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To mitigate the potentially harmful effects of nonresponse, many surveys 

repeatedly follow up with nonrespondents, often targeting a particular response rate 

or predetermined number of completes.  Each additional recruitment attempt 

generally brings in a new wave of data, but returns gradually diminish over the course 

of a fixed data collection protocol. This is because each subsequent wave tends to 

contain fewer and fewer new responses, thereby resulting in smaller and smaller 

changes on (nonresponse-adjusted) point estimates.  Consequently, these estimates 

begin to stabilize.  This is the notion of phase capacity, suggesting some form of 

design change is in order, such as switching modes, increasing the incentive, or, as is 

considered exclusively in this research, discontinuing the nonrespondent follow-up 

campaign altogether.  This dissertation consists of three methodological studies 

proposing and assessing various techniques survey practitioners can use to formally 

test for phase capacity.  One of the earliest known phase capacity testing methods 



  

proposed in the literature calls for multiply imputing nonrespondents’ missing data to 

assess, retrospectively, whether the most recent wave of data significantly altered a 

key estimate.  The first study introduces an adaptation of this test amenable to surveys 

that instead reweight the observed data to compensate for nonresponse.  A general 

limitation of methods discussed in the first study is that they are applicable to a single 

point estimate.  The second study evaluates two extensions, each with the aim of 

producing a universal, yes-or-no phase capacity determination for a battery of point 

estimates.  The third study builds upon ideas of a prospective phase capacity test 

recently proposed in the literature attempting to address the question of whether an 

imminent wave of data will significantly alter a key estimate.  All three studies 

include a simulation study and application using data from the 2011 Federal 

Employee Viewpoint Survey. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

TESTING FOR PHASE CAPACITY IN SURVEYS WITH MULTIPLE WAVES 

OF NONRESPONDENT FOLLOW-UP.    

 

 

 

By 

 

 

Taylor Hudson Lewis 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2014 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Frauke Kreuter, Co-Chair 

Professor Partha Lahiri, Co-Chair 

Research Professor Richard Valliant 

Research Professor James Wagner 

Professor Michael Rendall 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Taylor Hudson Lewis 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ii 

 

Acknowledgements 

In a strange juxtaposition of emotions, it is with both relief and sadness that I 

say completing this dissertation marks the end of a major chapter in my life.  My 

graduate studies in the Joint Program in Survey Methodology (JPSM) began in the 

summer of 2006 when I took a course on questionnaire design immediately preceding 

my official entrance into the master’s program that fall.  Although I took one year off 

between completing the master’s program in May 2009 and beginning the doctoral 

program in August 2010, I have considered myself a JPSM graduate student for the 

past eight years, my lengthiest tenure at any single educational institution.  It has been 

a truly formative period.  I have benefited tremendously from the outstanding 

teaching and mentoring received along the way from JPSM faculty.  I took away a lot 

from each and every course, particularly Steve Heeringa’s Analysis of Complex 

Survey Data and Richard Valliant’s Case Studies in Sampling and Weighting.  Both 

were breakthrough courses helping me establish a solid grasp on the necessary 

adaptations when applying traditional statistical methods on complex survey data and 

the theory underpinning nonresponse adjustment techniques, respectively.  It 

therefore came as no surprise to learn that lecture materials for both courses were 

subsequently developed into textbooks—the Heeringa et al. (2010) and Valliant et al. 

(2013) references appearing in this dissertation—both of which have been invaluable 

resources and will remain as such in the future. 

 

Meeting the requirements of a PhD is a formidable enough challenge, let 

alone doing so while employed full-time.  This was only possible because of my good 



 

 iii 

 

fortune to work for understanding and accommodating immediate supervisors.  In 

particular, I would like to acknowledge Gary Lukowski and Kimya Lee of the U.S. 

Office of Personnel Management and Meena Khare of the National Center for Health 

Statistics (NCHS) for their unwavering support as I pursued my graduate studies, a 

pursuit that often forced me to abide by a nontraditional work schedule or be granted 

generous telecommuting arrangements.  I also owe a debt of gratitude to the various 

individuals at the U.S. Office of Personnel Management who helped secure my 

approval to use data from Federal Employee Viewpoint Survey to evaluate the 

methods proposed as a part of this research. 

 

I am very appreciative that Frauke Kreuter and Partha Lahiri agreed to serve 

as co-chairs of my dissertation committee.  Frauke has been a strong advocate on both 

a personal level and about the ideas I began positing as this dissertation took shape.  

She taught me to confidently address each of the program’s hurdles and suppress any 

internal doubt as to whether there was sufficient time to prepare by reminding me on 

several occasions how “life is always busy.”  I am also grateful for her unrivaled 

skills at leading a discussion, which, at certain pivotal times during this process, 

helped keep things relevant and head off impertinent questions and suggestions.  

Partha has been very patient and generous with his time, always willing and able to sit 

down at length to help me work through highly technical, mathematical issues.  He 

never hesitated to point out oddities and inconsistencies in my notation, which has 

helped engender a deeper appreciation for precision in that regard, something I will 

definitely carry forward on my continued journey as a researcher. 



 

 iv 

 

 

I would also like to thank the other three committee members, Richard 

Valliant, James Wagner, and Michael Rendall.  I thank Richard for suggesting that 

additional theory would provide needed insight into how a nonresponse-adjusted 

point estimate can change over the course of a data collection period, a suggestion 

prompting development of much of the material in Chapter 2.  I thank James for 

productive discussions during my visits to Ann Arbor and his careful review of an 

earlier draft.  And I thank Michael for taking time away from his multiple, demanding 

roles with the university to serve as the Dean’s Representative. 

 

Lastly, and most importantly, I acknowledge my wife, Katie, for being 

incredibly selfless during this process.  Without (too much) complaint, she has 

tolerated my extended absences from home in the form of innumerable weekend 

hours spent at the office and nearby coffee shops.  She almost exclusively planned 

and chronicled our numerous expeditions, many abroad and often tactfully scheduled 

as an incentive for reaching the major milestones of this endeavor.  This kept me 

motivated and focused on the next milestone.  (A trip to Puerto Rico, our first as a 

family, is the award awaiting a successful dissertation defense!)  I also genuinely 

benefitted from her delicious, health-conscious cooking.  When life gets busy, it is 

tempting to opt for quick and convenient food alternatives, alternatives all too 

frequently chock full of unpronounceable ingredients and devoid of proper nutrition.  

Katie keeps tabs on me to ensure I am eating well, and I consider myself extremely 

lucky to be fed regularly by my favorite cook in the entire world. 



 

 v 

 

Table of Contents 
 

Acknowledgements ....................................................................................................... ii 

Table of Contents .......................................................................................................... v 
List of Tables ............................................................................................................... vi 
List of Figures ............................................................................................................ viii 
Chapter 1: Introduction ................................................................................................. 1 

1.1 Background ......................................................................................................... 1 

1.2 Illustrating Phase Capacity in the Federal Employee Viewpoint Survey ........... 5 
1.3 Traditional Nonresponse Perspectives and Terminology ................................. 12 
1.4 Dissertation Outline .......................................................................................... 26 

Chapter 2: Alternative Nonresponse Perspectives to Frame the Phase Capacity 

Problem ....................................................................................................................... 29 
2.1 Introduction ....................................................................................................... 29 
2.2 An Alternative Paradigm from the Deterministic Perspective ......................... 29 

2.3 An Alternative Paradigm from the Stochastic Perspective ............................... 34 
2.4 Considerations When Nonresponse Adjustment Methods Are Utilized........... 37 

Chapter 3: A Retrospective Test for Phase Capacity When Weighting for 

Nonresponse ................................................................................................................ 42 
3.1 Background ....................................................................................................... 42 

3.2 New Methods .................................................................................................... 45 
3.3 Simulation Study ............................................................................................... 51 

3.4 Application to the Federal Employee Viewpoint Survey ................................. 65 
3.5 Conclusion ........................................................................................................ 74 

Chapter 4: Multivariate Extensions of the Retrospective Phase Capacity Test When 

Weighting for Nonresponse ........................................................................................ 77 

4.1 Background ....................................................................................................... 77 
4.2 New Methods .................................................................................................... 78 
4.3 Simulation Study ............................................................................................... 85 

4.4 Application to the Federal Employee Viewpoint Survey ................................. 94 
4.5 Conclusion ........................................................................................................ 98 

Chapter 5: Prospective Considerations of Phase Capacity ....................................... 101 

5.1 Background ..................................................................................................... 101 
5.2 New Methods .................................................................................................. 112 
5.3 Simulation Study ............................................................................................. 116 
5.4 Application to the Federal Employee Viewpoint Survey ............................... 128 
5.5 Conclusion ...................................................................................................... 133 

Chapter 6: Discussion ............................................................................................... 137 
6.1 Dissertation Summary ..................................................................................... 137 

6.2 Limitations and Ideas for Further Research .................................................... 141 
Appendix: Data Set Visualization of RGG Rule 3. .................................................. 148 
Bibliography ............................................................................................................. 149 
 

 

 



 

 vi 

 

List of Tables 
 

Table 1.1: Federal Employee Viewpoint Survey Items Comprising the U.S. Office of 

Personnel Management's Human Capital Assessment and Accountability Framework 

(HCAAF) Job Satisfaction Index .................................................................................. 7 

 

Table 1.2: FEVS 2011 Achieved Responses by Data Collection Wave (a Calendar 

Week) for Three Example Agencies Analyzed in this Dissertation ............................. 9 

 

Table 3.1: Illustration of the Taylor Series Linearization Method to Approximate the 

Variance of the Difference of Two Adjacent Waves' Nonresponse-Adjusted Sample 

Means .......................................................................................................................... 48 

 

Table 3.2: Parameters of the Rao, Glickman, and Glynn (2008) Simulation 

Study ........................................................................................................................... 52 

 

Table 3.3: Summary of the Two Wave-of-Response Distributions used for the 

Simulation Study Comparing RGG Rule 3 Phase Capacity Test to the Weighting 

Variant......................................................................................................................... 56 

 

Table 3.4a: Simulation Study Results Comparing RGG Rule 3 with the Weighting 

Variant (n = 500) ......................................................................................................... 61 

 

Table 3.4b: Simulation Study Results Comparing RGG Rule 3 with the Weighting 

Variant (n = 5,000) ...................................................................................................... 62 

 

Table 3.5: Results from a Federal Employee Viewpoint Survey Application using 

Data from Three Agencies to Compare RGG Rule 3 with the Weighting Rule 

Variant......................................................................................................................... 70 

 

Table 4.1: Example FEVS Trends for Three Items' Percent Positive Estimates across 

the Four Most Recent Waves ...................................................................................... 81 

 

Table 4.2: Items Comprising the U.S. Office of Personnel Management’s Four 

Human Capital Assessment and Accountability Framework (HCAAF) Indices 

Derived from the Federal Employee Viewpoint Survey............................................. 86 

 

Table 4.3: Summary of the Two Wave-of-Response Distributions Used for the 

Simulation Study Comparing the Two Multivariate Extensions to the Phase Capacity 

Test When Weighting for Nonresponse ...................................................................... 88 

 

Table 4.4: Simulation Study Results Comparing the Two Multivariate Extensions to 

the Phase Capacity Test When Weighting for Nonresponse ...................................... 94 

 



 

 vii 

 

Table 4.5: Results from the FEVS Application Comparing the Two Multivariate 

Extensions to the Phase Capacity Test When Weighting for Nonresponse ................ 98 

 

Table 5.1: An Artificial Data Set to Facilitate the Discussion of Prospective Phase 

Capacity Considerations ........................................................................................... 104 

 

Table 5.2: Summary of Simulation Factors and Sub-Factors for the Study Evaluating 

the Newly Proposed Technique for Making Inferences on the Expected Deviation of a 

Nonresponse-Adjusted Point Estimate Following a Future Data Collection Wave  120 

 

Table 5.3a: Prediction Interval Coverage Rates for the Simulation Study Condition in 

which Response Wave is Independent of the Outcome Variables ........................... 122 

 

Table 5.3b: Prediction Interval Coverage Rates for the Simulation Study Condition in 

which Response Wave is Associated with  the Outcome Variables ......................... 123 

 

Table 5.4: Agency- and Item-Specific Prediction Interval Coverage Rates across All 

Applicable Wave Thresholds .................................................................................... 130 

 

 



 

 viii 

 

List of Figures 

Figure 1.1: Plot of the Nonresponse-Adjusted Percent Positive Statistic for FEVS 

Item 4 Using Cumulative Data as of the Given Wave of Nonrespondent Follow-Up 11 

 

Figure 1.2: Visualization of Nonresponse Error for a Sample Mean Using the 

Analogy of a Partitioned Water Tank ......................................................................... 16 

 

Figure 1.3: Illustration of Unit Nonresponse vs. Item Nonresponse .......................... 18 

 

Figure 2.1: Visualization of Nonresponse Error over the Course of a Four-Wave Data 

Collection Period Using the Analogy of a Partitioned Water Tank ............................ 32 

 

Figure 2.2a: Visualization of a Two-Class Weighting Adjustment Strategy Using the 

Analogy of a Partitioned Water Tank ......................................................................... 38 

 

Figure 2.2b: Visualization of Wave-Specific Means for a Two-Class Weighting 

Adjustment Strategy Using the Analogy of a Partitioned Water Tank ....................... 40 

 

Figure 3.1: Average Approximated Variance of the Difference between Two 

Adjacent Wave Sample Means by Phase Capacity Test Method for the Simulation 

Study Setting where n = 500 and εi ~ N(0,1) .............................................................. 63 

 

Figure 3.2: Average Proportion of the Approximated Variance of the Difference 

between Two Adjacent Wave Sample Means Reduced after Incorporating the 

Covariance by Phase Capacity Test Method for the Simulation Study Setting where n 

= 500 and εi ~ N(0,1) ................................................................................................... 65 

 

Figure 3.3: Trend of Nonresponse-Adjusted Estimates of Mean Pseudo-Outcome 

Variable Grade over the 2011 Federal Employee Viewpoint Survey Data Collection 

Period Overlaid with the Full-Sample Estimate ......................................................... 73 

 

Figure 3.4: Trend of Nonresponse-Adjusted Estimates of Mean Pseudo-Outcome 

Variable Length of Service over the 2011 Federal Employee Viewpoint Survey Data 

Collection Period Overlaid with the Full-Sample Estimate ........................................ 74 

 

Figure 4.1: Visualization of the Non-Zero Trajectory Method for Testing Phase 

Capacity in a Multivariate Setting .............................................................................. 83 

 

Figure 4.2: Plot of the Nonresponse-Adjusted Indices for Agency 1 Using Cumulative 

Data as of the Given Wave of Nonrespondent Follow-Up ......................................... 96 

 

Figure 5.1: Distribution of Simulated Nonresponse-Adjusted Sample Mean 

Differences after a Second Wave of Data is Collected Using the Artificial Data in 

Table 5.1 ................................................................................................................... 108 



 

 ix 

 

 

Figure 5.2: Comparative Distributions of Simulated Nonresponse-Adjusted Sample 

Mean Differences after a Second Wave of Data is Collected Using the Artificial Data 

in Table 5.1 - Single Imputation, Improper Multiple Imputation, and Proper Multiple 

Imputation ................................................................................................................. 111 

 

Figure 5.3a: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted Sample 

Mean Differences Observed for the First Iteration of the Simulation Condition in 

which the Response Wave is Independent of the Outcome Variables - Using FEVS 

Item 4 for Agency 3 as an Example .......................................................................... 125 

 

Figure 5.3b: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted Sample 

Mean Differences Observed for the First Iteration of the Simulation Condition in 

which the Response Wave is Associated with the Outcome Variables - Using FEVS 

Item 4 for Agency 3 as an Example .......................................................................... 126 

 

Figure 5.4a: Wave-Specific Prediction Interval Coverage Rates for the MI Method, 

Averaged over the Agency's Seven FEVS Items Investigated, for all Six Sub-

Conditions of the Simulation Study .......................................................................... 127 

 

Figure 5.4b: Wave-Specific Prediction Interval Coverage Rates for the Weighting 

Method, Averaged over the Agency's Seven FEVS Items Investigated, for all Six 

Sub-Conditions of the Simulation Study .................................................................. 128 

 

Figure 5.5a: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted Sample 

Mean Differences Observed for the FEVS 2011 Application – Item 4 for Agency 1

................................................................................................................................... 131 

 

Figure 5.5b: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted Sample 

Mean Differences Observed for the FEVS 2011 Application – Item 4 for Agency 2

................................................................................................................................... 132 

 

Figure 5.5c: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted Sample 

Mean Differences Observed for the FEVS 2011 Application – Item 4 for Agency 3

................................................................................................................................... 133 

 

 

 



 

 1 

 

Chapter 1: Introduction 

1.1 Background 

Few surveys are immune to unit nonresponse, which occurs when sampled 

individuals fail to respond to a survey request.  Indeed, response rates have been 

declining in both the United States and abroad (Atrostic et al., 2001; de Leeuw and de 

Heer, 2002; Curtin et al., 2005).  Groves (2003) argues the domestic trend is a 

confluence of the rise in single-person households, access impediments such as caller 

ID and gated communities, and a general increase in reluctance to participate in 

surveys.  This, in turn, has led to rising costs, as increased effort must be expended 

merely to maintain a survey’s historical response rate mark (Curtin et al., 2000).  For 

instance, Groves (2003) reports that the number of interviewer hours required to 

secure an interview increased some 30 – 40% during the late 1990s for the General 

Social Survey, the National Comorbidity Study, and the National Survey of Family 

Growth.  While these trends are alarming, there is much evidence refuting the tacit 

assumption that a higher nonresponse rate is systematically linked to less accurate 

estimates (Merkle and Edelman, 2002; Groves and Peytcheva, 2008). 

