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Maintenance of upright posture during walking is one the most important 

tasks to ensure flexible and stable mobility, along with speed adjustment, 

wayfinding  and obstacle avoidance. These underlying functions, or subtasks, are 

simultaneously coordinated by the nervous system, which relies heavily on 

sensory feedback to obtain continual estimates of self-motion.  This dissertation 

reports the findings of four experiments which made use of visual and 

mechanical perturbations to probe the interplay of these subtasks during 

treadmill walking. To confront the inherent nonlinearity of human gait, novel 

frequency domain analyses and impulse response functions that take into 

account phase of the gait cycle were used to characterize perturbation-response 

relationships. In the first experiment, transient visual scene motion was used to 

probe how visual input simultaneously influenced multiple subtasks, but at 

different phases of the gait cycle. In the second experiment, kinematics and 



muscle activity response variables showed an amplitude dependency on visual 

scene motion during walking that indicates vision is reweighted in a manner 

similar to standing posture. The third experiment used a metronome to constrain 

walking, revealing two time scales of locomotive control. The final experiment 

made use of both visual and mechanical perturbations simultaneously to probe 

the subtasks of postural orientation upright and positional maintenance on the 

treadmill. Doing so revealed that the nervous system prioritizes control of 

postural orientation over positional maintenance. In sum, this dissertation shows 

that sensory and mechanical perturbations provide insight as to how the nervous 

system controls coexisting, underlying functions during walking. 
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Chapter 1: Introduction and Organization 

 

Walking is a form of locomotion that most of us successfully perform every 

day. Our proportionally massive trunks do not topple over our legs, we can 

produce the appropriate forces against the ground to get to where we need to go 

and we can even avoid obstacles in our path if they arise. This dissertation works 

towards understanding how all of these subtasks, or underlying functions of the 

overarching walking task, are performed simultaneously.  

That successful locomotion includes, but is not limited to, control of 

equilibrium, propulsion, and fulfilling environmental demands is certainly not a 

new idea (Forssberg 1982). The term subtask and its first usage in the human 

walking literature can be credited to Winter (1989) and his proposal of a task-

related theory of gait that dictated three subtasks as necessary elements 

underlying the task of safe walking. These subtasks include support maintenance 

by the stance limb, control of posture upright in sagittal and frontal planes, and 

proper foot trajectory control for clearance during swing and stable landing during 

heel strike (Winter 1989). In more dynamic environments, however, additional 

subtasks such as hazard accommodation/avoidance or positional maintenance 

on a treadmill must be successfully performed.  Recently, there has been 

renewed support for the idea that subtasks of human locomotion are modular in 

nature, and are enacted by distinct combinations of muscle activations 

(McGowan et al. 2010; Neptune et al. 2009; Chvatal & Ting 2013). 

 In this work a simplified view of subtasks is used. The subtask of upright 

postural control during walking is observed through changes in trunk orientation 
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while the subtask of speed control is observed through a measure of whole body 

displacement and supporting changes in leg trajectories. When possible, 

changes in muscular activity with appropriate timing allow further insight into 

timing and prioritization of these subtasks. 

When thinking about how the subtasks of walking are controlled by the 

nervous system, one must certainly take gait cycle phase into account. That is, 

the state of the musculoskeletal plant as each limb moves from heel strike to heel 

strike and the whole body moves in and out of phases of double support will alter 

how the nervous system enacts an ongoing subtask or the degree to which a 

new subtask can be incorporated into the ongoing walking behavior. This was 

made apparent by a previous study by Logan et al. (2010) which showed a 

significant covariance between the thigh and visual scene motion that did not 

occur during early to mid-stance phase, but varied in magnitude throughout the 

swing phase (Logan et al. 2010).  

At first, this finding fit into an expected narrative that the input-output 

relationship of visual perturbations to leg segment motion could not be 

characterized with the standard linear time-invariant (LTI) techniques being used. 

As a phase-dependent covariance shows that the relationship between vision 

and the thigh segment did vary based on phase of the gait cycle, the relationship 

is not time-invariant.  Thinking deeper about this covariance in the thigh response 

inspired thinking on how phase-dependence during human walking could emerge 

during perturbation experiments. A phase-dependence could be due to the actual 

phase of the gait cycle that subjects were in when the stimulus occurred and/or 
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the phase of the gait cycle when the response could occur. The former implying 

some neural and/or sensory process has taken place while the latter could be 

due to purely biomechanical constraints. The most extreme alternatives could be 

that the phase-dependence of thigh angle response is due to a gating of sensory 

input at a specific perturbation phase or that the nervous system continually 

initiates a response but the biomechanical state of the limb does not allow a 

response to occur.  The potential for these two very different interpretations of 

the same data inspired the experiment reported in the third chapter of this 

dissertation and provided the impetus for reporting and interpreting input-output 

relationships with respect to both stimulus phase and response phase 

(normalized response time) in these studies of subtask control. 

Here the subtasks of walking are investigated in a series of treadmill 

walking experiments that appropriately take into account gait cycle phase and 

make use of input-output mappings elicited by visual and mechanical 

perturbations. This dissertation is organized in chapter format beginning with a 

review of the relevant literature. The use of visual and mechanical perturbations 

as probes for the neural control of human walking are reviewed, the potential 

issues with applying these probes, and the use of metronomes as rhythmic 

auditory cueing to constrain locomotive control. 

 Following the review of the literature, a recently published manuscript 

which provides evidence for the use of vision for multiple subtasks during 

treadmill locomotion is presented in Chapter 3. This manuscript uses commonly 

used time domain measures to show the use of vision for changes of trunk 
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orientation for upright equilibrium and modulation of leg segments for both 

hazard accommodation/avoidance and positional maintenance on the treadmill. 

Chapter 4 marks a transition in analysis tools used in this dissertation. Harmonic 

transfer functions (HTFs) allowing input-output mappings between broadband, 

pseudorandom perturbations and response variables are computed in the 

frequency domain prior to transfer into the time domain as phase-dependent 

impulse response functions (PD-IRFs).  The Appendix provides an introduction to 

these methods developed by Dr. Tim Kiemel. These tools were critical at this 

juncture as the experiment reported in Chapter 4 used frequency domain 

measures to show that the sensor fusion process of sensory reweighting is used 

for walking. 

 Chapter 5 marks a transition from using perturbations of visual scene 

motion to investigate the use of vision during walking to using visual scene 

motion as a probe to investigate subtask control. This chapter reports an 

experiment investigating the phase-resetting strategy used by the nervous 

system for the subtask of positional maintenance on the treadmill. In addition to 

the treadmill dictating a fixed speed, walking was further constrained in this study 

by dictating cadence on the treadmill with a metronome. By comparing non-

metronome and metronome conditions, it was revealed that maintaining position 

on the treadmill was linked to phase resetting on a short time scale while being 

unlinked on a longer time scale, suggesting two timescales of control for walking. 

Finally, Chapter 6 reports an experiment which also used visual perturbations to 

probe subtask control in conjunction with adding a mechanical perturbation to 
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study the interaction of trunk orientation and positional maintenance subtasks. 

When active, neural driven responses to both perturbations were observed, the 

subtask of postural control upright was prioritized in terms of time over 

maintaining position on the treadmill. 
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Chapter 2: Background and Review of the Literature 

 

The problem 

During walking the nervous system is confronted with grand challenges to 

both control and sensation. The challenge of control comes from the need for the 

nervous system to control an abundance of elemental variables not yet clearly 

defined that could be muscle modules (e.g., Chvatal & Ting 2012), kinematic 

trajectories ( e.g., Borghese et al. 1996), abstract representations (e.g., Dingwell 

& Cusumano 2000), or something else yet to be formulated. The abundance of 

degrees of freedom from which these elemental variables arise must be 

orchestrated appropriately for functional outcomes of walking such as 

maintenance of balance upright and moving from place to place.  

Critical for neural control processes during walking; sensory inputs provide 

information about the environment and the body itself as it moves through the 

environment. In all motor behaviors, however, the nervous system must deal with 

sensory processing issues such as noisy sensors (Faisal et al. 2008) and 

multisensory integration (the so-called “binding problem”). In the rhythmic 

behavior of locomotion, additional complications arise such as transitory inputs of 

some sensory organs due to the phase of the locomotive cycle.  

Studies which manipulate sensory information allow insight into neural 

control and studies focusing on neural control inform about how sensory 

information should be used to enact that control. This linkage can be formalized 

by control theoretic approaches to understanding human motor control, and 

specifically the joint input-output approach to system identification. This approach 
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relies on the use of both mechanical and sensory probes for the study of motor 

behavior. As visual sensory and mechanical perturbations will be used in the 

proposed research, human walking studies making use of these perturbations 

and the implications for neural control are reviewed. As entraining step period 

with auditory stimuli is of critical interest, its use in human locomotion will also be 

reviewed.  Finally, the literature regarding the use of phase resetting in human 

locomotion is discussed. 

 

Visual inputs: insight into function and control 

 To begin it will be helpful to review those studies (and schools of thought) 

which manipulate vision in some manner during locomotion in order to describe 

how visual inputs have some functional influence on walking.  

 First, moving in the correct direction (steering) and direction one faces 

(heading) are reliant on visual information. Evidence suggests that steering 

behaviors are actually specific to the type of optic flow. Steering behaviors were 

significantly different for type of optic flow (translation, rotation, combined) and 

focus of expansion (0°, ±20°, ±40°) finding that rotations of the body were not 

seen unless there was rotation of the visual scene. Additionally, medial-lateral 

shifts observed in the opposite direction of the focus of expansion (FOE) suggest 

that FOE may steer one’s M/L components during locomotion (Sarre et al. 2008). 

Previously, steering synergies identified in eyes open and closed 

conditions by Vallis and Patla during “burst of air” perturbations could explain 

movement of the trunk in response to steering via perturbation. As these authors 
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believe, the trunk may be part of a kinematic synergy whose direction is dictated 

by a reference frame defined by the head in the act of steering (Vallis & Patla 

2004).  Yet, this egocentric reference frame is also contextually dependent on 

optic flow and those head and eye movements leading to the change in direction 

of locomotion (Hollands et al. 2002).  

Even in visuo-locomotor adaptation paradigms, it seems optic flow is the 

culprit for heading corrections rather than other sensory features such as target 

drift (Bruggeman et al. 2007). Conflicting evidence still exists, however, that 

suggests motion parallax may play a larger role than optic flow in the control of 

heading (Schubert et al. 2003). In sum, visual information is vital to moving the 

right direction and maintaining the correct heading direction. 

Next, there are those studies that investigate how visual information is 

used to stabilize the head on the trunk during a walking trajectory. When making 

turns, it has been shown that the head turns approximately 250 ms prior to a shift 

of the COM in the medial/lateral plane. Hollands and colleagues suggest that 

these anticipatory head turns allow the body to reorient itself during turning and 

are not subservient to gaze (Hollands et al. 2004).  Additionally, studies by 

Hicheur and colleagues found that this anticipatory turning of the head has 

similar orientation angles to both the left and right and could be considered a 

“global mechanism”. They also found that the geometry of the distorted path was 

reflected in the geometry of the head orientation and noted head rotation was 

slow in frequency content for stable transfer of body mass (Hicheur et al. 2005). 

This head and trunk coordination has also been investigated by suppressing the 
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vestibulo-ocular reflex (VOR) to show a reduced head and trunk coordination that 

leads to a more stable trunk and less stable head (Cromwell et al. 2004). Finally, 

having subjects perform tasks with higher gaze stability requirements (reading 

letters vs. focusing on a dot) increases head instability and did not change trunk 

stability during locomotion. Introducing the dimension of gaze stability 

requirements further complicates the stability of the head on the trunk during 

locomotion (Mulavara & Bloomberg 2002). 

Finding its origins in Gibson’s work, the notion that optic flow velocity and 

displacement may guide locomotion has evolved from sensory phenomena to 

clinical tool (Gibson 1958). Being influenced by the moving-room postural studies 

of Lishman and Lee, Konczak altered optic flow in an experiment where subjects 

walked in a moving hallway.  He found a large portion (42%) of subjects to slow 

from their regular step velocity when the global optic flow was moving through 

subjects and a lower portion (25%) of subjects to have faster velocities when the 

optic flow was moving towards the front of subjects. Konczak proposed the idea 

that optic flow velocity does not necessarily destabilize the body; rather, it has a 

modulatory effect on gait velocity (Konczak 1994).  Next, Zijlstra and colleagues 

suggested that visually-guided walking adjusted the ratio of the stride length (SL) 

over the stride frequency (SF) (Zijlstra et al. 1998). Prokop and colleagues went 

on to name SL, SF, and walking velocity (WV) the three main components of 

locomotion in their study of self-driven treadmill walking with tunnel-like virtual 

display. With their setup, they were able to increase and decrease WV via 

directional optic flow in a much more efficient manner than Konczak. They found 
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that the SL was changed while SF remained constant during optic flow 

conditions. Changes in SL, they argue, are the reason that optic flow is able to 

modulate changes in WV. Also of note, the use of long trial lengths (10 

min/~800m) revealed less use of visual information over time as events in the 

stride cycle increased in variability (Prokop et al. 1997).  Last, this guiding effect 

of optic flow has been shown to aid in the recovery of stroke patients by 

increasing gait speeds during virtual moving rooms (Lamontagne et al. 2007).    

In addition to studies that investigate the effects of visual scenes on the 

velocity of movement, there are studies that investigate the structure of virtual 

displays and their influence on postural sway during locomotion. Warren, Kay, 

and Yilmaz performed a series of experiments with treadmill walking and virtual 

display that revealed the visual coupling of sway (via neck kinematic) to virtual 

environment is dependent on the geometry of the scene (Warren et al. 1996). In 

their first experiment, they changed the visual scene by direction (0°, ±30°, ±60°, 

90°), type (rotation or translation), and frequency (.25 Hz and .4 Hz). They found 

similar responses to both rotation and translation, but much higher responses to 

the .25 Hz frequency. They also found that sway is directionally specific to driving 

visual scene.  Yet, this directional specificity was anistropic to reveal that visual 

coupling is higher in the M/L plane than other planes of the body. In their next 

experiment, they eliminated motion parallax through using a traveling front wall to 

see if motion parallax was the cause of the anisotropy. They also tested the 

effect of using varying displacement amplitudes to investigate the “control” of the 

visual scene. They found that eliminating the traveling hall and using the traveling 
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wall led to a decrease in the anistropic effect while increasing the visual scene 

displacement caused higher amounts of sway during locomotion until saturation.  

These higher amounts of sway, however, were not proportional to the increases 

in visual scene amplitude. In their final experiment, they rotated the platform 90° 

to change body orientation and made subjects turn their head to the visual scene 

to test the hypothesis that the anisotropy was due to the constraints of 

biomechanics or somatosensory stimulation. They found that the anisotropy 

remained through higher responses in the A/P plane and that this reversal 

confirmed that the anisotropy was not due to biomechanics or somatosensory 

input; rather it was due to the distinction between motion parallax and optic flow 

(Warren et al. 1996). Not only did this series of experiments support the idea that 

visual coupling is based on scene geometry, they revealed how sensitive the 

nervous system is to the many possible changes in visual information.  

In an investigation which was the precursor of many of the ideas 

contained in this dissertation, Logan et al. (2010) compared the use of visual 

stimuli in standing and walking behaviors. By recording kinematics from multiple 

segments of the body, this study was able to study many functions of vision 

during walking. In trunk orientation, frequency response functions (FRFs) from 

vision were similar between standing and walking at low frequencies. This finding 

shows how the nervous system uses vision for control of posture upright during 

locomotion. An additional, gait cycle phase-dependent response was observed in 

the thigh angle during walking conditions. This covariance peaked during the 

response phase of swing. This modulation could represent the use of vision for 
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speed control or obstacle avoidance/ accommodation, and has inspired further 

experimentation. In comparison to Warren et al.’s collection of a single marker at 

the neck (Warren et al. 1996), Logan et al.’s study of the multiple segments of 

the body showed how vision can influence multiple processes simultaneously 

during locomotion.  

Indeed, manipulations of visual information have been shown to have an 

effect on heading, steering, head stability, head-trunk interactions and body sway 

during locomotion. These studies show that vision is clearly used for multiple 

subtasks during human locomotion. Next, we turn to some recent studies by Kuo 

and colleagues that are concerned with locomotive control on the whole. Rather 

than using visual manipulations to imply function of those visual inputs, these 

studies use vision as a perturbation to gain insight into the control process.  

O’connor and Kuo first used visual perturbations to study differences in 

control of human walking in the frontal and sagittal planes (O’connor & Kuo, 

2009).  Subjects walked on a treadmill in front of virtual displays which translated 

in either the sagittal or frontal planes. These authors hypothesized that visual 

scene motion in the frontal plane will cause larger variability in step width when 

compared to the effect of sagittal plane scene motion on step length variability, 

reflecting the larger active control effort required by the nervous system in the 

frontal plane. These hypotheses stemmed from previous work (Bauby & Kuo 

2000) in which a musculoskeletal model for walking was developed that 

emphasized the mechanical configuration of the human body was passively 

stable in the sagittal plane and was intrinsically unstable in frontal plane. The little 
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used somatosensory input of the legs, the authors argue, is used in sagittal plane 

control while intrinsic instability in the frontal plane requires more active control 

from the nervous system. Furthermore, these ideas have arisen with inspiration 

from passive dynamic walking machines that are passively stable in the sagittal 

plane as they can produce coordinated walking without control, and rely on the 

interaction of inertial and gravitational mechanics and oscillations produced by 

intermittent foot contact with a sloped ground (McGeer 1990; Collins et al. 2001). 

Returning to O’Connor & Kuo (2009), their hypothesis was confirmed when they 

observed variability in step measures to be approximately ten times more 

sensitive to frontal plane visual perturbations. These authors then concluded that 

control of balance in the sagittal plane during walking is a series of passively 

stabilized falls. More recently, this group has repeated this experiment with 

measures of metabolic rate, and found degree of variability in step parameters to 

be correlated with energy expenditure in all conditions (O’connor et al. 2012). In 

this case, visual perturbations were used to increase variability in step 

parameters in order to cause more control effort by the nervous system. As these 

authors conclude, energy expenditure is correlated with the increased control 

effort needed to correct for these visual perturbations. 

Finally, these notions of passive versus active stability have been recently 

used in studies investigating the interaction of visual scene perturbations and 

speed. Like Kuo and colleagues, Wuehr and colleagues subscribe to the idea 

that passive stability mechanisms are at play more so in the sagittal plane 

compared to the frontal plane. At various treadmill speeds, these authors looked 
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at step width and length measures (coefficient of variation (CV), detrended 

fluctuation analyses (DFA)) with and without vision. Frontal plane gait parameters 

at all speeds suffered when vision was taken away while sagittal plane gait 

parameters suffered only at slow speeds when vision was taken away. Thus in 

addition to the planar aspect, there appears to be speed-dependent component 

to active control. These authors suggest that stability in the sagittal plane is more 

actively controlled at slower speeds while passive stability mechanisms and 

automated rhythm generators passively control the sagittal plane at faster 

speeds (Wuehr et al. 2013). In sum, the notion of plane-dependent degree of 

active control is catching on the human locomotion literature, and vision is being 

used to introduce variability in locomotive system to induce active control. 

 

Insights into neural control using mechanical perturbations 

 

 To begin a review of mechanical perturbations during locomotion, one can 

start with those initial studies by Nashner and colleagues which were heavily 

influenced by previous studies in standing postural control. Nashner first probed 

human locomotive control during over-ground walking by moving a platform 

unexpectedly underneath subjects walking on a walkway. With a focus on sagittal 

and vertical plane kinematics and EMG of the leg segments, Nashner sought to 

“demonstrate the function of these EMG adjustments in maintaining the balance 

of the walking subject” (Nashner 1980). After applying translating (vertical and 

sagittal) and rotating (sagittal ankle rotation) perturbations at four time points of 
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the stance phase, it was found that EMG responses mimicked those observed 

during standing postural control and that postural adjustments were essentially 

overlaid onto locomotive adjustments. Additionally, he found that adjustments to 

these mechanical perturbations were proportionally much larger than expected 

as the perturbations were not large in comparison to regular motion of the body 

during walking. As the modulations in EMG were simply changes in amplitude of 

the same activations producing the gait cycle, Nashner proposed a conceptual 

model of locomotive control that makes use of an “adaptive element” which 

allows adjustments of the endogenous rhythm generator to accommodate 

external perturbations. This adaptive element receives both the anticipated 

motions of the legs and sensed motions of the legs and then transforms 

“discongruent features into the appropriate parametric commands” (Nashner, 

1980). In sum, Nashner used mechanical perturbations to over-ground walking to 

theorize about an adaptive controller for stepping motions which is intertwined 

with a neural mechanism concerned with maintenance of posture upright during 

locomotive behavior.   

 In a related study, Nashner and Forssberg (1986) used mechanical 

perturbations of a different type to focus on postural control during treadmill 

walking.  In this study, subjects were mechanically perturbed by their upper body 

by having to pull a handle in a self-paced fashion or in response to a tone. As this 

pulling is a threat to upright stability during the ongoing locomotive cycle on the 

treadmill, these authors were interested in understanding the kinematic features 

and muscle activations that would either prevent a loss of balance in a 
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feedforward (in the case of self-paced arm pulls) or feedback manner (in the 

case of arm pulls in response to the tone). During the self-paced pulls, subjects 

would pull the handle around heel-strike and adopt a muscular activation strategy 

(increased hamstring/ gastrocnemius activation during stance) of postural 

stabilization prior to activation of the biceps brachii for handle pulling. During 

trials dictated by a tone, this strategy was maintained when arm pulls were 

required in the majority of gait cycle phases. If the arm pull was required late in 

swing phase, however, this “posture-first” strategy was not enacted as it would 

be destabilizing to weight acceptance during heel-strike. According to the 

authors, a “redistribution of postural activations” occurred and the nervous 

system (via sensory inputs) operates in a feedforward manner to anticipate that 

the process of shifting weight support from one limb to the other will counteract 

the arm pull perturbation. In sum, Nashner & Forssberg showed that a similar 

stabilization strategy for maintenance of posture upright during treadmill walking 

(Nashner & Forssberg 1986) was observed during perturbations occurring during 

standing postural control (Cordo & Nashner 1982). Once again, using a 

mechanical perturbation to probe walking revealed the subtask of postural control 

overlaid on the locomotive cycle.  

 Following a tradition in the animal literature of seeking so-called 

“stumbling corrective responses”, there have been several more studies which 

probe specific phases of the gait cycle with a mechanical probe to learn about 

the nervous system’s strategy to deal with such perturbations. In one such study, 

Eng and colleagues presented subjects with a thin metal obstacle at random gait 
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cycles in either early or late swing while walking over-ground. They found that the 

phase of swing in which they presented the obstacle dictated the specific 

strategy used. When the obstacle was presented in early swing, subjects 

typically used an elevating strategy consisting of swing limb flexion associated 

with swing limb biceps femoris activation and stance limb extension. And when 

the obstacle was presented in late swing, subjects adopted a strategy where the 

swing limb was quickly extended to shorten the step length and this was 

associated with either a decreased vastus lateralis activation or increased 

activation of the biceps femoris in the swing limb. These authors observed that 

the obstacle avoidance response in humans is based upon the phase of the gait 

cycle that the response is initiated. During early swing, ample time for the 

appropriate clearing of the obstacle can occur while during late swing the 

strategy is to quickly step prior to the obstacle so the appropriate planning can 

take place and the other limb can clear the obstacle (Eng et al. 1994).   

 Expanding on the study of Eng et al. (1994), Forner-Cordero and 

colleagues used precisely timed pulling of the swing leg to also study stumbling 

corrective responses in humans (Forner Cordero et al. 2003). Some innovations 

were made in this study as an additional phase of perturbation was studied, 

many steps following the perturbation were studied, the duration of the 

perturbation was varied and a treadmill was used to regulate the speed of 

walking. Short duration perturbations in early swing elicited a mixture of an 

elevating strategy, delayed lowering strategy and lowering strategy across 

subjects while long duration perturbations in this phase elicited a delayed 
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lowering strategy. Delayed lowering strategies are those which shorten step 

period in the next or 2 steps after the perturbation to accommodate the 

perturbation. Short range perturbations of mid and late swing always caused a 

lowering strategy. From these various perturbations, the authors recast these 

responses of the swing leg to mechanical perturbations in terms of step after 

perturbation rather than strategy (elevating, lowering) of step during perturbation. 

To conclude, these authors classify responses to mechanical perturbations as 

those that can be fixed quickly within cycle or those which may destabilize gait 

and must be corrected slowly over time. 

 With these results in mind, these authors went on to create a mechanical 

model of stumbling recovery. With the model’s goal of recovery reaction being 

control of the trunk during double support, it was found that large steps during an 

elevation strategy could alleviate trunk torques due to the perturbation in a single 

step while many steps would be needed to alleviate these trunk torques in the 

case of the lowering strategy (Cordero et al. 2004). In short, this modeling 

approach supports the idea that quick steps can alleviate unwanted trunk torques 

due to external mechanical perturbations (Cordero et al. 2004). More recently, 

this author has begun to use optimal control approaches to find the optimized 

trajectories to produce a biomechanical model of the stumbling response. This 

effort has yielded simulations of the stumble response and a potential recovery 

strategy used by muscles in the model including increases in stance leg 

extensors and swing leg flexors (Forner-Cordero et al. 2011). 
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 More recently, several groups have used mechanical perturbations to 

further support or disprove ideas about organizational principles in the 

musculature of locomotion. That is, mechanical perturbations are being used to 

test locomotive control principles already developed rather than probing the 

system to develop such control principles. Recently, Oliveira and colleagues 

were interested in how various mechanical platform (sagittal and frontal surface 

translations) perturbations similar to those of Nashner’s study (Nashner, 1980) 

would affect the basic motor modules for locomotion identified by Ivanenko and 

colleagues (Ivanenko et al. 2005). They hypothesized that new modules to 

counteract the mechanical perturbation would be created and these modules 

would then be superimposed on the previously identified basic modules (Oliveira 

et al. 2012). Using bilateral recordings of sixteen muscles, non-negative matrix 

factorization (NNMF) revealed four motor modules explaining greater than 90% 

of the variance in muscle activations in both perturbed and unperturbed 

conditions. For the most part, sagittal plane perturbations had preserved modules 

with activation signals of these modules altering based on changing kinematic 

needs. Frontal plane perturbations, however, caused the loss of a module and 

this was due to the subject’s higher priority for balance preservation compared to 

propulsion during these frontal plane platform translations. Interestingly, Oliveira 

and colleagues reached a similar conclusion to Nashner (1980) in that new 

activations/modules were not required for the nervous system to respond to 

walkway perturbations. Once again, existing activations/modules are used to 

promote upright stability (Oliviera et al. 2012). In an extension of previous work in 
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standing postural control and stepping movements, Ting’s group has also 

recently perturbed the modules made up of muscle activations (muscle 

synergies) through both anticipated and unexpected translations of the walkway 

(bi-directional frontal/sagittal) during over-ground walking. Using NNMF on 

sixteen muscles from one side of the body, they found six to eight muscle 

synergies dependent on such with several and the additional synergies being 

subject-specific modules for medial/lateral limb control. These authors found that 

the mechanical perturbation (in both unexpected and expected perturbations) 

simply shifted the timing in these spatially-conserved muscle synergies to 

accommodate biomechanical demands. Of note, these authors conclude that this 

flexible timing in the use of these muscle synergies allows for a “library” of 

subtasks to be recruited when needed (Chvatal &Ting, 2012). In all, both of these 

groups have concluded that the low-level muscular organization is preserved in 

the face of mechanical perturbations to the base of support to enact higher level 

goals such as maintenance of posture upright and moving along a walkway. 

 Recently, Ahn and Hogan have used the Anklebot as a mechanical 

perturbation to the gait cycle trajectory of the legs as an insight into the control 

process during locomotion (Ahn & Hogan 2012).  Motivated by studies which 

posited control of foot trajectories to be supra-spinal, these authors used periodic 

torque inputs to plantar flexion at periods different from their preferred cadence to 

support the notion that control of foot trajectories is due to a nonlinear neuro-

mechanical oscillator and not prescribed by supraspinal control. As 

hypothesized, entrainment of the gait cycle occurred in almost all subjects (18 of 
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19) marked by stride duration converging to the perturbation period dictated by 

the stride 34/80 total trials. This total number of trials was low because 

entrainment only occurred if perturbation occurred near subjects’ preferred 

walking cadence (narrow basin of entrainment). Of note, the phase at which 

stimulus was initiated did not affect the rate or degree at which entrainment 

occurred. However, subjects typically enacted the phase locking with the phase 

of gait where additional plantar flexion caused by the Anklebot assisted 

propulsion (push-off). From these findings, the authors conclude that perturbing 

the limit cycle is all about perturbing the “low level”, primitive forms of control 

during locomotion and shows how normal, locomotive kinematics of foot 

trajectory are not prescribed via higher centers. Thus, these authors have used a 

mechanical perturbation of the lower limb to observe entrainment of the neuro-

mechanical oscillator for locomotion and provide support for the separation in 

control of low level propulsion and higher level “episodic supervisory control of a 

semi-autonomous periphery” when needed for cases such as irregular footholds 

or obstacle avoidance. 

 To conclude the review of mechanical perturbations and human 

locomotion, it is worth noting an investigation by Varraine and colleagues (2002) 

which studied the interaction of mechanical and visual information in treadmill 

walking. This group’s main concern during walking was the intensity 

command(IC) which consists of those lower level central pattern generators 

(CPGs) that will decide the propulsive forces to power through the gait cycle.  As 

a result, Varraine and colleagues believe maintenance of this IC is the goal of 
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controlling gait. In their first experiment, subjects walked on a self-driven treadmill 

with backward movement of a virtual hall with the task of maintaining same IC. 

There were three conditions during this task: FLOW (sinusoidal variations of the 

optic flow at .0083 Hz), FORC (sinusoidal variations in treadmill resistance at .05 

Hz) and COMB (both starting in phase with each other). They found the stimulus 

frequency component of the power spectral density (PSD) at the optical 

perturbation to be greater in COMB condition than in FLOW condition.  Also, they 

found less variation of stride frequency in the FLOW condition than the other two 

conditions. Finally, they bolstered Prokop’s idea of attenuation by finding that the 

spectrum integral of walking velocity is much lower in the last cycle than the first 

cycle of gait (Varraine et al. 2002).   

