general case proves convergence to consensus in a non-uniform sense.

Remark 6.2. If, in addition, the connectivity is static (but with time-varying
weights), then from the discussion in §5, we have σ = γj for some j = 0, . . . ,max,
where γj is the scrambling index of GPB(t) and B > 0 can be chosen arbitrarily
small.

A significantly more elegant (exponential) result is obtained if we take f to be
uniformly lower bounded.

Corollary 6.3. Let the conditions of Theorem 6.1 hold with M = t0 and B, ε, σ
the same parameters defined in its statement. If f as defined in Assumption 4.2
satisfies f(t) ≥ f > 0, t ≥ t0 then

S(x(t)) ≤ S(x0)

1− ρ
e−θ(t−t0),

for θ = − ln(1−ρ)
σB , ρ = min

{
e−σmB ,

( (1−e−mε)f
m

)σ} ∈ (0, 1) , m > sups≥t0 maxi∈V di(s).

Corollary 6.3 is a direct application of Theorem 6.1. It unifies and extends
previous results [15, 28, 30] by providing explicit rate estimates.

6.1. Special Case: Simple Proof under Increased Connectivity. We con-
sider (7) and discuss a quick and elegant proof under the assumption of strong
connectivity. We set

ρ(P ) = m−min
i,j

N∑
s=1

min{pis, pjs} =: m− θ.
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By Assumption 4.1, we pick m > supt≥t0 maxi∈V di(t) and we rewrite (7) as

ẋ = −mIx +
(
mI−D(t) +A(t)

)
x⇒ e−mt

d

dt

(
emtx

)
=
(
mI−D(t) +A(t)

)
x

Now it is easy to check that mI−D(t) +A(t) is m−stochastic and it follows that

d

dt
S
(
x(t)

)
=

d

dt

(
e−mtS

(
emtx(t)

))
= −mS

(
x(t)

)
+ e−mt

d

dt
S
(
emtx(t)

)
≤ −mS

(
x(t)

)
+ S

(
e−mt

d

dt

(
emtx(t)

))
≤ −mS

(
x(t)

)
+ ρS

(
x(t)

)
= −mS

(
x(t)

)
+ (m− θ(t))S

(
x(t)

)
= −θ(t)S

(
x(t)

)
.

Consequently,

S
(
x(t)

)
≤ e−

∫ t
t0
θ(s) ds

S
(
x0
)

so that
∫∞

θ(s) ds =∞ implies S(x(t))→ 0 and by Lemma 5.8 we have x(t)→ ∆.
This simple calculation generalizes recent results in the literature. Here not only

one needs not to assume di to be upper bounded by one as in [30] but also one needs
not assuming lower bounds on aij so that the convergence can be non-uniform.

The non-integrability of θ(t) requires as a minimum type of connectivity, this of
a uniformly recurrent, transmission of signals at least from one agent to the rest of
the agents, at the same time. This means that there must exist at least one agent to
affect the rest of the group at the same time. This is however a hardly decentralized
architecture.

6.2. Necessary conditions. Sufficient conditions for stability are usually much
easier to obtain as opposed to necessary conditions that are very rare and consensus
systems are not an exception. The related results focus on stochastic systems where
the driving signal is especially designed to either enforce asymptotic consensus to
a common state or asymptotic anti-consensus, that is, under certain initial data,
convergence to at least two different states. [24]. At this point, we take a small
digression to discuss necessary conditions for asymptotic consensus.

Theorem 6.4. Consider the initial value problem (6) with τ ≡ 0 and its solution
x. Let Assumption 4.1 for this system to hold and the communication graph to be
routed-out branching. Assume also that over a population of N autonomous agents
there is a partition V1, V2 ⊂ V with V = V1 t V2 so that (i, j) ∈ V1 × V2 implies∫∞

aij(s) ds <∞. If for any l1, l2 ∈ V , xl1(t)−xl2(t)→ 0 implies |xl1(t)−xl2(t)| ≤
Γe−γt for some γ,Γ > 0 then there exist initial conditions such that S

(
x(t)

)
> 0

for any t ≥ t0.

The reader might observe a strong discrepancy between the necessary condition
(i.e. the divergence of

∫∞
aij(s) ds) and the sufficient conditions discussed in §6

(i.e. the divergence of
∫∞

aσij(s) ds). This occurs due to the fact that ρ is a weak
contraction estimate tool. This remark will be discussed in §10.

The exponential convergence assumption taken in the theorem above is a mod-
erate condition that it can be dropped if the corresponding coupling weights are
uniformly bounded away from zero as we explained above. In such case, one is
allowed to combine the uniform convergence of solutions and the linearity of the
system to conclude on the exponential rate.
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7. Convergence rates of the delayed version. In this section we will investigate
the stability of (6) in full and for the sake of simplicity we will assume that any
non-zero coupling weight is uniformly bounded away from zero and that the delay
magnitudes are arbitrary but bounded. The idea here, relies on the elementary
observation that the solution x = x(t, t0,φ), t ≥ t0 satisfies

xi(t) = e−
∫ t
t′ di(s)dsxi(t

′) +

∫ t

t′
e−

∫ t
s
di(w)dw

∑
j

aij(s)xj(λij(s)) ds. (8)

We will investigate the rate at which SIt(x) contracts by combining (8) with The-
orem 5.3 and Lemma 5.5 assuming that there is no leader in the graph, i.e. all
vertices are affected by at least one other vertex. The leader follower case is to be
discussed in §9. Estimating the way the solution contracts over It, we conclude that
the limit point must lie in ∆It0

i.e. the solutions contract to a constant similar to
the un-delayed case.

Theorem 7.1. Let Assumptions 4.1, 4.2 and 4.3 hold such that aij(t) 6= 0 implies
aij(t) ≥ f(t) > f , t ≥ t0 for some f > 0. If there exists B > 0 so that for
any t ≥ t0 the graph GPB(t) is routed-out branching, then unconditional asymptotic
consensus for the solution of the system (6) is achieved. In particular, there exists
k ∈ [mini∈V,s∈It0 φi(s),maxi∈V,s∈It0 φi(s)] such that

||x(t)− 1k||∞ ≤
SIt0 (φ)

1− µe−N̄aτ
e−θ(t−t0)

where θ = − ln(1−µe−N̄aτ )
(σ(B+τ)+τ) , µ := inft≥t0 mini,j

∑
l min{pσil(t), pσjl(t)} ∈ (0, 1) with

pσij(t) the elements of P
(σ)
B+τ (t), σ = l∗([N/2] + 1), N̄ = maxj∈V Nj is the maximum

degree over V , l∗ has the meaning of Remark 5.1 and a is the upper bound of aij
by virtue of Assumption 4.1.