 

The typical protocol for data collection in surveys involves making a sequence 

of follow-ups on those who have yet to respond, which can take on various forms 

depending on the survey’s mode—reminder mailings, additional telephone calls, or 

revisits to a residence, to name a few.  Each follow-up attempt tends to prompt more 

survey completes, which we can conceptualize as incoming waves of data.  On the 

surface, more follow-ups are desirable, as they serve to reduce the nonresponse rate, 



 

 2 

 

but they come at a cost and extend the data collection field period, delaying 

subsequent stages of the survey process, such as the reporting and analysis stages.  

And from a purely practical standpoint, empirical evidence (e.g., Table 1 in Potthoff 

et al.,1993) suggests returns diminish with each subsequent wave; that is, fewer and 

fewer completes are attained, impinging smaller and smaller changes upon key 

estimates. 

 

Descriptive statistics about the nonrespondent follow-up campaign can be 

subsumed under the concept of paradata, a term coined by Couper (1998) to denote 

process data generated as a byproduct of data collection.  Paradata analyses have 

burgeoned since that time (Kreuter and Casas-Cordero, 2010; Kreuter, 2013).  The 

number of follow-up attempts is one example paradata measure summarizing the 

level of effort expended to achieve a response.  Given the count is known for the 

entire sample, researchers have evaluated its ability to adjust for nonresponse.  

Potthoff et al. (1993) reweighted survey data in a telephone survey based on an 

assumed relationship between the number of callbacks and an outcome variable.  Rao, 

Glickman, and Glynn (2004) evaluated the effect of incorporating the number of 

follow-up attempts as a continuous predictor variable in an imputation model.  Like 

any candidate variable, its utility hinges on a strong relationship with both the 

probability of responding and the key survey outcome variables (Little and 

Vartivarian, 2005). 
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A related class of research has focused on comparing and contrasting the 

response distributions and associated covariate compositions across some distinction 

of “early” versus “late” wave respondents (Curtin et al., 2000; Keeter et al., 2006; 

Billiet et al., 2007; Peytchev et al., 2009; Sigman et al., 2012).  In some instances, the 

objective is to evaluate whether estimates derived from early respondents differ 

notably from estimates derived using the ultimate set of respondents, early and late.  

A natural feature of these types of these studies is that they tend to measure relative 

bias, not absolute bias.  Estimates using all respondents may not differ much from 

estimates using only the early wave respondents, but the former is still subject to bias.  

In other instances, the objective is to assess whether late respondents can proxy for 

ultimate nonrespondents in some form of nonresponse adjustment.  Sometimes the 

hypothesized relationship holds (Bates and Creighton, 2000), but the technique can 

backfire when the mechanisms of noncontact differ from nonresponse (Lin and 

Schaeffer, 1995). 

 

To mitigate the increased costs associated with efforts to stem further declines 

in response rates, Groves and Heeringa (2006) argue for researchers to employ 

principles of responsive survey design, in which paradata is utilized in real-time to 

inform data collection decisions and, if necessary, change course.  They define a 

design phase to be a spell of data collection with a stable frame, sample, and 

recruitment protocol and phase capacity as the point during a design phase at which 

the additional responses cease influencing key statistics.  The idea is that instead of 

terminating data collection or transitioning to a new design phase at some arbitrary 
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threshold, such as a target response rate, one should monitor the accumulating data 

and stop when phase capacity has been reached.  As Wagner and Raghunathan (2010) 

point out, however, Groves and Heeringa (2006) offer no specific, calculable rule to 

test for phase capacity.  The concept is only illustrated visually in Figure 2 of their 

paper, in which they plot the trend of a key, nonresponse-adjusted estimate over the 

data collection period and comment on how the estimate stabilizes well before the 

design phase concludes.  The general aim of this dissertation is to fill this research 

gap by developing and evaluating a series of methods to formally test for phase 

capacity. 

 

As an aside, it should be acknowledged that the survey methodology literature 

abounds with strategies and considerations for allocating resources when following 

up with nonrespondents (Hansen and Hurwitz, 1946; Filion, 1976; Deming, 1953; El-

Bawdry, 1956; Elliott et al., 2000).  These typically involve targeting a subset(s) of 

the remaining nonrespondents with the goal of maximizing precision, minimizing 

costs, and/or minimizing nonresponse error.  One can think of the strategies discussed 

herein as a way to determine whether it is time to intervene with one of those 

alternative strategies (i.e., change design phases).  Again, the fundamental goal of 

testing for phase capacity is to detect estimate stability within a fixed data collection 

protocol.  This is not to say the nonresponse-adjusted estimate is free of nonresponse 

error; we are saying that its immobility following the most recent wave(s) is evidence 

that its magnitude is no longer changing.  Once phase capacity has been reached, it 



 

 5 

 

seems likely future follow-up attempts will be equally inefficacious, and therefore 

inefficient. 

 

Another critical point worth emphasizing is that the phase capacity tests 

previously appearing in the literature are often referred to as “stopping rules”.  This 

label carries with it the connotation that the nonrespondent follow-up campaign 

should be discontinued altogether once phase capacity has been reached.  This is not 

precisely the case.  As stated previously, phase capacity marks the point at which a 

new design phase is warranted.  Stopping the nonrespondent follow-up campaign is 

one form of a design phase change, the one exclusively considered in this 

dissertation, but alternative interventions include switching modes (de Leeuw, 2005) 

or increasing the incentive offered to the remaining nonrespondents (McPhee and 

Hastedt, 2012). 

 

1.2 Illustrating Phase Capacity in the Federal Employee Viewpoint Survey 

To further elucidate the concept of phase capacity and introduce the real-

world survey data set on which the proposed tests will be evaluated, we next discuss 

the Federal Employee Viewpoint Survey (FEVS).  The FEVS, formerly known as the 

Federal Human Capital Survey (FHCS), was first launched in 2002 by the U.S. Office 

of Personnel Management (OPM).  Initially administered biennially, the Web-based 

survey is now conducted yearly on a sample of full- or part-time, permanently 

employed civilian personnel of the U.S. federal government.  The core survey 

instrument consists of 84 work environment questions followed by 14 demographic 
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questions.  Most questions are attitudinal, capturing answers in the form of a five-

point Likert scale ranging from Very Satisfied to Very Dissatisfied.  Tests of 

statistical significance are typically performed after collapsing these categories into 

the dichotomy of a positive/non-positive response.  Responses for which a “Do Not 

Know” or “No Basis to Judge” option is provided are treated as if the positive/non-

positive indicator was missing.  The key estimate from each item thus reduces to the 

proportion (or percentage) of employees who react positively to the statement posed.  

The typical terminology used to describe this statistic is the “percent positive” for a 

particular survey item.  Although this dichotomization ostensibly foregoes some 

information, Jacoby and Matell (1971) argue that it does not cause any significant 

decrement in reliability or validity. 

 

Of the myriad uses of the survey’s data, one highly visible application is 

various “Best Places to Work” rankings.  OPM publishes a series of rankings as do a 

few other entities keenly interested in the data.  The underlying ranking calculations 

are not uniform, but all involve grouping thematically-linked subsets of the 84 

attitudinal items and amalgamating the percent positive estimates of the items therein.  

For instance, the OPM formula is the simple average of the percent positive 

estimates.  Example themes are job satisfaction and talent management.  Table 1.1 

below lists the seven FEVS items comprising OPM’s Job Satisfaction index. 
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Table 1.1: Federal Employee Viewpoint Survey Items Comprising the U.S. Office of 

Personnel Management’s Job Satisfaction Index. 

Item Wording 

4 My work gives me a feeling of personal accomplishment. 

5 I like the kind of work I do. 

13 The work I do is important. 

63 How satisfied are you with your involvement in decisions that affect your work? 

67 
How satisfied are you with your opportunity to get a better job in your 

organization? 

69 Considering everything, how satisfied are you with your job? 

70 Considering everything, how satisfied are you with your pay? 

 

 

The sample frame for the FEVS is derived from a personnel database 

maintained by OPM.  In FEVS 2011, a total of 560,084 individuals from 83 agencies 

were sampled as part of a single-stage stratified design, where strata were defined by 

the cross-classification of agency-subelement and one of three supervisory categories: 

non-supervisors, supervisors, and executives.  Agency-subelement is the first 

organizational component below the agency level.  For instance, whereas the U.S. 

Department of Homeland Security is considered an agency, two of its agency-

subelements are the Transportation Security Administration and the U.S. Secret 

Service.  The stratification scheme ensures adequate numbers of supervisors and 

executives appear in the sample, as they constitute a domain of analytic interest.  Base 

weights equaling the reciprocal of an employee’s selection probability are assigned to 

all sampled individuals to account for the variable sampling rates across strata.   

 

The overall FEVS 2011 field period ran from March 29 to June 1, but the 83 

participating agencies had staggered survey start and close dates.  The agencies’ field 



 

 8 

 

period lengths varied to some degree, but the median duration was six weeks.  The 

data collection protocol fits well into the paradigm of a stable recruitment process 

with multiple waves of nonrespondent follow-up.  On the survey start date, an initial 

email invitation containing the website URL and log-in credentials was sent to 

sampled employees.  Upon completing the survey, each employee’s unique 

identification number and response vector were time stamped and appended real-time 

to a database stored on the site’s server.  Weekly reminders were sent to 

nonrespondents.  Hence, one straightforward demarcation of a data collection wave is 

the set of responses obtained between any two weekly email invitations.  Table 1.2 

shows the wave-specific respondent counts and corresponding relative percent 

increase for three example agencies that will be analyzed throughout this dissertation.  

It is plain to see how the relative increases quickly diminish after the first few waves.  

At the conclusion of the last respective wave undertaken, these three particular 

agencies had achieved roughly 50% response rates, very near the governmentwide 

average. 
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Table 1.2: FEVS 2011 Achieved Responses by Data Collection Wave (a Calendar 

Week) for Three Example Agencies Analyzed in this Dissertation. 

  
Agency 1 

 

Agency 2 

 

Agency 3 

Wave 
 

Respondents 
Percent 

Increase  
Respondents 

Percent 

Increase 

 

Respondents 
Percent 

Increase 

1 
 

2,175 -- 

 

240 -- 

 

2,178 -- 

2 
 

1,568 72.1% 

 

139 36.7% 

 

1,516 69.6% 

3 
 

1,117 29.8% 

 

49 11.4% 

 

1,304 35.3% 

4 
 

865 17.8% 

 

39 8.4% 

 

959 19.2% 

5 
 

557 9.7% 

 

31 6.2% 

 

613 10.3% 

6 
 

594 9.5% 

 

30 5.7% 

 

510 7.8% 

7 
 

532 7.7% 

 

22 4.0% 

 

439 6.2% 

8 
 

592 8.0% 

 

22 3.8% 

 

381 5.1% 

9 
 

105 1.3% 

 

-- -- 

 

408 5.2% 

10   -- --   -- --   379 4.6% 

  

8,105 

  

572 

  

8,687 

  

 

The FEVS sample frame contains a plethora of auxiliary variables known for 

both respondents and nonrespondents, a subset of which is utilized in a three-step 

weighting process to compensate for unit nonresponse (Kalton and Flores-Cervantes, 

2003).  In the first step, base weights are computed as the inverse of each sampled 

individual’s selection probability.  In the second step, base weights of nonrespondents 

are proportionally allocated to respondents within classes formed by the cross-

classification of agency and demographics such as minority status, gender, tenure 

with the federal government, and full- or part-time work status.  In the last step, 

weights are raked such that they aggregate to certain known frame totals for the 

agency as a whole. 
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The survey reminder schedule is generally fixed for each agency prior to the 

start of the survey, yet it can be argued that phase capacity occurs before the final 

reminder email is sent.  Since data is electronically recorded real-time and all 

weighting adjustments can be made after merging this response indicator back onto 

the sample frame, a series of nonresponse-adjusted point estimates can be charted 

across time as additional waves of data are incorporated. 

 

Figure 1.1 illustrates this type of plot for an example agency based on item 4, 

which asks employees their level of agreement with the statement “My work gives 

me a feeling of personal accomplishment.”  One can observe how the estimate 

increases over the course of data collection, even after adjusting for unit nonresponse.  

By about wave 6, however, the estimate has more or less stabilized.  Consequently, 

this is a pattern observed for many FEVS items: estimates derived from earlier 

respondents tend to be lower than estimates generated using the ultimate set of 

respondents (Sigman et al., 2012). 
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Figure 1.1:  Plot of the Nonresponse-Adjusted Percent Positive Statistic for 

FEVS Item 4 Using Cumulative Data as of the Given Wave of Nonrespondent 

Follow-Up. 

 

In general, the tendency for nonresponse-adjusted estimates to bounce around 

more in the earlier waves than latter waves is not unique to FEVS (cf. Figure 3 in 

Wagner (2010) and Figure 3 in Peytchev et al. (2009)).  The hope is that a test for 

phase capacity detects estimate stability at the earliest possible point of stability.  

Before delving into the specifics of these proposed methods, some background is 

given in the next section regarding the traditional perspectives of nonresponse and the 

fundamental assumptions behind techniques to compensate for it.  Chapter 2 posits 

modifications to these perspectives by factoring in a temporal dimension to the 

response process.  Specifically, it provides a framework for phase capacity 

considerations by extending certain familiar nonresponse-related formulas from the 
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literature to account not only for the dichotomy of a response or nonresponse, but the 

polytomy of responding during a specific wave or not responding at all. 

 

1.3 Traditional Nonresponse Perspectives and Terminology 

The typical survey’s data collection campaign commences by selecting a 

random sample of size n from a sample frame constructed to represent all N units in a 

finite population U.  It has long been known from survey sampling theory that a 

randomly selected sample, even of moderate size, can be used to form unbiased (or 

approximately unbiased) estimates of the attributes of the target population.  

Specifically, Horvitz and Thompson (1952) proved that, so long as each unit is 

assigned a fixed, non-zero probability of selection, which we can denote πi, unbiased 

estimation can be achieved by assigning each sampled unit a weight that is the inverse 

of this probability, or wi = 1 / πi.  This weight has many names, including the base 

weight, sampling weight, or design weight, and can be interpreted as the number of 

population units represented by the sampled unit.  The conundrum introduced by 

nonresponse is that, because only a portion of the sample is observed, the 

unbiasedness properties demonstrated in Horvitz and Thompson (1952) are no longer 

guaranteed to hold.  Analyzing only the observed portion without making any 

statistical adjustments may introduce nonresponse error (Groves, 1989), or a 

deviation from the quantity that would be computed from the full sample. 

 

As discussed in Chapter 1 of Groves and Couper (1998), the magnitude of 

nonresponse error in the sample set S depends on both the statistic at hand and the 
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degree of dissimilarity between S1, the set of r observed cases and S0, the set of m 

missing cases (r + m = n and SSS  01 ).  For example, suppose that the quantity of 

interest is a finite population total 



Ui

iyY of a particular variable taking on strictly 

positive values.  An unbiased estimate of this quantity could be obtained from the 

sample by 



Si

iin ywŶ .  The estimator utilizing only the observed portion of the 

sample, 




1

ˆ

Si

iir ywY , is certain to underestimate Y since  mrnr YYYY ˆˆˆˆ  , 

where 




0

ˆ

Si

iim ywY represents the base-weighted total of the m missing cases.  In 

contrast, suppose that the quantity of interest is a finite population mean 



Ui

iy
N

y
1

, 

for which an approximately unbiased estimate from the full sample can be computed 

by finding









Si

i

Si

ii

n

w

yw

ŷ .  In the presence of nonresponse, if we let










1

1ˆ

Si

i

Si

ii

r

w

yw

y denote 

the base-weighted mean of the r observed cases and






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Si
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w
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y the like for the m 

missing cases, the nonresponse error is 
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In words, nonresponse error is the product of the base-weighted nonresponse 

rate and the difference in base-weighted means between the observed and missing 

cases.  In contrast to the negative nonresponse error for rŶ when 0iy for all Ui , the 

quantity in equation 1.1 can be either positive or negative.  Specifically, if mr yy ˆˆ  , the 

quantity is positive, but if mr yy ˆˆ  , the quantity is negative.  Another important 

takeaway is that a larger portion of missing data does not necessarily increase the 

magnitude of nonresponse error, a point that has been demonstrated empirically in the 

survey methodology literature (Merkle and Edelman, 2002; Groves and Peytcheva, 
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2008).  The basic notion is that if mr yy ˆˆ  , a base-weighted nonresponse rate of 80% is 

no more detrimental than a rate of 20%. 