 In a second experiment, Varraine and colleagues told the subjects their 

goal was to maintain a constant WV in either presence or absence of optic flow 

and presence or absence of external force perturbation. They found the walking 

velocity spectrum component in congruent condition lower than condition without 

optic flow while the force spectrum component is higher with congruent flow than 

without congruent flow. They reason that compensation for WV changes is in the 

form of increased force during locomotion. They also note that phase delay in the 

COMB condition compared to the FLOW represents a neural time delay for 

integration of force information (Varraine et al. 2002). In sum, this study shows 

that visual and mechanical perturbations interact, and emphasizes the need for 

independent sensory and mechanical stimuli. 
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 In all, mechanical perturbations have been used to probe the control of 

locomotion in a variety of ways. It is clear that the goal of many of these studies 

with mechanical perturbations is to study some sub-function, or subtask, of 

locomotion such as postural control upright or obstacle avoidance. The entire 

locomotive behavior, however, may emerge as later studies employing modeling 

approaches may attempt to integrate subtask control into an entire hypothesized 

control scheme. An example of this is observed in Ahn and Hogan’s (2012) 

entrainment work which led to development of a walking model that could 

reproduce such entrainment without a supraspinal influence or continuous 

sensory feedback occurring through a central pattern (CPG) network (Ahn & 

Hogan 2013). 

 

Rhythmic auditory cueing and human locomotion 

 

 The use of a device such as a metronome for rhythmic auditory (RAC) to 

regulate step period has been used to regulate cadence in controlled 

experiments, and has more recently been used for insight into neural control 

strategy. Use of a metronome for RAC has also shown promise in clinical 

applications. 

 Studies of RAC are typically performed in a single session in the clinic in 

or in a pre-post test format following intervention studies. In a meta-analysis of 

visual, auditory and somatosensory cue studies in Parkinson’s disease (PD) 

patients, only rhythmic auditory cues were found to be effective in improving 
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walking speed (Lim et al. 2005). Although the idea for use of RAC for PD patients 

has been around since 1942 (Von Wilzenben 1942), Lim and colleagues 

concluded that the only study of high methodological quality that showed a 

positive effect of RAC in PD patients was a study by Thaut and colleagues that 

showed an increased gait speed after 3 weeks of RAC training (Thaut et al. 

1996). There was, however, additional limited evidence for the use of RAC for 

improving stride length and cadence of PD patients (Lim et al. 2005).  

In addition to PD, RAC during walking has been studied to a more limited 

degree in Huntington’s disease, stroke, and cerebral palsy. Use of RAC in stroke 

survivors has shown RAC to increase gait symmetry (Roerdink et al. 2007) and 

increased velocity and stride length due to a 6 week RAC training intervention 

(Thaut et al. 1997). In Huntington’s Disease, conflicting reports have observed an 

increased walking velocity after RAC training in one study (Thaut et al. 1999) and 

no effect of RAC in various walking tasks (normal, carrying a tray) in another 

study (Delval et al. 2008). A recent study in ambulatory adults with cerebral 

palsy, however, has shown that RAS can improve gait deviation index (GDI) and 

sagittal plane pelvis tilt/hip flexion during over-ground walking trials with RAS 

(Kim et al. 2011). Interestingly, a follow-up three times a week, three week 

intervention study showed that RAS improved a host of gait parameters 

(increased cadence, increased walking velocity, increased stride length), sagittal 

pelvic tilt/ hip flexion, and GDI (Kim et al. 2012) in post-intervention testing. In 

sum, the use of RAC needs be more fully investigated in other patient 

populations while study in PD patients is more extensive with a longer history. 
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In healthy populations, however, RAC is typically used as a control 

condition or throughout an experiment to eliminate alterations in step period for 

insight into other processes during locomotion. The use of metronome conditions 

for this function is prevalent across the walking literature, and this brief review will 

only provide examples of this use of RAC. One flavor of these types of studies 

are those that constrain gait frequency across a range of conditions to interfere 

with gait cycle parameter relationships and then test if a hypothesized objective 

function can still account for the relationships across parameters. In one such 

study, RAC was used to alter speed-frequency curves of treadmill walking and 

the metabolic cost of transport was determined to be the underlying minimized 

objective function to produce the preferred gait (Bertram & Ruina 2001). Another 

type consists of those studies which use metronome in all conditions in order to 

regulate cadence across subjects to control for variability in step period between 

subjects. Often times these studies just simply note in the methods section that a 

metronome was used for this reason. An example of this can be seen in a study 

by Danion and colleagues in a study of increasing treadmill resistance to study 

kinematics and EMG in conditions when subjects either resisted or did not resist 

changes in treadmill resistance. The use of the metronome is simply mentioned 

in the abstract and methods, and was used so that stride frequency wouldn’t vary 

between subjects when dealing with the mechanical perturbation (Danion et al. 

1997).  A final type of study using metronome to eliminate step period are those 

studies when metronome conditions are used to perturb seemingly unrelated 

response variables.  One such study is a study by Latt and colleagues that used 
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metronome condition to test the effect of constraining cadence on head and 

pelvis accelerations. These authors believed that gait cycle parameters were 

intertwined with upright stability measures of head and pelvis measures. The 

study found that there is a certain range of cadences that are associated with 

measures (harmonic ratios) of head and pelvis accelerations in vertical and 

sagittal plane which were ideal for upright stability (Latt et al. 2007). Interestingly, 

Latt and colleagues viewed upright stability and moving from point to point as the 

only critical activities during walking, and they believe these two activities were 

intertwined. This was their “indirect” reason for looking at the effect of regulating 

cadence on trunk stability measures.  

 Recently, auditory entrainment via metronome has been used for insight 

into neural control as experimental evidence has supported step period as a 

control variable for treadmill walking. Dingwell and colleagues (2010) found that 

subjects sub-optimally overcorrect deviations in position on the treadmill through 

stride to stride alterations in a combination of stride length and stride period 

along a goal equivalent manifold (GEM). Using detrended fluctuation analysis 

(DFA) and optimal control approaches, these authors argue that anti-persistence 

in speed emerges due to sub-optimal over-corrections due to an increased 

central control (Dingwell et al. 2010). Put simply, this “anti-persistence” means 

that deviations in one direction are likely followed by deviations in the opposite 

direction. Furthermore, a control strategy of goal equivalent adjustments in stride 

period and stride length on a stride to stride basis was determined.   
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Terrier and Deriaz (2012) were interested in understanding how adding a 

metronome would constrain these stride to stride alterations. Also using DFA 

approaches, they hypothesized that stride speed (SS) and stride time (ST) would 

show an anti-persistent pattern as they would be tightly controlled in the 

metronome condition while stride length (SL) would not be and show a 

statistically persistent pattern. These results would follow a previous study in 

over-ground walking (Terrier et al. 2005) in which ST was anti-persistent while SL 

and SS was not (due to freedom to modulate SS over-ground). They confirmed 

anti-persistent dynamics in the time series of stride speed (SS) during treadmill 

walking without a metronome with stride time (ST) and stride length (SL) 

remaining persistent. Upon adding a metronome to treadmill walking, all time 

series (SS, ST, SL) were anti-persistent. These authors also observed (as 

expected) that adding a metronome would reduce stride to stride variability in ST 

to a greater degree when compared to SL and the effect of the metronome was 

greater at slower treadmill speeds.  Contrary to their hypothesis, stride length 

was also tightly controlled during the metronome condition even though a 

constraint was not necessarily placed on that gait parameter. These authors 

argue that cross-regulation of SL and ST occurred which led to an absence of 

redundancy among the gait parameters. In accordance with Dingwell et al.’s 

proposal of the GEM of ST and SL, dictating both ST and SS will indirectly cause 

control of SL for subjects to accomplish the goal of staying on the treadmill 

(Terrier & Deriaz 2012). 
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In a related study, Terrier (2012) expanded upon these DFA measures to 

determine if measures of fluctuation magnitude and long term stationarity applied 

to SS, ST and SL were altered by metronome conditions. This study 

hypothesized that these measures would reveal similar effects as previous work 

(Terrier & Deriaz 2012) using DFA analyses to study stride to stride fluctuations. 

The measure of global fluctuation magnitude used was standard deviation across 

the entire trial and Non-stationarity Index (NSI) was used as a measure of 

consistency in local averages with consistency in local averages associated with 

low NSI. Global fluctuation magnitude was not altered by the use of a metronome 

on the treadmill, and attributed to the global fluctuation caused by treadmill 

walking. NSI of SS, SL and ST was found to be low during treadmill and 

metronome conditions, indicating that all three measures had local averages 

which were consistent. Correlations between newly calculated measures of NSI 

and the DFA analyses of previous work (Terrier & Deriaz 2012) were also 

computed. NSI and scaling exponents of the DFA analysis were positively 

correlated. Terrier concluded that the locally consistent means (low NSI) and 

statistical anti-persistence observed previously result from a “lost” degree of 

freedom; there is no longer redundancy between step length and step period for 

flexible control.  With this result and previous literature in mind (Haussdorf et al. 

2005; Dingwell et al. 2010) Terrier then proposes that gait control has two 

modes: a long-range, fractal-like mode for a “steady gait” across many strides 

and a more resulting conscious, tightly controlled mode observed the anti-

persistent patterns in short-range stride to stride corrections (Terrier 2012).   
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In summary, RAC has been used to control cadence and some 

investigators have recently compared RAC to non-RAC conditions for insight into 

how regulation of cadence fits into neural control strategy for walking. 

Additionally, RAC with use of a device such as a metronome has shown clinical 

promise for PD patients. It appears that a likely future direction of this work is to 

use RAC conditions to theorize about deficits in locomotive control that arise as a 

result of PD.  

 

Phase resetting in human walking? 

 

 Phase resetting and its implementation into the control scheme for human 

locomotion is of critical interest. The shortening or lengthening of cycle period is 

plausibly a strategy for the human locomotive control system to mediate the 

effects of sensory and mechanical perturbations to locomotive cycle. 

Surprisingly, there are few studies which explicitly focus on phase resetting 

during human walking.   

The experimental protocol of Ahn and Hogan (2012) explained above 

could be adjusted slightly to test for phase resetting of the locomotive cycle using 

the Anklebot. In fact, a colleague of Ahn and Hogan attempted to cause phase 

resetting in subjects by applying plantar-flexions via Anklebot using 400 

perturbations during 20 minutes of treadmill walking. These perturbations were 

spaced pseudorandomly so that ~ 40 perturbations occurred at each 10% bin of 

the entire gait cycle. After clear deviations from nominal trajectories with phase 
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response curves for all subjects that were not distinguishable from 0, it was 

concluded that some higher level neural controller must execute corrective 

actions to the deviations in the kinematic trajectories. Modulating the timing of the 

gait cycle is not the strategy as a zero phase shift was observed (Klenk 2011).  

Also reporting a non-effect amidst other findings, Capaday’s group 

attempted to observe phase resetting due to transscranial magnetic stimulation 

(TMS) of motor cortex. TMS at various phases of the gait cycle did not change 

the time (using phase resetting curve) a step was to initiate. From this result, 

Capaday concluded that motor cortex was not involved in the timing of those 

activations which promote the gait cycle (Capaday et al. 1999). Of note, the 

behavior during this TMS was self-paced treadmill walking, and subjects did not 

face a perturbation additional to the TMS which could have elicited phase 

resetting. 

Feldman and colleagues, on the other hand, used a mechanical 

perturbation during treadmill walking to test the idea that phase resetting must 

occur for humans as it represents a shift in the referent body configuration 

(Feldman et al. 2011). These authors hypothesized that an irreversible “long-

lasting phase resetting” will occur after restoration of constant speed gait on the 

treadmill following a mechanical perturbation. They argue that this must occur as 

the following gait cycles must enact a strategy to overcome an “overall loss” in 

body displacement that occurs. Subjects walked on self-paced treadmill and the 

mechanical perturbation consisted of a cuff around the leg that would 

unexpectedly “freeze” or block forward motion of the leg for 250 ms of the swing 
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phase. Phase resetting was calculated as phase difference between actual limb 

position and its projection from pre-perturbation trials. Responses to mechanical 

perturbations elicited a long-lasting phase advance of ~ 110º that was whole-

body as the same phase advance was observed in the multiple limbs studied. 

These authors then note that bipedal stability requirements hinder the ability to 

apply the extensive study of phase-resetting in animal models to humans, and 

they note that long-lasting phase-resetting has been observed in one participant 

in one study (Kobayashi et al. 2000) prior to their study. Interestingly, these 

authors propose that this global phase-resetting is about preventing falls as the 

correct referent body condition is employed. Additionally, the referent body 

location is controlled and these authors believe it incorrect for one to think that 

there is a separation in control of posture and movement during walking.     

Although there are few studies of human locomotion which explicitly study 

phase resetting in a systematic fashion, there are many studies (some even 

mentioned in other sections above) which report alterations in step period, stride 

period, etc. in the step/stride of a sensory or mechanical perturbation (and 

following step/stride, perhaps) without formally mentioning that there is an 

investigation of transient phase-resetting. The results of these studies are not 

mentioned here as this survey of the literature attempted to find systematic 

studies of phase-resetting in human locomotion.  Attention is now turned to those 

modelers and robotics designers who hypothesize about a phase resetting 

mechanism in human locomotion 
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Several models have implemented phase resetting by modulating features 

of preformed kinematic joint trajectories with real time sensors of joint motions. In 

one such study, Yamaski and colleagues used first a double pendulum model 

and then a model of human locomotion to gain insight into the actual functions of 

phase-resetting (Yamaski et al. 2003). These authors use the support of these 

two different models to show that phase resetting could be critical for aiding the 

system’s state point back into the basin of attraction and also to reduce the time 

that this state point takes to get back to the limit cycle (convergence time). 

Unfortunately, Yamaski and colleagues could not lower the convergence time 

(via phase-resetting implementation) in their bipedal locomotion model. More 

recently, Nomura and colleagues used prescribed gait trajectories of limb 

segments to constrain plant models of biped human gait and biped humanoid 

robots (Nomura et al. 2009). Essentially, these authors show that dictating 

kinematic trajectories of these models will force stable nonlinear dynamical 

systems to emerge. Upon addition of phase-resetting to these systems, stability 

improved to external mechanical perturbations at specific phases that were 

previously susceptible to instabilities (Nomura et al. 2009). Phase-resetting could 

be a critical strategy at specific phases (such as single limb support) where the 

body may not be as intrinsically stable against mechanical perturbations. 

Those seeking to model the neural control of bipedal locomotion may also 

choose to implement phase resetting processes into their models via sensory 

information. In order to modulate timing of the gait cycle, sensors are integrated 

into bipedal walking models to play a major role in dictating a time-advanced or 
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time-delayed state of the system.  Recently, Aoi and colleagues implemented 

phase-retting in a human walking model which contained both a model of the 

musculoskeletal system and the neural control system. The nervous system 

model consisted of hierarchical network model with two layers (Aoi et al. 2010). 

The rhythm generator network layer and pattern formation layer dictated timing 

information through phase oscillators and pulsatile activations dictating spatial 

activations of muscles, respectively. Phase-resetting was implemented as the 

sole source of sensory feedback to the rhythm generator network layer and was 

based on the foot contact information of heel strike and toe-off. Phase resetting 

in this model allows appropriate feed forward dictation of the typical muscle 

activations required for the locomotive cycle. This model performed much better 

in terms of stability when phase-resetting was implemented as simulations with 

phase resetting were more stable when changes in trunk mass were imposed, 

changes in incline of slope to be walked and during increased time delays. In the 

end, Aoi and colleagues see phase-resetting as a strategy for adaptive 

locomotion as it alleviates the effects of neural transmission delays as it can 

trigger those neuromuscular activations required for the locomotive cycle in a 

feed-forward manner.  

 In all, a few human studies explicitly studying phase-resetting in human 

locomotion have revealed it is possible to phase reset human locomotion with 

mechanical perturbations (with mixed results). Additionally, several modelers of 

human locomotion and designers of humanoid robots see phase-resetting as a 

critical neural control strategy that can be implemented in a simple manner. 
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These modelers believe that phase resetting may be implemented for feed-

forward control and have proposed simple rules the nervous system may use to 

implement such a process. Such detail remains to be explored and verified in 

actual human locomotion. 
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Chapter 3: Function dictates the phase dependence of vision during human 
locomotion1 

 
Introduction 
 

It is generally held that sensory input influences locomotion in a phase-

dependent manner. Evidence suggests that sensory inputs can be gated, by 

either facilitation or suppression, at certain phases of the locomotive behavior 

(Duysens et al. 2000; Rossignol et al. 2006). For example, the vertebrate 

Xenopus laevis (tadpole) has been shown to inhibit sensory pathways from 

modulating motor neurons at functionally relevant phases of its swimming cycle 

(Sillar and Roberts 1988). Such phase dependence may provide insight to the 

respective roles of different sensory modalities during locomotion.  

Human (e.g., Capaday & Stein 1986; Duysens et al. 1990) and animal 

(e.g., Forssberg et al. 1975; Forssberg 1979) studies have emphasized phase 

dependence of somatosensory input, illustrating how responses to both tactile 

and proprioceptive stimuli are modulated during the gait cycle. The focus on 

proprioceptive/tactile inputs arises from the suppression or facilitation of their 

reflex pathways at different phases of the gait cycle to enable fast corrective 

responses to unexpected disturbances of balance and walking (Zehr & Stein 

1999).  

1 This chapter has been recently published in the Journal of Neurophysioology.: 
Logan D, Ivanenko YP, Kiemel T, Cappellini G, Sylos-Labini F, Lacquaniti F, Jeka  JJ. Function dictates the 
phase dependence of vision during human locomotion. J Neurophysiol 112:165-80, 2014. 
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The use of vision has also been suggested to be dependent on the phase 

of the gait cycle. Patla and colleagues analyzed the use of visual cues at different 

phases of the gait cycle for subject-initiated modifications during the subsequent 

step (Patla 1991; Patla et al. 1991). Subjects were able to avoid small obstacles 

and alter step length or step width, but only when presented with visual cues up 

to the end of stance in the previous cycle. In contrast, change of direction must 

be cued prior to the end of mid stance. Additionally, denial of vision during a 

“critical period” of late stance has been shown to prolong stance duration during 

a task requiring subjects to step on light emitting “stepping stones” (Hollands & 

Marple-Horvat 1996). These studies use distinct tasks such as obstacle 

avoidance or alteration of foot placement to identify phases of the gait cycle in 

which vision is critical.  

In addition to obstacle avoidance and foot placement, visual input is used 

for many other functions during walking. Using continuous optic flow stimuli, 

vision has been shown to be important for adjustments in speed (Konczak 1994), 

stride length (Prokop et al. 1997) and navigation (Warren et al. 2001).  

Immersive, oscillatory visual stimuli illustrate that visual inputs are critical for 

upright postural stability (Warren et al. 1996; Logan et al. 2010) during walking 

and that the nervous system makes greater use of visual information for the 

control of frontal-plane motion, which is thought to be more biomechanically 

unstable (O’Connor & Kuo 2009). The visual stimuli in the present study probed 

functions underlying the task of treadmill walking such as speed control for 
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maintaining position within the boundaries of the treadmill as well as upright 

postural stability. 

Here we further investigate the phase-dependent effect of vision on 

walking with discrete disturbances of the visual scene towards or away from a 

subject walking on a treadmill. Transient ramp and hold virtual perturbations 

systematically probed control of treadmill walking while the right leg was in three 

different phases of the gait cycle (loading, mid stance and terminal stance).  We 

examined segment angles and muscular activity to investigate the phase 

dependence of responses to visual perturbations. For the midline trunk segment 

we considered the perturbations at three phases, and recording of kinematic and 

muscle responses from both right and left lower limb allowed the analysis of 6 

distinct phases of perturbation effects.  

 

 

Figure 1. Phase Dependence Schematic. A hypothetical data set observed across response phases 
of a full cycle of a continuous behavior such as walking with three perturbation phase presentations 
(ɸ1,ɸ2 ɸ3) marked with arrows at perturbation onset. Responses can occur without phase 
dependence (A) while phase dependent responses such as gating (B) or a response-phase 
pattern(C) can occur. Response phase is indicated on the x-axes with the perturbation cycle and a 
cycle following the perturbation cycle. In this hypothetical data set of potential responses the 
transient response diminishes as it continues into the cycle following the perturbation cycle.  
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In studies of human locomotion, phase dependence more often takes the 

form of a response with fixed time delay and an amplitude dependent on the gait 

cycle phase of the perturbation (perturbation phase).  This is due to the “local” 

nature of the perturbations typically used to probe phase-dependent responses. 

For example, investigations using somatosensory perturbations typically probe 

different phases of the gait cycle and observe phase dependence as the altered 

amplitude of a stereotyped waveform such as the H-reflex (Capaday & Stein 

1986) or short-latency stretch reflex (Yang et al. 1991; SinkJær et al. 1996; 

Mazzaro et al. 2005), which are known to occur at a given response latency. 

Vision is clearly different. First, a “visual reflex” with fixed response latency during 

locomotion, if possible to elicit, has not been established. Second, visual 

pathways involve multiple neural structures which modify the response to a visual 

perturbation. Third, vision is a more “global” input, with the ability to affect all 

segments quasi-simultaneously. 

With both the insight from studies of somatosensory input and the 

differences in vision noted above, we suggest a framework for understanding 

phase dependence of vision in human locomotion. Figure 1 presents three 

possible scenarios of phase dependence with these transient perturbations 

presented at three phases (Φ1, Φ2, Φ3) of the gait cycle.  Figure 1A illustrates a 

linear response that has no phase dependence, that is, the response depends 

only on the time delay between perturbation and response. Figure 1B illustrates 

gating, in which the specific phase of the gait cycle during which a perturbation is 

presented will dictate the gait modifications (Duysens et al. 2000). An alternative 
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type of phase dependence, shown in Figure 1C, is when a response occurs at a 

characteristic phase of the gait cycle, a pattern we will refer to as a response-

phase pattern of phase dependence. A response-phase pattern results from the 

state (position, velocity, etc.) of the limbs dictating when a response can be 

generated. As response-phase pattern intrinsically dictates the latency of 

response from a perturbation, the resulting variable time delay and its effect on 

response amplitude will be observed in the response. 

The use of transient scene motion in this study is crucial as it allows us to 

distinguish between possible phase dependence scenarios (e.g. gating vs. 

response-phase pattern). Transient scene motion presented at specific 

perturbation phases of the gait cycle allows a determination of the effective 

perturbation phase or phases that is not clear during continuous (throughout gait 

cycle) perturbations. Evidence from previous work (Logan et al. 2010) using 

continuous scene motion led us to hypothesize that trunk segment responses to 

transient visual scene changes in this study would be at most weakly phase-

dependent, whereas leg segment trajectories would be highly phase-dependent. 

Here we provide support for these hypotheses with the additional finding that 

within-cycle modulation of the leg segments and associated muscle activity are 

observed only when changes in visual scene occur at mid stance. This specific 

modulation due to visual input applied solely at mid stance, in addition to a leg 

response observed when vision is applied at all phases, suggests that phase 

dependence is not strictly dependent on the specific segment, but it also 

depends on the function of that visual input.  
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Methods  

Ethical Approval 

This study conformed to the Declaration of Helsinki and was approved by 

the Ethics Committee of the Santa Lucia Foundation. Informed consent was 

obtained from all participants according to the procedures of the Ethics 

Committee of the Santa Lucia Foundation. 

Subjects 

Eleven healthy subjects [6 males and 5 females, between 20 and 34 yrs of 

age with age 23.1 ± 4.3 (mean ± SD) yrs, weight 64.1 ± 11.0 kg] received modest 

monetary compensation for participating in this study. All subjects were self-

reported to have normal (or corrected to normal) vision and no history of 

neurological disorders or surgical procedures involving the feet, ankles, knees, 

hips, back, brain, spinal cord or inner ear.  

Apparatus 

Virtual reality environment 

Subjects walked at 3.6 km h-1 on a treadmill (EN-TRED 1475.911, Enraf-

Nonius, Netherlands) one meter in front of a translucent screen (4x3m) with a 

rear-projected virtual display, as shown in Figure 2A. The display consisted of 

500 randomly-distributed white triangles (3.7 x 3.7 x 3.5 cm) on a black 

background, updated at 60 Hz. The display was 3.7 m wide by 2.54 m high when 

static prior to trial initiation (position 0), and subjects wore goggles with occluded 
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sides to prevent them from seeing the border of the visual display, allowing a 1.7 

m wide by 1.7 m high field of view (about 81° of visual angle). The virtual display 

was created using CaveLib software (Mechdyne, USA) with projection through a 

digital projector (MP3135, HP,USA) synched to a desktop computer (Precision 

T5500, Dell, USA). Visual signals were created offline (Matlab, Mathworks, USA) 

and were generated via Labview (National Instruments, USA) on a desktop 

computer (Precision T5500, Dell, USA). 

 

 

 

Figure 2. Experimental Setup.  A: Subjects walked on a treadmill in front of a virtual display that 
would translate unpredictably in the sagittal plane using ramp and hold perturbations timed to RHS B: 
An exemplar histogram of the number of positive  and negative stimuli at each phase of the gait cycle 
that were presented to a subject and representative stick diagrams below illustrating  the position of 
the ipsilateral/ right (second row) and contralateral/left (third row) limbs at the times of perturbation. It 
is implicit in this exemplar stick figure that the foot lands at zero, or the ground, in the vertical plane. 
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Visual scene perturbations 

During the experimental trials, the virtual scene either translated towards 

(negative/approaching) or away (positive/receding) from the subject in the 

anterior/posterior (A/P) direction. The perturbations were ramp and hold, 

reaching an amplitude of 13.5 cm in 60 msec.  Direction from position 0 was 

chosen at random for all odd-numbered perturbations. A negative perturbation 

always followed a positive perturbation (and vice versa) in order to keep the 

range of scene motion between ±13.5 cm. The virtual scene was constructed 

with a fixed perspective point at the subject’s eye height, with the assumption 

that the subject was 1 m from the screen. The scene was created so that 

subjects would see a fixed visual scene with the entire scene occasionally 

moving coherently towards or away from them. Perception of scene motion was 

not quantified in an objective manner in this study. Informally, subjects typically 

reported that something strange occasionally happened to the visual scene 

without clear indication of the direction of scene motion. The scene was 

constructed in this way as a probe to understand how fast changes in visual 

scene motion are used (via kinematics, EMG) at specific phases of the gait cycle. 

Visual display generation and data collection software were synchronized via an 

external trigger.  

Kinematics 

Body kinematics were measured using a nine camera VICON-612 motion 

analysis system (VICON, Inc, Oxford, UK). Reflective markers (diameter, 1.4 cm) 
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were placed on the right and left sides of the body at external landmarks 

corresponding to: base of the 5th metatarsal, posterior calcaneus (heel), lateral 

malleolus (ankle), lateral femoral condyle (knee), greater trochanter (hip), 

acromion process (shoulder), mastoid process (head) and frontal eminence 

(head). Additionally, markers were placed at the mediolateral center of the back 

of the head and the midline of the spine at the level of T1, T7 and L1 vertebrae. 

All markers were attached at the skin of these bony prominences, except those 

placed on the shoes at the 5th metatarsal and heel. All kinematic data were 

collected at 100 Hz. 

Our analysis focuses on the leg and trunk segments.  Sagittal-plane foot, 

shank and thigh segment angles relative to the vertical were computed from 

angles formed by the fifth metatarsal to ankle, ankle to knee, and knee to hip with 

the most inferior point as the origin. We use segment angles rather than 

anatomical joint angles, based upon our interest in how the body maintains its 

orientation relative to the vertical during walking. Moreover, because joint angles 

can be computed from segment angles with a linear transformation, qualitatively 

similar results would be obtained with joint angles.  As these segment angles are 

relative to the vertical, 0⁰ in control waveform plots indicates that the superior 

marker on the segment is above and vertically aligned with the inferior marker on 

the segment. Positive values in these plots indicate that the superior marker on 

the segment is more forward of the inferior marker in the sagittal plane.  Trunk 

orientation relative to the vertical in the sagittal plane was computed as the angle 
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formed by the L1 to T1 markers. To characterize whole body motion on the 

treadmill, A/P displacements of all markers were analyzed.       

 

EMG 

 Muscular activity from both legs was measured using surface 

electromyographic (EMG) recordings (Zerowire, Aurion). Recordings of the 

following eight muscles were made from each side of the body: tibialis anterior 

(TA), gastrocnemius lateralis (LG), soleus (SOL), vastus lateralis (VL), rectus 

femoris (RF), biceps femoris (long head, BF), semitendinosus (ST), and erector 

spinae (ESL, recorded at L1-L2). Electrodes were positioned at the muscle belly 

with placement carefully chosen to minimize cross-talk (Cappellini et al. 2006). 

Recording sites were shaved, lightly abraded, and cleaned with isopropyl alcohol 

prior to electrode application. The EMG processing consisted of high-pass 

filtering, rectification and low-pass filtering with the same frequency cutoff values 

used in several previous studies of locomotion (Cappellini 2006; Cappellini et al. 

2010a; Cappellini et al. 2010b; Maclellan et al. 2012). These EMG signals were 

band-pass filtered (analog, built in to Zerowire EMG system) between 10 and 

1000 Hz and were sampled at 2000 Hz. Observation of low-frequency noise (< 

20 Hz) in the recorded signal necessitated a high-pass digital filter prior to 

rectification. Using Matlab, these signals were high-pass filtered using a zero-lag 

forward-backward cascade of a 4th order Butterworth filter with a 20-Hz cutoff 

frequency, full-wave rectified, and then low-pass filtered with a zero-lag forward-

backward cascade of a 4th order Butterworth filter with a 10-Hz cutoff frequency. 
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Procedures 

 Prior to experimental trials, subjects walked in front of a static visual 

display at the experimental locomotion speed in darkness with goggles on. This 

familiarization was followed by two trials 2 minutes long to determine mean gait 

period, which was used to create subject-specific timing of perturbations. Mean 

gait period was defined as the average time between each successive right heel 

strike (RHS) (see Data Analysis). In all trials, subjects were instructed to look 

straight ahead and were given approximately thirty seconds to reach steady state 

before recordings were made. For safety, an experimenter was behind the 

treadmill in close proximity with a push-button to immediately halt the treadmill if 

needed (never used). 