Just like the ordinary algorithm and Corollary 6.3, Theorem 7.1 provides explicit
estimates on the rate of the exponential convergence as a function of the parameters,
the connectivity signal and the imposed delays. This is a delay-independent result
and in the next section we will show that under Assumption 4.3 it can be extended
to unbounded delays.

8. Examples & Simulations. In this section, we discuss a couple of illustrative
examples. The first is a 4 × 4 linear network with linear switching coupling and
bounded delays. The second is a 2×2 time-varying network with static connectivity
and unbounded delays. All simulations were carried out in MATLAB with the ddesd
routine.

8.1. A 4× 4 graph. Let a network of N = 4 agents with communication weights
aij(t) where i, j = 1, . . . , 4. We classify two communication schemes:

8.1.1. Star topology. Depicted in Figure 1(a), in this scheme the connectivity matrix
reads

Astar(t) =


0 a12(t) a13(t) a14(t)

a21(t) 0 0 0
a31(t) 0 0 0
a41(t) 0 0 0


We assume here the switching (on/off) transmission signal to be defined as follows:
There exist B, ε, α > 0 such that for any B interval of time, there exists a ε-subset
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(b) Ex. 7.1.2: The path graph.

Figure 1. The communication topology in Example 7.1

so that aij(s), aji(s) ≥ α > 0 for s ∈ [t, t + ε]. In this scenario, the analysis is
very simple because the results of §?? applies: Take di(t) =

∑
j aij(t) and m >

supt maxi∈V di(t). Then W (t) := mI−D(t) +A(t) is

W (t) =


m− d1(t) a12(t) a13(t) a14(t)
a21(t) m− d2(t) 0 0
a31(t) 0 m− d3(t) 0
a41(t) 0 0 m− d4(t)


and it is obviously scrambling during some ε interval over any B-interval of time. For
m large enough the coefficient of ergodicity ρ is lower bounded by α for s ∈ [t, t+ε].
This implies that for any t > t0 + B, there exists k ≤ 0 such that t0 + kB ≤ t ≤
t0 + (k + 1)B and by Lemma 5.5

S(x(t)) ≤ S(x0)eαεe−(k+1)αε ≤ S(x0)e−
αε
B (t−t0).

In the presence of delays, τij(t) ≤ τ < ∞ the discussion in §?? applies. We

can easily calculate ρ = min{e−mB , 1−e−mε
m α} and by Theorem 7.1 exponential

convergence is guaranteed with rate θ = − ln(1−ρe−3ατ )
B+2τ .

As a numerical example take a12(t) = 0.02u(t), a13(t) = 0.05u(t), a14(t) =
0.03u(t), a21(t) = 0.2(0.01 + e−t)u(t), a31(t) = 0.07u(t),a41(t) = 0.06u(t) for u(t) =
2, t ∈ [n + 1/2, n + 1], n ∈ N and 0 otherwise. Then αε

B = 0.002 and this is the
estimated rate of convergence for the un-delayed system. See Fig. 2(a). In the case
of delays we set τ12(t) = 8−0.5 cos(t), τ13(t) = 3−0.2 sin(2t), τ14(t) = 9, τ21(t) = 10
τ31(t) = 5− 0.9 sin(t/4), τ41(t) = 2 so that τ = 10, ρ = 0.0019 and θ = 0.00008031.
See Fig. 2(b).

8.1.2. Path topology. Here the connectivity matrix is

Apath(t) =


0 a12(t) 0 0

a21(t) 0 a23(t) 0
0 a32(t) 0 a34(t)
0 0 a43(t) 0


Now we consider the switching signal to be defined as follows: For all t ≥ 0 it holds
that aij(t) 6= 0⇒ 0 < α ≤ aij(t) < 1

2 and also
a23(t) = a32(t) = a34(t) = a43(t) = 0 & a12(t), a21(t) 6= 0, t ∈ [3lε, (3l + 1)ε)

a12(t) = a21(t) = a34(t) = a43(t) = 0 & a23(t), a32(t) 6= 0, t ∈ [(3l + 1)ε, (3l + 2)ε)

a23(t) = a32(t) = a12(t) = a21(t) = 0 & a34(t), a43(t) 6= 0, t ∈ [(3l + 2)ε, (3l + 3)ε)
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Figure 2. Example 7.1.1. (a): The convergence of 4 agents with
a star graph topology. The detail on the upper right part is to
denote the effect of the switching signal. (b): Convergence under
the effect of delays. In both figures the dashed lines depict the
theoretical rate estimates. It is remarked that in (b) the estimate
is significantly weak.

for some fixed ε > 0 and l ∈ Z+. Here B = 3ε, m = 1 and

C(t, s) =


d̄1(t, s) e−(t−s)a12(s) 0 0

e−(t−s)a21(s) d̄2(t, s) e−(t−s)a23(s) 0
0 e−(t−s)a32(s) d̄3(t, s) e−(t−s)a34(s)
0 0 a43(s)e−(t−s) d̄4(t, s)


where d̄i(t, s) = e−3εδ(s − (t − 3ε)) + e−(t−s)(1 − di(s)). This is a non-scrambling
matrix so the discussion in §?? is of no use and we need to escalate to the general
result using Corollary 6.3. Indeed applying this result we obtain

S(x(t)) ≤ S(x(3(l−1)ε)) ≤ (1−2α2(1−e−ε)2)l−1S(x(0)) ≤ S(x(0))

1− 2α2(1− e−ε)2
e−θt

where θ := ln(1−2α2(1−e−ε)2)
3ε .

Together with the switching signal, we now consider a common bounded prop-
agation delay 0 ≤ τ(t) ≤ τ < ∞. We apply Theorem 7.1 to estimate the rate of

convergence as follows: ρ = 2α2(1− e−ε)2, supt
∫ t
λ(t)

di(s) ds ≤ τ so that the rate of
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Figure 3. Example 7.1.2. (a): The convergence of 4 agents with
a path graph topology. (b): Convergence under the effect of de-
lays. In both figures, the dashed lines depict the theoretical rate
estimate. It is remarked that in (b) the estimate is significantly
weak.

convergence with the delay is

θ =
ln(1− 2α2(1− e−ε)2e−τ )

6ε+ 3τ
.

As a numerical example, take ε = 2, B = 6, α = 0.1 and a12(t) = 0.2u(t), a21(t) =
0.3u(t), a23(t) = 0.21, a32(t) = 0.2u(t), a34(t) = 0.25u(t) a43(t) = 0.1u(t) by an
appropriate switching function u(t). The rate of convergence is θ = 0.00251, see
Fig. 3(a). In the presence of the common delay with supt≥0 τ(t) = 10 the rate is

θ = 2.61 · 10−8, see Fig. 3(b).