 

Figure 1.2 is an analogy provided to help visualize the fundamental concept of 

nonresponse error for a sample mean.  Imagine the outer rectangle represents a three-

dimensional water tank (a cube) of which we have a two-dimensional view, and that 

this tank has been partitioned by a separator running perpendicularly to the bottom of 

the tank, rendering two subdivisions of water.  The water level of the left-hand 

subdivision represents the base-weighted respondent mean, while the water level of 

the right-hand subdivision represents the like for nonrespondents.  Nonresponse error 

is the distance between water level of the left-hand subdivision and the resting water 

level that would be observed if the partition were removed and the two subdivisions 

were permitted to commingle.  This resting water level is represented by the 

horizontal dashed line in Figure 1.2.  The relative portion of the tank’s length to the 

left of the separator represents the base-weighted response rate.  Regardless of where 

it falls, if the “water levels” of both the left- and right-hand side are similar, 

nonresponse error will be minimal, at least with respect to the sample mean. 
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Figure 1.2: Visualization of Nonresponse Error for a Sample Mean Using the 

Analogy of a Partitioned Water Tank. 

 

Nonresponse error can be partitioned further to account for two or more 

causes of nonresponse.  For example, a common differentiation of nonresponse is the 

portion attributable to noncontact versus refusal to participate given contact (e.g., 

Lynn et al., 2002).  Let us suppose that the set of m nonrespondents in S0 is comprised 

of S0A, the set of mnc units unable to be located, and S0B, the set of mref units who were 

located but refused to participate in the survey (r + mnc + mref = n 

and SSSS BA  001 ).  If we let ncŷ denote the base-weighted mean of the mnc units 

and refŷ denote the base-weighted mean of the mref units, starting with the result in 

equation 1.1, we have 
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Further decompositions of m are possible, but the augmentation of the 

nonresponse error formula abides by the same basic pattern: a new term is added 

representing the product of the respective base-weighted prevalence in S and the 

distance between this group’s base-weighted sample mean relative to the base-

weighted sample mean of the r responding cases. 

 

Another important classification of nonresponse is the distinction between 

unit nonresponse, referring to situations in which the sampled unit fails to respond to 
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the survey request (i.e., answers no questions), and item nonresponse, referring to 

situations in which some, but not all, survey items are answered.  These two 

situations are contrasted in Figure 1.3 for a hypothetical survey with four outcome 

variables.  Ideally, a set of auxiliary variables X are known for both observed and 

missing cases and can be utilized in statistical adjustments to eliminate any error 

attributable to nonresponse. 

 

Unit Nonresponse 

 
Item Nonresponse 

             Outcome Variables 

 

  Outcome Variables 

X Y1 Y2 Y3 Y4 

 
X Y1 Y2 Y3 Y4 

          

 

          

  ? ? ? ? 

 

      ?   

          

 

    ?     

          

 

          

  ? ? ? ? 

 

  ?       

          

 

          

          

 

        ? 

 

Figure 1.3: Illustration of Unit Nonresponse vs. Item Nonresponse. 

 

The typical remedy for unit nonresponse is to conduct weighting adjustments 

(Kalton and Flores-Cervantes, 2003) that transfer the base weights of missing cases to 

the observed cases such that the newly calculated weights (of only the observed 

cases) better reflect the original sample or population.  On the other hand, the typical 

remedy for item nonresponse is to exploit the relationship between X and the vector 

of outcome variables to form a model which is then used to impute, or fill in, 

plausible values of the outcome variables for missing cases (Brick and Kalton, 1996).  
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These are termed “typical” remedies because there can be some overlap.  For 

example, imputation can be employed to combat unit nonresponse.  Weighting 

adjustments are less commonly used to compensate for item nonresponse, but they 

are feasible.  The cumbersome practicality is that separate sets of weights may be 

needed for separate analyses, particularly in the face of an arbitrary nonresponse 

pattern such as the one depicted by the right-hand image in Figure 1.3. 

 

The appropriateness of any particular nonresponse-adjustment method 

depends on the underlying assumption of what Little and Rubin (2002) term the 

missingness mechanism.  The three fundamental mechanisms they delineate are 

governed by the distribution of the sampled units’ propensity to respond to the given 

survey request.  The terminology and application are most often credited to ideas in 

Rosenbaum and Rubin (1983), although it can be argued that the concept traces back 

as far as Hartley (1946) and Politz and Simmons (1949).  Denoted i , the response 

propensity is defined as the probability of data being observed (or 1 minus the 

probability of being missing).  The first assumption is that data are missing 

completely at random (MCAR), which means that the propensities are independent of 

both the auxiliary variables, X, and the outcome variable, y.  If we let Ri denote the 

response indicator for the i
th

 sample unit, meaning Ri = 1 if the unit responds and Ri = 

0 otherwise, this is to say   iiii RyR )1Pr(),|1Pr( iX for all i.  This is a strong 

assumption, essentially positing that the observed cases are a completely random 

subset of the cases originally sampled.  The second assumption is that data are 

missing at random (MAR), which means the propensities may vary based on the 
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auxiliary variables, but not on the outcome variables.  Mathematically, this means 

iiii RyR  )|1Pr(),|1Pr( ii XX .  This is the assumption implied for many of the 

weighting and imputation techniques utilized in practice.  Conditional on a common 

vector of auxiliary variables Xi, data are assumed MCAR.  The first two assumptions 

are sometimes collectively referred to as ignorable missingness mechanisms.  The 

third assumption is the most perilous, data that are not missing at random (NMAR), 

implying that the propensities depend on the outcome variable beyond what can be 

explained by the auxiliary variables, or that )|1Pr(),|1Pr( ii XX  iii RyR .  In 

contrast to the first two, this is referred to as a non-ignorable missingness mechanism. 

 

Given a fixed and known (but not necessarily equal) propensity of responding 

for all units in the population, Bethlehem (1988) showed that, over repeated samples 

of the same size from a population of N units, the nonresponse bias utilizing rŷ , the 

base-weighted estimate of the sample mean for only the observed portion of the data, 

is approximately equal to 

 





N

i

iir yy
N

yNRbias
1

))((
1

)ˆ( 


     (1.3) 

 

where 



N

i

i
N 1

1
 symbolizes the average response propensity for all N units.  That is, 

the bias is proportional to the population covariance of the propensities and the 

survey variable.  Brick and Jones (2008) derive bias expressions similarly in spirit for 

other estimators. 
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 It will prove useful at this point to formally derive the Bethlehem (1988) 

result reported in equation 1.3 because certain intermediate results will be referenced 

later as part of the theoretical developments presented in Chapter 2.  Let Ii = 1 if the 

i
th

 unit from universe U is selected into the sample set S and 0 otherwise, and let Ri = 

1 if the i
th

 unit is responds to the survey given Ii = 1 and Ri = 0 otherwise.  We can 

think of the nonresponse bias in rŷ as the expected value of the nonresponse error 

in rŷ , where the expectation is over both the sampling mechanism, ES{•}, and 

missingness mechanism, EM{•}.  Supposing a sample size large enough such that for 

two generic survey estimates 1̂ and 2̂ ,
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expected value of rŷ over the sampling and the nonresponse mechanisms, a result we 

will use in derivations appearing in Chapter 2. 

 

Continuing on with the derivation of the Bethlehem (1988) formula, the two 

terms in the right-hand parentheses are factored as follows: 
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This expression can be related to the three missingness mechanisms defined 

by Little and Rubin (2002).  The MCAR assumption implies  i for all units in the 

population, which forces the summation term (and thus the overall bias term) to be 0.  

The MAR assumption allows the i ’s to vary across Xi, but not within.  The objective 

of nonresponse-adjustment techniques making the MAR assumption is to partition the 

sample based on Xi, such that within these groupings there is very little variation in 

the i ’s (i.e., data are MCAR).  Finally, the NMAR assumption implies that 

conditioning on the vector of auxiliary variables does not suitably explain all 

variation in the i ’s, and that a residual covariance component exists.  To see this, 

consider the alternative expression given on p. 220 of Brick and Kalton (1996).  

Supposing that the population can be partitioned into C classes, they used an analysis 

of covariance decomposition to re-express the Bethlehem (1988) formula as follows: 
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where Nc is the number of population units in the class c, and c and cy represent the 

mean response propensity and outcome variable in class c, respectively.  The proof is 

as follows: 
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Consider the popular weighting class adjustment strategy that partitions the 

sample into C classes and transfers the base weights of nonrespondents to respondents 

within each.  As Brick and Kalton (1996) note, the bias of the weighting class 

estimator of a sample mean is approximately













 

C

c

N

i

ccicci

c

yy
N 1 1

))((
1




, which 

implies that the net effect of this adjustment strategy is to eliminate the second term 

in equation 1.4.  This result lends credence to the recommendation in the literature 

that the ideally efficacious classification scheme is one substantively differentiating 

both the probabilities of responding and the outcome variable (e.g., p. 63 of Kalton, 
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1983, Little and Vartivarian, 2005), because if either the c ’s or the cy ’s hardly differ 

amongst the C classes, the term eliminated will already be close to zero and the 

weighting adjustment estimator will hardly differ from the unadjusted sample mean. 

 

The weighting class adjustment strategy assumes data are MAR, where X can 

be thought of as a set of class membership indicator variables.  Within a class, it is 

assumed cci   , or that the propensities are constant.  This is generally an untestable 

assumption given the propensities are rarely known, but there are a variety of 

methods proposed to obtain i̂ ’s, or sample-based estimates of the propensities (see 

Chapter 13 of Valliant et al., 2013).  One intuitive approach is to group the sample 

into C classes based on the ordered magnitude of the i̂ ’s, a technique referred to by 

Little (1986) as response propensity stratification.  Typically, C is of moderate size 

(C = 5 is common); Eltinge and Yanseneh (1997) and D’Agostino (1998) suggest a 

few diagnostics for assessing whether the propensity strata structure is suitable.  

Regardless of the manner in which classes are formed, however, unless the true 

propensities of cases within a class are approximately equivalent, the missingness 

mechanism has not been correctly specified and the first summation term in 1.4 may 

not be zero.  For the term to be nonzero, however, there must be a systematic 

relationship between the deviation of ci about c and ciy about cy .  

 

The notion of response propensities and the bias formula given by equation 

1.3 are products of the stochastic perspective of nonresponse, which is arguably more 

realistic and widely adopted than the deterministic perspective of nonresponse that 
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stipulates the sample frame of N units consists of R units that always respond and M 

units that never respond (Lessler and Kalsbeek, 1992).  A nonresponse bias formula 

with respect to the sampling process can also be derived from the deterministic 

perspective, however.  The proof follows immediately from simply treating the two 

sets of R and M units as two domains in the population. Specifically, Valliant et al. 

(2013) report this quantity (equation 13.1) to be 
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yNRbias 
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       (1.5) 

 

where Ry represents the population mean of the units that always respond and 

My represents the population mean of the units that never respond.  Note the 

resemblance between equations 1.5 and 1.1.  Despite sharing a similar structure, the 

one here is expressed in terms of finite population quantities and the one presented 

previously in terms of sample-based estimates.  Equation 1.1 is an estimate of the 

quantity in equation 1.5.  Interestingly, Groves and Couper (1998, p. 12) assert that 

the difference in expected respondent mean biases between the two perspectives is 

minor, even though their expressions look quite different.  The difference is more 

pronounced with respect to the variance of rŷ . 

 

1.4 Dissertation Outline 

The purpose of this section is to provide a brief overview of the structure of 

this dissertation.  The second chapter details extensions of the concepts and theory 
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from Section 1.3 to outline a general framework within which the missing data 

problem inherent to the phase capacity problem can be more directly understood.  The 

subsequent three chapters consist of three distinct methodological studies.  Each 

begins with a brief background section reviewing the literature and framing the 

problem, and follows with a description of the new method(s) proposed.  Each 

involves a simulation study and application using FEVS 2011 data with the broad 

objective of comparing and contrasting the properties of the proposed method(s) with 

their competitors. 

 

Chapter 3 critiques a retrospective phase capacity test recommended by Rao, 

Glickman, and Glynn (2008) that makes wave-specific adjustments for nonresponse 

via multiple imputation (Rubin, 1987).  The proposed adaptation operates similarly in 

spirit, but applies to settings in which weighting adjustments are the nonresponse 

compensation method chosen. 

 

A limitation of the ideas discussed in Chapter 3 is that they are univariate in 

nature.  The tests aim to detect phase capacity with respect to a single estimate (i.e., a 

sample mean) for a single variable.  In practice, however, a typical survey produces a 

diverse battery of estimates.  It is not immediately obvious how to proceed if the test 

is conducted on multiple estimates with conflicting results.  Rather than designating a 

single estimate as “most important” and basing all decisions thereupon, a multivariate 

test consolidating several estimates’ findings into a single yes-or-no answer would be 

more useful.  Chapter 4 proposes two techniques with that goal in mind. 
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Acknowledging the retrospective nature of the methods discussed in Rao, 

Glickman, and Glynn (2008), Wagner and Raghunathan (2010) proposed a 

prospective test of phase capacity.  Given the set of nonrespondents who will respond 

in the future wave, they derived a formula for the expected variability of the 

nonresponse-adjusted sample mean of a continuous variable.  The notion is that the 

current nonrespondent follow-up protocol can change once the expected variability is 

sufficiently small, a quantity that, albeit arbitrary, can be pre-specified by the 

practitioner.  Chapter 5 notes certain limitations of their technique and proposes a 

more general approach with a broadened applicability. 



 

 29 

 

Chapter 2: Alternative Nonresponse Perspectives to Frame the 

Phase Capacity Problem 

2.1 Introduction 

The purpose of this chapter is to discuss modifications to the traditional 

nonresponse perspectives introduced in the opening chapter that conform more 

closely to the issues intrinsic to the phase capacity problem.  We consider the 

deterministic perspective in Section 2.2; the stochastic perspective is considered in 

Section 2.3.  The forthcoming theory is provided not only to help frame the phase 

capacity problem, but also to proffer considerations as to how a sample mean might 

change over the course of a data collection period.  Observing changes in the sample 

mean is an indication that there are changes to the underlying MCAR, MAR, or 

NMAR assumption(s).  In other words, there is a temporal dimension to the three 

established missing data classifications.  Be advised that the discussions in Sections 

2.2 and 2.3 suppose nonresponse adjustments have not been undertaken.  Section 2.4, 

however, briefly touches on considerations for the case of one particular nonresponse 

adjustment approach, the weighting class adjustment technique. 

 

2.2 An Alternative Paradigm from the Deterministic Perspective 

A straightforward extension of the deterministic perspective for a survey 

collecting data with a constant protocol over K waves is to conceptualize the N 

population units as falling within one of K +1 mutually exclusive and exhaustive 

domains: K of size N1, N2, …, NK containing units that, if sampled, will always 

participate in the survey during the k
th

 wave, and a domain of size M containing units 
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that will never respond.  Without loss of generality, let us assume a simple random 

sample of size n has been drawn from this population.  We would anticipate the 

wave-specific respondent counts r1, r2, …, rK and the count of nonrespondents m (r1 + 

r2 + … + rK + m = n) to fall in proportion to the respective domain’s prevalence in the 

population—that is, E(rk) = n*(Nk/N) for k = 1, …, K and E(m) = n*(M/N).  

Acknowledging the empirical finding that returns diminish with each subsequent 

follow-up, we might assume that the Nk’s decrease for larger values of k, which, at 

least in a simple random sample design, would lead us to anticipate that the rk’s will 

decrease as well on the average.  Provided rk > 1 for all K waves, we can express the 

ultimate respondent sample mean as 

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sample mean of the rk sample units responding during wave k, specifically. 

 

Following the same strategy used to arrive at equation 1.2, we can conceive of 
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ˆ , the respondent mean using data from waves 1 to k inclusive (k < K) 

(i.e., calculated using data from the r1, r2, …, rk responses thus far obtained) as 

susceptible to nonresponse error due to the fact that there have been m 

nonrespondents drawn into the sample with mean mŷ that will never respond 

and 
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Using the partitioned water tank analogy first introduced in Figure 1.2, Figure 

2.1 serves as a visual aid for the story told by equation 2.1, exploiting an example 

scenario in which K = 4 and only the first wave of data has been collected (k = 1).  As 

before, imagine the outer rectangle represents a three-dimensional water tank (a cube) 

of which we have a two-dimensional view, and that this tank has been partitioned by 

four removable separators.  The separators labeled 1, 2, and 3, represent wave 

thresholds rendering four subdivisions whose widths signify the relative proportions 

of r1, r2, r3, and r4.  The four wave-specific sample means can be conceptualized as 

the “water level” of these subdivisions.  The rightmost water level represents mŷ .  At k 

= 1, the nonresponse error is the vertical distance between the water level of the 

leftmost subdivision, 1
1ŷ , and the horizontal dashed line representing nŷ , the full 

sample mean that would be realized if all four partitions were removed. 
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Figure 2.1: Visualization of Nonresponse Error over the Course of a Four-Wave Data 

Collection Period Using the Analogy of a Partitioned Water Tank. 