Using subject-specific mean gait period, perturbation signals were 

designed so that onset of the ramp perturbations was timed to occur at about 

0%, 16.66% or 33.33% of the gait cycle (see below). RHS was defined as 0% of 

the gait cycle. Subjects experienced fourteen experimental trials lasting 

approximately four minutes each, with approximately 24 perturbations in each 

trial. These 24 perturbations were 4 repeats of the six possible ramp and hold 

perturbations (2 directions x 3 perturbation phases) and were randomized within 

each trial, subject to the direction constraints mentioned above (see Visual scene 

perturbations). These perturbations were initiated via a footswitch whose force 

sensor was placed 1.25 cm anterior to the heel on the sole of the right foot. The 

footswitch used was a pressure-sensitive resistor (Zerowire, Aurion) that would 

indicate RHS and was integrated into the visual display system. As the motion 
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capture system was not integrated into the visual display system, the footswitch 

allowed initiation of the subject-specific perturbations designed to occur at 

specific phases of the gait cycle. Perturbations were applied pseudo-randomly 

throughout the trial.  Across subjects, the mean number of gait cycles between 

perturbations was 8 cycles and the mean minimum and maximum gait cycles 

between perturbations were 4.3 and 27 cycles.  There were never less than 3.6 

cycles between perturbations. 

 

Data Analysis 

Perturbations 

Prior to data analysis, the phase of the gait cycle where perturbation onset 

occurred (initiation of visual scene motion) was identified for each ramp and hold 

perturbation. The phase of the cycle when the perturbation occurs is the 

perturbation phase, while the response phase is the phase at which a response 

occurs after perturbation onset. Gait cycle phase of perturbation onset was 

identified as the percentage of the mean control cycle (see Statistics) elapsed 

between RHS prior to perturbation and perturbation onset. Each heel strike was 

computed as the local minimum of the heel marker in the vertical plane 

(Borghese et al. 1996; Ivanenko et al. 2004) occurring after each cycle’s 

maximum angle formed by the fifth metatarsal-hip axis in the sagittal plane with 

the hip as the angle’s origin.  

Due to variability of right heel strike predicted by the foot switch relative to 

that measured from kinematics, ranges of perturbation onset were used. Those 
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perturbations which occurred at 0-10%, 16-26%, and 33-43% of the gait cycle 

were considered to occur at the 3 phases of perturbation onset. An exemplar 

histogram based on percentage of gait cycle from a single subject can be seen in 

Figure 2B, and the mean (SD) percentage of the gait cycle across subjects in 

these three phases was 6.1% (0.6),  22.5% (0.6), and 39.2% (0.6)  for the 0-10%, 

16-26%, and 33-43% groupings respectively. On average, 52, 49 and 52 

perturbations occurred in these 0-10%, 16-26%, and 33-43% groupings for each 

perturbation direction for each subject. 

Note that we applied perturbations in the first half of the gait cycle.  To 

infer the effects of perturbations in the second half of the gait cycle, we assumed 

that walking has left-right spatio-temporal symmetry, namely that reversing left 

and right sides of the body is equivalent to shifting time by half a gait cycle. For 

example, we assumed that: (i) the right-side response to a perturbation at phases 

50-60% with respect to RHS equals the left-side response to a perturbation at 

phases 50-60% with respect to left heel strike (LHS); and (ii) phases 50-60% with 

respect to LHS equals phases 0-10% respect to RHS, which corresponds to one 

of our experimental perturbations.  

In this way, we were able to infer the responses of both sides of the body 

to perturbations at 6 phases of the gait cycle.  In particular, left-side responses to 

perturbations at phases 0-10%, 16-26%, and 33-43% with respect to RHS were 

used to infer right-side responses to perturbations at phases 50-60%, 66-76%, 

and 83-93% with respect to RHS. The middle plot of Figure 2B shows an 

example control gait cycle trajectory of the right side of the body to illustrate the 

47 
 



normative configuration of the ipsilateral side of the body during the perturbation 

phases.  In the final plot of Figure 2B, the configuration of the contra-lateral (left) 

side of the body at the same time is provided to illustrate the position of the 

contra-lateral limbs when these perturbations were to occur.  

For clarity in presenting our results, we will refer to perturbation phases 

with respect to heel strike as loading (0-10%), mid stance (16-26%), terminal 

stance (33-43%), pre-swing (50-60%), initial to mid swing (66-76%) and mid to 

terminal swing (83-93%) (Perry, 1996). Percentages refer to the range of 

perturbation onsets. 

 

Statistics  

As seen in Figure 3A, large variability in a kinematic or EMG signal may 

mask the effect of the visual scene perturbation and how it depends on 

perturbation phase.  Therefore, to quantify perturbation effects, we computed 

residual waveforms as follows. First, we defined a perturbation cycle as a gait 

cycle (heel strike to heel strike) during which a perturbation occurred and a 

control cycle as a gait cycle just prior to a perturbation cycle. We then used linear 

interpolation to compute response signals as a function of phase, where phase in 

increments of 0.005 ranged from -1 to 0 for control cycles, from 0 to 1 for 

perturbation cycles, from 1 to 2 for the first post-perturbation cycle, etc. For each 

trial, we averaged over all control cycles to obtain an unperturbed mean control 

waveform. For displacements, we computed a linear trend based on the first and 

last value of the mean control waveform and subtracted this trend from the mean 

48 
 



control waveform. EMG signals were normalized by the maximum value of the 

mean control waveform (Nieuwenhuijzen et al. 2000). For each gait cycle, the 

residual waveform as a function of phase was computed by subtracting the mean 

control waveform from the given signal (Fig. 3B). To correct for a slow drift in the 

subject’s A/P position on the treadmill over the course of a trial, we computed the 

least-squares linear fit of the residual control cycle waveform of the L1 marker, 

extrapolated this linear fit over the perturbation and post-perturbation cycles, and 

then subtracted the linear fit from all A/P displacement signals. A residual 

waveform significantly different from 0 indicates that the visual perturbation had a 

significant transient effect (see Effect of perturbations below). The effect of visual 

perturbations on cycle periods, which is related to phase resetting, was analyzed 

separately (see Change in gait measures below). 

 

 

Figure 3. Epoch Extraction and Normalization. An example time series of perturbation, foot segment 
angle, shank segment angle, and rectified lateral gastrocnemius (LG) EMG recordings are observed in 
A. The shaded region in A is presented in B after normalization to the gait cycle and subtraction of mean 
control cycle waveforms (see Methods). Vertical dashed lines in B denote heel strikes. EMG has been 
normalized to control cycle maximum (see Methods). An abscissa value of 0 in C is the heel strike prior 
to visual scene motion.  The perturbation isolated for observed responses in B occurs at mid stance and 
is towards the subject in the sagittal plane (-).  
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 Phase dependence. To quantify phase dependence, we considered 

residual waveforms rk(φ) as a function of delay φ  from the perturbation in units of 

cycles, where the index k = 1, …, 6 indicates the perturbation phase. We computed 

the mean )(φr  of rk(φ) across the six perturbation phases and defined 

).()()( φφφ rrd kk −=  Nonzero dk(φ) correspond to phase-dependent responses. We 

defined R+ and R− as the root-mean-square (RMS) of rk(φ) across positive delays 

]2,0(∈ϕ  and negative delays )0,2[−∈ϕ , respectively, and across the six 

perturbation phases.   Since true responses to a perturbation occur at positive 

delays, a value of R = R+ − R− significantly greater than 0 indicates a significant 

response. Similarly, we defined D+ and D− as the RMS of dk(φ) for positive and 

negative delays, respectively.  Then a value of D = D+ − D− significantly greater 

than 0 indicates a significant phase-dependent response.  To quantify the degree 

of phase dependence, we used the normalized measure P = D/R.   P = 0 

indicates no phase dependence and P approaches 1 as the degree of phase 

dependence increases. Thus, P evaluates phase dependence along a 

continuum. A low, but significant P characterizes a response as “weakly phase-

dependent”, which is synonymous with being primarily dependent on a time delay 

from the perturbation. We computed 95% confidence intervals for values of P 

using the bootstrap percentile-t method with 4,000 bootstrap resamples and 400 

nested bootstrap resamples for variance estimation (Hall, 1988; Zoubir & 

Boashash, 1998).  

Effect of perturbations. Significant deviations of the normalized residuals 

from 0 were considered the effect of the perturbation. Characterizing a 
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dependence on perturbation phase relies on observing the presence or absence 

of an effect for each perturbation phase. For each of the twelve perturbation 

types (2 directions x 6 perturbation phases), epochs of one cycle prior to the 

perturbation cycle and two cycles after the perturbation cycle were extracted from 

the normalized residual waveforms. For displacements, three cycles after the 

perturbation cycle and one cycle prior were extracted from normalized residual 

waveforms.  These epochs were averaged within condition for each subject and 

binned in 5% intervals for two cycles after the end of each perturbation phase 

(e.g., from 10% for perturbations during loading). Because muscular activity 

shows more transient, shorter-lasting differences from 0, bin sizes of 1% for a 

single cycle after perturbation onset were used for EMG waveforms. Effects of 

the perturbation were considered significant if they were different from 0 using a 

t-test at each bin in each of the 12 perturbation conditions (2 directions x 6 

perturbation phases). To test for asymmetry between the effects caused by 

positive and negative perturbations, post-perturbation data were summed across 

direction at each bin and then tested for significance from zero using a t-test at 

each bin. To account for multiple tests within each perturbation condition, we 

controlled the false discovery rate (FDR) at a level of 0.05 using the method of 

Benjamini and Hochberg (1995) applied to the p-values from the t-tests. This 

method is valid for independent p-values or p-values with positive dependency 

(Benjamini & Yekutieli, 2001).  

Change in gait measures. Changes in the gait measures of stride length 

and gait period in each condition (2 directions x 6 phases) from pre-perturbation 
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control cycle values were computed. For changes in gait period, mean gait period 

(from heel strike to heel strike, in seconds) from pre-perturbation control cycles 

was subtracted from gait periods of the perturbation cycle (and successive 

cycles) for each subject prior to averaging across subjects. To observe changes 

in stride length over the same time period, deviations in A/P displacements of 

heel marker from pre-perturbation control cycles were computed in the same 

manner as above for segment angles. To compute change from mean 

displacement of the same foot (change in stride length), the deviation of heel 

displacement at each heel strike of the previous cycle was subtracted from 

deviation of heel displacement at each heel strike. RHS timing and deviations of 

A/P displacement of the right heel marker were used for the perturbation phases 

of loading, mid stance and terminal stance. Spatio-temporal symmetry was 

assumed and these calculations for the perturbation phases of pre-swing, initial 

to mid swing and mid to terminal swing were computed with LHS timing and 

deviations of the left heel marker. Changes in these gait measures were 

computed for the cycle the perturbation occurred and for two successive cycles. 

Correction for multiple tests within each condition was performed by controlling 

for FDR (as above).  

 

Results 

 Four main results emerged in response to visual scene perturbations. 

First, translations of the visual scene that were towards the subject 

(approaching/negative) led to more consistent and larger deviations from mean 
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waveforms than the opposite translations (receding/positive), and are the focus 

of our results below. Second, significant deviations occurred in the trunk, but 

these deviations were not tied to a specific response phase or perturbation 

phase. Third, an additional, within-cycle gated response was observed in all leg 

segments when the perturbation was presented at mid stance (perturbation 

phase) and was accompanied by significant deviations in distal leg muscles. 

Finally, responses in the leg segments were found to be highly phase-dependent. 

More specifically, a response-phase pattern in the legs was observed as 

significant, stereotyped deviations of the foot and shank which consistently 

occurred prior to and after the stance to swing transition (response phase) of the 

gait cycle following the perturbation cycle. 

Trunk shows little phase dependence, legs show strong phase dependence 

 We quantified the phase dependence of kinematic responses to 

approaching (negative) visual perturbations on a scale from 0 to 1 (see 

methods). The trunk (Fig. 4) had only a low phase dependence of 0.24 with a 

95% confidence interval of [0.10, 0.31], indicating that perturbations at all phases 

of the gait cycle produced similar responses primarily as a function of the delay 

from the perturbation.  Leg-segment responses (Fig. 5), however, were highly 

phase-dependent: 0.92 for the foot with a 95% confidence interval of [0.86, 0.96], 

0.89 [0.84, 0.93] for the shank, and 0.91 [0.84, 0.97] for the thigh.  
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Approaching perturbations yield three distinct responses  

Segment Angles. Figures 4A-C show responses of trunk orientation to 

perturbations applied at loading, mid stance and terminal stance. These trunk 

segment angles are aligned to the heel strike prior to the perturbation onset after 

removing mean waveforms from pre-perturbation gait cycles.  These across-

subject averages of the residual waveforms in Figures 4-6 are the effect of the 

perturbations and significant differences from zero are denoted with asterisks 

(FDR < 0.05, see Statistics). To view normative segment angles at all response 

phases, these figures also contain concatenated control cycle waveforms (mean 

of pre-perturbation cycles) below the residual waveforms.   

Negative perturbations applied at all perturbation phases led to a 

decrease (i.e., backward tilt) in trunk orientation, but at no particular response 

phase. Looking at the control waveform, these decreases in trunk orientation 

(backwards tilt) occur when the trunk is in various states of the more positive 

flexion and less positive extension. Perturbations applied at mid stance (Figure 

4B), for example, caused significant decrements in the response phase of  pre-

swing of the perturbation cycle until mid stance of the post-perturbation cycle and 

were largest at the stance to swing transition of the perturbation cycle. In 

comparison, decreases in trunk angle due to perturbations applied at terminal 

stance displayed in Figure 4C began and reached their largest point in the 

response phase of terminal swing of the perturbation cycle, and continued 

through mid stance of the following cycle. To supplement our quantification of 

phase dependence reported above, the latency of the trunk response was 
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quantified as the midpoint of significant bins in the initial backward trunk tilt 

response. As the trunk response is not a stereotyped waveform but does share a 

significant, initial backward tilt of varying width across perturbation phases, the 

measure best details a single point when the response specific to each 

perturbation phase has occurred. The midpoints of the initial, significant 

backward tilt in trunk orientation occur at .55, .62 and .6 cycle lengths from 

perturbation onset in loading, mid stance and terminal stance, respectively, and 

can be observed in Figure 4 amongst the significance asterisks. After correcting 

for gait period in each condition, these cycle length latencies correspond to 

response latencies of 633 ms, 713 ms and 693 ms for loading, mid stance and 

terminal stance, respectively. These are the values of response latencies we 

refer to in the remaining text. For reference, significant decrements first occurred 

in pre-swing (≈53%, Fig. 4A, midpoint of bin), pre-swing (≈54%, Fig. 4B) and 

terminal swing (≈91%, Fig. 4C) for loading, mid stance and terminal stance 

perturbations, respectively. Although we do not consider these values as 

response latencies, the first instances of significance corrected for gait period 

and stimulus onset correspond to 489 ms, 309 ms and 543 ms from perturbation 

onset for loading, mid stance and terminal stance, respectively. Overall, the 

subplots in Figure 4 are consistent with the phase dependence quantification 

presented above; for the trunk, phase does not dictate when a response happens 

and responses occur with a similar delay from stimulus onset. 
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Assuming left-right spatio-temporal symmetry, bilateral kinematic and 

EMG responses to perturbations at three phases of the gait cycle were used to 

infer responses at a total of six perturbation phases (see Methods). 

 In contrast to responses observed in the trunk segment, responses in the 

leg segments occur at characteristic response phases and appear as two 

responses. First, significant within-cycle deviations of all leg segments were 

Figure 4. Trunk Orientation. Residual waveforms averaged across subjects are presented here for all 
directions and phases of visual scene motion. Arrows have been appropriately placed at the average 
stimulus phase for each condition, and stick figures represent position of the body during the three 
stimuli phases. The phase of perturbation is illustrated to the right of each plot.  Blue/red asterisks 
denote that the positive/negative condition was different from zero at that bin, and these asterisks have 
been placed at the mid point of the bin, as these continuous traces were binned when performing 
statistics (n=11, FDR<.05). The vertical line within the asterisks for the negative perturbation denotes 
response latency for these trunk responses. An abscissa value of 0 is the heel strike prior to visual 
scene motion. Heel strike times of response phase are noted appropriately above or below each 
respective limb’s response and inset bars represent stance phase. Shaded error bars correspond to 
standard error of the mean (s.e.m.). Across-subject means of the control cycle waveforms are 
concatenated and presented below residual waveforms. A more positive segment angle indicates a 
more forward deviation from vertical in the sagittal plane that could result in a more flexed trunk. 
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observed when negative perturbations were applied solely at mid stance. At this 

perturbation phase specifically, the largest magnitude deviations across all 

perturbation phases in the foot, shank and thigh segment angles were observed 

in the gait cycle in which the perturbation occurred. As seen in the third row of 

plots in Figure 5, significant increases in the foot and shank segment angle 

peaked at the stance to swing transition (≈.6, Fig. 5C/I) while significant 

decreases followed and were at their greatest magnitude in the response phase 

of mid swing for both the foot (≈.79, Fig. 5C) and the shank (≈.84, Fig. 5I). 

Looking at control waveforms of foot and shank, it is clear that the negative 

perturbation presented at mid stance caused a heightened increase in the foot 

and shank angle until the stance to swing transition followed by larger decrease 

in these segment angles during mid swing. These deviations result in a net 

increased plantar-flexion of the foot prior to toe off and an increased dorsi-flexion 

after toe off while flexion of the shank increased prior to the stance to swing 

transition followed by net decreased flexion in swing until heel strike. A similar 

negative deviation was observed in the thigh angle in Figure 5O during the 

response phase of initial swing (≈.69) corresponding to a larger decrease in the 

thigh angle at this phase (when compared to the control waveform) resulting in a 

more pronounced thigh flexion throughout the swing phase of the perturbation 

cycle.  
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Making up the second response of the leg segments, plots of the foot and 

shank angles illustrate that approaching (negative) visual perturbations across a 

range of perturbation phases caused deviations in the cycle following the 

deviation cycle.  As seen in Figures 5B-F, in the gait cycle (heel strike to heel 

strike) following the perturbation cycle (post-perturbation cycle, heel strike 1-2, 

Figure 5. Leg Segment Angles. Residual waveforms averaged across subjects are presented here for 
all directions and phases of visual scene motion. Arrows have been appropriately placed at the average 
stimulus phase for each condition, and stick figures represent position of the body during these six 
stimuli phases. Underneath each stick figure is the limb used for that data and the gait cycle phase it 
was in when the perturbation occurred. Blue/red asterisks denote that the positive/negative condition 
was different from zero at that bin, and these asterisks have been placed at the midpoint of the bin, as 
these continuous traces were binned when performing statistics (n=11, FDR<.05). An abscissa value of 
0 is the heel strike prior to visual scene motion. In this figure and others, subplots have been shifted so 
that the simultaneous effect of the perturbation on both limbs can be observed.   Heel strike times of 
response phase are noted appropriately above or below each respective limb’s response and inset 
bars represent stance phase. Shaded error bars correspond to standard error of the mean (s.e.m.). 
Across-subject means of ipsilateral right control cycle waveforms are concatenated and presented 
below residual waveforms. A more positive segment angle indicates a more forward deviation from 
vertical in the sagittal plane that could result in a more extended thigh, flexed shank or extended foot 
(plantarflexion). 
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Fig. 5) significant decreases and ensuing increments were observed in the foot 

angle when perturbations were applied at mid stance, terminal stance, pre-swing, 

initial to mid-swing, and mid to terminal swing. These decrements in the post-

perturbation cycle are largest in magnitude at the response phase of the stance 

to swing transition (≈1.6 on the x-axis for all perturbation phases in Figures 5B-

F). The significant increments which follow are all largest in magnitude in the 

response phase of mid to terminal swing (range: 1.83 -1.92 in Figures 5B-F). 

Although not significant, peak decrements occurred at the same response phase 

when perturbations were applied at loading (Figures 5A). Comparing the residual 

waveforms in 5B-F to the control waveform of foot angle (post-perturbation cycle, 

heel strike 1-2, Fig. 5), the effects of the perturbation correspond to a decrease in 

the increasing foot angle prior to and including the stance to swing transition and 

an increase in the decreasing foot angle during swing. These deviations translate 

to a net decreased plantar-flexion of the foot prior to toe off and a net decreased 

dorsi-flexion after toe off. 

 In the shank, significant decrements were observed when negative 

perturbations were applied at mid stance, terminal stance, pre-swing, and initial 

to mid-swing. Shown in Figures 5H-K, these decrements occurred in the post-

perturbation cycle (heel strike 1-2, Fig. 5H-K), and were largest in magnitude at 

the stance to swing transition (≈1.6 in Figs. 5H-K). These decrements were 

followed by a more pronounced increment whose peak occurred during the 

response phase of terminal swing (≈1.9 in Figs. 5H-K, respectively) when 

perturbations were applied at mid stance, terminal stance, pre-swing, and initial 
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to mid-swing. Comparing these deviations to the control waveform of shank 

angle, the effects of the perturbation correspond to a decrease in the increasing 

shank angle prior to and including the stance to swing transition and an increase 

in the decreasing shank angle during swing. These deviations result in a net 

decreased flexion of the shank at the knee prior to the stance-swing transition 

followed by an increased flexion at the knee as the knee is extending in mid 

swing. In sum, negative perturbations, when applied across different phases of 

the gait cycle, characteristically alter the trajectories of the lower leg segments of 

foot and shank at specific response phases of the post-perturbation cycle (heel 

strike 1-2, Fig. 5H-K). 

 Muscle Activation. As observed in Figure 6, the largest deviations in EMG 

waveforms were observed after negative, mid stance perturbations. Non-

significant increases in plantar-flexor muscles precede foot plantar-flexion, while 

significant decrements precede foot dorsi-flexion illustrating a coordination 

between kinematic and EMG responses to visual scene motion. As decrements 

in LG and SOL were significant, we focus on their functional role in causing a 

dorsi-flexion from mean waveform during mid stance perturbations. Significant 

decreases in both LG and SOL can be observed in Figures 6C and 6I. In both 

cases, these decreases were largest in magnitude during the response phase of 

terminal stance of the perturbation cycle with LG and SOL reaching sharp 

declines of -.094  (fraction of maximum control activity) and -.074 at 48% and 

49% of the gait cycle, respectively. As seen in the control waveforms, these 

decrements in LG and SOL occur as the activity of these muscles is decreasing 
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in amplitude from peak activity suggesting an increased decline in activation of 

these muscles prior to push-off. Of these two muscles, soleus reliably decreased 

first, with the midpoint of the significant decrements occurring at 47% of the 

perturbation cycle (Figure 6I). When corrected for gait cycle timing and 

perturbation onset, this corresponds to a response latency of 300 ms to the 

midpoint of significant bins of this decrement. For comparison with a previous 

study (Marigold et al. 2007), the response latency of soleus decrements to the 

negative, mid stance perturbations of this study was 338 ms if each latency was 

computed on a single trial basis and deviations had to be greater than two 

standard deviations for at least 30 ms (method of Marigold et al. 2007). The 

negative perturbations applied at mid stance also elicited a significant increase in 

TA activity at the stance to swing transition of the perturbation cycle as shown in 

Figure 6O. In sum, perturbations applied only at mid stance modulated the 

amplitude of all of these distal leg muscles during late stance response phases of 

the perturbation cycle.    
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 In addition to those observed in Figure 6, there were sporadic, significant 

deviations observed in ESL, BF, and ST due to these negative perturbations. In 

ESL, a decrease (-.078 at its lowest) was observed in pre-swing (54-58%) of the 

perturbation cycle when negative perturbations were applied at mid stance.  

There were three instances where significant deviations were observed in BF: an 

Figure 6. EMG Waveforms. Residual waveforms averaged across subjects are presented here for all 
directions and phases of visual scene motion. Arrows have been appropriately placed at the average 
stimulus phase for that condition, and stick figures represent position of the body during these six 
stimuli phases. Underneath each stick figure is the limb used for that data and the gait cycle phase it 
was in when the perturbation occurred. Blue/red asterisks denote that the positive/negative condition 
was different from zero at that bin, and these asterisks have been placed at the mid point of the bin, as 
these continuous traces were binned when performing statistics (n=11, FDR<.05). Lateral 
Gastrocnemius (LG), Soleus (Sol), and Tibialis Anterior (TA). An abscissa value of 0 is the heel strike 
prior to visual scene motion. Heel strike times of response phase are noted appropriately above or 
below each respective limb’s response and inset bars represent stance phase. Shaded error bars 
correspond to standard error of the mean (s.e.m.). EMG values are in normalized units (to control cycle 
maximum for each trial). Across-subject means of the ipsilateral right control cycle waveforms are 
concatenated and presented below residual waveforms. 
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increase (0.036 at its highest) was observed in mid swing (84-87%) of the 

perturbation cycle when perturbations were applied at pre-swing; an increase 

(.027 at its highest) was observed in loading (2-6%) of the post-perturbation cycle 

when negative perturbations were applied mid to terminal swing; and a decrease 

(-.041 at its lowest) was observed in terminal swing (87-91%) of the post-

perturbation cycle when these negative perturbations were applied at mid to 

terminal swing. In ST, A decrement (-.036 at its lowest) was observed in early 

stance (9-14%) of the post-perturbation cycle when negative perturbations were 

applied at initial to mid swing.   Although significant, these changes were 

generally much smaller than those observed in the distal leg muscles when 

perturbations were applied at mid stance, diminishing their functional 

significance. 

 

Receding perturbations had little effect on segments angles and EMG 

As shown by Figures 4-6, receding (positive) perturbations generally 

yielded smaller and inconsistent changes in segment angle trajectories and EMG 

waveforms compared to approaching (negative) perturbations. Figure 5A shows 

small, but significant, decrements in the foot  angle observed during the swing 

phase of the perturbation cycle when positive perturbations were presented at 

loading (FDR<.05). In the trunk (Figure 4A), however, a single significant 

decrement was observed when positive perturbations were applied at loading.  In 

all muscles, only a single instance of a significant deviation occurred during 

positive perturbations.  A small but significant increase (.042 at largest) in ST 
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activity was observed in mid swing (85-87%) in the perturbation cycle followed by 

a significant decrease (-.038 at lowest) in late swing (91-94%) when positive 

perturbations were applied at loading. 

When the effects due to the two directions were directly tested for 

asymmetry, significant differences were typically observed when negative 

perturbations caused significant deviations (FDR<.05). Overall, 88% (129/147) of 

those significant asymmetries in the leg and trunk segment angles were 

associated with significant responses to negative perturbations. Similarly, 71% 

(10/14) of asymmetries observed in the muscles were associated with significant 

responses to negative perturbations.  

 

 

Figure 7. Changes in Gait Measures. Changes in stride length (A) and gait period (B) from mean pre-
perturbation cycle are presented here for all phases of perturbation and direction. Underneath each 
stick figure is the limb used for that data and the gait cycle phase it was in when the perturbation 
occurred. Perturbation cycle corresponds to the gait/stride cycle in which the perturbation occurred and 
+1 cycle corresponds to the following cycle. Asterisks denote a significant change from mean pre-
perturbation cycle (n=11, FDR<.05).  Error bars correspond to standard error of the mean (s.e.m.). 
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Changes in stride length and gait period 

Deviations from mean stride length and gait period are presented in Figure 

7 illustrating that positive (receding) perturbations had little effect on the gait of 

subjects on the treadmill. Negative perturbations in the majority of perturbation 

phases caused a decreased stride length in both the cycle in which the 

perturbation occurred (perturbation cycle) and the cycle afterward (+1 cycle/post-

perturbation cycle). As seen in Figure 7A, a decreased stride length was 

observed in the perturbation cycle in the first four perturbation phases with 

increases observed when perturbations were applied at initial to mid swing and 

mid to terminal swing.  In the post-perturbation cycle, however, solely decreases 

in stride length were observed and four of these decreases were statistically 

significant. Figure 7B shows that the cycle after the perturbation (+1 cycle) was 

lengthened in time for the majority of phases in which a negative perturbation 

was used. Interestingly, both increases in gait period and decreases in stride 

length were observed in the +1 cycle during the three perturbation phases of mid 

stance, terminal stance and pre-swing. This combination of changes in stride 

length and gait period corresponds to a stride shorter in distance and longer in 

time, which effectively slows the subject on the treadmill in the post-perturbation 

cycle. 

 

Displacement of the body on the treadmill 

 By assuming that responses in each leg would be the same if 

perturbations were presented at an identical phase of the gait cycle (spatio-
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temporal symmetry), it has been shown above that the negative visual 

perturbations applied at many phases of the gait cycle result in slowing on the 

treadmill. To investigate this slowing further, displacements of the body with both 

legs and trunk on the same normalized time scale are plotted in Figure 8. 

 

 

 

Figure 8. Whole Body Displacements during Negative Perturbations. Residual A/P displacements 
averaged across subjects are presented here for the three phases of negative (backward) visual scene 
motion. Displacements of right/left side of the body are in blue/red and midline displacement (T1) in 
black. Dashed horizontal lines denote 0 difference from mean displacement while the inset scale bar 
notes – /+ indicating a backward/forward displacement of the body on the treadmill. Arrows have 
been placed at the average perturbation phase as the right leg is in the gait cycle phase of loading (A), 
mid stance (B) and terminal stance (C) while the left leg is in pre-swing (A), initial to mid swing (B) and 
mid to terminal swing (C). Blue/red asterisks denote that the right/left side displacement was different 
from zero at that bin, and black asterisks denote that the midline marker on T1 was different from 0 at 
that bin. These asterisks have been placed at the midpoint of the bin, as these continuous traces were 
binned when performing statistics (n=11, FDR<.05). An abscissa value of 0 is the heel strike prior to 
visual scene motion. Shaded error bars correspond to standard error of the mean (s.e.m.). Heel strike 
timing for right/left legs is on the bottom/top abscissa of each subplot. 
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 Figure 8 shows mean residual waveforms of displacements of both legs 

and trunk (T1). They were displaced backwards significantly by the negative 

perturbation at all three phases of perturbation. Similar to the weak phase 

dependence previously observed in the trunk orientation (Fig. 3), displacement of 

T1 backwards begins later as perturbations occur later. Significant backward 

deviations begin at ≈48% (midpoint of bin), ≈64% and ≈86% of the perturbation 

cycle with perturbations at loading (Fig. 8A), mid stance (Fig. 8B) and terminal 

stance (Fig.8C) of the right leg, respectively.  

In the legs, backward displacements began in the left leg prior to the right 

leg when perturbations occurred at loading of the right leg (Fig. 8A) while 

backward displacements occurred first in the right leg when perturbations 

occurred during both mid stance (Fig. 8B) and terminal stance (Fig.8C) of the 

right leg. Interestingly, the largest backward deviations of all markers (ankle, toe) 

of both feet occurred when each leg was in its swing phase of the cycle following 

the perturbation cycle (post-perturbation cycle). Consistent with responses of 

segment angles, deviations observed in the right leg when the perturbation 

occurred during mid stance of the right leg were unique relative to the other 

phases of perturbation. As seen in Figure 8B, significant forward displacements 

in all markers of the right leg occurred at the stance to swing transition and, for 

most markers of the leg, continued throughout the entirety of the swing phase. In 

sum, all segments were eventually displaced backwards by the negative visual 

scene motion at all phases and the timing profile of displacement responses is 

consistent with responses observed in the segment angles.    
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Discussion  

Transient visual-scene motion was used here to investigate phase-

dependent responses to visual input during human locomotion. Trunk responses 

to approaching (negative) perturbations were only weakly phase-dependent and 

instead primarily depended on the delay from the perturbation. In contrast, leg 

responses were strongly phase-dependent.  Leg responses during the same gait 

cycle as the perturbation exhibited gating, occurring when the perturbation was 

applied at mid stance. Leg responses during the post-perturbation gait cycle, 

however, exhibited a response-phase pattern over a range of perturbation 

phases.  These two types of leg responses likely serve separate functions during 

the locomotion task used in this study. Overall, these results support the notion 

that the phase dependence of responses to visual input is determined by the 

functions, or subtasks, associated with vision during walking. 