8.2. A 2 × 2 network with unbounded delays. Fix t0 > 0 and consider the
network of two agents to satisfy

ẋ1(t) = 1
αt

(
x2(βt)− x1(t)

)
ẋ2(t) = 1

γt

(
x1(εt)− x2(t)

)
, t ≥ t0(

x1(t), x2(t)
)

=
(
φ1(t), φ2(t)

)
, t ∈ [βt0, t0)

for some α, γ > 0 and β, ε ∈ (0, 1). This system lies beyond the theory devel-
oped in the preceding sections. In fact, it only takes few elementary, yet tedious,
modifications to include systems with unbounded delays. These are, in fact, easily
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Figure 4. Example 7.2 (a): Graphs of the elements pij(κ) for
selected values of α, β, γ demonstrating the dependence of ρ in κ.
(b) The convergence of the 2× 2 static, time-varying network with
unbounded delays.

illustrated for N = 2. Without loss of generality assume β < ε and α > γ. Now
τ1(t) = (1− β)t and τ2(t) = (1− ε)(t) so that τ(t) = (1− β)t. We work as follows:
Firstly, we introduce the “rate” function h(t) = tκ for t > t0 and κ > 0. It is easy
to see that x1, x2 satisfy the system of integral equations:

{
x1(t) = t−κ

∫ t
λ(t)

[
κsκ−1 − sκ−1

α + sκδ(s− λ(t))
]
x1(s) ds+ t−κ

∫ t
λ(t)

sκ−1

α x2(βs) ds

x2(t) = t−κ
∫ t
λ(t)

[
κsκ−1 − sκ−1

γ + sκδ(s− λ(t))
]
x2(s) ds+ t−κ

∫ t
λ(t)

sκ−1

γ x1(εs) ds

It is easy to check that for small κ the matrix

P =

[
1− κ

α (1− β)κ κ
α (1− β)κ

κ
γ (1− β)κ 1− κ

γ (1− β)κ

]
is stochastic and obviously scrambling. Then

ρ = min

{
1− κ

α
(1− β)κ,

κ

γ
(1− β)κ

}
+ min

{
κ

α
(1− β)κ, 1− κ

γ
(1− β)κ

}
> 0

Then similar analysis as in Theorem 5.3, Lemma 5.5 and Remark 5.6

SIt(x) ≤ (1− ρe
ln β
α )SI

λ(2)(t)
(x) ≤ (1− ρβ1/α)SI

λ(2)(t)
(x)
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Now as for any t there exists l ∈ Z+ such that λ(2l)(t) ≤ t0
β2 or equivalently l ≥

ln(t0/(tβ
2))

2 ln β . So

max
i
|xi(t)− x∞| ≤ ZSt0(φ)

(
t0
t

)ζ
where Z = eκβ

1/α

and ζ = −κβ
1/α

2 ln β > 0. The rate is sub-exponential due to

unbounded delays.
As a numerical example we take t0 = 1, α = 3, γ = 2, ε = 0.5, β = 0.3. Fig.

4(a) depicts the dependence of the elements of P as κ varies. The selection of
κ determines the estimates of ρ. If we take κ = 1.22 we obtain ρ = 0.655 and
we calculate Z = 1.953 and ζ = 0.1821. The simulation of the solution x1, x2 is
presented in Fig. 4(b).

9. Special Cases & Applications. The aim of this section is twofold. In the
case of leader-follower dynamics an easy modification and a stability in variation
argument guarantee convergence. Secondly, we explain how the linear theory applies
to three types of non-linear networks.

9.1. Leader-follower dynamics. In a communication network, a leader i ∈ V is
defined to be an agent that only affects the rest of the group, yet it cannot be affected
by it, i.e. di ≡ 0. Non-negative matrix theory assures that the corresponding graph
G of such a network can be routed-out branching if there is at most one leader
[36] (i.e. the root of the graph). The aforementioned framework allows both in the
ordinary and the delayed case allows for leader dynamics if the state of the leader
is constant. Here we will assume that there is an agent with individual behavior
that nevertheless converges asymptotically to some constant. Take, without loss of
generality, the leader to be agent number 1. Then the network dynamics can be
written as

i ∈ V :


ż1(t) = g

(
t, z1(t)

)
, t ≥ t0

żi(t) =
∑
j aij(t)

(
zj(λij(t))− zi(t)

)
, t ≥ t0, i 6= 1

zi(t) = φi(t), t ∈ It0

(9)

The dynamics of the leader’s state z1(t) are assumed to evolve free of any inter-
action with the rest of the group so that it satisfies

|z1(t)− k| ≤ 1

h(t)
(10)

for some h ∈ C0
(
[t0,∞), (0,∞)

)
with the property that h(t)→∞ as t→∞. Then

the long-run behavior of (9) is associated with this of (6) via a stability in variation
argument. The idea is for all i ∈ V such that ai1 6= 0 to write

żi(t) =
∑
j 6=1

aij(t)
(
zj(λij(t))− zi(t)

)
+ ai1(t)

(
z1(λi1(t))− zi(t)

)
=
∑
j 6=1

aij(t)
(
zj(λij(t))− zi(t)

)
+ ai1(t)

(
k − zi(t)

)
+ ai1(t)

(
z1(λi1(t))− k

)
so that we can introduce a leaderless consensus system with an external, state-
independent, disturbance that converges to a constant value, k with some prescribed
rate. Then the limit point of the leader-follower network is necessarily k as it is the
only constant solution to satisfy the system of differential equations.
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Theorem 9.1. Let the solution z = z(t, t0,φ), t ≥ t0 of (9) and the dynamics
of the leader together with condition (10) to hold. Assume the uniformity and
connectivity conditions of Theorem 7.1. Then if θ is the rate of convergence of a
delayed consensus with leader and if there exists a function c ∈ C0

(
[t0,∞), (0,∞)

)
with the property that c(t)→∞ as t→∞ and

sup
t≥t0

e−θ(t−t0)c(t) <∞ & sup
t≥t0

c(t)

∫ t

t0

e−θ(t−s)

h(s)
ds <∞ (11)

then there exists a constant K > 0 such that

||z(t)− 1k||∞ ≤
K

c(t)
.

9.2. Non-Linear Networks. We will see now that §4 is readily applicable to two
important non-linear networks extensively discussed in the literature [1, 2, 8, 17,
19, 33, 34]. We will show that an elementary direct linearization argument suffices
to apply Theorem 7.1 and obtain solid convergence results. In fact, the solution of
the nonlinear networks are indistinguishable from the solutions of certain systems
of the type (6).