 

An interesting facet of this particular nonresponse scenario is that the 

magnitude of nonresponse error is time-dependent.  Specifically, there is minimal 

nonresponse error after the first wave, yet the magnitude of nonresponse error 

increases over the subsequent waves.  This is because each new wave of data 

collected actually pulls the observed sample mean further away from mŷ .  Granted, 

this is but one example of the distribution of wave-specific respondent counts and 

sample means, and to further complicate matters, the situation is variable and domain-

specific, but it is a simple and effective model for conceptualizing the progression of 

nonresponse error over the course of data collection. 
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We can consider 1
1ŷ an estimate of 1

1y , the population mean of the domain 

consisting of N1 cases, and 2
1ŷ an estimate of 2

1y , the population mean of the domain 

consisting of N1 + N2 cases, and so on.  The objective of the phase capacity test is to 

use the sample data to assess H0: 01
1

11  


kkk
k yy  versus H1: 01

1
11  


kkk

k yy , 

although the hypotheses can be written in terms of other population parameters as 

well, and non-zero differences for that matter.  Note how we can also express the 

difference as    n
k

n
kk

k yyyy  
 1

1
11 , which illuminates the parallel interpretation 

that this is an investigation into whether there was no significant change in the 

expected value of nonresponse error (i.e., nonresponse bias).  Whichever the 

interpretation, if the null hypothesis cannot be rejected, there is evidence that phase 

capacity has occurred. 

 

Ignoring nonresponse adjustments and focusing on sample-based estimates of 

this key quantity, an enlightening algebraic manipulation is as follows: 
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which shows how the change in nonresponse error is equal to the sum of (1) the 

product of the portion of sample cases yet to be observed at the conclusion of wave k 

and the observed change in the cumulative sample mean after wave k and (2) the 

product of the portion of sample responding during wave k, specifically, and the 

difference between those respondents’ sample mean and the cumulative sample mean 

as of the previous wave. 

 

Although we will not do so presently, this framework and the formulas given 

by equations 2.1 and 2.2 could be fleshed out to include terms representing additional 

causes of nonresponse.  Moreover, in the presence of unequal probabilities of 

selection, base weights could easily be incorporated into the sample mean 

calculations discussed above and base-weighted versions of the terms such as rk, m, n 

and fractions thereof could be introduced. 

 

2.3 An Alternative Paradigm from the Stochastic Perspective 

We next discuss amendments to the stochastic perspective of nonresponse to 

better frame the phase capacity problem.  The fundamental change is that the we must 

broaden the notion of a single response propensity i for the i
th

 unit to instead be a K-

dimensional vector of wave-specific propensities, ],...,,[ 21 Kiiii φ , where each 
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entry represents the unit’s propensity to respond during the k
th

 wave, specifically.  

That is, we assume that the response process for the i
th

 sample unit follows a 

multinomial distribution with K + 1 events: responding during one of the K waves or 

not responding at all.  Because the events are disjoint, we can treat the event of 

responding by the conclusion of a particular wave as the sum of the entries in iφ from 

the first position up through the entry indexing that wave. 

 

As was noted in Section 1.3, a noteworthy preliminary finding of Bethlehem’s 

(1988) derivation is that, given a response propensity i , the expectation of the sample 

mean of the responding units can be shown to equal 

 









Ui

i

Ui

ii

r

y

yE





)ˆ(         (2.3) 

 

which is a weighted mean (over all units in the population U) in which the response 

propensity serves as the weight.  This holds true regardless of the sampling 

mechanism, which was shown to cancel out during the derivation. 

 

Using this result, we can reason that the expectation of the sample mean for 

units responding during the first wave would equal
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expectation of the sample mean for units responding during either the first or second 
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waves would be
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, and so on.  Therefore, we can express the 

expectation of the difference between two adjacent-wave means as 
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If we define 
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re-expressed as 

 















Ui

ki

Ui

iki
kk

T

yT

T

T
yyE





2

1

2

1
1

1
1 )ˆˆ(       (2.5) 

 

The first major takeaway message from equation 2.5 is that the only occasion 

in which the difference is exactly zero is when 
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.  In other words, barring any 

nonresponse adjustments, the change with respect to nonresponse bias of the sample 
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mean will be zero only in the absence of a differential relationship between ki and yi 

relative to what has been observed over the previous wave(s).  It seems safe to 

assume that the sums of wave-specific propensities in the population U will tend to 

decreases in magnitude as k increases.  As such, we might also anticipate 

both
Ui

iki y and
Ui

ki to continually decrease, resulting in a progressively smaller 

change in the sample mean, which would help explain why estimates tend to shift less 

across later wave thresholds as compared to those in earlier waves.  Of course, such a 

tendency may not always hold, particularly if there is a strong covariance between 

the ki ’s and yi’s. 

 

2.4 Considerations When Nonresponse Adjustment Methods Are Utilized 

The exposition presented thus far in the chapter has focused on the potential 

for nonresponse error in a sample mean assuming nothing has been done to 

compensate for it.  In practice, weighting adjustments and/or imputation techniques 

are typically implemented with the aim of reducing this source of error.  As can be 

inferred from Figure 1.1 (and other comparable figures noted from the literature), 

however, the nonresponse-adjusted sample mean estimates are not necessarily stable 

over the data collection period.  This suggests the missingness mechanism has been 

misclassified in some way.  Continuing with ideas posited with the help of the water 

tank analogy, let us next consider a few circumstances when this could occur even 

when a weighting class adjustment strategy is used. 
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For simplicity, assume one wave of data has been collected for a sample 

partitioned into C = 2 classes, and that an adjustment factor is applied to the wave 1 

respondents within each class inflating their base weights such that they sum to Nc, 

the known population total for class c.  The class-specific means at this point are 

represented by the two water levels in Figure 2.2a.  The single separator marks the 

class threshold, and the relative areas to either side of the separator represent the 

relative sizes of N1 and N2.  The full sample mean is represented by the dashed line, 

which can be interpreted as the resting water level if the lone separator were removed. 

 

 

Figure 2.2a: Visualization of a Two-Class Weighting Adjustment Strategy Using the 

Analogy of a Partitioned Water Tank. 

 

Recall that the assumption behind the weighting class adjustment strategy is 

that data are MCAR within each class, meaning the expected value (or water level, in 

this paradigm) of the given outcome variable for cases within a class should be the 
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same regardless of which sample units happened to respond in the first wave.  To the 

extent this proves systematically incorrect, nonresponse error can result.  Figure 2.2b 

visualizes the impact of incorporating a second wave of data in the presence of one 

such example.  Relative to Figure 2.2a, the two classes have been additionally 

partitioned by a threshold representing the two waves of data.  Notice how the class-

specific means (i.e., water levels) for wave 2 respondents are larger in magnitude than 

the class-specific means of the wave 1 respondents.  Within a class, the change after 

commingling the two waves’ responses follows immediately from the discussion 

surrounding Figure 1.2, and has the same functional form as that of the deterministic 

perspective’s nonresponse error formula given by equation 1.1.  In terms of the 

notation utilized in Figure 1.2, for example, we can consider the wave 1 respondents 

as the region denoted by S1, and the wave 2 respondents as the region denoted by S0.  

As such, the class-specific change is simply the product of the weighted portion of 

wave 2 respondents and the difference between the weighted sample mean of the 

wave 1 respondents and wave 2 respondents, where the weights utilized are those 

calculated at the end of the second wave.  The net change with respect to the overall 

sample is the sum of these class-specific changes weighted proportionally by Nc/N. 
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Figure 2.2b: Visualization of Wave-Specific Means for a Two-Class Weighting 

Adjustment Strategy Using the Analogy of a Partitioned Water Tank. 

 

The scenario depicted by Figure 2.2b is one of a systematically incorrect 

assumption regarding the missingness mechanism.  This is but one example of an 

infinite number of circumstances.  As another example, there may be some classes in 

which wave 2 respondents’ means are larger and others in which the wave 2 

respondents’ means are smaller.  The relative impacts could be negated if the two are 

roughly proportional to one another.  Also, these considerations are domain-specific.  

For instance, if some aggregation of classes in which the wave 2 respondents’ means 

are larger constituted a domain of analytic interest, that domain mean would still be 

susceptible to nonresponse error.  Another factor is the relative sizes of the Nc’s  For 

better or worse, it is entirely possible that what occurs in one class could dominate the 

overall picture if it comprises an outsized share of population. 
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Considerations of this simple model apply at later points in the data collection 

process, which brings into play yet another dimension: the relative size of the pending 

wave cohort to be introduced to the classes.  More disparate wave-specific means 

have less of an impact when the weighted portion of cases introduced is small in 

comparison to the weighted portion of respondents from wave(s) already completed. 

 

 Regardless of the technique employed to compensate for nonresponse, the 

spirit of the phase capacity test is as follows: for a general population 

parameter estimated at the conclusions of two adjacent waves by 1
1
ˆ k and k

1̂ , 

respectively, if kkk
k 1

1
11

ˆˆˆ   
 is significantly different from 0 (formal tests to assess 

this are discussed in the forthcoming chapters), the dynamics of the wave-specific 

nonresponse mechanism have not yet stabilized to a point where the marginal impact 

on the estimate is inconsequential, and so another wave of data collection is 

warranted. 
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Chapter 3: A Retrospective Test for Phase Capacity When 

Weighting for Nonresponse 

3.1 Background 

Rao, Glickman, and Glynn (RGG) (2008) was the first known attempt at 

quantifying estimate stability across waves of nonrespondent follow-up, although 

their motivation was a concurrently progressing literature on sequential decision rules 

in clinical trials (O’Quigley et al., 1990), not the concept of phase capacity as 

discussed in Groves and Heeringa (2006).  RGG’s research question was to determine 

when they could stop mailing replacement questionnaires to a sample of women 

recruited for a large pregnancy prevention study.  Covariates collected during the 

recruitment stage served as the auxiliary variables X known for the entire sample as 

these women were followed over time.  The estimate they considered was a sample 

mean, the proportion of women using birth control.  Given the completion of wave k 

(k ≥ 2), RGG questioned how much inferences would have changed had data 

collection stopped at wave k – 1.  To help quantify the uncertainty surrounding that 

question, they derived three rules. 

 

Rule 1 gauges whether units’ response wave is associated with the outcome.  

Specifically, one uses the respondent data to fit a model relating covariates, wave of 

response, and interaction between the two to the outcome.  One then fits a reduced 

model omitting the wave-related terms and forms a likelihood-ratio test—or an F for 

a linear regression when the outcome is continuous—to see if the reduced model 

holds.  If so, phase capacity has been reached. 
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Rule 2 compares the change in the survey estimate itself by partitioning the 

respondent set into two mutually exclusive groups, those who responded during 

waves 1 through k – 1 and those who responded during wave k.  A two-sample t test 

is conducted to determine whether the two cohorts yield significantly different mean 

outcomes.  If not, there is evidence phase capacity has occurred.  Rules 1 and 2 are 

intuitive but neither employs the known auxiliary variables to adjust for nonresponse.  

Moreover, the authors found Rule 2 to be prone to false discoveries in later waves due 

primarily to the continually decreasing respondent counts.  RGG’s third rule 

performed best in simulation and application. 

 

RGG Rule 3 adjusts for nonresponse by multiply imputing (Rubin, 1987) the 

missing birth control usage indicator variable.  In contrast to techniques that reweight 

respondent records to better reflect the target population, imputation methods attempt 

to fill in the unobserved values.  A survey data set subject to missingness has an 

outcome vector Y that can be partitioned into two components Y = (Y1, Y0), where 

Y1 is the observed component and Y0 the missing component.  An imputation model 

exploits the relationship between X and Y1.  The model can be either explicit (e.g., 

linear regression) or implicit (e.g., class-based, such as so-called hot-deck 

imputation).  Multiple imputation (MI) is a technique whereby missing values are 

imputed M times (M ≥ 2), thereby rendering M completed data sets.  RGG (2008) use 

M = 5, a fairly common value in practice (e.g., Schenker et al., 2006).  Rubin (1987) 
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advocates this technique over single imputation since an augmentation to the variance 

formula allows one to better reflect the missing data uncertainty. 

 

Let mQ̂ denote the m
th

 completed data set estimate for any quantityQ .  The MI 

estimate is the arithmetic mean of the M completed data set estimates, or 





M

m

mM Q
M

Q
1

ˆ1ˆ .  Let mÛ denote the m
th

 completed data set estimated variance for mQ̂ .  

The MI variance is the sum of (1) the average of the M completed data set variances 





M

m

mM U
M

U
1

ˆ1ˆ plus (2) the between-imputation variance of the estimate 


 








 











M

m

Mm

M
M

QQ

M
B

1

2

1

ˆˆ
1

1ˆ .  That is, the overall multiple imputation variance formula 

is MMM BUT ˆˆˆ  .  The term 









M

1
1 represents a finite imputation correction factor, 

which converges to 1 as M → ∞. 

 

RGG Rule 3 proceeds as follows.  First, one imputes the current 

nonrespondents using data available through wave k.  Then responses obtained during 

wave k, specifically, are deleted and imputation is performed using a model fit using 

data through wave k – 1.  The result is 2M completed data sets.  The two sets of 

multiply-imputed data are obviously dependent, since the underlying models are 

based on the shared fully observed data through wave k – 1.  To circumvent the 

calculation of covariances, RGG cleverly construct a sequence of M individual-level 

difference variables, k
mi

k
mimi yyd  1 , where the superscript denotes the maximum 
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wave’s data used in the imputation model and the subscript denotes the m
th

 completed 

data set value (imputed or observed) for the i
th

 individual.  A contrived data set is 

presented in the Appendix to provide a visualization of the process.  For respondents 

up to and including wave k – 1, 0mid , but question marks indicate values subject to 

variation over repeated implementations of the imputation procedure. 

 

Phase capacity is declared whenever 



M

m

mM d
M

d
1

ˆ1ˆ
is not significantly different 

from zero.  The quantity Md
ˆ

is standardized by dividing through by the square root of 

its MI variance and referenced against a student t distribution with desired level of 

confidence.  The MI variance is defined as the sum of the sample variance of the M 

point estimates of md
ˆ times the finite imputation correction factor and the average of 

the M values of )
ˆ

var( md .  The former is the between-imputation variance component 

and the latter is the within-imputation variance component.  Depending upon the 

degree of overlap, the overall MI variance computed in this manner should be much 

smaller than a method assuming independence of the two sets of multiply-imputed 

data (i.e., ignoring what would certainly be a positive covariance). 

 

3.2 New Methods 

One potential downside to RGG’s phase capacity test is that, for the 

imputation process to be truly effective, predictive covariates are needed.  Not all 

surveys have that luxury.  For example, there may be little known about unresolved 

sampled telephone numbers in a random-digit-dialing (RDD) survey.  In these and 
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numerous other settings, respondent records might be reweighted to better represent 

the target population, perhaps by benchmarking to external control totals obtained 

from administrative records or a census.  The purpose of this section is to introduce a 

proposed adaptation of the RGG’s test amenable to reweighting the observed. 

 

Suppose for the moment that we are still interested in determining whether ky1
ˆ , 

the sample mean using data from waves 1 through wave k, is no different from 1
1

ˆ ky , 

the sample mean using data only through wave k – 1.  Suppose further that the two 

sample means are weighted by kw1 and 1
1
kw , the nonresponse-adjusted base weights 

computed to better represent the target population as of the conclusion of the two 

adjacent waves.  For sample units that responded at or before wave k – 1, both 

weights would be positive.  For sample units responding specifically during wave k, 

k
iw1 would be positive while 1

1
k

iw = 0.  For sample units that have yet to respond by 

wave k, both k
iw1 and 1

1
k

iw would be 0. 