 

Directional Asymmetry  

Across segments, responses to perturbations when the virtual scene was 

moving towards the subject (negative) were greater than responses, if they 

occurred at all, to visual perturbations moving away (positive) from the subject. 

These results are consistent with previous studies using continuous optic flow 

stimuli which show that visual perturbations approaching a subject on a treadmill 

have a larger effect on step velocity (Konczak 1994), stride length (Prokop et al. 

1997), variability of ankle-knee relative phase and variability of center of mass 
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displacement (Guerin & Bardy 2008) when compared to perturbations moving 

away from the subject.  

Although we have used transient perturbations in our study, the nervous 

system places an increased emphasis on approaching changes in visual scene 

motion, suggesting a functional aspect regardless of being a continuous flow or a 

transient change from fixed scene motion. Both approaching and receding visual 

scene motion are everyday occurrences during walking. It is normal for both 

directions of motion to occur, yet an approaching visual scene is more likely to 

require a functional change in the locomotive behavior. Transient changes in 

scene motion towards the subject in this study may be interpreted as an 

impending obstacle to avoid (due to large peripheral component), a wall that the 

approaching body will collide with or a change in position on the treadmill, 

necessitating a response. In the alternative case of receding perturbations, a 

response is functionally less critical.  

 

Strong Phase Dependence of Leg Responses but not Trunk Responses 

We quantified phase-dependence along a continuum in this study, and 

trunk responses were found to be weakly phase-dependent.  To supplement this 

finding, latency to the midpoint of an initial, significant backward tilt was similar at 

all perturbation phases to approaching perturbations. Portions of stereotyped 

response waveforms have also been used to investigate phase-dependence 

during walking in other sensory systems. Modulation of waveforms such as the 

“medium latency response” (e.g., Iles et al. 2007; Blouin et al. 2011) for galvanic 
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vestibular perturbations or the H-reflex (e.g., Capaday & Stein 1986; Dietz et al. 

1990) for perturbations to proprioceptive afferents support the use of a feature of 

responses to determine dependence on phase of gait cycle. The midpoint of a 

stereotyped backward trunk tilt was used here to supplement the quantification of 

phase-dependence, and it shifted later as perturbations were applied later. In 

sum, the trunk’s response is primarily dictated by the time delay from a change in 

scene motion and is most similar to the “no phase dependence” scenario in 

Figure 1A rather than the gating (Fig. 1B) or response-phase pattern (Fig. 1C) 

scenarios.   

The weak phase dependence of trunk responses in the present study is 

consistent with the responses of the trunk to continuous visual perturbations 

found in a previous study, which could be approximated with linear, time-invariant 

frequency response functions (Logan et al. 2010).  In the task of treadmill walking 

and most forms of walking, there is a critical underlying subtask of maintaining 

postural control upright that the nervous system must continually perform to keep 

the oscillating trunk from toppling over the legs as they propel the body from 

place to place.  Previous studies have shown that oscillatory motions of the trunk 

couple with oscillatory visual scene motion to stabilize the motion of the trunk at 

low frequencies (Warren et al. 1996; Logan et al. 2010). The long-lasting and 

weakly phase-dependent responses observed to these transient perturbations 

support the notion that trunk responses in this experiment also reflect a 

continuous, time-invariant maintenance of postural equilibrium during bipedal 

locomotion.    
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Responses observed in the leg, on the other hand, were strongly phase-

dependent, in two distinct ways. First, a phase-dependent response was 

observed in all leg segments within the same cycle as the visual perturbation.  As 

seen in the third row of Figure 5, within-stride deviations of the foot, shank and 

thigh angles are observed when perturbations are presented solely at mid stance 

indicating that this response is gated (as in Figure 1B). In the foot, the visual 

perturbation yielded a net increased plantar-flexion prior to toe off and an 

increased dorsi-flexion after toe off. At the same time, deviations in the shank 

render an increased flexion of the shank prior to the stance to swing transition 

followed by decreased flexion at the knee as the shank is extending in swing until 

heel strike. The thigh also displays more pronounced flexion throughout the 

swing phase of the perturbation cycle. Such flexion of the thigh and foot coupled 

with extension of the shank reveal a combination of segment angles that result in 

an overall higher position of the leg segments during swing. Significant 

decreases in soleus and gastrocnemius activation observed in the response 

phase of pre-swing (row 3 of Figure 6) likely account for the net decreased angle 

(dorsi-flexion) of the foot in ensuing swing when perturbations occur at mid 

stance.  Additionally, the significant increases in tibialis anterior observed in early 

swing (Fig 6O) also likely play a role in this dorsi-flexion observed in the foot 

during swing. In sum, the combined action of a decrease in lower limb plantar-

flexor muscle activity and increased dorsi-flexor activity cause the eventual foot 

dorsi-flexion that occurs in mid swing when perturbations occur during mid 

stance perturbations.    
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This early phase-dependent response observed in the leg segments 

serves a within-cycle function in response to mid stance perturbations.  Mid 

stance may mark a visually sensitive period where a fast pathway “hazard 

detector” (Marigold, 2008) is activated to avoid or accommodate hazards such as 

impending collisions with a wall or obstacles in the ensuing swing phase. 

Although there has been work in animal models (Sherk & Fowler 2001; Graziano 

& Cooke 2006; Simmons et al. 2010) regarding defensive postures prior to 

collisions, there is not, to our knowledge, a definitive account of kinematic or 

muscular strategies in response to an incoming whole-body collision during 

human locomotion. It is premature to assume that fast pathways which may 

initiate obstacle avoidance and whole-body collision avoidance are separable.  

However, common responses observed in this study and those studies reported 

below suggest that fast, approaching changes in visual scene motion trigger a 

fast, generalized hazard accommodation response regardless of the features 

(wall, obstacle, etc) of the visual scene motion. 

As responses in the leg segments to these types of perturbations have not 

been reported elsewhere, studies of obstacle avoidance support the idea that the 

kinematic features and timing of this response is a response to an approaching 

hazard. Both the foot dorsi-flexion and thigh flexion observed in the swing 

response phase in this investigation (in response to mid stance perturbations) 

are main components of the “elevating strategy” for avoiding small obstacles 

occurring within the same gait cycle (Eng et al. 1994; Patla 1991). Although our 

attention to gait cycle phase dictates normalizing by gait cycle, mean response 
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latencies calculated for muscular activity in real time reveal latencies with 

comparable timescales to those found in a previous study whose focus was 

avoidance of actual obstacles (Marigold et al. 2007). Despite no “real” obstacles 

in this study, our approach is similar to that of Marigold and colleagues as both 

studies introduce a dramatic change in the peripheral visual field with responses 

observed in the same cycle. They found that the biceps femoris (BF) is a reliable 

first muscle to be activated with a mean response latency of 134 ms when 

obstacles are released in late stance.  In our study, the soleus (SOL) was the 

most reliable first muscle to be activated with a mean response latency of 338 ms 

(method of Marigold et al. 2007) when negative visual scene perturbations were 

presented at mid stance.  In the Marigold study, response latencies grew larger 

as obstacles were presented earlier in the gait cycle. With this caveat in mind, 

the 134 ms BF response latency to a late stance obstacle could be extrapolated 

to a 314 ms latency for a mid stance obstacle in our study (obstacle presentation 

15% earlier in the cycle), suggesting muscle response latencies on similar 

timescales. Thus, the kinematic features and muscular timing of the responses to 

the approaching, mid stance perturbations display a response that is functionally 

distinct from other trunk and leg responses we observed, indicating an alteration 

of leg segment trajectory within-cycle in a manner resembling a hazard 

accommodation/avoidance response.  

An alternative explanation to this proposed hazard 

accommodation/avoidance response would be that this response is caused 

purely by a visual startle during walking. This distinct, within-cycle response 

73 
 



observed in the leg segments to a transient perturbation is reminiscent of 

auditory startle and its interaction with obstacle avoidance in human locomotion 

(Nieuwenhuijzen et al. 2000; Queralt et al. 2008). An auditory startle paired with 

an obstacle has been shown to improve the obstacle avoidance response and 

associated modulation of EMG amplitude (Queralt et al. 2008), indicating that 

startle to sensory perturbations can have functional implications and may play a 

role in the response observed in this study when mid stance perturbations are 

presented. Auditory startle responses in the musculature have been shown to 

occur at all perturbations, however, with amplitude modulated by perturbation 

phase without changes to the fast (<150 ms) response latencies (Nieuwenhuijzen 

et al. 2000). Here we observe little consistency across perturbation phases in 

measuring the existence of significant EMG responses. The additional response 

in leg segments that does not rely on time from stimulus, but instead shows a 

response-phase pattern, indicates that we have not measured a modulation of 

fixed latency startle response for the whole body. Interestingly, auditory startle 

has been shown to shorten the gait period of both the perturbation and post 

perturbation cycle while decreasing both the maximal peak flexion and extension 

of both the ankle and knee (Nieuwenhuijzen et al. 2000). The increases in both 

the maximal extension and flexion of foot and shank angles observed here (Figs 

5C, 5I) are actually opposite of that found in auditory startle. Moreover, the gait 

period of the post perturbation cycle (+1 cycle in 3rd row of Fig 7B) is increased. 

These discrepancies suggest that the response to mid stance perturbation is not 

a visual startle response. 
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For this specific response in the legs, the time-domain measures we used 

allowed us to observe an EMG response to visual scene motion that precedes a 

kinematic response during mid stance perturbations. However, we did not 

observe clear EMG responses during the additional phase-dependent response 

of the legs or the response in the trunk. There could be different reasons for this 

discrepancy. It is well known that muscle activation patterns for unperturbed 

walking show large inter-subject variability in addition to variability stride to stride 

while kinematics remain relatively invariant (Winter & Yack 1987). Indeed, the 

results reported here also show more consistent, interpretable results in 

responses of kinematics compared to EMG during walking with perturbed visual 

scene motion. The lack of a systematic relationship for all responses could be 

due to missing action of muscles that were not recorded, not performing enough 

perturbations, and the potential of synergistic co-activation of muscles for 

function. 

The second phase-dependent response occurred when perturbations 

presented at all phases elicited consistent responses of the leg segments in the 

gait cycle  subsequent to the cycle in which a perturbation occurred (post-

perturbation cycle, heel strike 1-2 in Fig. 5).  As seen in the post-perturbation 

cycle in Figures 5B-F, deviations in the foot segment angle translate to a net 

decreased plantar-flexion of the foot prior to toe off and a net decreased dorsi-

flexion after toe off. Meanwhile, shank angle deviations translate to a net 

decreased flexion of the shank at the knee prior to the stance-swing transition 

followed by an increased flexion at the knee as the knee is extending in mid 
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swing.  We consider this to be indicative of a response-phase pattern and in line 

with Figure 1C as it consistently occurred at the same response phase with 

characteristic waveforms in the foot and shank. Together, these deviations 

illustrate decreased range of motion of the lower leg on both sides of the stance 

to swing transition in the cycle following the perturbation. In other words, the legs 

adjust to slow the subject so that a central position can be maintained after a 

forward translation is determined from approaching scene motion. Such changes 

occur in the post-perturbation gait cycle, which is consistent with previous studies 

that show subjects use vision for changes in planned stepping adjustments 

approximately two steps, or a full gait cycle, in advance of a change in ground 

terrain (Patla & Vickers 2003; Marigold & Patla 2007). 

This interpretation is also supported by the changes in stride length and 

gait period presented in Figure 7. Various combinations of stride length and gait 

period allow maintenance of the same speed during treadmill walking (Dingwell & 

Cusumano 2010). Increasing stride length could be counteracted with increasing 

gait period (as well as both decreasing) to not change the subject’s speed or 

position on the treadmill. In the post-perturbation cycle (+1 cycle in Fig. 7), the 

two gait measures never changed in the same direction, indicating that the 

approaching (negative) visual scene motion caused a change in position on the 

treadmill. Five of the six perturbation phases yielded either a decreased stride 

length or increased gait period to slow subjects in the post-perturbation cycle (+1 

cycle in Fig.7).  Furthermore, there were three perturbation phases (mid stance, 

terminal stance, pre-swing) with both decreases in stride length and increases in 
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gait period. This combination of changes in stride length and gait period strongly 

supports slowing on the treadmill. These results coupled with the backward 

displacements of leg segments in the post-perturbation cycle (heel strike 1-2) 

observed in Figure 8 further support the notion that the major adjustments in 

speed occur primarily in the post-perturbation cycle regardless of perturbation 

phase.     

Smaller stride lengths coupled with counteracting shorter gait periods (or 

increases in both), however, would maintain similar speed on the treadmill. 

Indeed, significant changes of both stride length and gait period in the same 

direction are observed in the perturbation cycle (perturbation cycle in Fig. 7) in 

three perturbation phases (mid stance, terminal stance, mid to terminal swing) 

while the other three perturbation phases are accompanied by non-significant 

trends of gait period in the same direction which aid in counteracting significant 

changes in stride length. These findings are generally consistent with the lack of 

positional-maintenance changes in segment angles observed in Figure 5 in the 

perturbation cycle (0-1 in Fig. 5) and consistent with little change in 

displacements in the perturbation cycle (0-1 in Fig. 8). Although changes in 

segment angles occur in the perturbation cycle when perturbations occur at mid 

stance (Figs. 5C, 5I, 5O), the deviations in leg displacements occurring in the 

perturbation cycle are corrected within cycle (Fig 8B, blue lines), further 

supporting the notion that the within-cycle responses to mid stance perturbations 

do not support the function of changes in speed over a stride. Additionally, 

changes in gait measures and displacements inform as to why deviations in the 
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post-perturbation cycle are not significant in the legs during perturbations 

presented at loading (Figs. 5A, 5G, 5M). Decreases in stride length in the 

perturbation cycle in addition to increases in gait period in the post perturbation 

cycle (first row of Figs. 7A, 7B) coupled with the backward displacements in the 

perturbation cycle (Fig.8A, 0-1, blue lines) in addition to the post perturbation 

cycle suggest that adjustments for maintaining position is spread across both the 

perturbation cycle and post-perturbation cycle when perturbations were 

presented at loading. We speculate that this is the reason for a lack of significant, 

stereotyped kinematic deviations in the post-perturbation cycle (1-2 in Figs. 5A, 

5G, 5M) when perturbations were applied at loading. Further experimentation will 

be needed to test this idea that adjustments in speed are enacted across both 

the perturbation and post-perturbation cycle when visual scene motion is 

presented at the onset of the gait cycle. 

 

Phase dependence of vision dependent on function 

 Visual perturbations delivered at different phases of the gait cycle 

revealed several responses in the trunk and legs which reflect distinct functions 

during locomotion. Changes in visual scene motion were shown to: 1) modulate 

trunk orientation for upright equilibrium; 2) alter leg motion for hazard 

accommodation/ avoidance; and 3) alter leg motion to control position on the 

treadmill. Such results are consistent with perturbations using other modalities 

during locomotion. For example, Bent et al (2004) showed distinct leg and trunk 

responses due to galvanic vestibular stimulation; foot placement responses were 
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dependent on phase of perturbation while trunk responses showed no such 

dependence. Bent and colleagues suggest that these responses are indicative of 

independent upper and lower body control during walking (Bent et al. 2004, 

2005).  As distinct responses were observed both within the legs and between 

the trunk and leg segments in this study, the nature of phase dependence cannot 

simply be ascribed to the level of segments, but relies on the functional subtask 

for which vision was used.  

Subtasks, or necessary elements underlying the task of safe walking, 

typically consist of support maintenance by the stance limb, control of posture 

upright in sagittal and frontal planes, and proper foot trajectory control (Winter 

1989).  In more dynamic environments, however, additional subtasks such as 

hazard accommodation/avoidance or positional maintenance on a treadmill must 

be successfully performed.  Recently, there has been renewed support for the 

idea that subtasks of human locomotion are modular in nature, and are enacted 

by distinct combinations of muscle activations (McGowan et al. 2010; Neptune et 

al. 2009). Such studies echo previous work in human locomotion suggesting that 

the muscular activations performing the “subtasks” of locomotion are a few, 

underlying temporal components (Ivanenko et al. 2004). 

Such subtasks often occur within the same gait cycle of the overarching 

task of bipedal walking, and visual input at a phase of the gait cycle critical for 

one subtask is not necessarily relevant for another subtask. Subtask-dependent 

timing is likely mediated by separate neural control pathways. For example, the 

within-cycle subtask and the subtask occurring in the post-perturbation cycle of 
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the leg observed in this study are accomplished through parallel online feedback 

and slower, feed-forward pathways (Marigold 2008), respectively. Candidate 

pathways for parallel activations are cortical area MST and associated areas VIP 

and CSv, which have been found to have varying degrees of egocentric and 

allocentric tuning to visual scene motion (Wall & Smith 2008). Such pathways 

may underlie the distinction between changes in self-motion and motion of 

hazards in the external world.  As these neural control pathways are further 

explored in animal models and patient populations, it is critical to take gait cycle 

phase into account. The nervous system’s modulation of responses to sensory 

perturbations throughout the gait cycle are particularly important when using 

sensory inputs such as vision to aid in the restoration of specific motor 

functioning (subtasks) underlying locomotion. 
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Chapter 4: Sensory reweighting for human walking control 

 

Introduction 

 Previous studies in human walking have clearly shown that human 

locomotive control makes use of vision for many functions. Vision has been 

shown to aid the maintenance of posture upright (Warren et al. 1996; Kay & 

Warren 1998; Kay & Warren 2001), alter gait parameters such as speed 

(Konczak 1994) and stride length (Prokop et al. 1997), assist in foot placement 

(Hollands and Marple-Horvat 1996), provide information for navigation (Warren et 

al. 2001) and be critical for obstacle avoidance (e.g., Patla 1997; Grasso et al. 

1998; McFadyen et al. 2007) during walking. Less clear, however, is how 

changing the properties of this critical sensory input directly translates to changes 

in control of the various segments and muscular activity for the many functions of 

locomotion. 

One potential process used for control in changing sensory environments 

is “sensory reweighting”, in which sensory inputs that are more reliable indicators 

of self-motion will be used for control of the musculoskeletal system (Horak & 

MacPherson 1996). Within the context of standing postural control, sensory 

reweighting has been formalized using linear time-invariant (LTI) approaches 

(Peterka & Benolken 1995; Oie et al. 2002; Mahboobin et al. 2005). Such studies 

show that, for example, proportional decreases (i.e., downweighting) in the use of 

visual input occur with a large increase in amplitude of visual scene motion 

(Peterka & Benolken 1995; Kiemel et al. 2005) or when an alternate source of 
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sensory information is more reliable (Oie et al. 2002).  Surprisingly, there have 

been few studies (Varraine et al. 2002; Deshpande & Patla 2005; Berard et al. 

2012) which suggest sensory reweighting is a critical mechanism contributing to 

the flexible control of locomotion.  

In this study, we characterized input-output relationships with harmonic 

transfer functions (HTFs) (Werely 1991). The HTFs presented here represent an 

innovative methodological approach to investigate how perturbations affect 

human locomotion.  We have previously shown that broad-band stimuli can be 

used to probe responses of trunk kinematics to visual stimuli during walking 

(Logan et al. 2010; Anson et al. 2014) with use of traditional LTI frequency 

response functions (FRFs). We would now like to extend these investigations to 

the more time-varying response variables of lower-limb kinematics and muscular 

activity. The use of HTFs allows the use of a continuous, broad-band stimulus to 

identify input-output relationships with fluctuations in visual scene motion as input 

and segment angles, body displacement and surface electromyography (sEMG) 

as outputs. Furthermore, the transformation of these HTFs into the time domain 

as phase-dependent impulse response functions (pd-IRFs) allows us to visualize 

how these input-output relationships change as a function of the phase of the gait 

cycle. 

Here we analyzed multiple body segments during treadmill walking during 

two types (translation and rotation) of visual scene motion. Amplitude of scene 

motion was increased with the expectation of a proportionally smaller response 

(gains of HTFs), which we interpret as a downweighting of visual input for 
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walking control. An additional interest in the type of scene motion is supported by 

evidence that rotating and translating visual scene motion is differentially 

processed by the visual system (reviewed by Britten et al. 2008). Both translating 

and rotating visual scene motion were used here, and both provide cues 

regarding self-motion on the treadmill. A previous study (Logan et al. 2010) using 

only translating visual scene motion indicated that response (gain) of a single 

kinematic marker such as on the shoulder, which translates in the anterior-

posterior direction, was stronger than the response of a segment such as the 

trunk, which rotates in the sagittal plane.  

If responses vary depending on the type of visual movement and body 

motion, it is expected that the degree of sensory reweighting is dependent on the 

type of scene motion. We predicted that a larger reweighting (ratio of responses 

to low amplitude scene motion over responses to high amplitude scene motion) 

of trunk orientation responses was expected with use of rotating visual scene 

motion compared to translating scene motion. Likewise, a larger reweighting of 

whole body position would be observed when translating visual scene motion 

was used compared to rotating scene motion. Support for these hypotheses 

would provide evidence that the nervous system uses sensory reweighting in a 

manner that benefits the subtasks, or underlying functions, of the overarching 

walking task. That is, sensory reweighting changes the emphasis of rotational 

motion cues for maintenance of orientation relative to the vertical in addition to 

changing the emphasis of translation scene motion for maintenance of position 

on the treadmill.    
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Methods 

Subjects 

Ten healthy subjects [5 males and 5 females, between 23 and 36 yrs of 

age, 64.2 ± 11.2 kg (mean ±SD)] received modest monetary compensation for 

participating in this study. All subjects were self-reported to have normal (or 

corrected to normal) vision. The studies conformed to the Declaration of Helsinki, 

and informed consent was obtained from all participants according to the 

procedures of the Ethics Committee of the Santa Lucia Foundation. 

 

Apparatus 

Virtual reality environment 

Subjects walked at 5 km h-1 (EN-TRED 1475.911, Enraf-Nonius, 

Netherlands) one meter in front of a translucent screen (4x3m) with a rear-

projected virtual display (as in Logan et al. 2014). The display consisted of 500 

randomly-distributed white triangles (3.7 x 3.7 x 3.5 cm) on a black background, 

updated at 60 Hz. The display was 3.7 m wide by 2.54 m high when static prior to 

trial initiation (position 0), and subjects wore goggles with occluded sides to 

prevent them from seeing the border of the visual display, allowing a 1.7 m wide 

by 1.7 m high field of view (about 81° of visual angle).The virtual display was 

created using CaveLib software (Mechdyne, USA) with projection through a 

digital projector (MP3135, HP,USA) synched to a desktop computer (Precision 

T5500, Dell, USA). Visual signals were created offline (Matlab, Mathworks, USA) 
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and were generated via Labview (National Instruments, USA) on a desktop 

computer (Precision T5500, Dell, USA).  

 

Visual scene signals 

These driving visual signals were either a high or low amplitude filtered 

white noise signal that translated or rotated in the sagittal plane. For each trial of 

each subject, a different seed was used to generate a white noise signal using a 

random number generator. High-amplitude signals had a one-sided spectral 

density of 600 cm2/Hz while low-amplitude signals had a spectral density of 

156.8 cm2/Hz. These signals were then filtered using a first-order Butterworth 

low-pass filter with a cutoff of .02 Hz and an eighth-order Butterworth low-pass 

filter of 5 Hz. In doing so, power of scene motion was smoothed and limited to 

lower frequencies. Across subjects, the high-amplitude translation signal had an 

average root mean square error (RMSE) of 4.33 cm and 6.99 cm/s while the low-

amplitude signal had an average RMSE of 2.19 cm and 3.49 cm/s. The high-

amplitude rotation signal had an average root mean square error (RMSE) of 4.39 

deg and 7.02 deg/s while the low-amplitude signal had an average RMSE of 2.17 

deg and 3.50 deg/s.  A positive/negative signal corresponded to an anterior-

posterior (A-P) translation or forward/backward rotation into the screen from 

position 0. Figure 9A shows an example of the time series of low and high 

amplitude translation signals presented to subjects with positive being translating 

scene motion away from subject, or into the screen.  A one cm negative 

translation of the visual scene corresponded to an expansion of the triangles to 
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3.4 x 3.4 x 3.2 cm.  The virtual scene was constructed so that the focus of 

expansion was at the subject’s eye height, with the assumption that the subject 

was 1 m from the screen. These visual scene motion signals were constructed so 

that both rotation and translation scene motion produced the same AP translation 

of the visual scene relative to the head, assuming small-angle approximations for 

deviations from vertical. Visual display generation and data collection software 

were synchronized via an external trigger.  

 

Kinematics 

Body kinematics were measured using a nine camera VICON-612 motion 

analysis system (VICON, Inc, Oxford, UK). Reflective markers (diameter, 1.4 cm) 

were placed on the right and left sides of the body at external landmarks 

corresponding to: base of the 5th metatarsal, posterior calcaneus (heel), lateral 

malleolus (ankle), lateral femoral condyle (knee), greater trochanter (hip), 

acromion process (shoulder), mastoid process (head) and frontal eminence 

(head). Additionally, markers were placed at the mediolateral center of the back 

of the head and the midline of the spine at the level of T1, T7 and L1 vertebrae. 

All markers were attached at the skin of these bony prominences except those 

placed on the shoe at the 5th metatarsal and heel. All kinematic data were 

collected at 100 Hz. 

Our analysis focuses on the leg and trunk segments. Sagittal foot, shank 

and thigh segment angles relative to the vertical were computed from angles 

formed by the fifth metatarsal to ankle, ankle to knee, and knee to hip with the 
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most inferior point as the origin. Trunk orientation relative to the vertical in the 

sagittal plane was computed as the angle formed by the L1 to T1 markers. 

 

Muscle Activity (EMG) 

Muscular activity of the right leg and lower trunk was measured using 

surface electromyographic (sEMG) recordings. Recordings of the following fifteen 

muscles were made: tibialis anterior (TA), gastrocnemius lateralis (LG), 

gastrocnemius medialis (MG), soleus (Sol), vastus medialis (Vmed), vastus 

lateralis (Vlat), rectus femoris (RF), sartorius (SART), tensor fascia latae (TFL), 

biceps femoris (BF, long head), semitendinosus (ST), gluteus maximus (Gmax), 

gluteus medius (Gmed), rectus abdominus (RAS, superior portion) and erector 

spinae (ESL, recorded at L1-L2). Electrodes were positioned at the muscle belly 

with placement carefully chosen to minimize cross-talk (Cappellini et al. 2006). 

Recording sites were shaved, lightly abraded, and cleaned with isopropyl alcohol 

prior to electrode application. The EMG data were recorded at 2000 Hz using the 

wireless Zerowire system (Aurion, Milan, Italy). The recording system bandwidth 

was 20–1,000 Hz with an intrinsic gain of 1,000. The EMG processing consisted 

of high-pass filtering, rectification and low-pass filtering with the same frequency 

cutoff values used in several previous studies of locomotion (Cappellini 2006; 

Cappellini et al. 2010a; Cappellini et al. 2010b; Maclellan et al. 2012). Using 

Matlab, these signals were high-pass filtered using a zero-lag forward-backward 

cascade of a 4th order Butterworth filter with a 20-Hz cutoff frequency, full-wave 

87 
 



rectified, and then low-pass filtered with a zero-lag forward-backward cascade of 

a 4th order Butterworth filter with a 10-Hz cutoff frequency. 

 

Procedures 

 Prior to experimentation, subjects experienced a static visual display at 

the experimental locomotion speeds in darkness with goggles on. An 

experimenter was always behind the treadmill in close proximity to the subject to 

ensure safety in case of falling (never occurred). Additionally, there was a push-

button close to hand so that the subject and/or experimenter could immediately 

halt the treadmill (never used). 

Subjects began each experimental trial by looking straight ahead at the 

visual display screen. Once they were ready, subjects said "Go" and the 

experimenter initiated treadmill movement for approximately 30 seconds for the 

subject to reach steady-state. At this point, the subject would declare if he or she 

was ready for the trial to begin. The experimenter then initiated data 

acquisition/scene motion with variable delays to avoid start-up effects. Each trial 

was 180 seconds in duration with a rest of 60 seconds between trials. The 

experimental design consisted of two amplitudes of visual scene motion (low, 

high) and two types of scene motion (translation/ rotation) for a total of four 

conditions presented in randomized blocks. Each block contained one trial of 

each condition. All subjects were presented with five trials of each condition.  
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Data Analysis  

Frequency Response Functions 

 To transition into use of harmonic transfer functions we show trunk 

orientation responses to changes in visual scene rotation using LTI frequency 

response functions (LTI FRFs). LTI FRFs have been previously shown to be 

useful approximations of the input-output mapping of visual scene motion input to 

trunk kinematics output (Logan et al. 2010; Anson et al. 2014). To measure the 

sensitivity of trunk kinematics to the visual stimulus, gain was computed. Gain 

was taken from the frequency response functions (FRFs) of visual scene motion 

input to trunk orientation output.  

These FRFs were computed in the same manner as in Logan et al. 2010. 

Briefly, Fourier transforms of A/P visual scene motion and de-meaned trunk 

orientation were calculated. One-sided power spectral densities (PSDs) and 

cross spectral densities (CSDs) using Welch's method (Bendat & Piersol, 2000) 

with a 20 second Hanning window and one-half overlap were then calculated 

with these transforms. These PSDs and CSDs were then averaged within 

condition for each subject. For each subject, PSDs and CSDs of stimulus 

frequencies up to 3.7 Hz were binned to create ten frequency bins. Binning these 

stimulus frequencies yielded bin averages of .05, .1, .15, .25, .4, .6, .925, 1.4, 2.1 

and 3.125 Hz. Using these binned PSDs and CSDs, complex coherence was 

calculated as )()(/)()( fPfPfPfC yyxxxyxy = , where )( fPxy  is the CSD of the 

stimulus (x) and kinematic response variable (y).  Across subjects, the FRF was 

defined as )(/)()()( fPfPfCfH xxyyxyxy =  where )( fC xy  is the mean complex 
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coherence and )( fP yy  and )( fPxx  are geometric mean PSDs (Kiemel et al. 