9.2.1. Passive Coupling. A network of N < ∞ agents exchanges information ac-
cording to the following algorithm:

i ∈ V :

{
ẋi(t) =

∑
j gij

(
t, xj

(
t− τij(t)

)
− xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0
(12)

For any t ≥ t0 there may or may not exist a connection between j and i. This
defines a connectivity regime that can be described by a graph Gg(t) = (V,E(t))
with (i, j) ∈ E(t) if and only if gij(t, ·) 6= 0 with the convention that gii ≡ 0. The
passivity conditions for gij is summarized in the next statement:

Assumption 9.2. For an open, connected subset of R, U that contains the origin
and for any i, j ∈ V , the functions gij(t, x) : [t0,∞) × U → R are continuous in x
and right-continuous in t and they satisfy the following properties:

1. gij(·, x) : [t0,∞)→ [0, g) uniformly in x for some g <∞,
2. gij(t, 0) = 0, t ≥ t0,

3. gij(t, ·) 6= 0⇒ gij(t,x)
x > 0 for x 6= 0 so that limx→0

gij(t,x)
x ∈ R+ independent

of t.

The form of gij incorporates two crucial features of the consensus algorithms: The
first is that gij are compatible with the previously discussed connectivity regimes
(switching connectivity) and the second is the passivity property which makes the
solutions to behave in a qualitative similar way to the linear case. The next Corol-
lary is a direct application of Theorem 7.1

Corollary 9.3. Consider (12) with the solution x = x(t, t0,φ), t ≥ t0 so that

SIt0 (φ) ∈ U and let Assumption 9.2 hold. If for any (i, j) ∈ E(t),
gij(t,x)

x is t-

uniformly bounded away from zero and Gg(t) satisfies the connectivity conditions of
Theorem 7.1, its solution satisfies x(t) → ∆I as t → ∞. In particular there is a
constant k ∈

[
minj∈V mins∈It0 φj(s),maxj∈V maxs∈It0 φj(s)

]
to which xi(t), i ∈ V

converge exponentially fast.

A standard example of passive functions for gij(x) = sin(x). The function is
passive in (−π, π) and the corollary applies whenever φi(t) ∈ (−π/2, π/2), t ∈ It0 ,
i ∈ V .
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9.2.2. Monotone Networks. Another type of non-linear networks occurs in the fol-
lowing initial value problem

i ∈ V :

{
ẋi(t) =

∑
j gij

(
t, xj(t− τij(t))

)
−
∑
j gij

(
t, xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0
(13)

where gij(·, ·) ∈ C1
(
[t0,∞) × U,R

)
for an open connected U ⊂ R, are appropriate

smooth functions with the monotone condition

(i, j) ∈ E(t)⇒ ∂

∂ξ
gij(t, x) > 0 uniformly in t. (14)

Apart from a non-linear extension of the original algorithm [34] considered in the
control community, models of the type (13) and condition (14) have been introduced
to model compartmental systems with lags [2, 8]. The next statement establishes
the close connection between the systems (6) and (13). The sufficient connectivity
conditions are similar with (12) and (6) and are therefore omitted.

Corollary 9.4. Consider (13) and its solution x = x(t, t0,φ), t ≥ t0. Under
condition (14), if φi(t) ∈ U for t ∈ It0 and i ∈ V , then x(t) → ∆I , as t → ∞. In
particular, there is a constant k ∈

[
minj∈V mins∈It0 φj(s),maxj∈V maxs∈It0 φj(s)

]
to which xi(t), i ∈ V converge exponentially fast.

9.2.3. Flocking Networks of Cucker-Smale type. Consider a finite population of N
birds, each of which is characterized by the pair of position and velocity (xi, ui).
The second order consensus (flocking) scheme

i ∈ V :

{
ẋi = ui

u̇i =
∑
j aij(x)

(
uj − ui

) (15)

with initial data x0,u0, was proposed by Cucker and Smale in [5] as a flocking
model. Ever since it has attracted the interest of many researchers [9, 10, 30] who
extended and improved convergence results. The underlying scenario is that the
two birds communicate at a rate that depends on their relative distance. The more
distant two birds are, the smaller their interraction. The coupling weight is es-
sentially non bounded from below and the objective is to derive sufficient initial
conditions so that the flock achieve asymptotic speed alignment without being dis-
solved. Mathematically we are looking for initial data so that the solution (x,u)
satisfies S

(
u(t)

)
→ 0 as t → ∞ and supt S

(
x(t)

)
< ∞. In case of symmetric

communication weights, i.e. aij(x) = a(|xi − xj |) spectral graph theory methods
are implemented [5, 10], while in the asymmetric case only increased connectivity
results exist [30]. In the latter work, under the increased connectivity condition it
was showed that if aij(x) ≥ f

(
S(x)

)
then it suffices for the initial conditions to

satisfy

S(u0) <

∫ ∞
S(x0)

f(s) ds (16)

Our theory applies directly both in the ordinary and the delayed case and pro-
vides generalized convergence sufficient conditions. In the event of the switching
connectivity we have the following result

Theorem 9.5. [39] Consider the initial value problem (15) and the Assumptions
4.1, 4.2 with respect to the connectivity regime {aij} to hold. If there exists a
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B > 0 to satisfy the conditions of Theorem 6.1 and aij
(
x(t)

)
≥ f

(
S(x(t))

)
. Then

a sufficient condition for (x,u) to exhibit asymptotic flocking is:

S(u0) <
(1− e−mε)σ

mσσB

∫ ∞
Pσ,B

x0,u0

fσ(s) ds

where Pσ,Bx0,v0 = max{S(x0), |S(x0) − S(u0)σB} and σ,B, ε to have the meaning of

Theorem 6.1.

It is remarked that in the case of increased static connectivity we have σ = 1,
ε = B and we can take B > 0 arbitrarily small to see that (16) is recovered as
a special case. Additionally, if

∫∞
fσ(s) ds diverges then we have unconditional

flocking for (15). For the case of propagation delays a similar result is presented in
[38].

10. Discussion & Concluding Remarks. In this work we revisited the consen-
sus problem from a unification perspective. We proved convergence result under
the mildest connectivity assumptions and provided explicit estimates on the rate of
convergence for ordinary and functional versions of the distributed algorithm. The
novelty of this work is the development of a theoretical framework that was primar-
ily used for discrete time dynamics. Our analysis extends to unbounded delays as
well as various type of non-linearities.

However a number of points that occur out of the analysis are due for clarification.
A first issue with the contraction coefficient ρ is the seemingly mystic role of B >

0. Inverting the system of differential equations to a system of integral equations,
we asked for a positive number B > 0, that will allow the solution to evolve over
[t − B, t] so that the analysis can apply. Interestingly enough, B has its roots in
the classification of states in finite state continuous time Markov Chains. Then
as B > 0 is the necessary length interval of time for the contraction coefficient to
act, so is the necessary time needed for the state classification into communication
classes of the Markov Chain: Indeed, a pair of states i, j of the chain belongs to the
same communication class if the probability starting from i to arrive in j is strictly
positive for positive times, i.e. P(Xt+B = j|Xt = i) > 0 for B > 0 (see p. 260 of
[7]). In other words, B > 0 is the necessary time the system needs to identify the
communication classes in the network.