 

As before, the objective is to standardize the difference between the two 

sample means, which requires an estimated variance of the difference.  Fundamentals 

of Taylor series linearization can be employed after first observing how the difference 

can be expressed as a function of p = 4 estimated totals: 
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When written in this fashion, Wolter (2007, Section 6.5) demonstrates how a 

computational algorithm attributable to Woodruff (1971) can greatly simplify the 

Taylor series variance approximation process.  Similarly to RGG’s difference 

variable approach, the technique’s appeal is that it bypasses the need to calculate 








2

p
 

covariances.  The algorithm calls for one to create a primary sampling unit (PSU) 

level variate ui equaling the sum of the function’s partial derivatives multiplied by the 

corresponding estimated total.  In the present case,

















 

 
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

n

i

ji

p

j j

k
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k t
T1 1

1
1 var)ˆvar(


 , where 

tji represents the PSU-level estimate of the j
th

 total in the function.  Specifically,  

i
k
ii ywt 1

11
 , 1

12
 k

ii wt , k
ii wt 12  , and , k

ii wt 12  .  After a little algebra, it can be shown  
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 (3.2) 

 

and so the estimated variance of the sum of the ui’s with respect to the sample design 

approximates )ˆvar( 1
k
k .  Table 3.1 provides a visualization of this technique using a 

simple, hypothetical survey data set where k = 2. 
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Table 3.1: Illustration of the Taylor Series Linearization Method to Approximate the 

Variance of the Difference of Two Adjacent Waves’ Nonresponse-Adjusted Sample 

Means. 

Observed Data 
 

Linearized 

Variate
* 

Sample 

Case ID 
Wave 1

1iw  2
1iw  yi  

ui 

1 1 10.1 4 1.3 
 

-0.0362 

2 1 10.2 7 1.1 
 

-0.0284 

3 1 9.7 7 2.1 
 

0.0213 

4 1 10.6 5.4 1.8 
 

0.0130 

5 1 8.8 6.3 1.7 
 

0.0030 

6 1 10.6 6.2 2.0 
 

0.0260 

7 2 0 6.4 1.4 
 

0.0300 

8 2 0 5.7 1.8 
 

-0.0113 

9 2 0 5.3 1.6 
 

0.0072 

10 2 0 6.7 1.9 
 

-0.0245 

 

*
Calculated as

   
2
122

1

2
12

12
1

1
121

1

1
11

11
1 ˆ

ˆ
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ˆ

ˆ
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iiiiiii w

N
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N
w

N

Y
yw

N
u  , where 60ˆ 1

1 N , and 

96.99ˆ1
1 Y , 60ˆ 2

1 N , and 86.100ˆ 2
1 Y . 

 

 

Using figures in the table above, we find 666.1
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, and so 015.0ˆ2
1  .  The estimate of )ˆvar( 2

1 is 

approximated by 
















10

1

var
i

iu  = 0.00567.  The observed t statistic is then 

199.0
075302.0

015.0

)ˆvar(

ˆ

2
1

2
1 







, which is referenced against a student t distribution with n 

– 1 = 9 degrees of freedom to obtain a p-value under the two-tailed hypothesis test 



 

 49 

 

H0: 02
1

1
1

2
1  yy versus H1: 02

1
1
1

2
1  yy .  As a general rule, the degrees of 

freedom would be calculated based on the tally from the wave k data set.  In this 

hypothetical setting, it appears the nonresponse-adjusted sample mean did not change 

significantly between waves 1 and 2, implying phase capacity has occurred. 

 

While the set-up thus far has pertained only to simple random sampling 

designs, complex survey features can be accommodated.  For instance, many survey’s 

sampling procedure involves hierarchical stages of clustering, often within strata.  To 

simplify the variance approximation process, the “ultimate cluster” assumption (see p. 

67 of Heeringa et al., 2010) is frequently adopted in which the ui’s are constructed as 

illustrated above at the PSU level and stratum-specific variances are estimated and 

summed across all strata.  And although the present exposition focused only on the 

sample mean, the Woodruff (1971) technique is applicable to any difference that can 

be expressed as a differentiable function of unbiased totals, which covers a wide 

range of statistics.  This is a notable advantage over RGG’s version of the rule, whose 

difference variable approach was designed specifically to test for a difference of two 

sample means. 

 

As an aside, there is an alternative computational algorithm practitioners may 

find easier to apply than the method outlined above, at least when the key estimate 

being monitored is a sample mean.  Drawing upon concepts demonstrated in Example 

5.13 of Heeringa et al. (2010), the first step is to stack the two fully observed data 

sets, one as of wave k and another as of wave k – 1, with a like-named weight variable 
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and PSU identifier.  Note that even under a simple random sample design, one would 

treat the unique respondent identifier as the PSU (i.e., a cluster variable).  The next 

step is to assign an indicator variable in this stacked data set taking on a value of 0 for 

cases from the wave k data set and a value of 1 for cases from the wave k – 1 data set.  

One then fits a linear regression model with an intercept and this indicator variable 

serving as the lone predictor variable on the outcome variable of interest.  So long as 

the variance-covariance matrix of model parameters is estimated properly accounting 

for the clustering (and stratification, if applicable) (Fuller, 1975), it can be shown that 

the t statistic generated from the null hypothesis that the slope coefficient in this 

simple model is zero matches what was calculated above using the ui’s. 

 

Another feasible method for approximating )ˆvar( 1
k
k is to employ a replication 

approach (Rust, 1985), one of a class of alternatives to Taylor series linearization.  

Replication techniques are particularly handy tools for simplifying variance 

calculations of estimates derived from complex sample designs.  One example is 

balanced repeated replication (BRR) (Ch. 3 of Wolter, 2007), which was developed 

for the commonly encountered two-PSU-per-stratum design.  One creates a series of 

R replicate weights by doubling the weights for one cluster’s observations within a 

stratum while setting the other cluster’s weights to zero.  A Hadamard matrix from 

the field of experimental design is used to ensure balance between the number of 

PSUs maintained or dropped across the replicates.  The point estimate’s variance is 

approximated by a straightforward function of the full-sample point estimate and the 

like calculated using each of the R replicate weights.  A nice feature of the technique, 
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as well as other replication techniques, is that there is generally a single variance 

formula, regardless of the underlying quantity being estimated.  If we let r̂ denote the 

r
th

 replicate weight estimate (r = 1, …, R) for any quantity and denote the full-

sample point estimate ̂ , the BRR variance is approximated by   
R

r
BRR

R

2ˆˆ1
)ˆ(var  . 

 

BRR can be applied to the phase capacity problem by forming a set of R 

replicate weights for (1) respondents through wave k – 1 and (2) respondents through 

wave k.  In sum, 2R replicate weights are constructed.  One then conducts the full 

nonresponse adjustment routine on all replicate weights independently.  After finding 

both rk )1(
1
ˆ   and kr

1̂ using the two sets replicate weights, the 2R estimates are 

consolidated by forming krrkr
1

)1(
1

ˆˆˆ  
 .  Ultimately, the average squared deviation 

of these R estimated differences from the full-sample difference kk
1

1
1

ˆˆˆ     serves as 

the approximation of the variance of the two sample means’ difference.  Applications 

using other replication approaches, such as the jackknife (Ch. 4 of Wolter, 2007) or 

bootstrap (Efron and Tibshirani, 1993), could be conducted in a similar manner. 

 

3.3 Simulation Study 

In order to evaluate the performance and of their proposed rules, RGG (2008) 

conducted a simulation study based on four hypothetical relationships between when 

a sample unit responds, a continuous covariate (i.e., auxiliary variable), and a 

dichotomous outcome variable.  The four conditions were based on the combination 

of (1) whether or not the wave of response was associated with the covariate and (2) 
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whether or not the outcome variable was associated with wave.  The covariate was 

always assumed associated with the outcome; otherwise, the imputation model would 

have been futile.  They evaluated their three rules on 1,000 data sets of size n = 200 

and n = 10,000, respectively. 

 

RGG first assigned a random normal deviate to be a covariate xi known for all 

sample units.  For the condition where wave was not associated with the outcome, 

wavei ~ Poisson(1).  The other condition was wavei ~ Poisson(1) if xi  < 0 and wavei ~ 

Poisson(5) otherwise.  Of course, a draw from the Poisson distribution could return 0, 

so each value was incremented by 1.  Next, a 0/1 outcome variable yi was randomly 

generated based on an assumed log-odds relationship between the covariate and 

wave-of-response variable.  Table 3.2 summarizes the four conditions. 

 

Table 3.2: Parameters of the Rao, Glickman, and Glynn (2008) Simulation Study. 
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Because data were available for the full sample, the rules’ performance could 

be evaluated with respect to various quantifications of the impact of stopping early.  

A tacit assumption is that unit nonresponse could be eliminated entirely given enough 

follow-up attempts, which is not necessarily realistic, but at least permits a gold 

standard against which estimates formulated from the abridged sample could be 

compared.  Although the authors termed the discrepancy bias, it could perhaps be 

more appropriately labeled nonresponse error following the terminology of Groves 

(1989). 

 

One reason the authors concluded superiority of Rule 3 was that it suggested 

phase capacity at (or very near) the second wave, the earliest possible stopping point, 

for all four conditions and with virtually no error relative to the full-sample estimate.  

They attributed this to the imputation process recapturing a large portion of the 

missing information.  It could be argued, however, that their conclusion was a 

byproduct of the simulated relationships between the outcome and wave of response 

not being strong enough.  For example, the authors state that the sample mean for the 

condition where wave of response is independent of the outcome was 0.65, whereas 

the sample mean was 0.69 for the condition where wave of response is associated 

with the outcome.  It seems plausible a stronger relationship could have engendered 

more nonresponse error.  Moreover, the bounded nature of yi restricts the potential 

imparity of the sample means.  Because of these limitations and a few others to be 

discussed shortly, certain modifications to their simulation study design were made 

for the present study. 
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The fundamental goal of the simulation study discussed herein was to foster as 

balanced a testing ground as possible for the two competing methods to compensate 

for unit nonresponse.  The first step was to randomly generate a covariate 

dichotomizing the sample into two classes within which both a weighting adjustment 

and multiple imputation routine can be performed.  Effectively, data were assumed 

MCAR within each class.  For the weighting rule, a single adjustment factor 

proportional to the inverse of the class-specific response rate was used to inflate the 

weights of respondents to the initial sample total within that class.  RGG’s 

imputation-based rule was carried out in the form of the approximate Bayesian 

Bootstrap (ABB).  Outlined by Rubin and Schenker (1986), the ABB is the 

appropriate procedure for multiple imputation in a hot-deck setting. 

 

The two-step ABB proceeds as follows.  If, within a class, there are r 

respondents and m non-respondents, each comprised of data vectors Y1 and Y0, 

respectively, the first step is to select a sample of size r with replacement from Y1.  

From this set, one selects m values with replacement and uses those to impute the 

vector of missing outcome variables, Y0.  The process is repeated independently M 

times.  It is vital to incorporate this extra variability via the two-step, with-

replacement sample selection scheme because failing to do so ignores the uncertainty 

inherent when modeling the missing data mechanism—in Rubin’s (1987) 

terminology, such an imputation procedure would be “improper.”  Even if one were 

to simply draw m values from Y1 independently M times and apply Rubin’s 
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combination rules, the variance would still be underestimated.  Interestingly, Rubin 

and Schenker (1986) prove that the expected value of the variance of a sample mean 

after implementing the ABB equals the sample mean variance approximated using 

only the observed portion of the data, Y1. 

 

Note that, within a class, a constant weight adjustment will have no effect on 

the variance of a mean.  Taken together with the last point of the previous paragraph, 

the two techniques should be completely balanced in terms of their expected pre-and 

post-adjustment precision on 1
1

ˆ ky and ky1
ˆ . 

 

To partition the sample into two classes of roughly equal size, a random 

uniform variate xi between 0 and 1 was generated.  A sample case was assigned to the 

first class if this number was less than 0.5, and the second class otherwise. The two 

wave-of-response conditions were defined similarly in spirit to those specified in 

RGG (2008), but were operationalized differently.  The notion was still to simulate 

two settings in which the wave of response either was or was not associated with the 

covariate, but instead of being governed by a Poisson distribution, an empirical FEVS 

2011 distribution was utilized.  Table 3.3 summarizes the specific wave distributions.  

For the condition where wave was not associated with xi, a sample case was assigned 

a response wave randomly in proportion to the distribution of Agency 3 given in 

Table 1.2.  For the condition where wave was associated with the covariate, if xi < 0.5 

the sample case tended to respond sooner than when xi ≥ 0.5.  These were carefully 

designed such that the expectation of the marginal distribution matched that of the 
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alternative condition—for instance, .5*(34.5% + 15.6%) ≈ 25.1% and .5*(20.7% + 

14.2%) ≈ 17.5%. 

 

Table 3.3: Summary of the Two Wave-of-Response Distributions used for the 

Simulation Study Comparing RGG Rule 3 Phase Capacity Test to the Weighting 

Variant. 

  

Wave Not Associated 

with Covariate 

 

Wave Associated 

with Covariate 

Wave   for any xi 
  

xi < 0.5 xi ≥ 0.5 

1 
 

25.1% 

 

34.5% 15.6% 

2 
 

17.5% 

 

20.7% 14.2% 

3 
 

15.0% 

 

11.5% 18.5% 

4 
 

11.0% 

 

9.2% 12.9% 

5 
 

7.1% 

 

4.6% 9.5% 

6 
 

5.9% 

 

4.6% 7.1% 

7 
 

5.1% 

 

3.7% 6.4% 

8 
 

4.4% 

 

3.5% 5.3% 

9 
 

4.7% 

 

3.9% 5.5% 

10   4.4%   3.7% 5.0% 

  

100.0% 

 

100.0% 100.0% 

 

 

Another substantive change relative to the RGG (2008) design was that the 

outcome variable yi was assigned as continuous rather than dichotomous.  For the 

condition where the outcome was not associated with wave of response, yi  = 10xi + 

εi, where εi ~ N(0,1).  When the outcome was associated with respondent wave, yi  = 

10xi + wavei + εi.  Thus, the wave-specific mean outcome increases linearly in 

expectation. 
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As with RGG (2008), the four conditions were simulated 1,000 times, but for 

sample sizes n = 500 and n = 5,000 instead of n = 200 and n = 10,000.  The reason for 

increasing the lower-end sample size was to minimize the occurrence of a “skipped” 

wave, when cases in the simulated data set were assigned as responding in wave k – 1 

and others assigned as responding in wave k + 1, but no cases were assigned as 

responding in wave k.  When there are no respondents during wave k, it is impossible 

to apply the weighting rule as prescribed because 1
1
k

iw  and k
iw1  are identical for all i, 

which causes 0)ˆvar( 1 
k
k and so the t-test for phase capacity is undefined.  This 

situation is unique to the weighting rule, because the estimated MI variance of the 

sample mean of the M difference variables in RGG’s method will generally be 

positive, unless there is full response, a perfectly predictive imputation model, or 

some other extraordinarily unusual situation.  Decreasing the larger sample size from 

n = 10,000 to n = 5,000 was done primarily in the interest of managing simulation run 

time.  Initial evaluations indicated there were hardly any noteworthy differences 

between the two values of n. 

 

A practical issue when employing multiple imputation is deciding on the size 

of M.  A common value used by many researchers (e.g., Schenker et al., 2006), 

including RGG (2008), is M = 5.  Graham et al. (2007) argue that this number may be 

insufficient in certain circumstances.  During preliminary analyses, M = 20 and M = 

100 were evaluated, but results did not deviate markedly from M = 5, so this was not 

a parameter manipulated during the simulation.  Another consideration was the 

variance approximation method for )ˆvar( 1
k
k .  Although the exposition in the previous 
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section focused predominantly on the Taylor series linearization approach, it was 

commented that one of a class of replication approaches discussed in Rust (1985) 

would be a viable alternative.  To this end, a nonparametric bootstrap routine was 

investigated during certain initial analyses, with results not substantively differing 

from those obtained via Taylor series linearization.  As such, the particular variance 

approximation method implemented was deemed immaterial for the purpose of this 

simulation study. 

 

One additional simulation parameter we did find enlightening to manipulate, 

however, was the variance of the εi terms.  In addition to εi ~ N(0,1), we evaluated εi ~ 

N(0,9).  This enabled an assessment of the impact of a more variable underlying 

distribution of yi and, thus, a more variable sample mean. 

 

Tables 3.4a and 3.4b below summarize results from the simulation study.  The 

former presents a summarization where n = 500 and the latter where n = 5,000.  The 

metrics tabulated are similar to those appearing in Tables I and II of RGG (2008).  

The mean stop wave is a useful quantification of the length of data collection prior to 

declaring phase capacity.  Its standard deviation should be unambiguous.  The row 

labeled “Mean NR Error” houses the average distance between the nonresponse-

adjusted, abridged data set mean and the full-sample mean over all 1,000 replications.  

For each simulated sample’s stopping wave, a 95% confidence interval on the sample 

mean was constructed.  The “95 Percent Coverage” line measures the percentage of 

abridged sample mean confidence intervals encompassing the full-sample mean.  
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One overarching finding is that when the outcome is not associated with 

wave, as simulated in Conditions 1 and 3, both the imputation and weighting versions 

of the test are quick to detect phase capacity.  Indeed, it is a rare occasion when phase 

capacity is not detected at the second wave.  Intuitively, the abridged data set 

introduces minimal nonresponse error and the full-sample mean is adequately covered 

by the confidence interval formed on the sample mean at the earlier point in the data 

collection process.  These are promising results that hold for both n = 500 and n = 

5,000. 