2008). Gain is the absolute value of the FRF, )( fH xy . 

 

Harmonic transfer functions and phase dependent impulse response functions 

 Harmonic transfer functions (HTFs) of visual scene velocity as input and 

response variables of segment angles, L1 displacements and rectified sEMGs as 

outputs were computed. Here we describe the analysis steps used to compute 

harmonic transfer functions (HTFs) and phase-dependent impulse response 

function (PD-IRFs). A fuller description with equations and expanded motivation 

can be found in the APPENDIX.  The goal of the analysis is to describe the effect 

of u(t), visual scene velocity, on y(t), a kinematic or sEMG response variable. 

The majority of results presented in this chapter are calculated in step 4 as 

the modes of the transient HTF of individual response variables.  Computing 

the HTF and PD-IRF consists of six steps:  

1. Approximate phase. First we compute heel-strike times 𝑡𝑡𝑘𝑘 (𝑘𝑘 =

1, . . . ,𝐾𝐾) for a reference leg. Then we compute 𝑇𝑇�, the mean of the stride 

times 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘  (𝑘𝑘 = 1, . . . ,𝐾𝐾 − 1), and compute the estimated gait 

frequency as 𝑓𝑓0 = 1/𝑇𝑇�.   Next we define a discontinuous approximation of 

phase as 𝜃𝜃d(𝑡𝑡) = 𝑘𝑘 + 𝑓𝑓0(𝑡𝑡 − 𝑡𝑡𝑘𝑘) for 𝑡𝑡𝑘𝑘 ≤ 𝑡𝑡 < 𝑡𝑡𝑘𝑘+1.  To obtain a 

continuously-differentiable approximation of phase, 𝜃𝜃(𝑡𝑡), we apply a 

second-order low-pass filter to 𝜃𝜃d(𝑡𝑡): 

 �̈�𝜃(𝑡𝑡) + 2𝑑𝑑(�̇�𝜃(𝑡𝑡) − 𝑓𝑓0) + 𝑑𝑑2𝜃𝜃(𝑡𝑡) = 𝑑𝑑2𝜃𝜃d(𝑡𝑡). 
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Note that in the absence of perturbations, approximate phase 𝜃𝜃(𝑡𝑡) 

matches the usual definition of the phase of the gait cycle. 

 

2.  Replace time with approximate phase. Let p be the inverse of θ: 

𝑝𝑝(𝜃𝜃(𝑡𝑡)) = 𝑡𝑡 and 𝜃𝜃(𝑝𝑝(𝜗𝜗)) = 𝜗𝜗.  Let approximate phase 𝜗𝜗 take the place of 

time 𝑡𝑡 = 𝑝𝑝(𝜗𝜗) as the independent variable and compute 𝑢𝑢�(𝜗𝜗) = 𝑢𝑢(𝑝𝑝(𝜗𝜗)),  

𝑦𝑦�(𝜗𝜗) = 𝑦𝑦(𝑝𝑝(𝜗𝜗)), and �̃�𝑑(𝜗𝜗) = �̇�𝜃�𝑝𝑝(𝜗𝜗)�/𝑓𝑓0.   (We use the symbol 𝜗𝜗 to 

distinguish approximate phase as an independent variable from 

approximate phase as a function of time.)   

 

3.  Compute output variables for HTF analysis. For each 𝜗𝜗, let  𝑦𝑦0(𝜗𝜗) 

be the mean of 𝑦𝑦�(𝜗𝜗).  Then compute the deviations 𝑦𝑦�(1)(𝜗𝜗) = 𝑦𝑦�(𝜗𝜗) −

 𝑦𝑦0(𝜗𝜗) and �̃�𝑑(1)(𝜗𝜗) = �̃�𝑑(𝜗𝜗) − 1.    

 

4. Compute transient and phase-derivative HTFs. To account for shifts 

in phase that affect all response variables, both a transient and phase-

derivative HTF are computed. We compute the transient HTF from 𝑢𝑢�(𝜗𝜗) to 

𝑦𝑦�(1)(𝜗𝜗), denoted 𝐻𝐻�𝑦𝑦 , and the phase-derivative HTF from 𝑢𝑢�(𝜗𝜗) to �̃�𝑑(1)(𝜗𝜗), 

denoted 𝐻𝐻�𝑑𝑑, as follows. Let 𝑧𝑧(𝜗𝜗) be either 𝑦𝑦�(1)(𝜗𝜗) or �̃�𝑑(1)(𝜗𝜗).  Compute the 

power spectral density (PSD) 𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1) and the double-frequency cross-

spectral density (CSD) 𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓2) (Bendat & Piersol 2000). The two sided 

power spectral density 𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1) of a low and high amplitude condition is 

observed in Figure 9B. The double-frequency CSD describes the 
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relationship between the input signal 𝑢𝑢�(𝜗𝜗) at input frequency 𝑓𝑓1 and the 

output signal 𝑧𝑧(𝜗𝜗) at output frequency 𝑓𝑓2.  The PSD and CSD are 

computed using Welch’s method with 40-cycle Hanning windows (aligned 

to start at an integer value of 𝜗𝜗) and 50% overlap. The k-th mode of the 

HTF 𝐻𝐻𝑧𝑧 from 𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) is computed as  𝐻𝐻𝑧𝑧,𝑘𝑘(𝑓𝑓1) = 𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓1 +

𝑘𝑘𝑓𝑓0)/𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1).  Note that 𝐻𝐻𝑧𝑧 is a function of both the mode index k and the 

input frequency 𝑓𝑓1. 

5. Compute transient and phase IRFs.  For an LTP mapping from 𝑢𝑢�(𝜗𝜗) 

to 𝑧𝑧(𝜗𝜗), its HTF 𝐻𝐻𝑧𝑧 can be converted to its phase-dependent IRF ℎ𝑧𝑧 using 

a Fourier series constructed from an inverse Fourier transform of each 

mode of the HTF.  The IRF ℎ𝑧𝑧 is a function of response phase 𝜗𝜗r and 

stimulus phase 𝜗𝜗s and can be used to represent the LTP mapping from 

𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) as 

𝑧𝑧(𝜗𝜗r) = � ℎ𝑧𝑧(𝜗𝜗r,𝜗𝜗s) 𝑢𝑢�(𝜗𝜗s)𝑑𝑑𝜗𝜗s

𝜗𝜗r

−∞
. 

Using this procedure, compute the transient IRF ℎ�𝑦𝑦 and phase-derivative 

IRF ℎ�𝑑𝑑 from 𝐻𝐻�𝑦𝑦 and 𝐻𝐻�𝑑𝑑, respectively. Then compute the phase IRF by 

integrating the phase-derivative IRF: 

ℎ𝜃𝜃(𝜗𝜗r,𝜗𝜗s) = � ℎ�𝑑𝑑(𝜏𝜏,𝜗𝜗s)𝑑𝑑𝜏𝜏
𝜗𝜗r

𝜗𝜗s

. 

6. Compute IRFs. The IRFs ℎ�𝑦𝑦 and ℎ𝜃𝜃  can be combined to obtain the IRF 

from u(t) to  y(t) that is a function of response time tr and stimulus time ts. 

Here tr and ts are expressed in normalized time: time divided by the mean 
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gait period and aligned so that stimulus time 𝑡𝑡s equals true stimulus 

phase. 

Steps 1-4 were computed on a trial by trial basis with averages of PSDs 

and CSDs taken across trials for each condition of each subject for completion of 

the HTF analysis. Spectral densities were averaged across trials for each subject 

and then binned in .125 Hz total size groupings symmetric around 0 Hz input 

frequency (0 Hz is in the middle of the middle bin) prior to calculation of HTF 

modes. If we ignore the effects of phase-resetting, HTF theory predicts that for 

walking with gait frequency f0, a sensory or mechanical input at frequency f will 

produce outputs at all output frequencies f + kf0, where k is an integer.  For 

example, for a gait frequency of 1 Hz, a 0.2 Hz sensory perturbation will produce 

outputs at 0.2 Hz, 1.2 Hz, 2.2 Hz, etc., and also at 0.2 – 1 Hz = -0.8 Hz, 0.2 – 2 = 

-1.8 Hz, etc. Thus, HTF modes and comparisons (i.e. gain ratios described 

below) are plotted with negative to positive input frequency ranges. For each k, 

the mapping from input frequency f to output frequency f + kf0 is described by the 

k-th mode of the HTF. Six (k=0,1,…5) modes of the HTF between visual scene 

velocity and each response variable were computed. The FRF and 0th mode of 

the HTF both map responses at the same output frequency as the perturbation 

input frequency, but the 0th mode of the HTF is a function of approximate phase 

not time and windows of the HTF are lined up at integer values of phase. 

The HTF analysis described in step 4 above is used in this chapter to 

investigate the majority of condition effects. To measure both the sensitivity and 

timing of the response variables to the visual stimulus, gain and phase were 
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computed. Gain is the absolute value of each mode of the HTF and phase is the 

argument of each mode of the HTF, converted to degrees. Measures of gain and 

phase were plotted as a function of input frequency. 

 

 

 
 

Statistics 

Statistical tests of HTFs were performed in the complex plane at each 

frequency bin of each mode for all response variables. To test that each 

response was different from 0, each bin of each mode was tested with Hotelling’s 

T2 test for difference from 0 (α=.05). If both amplitude conditions at a given 

frequency bin were different from zero, they could then be tested for conditional 

differences in gain to test for amplitude-dependent sensory reweighting. To test 

for condition differences in gain, 95% bootstrap confidence intervals were 

computed for differences in log gain at each frequency bin using the bootstrap 

Figure 9. Time series and PSD of translation perturbation. A: Signals used in separate trials of 
high and low amplitude A-P translating visual scene motion for a single subject. B: Double-sided PSD 
of the velocity of the same signals in A. 
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percentile-t method with 4000 bootstrap resamplings and 400 nested bootstrap 

resamplings for variance estimation (Hall, 1988; Zoubir & Boashash, 1998). A 

significant difference between two amplitudes was found when the confidence 

interval of differences in log gain, or gain ratios, did not include one. This same 

procedure was applied to gain of trunk orientation FRFs shown in Figure 10. The 

interaction of amplitude and scene motion type was determined by calculating 

the difference in log gain of amplitude conditions for each response variable 

within each scene motion type, and then computing the log gain difference of 

these log gain differences from each scene motion type. These ratios of 

differences in log gain, or ratio of gain ratios, were calculated after initial tests 

that all 4 conditions were different from zero were satisfied at that bin. 

We also tested PD-IRFs to investigate if conditional effects such as 

amplitude-dependent reweighting changed across phases of the gait cycle. To 

investigate a dependence of amplitude-dependent sensory reweighting on phase 

of the gait cycle, permutation tests (1,000, Manly 1997) based on the t-statistic 

between the two conditions at all combinations of stimulus phase and normalized 

response time were tested simultaneously and family-wise error rate (FWER) 

was controlled for each response variable. The tmax method (Blair & Karnisky 

1993) was used to adjust the p-value for each combination of stimulus phase and 

normalized response time (α= .05).  These tests were performed in Matlab using 

functions written by Groppe (Groppe et al. 2011). These tests are non-parametric 

and suited for this study as FWER control is strong compared to other methods 
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(e.g. cluster-based permutation testing, false discovery rate) allowing us to 

determine where effects are reliable (Groppe et al. 2011) in the PD-IRFS. 

 

Results 

 

 

 
 

We begin by illustrating a dependency of trunk orientation response 

magnitude on changes in visual scene amplitude using both LTI FRFs and HTF 

analyses. Marking a transition in methods for studying sensory reweighting 

during walking, Figure 10 shows trunk orientation responses to vision showing 

Figure 10. Trunk Orientation FRF and HTF. A) Gain of trunk orientation from change in visual 
scene rotation using FRFs(as in Logan et al. 2010). B. 0th mode of the HTF of trunk orientation from 
visual scene velocity. C. The shaded region in B is shown in C for comparison between A and B at 
the same frequency range. A and C have identical axes and bin ranges are approximately the same 
for those in A and the last 10 bins in C. Asterisks denote significant (p<.05) differences in responses 
between different amplitude conditions at that frequency bin  (see Methods). 
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both a FRF and comparable 0th mode of a HTF for the same data.  Negative and 

positive frequencies are shown in Figure 10B to introduce the HTF mode plots, 

and present value of output frequency (in Hz) as the input frequency added or 

subtracted to the product of the mode order and gait cycle frequency (see 

Methods). Figure 10B is the 0th mode of the HTF, so it describes how input at any 

given frequency f produces a response at the same frequency. This allows 

comparison between the common frequency range in Figure 10A and 10B. This 

common frequency range is noted with a shaded box in Figure 10B and is 

presented in Figure 10C. Verified with gain ratios at individual frequency bins 

(see Methods), a clear amplitude dependency was observed in both analyses 

(Figs 10A and 10C). Gains of trunk orientation to scene motion in both analyses 

increased as visual scene motion amplitude decreased, and are noted in Figures 

10A and 10C with an asterisk.   

To take into account the limit-cycle dynamics of gait, we show the 

relationship of all response variables (kinematics and sEMG) in the frequency 

domain at higher modes in addition to the 0th mode. As highlighted by Figures 11 

and 12, there were responses observed across several modes in all response 

variables. These figures show frequency bins where gain and phase were 

different from zero in the complex plane (p<.05, see Methods) in the low 

amplitude, rotational scene motion condition for trunk orientation, foot segment 

angle, normalized ES sEMG and normalized LGAS sEMG. Gain and phase are 

plotted dependent on input frequency, and the output frequency (in Hz) is the 

input frequency added or subtracted to the product of the mode order and gait 
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cycle frequency (see Methods). Phase is shown for complete description of the 

HTF mode, but our focus is on gain as we investigate a dependency on 

amplitude. The first mode describes how input at any given frequency f produces 

output at frequency f + f0, where f0 is the gait frequency while the second mode 

describes how input at any given frequency f produces output at frequency f + 

2f0.   For example, the responses in foot angle observed at non-zero modes are 

strong evidence that an LTI FRF, which does not take into account the limit-cycle 

dynamics of gait, is a poor approximation of the input-output mapping of visual 

scene motion input to foot segment motion output. 

 

 

Figure 11. Segment Angle HTFs. Gain and phase of HTFs of foot (red) and trunk (blue) segment 
angles from visual scene velocity. These data are means across subjects in the low amplitude, 
rotating scene motion condition. Only those bins passing initial statistical tests in complex plane are 
shown (see Methods). Gain and phase of modes 0 through 3 are shown in subplots A-D. Value of 
output frequency (in Hz) is the input frequency added to the product of the mode order and gait cycle 
frequency (see Methods). 
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Responses of kinematic response variables to visual scene motion 

generally took either the form of a trunk or leg segment response. Figure 11 

shows HTFs of trunk orientation responses to visual scene velocity in blue. Trunk 

responses were more prevalent and larger in magnitude in the 0th mode while leg 

segment responses were higher in magnitude in the 1st and 2nd mode compared 

with the 0th mode. Gains of foot segment response were observed to be larger in 

the 1st and 2nd mode compared to the 0th mode while retaining the same shape of 

response. As observed in Figure 11, the peak magnitude of the foot segment 

angle response, in addition to gains at other frequency bins, declined from the 2nd 

to 3rd mode and remained in a similar magnitude range as mode order increased 

from 3 to 5 (not pictured). These patterns of gain were similar across all leg 

segment angles calculated.  
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Like kinematics, sEMGs also show two typical patterns of responses 

across modes of HTFs. Similar to patterns observed in the trunk segment angle, 

responses of normalized erector spinae (ES) sEMG shown in Figure 12 in blue 

were most abundant in the 0th, 2nd and 4th mode of the HTF. Shown in red in 

Figure 12, gains are higher in the 1st through 3th mode than observed in the 0th 

mode for LG. Patterns of gain are generally the same in modes 1-4. Responses 

in the remaining muscles were similar to LGAS; larger gains were observed in 

the 1st to 4th mode with respect to the 0th mode. RAS was an exception, with few 

responses observed across input frequencies and modes.  

 

Amplitude dependence for both types of visual scene motion 

 Gains decreased with increasing amplitude of scene motion for both types 

of scene motion in segment angles and L1 A-P displacement. Figure 13 shows 

gain ratios significantly different than one, which were typically found at lower 

input frequencies. Across kinematic response variables, there was only a single 

instance of increased gain to visual scene motion upon increasing visual scene 

motion amplitude, which was observed in the shank response to rotating scene 

motion in the 1st mode at the 2.125 Hz input frequency bin. Overall, there are 

more instances of amplitude-dependent changes to gain during rotation 

Figure 12. sEMG HTFs. Gain and phase of HTFs of normalized Erector Spinae (ES) and Lateral 
Gastrocnemius (LG) sEMGs from visual scene velocity.  These data are means across subjects 
in the low amplitude, rotating scene motion condition. Only those bins passing initial statistical 
tests in complex plane are shown (see Methods). Gain and phase of modes 0 through 3 are 
shown in subplots A-D. Value of output frequency (in Hz) is the input frequency added to the 
product of the mode order and gait cycle frequency (see Methods). 
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conditions in the leg segment angles with more dispersion across modes while 

amplitude-dependence in the trunk orientation and L1 displacement are more 

concentrated in the 0TH mode.  

Figures 13A/B/C show how foot, shank and thigh segment angles show 

similar dependencies on changes in rotating scene motion amplitude. These 

three segment angles had similar amounts of amplitude-dependent changes in 

gain spread across HTF modes 0-3 with 8.8(± 3.1), 7.5 (±1.9) and 6.8(±2.2) 

mean across mode instances (# of frequency bins) of reweighting in foot, shank 

and thigh, respectively. At higher modes (4th and 5th), fewer instances of 

amplitude dependence were observed in the thigh compared to lower modes 

while the lower- limb foot and shank segments continued to display amplitude-

dependent relationships.  
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In the trunk segment angle, the majority (27 out of 43 total) of instances of 

amplitude dependence observed in the trunk were in the 0th mode with another 

large portion (12/43) observed in the 4th mode. L1 A-P displacement, which is an 

indicator of whole body motion in the anterior-posterior plane, also had a large 

proportion (22/49) of amplitude dependence in the 0th mode with additional 

Figure 13. Leg Kinematics gain ratios. Ratios of low amplitude gains to high amplitude gains of 
sagittal plane foot segment angle (A), shank segment angle (B), and thigh segment angle(C) in 
translation and rotation conditions. Gain ratios plotted here are those gain ratios which are significantly 
different from 0 (p<.05). The red line denotes a gain ratio of one. Only those bins passing initial 
statistical tests in complex plane could be compared (see Methods). Gain ratios of modes 0 through 5 
are shown in different rows. Value of output frequency (in Hz) is the input frequency added to the 
product of the mode order and gait cycle frequency (see Methods). Significant interactions between 
gain ratios and visual scene motion type are noted with a + above, requiring the ratio of gain ratios to 
be different from 0 and that all four responses at that bin initially different from zero in the complex 
plane (p<.05, see Methods). 
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instances observed in the 2nd (12/49), 3rd (3/49) and 4th(12/49) mode. In contrast 

to trunk orientation, more (28/49) instances of L1 A-P amplitude-dependent 

changes in gain were observed during rotating scene motion than observed 

during translating scene motion.  In sum, trunk orientation and L1 A-P 

displacement have similar dispersion of significant gain ratios across modes with 

more amplitude dependent changes in gain observed in trunk orientation to 

translating scene motion while amplitude dependence in L1 A-P displacement 

responses is more often observed to rotating stimuli. 

 

 
 

Figure 14. Trunk kinematics gain ratios. Ratios of low amplitude gains to high amplitude 
gains of sagittal plane trunk orientation (A)and A-P displacement of the L1 marker (B) in translation 
and rotation conditions. Gain ratios plotted here are those gain ratios which are significantly 
different from 0 (p<.05). The red line denotes a gain ratio of one. Only those bins passing initial 
statistical tests in complex plane could be compared (see Methods). Gain ratios of modes 0 through 
5 are shown in different rows. Value of output frequency (in Hz) is the input frequency added to the 
product of the mode order and gait cycle frequency (see Methods). Significant interactions between 
gain ratios and visual scene motion type are noted with a + above, requiring the ratio of gain ratios 
to be different from 0 and that all four responses at that bin initially different from zero in the 
complex plane (p<.05, see Methods). 
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The interaction of scene motion and amplitude dependency was also 

tested at each frequency bin, and larger amplitude dependencies (gain ratio) of 

one type of scene motion compared to the other is noted with a + symbol in 

Figures 13 and 14. Larger gain ratios reveal that increasing scene-motion 

amplitude caused a proportionally larger decrease in gain for one scene-motion 

type than the other. As seen in Figures 13A and 13B, the frequency bins and 

modes of this interaction are identical for the foot and shank with the exception of 

a greater amplitude dependence of translating scene motion for the shank in the 

5th mode at the -.875 frequency input bin. In 18 of 19 instances, increasing 

scene-motion amplitude caused a proportionally larger decrease in gain to 

rotational scene motion than to translating scene motion. Although this 

interaction was sporadic across modes, there is consistency in the input 

frequency as the larger gain ratio for rotational scene motion was observed 

primarily (16 of 18 instances) at either -.375 or .375 Hz input frequency for the 

segment angles shown in Figure 13. 

 In addition to kinematic response variables, changes in gain due to 

changes in amplitude were also observed in muscle activity (sEMG). As 

observed in Figure 15 and indicative of most muscles recorded, significant gain 

ratios were typically observed in the 1st through 4th modes with rotating scene 

motion. The exception to these trends was the RAS muscle, in which no 

evidence of reweighting was observed for either type of visual scene motion. Like 

kinematics, significant gain ratios in the musculature were observed at input 

frequencies closer to 0. Significant gain ratios of rotating scene motion ranged 
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from 1.26 observed in SOL in the 4th mode with -.125 Hz input frequency to 3.61, 

which was observed in RF at the 4th mode with .375 Hz input frequency. For 

translation, significant gain ratios ranged from 1.27 observed in MG at the 1st  

mode with the .25 Hz input frequency to 5.44, which was observed  in TFL at the 

2nd   mode with the input frequency of 1.125.  Critically, there were no instances 

of gains being higher in a high amplitude condition compared to a low amplitude 

condition. 

 

 

Also seen in Figure 15, interactions of scene motion and amplitude 

dependency were observed for sEMG. Greater increases in gains when 

Figure 15. Muscle activity gain ratios. Ratios of low amplitude gains to high amplitude gains of 
lateral gastrocnemius (A), tibialis anterior (B), semitendinosus (C), rectus femoris (D) and lumbar 
erector spinae (E) in translation and rotation conditions. Gain ratios plotted here are those gain ratios 
which are significantly different from 0 (p<.05). The red line denotes a gain ratio of one. Only those 
bins passing initial statistical tests in the complex plane could be compared (see Methods). Gain ratios 
of modes 0 through 5 are shown in different rows. Value of output frequency (in Hz) is the input 
frequency added to the product of the mode order and gait cycle frequency (see Methods). Significant 
interactions between gain ratios and visual scene motion type are noted with a + above, requiring the 
ratio of gain ratios to be different from 0 and that all four responses at that bin initially different from 
zero in the complex plane (p<.05, see Methods). 
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decreasing visual scene amplitude (gain ratios) were observed during rotational 

scene motion compared to translating scene motion at 25 combinations of input 

frequency and modes in the 15 muscles recorded. In addition to those 

interactions shown in Figure 15 with a +, greater gain ratios to rotational scene 

motion were observed in Gmed (-.25 Hz input frequency in 3rd mode, .375 Hz in 

4th mode), SART (.25 Hz in 4th mode), Gmax (-.25 and .25 in 3rd mode), MG (-.25 

in 1st mode, -.375 in 2nd and 3rd mode) and Sol (-.25 in 1st and 4th mode, .25 in 1st 

and 2nd mode). Similar to kinematics, a large portion (13 of 25) of these 

interaction effects were observed at input frequency of -.375 or .375. There were 

two instances of greater amplitude dependence on translational scene motion; 

these were at the .125 bin of the 1st mode of TA responses (Fig. 15B) and 

the .125 bin of the 3rd mode of Gmax responses. No interactions of reweighting 

based on type of scene motion were observed for RAS, TFL, BF, VMed or Vlat 

muscles.  

 

No evidence for differential amplitude dependence by gait cycle phase 

 

We also tested computed PD-IRFs from these HTFs to investigate if 

conditional effects such as amplitude-dependent reweighting changed across 

phases of the gait cycle. As observed in Figure 16, taking these HTFs into the 

time domain (normalized by the gait cycle) allows visualization of the responses 

dependent on phase of the gait cycle. The phase at which the stimulus occurred 

(stimulus phase) is on the x-axis and the phase at which a response may occur is 
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on the y-axis (normalized response time). Consistent with frequency domain 

responses being more concentrated in the 0th mode, responses in trunk 

orientation to rotating stimuli shown in Figure 16A form a band parallel to 

stimulus onset line indicating a large portion of the overall response to be time-

invariant. Intensity of the PD-IRF on the whole in the high amplitude condition 

appears weaker than observed in the low amplitude condition, which echoes the 

amplitude dependency observed in the HTF analyses. Figure 16B shows the PD-

IRF of LG, showing stimulus phase-dependent responses similar to that 

previously observed with transient ramp stimuli in A-P translation (Logan et al. 

2014) as visual scene perturbations (~.2 on x-axis) elicit changes in activation 

within cycle in the response time of pre-swing (.5 on y-axis). Testing for 

differences between amplitudes at each combination of stimulus phase and 

normalized response time revealed no differences in the response variables in 

Figure 13 in addition to all other kinematics and sEMGs. Evidence for the gait 

cycle phase altering the amplitude dependence was not observed in translation 

conditions either. Significant differences between amplitude conditions at specific 

locations of stimulus phase and normalized response time with the strong FWER 

control used could have provided strong evidence for an amplitude-dependence 

which changes base on gait cycle phase, or even subtask.   
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Discussion 
 

A dependence on amplitude of visual scene motion was observed in the 

responses of multiple segment angles and muscle activations to both rotating 

and translating visual scene motion. The decrease in proportional use of visual 

scene motion as it increased in amplitude was observed in multiple modes at low 

input frequencies, providing substantial evidence that the sensor fusion process 

of sensory reweighting supported in studies of standing postural control (Peterka 

& Benolken 1995; Oie et al. 2002; Mahboobin et al. 2005) is used in walking 

control. When possible to compare, larger reweighting of rotational scene motion 

compared to translational scene motion was observed, suggesting a greater 

Figure 16. Phase-dependent impulse response functions. PD-IRFs from visual scene velocity to 
trunk orientation (A) and normalized LG sEMG (B). Maximum values in the contour plot of both plots 
were dictated by maximum value found across both conditions for each response variable. (p<.05, see 

 

 

 

 

108 
 



reliance on rotational motion cues by the nervous system for locomotive control. 

Finally, transformation of these HTFs in the time domain reveal that this sensory 

reweighting likely does not change based on the phase of the gait cycle when the 

visual scene motion occurs.  To our knowledge, our use of HTFs and PD-IRFs in 

this study has provided the first investigation of sensory reweighting of vision 

during human walking that can be applied to the legs and musculature in addition 

to the trunk. 

 
Sensory reweighting observed in multiple modes 
 

Application of HTFs to human walking has allowed us to investigate 

sensory reweighting and more fully characterize responses in the weakly time-

varying response variables of trunk orientation and whole body translation during 

walking. LTI FRFs have been previously shown to be useful approximations of 

the relationship between visual scene motion and trunk kinematics (Logan et al. 

2010; Anson et al. 2014). LTI FRFs of trunk motion in those studies correspond 

to the responses observed to positive input frequencies in the 0th mode shown in 

Figure 10. Larger magnitude and more consistent responses are observed at the 

0th mode, yet there are still small, significant responses observed at higher 

modes for both trunk orientation and L1 A-P displacement with reweighting 

relationships uncovered with HTFs. In other words, visual scene motion at a 

specific input frequency elicits responses of the trunk at additional frequencies 

beyond the frequency of input. The weakly time-varying nature of these 

responses of the trunk is more fully characterized by the use of HTF over LTI 

FRFs, yet these new findings do not undermine previous work (Logan et al. 
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2010; Anson et al. 2014) as a much larger portion of actual responses and 

reweighting relationships are observed in the 0TH mode. 

In response variables such as leg segment angles and sEMG which 

intrinsically change in magnitude and direction across the phases of the gait 

cycle it was predicted that use of HTFs was critical due to the potential for 

responses to sensory input to vary based on the phase of the gait cycle.  In fact, 

there is a large and growing body of evidence supporting the notion that 

responses in leg segments and muscle activity to input from sensory systems is 

used for function in a phase-dependent manner (e.g., Forssberg et al. 1975; 

Forssberg 1979; Capaday and Stein 1986; Duysens et al. 1990; Patla 1991; 

Hollands and Marple-Horvat 1996; Zehr and Stein 1999; Bent et al. 2004). For 

vision specifically, a single previous study (Logan et al. 2010) investigated 

responses of leg motion to broad-band visual scene motion. Cross-covariance 

analysis revealed a phase-dependent response in the thigh segment to vision 

which effectively disallowed the use of LTI FRFs for investigating input-output 

relationships of vision to leg segments.  As the 1st mode and greater in Figures 

11 and 12 show the majority of responses of leg kinematics and muscle activity, 

it is clear that an analysis was needed that takes into account responses at an 

output frequency that is different from the input frequency of perturbation. More 

instances of reweighting were observed in these higher modes than observed in 

the 0th mode in the leg segments, as seen in Figure 13. Finally, the sensory 

reweighting observed in the leg muscles in Figure 15 would not have been 

observed with the LTI FRF analysis used in previous studies of amplitude-
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dependent changes in muscle responses in standing postural control (Kiemel et 

al. 2011; Logan et al. 2014b). 

Few studies have investigated sensory reweighting as a process for 

locomotive control. Also using virtual scene motion, Warren and colleagues 

(1996) have shown that sinusoidal stimuli with and without a constant flow field 

show decreased “excursion gains” of a marker placed at the neck to increased 

amplitude (Warren et al. 1996). Our study expands on that study as we now 

show that amplitude-dependent changes are ubiquitous in the kinematics and 

muscle activations of multiple segments. The notion of reweighting was not 

discussed by Warren et al (1996), but has been supported in more recent work in 

steering control. Deviations in Center of mass (CoM) displacement in overground 

walking elicited by a head mounted display are larger in older adults compared to 

younger adults, reflecting a poor ability to downweight erroneous visual cues for 

locomotive steering (Berard et al. 2012).   