A second issue arises in the delayed case where we essentially ask for λij to be
invertible so that the aforementioned framework applies with mild modifications.
We conjecture that this technical assumption may be dropped with an appropriate
extension of the contraction coefficient to appropriate functional spaces. The results
are delay-independent but the presence of delays significantly debilitates the rate
of convergence. In fact the stronger the coupling weights aij the weaker the rate
of convergence becomes. In the example section we showed how the theory can be
extended to systems with unbounded delays. In this case, of course, the rate of
convergence is sub-exponential.

The delay-independent convergence is due to propagation delays and it general-
ized scalar versions of this model that were studied in [18] in a total different vein.
If, in addition, to propagation, one considers processing delays, i.e. systems of the
form

ẋi(t) =
∑
j

aij(t)
(
xj(t− τ ji (t))− xi(t− σji (t))

)



A GENERAL FRAMEWORK FOR CONSENSUS NETWORKS: TECHNICAL REPORT 19

they may destabilize the system [27, 28, 32] . The main feature in the presence of
processing delays is that the solution loses the critical property of Remark 5.6 so
that the methodology developed here does not apply.

All in all, the utilization of the contraction coefficient for the study of continu-
ous time consensus dynamic yields simple and concise convergence results without
strong assumptions on the connectivity regime for both ordinary and delayed ver-
sions of the problem. The rate estimates depend on the coupling weights, the
switching signal, the parameter B > 0 and the magnitude of the delays.

On the negative side, the rate estimates are very weak, as the simulations clearly
suggest. In case of symmetric networks (aij = aji) the use of a metric derived
from spectral graph theory is preferred [30]. In this case another approximation of
the second eigenvalue that controls the convergence rate, the Fiedler number yields
better estimates than the contraction coefficient [4]. On the positive side, we have a
rigorous framework that provides a deep understanding of the long-term behavior of
this category of distributed cooperative systems ranging from ordinary and linear
to functional and non-linear. Future research problems involve an improvement
of the contraction coefficient at least to match the performance of the symmetric
estimator with or without the effect of delays.

10.1. Conclusions. The present paper develops a framework for a large family of
distributed consensus networks and establishes generalized necessary and sufficient
conditions for asymptotic stability. The emphasis is put on the rate of convergence.
This work aspires to serve as a first step towards a unified theory of consensus.

11. Appendix. In this section we have put all the proofs of this paper.
Proof of Proposition 5.2. The matrix

PB(t) :=

∫ t

t−B

(
e−mBδ(s1 − (t−B))I + e−m(t−s1)W (s1)

)
ds1

is stochastic. Indeed, the ith row of PB(t) consists of the positive diagonal element

e−mB +

∫ t

t−B
e−m(t−s1)

(
m− di(s1)

)
ds1 = 1−

∫ t

t−B
e−m(t−s1)di(s1) ds1

and the non-negative off-diagonal elements

∫ t

t−B
e−m(t−s1)aij(s1) ds1.
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since di(s1) =
∑
j aij(s1), PB(t) is stochastic. We proceed with induction: For

l = 2,

P
(2)
B (t) =

=

∫ t

t−B

∫ s1

s1−B

(
e−mBδ(s1 − (t−B))I + e−m(t−s1)W (s1)

)
·

·
(
e−mBδ(s2 − (s1 −B))I + e−m(s1−s2)W (s2)

)
ds2ds1

=

∫ t

t−B

∫ s1

s1−B
e−2mRδ(s1 − (t−B))δ(s2 − (s1 −B)) ds2ds1I+

+

∫ t

t−B

∫ s1

s1−B
e−mRδ(s1 − (t−B))e−m(s1−s2)W (s2) ds2ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s1)W (s1)e−mRδ(s2 − (s1 −B)) ds2ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s1)W (s1)e−m(s1−s2)W (s2) ds2ds1

and straightforward calculations yield

P
(2)
B (t) = e−2mBI +

∫ t−B

t−2B

e−m(t−s2)W (s2) ds2 + e−mB
∫ t

t−B
e−m(t−s1)W (s1) ds1

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s2)W (s1)W (s2) ds2ds1

Now, every element of P
(2)
B (t) is non-negative as a sum of non-negative matrices.

It is only left to verify that
∑
j [P

(2)
B (t)]ij = 1 for any i. Indeed, the first matrix

contributes e−2mB , the second and the third e−mB − e−2mB and the fourth (1 −
e−mB)2, so eventually

e−2mB + 2(e−mB − e−2mB) + (1− 2e−mB + e−2mB) = 1

Let P
(l)
B (t) be stochastic. Then the elements of P

(l+1)
B (t) are non-negative by the

same reasoning as above and finally, since

P
(l+1)
B (t)

=

∫ t

t−B
C(t, s1) · · ·

∫ sl

sl−B
C(sl, sl−1) dsl+1 . . . ds1

= e−mBP
(l)
B (t) + (1− e−mB)P

(l)
B (t)−

−
∫ t

t−B

∫ s1

s1−B
· · ·
∫ sl

sl−B
C(t, s1)C(s1, s2) · · ·

(
D(sl+1)−A(sl+1)

)
dsl+1 . . . ds1

= P
(l)
B (t)−

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sl

sl−B
C(t, s1)C(s1, s2) · · ·

(
D(sl+1)−A(sl+1)

)
dsl+1 . . . ds1

the sum of the ith row of P
(l+1)
B (t) equals 1 because the corresponding sum in the

final integrand is zero (as it is a left multiplication of a matrix with a Laplacian
matrix).
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Proof of Theorem 5.3. The proof relies on the second mean value theorem and a
technical lemma, both of which are cited below for quick reference:

Lemma 11.1. If G ∈ C0[J,R] and φ is integrable that does not change sign on J
then there exists x ∈ J such that

G(x)

∫
J

φ(t) dt =

∫
J

G(t)φ(t) dt.

We recall that two vectors x,y are sign compatible if xiyi ≥ 0 for all i.

Lemma 11.2 (Lemma 1.1 of [12]). Suppose δ ∈ RN such that δT1 = 0 and δ 6= 0.
Then there is an index I = I(δ) of ordered pairs (i, j) with i, j ∈ V such that

δT =
∑

(i,j)∈I

Tij
2

(ei − ej)

where Tij > 0, ei is the row vector (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith position,
ei − ej is sign compatible to δ for all i, j. Thus ||δ||1 =

∑
(i,i)∈I Tij.