 

Phase capacity is not declared as quickly for Conditions 2 and 4, those in 

which a sample unit’s expected outcome increases linearly with response wave.  

Despite the tests often dictating data collection to proceed well beyond the second 

wave, when n = 500, the abridged data set sample means are subject to a nontrivial 

amount of nonresponse error and an unsatisfactory rate of confidence intervals that 

cover the full-sample mean.  That said, there is a fair amount of variability in terms of 

the mean stopping wave in the n = 500 setting.  Another finding is that the mean 

stopping wave for Condition 2 is somewhat less than Condition 4 over all conditions 

and phase capacity tends to be detected earlier when the εi terms are characterized by 

a more variable distribution. 

 

A theme permeating the results from Conditions 2 and 4, at least for the case 

where n = 500, is that the weighting version of the phase capacity test tends to call for 
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more waves of nonresponse follow-up.  For the simulation setting in which n = 5,000 

summarized in Table 3.4b, the mean stopping point is almost always the tenth (and 

final) wave.  One possible explanation for this difference observed across sample 

sizes is that a larger sample size results in more precision for the underlying estimates 

of )ˆvar( 1
1
ky , )ˆvar( 1

ky , and, therefore, )ˆ,ˆcov(2)ˆvar()ˆvar()ˆvar( 1
1

11
1

11
kkkkk

k yyyy 
  .  

Considering these terms comprise the denominator of the quotient that is the phase 

capacity test, it follows that this renders one more likely to fail to reject the test.  In 

other words, as the precision increases, the test becomes more sensitive to observed 

differences in the two nonresponse-adjusted estimates and dictates more waves of 

follow-up are needed.  On the one hand, this could be perceived as an advantage, as 

there is seemingly less risk for residual nonresponse error.  On the other hand, a lack 

of precision alone should not be the sole or primary determinant of phase capacity.  It 

may be wise for practitioners to designate a minimum precision threshold that must 

be met prior to adhering to the conclusions of the tests discussed in this dissertation.  

It would be presumptuous to recommend any particular threshold(s), as that will 

depend on the analytic objectives of the survey effort and the estimator of interest, 

among other factors. 

 

 

 

 

 



 

 61 

 

Table 3.4a: Simulation Study Results Comparing RGG Rule 3 with the Weighting 

Variant (n = 500). 

  
RGG Rule 3 

 
Weighting 

Condition Measure εi ~ N(0,1) εi ~ N(0,9)   εi ~ N(0,1) εi ~ N(0,9) 

1. Wave not associated 

with covariate; 

outcome not associated 

with wave 

Mean Stop Wave 2.02 2.01 

 

2.00 2.01 

Std. Dev. Stop Wave 0.13 0.10 

 

0.03 0.12 

Mean NR Error 0.00 0.00 

 

0.00 0.00 

95 Percent Coverage 99.80 98.90 

 

100.00 99.80 

       2. Wave not associated 

with covariate; 

outcome associated 

with wave 

Mean Stop Wave 4.36 2.22 

 

7.90 4.54 

Std. Dev. Stop Wave 2.76 0.51 

 

3.52 3.64 

Mean NR Error -1.62 -2.28 

 

-0.62 -1.60 

95 Percent Coverage 13.20 0.00 

 

73.70 30.50 

       3. Wave associated 

with covariate; 

outcome not associated 

with wave 

Mean Stop Wave 2.01 2.03 

 

2.00 2.02 

Std. Dev. Stop Wave 0.12 0.16 

 

0.00 0.13 

Mean NR Error -0.01 -0.01 

 

-0.01 -0.01 

95 Percent Coverage 99.70 98.20 

 

100.00 99.80 

       4. Wave associated 

with covariate; 

outcome associated 

with wave 

Mean Stop Wave 3.92 2.17 

 

6.15 3.45 

Std. Dev. Stop Wave 2.51 0.51 

 

3.99 2.93 

Mean NR Error -1.74 -2.28 

 

-1.13 -1.90 

95 Percent Coverage 8.60 0.00 

 

51.80 16.20 
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Table 3.4b: Simulation Study Results Comparing RGG Rule 3 with the Weighting 

Variant (n = 5,000). 

  
RGG Rule 3 

 
Weighting 

Condition Measure εi ~ N(0,1) εi ~ N(0,9)   εi ~ N(0,1) εi ~ N(0,9) 

1. Wave not associated 

with covariate; 

outcome not associated 

with wave 

Mean Stop Wave 2.01 2.01 

 

2.00 2.02 

Std. Dev. Stop Wave 0.10 0.07 

 

0.04 0.12 

Mean NR Error 0.00 0.00 

 

0.00 0.00 

95 Percent Coverage 99.80 98.40 

 

100.00 99.80 

       2. Wave not associated 

with covariate; 

outcome associated 

with wave 

Mean Stop Wave 10.00 9.76 

 

10.00 10.00 

Std. Dev. Stop Wave 0.00 1.37 

 

0.00 0.00 

Mean NR Error 0.00 -0.07 

 

0.00 0.00 

95 Percent Coverage 100.00 97.00 

 

100.00 100.00 

       3. Wave associated 

with covariate; 

outcome not associated 

with wave 

Mean Stop Wave 2.01 2.01 

 

2.00 2.01 

Std. Dev. Stop Wave 0.12 0.12 

 

0.03 0.09 

Mean NR Error 0.00 0.00 

 

0.00 0.00 

95 Percent Coverage 99.90 98.70 

 

100.00 100.00 

       4. Wave associated 

with covariate; 

outcome associated 

with wave 

Mean Stop Wave 10.00 9.42 

 

10.00 10.00 

Std. Dev. Stop Wave 0.00 2.07 

 

0.00 0.00 

Mean NR Error 0.00 -0.17 

 

0.00 0.00 

95 Percent Coverage 100.00 92.80 

 

100.00 100.00 

 

 

Also evident from contrasting the mean stopping waves for any given 

simulation setting is that the weighting version of the test typically calls for more 

waves of follow-up than RGG Rule 3.  Because the expected values of ky1
ˆ and 1

1
ˆ ky are 

the same for either version, the weighting version of the phase capacity test must 

produce a smaller value of )ˆvar( 1
k
k .  This is confirmed by Figure 3.1, which, for each 

condition simulated, overlays the two average values of )ˆvar( 1
k
k  at each wave 

threshold over all 1,000 iterations of the simulation setting where n = 500 and εi ~ 

N(0,1).  One can observe how the variance is consistently smaller for the weighting 

rule until the two converge near the final wave threshold. 
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Figure 3.1: Average Approximated Variance of the Difference between Two 

Adjacent Wave Sample Means by Phase Capacity Test Method for the Simulation 

Study Setting where n = 500 and εi ~ N(0,1). 

 

Recall both tests’ computational algorithms avoid the explicit calculation of 

)ˆ,ˆcov( 1
1

1
kk yy  embedded within )ˆ,ˆcov(2)ˆvar()ˆvar()var( 1

1
11

1
11

kkkkk
k yyyy 
  .  Bearing in 

mind the argument made previously regarding the equivalence of the ABB and a 

single weight inflation factor on the variance of a sample mean, any discrepancy in 

the overall variance must be attributable to the implicit calculation of )ˆ,ˆcov( 1
1

1
kk yy  .  

Clearly, the covariance from the weighting version of the phase capacity test is larger 
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in magnitude than the like calculated via the difference variable approach of RGG 

Rule 3.  Although the direct derivation of )ˆ,ˆcov( 1
1

1
kk yy  would be tedious in either 

version, an indirect derivation would be to solve for it using known inputs 

of )ˆvar( 1
k
k , )ˆvar( 1

1
ky , and )ˆvar( 1

ky .   

 

An informative quantification of its effect is 1 – )ˆvar( 1
k
k /( )ˆvar()ˆvar( 1

1
1

kk yy  ), 

which can be interpreted as the proportion of the variance reduced accounting for the 

covariance.  Figure 3.2 below plots this quantity at each wave threshold for the same 

four conditions and simulation settings as in Figure 3.1.  We can see that by about the 

sixth wave the covariance between the two adjacent nonresponse-adjusted sample 

means as estimated via the weighting version of the test is so strong that it 

renders )ˆvar( 1
k
k close to zero.  The convergence is much more gradual under the RGG 

approach.  Returning to an argument made previously, in the extreme case in which 

no new respondents are captured after a particular wave of follow-up, )ˆvar( 1
k
k would 

be zero for the weighting version of the test, meaning that incorporating the 

covariance would result in a 100% reduction in variance.  But the same would not 

hold true for RGG Rule 3 unless the imputation model was perfectly predictive (i.e., 

all M difference variables were 0). 
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Figure 3.2: Average Proportion of the Approximated Variance of the Difference 

between Two Adjacent Wave Sample Means Reduced after Incorporating the 

Covariance by Phase Capacity Test Method for the Simulation Study Setting where n 

= 500 and εi ~ N(0,1). 

 

3.4 Application to the Federal Employee Viewpoint Survey 

We next discuss an application of these methods using the three agencies 

participating in FEVS 2011 whose wave-specific respondent distributions were 

summarized in Table 1.2.  As before, the estimates under investigation are sample 
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means—namely, the seven percent positive estimates for items constituting OPM’s 

Job Satisfaction index listed in Table 1.1.  Note that the interpretation of nonresponse 

error is subtly different in this application as compared to the simulation study.  In the 

simulation study, the full-sample mean was known for all 1,000 replications of a 

given sample size and condition, and it was further assumed that unit nonresponse 

could be eliminated entirely with enough follow-up attempts.  Here, we define 

nonresponse error as the difference between the estimate computed once phase 

capacity has been declared and the full-sample estimate computed after the agency’s 

maximum wave undertaken during FEVS 2011. 

 

As in the simulation study, the fundamental objective was to evaluate the 

performance of the two competing tests of phase capacity.  To promote a balanced 

comparison, a shared set of auxiliary variables were used in both nonresponse 

adjustment procedures: agency-subelement; an indicator of whether the employee 

works at the agency headquarters or in a field office; gender; a minority/non-minority 

indicator variable; and supervisory status (non-supervisor, supervisor, and executive). 

 

For the RGG Rule 3 version of the test, these variables served as main effects 

in a sequence of logistic regression models fitted to impute the missing data, 

independently fitted for each agency.  For nonrespondents at the conclusion of any 

given wave, the seven positive/non-positive indicators for items comprising the Job 

Satisfaction index were multiply imputed M = 5 times using the %IMPUTE module 

within IVEware, a free, SAS-callable set of macros developed by researchers at the 
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Institute for Social Research at the University of Michigan.  The macro implements 

the sequential regression multiple imputation (SRMI) algorithm detailed in 

Raghunathan et al. (2001). 

 

The SRMI algorithm proceeds as follows.  Let X denote the fully observed 

matrix of auxiliary (and possibly outcome) variables and let y1, y2, …, yP represent the 

sequence of outcome variables subject to missingness ordered according to their item-

specific nonresponse rates, smallest to largest.  Data are assumed MAR, but the 

vector of outcome variables need not abide by a monotone pattern.  The first step is to 

impute y1 using X.  For the present case where all outcome variables are 

dichotomous, a sequence of logistic regression models is utilized, but the appendix of 

Raghunathan et al. (2001) details other model forms that are available within 

IVEware for alternative variable scales.  At this and each subsequent step, the 

regression model coefficients are independently perturbed prior to deriving each of 

the M imputed values to account for the imputation model uncertainty.  Next, one 

imputes y2 using X and y1 (including both observed and imputed values), and then 

proceeds to y3 using X, y1, and y2, and so on.  In addition to cycling through all P 

variables susceptible to missingness, the algorithm cycles back through the sequence 

of P imputations a predetermined number of “rounds” (p. 87 of Raghunathan et al., 

2001) and re-imputes the missing values prior to releasing each of the M completed 

data sets.  This is done to build interdependence and foster stability with respect to the 

imputed values.  The %IMPUTE module allows the user to specify this parameter in 
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advance.  For the present analysis, the default setting of five rounds was deemed 

sufficient. 

 

For the weighting version of the phase capacity test, base weights for the set 

of respondents at the end of any given wave were raked (Kalton and Flores-

Cervantes, 2003) to marginal, agency-level totals aggregated from the sample frame.  

The totals were derived from the same set of categorical variables serving as main 

effects in the imputation models used in the RGG approach.  The SAS macro 

developed by Izrael, Hoaglin, and Battaglia (2004) was used to carry out the raking 

process.  As with the simulation, Taylor series linearization was utilized to 

approximate the variance of the adjacent-wave weighted mean difference. 

 

Table 3.5 summarizes the results from the FEVS application.  The wave at 

which phase capacity was declared is given as well as the nonresponse-adjusted 

estimate at that point and the nonresponse error relative to the nonresponse-adjusted 

estimate calculated using the ultimate set of respondents.  Note that these estimates 

are not precisely the same when arrived at via multiple imputation versus weighting, 

but they are close.  This is mentioned because the reader may observe that the item-

specific sums of the “Estimate” and “Relative NR Error” columns are not always 

equivalent across the two methods.  It is assumed, however, that as M → ∞, the 

estimates derived using multiple imputation are asymptotically equivalent to those 

derived from raking, and so this moderate amount of random variation reflected by 

the finite M employed should not substantively alter any conclusions made. 
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In many respects, the conclusions to be gleaned from Table 3.5 coincide with 

the main takeaways from the simulation study.  The weighting version of the test 

tends to dictate more wave of nonresponse follow-up are needed than does the 

multiple imputation version proffered by RGG, which surpasses the second wave 

only in a few instances.  Due to the proclivity of the nonresponse-adjusted percent 

positive estimates to increase with each additional wave (cf., Figure 1.1), it is of little 

surprise to observe that the nonresponse error is smaller for the weighting variant.  

The differences are relatively small, however.  For example, the average difference in 

Agency 1’s nonresponse error for the seven estimates analyzed is -1.4.  This is the 

largest of such average differences for any of the three agencies examined.  Still, 1 to 

2 percentage points could make a difference when assessing whether a change 

relative to the previous years’ survey results was statistically significant, a very 

popular technique human resources managers use to flag items deserving celebration 

or requiring intervention. 

 

There is a strong negative relationship between wave of response and the 

absolute value of nonresponse error, which is to say that the nonresponse error tends 

to decrease with each additional wave.  The Pearson correlation coefficient for this 

relationship is ρ = -0.53 (p < .05) for the weighting version of the phase capacity test.  

Calculating the comparable correlation coefficient for the RGG Rule 3 version of the 

test would not be very informative since there is scant variability in the stopping 

waves. 
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Table 3.5: Results from a Federal Employee Viewpoint Survey Application using 

Data from Three Agencies to Compare RGG Rule 3 with the Weighting Rule Variant. 

 

 

RGG MI (M = 5) 

 

Weighting 

Item 
Stopping 

Wave 
Estimate 

Relative 

NR 

Error 
 

Stopping 

Wave 
Estimate 

Relative 

NR 

Error 

Agency 1 
       

4 3 74.0 -2.0 

 

5 75.3 -0.6 

5 2 82.4 -1.7 

 

2 82.6 -1.5 

13 2 86.6 -2.2 

 

5 88.6 -0.3 

63 3 54.5 -1.7 

 

5 55.7 -0.4 

67 2 33.8 -3.3 

 

4 35.8 -1.4 

69 2 68.3 -2.9 

 

5 70.8 -0.4 

70 2 68.6 -1.6 

 

2 69.1 -1.3 

 
       Agency 2 

       4 2 79.0 -1.1 

 

2 78.9 -0.5 

5 2 84.2 -0.8 

 

2 84.2 -1.2 

13 2 86.3 -2.8 

 

2 88.2 -0.9 

63 2 62.8 -1.9 

 

2 63.2 -1.4 

67 2 40.1 -1.9 

 

3 41.1 -1.4 

69 2 73.6 -0.6 

 

3 72.7 -1.1 

70 2 63.1 3.0 

 

2 62.2 1.0 

 
       Agency 3 

       4 2 77.7 -1.7 

 

4 79.1 -0.3 

5 2 84.8 -1.4 

 

4 86.2 -0.1 

13 2 86.4 -1.3 

 

2 86.9 -0.7 

63 2 63.2 -1.5 

 

2 63.4 -1.3 

67 2 46.5 -1.8 

 

2 46.3 -1.7 

69 2 75.2 -1.8 

 

3 75.7 -1.1 

70 2 73.5 -0.4 

 

2 73.8 0.0 

 

 

Lastly, another result that parallels a finding from the simulation study is how 

phase capacity is concluded earlier for Agency 2, which is comprised of a notably 

smaller sample size (n = 1,057) than Agency 1 (n = 16,565) and Agency 3 (n = 
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17,177).  There is no evidence that the upward mobility exhibited in the nonresponse-

adjusted percent positive estimates is any less pronounced for Agency 2.  As such, we 

suspect that the decreased precision attributable to the smaller sample size relative to 

the other two agencies is the most probable explanation. 