Studies of interactions between sensory systems have also provided 

further support that sensory reweighting is used for locomotive control. Evidence 

for intersensory reweighting has been provided by Varraine and colleagues 

(2002) in the form of a higher PSD of walking velocity at a visual stimulus 

frequency during a combined visual and mechanical perturbation that provided 

additional, somatosensory input at the foot compared to a visual stimulus alone.  

Deshpande and Patla (2005) used prism goggles and galvanic vestibular 

stimulation (GVS) to show an increased effect of GVS on CoM displacement in 

the early approach to a target followed by a dominance of vision for CoM 
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displacement later in approach (Deshpande and Patla, 2005). Although instances 

of sensory reweighting studies are few during walking, these studies support the 

nervous system’s flexible use of sensory input for function. Furthermore, future 

intersensory reweighting studies which make use of broad-band sensory stimuli 

and HTF methods are supported by these previous studies and are logical 

extensions of our initial study of reweighting in a single sensory system. 

 
Subtask control  
 
 Rotating visual cues inform the nervous system that a change in the 

body’s orientation has occurred while translating visual cues inform that a change 

in position has occurred. It was expected that the nervous system would use 

visual cues in a subtask dependent manner. That is, greater reweighting of 

rotational cues would be used by trunk orientation for the subtask of orientation 

to vertical while a greater reweighting of translation cues would be used by whole 

body translation for maintaining position on the treadmill. A differential emphasis 

on processing of scene motion based on kinematic variable was not observed as 

predicted. When possible to compare, larger reweighting of rotational scene 

motion compared to translational scene motion was observed, suggesting a 

greater reliance on rotational motion cues by the nervous system for locomotive 

control. The emphasis on type of scene motion was not observed in an 

overwhelming majority for either response variable, however, leaving how 

sensory reweighting changes based on subtask, if at all, an open question.  

Perhaps a more nuanced view of how to determine the use of sensory 

reweighting for specific subtasks is needed. One potential route could be for an 
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emphasis on common input frequencies which yield significant reweighting 

relationships. In this initial study of sensory reweighting during walking there is at 

least one speculative observation with regards to subtask control that can be 

made. Almost all amplitude by scene motion interaction effects observed favor 

reweighting orientation cues over translation cues and the majority of these 

interaction effects are observed at the .375 Hz input frequency bin. This suggests 

that this input frequency range is a “sweet spot” for neural control that makes use 

of rotating visual cues for upright postural control during walking. Although our 

focus is typically on trunk orientation when discussing the subtask of 

maintenance of postural control upright during walking (Logan et al. 2010; Logan 

et al. 2014; Anson et al. 2014), combinations of muscle activations and leg 

segment angles could contribute to this subtask as well. One could speculate 

that processing of orientation cues is emphasized across the segments and 

musculature when frequencies of stimuli occur at this specific frequency, and it is 

possible that responses are coordinated across the segments for decreasing the 

use (gain) of more destabilizing, larger amplitude rotational cues. 

Likewise, transformation of these responses into the time domain to 

investigate differential reweighting based on gait cycle phase did not provide 

support for changes in sensory reweighting due to subtask.  Phase-dependent 

responses to visual scene motion were observed in Figure 16 as in a previous 

study (Logan et al. 2014), which allow characterization of muscular and kinematic 

responses to vision into subtasks performed during walking. However, no 

differences at specific combinations of stimulus phase and normalized response 
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time were observed for any response variable between low and high amplitude 

conditions. These findings support the conclusion that all subtasks of human 

walking use sensory reweighting to inhibit the use of erroneous or incongruent 

visual information and can be observed throughout the kinematics and muscle 

activity enacting those subtasks. 
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Chapter 5: Fast and slow time scales for control for human walking 
 

Introduction 

Virtual scene motion has been used in treadmill walking experiments to 

provide insight into how visual information is used in human locomotion (Warren 

et al. 1996; Prokop et al. 1996). Recent studies have also made use of virtual 

visual environments to gain a better understanding of the neural control of human 

walking (O’connor & Kuo, 2009; O’connor et al. 2012). By imposing variability in 

the walking behavior, visual scene perturbations revealed that control of the 

body’s motion in the frontal plane is a much more active, neural process 

compared to the sagittal plane (O’connor & Kuo, 2009), and that increased 

energy expenditure is correlated with the increased control effort (O’connor et al. 

2012). Thus, visual perturbations can be used to understand the control of 

walking as probes to control in addition to being used to understand the role of 

vision per se.  

Our goal in this work was to learn about the control of human walking by 

probing the underlying functions, or subtasks, of walking with visual scene motion 

perturbations. Continuous visual scene motion has been shown to enact whole 

body translations of subjects walking on a treadmill (Warren et al. 1996; Logan et 

al. 2010). To perform the subtask of positional maintenance on the treadmill 

during these whole body translations to visual scene perturbations, subjects have 

been shown to have small, but significant, advances or delays in the timing of 

gait cycle phase (Kiemel et al. 2010). With a limit cycle approximation of the 

response variables of treadmill walking, there can be deviations away from the 
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limit cycle or there can be a shortening/ lengthening of the cycle period induced 

by the perturbation. This shortening/ lengthening of the gait cycle is deemed 

“phase resetting”.  Thus, subjects in these experiments “reset” the phase, or shift 

the timing of the gait cycle, to ensure that the body stays on the treadmill. 

Such phase-resetting to a visual perturbation shows how a sensory probe 

reveals a control strategy for the subtask of positional maintenance on the 

treadmill. Modeling approaches have supported phase-resetting as a strategy 

employed for stable adjustments in speed control following perturbations as it 

has improved convergence back to the locomotive cycle after external force 

disturbances (Yamasaki et al. 2003; Aoi et al. 2008), improved phase estimation 

(Nakanishi et al. 2004) and kept center of mass velocity within acceptable ranges 

during force disturbances, increased trunk mass or changes in walking slope (Aoi 

et al. 2010).Understanding how the nervous system controls walking where 

relative position needs to be maintained simultaneously with other subtasks is 

imperative for understanding situations such as how one maintains position and 

avoids collisions with others within a crowd while simultaneously navigating his or 

herself to a desired location.    

Here we imposed experimental constraints on the nervous system to gain 

insight into the control strategy for positional maintenance. Walking was 

constrained in two ways. First, treadmill walking requires that subjects do not fall 

off the treadmill so they must maintain the same average speed as the treadmill 

over the course of the trial. A second constraint used was dictating cadence on 

the treadmill with a metronome. By limiting the temporal variability in taking a 
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step (step period), we predicted that: 1) the nervous system would not employ a 

phase-resetting strategy in response to perturbations; and 2) vision would be less 

important for the subtask of speed control.  

 

Methods and Materials 

Subjects 

Twenty healthy subjects [11 males and 9 females, between 20 and 27 yrs 

of age, 68.2 ± 9.5 kg (mean ±SD)] participated in this study. All subjects were 

self-reported to have normal (or corrected to normal) vision. The studies 

conformed to the Declaration of Helsinki, and informed consent was obtained 

from all participants according to the procedures of the Institutional Review Board 

at the University of Maryland, College Park. 

 

Apparatus 

 

Virtual reality environment 

Subjects walked at 5 km h-1 on a treadmill (Cybex Trotter 900T, Cybex 

International, Inc., USA)  surrounded by three screens (width, 3.05 m; height, 

2.44 m; Fakespace, USA), one in front of the subject and one on either side. 

Subjects wore goggles with occluded top shield to prevent them from seeing 

motion capture cameras mounted above the screen in front of them. Visual 

displays were rear projected to the screens at a frame rate of 60 Hz by JVC 

projectors (model DLA-M15U; Victor Company of Japan). CaveLib software 

(Mechdyne, USA) was used to generate a virtual moving visual scene consisting 
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of three walls attached at right angles that coincide with the screens when the 

visual scene is not moving. Each wall consisted of 500 non-overlapping white 

small triangles (3.4 x 3.4 x 3.0 cm) with random positions and orientations on a 

black background. To reduce aliasing effects in the fovea region, no triangles 

were displayed on the front wall within a 30- cm-radius circular region directly in 

front of the participant’s eyes. The display on each screen was varied with time to 

simulate sagittal plane rotation of the visual scene about the axis through the 

subject’s ankles with a focus of expansion at eye level, with the assumption that 

the subject was 1 m from the screen. The visual signals were created offline 

(Matlab, Mathworks, USA) and were generated via Labview (National 

Instruments, USA) on a desktop computer (Precision T5500, Dell, USA).  

 

Visual scene signals 

Visual signals were a filtered white noise signal used to simulate rotating 

scene motion in the sagittal plane. For each trial of each subject, a different seed 

was used to generate a white noise signal using a random number generator.  

Signals had a one-sided spectral density of 600 deg2/Hz. These signals were 

then filtered using a first-order Butterworth low-pass filter with a cutoff of .02 Hz 

and an eighth-order Butterworth low-pass filter of 5 Hz. In doing so, power of 

scene motion was smoothed and limited to lower frequencies. Across subjects, 

these driving signals had an average root mean square error (RMSE) of 4.08 deg 

and 6.89 deg/s. Signals were generated to be 250 s in length with the initial and 

final 5 s of each signal multiplied by increasing and decreasing ramps, 
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respectively, to insure that the value of the signal at the beginning and end of the 

trial would be 0. Only the middle 240 s of each trial was analyzed. A 

positive/negative signal corresponded to a forward/backward rotation into the 

screen from position 0. Visual display generation and data collection software 

were synchronized via an external trigger.  

 

Metronome 

Our interest in using a metronome here is for auditory entrainment of the 

step period to diminish phase resetting. The metronome was broadcast through 

two satellite speakers (Altec Lansing, USA) via Labview and synched with data 

collection software. The two satellite speakers were placed two meters behind 

the treadmill, and had a sound intensity of approximately 75 decibels (verified 

with sound level meter).  A 300 Hz cosine wave was amplitude modulated by a 

square wave to yield a beats per minute (bpm) metronome signal specific to each 

subject (see Procedures). The average ±S.D. bpm used in this study was 

116.6±4.8 bpm. 

   

Kinematics 

Body kinematics were measured using a ten camera VICON-MX motion 

analysis system (VICON, Inc, Oxford, UK). Reflective markers (diameter, 1.4 cm) 

were placed on the right and left sides of the body at external landmarks 

corresponding to: base of the 5th metatarsal, posterior calcaneus (heel), lateral 

malleolus (ankle), lateral femoral condyle (knee), greater trochanter (hip), 
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anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), iliac 

crest, superior acromion process (shoulder), mastoid process (head) and frontal 

eminence (head). Additionally, markers were placed at the mediolateral center of 

the back of the head and the midline of the spine at the level of T1, T7 and L1 

vertebrae. All markers were attached at the skin of these bony prominences 

except those placed on the shoe at the 5th metatarsal and heel. All kinematic 

data were collected at 120 Hz. 

Our analysis focuses on the leg and trunk segments as well as whole-

body sagittal plane displacements. Anterior-posterior (A/P, sagittal plane) foot, 

shank and thigh segment angles relative to the vertical were computed from 

angles formed by the fifth metatarsal to ankle, ankle to knee, and knee to hip with 

the most inferior point as the origin. Trunk orientation relative to the vertical in the 

A/P plane will be computed as the angle formed by the L1 to T1 markers. Whole-

body sagittal plane displacement was approximated as the displacement of L1 in 

the sagittal plane. Trunk orientation relative to the vertical in the A/P plane was 

computed as the angle formed by the L1 to T1 markers. 

 

Muscle Activity (sEMG) 

Muscular activity of the right leg and trunk was measured using surface 

electromyographic (sEMG) recordings. Recordings of the following sixteen 

muscles were made: tibialis anterior (TA), gastrocnemius lateralis (LG), 

gastrocnemius medialis (MG), soleus (Sol), vastus medialis (Vmed), vastus 

lateralis (Vlat), rectus femoris (RF), sartorius (SART), tensor fascia latae (TFL), 
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biceps femoris (BF, long head), semitendinosus (ST), gluteus maximus (GM), 

gluteus medius (Gmed), erector spinae (ESL, recorded at L1-L2), anterior deltoid 

(ADELT) and posterior deltoid (PDELT). Electrodes were positioned at the 

muscle belly with placement carefully chosen to minimize cross-talk (Cappellini et 

al. 2006). Recording sites were shaved, lightly abraded, and cleaned with 

isopropyl alcohol prior to electrode application. The sEMG data were recorded at 

2160 Hz using the wireless TRIGNO system (DELSYS, USA). This recording 

system has built in bandwidth of 20–450 Hz and gain of 909 V/V. Using Matlab, 

these signals were high-pass filtered using a zero-lag forward-backward cascade 

of a 4th order Butterworth filter with a 20-Hz cutoff frequency, full-wave rectified, 

and then low-pass filtered with a zero-lag forward-backward cascade of a 4th 

order Butterworth filter with a 10-Hz cutoff frequency. 

 

Procedures 

 Prior to experimentation, subjects experienced a static visual display at 

the experimental locomotion speed. An experimenter was always behind the 

treadmill in close proximity to the subject to ensure safety in case of falling (which 

never occurred). During this period subjects selected their preferred cadence (in 

bpm) using a single iteration of a step up-step down staircase procedure with a 

metronome software application (Mobile Metronome). During the Metronome 

condition subjects were instructed to walk comfortably and “match their heel 

strikes with the metronome beat”. After selecting the preferred bpm, the software 
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application was no longer used as the appropriate bpm was relayed via speakers 

placed behind the subject (see Metronome above). 

Subjects began each experimental trial by looking straight ahead at the 

visual display. Once they were ready, the experimenter initiated treadmill 

movement for approximately 30 seconds for the subject to reach steady-state. At 

this point, the subject would declare if he or she was ready for the trial to begin. 

The experimenter then initiated data acquisition/scene motion/metronome (in 

Metronome trials) with variable delays to avoid start-up effects. Subjects were 

reminded prior to each Metronome trial to ““match their heel strikes with the 

metronome beat” and prior to each No Metronome trial they were instructed to 

“walk comfortably”.  Each trial was 250 seconds in duration with a rest of at least 

60 seconds between trials. The experimental design consisted of two conditions 

of Metronome or No Metronome presented in randomized blocks. Visual scene 

motion occurred in all trials. Subjects were presented with seven trials of the 

Metronome condition and six trials of the No Metronome trial. A Metronome 

condition was always the first trial and data from this trial was discarded for all 

subjects. Some subjects found this first trial with the metronome difficult to 

perform at the beginning of the trial, but these subjects did not report difficulty in 

performing the experiment after the beginning of this first Metronome trial. 

 
Data Analysis  
 
Metronome Following 
 
 Analog recordings of the metronome sound wave synchronized with 

kinematic data collection allowed us to determine if a subject was able to follow 
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the metronome. Heel strike (HS) was determined as successive minima of each 

heel marker, and error from the metronome beat was measured as deviations of 

successive heel strikes from onset of successive metronome beats in metronome 

time (using subject-specific bpm). To be a follower, subjects had to maintain their 

error from the metronome within ±.5 metronome periods for the majority of the 

Metronome trials (e.g., 4 of 6).    

 
Phase-dependent impulse response functions  
 
 Here we describe the analysis steps used to compute phase-dependent 

impulse response function (PD-IRFs). A fuller description with equations and 

expanded motivation can be found in the APPENDIX.  The goal of the analysis is 

to describe the effect of u(t), visual scene velocity, on y(t), a kinematic or sEMG 

response variable. The majority of results presented in this chapter are 

calculated in steps 5 and 6 as the full PD-IRF and the phase PD-IRF.  

Computing the full PD-IRF consists of six steps:  

1. Approximate phase. First we compute heel-strike times 𝑡𝑡𝑘𝑘 (𝑘𝑘 =

1, . . . ,𝐾𝐾) for a reference leg. Then we compute 𝑇𝑇�, the mean of the stride 

times 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘  (𝑘𝑘 = 1, . . . ,𝐾𝐾 − 1), and compute the estimated gait 

frequency as 𝑓𝑓0 = 1/𝑇𝑇�.   Next we define a discontinuous approximation of 

phase as 𝜃𝜃d(𝑡𝑡) = 𝑘𝑘 + 𝑓𝑓0(𝑡𝑡 − 𝑡𝑡𝑘𝑘) for 𝑡𝑡𝑘𝑘 ≤ 𝑡𝑡 < 𝑡𝑡𝑘𝑘+1.  To obtain a 

continuously-differentiable approximation of phase, 𝜃𝜃(𝑡𝑡), we apply a 

second-order low-pass filter to 𝜃𝜃d(𝑡𝑡): 

 �̈�𝜃(𝑡𝑡) + 2𝑑𝑑(�̇�𝜃(𝑡𝑡) − 𝑓𝑓0) + 𝑑𝑑2𝜃𝜃(𝑡𝑡) = 𝑑𝑑2𝜃𝜃d(𝑡𝑡). 
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Note that in the absence of perturbations, approximate phase 𝜃𝜃(𝑡𝑡) 

matches the usual definition of the phase of the gait cycle. 

 

2.  Replace time with approximate phase. Let p be the inverse of θ: 

𝑝𝑝(𝜃𝜃(𝑡𝑡)) = 𝑡𝑡 and 𝜃𝜃(𝑝𝑝(𝜗𝜗)) = 𝜗𝜗.  Let approximate phase 𝜗𝜗 take the place of 

time 𝑡𝑡 = 𝑝𝑝(𝜗𝜗) as the independent variable and compute 𝑢𝑢�(𝜗𝜗) = 𝑢𝑢(𝑝𝑝(𝜗𝜗)),  

𝑦𝑦�(𝜗𝜗) = 𝑦𝑦(𝑝𝑝(𝜗𝜗)), and �̃�𝑑(𝜗𝜗) = �̇�𝜃�𝑝𝑝(𝜗𝜗)�/𝑓𝑓0.   (We use the symbol 𝜗𝜗 to 

distinguish approximate phase as an independent variable from 

approximate phase as a function of time.)   

 

3.  Compute output variables for HTF analysis. For each 𝜗𝜗, let  𝑦𝑦0(𝜗𝜗) 

be the mean of 𝑦𝑦�(𝜗𝜗).  Then compute the deviations 𝑦𝑦�(1)(𝜗𝜗) = 𝑦𝑦�(𝜗𝜗) −

 𝑦𝑦0(𝜗𝜗) and �̃�𝑑(1)(𝜗𝜗) = �̃�𝑑(𝜗𝜗) − 1.    

 

4. Compute transient and phase-derivative HTFs. To account for shifts 

in phase that affect all response variables, both a transient and phase-

derivative HTF are computed. We compute the transient HTF from 𝑢𝑢�(𝜗𝜗) to 

𝑦𝑦�(1)(𝜗𝜗), denoted 𝐻𝐻�𝑦𝑦 , and the phase-derivative HTF from 𝑢𝑢�(𝜗𝜗) to �̃�𝑑(1)(𝜗𝜗), 

denoted 𝐻𝐻�𝑑𝑑, as follows. Let 𝑧𝑧(𝜗𝜗) be either 𝑦𝑦�(1)(𝜗𝜗) or �̃�𝑑(1)(𝜗𝜗).  Compute the 

power spectral density (PSD) 𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1) and the double-frequency cross-

spectral density (CSD) 𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓2) (Bendat & Piersol 2000). The double-

frequency CSD describes the relationship between the input signal 𝑢𝑢�(𝜗𝜗) at 

input frequency 𝑓𝑓1 and the output signal 𝑧𝑧(𝜗𝜗) at output frequency 𝑓𝑓2.  The 
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PSD and CSD are computed using Welch’s method with 40-cycle Hanning 

windows (aligned to start at an integer value of 𝜗𝜗) and 50% overlap. The 

k-th mode of the HTF 𝐻𝐻𝑧𝑧 from 𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) is computed as  𝐻𝐻𝑧𝑧,𝑘𝑘(𝑓𝑓1) =

𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓1 + 𝑘𝑘𝑓𝑓0)/𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1).  Note that 𝐻𝐻𝑧𝑧 is a function of both the mode index 

k and the input frequency 𝑓𝑓1. 

5. Compute transient and phase IRFs.  For an LTP mapping from 𝑢𝑢�(𝜗𝜗) 

to 𝑧𝑧(𝜗𝜗), its HTF 𝐻𝐻𝑧𝑧 can be converted to its phase-dependent IRF ℎ𝑧𝑧 using 

a Fourier series constructed from an inverse Fourier transform of each 

mode of the HTF.  The IRF ℎ𝑧𝑧 is a function of response phase 𝜗𝜗r and 

stimulus phase 𝜗𝜗s and can be used to represent the LTP mapping from 

𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) as 

𝑧𝑧(𝜗𝜗r) = � ℎ𝑧𝑧(𝜗𝜗r,𝜗𝜗s) 𝑢𝑢�(𝜗𝜗s)𝑑𝑑𝜗𝜗s

𝜗𝜗r

−∞
. 

Using this procedure, compute the transient PD-IRF ℎ�𝑦𝑦 and phase-

derivative IRF ℎ�𝑑𝑑 from 𝐻𝐻�𝑦𝑦 and 𝐻𝐻�𝑑𝑑, respectively. Then compute the phase 

PD-IRF by integrating the phase-derivative IRF: 

ℎ𝜃𝜃(𝜗𝜗r,𝜗𝜗s) = � ℎ�𝑑𝑑(𝜏𝜏,𝜗𝜗s)𝑑𝑑𝜏𝜏
𝜗𝜗r

𝜗𝜗s

. 

6. Compute full PD-IRFs. The PD-IRFs ℎ�𝑦𝑦 and ℎ𝜃𝜃  can be combined to 

obtain the full PD-IRF from u(t) to  y(t) that is a function of response time tr 

and stimulus time ts. Here tr and ts are expressed in normalized time: time 

divided by the mean gait period and aligned so that stimulus time 𝑡𝑡s 

equals true stimulus phase. 
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Steps 1-4 were computed on a trial by trial basis with averages of PSDs 

and CSDs taken across trials for each condition of each subject for completion of 

the HTF analysis and steps 5-6 to compute the PD-IRFs. To account for and 

characterize phase-resetting between the two conditions, the phase PD-IRF 

calculated in step 5 for each condition is presented in Figure 20.  The full PD-

IRFs in Figures 18, 19 and 21 are computed in step 6 above and are the sum of 

the transient PD-IRF computed for each response variable and the phase PD-

IRF. In the remaining text, the terms PD-IRF and phase PD-IRF are used for the 

full PD-IRF and phase PD-IRF defined above. 

Statistics 

 Statistical tests between No Metronome and Metronome conditions of 

these PD-IRFs of all response variables were performed at each combination of 

stimulus phase and normalized response time. Permutation tests (1,000, Manly 

1997) based on the t-statistic between the two conditions at all combinations of 

stimulus phase and normalized response time were tested simultaneously and 

family-wise error rate (FWER) was controlled for each response variable. The 

tmax method (Blair & Karnisky 1993) was used to adjust the p-value for each 

combination of stimulus phase and normalized response time with alpha = .05.  

These tests were performed in Matlab using functions written by Groppe (Groppe 

et al. 2011). These tests are non-parametric and suited for this study as FWER 

control is strong compared to other methods (e.g. cluster-based permutation 

testing, false discovery rate) allowing us to determine where effects are reliable 

(Groppe et al. 2011) in the PD-IRFS. 
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Results 

 

The main focus of this experiment was to investigate if phase-resetting 

due to visual scene motion was altered by the Metronome condition. A preceding 

concern, however, was to ensure that subjects were actually following the 

metronome during the Metronome condition. As can be seen in Figure 17 there 

was a clear difference in deviations of step timing with respect to metronome 

phase between subjects: there were those who were able to follow the 

metronome and those who were not. 

Figure 17A shows a single subject whose deviations in step timing were 

well below the “following” threshold (see Methods). His or her mean deviation 

was observed to be .04 metronome beats after averaging across trials and steps. 

Figure 17. Exemplar deviations in step timing from metronome. A: Separate trials of a 
single subject that was able to minimize the difference of his or her step timing from the timing 
of the metronome within one metronome period. B: Separate trials of a single subject that was 
not able to minimize the difference of his or her step timing from the timing of the metronome 
within one metronome period. Different color traces represent different trials. 1 or -1 on the y-
axis would dictate the subject was either one metronome step period ahead or one metronome 
step period behind the metronome beat, respectively. 
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Figure 17B shows a subject who crosses the threshold of non-following multiple 

times on multiple Metronome trials. This subject was considered a non-follower 

and had a mean deviation of -.95 metronome beats across trials and steps.  

The majority (>3/6) of trials in 13 of the 20 subjects followed the 

metronome in a similar manner to that observed in Figure 17A.  The remaining 7 

subjects had a mean overall deviation of -.76 and did not remain within the 

following margin of 1 beat period throughout the majority of trials. The overall 

mean deviation in step period of the13 subjects who always remained within the 

following margin of 1 beat period was .04 across subjects.  As these 13 subjects 

were able to follow the metronome during the Metronome condition, we focus on 

their data in the remaining analysis. 

 

 

Figure 18. Foot segment and soleus PD-IRFs. PD-IRFs from visual scene velocity to foot 
segment angle (A) and rectified soleus sEMG (B). Maximum values in the contour plot of both plots 
were dictated by maximum value found across both conditions for each response variable.  
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As observed in Figure 18, differences in the PD-IRFs between conditions 

is suggested in several response variables. In the No Metronome condition, 

rectified soleus sEMG and foot angle show clear bands in the PD-IRFS at 

normalized response times specific to each response variable that demonstrate 

kinematic and muscular features of phase resetting. These horizontal bands 

observed late in the 3rd cycle of normalized response time are markedly 

diminished in the No Metronome condition.  

 

 

Statistical tests of these PD-IRFs reveal, however, that only lower limb 

kinematics and phase PD-IRFs are different between the two conditions, as 

Figure 19. Foot segment PD-IRFs. PD-IRFs from visual scene velocity to foot segment angle in 
Metronome (A) and No Metronome (B) conditions. Maximum values in the contour plot of both plots 
were dictated by maximum value found across both conditions.  Asterisks plotted in C correspond to a 
significant difference between A and B at the same plotted combination of stimulus phase and 
normalized response time. 
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observed in Figure 19C for the foot segment angle. Asterisks denote the phase 

locations, or specific combination of stimulus phase and normalized response 

time, of significant differences between the two conditions in the foot segment 

angle.  As seen in Figure 19C, significant differences between conditions are 

observed in stimulus phases centered around heel strikes (e.g. 0-12%, 44-62% 

and 94-100% at normalized response time of 3.92) and at normalized response 

times occurring during pre-swing (50-60%) and the entire swing phase.  Similar 

patterns of significant differences were observed for shank and thigh segment 

angles. 

 

 

 

 

Figure 20. Phase PD-IRFs. Phase PD-IRFs from visual scene velocity to estimated phase in 
Metronome (A) and No Metronome (B) conditions. Maximum values in the contour plot of both 
plots were dictated by maximum value found across both conditions.  Asterisks plotted in C 
correspond to a significant difference between A and B at the same plotted combination of 
stimulus phase and normalized response time. 

 

 

 

 

 

130 
 



Phase PD-IRFs of visual scene motion shown in Figure 20 show how the 

actual measured change in phase due to change in visual scene motion is 

eliminated in the Metronome condition. Figure 20A shows a persistent phase 

advance at all stimulus phases Asterisks at specific locations in Figure 20C 

demonstrate that the phase shift due to the visual scene motion is eliminated in 

the Metronome condition at several stimulus phases.  

To observe how this elimination in phase-resetting affects positional 

maintenance on the treadmill, anterior-posterior (A-P) motion of L1 as an 

indicator of whole-body motion on the treadmill is shown in Figure 21. Contour 

plots in both conditions show a red intensity at all stimulus phases, with 

maximum responses observed at similar combinations of stimulus phase and 

normalized response time; 1.52 cm/cms-1 for No Metronome condition at stimulus 

phase .74 and response time 3.02 and 1.53 cm/cms-1 for Metronome condition at 

stimulus phase .78 and response time 3.02. These plots indicate motion of the 

body in the same direction as the visual scene motion that is equally persistent 

across the two conditions. Interestingly, Figure 21C shows that there are no 

phase locations showing a difference between conditions even though there is a 

clear suppression in persistent phase resetting observed in Figure 20.  
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To investigate the relationship between phase-resetting and positional 

maintenance further, Figure 22 plots the phase PD-IRF and PD-IRF of L1 A-P 

motion at the 14% stimulus phase. Figure 22A shows a phase advance due to 

visual scene motion occurring in both Metronome and No Metronome conditions 

beginning in the first cycle after the stimulus. Yet, the phase advance in the 

Metronome condition does not persist. The phase PD-IRF response abruptly 

drops off in the Metronome condition while it plateaus in the No Metronome 

condition.   Comparison tests (p<.05) reveal differences between conditions 

beginning 3.66 cycles from stimulus onset. In contrast, Figure 22B shows that the 

Figure 21.  A-P L1 displacement PD-IRFs. PD-IRFs from visual scene velocity to Anterior 
Posterior Displacement of L1 in Metronome (A) and No Metronome (B) conditions. Maximum 
values in the contour plot of both plots were dictated by maximum value found across both 
conditions.  Asterisks plotted in C correspond to a significant difference between A and B at the 
same plotted combination of stimulus phase and normalized response time. 
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indicator of whole-body translation on the treadmill (A-P L1 displacement) is not 

different between the Metronome and No Metronome condition. 

 In sum, a phase advance due to visual scene motion was initiated within 

the first cycle in both conditions, and plateaued at approximately 3-4 gait cycles 

from perturbation onset. This phase advance was suppressed in the Metronome 

condition beginning late in the 3rd gait cycle denoted by the diminishing of 

persistent phase-resetting. Responses of A-P L1 displacement were not changed 

between the two conditions, however, indicating similar positional maintenance 

even though phase-resetting properties were clearly different.  

 
  

 
 
 

Figure 22. Impulse response functions of estimated phase and L1 displacement. Impulse 
response functions of estimated phase (A) and L1 displacement (B) at the 14% stimulus phase in 
both No Metronome and Metronome conditions. Error bar is ± s.e.m. Asterisks denote normalized 
response times where a difference was observed between Metronome and No Metronome 
condition (p<.05, see Methods). 
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Discussion 
 

In this study we used constraints on the locomotive behavior of walking 

coupled with perturbations of virtual scene motion to investigate how the subtask 

of positional maintenance is controlled on the treadmill. As hypothesized, use of 

a metronome to dictate cadence diminished subjects’ use of phase-resetting to 

maintain position on the treadmill. Interestingly, both change in position due to 

visual scene motion and phase-resetting due to visual scene motion were not 

initially different between conditions. As time progressed from the perturbation, 

the phase advance due to visual scene motion differed between the two 

conditions while the shift in the body’s position did not. In sum, maintaining 

position on the treadmill was linked to phase resetting on a short time scale while 

being unlinked on a longer time scale. 