Pick h, h
′ ∈ V . Then for ph,ph′ the hth and h

′th rows of P respectively, we have∫
s∈I

(
ph(s)− ph′(s)

)
z(s) ds

Now, since N < ∞ there is a partition {Il}ml=1 of I which depends on h, h′ such
that for any Il, phk(s)− ph′k(s) does not change sign in for s ∈ Il, k ∈ V and it is
not identically zero. Then for fixed Il we apply Lemma 11.1 to obtain∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
zk(s) ds =

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
dszk(s∗k) = δTl z∗l

for some s∗k = s(Il, h, h
′), δTl =

∫
Il

(
ph(s)−p′h(s)

)
ds 6= 0 and z∗l = (z1(s∗1), . . . zN (s∗N ))T .

By Assumption
∫
Il
P (s) ds is m-stochastic and therefore δTl 1 = 0. Hence, Lemma

11.2 is applied and together with the triangle inequality

|δTl z∗l | ≤
1

2
||δl||1S(z∗l )

(see also [12]). Then if we let S(z∗) = maxl S(z∗l ), we obtain the bound

S(w) = max
h,h′

∣∣∣∣ ∫
s∈I

(
ph(s)− ph′(s)

)
z(s) ds

∣∣∣∣
=
∑
l

|δTl z∗l | ≤ max
h,h′

1

2

∫
I

||ph(s)− ph′(s)||1 dsS(z∗).

Finally, from the identity |x− y| = x+ y− 2 min{x, y} for any x, y ∈ R and the fact
that ∀h, h′ ∈ V ,

∑
k

∫
s∈I phk(s) ds =

∑
k

∫
s∈I ph′k(s) ds = m we get

1

2
max
h,h′

∑
k

∫
s∈I
|phk(s)−ph′k(s)|ds = m−min

h,h′

∑
k

min

{∫
s∈I

phk(s) ds,

∫
s∈I

ph′k(s) ds

}
.

Proof of Lemma 5.5. Let t∗ ≥ t0 and i ∈ V be the first time and agent that
the solution xi(t) escapes

[
minj∈V,s∈It0 φj(s),maxj∈V,s∈It0 φj(s)

]
say, to the right.

Then it must hold both that xi(t
∗) = minj∈V,s∈It0 φj(s) and ẋi(t

∗) > 0, which is a

contradiction in view of the dynamics in (6). The same argument can be made for
escaping to the left.
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Proof of Lemma 5.8. From Lemma 5.5 we have that ω(φ) is non-empty, compact
and connected and any element of which must lie in ∆. Since λ(t0) <∞ any point
φω ∈ ω(φ) is actually a vector valued function with the property that φωi (s) = φωj (s)
∀i, j ∈ V . It is obvious however that x(t, t0,φ

ω) ≡ φω(t0) and at the same time
a member of ω(φ). By the uniqueness of solutions it follows that φω must be a
constant vector valued function in RN ∩∆ and the result follows.
Proof of Theorem 6.1. The solution x of (7) satisfies

ẋ(t) = −mx(t) +
(
mI−D(t) +A(t)

)
x(t)

⇒ d

dt

(
emtx(t)

)
= emt

(
mI−D(t) +A(t)

)
x(t)

⇒ emtx(t)− em(t−B)x(t−B) =

∫ t

t−B
ems

(
mI−D(s) +A(s)

)
x(s) ds

Set for simplicity C(t, s) :=
(
e−mBδ(s−(t−B))I+e−m(t−s)(mI−D(s)+A(s))

)
.

By the imposed condition in the statement of the theorem it holds that PB(t) =∫ t
t−B C(t, s0) ds0 ∈ T , for any t ≥ t0 +B. Then

x(t) =

∫ t

t−B
C(t, s1)x(s1) ds1

=

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B
C(t, s1)C(s1, s2) · · ·C(sσ−1, sσ)x(sσ) dsσ · · · ds1

for t ≥ t0 + σB. Choosing σ large enough, P
(σ)
B (t) should be scrambling. We

will show this by estimating the value of σ. Since for any t and s ∈ [t − B, t],
γPB(t), γPB(s) ≥ 1 are the scrambling indexes of PB(t) and PB(s) respectively, and

γPB(s) ≥ 1 for s ∈ [t− B, t] so that γPB(s∗(t)) = maxs∈[t−B,t] γPB(s), then P
(2)
B (t) =∫ t

t−B C(t, s)PB(s) ds ∈ T as well and for its scrambling index γ
P

(2)
B (t)

it holds that

γ
P

(2)
B

(t) ≤

{
max{γPB(t), γPB(s∗(t))} − 1, GPB(t) ⊂ GPB(s∗) or GPB(s∗) ⊂ GPB(t)

max{γPB(t), γPB(s∗(t))}, o.w.

Now, in the second case, there is no strict decrease of the scrambling index
over [t − 2B, t]. In this case, however, it holds that ECPB(t) ∩ EPB(s∗) 6= ∅4, i.e.

there exists (i, j) ∈ V × V such that [GPB(t)]ij > 0 and [GPB(s∗)]ij = 0 or vice
versa. This element, however, will be a member of E

P
(2)
B (t)

exactly because PB have

strictly positive diagonal elements. From the discussion on the partitioning of T
with respect to the scrambling indexes,

γP l∗B (t) ≤ max{γPB(t), γPB(u∗(t))} − 1,

γPB(u∗(t)) := maxs∈[t−(l∗−1)B,t] γPB(s). Consequently for σ = l∗([N/2] + 1) the

matrix P
(σ)
B (t) is scrambling.

A direct calculation reveals that for any I ′ ⊂ [t − B, t],
∫
I′
C(t, s) ds (and con-

sequently
∫
s1∈I′

∫ s1
s1−B · · ·

∫ sσ−1

sσ−1−B C(t, s1)C(s1, s2) · · ·C(sσ−1, sσ)x(sσ) dsσ · · · ds1)

belong to M. So that Theorem 5.3 (by Remark 5.4) applies to yield together
with Lemma 5.5 (which obviously holds for τ(t) ≡ 0) and with Proposition 5.2 the
estimate

S
(
x(t)

)
≤ ρ
(
P

(σ)
B (t)

)
S(x

(
t− σB)

)
4EC denotes the complement of E.
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for σ = l∗([N/2] + 1) and ρ
(
P

(σ)
B (t)

)
< 1 on the assumption of static connectivity.