 

As was commented previously, this type of analysis addresses only relative 

nonresponse error, considering the survey estimate using all waves is still subject to 

error.  For an assessment of the more formal definition of nonresponse error, we can 

treat a portion of sample frame variables as if they were collected on the survey 

instrument.  Two variables investigated for this purpose were employee grade and 

length of service (in years) with the federal government.  Grade is a ranking of sorts 

for the given individual (and job) based on the traditional General Schedule that 

forms the basis of the majority of federal employees’ salary, from which adjustments 

are applied depending on one’s duty location and employment duration within the 

particular grade.  Grade can take on values between 1 and 15, with larger values 

generally indicative of higher pay.  More information on the General Schedule pay 

system can be found at http://www.opm.gov/policy-data-oversight/pay-leave/pay-

systems/general-schedule/.  

 

The raking macro and %IMPUTE macro within IVEware were implemented 

with the same set of auxiliary variables as before, with the exception that both 

pseudo-outcome variables were treated as continuous for a linear regression 

imputation model to be utilized.  For both the RGG Rule 3 and weighting versions of 

http://www.opm.gov/policy-data-oversight/pay-leave/pay-systems/general-schedule/
http://www.opm.gov/policy-data-oversight/pay-leave/pay-systems/general-schedule/
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the test, phase capacity was almost always declared at the second wave for two sets of 

agency-specific estimates.  Because the results were so similar, we have opted to 

present the results visually in lieu of a tabular summarization.  Figure 3.3 displays the 

trend of nonresponse-adjusted estimates of the mean grade as found by raking the 

weights of respondents at each point in time.  There is a separate trend line for each 

agency.  Also appearing in the plot are three horizontal reference lines denoting the 

agency-specific, full-sample estimates.  Because each agency sample was actually a 

census, these can be interpreted as true means for the three finite populations, but 

without loss of generality we still refer to them as full-sample estimates.  Figure 3.4 is 

a plot similar in spirit for length of service. 

 

 With respect to grade, the tendency for the trend lines of Agency 1 and 2 to 

converge towards their respective horizontal reference lines suggests net nonresponse 

error generally decreases with each wave of data incorporated.  For Agency 3, the 

nonresponse-adjusted mean grade consistently overestimates the full-sample mean.  

In all cases, however, the absolute value of deviations is relatively minor, even in 

what appear to be the worst of circumstances.  For example, the discrepancy for 

Agency 2 at the conclusion of the first wave is approximately 0.4, which constitutes a 

relative absolute error of 0.4 / 12.81 = 3.1%. 
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Figure 3.3: Trend of Nonresponse-Adjusted Estimates of Mean Pseudo-Outcome 

Variable Grade over the 2011 Federal Employee Viewpoint Survey Data Collection 

Period Overlaid with the Full-Sample Estimate. 

 

Many of the same takeaway messages apply to the other pseudo-outcome 

variable plotted in Figure 3.4, the average number of years the individual has served 

as a federal employee at the time the FEVS 2011 was launched.  Each agency’s 

nonresponse-adjusted sample mean is typically nearer the full-sample estimate after 

the conclusion of later waves as compared to earlier waves.  The reduced resolution 

relative to Figure 2.3 may lead one to initially infer absolute errors are smaller, but 

they are comparable if not greater than those of average grade.  For instance, the 

deviation for Agency 1 at the conclusion of the first wave is approximately 1.2, which 
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corresponds to a relative absolute error of 1.2 / 18.1 = 6.6%.  Still, one could argue 

that all agency-specific differences are inconsequential by about wave 3.  

 

 
 

Figure 3.4: Trend of Nonresponse-Adjusted Estimates of Mean Pseudo-Outcome 

Variable Length of Service over the 2011 Federal Employee Viewpoint Survey Data 

Collection Period Overlaid with the Full-Sample Estimate. 

 

3.5 Conclusion 

The purpose of this chapter was to introduce and evaluate an adaptation of the 

“Rule 3” test for phase capacity proposed by Rao, Glickman, and Glynn (2008) 

amenable to scenarios in which weighting adjustments, as opposed to multiple 

imputation, are implemented to compensate for nonresponse.  Although the discourse 
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centered on the sample mean, the weighting variant is more flexible because it can 

easily be altered to accommodate other estimators, whereas the M difference variable 

approach proposed by Rao, Glickman, and Glynn (2008) is geared specifically 

towards investigating a sample mean difference. 

 

A simulation study was mounted to compare and contrast the two approaches.  

The design was based loosely on the simulation design utilized in Rao, Glickman, and 

Glynn (2008).  Certain modifications were applied to foster a balanced testing ground 

for the two versions of the test.  The results were enlightening.  For any condition 

where the expected value of the outcome variable was stable, or unrelated to the wave 

in which a response was obtained, both versions were prone to detect phase capacity 

at the earliest possible point, the second wave.  Varying the underlying sample size 

revealed the interesting finding that, all else equal, a larger sample size can prompt 

the test to be more sensitive to deviations and conclude more follow-ups are 

necessary.  We surmised that this is a byproduct of increased precision relative to a 

smaller sample size.  The impact of precision was also manifested by manipulating 

the residual term used to generate the raw data.  All else equal, the less variable 

residual term tended to suggest more waves of follow-up were necessary. 

 

Perhaps the most noteworthy discrepancy unveiled was that the variance of 

the difference of two adjacent-wave sample means was smaller in the weighting 

version.  Figures 3.1 and 3.2 illustrated how the implicit incorporation of the 

covariance of the two means—owing to the fact that they are calculated from a shared 
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portion of the accumulating survey data set—into the approximation of the variance 

of the difference was much more dramatic for the weighting version.  In response to 

the continually diminishing relative increase in observed data obtained with each new 

wave of data, the variance of the difference converges to zero much more rapidly.  

These findings were reaffirmed in the application using data from the 2011 Federal 

Employee Viewpoint Survey.  The weighting version called for more waves and, 

because the nonresponse-adjusted estimates generally increase with each new wave of 

data, was less prone to (relative) nonresponse error. 

 

We leave for further research the task of developing a more formal theoretical 

understanding as to why the covariance is not incorporated equivalently across both 

methods.  A potential objective of such an avenue could be to determine ways to 

“retune” one method to behave more compatibly with the other.  Further research 

could also explore the behavior of the weighting version of the phase capacity test 

when monitoring alternative estimators or employing alternative variance 

approximation methods.  Although an admittedly cursory analysis indicated certain 

replication approaches mirrored the performance of the Taylor Series linearization 

method described by Woodruff (1971) and utilized herein, a more rigorous study 

investigating other estimators would be useful for ruling out potential anomalies. 
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Chapter 4: Multivariate Extensions of the Retrospective Phase 

Capacity Test When Weighting for Nonresponse 

4.1 Background 

A poignant limitation of the proposed method to test for phase capacity 

detailed in the previous chapter is that it is univariate in nature.  It is designed to test 

H0: 01
1

11  


kkk
k  versus H1: 01

1
11  


kkk

k  , by assessing whether k
k 1

ˆ
 , an 

estimate of this quantity using data from respondents through wave k, is significantly 

different from zero.  Even though the simulation and FEVS application both dealt 

with sample means, the test can be adapted to other finite population quantities of 

interest. 

 

In general, however, survey practitioners may not wish to concentrate solely 

on k
k 1 , but perhaps k

dk )1(   for d = 1, …, D distinct differences.  The subscript d could 

index multiple outcome variables, multiple domains of interest for a particular 

outcome variable, or even multiple estimators.  Although one could conduct the test 

on each of the D differences independently, it is unclear how conflicting results 

would be coalesced.  For instance, suppose the test was conducted on three separate 

outcome variables’ sample mean changes.  What is the decision on phase capacity 

when one variable shows a significant change after incorporating the most recent 

wave’s data, but the other two variables do not?  This study proposes two techniques 

to provide a single yes-or-no answer for these kinds of questions, and compares and 

contrasts them via simulation and an application using FEVS data. 
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The first technique, a direct multivariate extension of the t test discussed in 

Section 3.2, involves formulating a Wald chi-square test statistic that resembles a 

Mahalanobis distance metric.  The second technique draws upon ideas from 

longitudinal data analysis (Singer and Willett, 2003) to test whether the trajectories of 

change for two or more estimates, measured in terms of their percent changes relative 

to the previous wave (to harmonize potential scale incongruities), differ substantively 

from a null trend.  At present, consideration is given only to the weighting variant of 

the phase capacity test; multivariate extensions of the RGG (2008) version are left as 

an avenue for further research. 

 

4.2 New Methods 

The exposition of the first proposed multivariate extension requires us to 

define some vector and matrix notation.  Let D represent the D x 1 vector of 

differences
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S .  In other words, D 

consists of the D estimate-specific differences between two respondent sets, one 

through wave k and another through wave k – 1, where each “theta” term embedded 

within the d
th

 difference k
d

k
d

k
dk 1

1
1)1(

ˆˆˆ   
 is calculated using the pertinent sets of 

nonresponse-adjusted base weights, kw1 and 1
1
kw .  We can think of D as an estimate 
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of k
k 1Δ , the D x 1 vector comprised of unknown terms k

d
k
d

k
dk 1

1
1)1(   

 .  Furthermore, 

note that S is a symmetric matrix with the D difference-specific variances terms along 

the diagonal and the 








2

D
difference-to-difference covariance terms in the off-

diagonal.  We have already discussed two methods to estimate the variance terms, 

one using Taylor series linearization (TSL) and another using replication.  

Practitioners may find the replication approach more efficient in this multivariate 

context due to the potentially large number of terms in S and the straightforward 

manner in which these techniques can be used to populate its entries.  For example, 

an efficient computational strategy is to construct a summary table where each row 

represents a replicate and a series of D columns stores the replicate-specific 

deviations from the full-sample difference.  When oriented in this manner, variances 

are a simple function of the sum of these squared deviations, and covariances a 

function of the cross-products, where the particular formula to be used is contingent 

upon the underlying replication technique employed.  The computational nuisance 

associated with applying the TSL method proposed by Woodruff (1971) and detailed 

in Section 3.2 is that, in addition to finding the variance of the sum of D distinct 

linear substitutes, one must also derive 








2

D
covariances. 

 

The multivariate assessment of phase capacity hinges on the hypothesis test 

H0: 0Δ 
k
k 1  versus H1: 0Δ 

k
k 1 , where 0 symbolizes a D x 1 vector of zeros, a null 

vector indicating none of the D differences are significant.  If we fail to reject the null 
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hypothesis and conclude k
k 1Δ is not significantly different from 0, we declare phase 

capacity has occurred.  The hypothesis test is carried out by calculating a Wald chi-

square test statistic (p. 168 of Heeringa et al., 2010) 

 

DSD
1T 2

W         (4.1) 

 

which is a scalar distributed as a random chi-square variate with D – 1 degrees of 

freedom under the null hypothesis.  Thus, the corresponding p-value for the observed 

test statistic can be ascertained using that reference distribution. 

 

The second multivariate extension stems from concepts of longitudinal data 

analysis (Singer and Willett, 2003).  The notion is to assess whether there is a non-

zero trajectory of change across all D estimates; hence, we term this the non-zero 

trajectory method.  The first step is to estimate the three most recent wave-over-wave 

relative percent changes in all D nonresponse-adjusted estimates, a measure chosen to 

ensure all estimate differences adhere to a common scale.  One immediately evident 

aspect of this method is that it mandates a minimum of four waves of data.  This is a 

notable drawback relative to the other retrospective methods discussed thus far, which 

only necessitated a minimum of two waves of data.  Nonetheless, the approach is 

intuitive and straightforward to apply. 

 

For sake of a numerical example, suppose a particular agency participating in 

FEVS sought to test whether D = 3 percent positive estimates, those based on items 4, 
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5, and 13, have stabilized after the three most recent waves of nonrespondent follow-

up.  The three estimates’ trends and associated percent changes relative to the 

previous wave are summarized in Table 4.1. 

 

Table 4.1: Example FEVS Trends for Three Items’ Percent Positive Estimates across 

the Four Most Recent Waves. 

Wave Item 4 

Item 4 

Rel % 

Chg   Item 5 

Item 5 

Rel % 

Chg   Item 13 

Item 13 

Rel % 

Chg 

k - 3 75.2% -- 

 

83.6% -- 

 

88.5% -- 

k - 2 75.3% 0.2% 

 

83.8% 0.2% 

 

88.6% 0.1% 

k - 1 75.7% 0.5% 

 

83.9% 0.2% 

 

88.6% 0.0% 

k 76.1% 0.4% 

 

84.2% 0.3% 

 

88.7% 0.2% 

 

The idea is to model Δd, the d
th

 estimate’s relative percent change, as a 

function of the data collection wave.  Specifically, in the presence of D distinct 

differences, if we let w represent the data collection wave, a predictor variable taking 

the form of an integer one unit apart (e.g., 0, 1, and 2), the following model is 

estimated: 

 

dDDd www   1121100201    (4.2) 

 

Notice how the model specification in equation 4.2 allows each estimate’s 

change to have its own unique intercept and slope.  The 0 terms represent estimate-

specific intercepts, the 1  terms represent estimate-specific slopes, and εd is an error 

term assumed to be normally distributed with some unknown but constant 
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variance 2
d .  If phase capacity has truly been reached, we would anticipate all 2D 

estimated model parameters to be statistically indistinguishable from 0.  As we will 

demonstrate shortly, from the theory of general linear models, an F test can be 

conducted to formally test veracity of this assertion. 

 

Using the last three lines of Table 4.1, the estimated model will have 2D = 6 

terms, D = 3 estimate-specific intercepts and D = 3 estimate-specific slopes.  The 

model parameters can be estimated using standard matrix theory of ordinary least 

squares regression after first creating the outcome vector
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Figure 4.1 offers a visualization of the model using data from Table 4.1, 

which can be conceptualized as D = 3 simple linear regression models.  Most points 
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lie above 0 on the y-axis scale, reflecting of an increasing trend in the estimate over 

the four most recent wave thresholds.  Granted, the relative percent changes are 

modest. 

 

 
 

Figure 4.1: Visualization of the Non-Zero Trajectory Method for Testing Phase 

Capacity in a Multivariate Setting. 

 

If we denote the estimated model parameters by the 2D x 1 vector 

ΔXXXβ
T1T  )(ˆ  and the corresponding 2D x 2D covariance matrix 1T

XXβ
 )(ˆ)ˆcov( 2

d , 

where 2ˆ
d is the estimated mean squared error of the model—an estimate of )var( d —

the multivariate assessment of phase capacity is contingent upon results of the 

hypothesis test H0: 0β  versus H1: 0β  , where 0 is a 2D x 1 vector of zeros.  

Specifically, the test statistic is calculated as 
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  βββ
1T ˆ)ˆcov(ˆ 

F        (4.3) 

 

which is the same as the overall F test statistic provided in the “Model” line of an 

analysis of variance (ANOVA) table.  This test statistic can be referenced against an 

F distribution with 2D numerator degrees of freedom and D denominator degrees of 

freedom at the desired significance level.  When the observed value of this test 

statistic fails to be statistically significant, there is evidence phase capacity has been 

reached. 

 

In their purest forms, both methods implicitly treat each wave-over-wave 

estimate difference with equal importance.  There may be occasions, however, when 

a practitioner wishes to assign differential degrees of importance.  For instance, 

perhaps one of the D estimates is deemed “most important.”  The practitioner still 

seeks an overall test of phase capacity, but would like any conclusion(s) made more 

sensitive to changes in that estimate than the others.  Given a set of user-defined 

relative weights, either method can easily be tailored. 

 

To motivate a simple example using the data from Table 4.1, suppose one 

wanted changes in item 4 to be valued twice as much as changes in items 5 and 13.  

For the Wald chi-square approach, these relative weights could be incorporated by 

introducing a vector C
T
 = [2 1 1] into the corresponding test statistic as follows: 2

W = 

(C
T
D)

T
(C

T
SC)

-1
(C

T
D).  Similarly, for the second method, assuming an estimated 
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model parameter matrix  )13(1)5(1)4(1)13(0)5(0)4(0
ˆˆˆˆˆˆˆ T

β , where the 

subscripts in parentheses reference the particular item, one could introduce  

C
T
 = [2 1 1 2 1 1] and compute   )ˆ()ˆcov()ˆ( βCCβCβC

T1TTT 
F .  Note that the reference 

distributions would not change under either version of the test. 

 

4.3 Simulation Study 

This section details a simulation study conducted to compare and contrast the 

performance of the two proposed multivariate extensions of the phase capacity test.  