Two time scales for control 

The separation of phase-resetting and positional maintenance reveals two 

timescales of control for human locomotion: 1) a fast control initiated in the first 

cycle after the perturbation cycle that serves the subtask of speed control (i.e., 

positional maintenance on the treadmill) and 2) a slow control initiated several 

cycles after a perturbation to suppress phase shifts when maintaining a fixed 

cadence.  

Visual scene motion initiates changes in positional maintenance and 

phase-resetting on a similar time scale. As seen in Figure 21, the initiation of 

changes in whole body positioning on the treadmill is approximately parallel with 

the line that signifies onset of visual scene perturbations, with a delay of 
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approximately one cycle. Phase-resetting is enacted in the same post-

perturbation cycle as a strategy for correcting the changes in position of the body 

brought on by changes in visual scene motion.  This can be visualized in the 

horizontal bands of PD-IRFs presented in Figures 18 and 19 as visual scene 

motion alters kinematic trajectories and sEMG in a similar manner during the first 

full cycle (1-2 in normalized response time) after the visual perturbation. 

Furthermore, changes in the phase PD-IRF shown in Figure 22 show how a 

phase advance is clearly initiated during this time frame. 

We hypothesized that the use of a metronome would significantly diminish 

or remove phase-resetting initiated by visual scene motion. Unexpectedly, as 

seen in Figure 22a, phase-resetting still occurred during the Metronome 

condition, and did not appreciably diminish until late in the third full cycle after the 

cycle in which the visual perturbation occurred. The nervous system does not 

continue to coordinate this change in phase-resetting with whole body motion, 

indicating a different control scheme on a different time scale several cycles 

removed from the perturbation. 

Making use of a treadmill to constrain subjects’ speed has been used 

previously to investigate walking control, and has provided insight into timescales 

of control. Dingwell and colleagues (2010) have found that subjects sub-optimally 

overcorrect deviations in position on the treadmill to maintain stride speed (SS) 

through stride to stride alterations in a combination of stride length (SL) and 

stride period (SP) forming a goal equivalent manifold (GEM). Using detrended 

fluctuation analysis (DFA), goal relevant deviations away from the GEM were 
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found to be corrected quickly (anti-persistent) on a stride to stride basis while 

goal equivalent deviations along the GEM were found to persist for several 

strides (Dingwell et al. 2010).  

Terrier and Deriaz (2012) found that adding a metronome to treadmill 

walking made all gait parameters (SS,SL,SP) anti-persistent. These authors 

argue that cross-regulation of SL and SP occurred which led to an absence of 

redundancy among the gait parameters. In accordance with Dingwell and 

colleague’s (2010) proposal of the GEM for SS, dictating both SP with 

metronome and SS with treadmill will indirectly cause control of SL for subjects to 

accomplish the goal of staying on the treadmill (Terrier & Deriaz 2012). In a 

related study, Terrier (2012) found that the Metronome condition yielded a low 

non-stationarity Index (NSI) of SS,SP and SL, which confirmed low consistency 

in local averages. Terrier concluded that the locally consistent means (low NSI) 

and statistical anti-persistence observed previously result from a “lost” degree of 

freedom; there is no longer redundancy between step length and step period for 

flexible control (Terrier 2012).  

Echoing Dingwell, Terrier (2012) proposed that gait control has two 

modes: a long-range, fractal-like mode for a “steady gait” across many strides 

and a more conscious, tightly controlled mode indicated by anti-persistent 

patterns in short-range stride to stride corrections (Terrier 2012). To further 

support this claim, a follow-up experiment showed that adding a metronome to 

treadmill walking enhanced long term (4-10 strides from perturbation, as in 

Dingwell & Cusamano 2000) local dynamic stability (LDS) of the center of 
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pressure while having comparatively smaller effects on short term (up to one 

step) LDS (Terrier & Deriaz 2013). 

In our study visual input shifted both the body’s position and gait cycle 

phase on a short time scale while use of metronome interfered with the effect of 

vision on gait cycle phase on a longer time scale. Visual scene motion was used 

as a probe here, and its shifting of cycle phase was not immediately inhibited by 

the metronome condition. In common with the work of Terrier and Deriaz (2013), 

the metronome condition in our study had an effect on control in the long term 

and not in the short term. The secondary task of walking to a fixed cadence was 

given a lower priority by the nervous system, and not allowed to interfere with the 

primary task of positional maintenance for several cycles. In line with the ideas of 

Dingwell and colleagues (2010), we can speculate that the nervous system 

allowed deviations due to the metronome task as long as it assisted with the 

primary positional maintenance task, and later allowing correction for control. 

This is informative for how multiple functions are performed during walking; 

suggesting that the alterations due to less important, secondary tasks (e.g. 

imposed marching) which interfere with primary subtasks of walking will be 

executed on longer time scales. 

 

Clinical implications and future directions  

Our use of a perturbation to walking in conjunction with auditory 

metronome could inform the growing use of a metronome as a rhythmic auditory 

cue (RAC) to improve walking function in neurodegenerative disease and 

recovery from major neural insult. Interventions making use of rhythmic auditory 
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cues have been found to be effective in improving walking speed in Parkinson’s 

disease (Thaut et al. 1996; Lim et al. 2005) and Huntington’s disease (Thaut et 

al. 1999). Use of RAC in stroke survivors has shown RAC to increase gait 

symmetry (Roerdink et al. 2007), velocity and stride length (Thaut et al. 1997). 

These rehabilitation approaches using RAC could potentially be improved by 

taking into account the notion that walking control is occurring on two time 

scales. The two time scales could be exploited in simple ways such as instructing 

patients to actively monitor their velocity stride to stride while keeping cadence 

with a metronome that will inform them of the timing of every fourth stride. Doing 

so could improve clinical measures (symmetry, speed) of the overall behavior 

that encompasses the two tasks which individually tap into the two timescales for 

control.  

An additional potential direction of this work in neuro-rehabilitation could 

be to alter gait cycle phase where subjects should synchronize with the RAC, 

and determine beneficial phases for improving specific ailments such as foot 

drop. Recent work using mechanical perturbations at the ankle entrained gait 

cycle period and found that subjects phase locked at the end of terminal 

stance/beginning of pre-swing where the perturbation could be leveraged for 

enhanced propulsion into swing (Ahn & Hogan 2012). Tapping into phases that 

could elicit functional improvements in conjunction with consideration of time 

scales for control could lead to therapies which positively affect both the features 

of a function and the timescale of its initiation. In all, manipulating subtasks and 
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timing requirements with respect to the gait cycle have potential for improving the 

beneficial outcomes of RAC in rehabilitation.  
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Chapter 6: The interaction of upright posture and positional 

maintenance during human locomotion 

Introduction 

Treadmill walking is often used to investigate locomotive control. It 

provides the opportunity for controlled experiments with a fixed speed and 

several consecutive strides conducive to various types of recording and 

stimulating equipment. Treadmill walking is also very useful to those interested in 

the neural control of locomotion as it constrains locomotive behavior so that 

subjects, at minimum, have to fulfill two requirements for successful walking 

behavior. First, treadmill walking dictates that subjects must not fall off of the 

treadmill so they must, on average, maintain the same average speed as the 

treadmill. Second, as in any walking task unaided by weight support, subjects 

must maintain orientation relative to vertical and not allow the proportionally 

massive trunk to topple over the legs.   

 How the nervous system performs these two subtasks which underlie the 

overarching task of walking simultaneously is the focus of this study. As the 

response variables which indicate whole body positional changes in the anterior 

posterior (A-P) plane for speed control and trunk orientation are physically linked, 

there is certainly the possibility that these two subtasks interact. For example, if 

one accelerates forward on treadmill to correct his/her position, then the trunk 

may lean forward. 

 In this study we use visual and mechanical perturbations simultaneously 

as probes to investigate the interactions of these two subtasks. Both visual and 
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mechanical perturbations have been used successfully to learn about how 

subtasks are enacted during walking. Changes in virtual visual scene motion 

were used here, and have been previously used to alter speed (Konczak, 1994), 

trunk orientation to vertical (Logan et al. 2010), stride length (Prokop et al. 1997), 

translation of the body on the treadmill (Warren et al.1996; Logan et al. 2010), 

and the speed of the walk-run transition (Mohler et al. 2007) and its kinematic 

and energetic features (Guerin and Bardy, 2008). In one such study, visual scene 

motion was used in standing posture and walking conditions to show that visual 

scene motion perturbations affected trunk orientation similarly between the two 

behaviors while trunk translation responses were much larger during walking, 

reflecting the simultaneous use of vision for orientation upright and positional 

maintenance on the treadmill (Logan et al. 2010).   

Mechanical perturbations during walking have also been used to 

investigate many subtasks of walking. An early investigation by Nashner made 

use of support surface perturbations to show that stabilizing muscle activations 

during walking mimicked those occurring during standing posture (Nashner 

1980), reflecting postural control within locomotion. Further investigation into 

postural control during walking revealed that subjects will first stabilize posture 

prior to performing an additional, planned lever pulling task (Nashner & Forsberg 

1986). Mechanical perturbations have also been used to study the subtask of 

obstacle avoidance/ accommodation during walking, and have revealed an 

elevating or lowering strategy depending on phase of the gait cycle (Eng et al.  

1994) or mixture of the two (Forner-Cordero et al. 2003). More recently, Ahn and 

141 
 



Hogan used torque perturbations at the ankle and found that the gait period will 

entrain to the perturbation when advantageous for propulsion, supporting a 

neuro-mechanical oscillator for propulsion control (Ahn & Hogan, 2012). The 

authors suggested that these findings support a separation in control of low level 

propulsion and higher level “episodic supervisory control of a semi-autonomous 

periphery” when needed for cases such as irregular footholds or obstacle 

avoidance, suggesting a control scheme enacted in a subtask-dependent 

manner.  In all, mechanical perturbations are clearly useful for providing insight 

into how the nervous system controls the subtasks of walking.  

A concern in use of visual and mechanical perturbations during walking is 

that effects of perturbations may vary throughout the phases of the gait cycle. 

This concern is supported in studies which have shown gait-cycle phase-

dependent responses to imposed mechanical perturbations (Nashner 1980; 

Nashner & Forsberg 1986; Eng et al. 1994; Forner-Cordero et al. 2003) and 

changes in visual scene motion (Logan et al. 2014). To satisfy this concern, we 

use small independent, broad-band stimuli to characterize the mapping between 

perturbation (input) to response variables such as trunk orientation (output) using 

phase-dependent impulse response functions (PD-IRFs). Doing so allows unique 

mappings between each perturbation and response variables at each phase of 

the gait cycle in which the stimulus has occurred.  

Independent mechanical and visual perturbations were used here to 

investigate the interaction of trunk orientation and positional maintenance 

throughout the gait cycle. A mechanical perturbation was designed to create a 
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distributed pulling at the upper trunk which would elicit active (neural-driven) 

responses that correct movements of the body imposed by the perturbation. 

Being a sensory perturbation, both motions of the body imposed by the visual 

perturbation and corrective responses, if required, are neural-driven. Although 

these perturbations have different routes to active responses, both eliciting the 

same strategy for simultaneous subtask control would be very strong evidence 

for that strategy being used by the nervous system for walking.  Supported by the 

finding that postural corrections are initiated prior to performance of an additional, 

mechanically destabilizing task (Nashner & Forsberg 1986) and a more recent 

study (Logan et al. 2014) showing that corrections of trunk orientation are 

initiated prior to positional maintenance corrections, we hypothesized that both 

perturbations would elicit a control strategy that prioritized control of trunk 

orientation for staying upright over positional maintenance for staying on the 

treadmill in terms of time.  

 

Methods and Materials 

Subjects 

Twenty healthy subjects [8 males and 12 females, between 19 and 30 yrs 

of age, 67.9 ± 12.9 kg (mean ±SD)] participated in this study. All subjects were 

self-reported to have normal (or corrected to normal) vision. The studies 

conformed to the Declaration of Helsinki, and informed consent was obtained 

from all participants according to the procedures of the Institutional Review Board 

at the University of Maryland, College Park. 
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Apparatus 

Virtual reality environment 

Subjects walked at 5 km h-1 on a treadmill (Cybex Trotter 900T, Cybex 

International, Inc., USA)  surrounded by three screens (width, 3.05 m; height, 

2.44 m; Fakespace, USA), one in front of the subject and one on either side. 

Subjects wore goggles with occluded top shield to prevent them from seeing 

motion capture cameras mounted above the screen in front of them. Visual 

displays were rear projected to the screens at a frame rate of 60 Hz by JVC 

projectors (model DLA-M15U; Victor Company of Japan). CaveLib software 

(Mechdyne, USA) was used to generate a virtual moving visual scene consisting 

of three walls attached at right angles that coincide with the screens when the 

visual scene is not moving. Each wall consisted of 500 non-overlapping white 

small triangles (3.4 x 3.4 x 3.0 cm) with random positions and orientations on a 

black background. To reduce aliasing effects in the fovea region, no triangles 

were displayed on the front wall within a 30- cm-radius circular region directly in 

front of the participant’s eyes. The display on each screen was varied with time to 

simulate rotation of the visual scene about the axis through the subject’s ankle, 

assuming a fixed perspective point at the average position of the participant’s 

eyes. The signals specifying scene rotation were created offline (Matlab, 

Mathworks, USA) and were generated via Labview (National Instruments, USA) 

on a desktop computer (Precision T5500, Dell, USA).  
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Mechanical Perturbation 

As seen in Figure 23, a weak continuous mechanical perturbation was 

applied to the subject from behind as a spring with one end attached to a 

modified trunk harness worn by the subject and the other end attached to a linear 

motor (LX80L; Parker Hannifin Corporation). The actual displacement of the 

motor in the anterior posterior (A-P) direction was used as the mechanical 

perturbation signal. The spring had a spring constant of 0.0175 N/mm and was 

attached in series with a 45.7 cm rigid plastic cable fixed to the back of the 

harness. The harness was adjusted for each subject so that the point of 

attachment was at mid-scapula height centered on the midline of the upper trunk.   

 

 

 

 

 

 

Figure 23. Experimental setup.  Subjects walked on a treadmill located within a three panel virtual 
“cave” providing rotating visual scene motion in the sagittal plane. Subjects were also attached to a 
motor through a spring and rigid cable in series.   
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Perturbation Signals 

Both visual and motor signals were filtered white noise signals. For each 

trial of each subject and each perturbation type, a different seed was used to 

generate a white noise signal using a random number generator. The initial and 

final 5 s of each 250 s signal were multiplied by increasing and decreasing 

ramps, respectively, to insure that the value of the signal at the beginning and 

end of the trial would be 0. Only the middle 240 s of each trial was analyzed. 

Visual signals had a one-sided spectral density of 150 deg2/Hz. These signals 

were then filtered using a first-order Butterworth low-pass filter with a cutoff of .02 

Hz and a second-order Butterworth low-pass filter of 5 Hz. Across subjects, these 

driving signals had an average root mean square error (RMSE) of 2.13 deg and 

3.62 deg/s. A positive/negative signal corresponded to a forward rotation into the 

screen/backward rotation towards the subject. The virtual scene was constructed 

so that the focus of expansion was at the subject’s eye height, with the 

assumption that the subject was 1 m from the screen. Motor signals had a one-

sided spectral density of 1.1 cm2/Hz. These signals were filtered using an eighth-

order Butterworth low-pass filter with a cutoff frequency of 4 Hz. Across subjects, 

these driving signals had an average root mean square error (RMSE) of 1.30 cm 

and 19.40 cm/s.  These parameters were used for the motor signal as a balance 

between ensuring a flat power spectrum up to highest frequency possible and 

staying within travelling distance and velocity limits of the motor. A pilot study 

(n=5) showed that using the first smoothing filter (as in vision) to limit power at 

relatively high frequencies would diminish ability to observe responses, 
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supporting the nonuse of this smoothing filter for the motor perturbation. Visual 

display generation, motor motion and data collection software were synchronized 

via an external trigger.  

   

Kinematics 

Body kinematics were measured using a ten camera VICON-MX motion 

analysis system (VICON, Inc, Oxford, UK). Reflective markers (diameter, 1.4 cm) 

were placed on the right and left sides of the body at external landmarks 

corresponding to: base of the 5th metatarsal, posterior calcaneus (heel), lateral 

malleolus (ankle), lateral femoral condyle (knee), greater trochanter (hip), 

anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), iliac 

crest, superior acromion process (shoulder), mastoid process (head) and frontal 

eminence (head). Additionally, markers were placed at the medio-lateral center 

of the back of the head and the midline of the spine at the level of C6, T10 and 

L1 vertebrae. All markers were attached at the skin of these bony prominences 

except those placed on the shoe at the 5th metatarsal and heel. All kinematic 

data were collected at 120 Hz. 

Our analysis focuses on the trunk segment in the sagittal plane as well as 

whole-body displacements in the A-P direction. Trunk orientation relative to the 

vertical in the sagittal plane was computed as the angle formed by the L1 to T1 

markers. Whole-body displacement in the A-P direction was measured as the 

displacement of L1 in the A-P direction.  
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Muscle Activity (sEMG) 

Muscular activity of the right leg and trunk was measured using surface 

electromyographic (sEMG) recordings. Recordings of the following sixteen 

muscles were made: tibialis anterior (TA), gastrocnemius lateralis (LG), 

gastrocnemius medialis (MG), soleus (Sol), vastus medialis (Vmed), vastus 

lateralis (Vlat), rectus femoris (RF), tensor fascia latae (TFL), biceps femoris (BF, 

long head), semitendinosus (ST), gluteus maximus (GM), gluteus medius 

(Gmed), rectus abdominus (RA), lumbar erector spinae (ESL, recorded at L1-L2), 

thoracic erector spinae (EST, recorded at T9) and posterior deltoid (PDELT). 

Electrodes were positioned at the muscle belly with placement carefully chosen 

to minimize cross-talk (Cappellini et al. 2006). Recording sites were shaved, 

lightly abraded, and cleaned with isopropyl alcohol prior to electrode application. 

The sEMG data were recorded at 2160 Hz using the wireless TRIGNO system 

(DELSYS, USA). This recording system has built in bandwidth of 20–450 Hz and 

gain of 909 V/V. Using Matlab, these signals were high-pass filtered using a 

zero-lag forward-backward cascade of a 4th order Butterworth filter with a 20-Hz 

cutoff frequency, full-wave rectified, and then low-pass filtered with a zero-lag 

forward-backward cascade of a 4th order Butterworth filter with a 10-Hz cutoff 

frequency. Although consistent sEMG responses were observed in many 

muscles to the visual perturbation, we focus on erector spinae muscles (EST and 

ESL) in the results presented below as consistent responses were observed 

solely in these muscles for both perturbations 
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Procedures 

 Prior to experimentation, subjects experienced a static visual display at 

the experimental locomotion speed. An experimenter was always behind the 

treadmill in close proximity to the subject to ensure safety in case of falling (never 

occurred). Subjects began each experimental trial by looking straight ahead at 

the static visual display at the experimental treadmill speed (5 km/h) for 

approximately 30 seconds to reach steady-state treadmill walking. At this point, 

the subject would declare if he or she was ready for the trial to begin. The 

experimenter then initiated data acquisition, scene motion and the motor 

simultaneously with variable delays on each trial to avoid start-up effects. Each 

trial was 250 seconds in duration with a rest of at least 60 seconds between 

trials. The initial and final 5 s of each 250 s signal were multiplied by increasing 

and decreasing ramps, respectively, to insure that the value of the signal at the 

beginning and end of the trial would be 0. Only the middle 240 s of each trial was 

analyzed. The experimental design consisted of 10 trials of visual scene and 

motor motion. Upon inspection of a kinematic marker on the spring attached to 

the motor there were instances where the spring obviously went slack during the 

trial. This resulted in 13 of the 200 trials recorded across subjects to be 

shortened.    

 
Data Analysis  
 
Phase-dependent impulse response functions  
 
 Here we describe the analysis steps used to compute phase-dependent 

impulse response function (PD-IRFs). A fuller description with equations and 
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expanded motivation can be found in the APPENDIX.  The goal of the analysis is 

to describe the effect of u(t), a visual scene velocity or motor position 

perturbation, on y(t), a kinematic or sEMG response variable. The majority of 

results presented in this chapter are full PD-IRFs, and are calculated in step 

6. Computing the full PD-IRF consists of six steps:  

1. Approximate phase. First we compute heel-strike times 𝑡𝑡𝑘𝑘 (𝑘𝑘 =

1, . . . ,𝐾𝐾) for a reference leg. Then we compute 𝑇𝑇�, the mean of the stride 

times 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘  (𝑘𝑘 = 1, . . . ,𝐾𝐾 − 1), and compute the estimated gait 

frequency as 𝑓𝑓0 = 1/𝑇𝑇�.   Next we define a discontinuous approximation of 

phase as 𝜃𝜃d(𝑡𝑡) = 𝑘𝑘 + 𝑓𝑓0(𝑡𝑡 − 𝑡𝑡𝑘𝑘) for 𝑡𝑡𝑘𝑘 ≤ 𝑡𝑡 < 𝑡𝑡𝑘𝑘+1.  To obtain a 

continuously-differentiable approximation of phase, 𝜃𝜃(𝑡𝑡), we apply a 

second-order low-pass filter to 𝜃𝜃d(𝑡𝑡): 

 �̈�𝜃(𝑡𝑡) + 2𝑑𝑑(�̇�𝜃(𝑡𝑡) − 𝑓𝑓0) + 𝑑𝑑2𝜃𝜃(𝑡𝑡) = 𝑑𝑑2𝜃𝜃d(𝑡𝑡). 

Note that in the absence of perturbations, approximate phase 𝜃𝜃(𝑡𝑡) 

matches the usual definition of the phase of the gait cycle. 

 

2.  Replace time with approximate phase. Let p be the inverse of θ : 

𝑝𝑝(𝜃𝜃(𝑡𝑡)) = 𝑡𝑡 and 𝜃𝜃(𝑝𝑝(𝜗𝜗)) = 𝜗𝜗.  Let approximate phase 𝜗𝜗 take the place of 

time 𝑡𝑡 = 𝑝𝑝(𝜗𝜗) as the independent variable and compute 𝑢𝑢�(𝜗𝜗) = 𝑢𝑢(𝑝𝑝(𝜗𝜗)),  

𝑦𝑦�(𝜗𝜗) = 𝑦𝑦(𝑝𝑝(𝜗𝜗)), and �̃�𝑑(𝜗𝜗) = �̇�𝜃�𝑝𝑝(𝜗𝜗)�/𝑓𝑓0.   (We use the symbol 𝜗𝜗 to 

distinguish approximate phase as an independent variable from 

approximate phase as a function of time.)   
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3.  Compute output variables for HTF analysis. For each 𝜗𝜗, let  𝑦𝑦0(𝜗𝜗) 

be the mean of 𝑦𝑦�(𝜗𝜗).  Then compute the deviations 𝑦𝑦�(1)(𝜗𝜗) = 𝑦𝑦�(𝜗𝜗) −

 𝑦𝑦0(𝜗𝜗) and �̃�𝑑(1)(𝜗𝜗) = �̃�𝑑(𝜗𝜗) − 1.    

 

4. Compute transient and phase-derivative HTFs. To account for shifts 

in phase that affect all response variables, both a transient and phase-

derivative HTF are computed. We compute the transient HTF from 𝑢𝑢�(𝜗𝜗) to 

𝑦𝑦�(1)(𝜗𝜗), denoted 𝐻𝐻�𝑦𝑦 , and the phase-derivative HTF from 𝑢𝑢�(𝜗𝜗) to �̃�𝑑(1)(𝜗𝜗), 

denoted 𝐻𝐻�𝑑𝑑, as follows. Let 𝑧𝑧(𝜗𝜗) be either 𝑦𝑦�(1)(𝜗𝜗) or �̃�𝑑(1)(𝜗𝜗).  Compute the 

power spectral density (PSD) 𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1) and the double-frequency cross-

spectral density (CSD) 𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓2) (Bendat & Piersol 2000). The double-

frequency CSD describes the relationship between the input signal 𝑢𝑢�(𝜗𝜗) at 

input frequency 𝑓𝑓1 and the output signal 𝑧𝑧(𝜗𝜗) at output frequency 𝑓𝑓2.  The 

PSD and CSD are computed using Welch’s method with 40-cycle Hanning 

windows (aligned to start at an integer value of 𝜗𝜗) and 50% overlap. The 

k-th mode of the HTF 𝐻𝐻𝑧𝑧 from 𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) is computed as  𝐻𝐻𝑧𝑧,𝑘𝑘(𝑓𝑓1) =

𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓1 + 𝑘𝑘𝑓𝑓0)/𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1).  Note that 𝐻𝐻𝑧𝑧 is a function of both the mode index 

k and the input frequency 𝑓𝑓1. 

5. Compute transient and phase IRFs.  For an LTP mapping from 𝑢𝑢�(𝜗𝜗) 

to 𝑧𝑧(𝜗𝜗), its HTF 𝐻𝐻𝑧𝑧 can be converted to its phase-dependent IRF ℎ𝑧𝑧 using 

a Fourier series constructed from an inverse Fourier transform of each 

mode of the HTF.  The IRF ℎ𝑧𝑧 is a function of response phase 𝜗𝜗r and 
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stimulus phase 𝜗𝜗s and can be used to represent the LTP mapping from 

𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) as 

𝑧𝑧(𝜗𝜗r) = � ℎ𝑧𝑧(𝜗𝜗r,𝜗𝜗s) 𝑢𝑢�(𝜗𝜗s)𝑑𝑑𝜗𝜗s

𝜗𝜗r

−∞
. 

Using this procedure, compute the transient IRF ℎ�𝑦𝑦 and phase-derivative 

IRF ℎ�𝑑𝑑 from 𝐻𝐻�𝑦𝑦 and 𝐻𝐻�𝑑𝑑, respectively. Then compute the phase IRF by 

integrating the phase-derivative IRF: 

ℎ𝜃𝜃(𝜗𝜗r,𝜗𝜗s) = � ℎ�𝑑𝑑(𝜏𝜏,𝜗𝜗s)𝑑𝑑𝜏𝜏
𝜗𝜗r

𝜗𝜗s

. 

6. Compute IRFs. The IRFs ℎ�𝑦𝑦 and ℎ𝜃𝜃  can be combined to obtain the IRF 

from u(t) to  y(t) that is a function of response time tr and stimulus time ts. 

Here tr and ts are expressed in normalized time: time divided by the mean 

gait period and aligned so that stimulus time 𝑡𝑡s equals true stimulus 

phase. 

Steps 1-4 were computed on a trial by trial basis with averages of PSDs 

and CSDs taken across trials for each subject for completion of the HTF analysis 

and to compute the full PD-IRFs in step 6. Full PD-IRFs are shown in Figures 24 

and 25, with vertical slices in Figures 26 and 27 showing the impulse response 

function at specific stimulus phases. Full PD-IRFs defined above are now termed 

PD-IRFs in the following text. 

The PD-IRF for mechanical perturbations is a response to an impulse in 

motor position while the PD-IRF for visual perturbations is a response to an 

impulse in visual scene velocity, which is equivalent to the response to a step in 
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visual-scene position. A positive impulse response referred to as a positive 

response here indicates that the response variable’s response is in the same 

direction as the perturbation and a negative impulse response referred to as a 

negative response here indicates that the response variable’s response is in the 

same direction as the perturbation 

 

Statistics 

 Statistical tests of the PD-IRFs of all response variables were performed 

at each stimulus phase. For illustration, confidence intervals computed based 

upon the sample mean using the Matlab function “normfit” are plotted in Figures 

26 and 27. Permutation tests (1,000, Manly 1997) based on the t-statistic (null 

hypothesis mean=0) at all normalized response times up to five cycles post 

stimulus onset were tested simultaneously and family-wise error rate (FWER) 

was controlled at each stimulus phase for each response variable. EMGs had a 

more transient response nature and were tested up to two cycles post stimulus 

onset. The tmax method (Blair & Karnisky 1993) was used to adjust the p-value 

for each value at values of normalized response time within each stimulus phase 

(alpha = .05).  These tests were performed in functions written by Groppe 

(Groppe et al. 2011). These tests are  non-parametric and suited for this study as 

FWER control is strong compared to other methods (e.g. cluster-based 

permutation testing, false discovery rate) allowing determination of reliable 

effects in the PD-IRFS (Groppe et al. 2011). 
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Results 

Phase-dependent impulse response functions (PD-IRFs) presented in 

Figure 24 show the stimulus phase by normalized response time mapping of both 

mechanical and visual perturbations to trunk orientation. A positive impulse 

response referred to as a positive response here indicates that the response 

variable’s response is in the same direction as the perturbation and a negative 

impulse response referred to as a negative response here indicates that the 

response variable’s response is in the same direction as the perturbation. For 

both perturbations, initial trunk orientation responses were observed in the same 

direction of the perturbation at all stimulus phases, as indicated by the diagonal 

red band observed in both Figure 24A and 24B which notes positive responses 

across phases. Put simply, the trunk deviates forward from vertical as rotating 

scene motion speeds up or the motor moves forward. This positive response is 

also due to the trunk orientation deviating backward from vertical as scene 

motion slows down or the motor moves backwards.  
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The red band in both figures is approximately parallel to the black line 

noting stimulus onset, indicating that onset of the response occurs with similar 

time delay across all phases in which the stimulus occurs. On average across 

stimulus phases, peaks of the initial response to vision observed in Figure 24A 

occur at .68 ± .06 (mean ± s.d.) cycles (normalized response time) after stimulus 

onset. As indicated by the black diagonal line in Figure 24, stimulus onset shifts 

based on stimulus phase, which means that these peak responses are occurring 

on average .68 y-axis units in Figure 24A from the black diagonal line at each 

stimulus phase with small variability across stimulus phases. These initial peaks 

Figure 24. Trunk orientation PD-IRFs. PD-IRFs from visual scene velocity (A) and motor displacement (B) to 
trunk orientation.  Intensity of colors indicate magnitude and direction at the plotted combination of stimulus phase 
and normalized response time. The diagonal black line is where stimulus phase is equal to the normalized 
response time, which indicates stimulus onset. The horizontal bar below indicates either double limb or single limb 
support phases in gray and white, respectively. 
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observed as darker red regions in Figure 24A have an average peak response 

value of .40 ± .05 deg/degs-1, indicating a consistent response across stimulus 

phases. Figure 24B shows that initial peaks in trunk orientation responses to the 

motor displacement occur with comparatively shorter latency than responses to 

vision, with average peak responses occurring at .17 ± .01 cycles (normalized 

response time) after stimulus onset. These initial peaks in Figure 24B have 

average peak response value of .11± .02 deg/cm. Interestingly, vertical blue 

bands indicating a negative response to mechanical perturbations are observed 

at 4 stimulus phase ranges in Figure 24B. However, these negative responses 

are significant (p<.05, see Methods) only when stimuli are presented at .38-.46 

and .88-.96 (“phase of stimulus”) of the gait cycle. The properties of the trunk 

orientation response in these specific phases are further investigated with 

respect to other response variables in Figures 26 and 27 below.  
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 Initial, positive responses were also observed in L1 displacement 

responses to both visual and mechanical perturbations. As observed in Figure 

25A, positive responses to visual scene velocity occurred at all stimulus phases 

with similar time delay and persistence through the 4th gait cycle of normalized 

response time. On average across stimulus phases, peaks of the response to 

vision observed in Figure 25A occur at 1.89 ± .14 s.d. cycles (normalized 

response time) after stimulus onset. These initial peaks observed as darker red 

regions in Figure 25A have an average peak response value of 1.80 ± .17 

deg/degs-1. Initial, positive responses to motor position, on the other hand, were 

Figure 25. L1 displacement PD-IRFs. PD-IRFs from visual scene velocity (A) and motor displacement (B) to 
trunk displacement.  Intensity of colors indicate magnitude and direction at the plotted combination of stimulus 
phase and normalized response time. The diagonal black line is where stimulus phase is equal to the 
normalized response time, which indicates stimulus onset. The horizontal bar below indicates either double limb 
or single limb support phases in gray and white, respectively. 