The next step is to estimate ρ
(
P

(σ)
B (t)

)
. Since P

(σ)
B (t) is scrambling, there exists

j∗ ∈ V such that [P
(σ)
B (t)]j∗i > 0. By direct calculations we have:

[P
(σ)
B (t)]j∗j∗ ≥∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B

σ∏
k=1

(
e−mBδ

(
sk − (sk−1 −B)

)
+

+ e−m(sk−1−sk)
(
m− di(sk)

))
dsσ · · · ds1

> e−σmB

and for i 6= j∗

[P
(σ)
B (t)]j∗i ≥

≥
∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B

∑
l0,...,lσ−1

e−m(t−sσ)ail0(s1)al0l1(s2) . . . alσ−1j∗(sσ) dsσ · · · ds1

>

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B
e−m(t−sσ) dsσ · · · ds1f

σ(t) =
(1− e−mε)σ

mσ
fσ(t)

where f and ε > 0 have the meaning of Assumption 4.2. For t′ ≥M large enough so

that f(t) ≤ me−mB

1−e−mε whenever t ≥ t′, from the definition of ρ we obtain the estimate:

ρ
(
P

(σ)
B (t)

)
≤ 1− (1− e−mε)σ

mσ
fσ(t) (17)

Then, for the aforementioned sequence {tn}, for any t ≥ t′, there exists n̄ ∈ N
such that t ∈ [tn̄, tn̄+1] so that

S
(
x(t)

)
≤ S

(
x(tn̄)

)
≤
(

1− (1− e−mε)σ

mσ
fσ(tn̄)

)
S
(
x(tn̄ − σB)

)
≤
(

1− (1− e−mε)σ

mσ
fσ(tn̄)

)
S
(
x(tn̄−1)

)
For any ε > 0, pick n1 and n2 large enough so that tn1 ≥ t′ and

∑n2

j=n1
f(tj) ≥[ (1−e−mε)σ

mσ

]−1
log( ε

S(x0) ). Then for t ≥ tn1

S
(
x(t)

)
≤

i2∏
k=i1

(
1− (1− e−mε)σ

mσ
fσ(tk)

)
S
(
x0
)

≤ e−
(1−e−mε)σ

mσ
∑i2
k=i1

fσ(tk)S
(
x0
)
≤ ε.

Proof of Corollary 6.3. This is a direct application of Theorem 6.1. If f ≥ f > 0,
then from the proof or Theorem 6.1 it holds that

S
(
x(t)

)
< (1− ρ)S

(
x(t− σB)

)
where ρ := min{e−σmB , ((1−e−mε)f)σ

mσ }. Then there exists l ∈ Z+ such that
t− (l + 1)σB ≤ t0 ≤ t− lσB and hence

S
(
x(t)

)
≤ (1− ρ)l+1S(x0) ≤ (1− ρ)

t−t0
σB

1− ρ
S(x0) =

S(x0)

1− ρ
e−θ(t−t0)
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where θ = − ln(1−ρ)
σB and the proof is concluded.

Proof of Theorem 6.4. Let the initial conditions be set such xl(0) < xn(0) for l ∈ V1

and n ∈ V2. Consider then the subset V11 of V1 and accordingly the subset V22 of
V2 which by assumption they must have connections between them. Let i ∈ V11

such that xi(t) ≤ xi∗(t) for any i∗ ∈ V11 and j ∈ V22 such that xj(t) ≥ xj∗(t) for
any j∗ ∈ V22. Then by the imposed initial conditions we have:

ẋi(t) ≤ dij
(
xj(t)− xi(t)

)
+ zi(t)

ẋj(t) ≥ dji
(
xi(t)− xj(t)

)
+ zj(t)

where zi(t) =
∑
l∈V1

ail
(
xl(t)−xi(t)

)
, zj(t) =

∑
l∈V2

ajl
(
xl(t)−xj(t)

)
are functions

that signify the interconnections among agents on the separated subsets. Taking
the difference

d

dt

(
xj(t)− xi(t)

)
≥ −

(
dij(t) + dji(t)

)(
xj(t)− xi(t)

)
+ zj(t)− zi(t)

and if either zi(t) or zj(t) do not vanish then S(x(t)) will not converge to zero
and there is nothing to prove. On the other hand, we have by assumption that
|zi(t) − zj(t)| ≤ 2(N − 1)CΓe−γt for (N − 1)C to play the role of the uniform
upper bound of aij(t) according to Assumption 4.1. We set for simplicity Q(s) =(
dij(s) + dji(s)

)
. Now,

∫∞
t0
Q(s) ds < ∞ and this means that there is a sequence

{tn}n≥1 and a constant M1 > 0 such that∫ tn

0

Q(s) ds ≥M1.

Since

xj(t)− xi(t) ≥ e−
∫ t
0
Q(s) ds(x0

j − x0
i ) +

∫ t

0

e−
∫ t
w
Q(s) ds

(
fj(w)− fi(w)

)
dw,

we have that

|xj(tn)− xi(tn)| ≥
∣∣∣∣e−M1 |x0

ji| −
∫ tn

0

e−
∫ tn
w

Q(s) ds2(N − 1)Ce−γw dwS(x0)

∣∣∣∣.
Choosing

∣∣e−M1 |x0
ji| −

2(N−1)CΓ
γ

∣∣ > ε we obtain |xij(t)| > ε for infinitely many t.

Proof of Theorem 7.1. Fit t ≥ σ(B+τ)+τ+ t0 and B > 0. The first step is to write

the solution x as an integral equation in the form of
∫ t
t−B C(t, s)x(s) ds in order to

use Theorem 5.3. In view of Assumption 4.3 we see that the functions t− τij(t) are
invertible. Denote by κij(t) their inverse. Define M(t, s) = [mij(t, s)] with elements

mij(t, s) =

{
e−m(t−κij(s)) aij(κij(s))

1−τ̇ij(κij(s))1s∈[λij(t−B),λij(t)], i 6= j

e−mBδ
(
s− (t−B)

)
+ e−m(t−s)(m− di(s))1s∈[(t−B),t], i = j

Following the steps of the proof of Theorem 6.1 the solution x in vector form reads

x(t) =

∫ t

t−(B+τ)

M(t, s)x(s) ds

so that again PB+τ (t) =
∫ t
t−(B+τ)

M(t, s) ds is stochastic. Under the imposed con-

nectivity conditions, Proposition 5.2 implies that the stochastic matrix P
(σ)
B+τ (t) is

scrambling. Then by Theorem 5.3 and Remark 5.6 we have the estimate:

S(x(t)) ≤ (1− µ)SIt−σ(B+τ)−τ (x) (18)

for µ := inft≥t0 mini,j
∑
l min{ptil, ptjl} ∈ (0, 1) with ptij the elements of P

(σ)
B (t).
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Consider the moments t1, t2 ∈ It and the agents i∗, j∗ ∈ V such that SIt(x) =
xi∗(t1) − xj∗(t2). Assume, without loss of generality, that t1 ≥ t2. Then from (8),
Lemma 5.5 and Remark 5.6 we have

SIt(x) = xi∗(t1)− xj∗(t2)

= e−
∫ t1
t2
di∗ (s) ds(xi∗(t2)− xj∗(t2)

)
+

+

∫ t1

t2

e−
∫ t1
s
di∗ (w)dw

∑
j

ai∗j(s)
(
xj(λi∗j(s))− xj∗(t2)