 

 

157 
 



not consistently observed across stimulus phases as seen in Figure 25B. When 

tested at each stimulus phase, significant responses were observed before and 

after heel strike at 0-.22, .40-.68 and .96-1 ranges of stimulus phase. Since 

phase is a circular variable, these values correspond to two ranges of stimulus 

phase which differ by roughly half a cycle: .40-.68 and .96 -1.22 Within these 

ranges, mean peak of the positive response occurred at .87 ± .30 cycles 

(normalized response time) after stimulus onset and had average peak response 

value of .21 ± .05 cm/cm. Although negative responses were observed as blue 

intensities in Figure 25B early at some phases and later at all stimulus phases, 

these were not significant responses when tested at each stimulus phase.  

  Figures 24 and 25 in combination with the report of significant responses 

found above, it is clear that the occurrence of responses to the mechanical 

perturbation depended on the phase of gait cycle when the stimulus occurred 

while responses to visual scene motion occurred regardless of stimulus phase. 

We now focus on specific phases of the gait cycle where simultaneous effects on 

trunk orientation and body displacement were observed to both stimuli.  Common 

stimulus phases eliciting significant responses in the PD-IRFs in both Figures 24 

and 25 were found at 40-.68 and .96 -1.22 ranges of stimulus phase, which is 

within late stance and early swing phase of each limb, marking a phase of single 

limb support transitioning into double support and back into single limb support. 
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Vertical “slices” of the .40 stimulus phase of the PD-IRFs in Figures 24 

and 25 are plotted in Figures 26 and 27 with accompanying thoracic erector 

spinae sEMG (EST) responses to investigate simultaneous responses of trunk 

orientation and L1 displacement to each perturbation. As noted in Figure 26A 

and 27B with asterisks, significant trunk orientation responses to the visual 

perturbation occurred prior to L1 displacement responses at this stimulus phase. 

Positive trunk orientation responses begin at .62 normalized response time (.22f 

normalized response time after the stimulus occurring at .40) while L1 

Figure 26. Responses to visual perturbation at 40% stimulus phase. Impulse response functions of trunk 
orientation (A), L1 AP displacement (B) and normalized erector spinae activations (C) to visual scene 
velocity. Shaded blue error bars represent confidence intervals at increment of normalized response time. 
Asterisks at base of subplots indicate significant difference from zero at increment of normalized response 
time, corrected for the multiple comparisons made within the stimulus phase (p<.05). 
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displacement responses began at .78 normalized response time. In Figure 26C, 

a small positive response at .50 followed by a larger negative response at .56 is 

observed in the EST muscle, which is a trunk extensor. This negative response 

indicates a decrease in EST activation when virtual scene motion increases 

velocity or an increase in EST activation when virtual scene motion decreases 

velocity. This occurs prior to a positive response of trunk orientation, with trunk 

flexion occurring when scene motion increases velocity or extension occurring 

when scene motion decreases in velocity. Thus, the EST either decreases its 

activation prior to trunk flexion when scene motion increases velocity or the EST 

increases its activation prior to trunk extension when scene motion decreases 

velocity. Trunk orientation responses were initiated prior to L1 displacement 

responses at the majority (43/50 observed) of stimulus phases. The pattern of 

significant EST response followed by trunk orientation responses and then L1 

displacement occurred at 20 of 50 stimulus phases, with the specific stimulus 

phases eliciting this pattern at .30-.44, .58-.68, .80, .84 and .92-.98 of the gait 

cycle. In all, the combination of responses illustrated in Figure 26 suggests that 

the EST muscle typically facilitates the response of trunk orientation to changes 

in visual scene motion. 
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 Responses of the trunk to the mechanical perturbation also show 

perturbation induced deviations in trunk orientation occurring prior to deviations 

in L1 displacement. Noted with asterisks at the stimulus phase of .40 shown in 

Figure 27, significant responses of trunk orientation are initiated at .42 

normalized response time while responses in L1 displacement are first observed 

at .74 normalized response time. As the motor perturbation will first cause 

responses observed in kinematics which reflect passive responses of the body to 

increased or decreased pull of the motor-spring apparatus, sEMG responses to 

Figure 27. Responses to mechanical perturbation at 40% stimulus phase. Impulse response 
functions of trunk orientation (A), L1 AP displacement (B) and normalized erector spinae activations (C) to 
motor position. Shaded blue error bars represent confidence intervals at increment of normalized 
response time. Asterisks at base of subplots indicate significant difference from zero at increment of 
normalized response time, corrected for the multiple comparisons made within the stimulus phase 
(p<.05). 
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the mechanical perturbation are a critical indicator that an active, neural driven 

response to the mechanical perturbation has occurred. Significant, positive 

responses of EST were first observed at .50 normalized response time at the .40 

stimulus phase observed in Figure 27C. This occurs prior to start of the 

downward trend of the response of the trunk beginning at .60 normalized 

response time. The positive response of the trunk extensor indicates an 

increased or decreased EST activation when the motor is moved forward or 

backwards, respectively. A forward motion of the motor decreases the force of 

pulling at the trunk while a backward motion of the motor effectively increases the 

pulling force at the trunk. Thus, the positive response of EST, a trunk extensor, 

indicates a contribution of the EST activation to initiate trunk extension after an 

increased motor position has initiated trunk flexion or a decreased activation of 

EST for trunk flexion after a decreased motor position has initiated trunk 

extension. Significant EST responses to motor position were also observed 

at .22-.26, .40-.46, .74-.80 and .90-.92 stimulus phases, and were always 

observed after an initial positive response in trunk orientation and prior to the 

decrease from peak of the initial trunk orientation response. In sum, the EST 

response observed in Figure 27, in addition to that observed at other stimulus 

phases, indicates an active response which resists the mechanical effects of 

changing the motor position. 

Discussion 

Modifications of both sagittal plane trunk orientation and L1 A-P 

displacement due to changes in visual scene motion and motor position were 
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observed in this study. Responses of the trunk musculature occurred in 

conjunction with responses of trunk orientation kinematics to each perturbation, 

and reflect an active, neural-driven response for control of trunk orientation 

occurring prior to modifications enacted for whole-body displacement. These 

findings suggest that control for the subtask of trunk orientation is prioritized in 

time over control of the subtask of positional maintenance.  

Subtask prioritization 
 

 Responses in the trunk resulting from both perturbations showed the 

initiation of an active response for sagittal plane trunk orientation control prior to 

onset of responses of L1 displacement, which is an indicator of A-P whole body 

motion on the treadmill. Decreased responses in EST to changing visual scene 

motion were observed prior to increased responses in trunk orientation. With the 

sign convention used here, this result indicates that EST responses facilitated the 

observed trunk orientation responses to vision. For the mechanical perturbation, 

an EST response occurs just prior to the trunk orientation’s decrease from peak 

response. In late swing phase of either leg, this decrease in trunk orientation 

response eventually overshoots and becomes a negative response. The 

combination of these results suggests both an active resistance to the 

mechanical perturbation and use of visual scene motion information for 

maintenance of orientation upright occurs before active use of vision for 

positional maintenance on the treadmill. 

The notion that one function, or subtask, of locomotion can be prioritized 

over another is certainly not a new idea. An early example observed in cats 
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found that animals will alter their strategy for responding to electrical stimuli 

placed at the dorsum of their paw in a phase-dependent manner (Forssberg 

1975). So-called ‘reflex reversals” whereby stimuli used during an animal’s 

support phase increase extensor activation and delay a flexor withdrawal show 

that the animal prioritizes the subtask of upright stability at the expense of 

completing the withdrawal task. More recently, this prioritization of subtask has 

been observed in human walking obstacle avoidance and accommodation 

literature. The lowering strategy for obstacle avoidance has been shown to 

decrease step length of the perturbed limb on the treadmill with increased speed 

needed in ensuing recovery steps (Forner-Cordero 2003). In sum, subjects 

sacrifice maintenance of speed on the treadmill in order to avoid the obstacle, 

indicating subtask prioritization. 

The prioritization of subtask in such studies and suggested here is in 

terms of time. Both the trunk toppling over the moving legs and being too forward 

or backward on the treadmill would have dire consequences for walking. 

However, trunk orientation responses are initiated prior to whole body 

displacement responses to both perturbations, suggesting that maintaining 

orientation upright, or postural control within locomotion, is the primary concern 

of the nervous system during treadmill walking.  

 

A phase-dependence for mechanical perturbations? 
 

As vision is a purely sensory perturbation it is clear that responses which 

occur to visual scene motion are active responses, and these responses were 
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observed at all phases of stimulus. Responses in muscular activations to the 

mechanical perturbation, however, show that active responses by the nervous 

system occurred in a phase-dependent manner.  

These phase-dependent active responses to the mechanical perturbation 

suggest that the nervous system uses sensation at a critical, destabilizing phase 

in a reactive manner. Winter and colleagues have shown that the proximal 

musculature (erector spinae and others) activates prior to heel strike to 

counteract a destabilizing flexion of the head, arms and trunk (HAT) segment due 

to posterior hip acceleration occurring at heel strike (Winter et al. 1990; Winter 

1995). The moment of force produced by CNS with combined activations of 

proximal musculature has been deemed the “balancing moment” while the 

destabilizing force has been deemed the “unbalancing moment” (Winter 1995). 

Tang and colleagues have noted that these results by Winter and colleagues 

were found during unperturbed walking, and suggested they reflect a phase-

dependent proactive control when walking is not perturbed (Tang et al. 1998). 

Using perturbations at the support surface they found that proximal muscles of 

the trunk (rectus abdominus and erector spinae) are not sufficiently modulated 

during reactions to such stimuli, and do not play a role in active balance 

responses. Here we observe a counteracting erector spinae response to a 

mechanical perturbation which is applied at the trunk, providing a reactive, active 

balance response. Interestingly, common stimulus phases of both the responses 

in the erector spinae and the eventual “overshoot” responses in trunk orientation 

are observed at terminal swing phases in either foot of .40-.46 and .90-.92, and 
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these are phases in which Winter’s “balancing moment” at the hip is ramping up 

to its peak to counteract the peak “imbalancing moment” of heel strike. Thus, the 

reactive response observed here occurs simultaneous with the proactive ramping 

up of muscular activations for the “balancing moment”, and we can speculate the 

nervous system’s control strategy is to diminish any (internal or external) 

destabilizing mechanical threats to upright trunk orientation at these critical 

phases of the gait cycle. In sum, both the site (lower or limb) of application and 

gait cycle phase will dictate if the nervous system needs to correct for deviations 

to a mechanical perturbation during walking.  

Clearly, an active control in the mechanical perturbation must involve 

sensation of change in trunk orientation at some phase prior to initiating the 

phase-dependent active response. Phase-dependent stimulation of sensory 

afferents through perturbations such as vibration of trunk muscles could likely 

inform about the role of trunk muscle afferents for these phase-dependent 

modifications for trunk orientation. Vibration of erector spinae has been 

successfully performed during walking and has shown that continuous vibration 

can elicit deviations in walking trajectory (Courtine et al 2007; Schmid et al 2005). 

As phase-dependence in somatosensory inputs of the lower limbs has been well-

documented (Duysens et al 1990; Sinkjaer et al 1996), it is surprising that trunk 

vibration dependent on gait cycle phase was not tested in those studies (Courtine 

et al 2007; Schmid et al 2005) and has not yet, to our knowledge, been tested in 

other studies.  The question of whether or not somatosensory information 

regarding trunk motion is available to the nervous system on a phase-dependent 
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basis is an open one. Future studies could inform if phase-dependence of 

somatosensory input alone is the cause of the phase-dependence observed in 

this study.  

Alternatively, somatosensory input may inform that trunk motion has been 

altered at all phases, yet this input is only used at specific, necessary phases. 

For example, the ES activations occurring at early stance observed here act to 

counteract the potentially increased “unbalancing moment” at the trunk due to the 

mechanical perturbation, and prevent too large flexion of the trunk after heel 

strike. Such a process would involve sensation occurring in preparation of 

destabilizing phases of trunk motion. In sum, it could be speculated that 

observation of active trunk responses to the mechanical perturbation is facilitated 

by a phase-dependent use of somatosensory input, and takes place because the 

phase of perturbation where the mechanical perturbation occurs is a known 

preparatory phase for balance adjustments. 

 

Implications for locomotive control and future directions 

Here we used simultaneous virtual scene motion and distributed pulling at 

the back of the trunk to probe control of treadmill walking. Using the control 

theoretic view of movement shown in Figure 28, visual scene motion in an 

immersive virtual environment perturbs input to the neural feedback portion of the 

control loop and a motor attached to the upper trunk through a spring is a 

mechanical perturbation that perturbs input to the musculoskeletal plant. A 

mechanistic extension of the experimental setup used here to study the 
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interaction of locomotive subtasks would be to work within a control theoretic 

framework with the long term goal of using the joint input-output (JIO) approach 

of system identification (Katayama 2005; van der Kooij 2005) to identify how the 

nervous system controls locomotion.   

 

 

 

 

The JIO approach, coupled with modeling of biomechanical and neural 

components, has recently been used for identifying the control policy for standing 

posture (Kiemel et al. 2011). Working within the theoretical framework shown in 

Figure 28, mechanical and sensory perturbations have been successfully applied 

to non-parametrically identify both the musculoskeletal plant (Kiemel et al. 2008) 

and the sensorimotor feedback (Kiemel et al. 2011) portions of the control loop 

Figure 28.  Control theoretic view of motor behavior. In this model, motor behavior consists of two 
components: plant and feedback. The plant is composed of joint torques produced by 
musculotendon dynamics and ensuing body dynamics, with muscle activity as precursor. 
Feedback consists of those sensory signals arising from sensory systems, which update the 
neural controller based on orientation and movements of the body. Positions and velocities are 
estimated (state estimation), and appropriate motor commands (control strategy) are specified 
in the feedback portion of the control loop.  (Taken from Logan et al. 2010 with permission). 
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during standing postural control. This identification relied on careful sensory and 

mechanical probes, and resulted in identifying minimization of muscle activation 

as the control strategy for standing postural control (Kiemel et al. 2011).  

As an Initial step towards use of the JIO approach to understand walking 

control, the experimental implementation of sensory and mechanical probes used 

here could provide insight into different mappings of the neural control loop 

presented in Figure 28. For a sensory perturbation, the musculoskeletal plant 

maps EMG responses to kinematic responses. For a mechanical perturbation, 

sensorimotor feedback maps kinematic responses to EMG responses. The 

mappings rely on observing both kinematic and EMG responses to sensory and 

mechanical perturbations. There is the potential that multiple mappings making 

use of multiple sensory and mechanical perturbations could allow non-parametric 

identification of the musculoskeletal plant and neural feedback for walking, and 

this would require considerable advances in experimental methods from those 

used in this experiment. 

Prior to full identification with use of the JIO, one can learn about a system 

with careful manipulation of experimental conditions. For example, if a 

mechanical perturbation produces the same kinematic responses but different 

EMG responses in an experiment with two conditions, it is indicated that 

properties of the neural feedback is changed between the two conditions. As we 

have emphasized trunk orientation control in this experiment, it is expected that 

an experiment with conditions which require varying needed corrections of trunk 

orientation such as use of a backboard or not would elicit changes in ES, and 
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potentially other muscles, contributing to the trunk orientation subtask. We expect 

that simultaneous mechanical and visual perturbations used during experimental 

conditions which subjects do and do not perform a specific function will inform 

about how that specific function is controlled during walking. Such experiments 

offer a novel way to distill out how control differs between subtasks, and even 

offers great promise for distinguishing differences in locomotive control between 

those with neural deficits and healthy controls. 
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Appendix 
 

Technical Note: harmonic transfer functions and phase-dependent impulse 

response functions 

 

The following technical note is composed of ideas and equations 

generated by Dr. Tim Kiemel. This material and additional proofs will soon be 

contained within a manuscript submitted for publication (Kiemel et al, in prep), as 

the application of harmonic transfer functions (HTFs) to human walking and 

ensuing impulse response functions (IRFs) is novel in its own right.  

 

Approach 

One approach to understanding how input-output relationships are altered 

based upon phase of the locomotive cycle is to apply a perturbation multiple 

times for each perturbation phase and then average the responses to estimate 

an impulse response function (IRF). Indeed, this approach was used for the 

experiment presented in chapter 3 of this dissertation to capture responses at 6 

stimulus phases when assuming spatiotemporal symmetry of the left and right 

legs. To add many more stimulus phases would require prohibitively long 

experimental sessions to obtain a quality input-output characterization at each 

phase. To avoid this problem and characterize input-output relationships at many 

stimulus phases, experiments in chapters 4-6 used continuous broad-band 

stimuli, allowing the estimation of HTFs that identify input-output mappings from 

sensory or mechanical inputs to response variable outputs with limit cycle 
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properties. These relationships are then converted to the time domain via an 

inverse Fourier transform to obtain phase-dependent Impulse response functions 

(PD-IRFs) which depend on the gait cycle phase at which the stimulus occurred 

(stimulus phase) and the time at which the response is measured (response 

time, normalized by mean cycle period). 

 

HTFs 

The approach in 3 experiments (chapters 4-6) of this dissertation was to 

first determine input-output mappings from sensory or mechanical inputs to 

outputs of kinematics and muscle activity (EMGs) in the frequency domain. This 

work expands previous work (e.g., Peterka & Benolken 1995; Kiemel et al 2008) 

which probed standing postural control as a linear time invariant (LTI) system 

and characterized input-output relationships with frequency response functions 

(FRFs). Here, we use a control theoretic framework that has been informative for 

understanding the control of standing posture (van der Kooij et al. 2005; Kiemel 

et al 2008 and others) and apply it to the time-varying behavior of treadmill 

walking. We view walking as the behavior of a dynamical system with a limit 

cycle that is subject to both intrinsic perturbations and external perturbations 

applied by the experimenter.  For small perturbations, the behavior of a limit-

cycle system is similar to that of a linear time periodic (LTP) system, but with one 

important difference; a limit-cycle system has a phase variable that can be 

affected by perturbations, whereas such phase resetting cannot occur in an LTP 
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system.  Below we show how LTP analysis methods can be applied to a limit-

cycle system by letting phase take the place of time. 

Figure 29 shows how a LTP system’s input-output mapping can be 

expressed as the sum of an inifinite number of FRFs …,H-2, H-1, H0, H1, H2, …, 

with a different frequency shift for each FRF yielding an infinite-dimensional 

operator termed the harmonic transfer function (HTF).  This figure was taken 

from the dissertation of Möllerstedt (1998, with permission), who used HTFs for 

power system stability analysis of high speed rail lines (Möllerstedt and 

Bernhardsson 2000).  We will refer to Hk as the k-th mode of the HTF. 

 

 

 If we ignore the effects of phase-resetting, HTF theory predicts that for 

walking with gait frequency f0, a sensory or mechanical input at frequency f will 

produce outputs at all output frequencies |f + kf0|, where k is an integer.  For 

example, for a gait frequency of 1 Hz, a 0.2 Hz sensory perturbation will produce 

outputs at 0.2 Hz, 1.2 Hz, 2.2 Hz, etc., and also at |0.2 – 1| Hz = 0.8 Hz, |0.2 – 2| 

Figure 29. HTF illustration. Many LTI systems can make up the input output relationship of a 
LTP system to be represented by a HTF (Taken from Möllerstedt, 1998, with permission). 
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= 1.8 Hz, etc.  For each k, the mapping from input frequency f to output 

frequency |f + kf0| is described by the k-th mode of the HTF.  

 

Transient effects and phase effects 

If there is phase resetting, then input at any frequency f produces output at 

and near f + kf0.  In this case, a single HTF does not fully characterize the input-

output mapping. To find the input-output mapping for small perturbations of the 

limit cycle, HTFs for phase resetting and transient responses are combined.    To 

explain what we mean by these terms, consider a limit-cycle system in which a 

small perturbation u(t) causes small changes in y(t), the system’s output.  

Linearizing around the limit cycle, the system can be approximated by 

)()(0 tug θωθ θ+= , 

 

with scalar output . 

Effects of perturbation u(t) on absolute phase  result in a change in location 

along the limit cycle (phase resetting) while effects of u(t) on the deviation vector 

r result in deviations away from the limit cycle (transient responses).  When we 

analyze data, we do not have access to the true phase θ, so we instead use an 

approximate phase and define phase resetting and transient responses in terms 

of this approximate phase.  A key feature of our analysis is that for small 

perturbations, the PD-IRF we compute does not, to first order, depend on the 

particular phase approximation that we use. 

 

),()()( tugrAr r θθ +=
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θ
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Computation of phase and transient HTFs and the phase-dependent IRF. 

The above ideas motivate our analysis of walking data.  We now describe the 

steps we perform to carry out our analysis. The goal of the analysis is to describe 

the effect of u(t), a small sensory or mechanical perturbation, on y(t), a kinematic 

or EMG response variable. 

1. Approximate phase. First we compute heel-strike times 𝑡𝑡𝑘𝑘 (𝑘𝑘 = 1, . . . ,𝐾𝐾) for a 

reference leg. Then we compute 𝑇𝑇�, the mean of the stride times 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 (𝑘𝑘 =

1, . . . ,𝐾𝐾 − 1), and compute the estimated gait frequency as 𝑓𝑓0 = 1/𝑇𝑇�.   Next we 

define a discontinuous approximation of phase as 𝜃𝜃d(𝑡𝑡) = 𝑘𝑘 + 𝑓𝑓0(𝑡𝑡 − 𝑡𝑡𝑘𝑘) for 𝑡𝑡𝑘𝑘 ≤

𝑡𝑡 < 𝑡𝑡𝑘𝑘+1.  To obtain a continuously-differentiable approximation of phase, 𝜃𝜃(𝑡𝑡), 

we apply a second-order low-pass filter to 𝜃𝜃d(𝑡𝑡): 

 �̈�𝜃(𝑡𝑡) + 2𝑑𝑑(�̇�𝜃(𝑡𝑡) − 𝑓𝑓0) + 𝑑𝑑2𝜃𝜃(𝑡𝑡) = 𝑑𝑑2𝜃𝜃d(𝑡𝑡). 

Note that in the absence of perturbations, approximate phase 𝜃𝜃(𝑡𝑡) matches the 

usual definition of the phase of the gait cycle. 

 

2.  Replace time with approximate phase. Let p be the inverse of θ: 𝑝𝑝(𝜃𝜃(𝑡𝑡)) = 𝑡𝑡 

and 𝜃𝜃(𝑝𝑝(𝜗𝜗)) = 𝜗𝜗.  Let approximate phase 𝜗𝜗 take the place of time 𝑡𝑡 = 𝑝𝑝(𝜗𝜗) as the 

independent variable and compute 𝑢𝑢�(𝜗𝜗) = 𝑢𝑢(𝑝𝑝(𝜗𝜗)),  𝑦𝑦�(𝜗𝜗) = 𝑦𝑦(𝑝𝑝(𝜗𝜗)), and �̃�𝑑(𝜗𝜗) =

�̇�𝜃�𝑝𝑝(𝜗𝜗)�/𝑓𝑓0.   (We use the symbol 𝜗𝜗 to distinguish approximate phase as an 

independent variable from approximate phase as a function of time.)   
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3.  Compute output variables for HTF analysis. For each 𝜗𝜗, let  𝑦𝑦0(𝜗𝜗) be the 

mean of 𝑦𝑦�(𝜗𝜗).  Then compute the deviations 𝑦𝑦�(1)(𝜗𝜗) = 𝑦𝑦�(𝜗𝜗) −  𝑦𝑦0(𝜗𝜗) and 

�̃�𝑑(1)(𝜗𝜗) = �̃�𝑑(𝜗𝜗) − 1.    

 

4. Compute transient and phase-derivative HTFs. We compute the transient HTF 

from 𝑢𝑢�(𝜗𝜗) to 𝑦𝑦�(1)(𝜗𝜗), denoted 𝐻𝐻�𝑦𝑦 , and the phase-derivative HTF from 𝑢𝑢�(𝜗𝜗) to 

�̃�𝑑(1)(𝜗𝜗), denoted 𝐻𝐻�𝑑𝑑, as follows. Let 𝑧𝑧(𝜗𝜗) be either 𝑦𝑦�(1)(𝜗𝜗) or �̃�𝑑(1)(𝜗𝜗).  Compute 

the power spectral density (PSD) 𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1) and the double-frequency cross-

spectral density (CSD) 𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓2) (Bendat & Piersol 2000).  The double-

frequency CSD describes the relationship between the input signal 𝑢𝑢�(𝜗𝜗) at input 

frequency 𝑓𝑓1 and the output signal 𝑧𝑧(𝜗𝜗) at output frequency 𝑓𝑓2.  The PSD and 

CSD are computed using Welch’s method with 40-cycle Hanning windows 

(aligned to start at an integer value of 𝜗𝜗) and 50% overlap.  The k-th mode of the 

HTF 𝐻𝐻𝑧𝑧 from 𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) is computed as  𝐻𝐻𝑧𝑧,𝑘𝑘(𝑓𝑓1) = 𝑝𝑝𝑢𝑢�𝑧𝑧(𝑓𝑓1,𝑓𝑓1 + 𝑘𝑘𝑓𝑓0)/𝑝𝑝𝑢𝑢�𝑢𝑢�(𝑓𝑓1).  

Note that 𝐻𝐻𝑧𝑧 is a function of both the mode index k and the input frequency 𝑓𝑓1. 

 

5. Compute transient and phase IRFs.  For an LTP mapping from 𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗), 

its HTF 𝐻𝐻𝑧𝑧 can be converted to its phase-dependent IRF ℎ𝑧𝑧 using inverse Fourier 

transforms.  First take the inverse Fourier transform of each mode of the HTF, 

ℎ𝑧𝑧,𝑘𝑘(𝜏𝜏) = � 𝐻𝐻𝑧𝑧,𝑘𝑘(𝑓𝑓1)𝑒𝑒2𝜋𝜋𝜋𝜋𝑓𝑓1𝜏𝜏
∞

−∞

𝑑𝑑𝑓𝑓1, 

 

and then use the result to construct a Fourier series: 
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ℎ𝑧𝑧(𝜗𝜗r, 𝜗𝜗s) = � ℎ𝑧𝑧,𝑘𝑘(𝜗𝜗r − 𝜗𝜗s)𝑒𝑒2𝜋𝜋𝜋𝜋𝑘𝑘𝜗𝜗r .
∞

𝑘𝑘=−∞

 

The IRF ℎ𝑧𝑧 is a function of response phase 𝜗𝜗r and stimulus phase 𝜗𝜗s and can be 

used to represent the LTP mapping from 𝑢𝑢�(𝜗𝜗) to 𝑧𝑧(𝜗𝜗) as 

𝑧𝑧(𝜗𝜗r) = � ℎ𝑧𝑧(𝜗𝜗r,𝜗𝜗s) 𝑢𝑢�(𝜗𝜗s)𝑑𝑑𝜗𝜗s

𝜗𝜗r

−∞
. 

Using this procedure, compute the transient IRF ℎ�𝑦𝑦 and phase-derivative IRF ℎ�𝑑𝑑 

from 𝐻𝐻�𝑦𝑦 and 𝐻𝐻�𝑑𝑑, respectively. Then compute the phase IRF by integrating the 

phase-derivative IRF: 

ℎ𝜃𝜃(𝜗𝜗r,𝜗𝜗s) = � ℎ�𝑑𝑑(𝜏𝜏,𝜗𝜗s)𝑑𝑑𝜏𝜏
𝜗𝜗r

𝜗𝜗s

. 

 

6. Compute IRF.  Up to now, IRFs have been functions of response phase 𝜗𝜗r and 

stimulus phase 𝜗𝜗s.  The IRFs ℎ�𝑦𝑦 and ℎ𝜃𝜃  can be combined to obtain the IRF from 

u(t) to  y(t) that is a function of response time tr and stimulus time ts: 

ℎ𝑦𝑦(𝑡𝑡r, 𝑡𝑡s) = ℎ�𝑦𝑦(𝑡𝑡r, 𝑡𝑡s) + 𝑦𝑦0′(𝑡𝑡r)ℎ𝜃𝜃(𝑡𝑡r, 𝑡𝑡s). 

Here tr and ts are expressed in normalized time: time divided by the mean gait 

period and aligned so that stimulus time 𝑡𝑡s equals true stimulus phase. 
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Example of a phase-dependent impulse response function 

 

An example of the transient IRF and phase component IRF is observed in 

Figure 30A and 30B, respectively. The sum of these IRFs is presented in Figure 

30C, which is the IRF that is referred to as the phase-dependent impulse 

response function (PD-IRF) and is the input-output mapping that is reported in 

several chapters of this dissertation. The specific data presented in Figure 30 are 

taken from foot segment angle responses to visual scene velocity presented in 

Chapter 5 in the no metronome condition. 

 

 

 

Figure 30. PD-IRF of foot segment angle from visual scene velocity. Transient PD-IRF (A) 
and phase component PD-IRF (B) which make up the full PD-IRF (C). These IRFs are 
computed as response of trunk orientation from visual scene velocity. These data are taken 
from the experiment presented in Chapter 5.  
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