)
ds

≤ e−
∫ t1
t2
di∗ (s) dsS(x(t2)) +

(
1− e−

∫ t1
t2
di∗ (s) ds

)
SIt−2τ

(x)

≤ e−
∫ t1
t2
di∗ (s) ds(1− µ)SIt−σ(B+τ)−τ (x) +

(
1− e−

∫ t1
t2
di∗ (s) ds)SIt−2τ (x)

≤ (1− µe−
∫ t1
t2
di∗ (s) ds)SIt−σ(B+τ)−τ (x)

≤ (1− µe−N̄aτ )SIt−σ(B+τ)−τ (x)

Similar estimates occur for t1 < t2. Consequently there exists integer l ≥ 1 such
that t0 + l(σ(B+τ)+τ) ≤ t ≤ t0 +(l+1)(σ(B+τ)+τ) and so a recursive argument
implies that

SIt(x) ≤
SIt0 (φ)

1− µe−N̄aτ
e

ln(1−µe−N̄aτ )
(σ(B+τ)+τ)

(t−t0)

and the proof is concluded in view of Lemma 5.8.
Proof of Theorem 9.1. The proof relies on an elementary variation argument. Eq.
(6) can be written in compact vector form

ẋ = −L(t,xt)

where xt = xt(t0,φ) stands for the function segment x(t + s, t0,φ), s ∈ [−τ, 0],
t ≥ t0 and L(t,ψ) is a functional linear in ψ. At this stage we can define a linear
and continuous operator T such that T (t, t0)φ = xt(t0,φ) so that (T (t, t0)φ)(s) =
x(t+s, t0,φ), s ∈ [−τ, 0]. See also [11, 21]. Theorem 7.1 and the existence of leader
implies that T (t, t0) is also endowed with the property:

||(T (t, t0)φ)(t0)− 1(1, 0, . . . , 0)φ(t0)||∞ ≤ Θe−θ(t−t0) (19)

for some constant Θ that depends on the initial data and the norm. Based on these
remarks we will study the dynamics of

ż = −L(t, zt) + η(t) (20)

where η(t) =
(
η1(t), . . . , ηN (t)

)
with

ηi(t) =

{
ai1(t)

(
z1(λi1(t))− k

)
, 1 affects i

0, o.w.

Note that the way the system is defined, η is a state independent perturbation
that vanishes as fast as 1

h(t) . Using the linear variation of constants formula [21], z

satisfies

zt(t0,φ) = xt(t0,φ) +

∫ t

t0

T (t, s)(xt0η(s)) ds

where xt0(q) = 0 if q ∈ [−τ, 0) and x(0) = I is an auxiliary function.
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Since T (t, s) projects any vector to ∆, exponentially fast with the common el-
ement and the first component of the vector η(s) is 0, then η is by construction
orthogonal to (1, 0, . . . , 0), we see that∫ t

t0

T (t, s)(xt0η(s)) ds =

∫ t

t0

(
T (t, s)− 1(1, 0, . . . , 0)

)
(xt0η(s)) ds

also ||x(t, t0, φ)− 1k||∞ ≤ e−θ(t−t0) we conclude that z satisfies

z(t, t0,φ)− 1k =
(
x(t, t0,φ)− 1k

)
+

∫ t

t0

(
T (t, s)− 1(1, 0, . . . , 0)

)
(xt0η(s)) ds

and this implies

||z(t, t0,φ)− 1k||∞ ≤ e−θ(t−t0) +

∫ t

t0

Θ̄e−θ(t−s)
1

h(s)
ds

for some Θ̄ that depends on Θ and the parameters ai1, τi1 which is well-defined and
finite. Condition (11) then applies to conclude the proof.
Proof of Corollary 9.3. The proof follows the steps of the argumentation presented
for the linear case and especially Lemma 5.5. That proof is applied here as well
to show that with initial data to satisfy SIt0 (φ) ⊂ W , the solutions never escape

[mini∈V mins∈It0 φi(s),maxi∈V maxs∈It0 φi(s)] and hence the passivity property is

preserved throughout x. For an arbitrary but fixed x of (12) we define

aij(t) :=
gij
(
t, xj(λij(t))− xi(t)

)
xj(λij(t))− xi(t)

and consequently the initial value problem

i ∈ V :

{
ẏi(t) =

∑
j aij(t)

(
yj(λij(t))− yi(t)

)
, t ≥ t0

yi(t) = φi(t), t ∈ It0
Under Assumption 9.2 we see that aij(t) are well defined taking strictly positive
values. Then certain connectivity condition can make them satisfy the assumptions
of Theorem 7.1. In view of the fact that y is indistinguishable of x the result follows.

Proof of Corollary 9.4. The proof is again based on a direct linearization as in
Corollary 9.3 with a minor modification. At first it is essential to show that whenever
starting in φi(t) ∈ W for t ∈ It0 the solution x = x(t, t0,φ), t ≥ t0 of (13) never
escapes W , i.e. it is bounded and defined for all times. This can be shown with the
same argument of Lemma 5.5. System (13) can be written as

ẋi(t) =
∑
j

aij(t,x)
(
xj(λij(t))− xi(t)

)
for

aij(t) :=

∫ 1

0

g′ij
(
t, sxj(λij(t)) + (1− s)xi(t)

)
ds.

and g′ij(t, x) =
∂gij(t,x)

∂x . Since W is open and connected subset of R and solutions
never escape it, the function aij are well-defined and they take strictly positive
values for all t ≥ t0. The argumentation again follows Corollary 9.3 and Theorem
7.1 to prove convergence.
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[41] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition

in a system of self-driven particles. Phys. Rev. Lett., 75(6):1226–1229, 1995.
[42] C. W. Wu, T. Yang, and L. O. Chua. On adaptive synchronization and control of nonlinear

dynamical systems. International Journal of Bifurcation and Chaos, 6(2), 1996.


	Somarakis_Baras_SIMA 1
	autosamtest
	1. Introduction
	2. Related Literature & Contribution
	2.1. Organization of the paper

	3. Notations & Definitions
	3.1. Elements of Non-Negative Matrix Theory Hartfiel,Seneta2006

	4. The Model
	4.1. Hypotheses

	5. Preliminaries
	5.1. Graphs and Non-Negative Matrices
	5.2. An extension of the coefficient of ergodicity
	5.3. Bounds on x(t,t0,bold0mu mumu )

	6. Convergence rates of the undelayed version
	6.1. Special Case: Simple Proof under Increased Connectivity
	6.2. Necessary conditions

	7. Convergence rates of the delayed version
	8. Examples & Simulations
	8.1. A 44 graph
	8.2. A 22 network with unbounded delays

	9. Special Cases & Applications
	9.1. Leader-follower dynamics
	9.2. Non-Linear Networks

	10. Discussion & Concluding Remarks
	10.1. Conclusions

	11. Appendix
	REFERENCES