Instead of generating data for outcome variables using one or more parametric 

distributions, the simulation study undertaken exploits observed data patterns from 

the FEVS 2011.  Respondents from the same three agencies utilized in the first study 

were treated as three distinct, complete sample data sets and were independently 

partitioned into 10 distinct wave cohorts 1,000 times according to one of two 

conditions to be defined shortly.  The “sample sizes” of these three agencies are the 

ultimate respondent counts reported in Table 1.2—namely, Agency 1 consisted of n = 

8,105, Agency 2 of n = 572, and Agency 3 of n = 8,687, for a total sample size of 

17,364.  Percent positive estimates from the D = 7 items comprising the Job 

Satisfaction Index (see Table 1.1) were chosen as the set of items to simultaneously 

evaluate in this study.  We chose this particular set of items because it constitutes one 

of the four Human Capital Assessment and Accountability Framework (HCAAF) 

indices established by the Chief Human Capital Officers Act of 2002.  These indices 

delineate four distinct workplace dimensions along which the FEVS participating 
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agencies are ranked.  The other three HCAAF indices will be analyzed as part of the 

FEVS application discussed in Section 4.4.  As was defined previously, any given 

index is obtained by simply averaging the weighted percent positive estimates for all 

items therein.  For completeness, Table 4.2 enumerates the FEVS 2011 item numbers 

and wording associated with each of the four indices. 

 

Table 4.2: Items Comprising the U.S. Office of Personnel Management’s Four 

Human Capital Assessment and Accountability Framework (HCAAF) Indices 

Derived from the Federal Employee Viewpoint Survey. 

 

Job Satisfaction Index (JS) 

Item Wording 

4 My work gives me a feeling of personal accomplishment. 

5 I like the kind of work I do. 

13 The work I do is important. 

63 How satisfied are you with your involvement in decisions that affect your work? 

67 How satisfied are you with your opportunity to get a better job in your organization? 

69 Considering everything, how satisfied are you with your job? 

70 Considering everything, how satisfied are you with your pay? 

  

 

Leadership and Knowledge Management Index (LKM) 

Item Wording 

10 My workload is reasonable. 

35 Employees are protected from health and safety hazards on the job. 

36 My organization has prepared employees for potential security threats. 

51 I have trust and confidence in my supervisor. 

52 Overall, how good a job do you feel is being done by your immediate supervisor/team leader? 

53 In my organization, leaders generate high levels of motivation and commitment in the 

workforce. 

55 Managers/supervisors/team leaders work well with employees of different backgrounds. 

56 Managers communicate the goals and priorities of the organization. 

57 Managers review and evaluate the organization’s progress toward meeting its goals and 

objectives. 

61 I have a high level of respect for my organization’s senior leaders. 

64 How satisfied are you with the information you receive from management on what’s going on 

in your organization? 

66 How satisfied are you with the policies and practices of your senior leaders? 
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Results-Oriented Performance Culture Index (ROPC) 

Item Wording 

12 I know how my work relates to the agency’s goals and priorities. 

14 Physical conditions (for example, noise level, temperature, lighting, cleanliness in the 

workplace) allow employees to perform their jobs well. 

15 My performance appraisal is a fair reflection of my performance. 

20 The people I work with cooperate to get the job done. 

22 Promotions in my work unit are based on merit. 

23 In my work unit, steps are taken to deal with a poor performer who cannot or will not 

improve. 

24 In my work unit, differences in performance are recognized in a meaningful way. 

30 Employees have a feeling of personal empowerment with respect to work processes. 

32 Creativity and innovation are rewarded. 

33 Pay raises depend on how well employees perform their jobs. 

42 My supervisor supports my need to balance work and other life issues. 

44 Discussions with my supervisor/team leader about my performance are worthwhile. 

65 How satisfied are you with the recognition you receive for doing a good job? 

  

 

Talent Management Index (TM)  

Item Wording 

1 I am given a real opportunity to improve my skills in my organization. 

11 My talents are used well in the workplace. 

18 My training needs are assessed. 

21 My work unit is able to recruit people with the right skills. 

29 The workforce has the job-relevant knowledge and skills necessary to accomplish 

organizational goals. 

47 Supervisors/team leaders in my work unit support employee development. 

68 How satisfied are you with the training you receive for your present job? 

 

The outcome variables for all 17,364 distinct respondent records amongst the 

three agencies were fixed in all 1,000 simulations, but the order in which they were 

observed varied.  For each simulation, a response wave between 1 and 10 was 

randomly assigned to each record based on one of two conditions crafted similarly in 

spirit to those used the first study—see Section 3.3 for a description.  In Condition 1, 

an employee’s response wave was generated independently from his or her outcome 

variables, whereas in Condition 2, response wave was simulated in such a way that 
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earlier respondents tended to be less positive.  To maintain a realistic apportionment 

of the sample into 10 waves, the same distributions from Table 3.3 were employed.  

They are reproduced in Table 4.3 for ease of reference.  Recall these percentages 

reflect the wave-specific distribution of FEVS 2011 respondents from Agency 3 (i.e., 

as originally reported in Table 1.2).  As was commented in Section 3.3, the tacit 

assumption with this simulation study design is that nonresponse error can be 

extirpated altogether given enough waves of nonrespondent follow-up.  Although this 

is not necessarily realistic, it enables a comprehensive comparison of the two 

methods’ performance. 

 

Table 4.3: Summary of the Two Wave-of-Response Distributions Used for the 

Simulation Study Comparing the Two Multivariate Extensions to the Phase Capacity 

Test When Weighting for Nonresponse. 

  

Condition 1:  

Wave Not Associated 

with Outcome Variables 

 

Condition 2: 

Wave Associated 

with Outcome Variables 

Wave   All Respondents 
  

Less Satisfied 

Respondents 

More Satisfied 

Respondents 

1 
 

25.1% 

 

34.5% 15.6% 

2 
 

17.5% 

 

20.7% 14.2% 

3 
 

15.0% 

 

11.5% 18.5% 

4 
 

11.0% 

 

9.2% 12.9% 

5 
 

7.1% 

 

4.6% 9.5% 

6 
 

5.9% 

 

4.6% 7.1% 

7 
 

5.1% 

 

3.7% 6.4% 

8 
 

4.4% 

 

3.5% 5.3% 

9 
 

4.7% 

 

3.9% 5.5% 

10   4.4%   3.7% 5.0% 

  

100.0% 

 

100.0% 100.0% 
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In Condition 1, each respondent was assigned as responding in wave 1 with 

probability 0.251, wave 2 with probability 0.175, and so on.  For Condition 2, 

respondents were partitioned into two groups of roughly equal size based on an 

aggregate measure of their degree of satisfaction with the seven Job Satisfaction 

index items.  Specifically, the Likert-scale responses for all seven items were 

converted to integers between 1 and 5 such that a 1 represented the most negative 

response (e.g., Very Dissatisfied) and a 5 represented the most positive response (e.g., 

Very Satisfied).  The seven integers were then summed at the respondent level to 

create an aggregate measure of satisfaction ranging from a minimum of 7 (7 x 1) to a 

maximum of 35 (7 x 5).  Two classes of respondents were then defined: (1) less 

satisfied respondents, or those respondents those whose aggregate measure fell below 

the median; and (2) more satisfied respondents, those whose aggregate measure fell 

above the median.  An independently generated random uniform variate between 0 

and 1 was first added to each aggregate measure to eliminate the possibility of ties 

and produce two groups of approximately equal size.  Despite being a bit ad-hoc, we 

felt this classification scheme sufficiently met the principal objective to simulate a 

scenario in which the outcome variables were associated with the response wave.  To 

provide a few numbers with respect to the specifications given in Table 4.3, the less 

satisfied respondents were assigned wave 1 with probability 0.345, and the more 

positive respondents were assigned wave 1 with probability 0.156.  Furthermore, 

recall from the discussion in Section 3.3 that these percentages were designed such 

that the expected marginal percentage of wave 1 respondents in the whole of 

Condition 2 matches that of Condition 1, since 0.5*(34.5 + 15.6) ≈ 25.1%. 
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The bifurcation of respondents based on the aggregate measure of satisfaction 

was not performed overall or by agency; rather, it was performed within one of 12 

classes defined by the cross-classification of agency, minority status, and supervisory 

status (supervisor or non-supervisor).  These 12 categorizations were also used as 

weighting classes for Conditions 1 and 2.  To conduct a real-time nonresponse 

adjustment procedure, the sum of weights for respondents at the conclusion of each 

simulated wave from within the c
th

 class was calibrated such that it matched the 

known population total Nc.  For the Wald chi-square method, these sets of weights 

were used as part of the TSL method by computing linear substitutes for wave-over-

wave differences in a percent positive estimate following the general procedure 

outlined in Section 3.2.  If we denote the d
th

 item’s linear substitute for the i
th

 sample 

unit udi, the corresponding diagonal term of S, )ˆvar( )1(
k

dk , was estimated by finding 

)ˆvar()var(
1

d

n

i

di uu 


.  The off-diagonal terms, or covariances between estimated 

differences d and d′ (d ≠ d′), were found by computing )ˆ,ˆcov( 'dd uu . 

 

Results from the simulation study are summarized in Table 4.4.  Most of the 

quantities reported are the same as those appearing in Tables 3.4a and 3.4b.  The 

measure labeled “Mean Stop Wave” represents the average data collection wave at 

which phase capacity was declared over all 1,000 iterations.  The standard deviation 

of this average follows immediately thereafter.  The measure labeled “Mean NR Error 

for Index” houses the average magnitude of nonresponse error in the Job Satisfaction 

index at the point phase capacity was determined, which, considering its expression 
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as the average of the seven underlying percent positive estimates, can also be 

interpreted as the mean nonresponse error amongst the seven items comprising the 

index.  Below that is the root mean squared error (RMSE) of the index at the point of 

phase capacity, averaged over all 1,000 simulations, where the RMSE is defined as 

square root of the sum of the following two quantities: (1) the nonresponse error of 

the index squared, and (2) the approximated variance of the index, which was derived 

via Taylor series linearization as detailed in Lewis (2012).  The final quantity 

reported is the percentage of 95% confidence intervals formed about the Job 

Satisfaction index at the point phase capacity was declared that encompassed the 

index as calculated from the full sample. 

 

 The first broad finding is that, under the first condition in which response 

wave is not associated with the outcome variables, both methods tend to detect phase 

capacity at their respective earliest possible points to do so: the second wave for the 

Wald chi-square method and the fourth for the non-zero trajectory method.  For 

example, the mean stopping wave for Agency 1 was 2.05 for the former method and 

4.16 for latter.  There is scant differentiation amongst the three agencies investigated 

for any particular method, but the non-zero trajectory method appears to exhibit more 

variability in the mean stopping wave relative to the Wald chi-square method.  Not 

surprisingly, there is very little nonresponse error in the Job Satisfaction index 

introduced by curtailing the data collection period in Condition 1.  Additionally, 

confidence intervals formed around the index estimated once phase capacity was first 
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reached almost always cover the index value that would be obtained once all sample 

data is collected. 

 

 In Condition 2, the expected values of the seven percent positive estimates 

(and thus the index) were predisposed to increase with each subsequent wave of data 

incorporated.  To the extent that the employees’ varying degrees of satisfaction are 

not completely explained by the cross-classification of agency, minority status, and 

supervisory status, the three variables used in the weighting class adjustment 

procedure, we would anticipate some residual nonresponse error associated with 

stopping data collection early.  Indeed, this is plainly observed in Table 4.3.  Despite 

both methods generally calling for more than the absolute minimum number of 

waves, they often detect phase capacity prior to the tenth wave and, as such, are 

susceptible to nonresponse error and a decreased likelihood that the confidence 

interval formed about the index using the abridged data set contains the full-sample 

index. 

 

Interestingly, at least for Condition 2, both methods proposed declare phase 

capacity earlier for Agency 2 than the other two agencies.  Under the Wald chi-square 

approach, the mean stopping wave for Agency 2 is 2.13, in contrast to 6.84 and 6.12 

for Agency 1 and 3, respectively.  This is coupled with a much larger mean 

nonresponse error over the 1,000 simulations.  At -5.76, the value observed for 

Agency 2 is roughly 3 times the like for Agency 1 (-1.55) and Agency 3 (-2.01).  A 

similar story emerges comparing the 95% confidence interval coverage rates.  A 
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possible explanation is that, at n = 572, the sample size for Agency 2 is much less 

than the sample sizes for the other two agencies, both of which exceed 8,000.  Recall 

one of the conclusions made from the first study was that, all else equal, a smaller 

sample size led to the determination that fewer waves of follow-up were necessary.  

Although that finding pertained to the univariate version of the phase capacity test, 

this provides some evidence that the same may hold true for the multivariate version. 
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Table 4.4: Simulation Study Results Comparing the Two Multivariate Extensions to 

the Phase Capacity Test When Weighting for Nonresponse. 

Method: Wald Chi-Square 

Condition Measure Agency 1   Agency 2   Agency 3 

1. Wave not 

associated 

with outcome 

variables 

Mean Stop Wave 2.05 

 

2.09 

 

2.06 

Std. Dev. of Stop Wave 0.22 

 

0.33 

 

0.24 

Mean NR Error of Index 0.00 

 

0.05 

 

0.00 

Mean RMSE of Index 0.60 

 

2.23 

 

0.57 

95% CI Coverage Rate for Index 98.71 

 

98.33 

 

98.93 

 
      

2. Wave 

associated 

with outcome 

variables 

Mean Stop Wave 6.84 

 

2.13 

 

6.12 

Std. Dev. of Stop Wave 2.72 

 

0.48 

 

2.89 

Mean NR Error of Index -1.55 

 

-5.76 

 

-2.01 

Mean RMSE of Index 1.71 

 

6.08 

 

2.14 

95% CI Coverage Rate for Index 64.98 

 

8.64 

 

56.13 

 

      Method: Non-Zero Trajectory 

Condition Measure Agency 1   Agency 2   Agency 3 

1. Wave not 

associated 

with outcome 

variables 

Mean Stop Wave 4.17 

 

4.17 

 

4.16 

Std. Dev. of Stop Wave 0.46 

 

0.45 

 

0.44 

Mean NR Error of Index 0.00 

 

0.02 

 

-0.01 

Mean RMSE of Index 0.43 

 

1.61 

 

0.41 

95% CI Coverage Rate for Index 99.72 

 

99.47 

 

99.38 

 
      

2. Wave 

associated 

with outcome 

variables 

Mean Stop Wave 6.79 

 

5.16 

 

6.76 

Std. Dev. of Stop Wave 2.95 

 

1.68 

 

2.95 

Mean NR Error of Index -1.22 

 

-1.59 

 

-1.15 

Mean RMSE of Index 1.38 

 

2.23 

 

1.31 

95% CI Coverage Rate for Index 47.64 

 

74.54 

 

46.89 

 

4.4 Application to the Federal Employee Viewpoint Survey 

In this section we turn our attention to an FEVS application.  Rather than 

comparing and contrasting the two methods via a simulated data collection period, 

actual outcome variable patterns exhibited by the three agencies over the data 

collection period are utilized.  And instead of analyzing only the seven items 
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comprising the Job Satisfaction index, we extend our investigation to include the 

other three HCAAF indices: (1) the twelve Leadership and Knowledge Management 

Index items; (2) the thirteen Results-Oriented Performance Culture Index items; and 

(3) the seven Talent Management Index items.  With respect to nonresponse 

adjustments, the same wave-specific weights produced from the raking procedure 

described in Section 3.4 were employed.  Recall that the procedure calibrates the 

weights of employees in the cumulating respondent sets such that they sum to known 

marginal agency totals of the first level of work unit below agency, an indicator of 

whether the employee works at headquarters or in a field office, a minority status 

indicator, gender, and supervisory status (non-supervisor, supervisor, or executive).  

Other than these itemized differences, the application of the two methods was 

identical to that from the previous section. 

 

From the previous study we observed how the raking procedure described 

above rendered wave-specific weights and corresponding estimates that did not 

completely eliminate nonresponse error, evident from the fact that a discernible 

upward trend could be noted when plotting the percent positive estimates as a 

function of response wave.  Although there are generally fewer and fewer new 

responses obtained in each subsequent wave, the latter respondents are 

disproportionally more positive, causing the nonresponse-adjusted percent positive 

estimates to increase over the course of data collection.  Figure 4.2 confirms that the 

same holds true for the index estimates, which is not surprising considering they are 

merely averages of the percent positive estimates.  It illustrates how all four 
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nonresponse-adjusted HCAAF indices increase with each new wave of data collected 

for Agency 1.  Though not shown here, a comparable conclusion can be gleaned from 

plots for the other two agencies. 

  

 

Figure 4.2: Plot of the Nonresponse-Adjusted Indices for Agency 1 Using 

Cumulative Data as of the Given Wave of Nonrespondent Follow-Up. 

 

Table 4.5 summarizes results from the FEVS application.  The column labeled 

“Stopping Wave” reports the wave at which phase capacity was declared, and is 

flanked by the corresponding nonresponse-adjusted estimate of the given index and 
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residual nonresponse error, where applicable.  We say “where applicable” because 

phase capacity was not always declared prior to the final wave of data collection, 

such as the case for three of the HCAAF indices for Agency 1 under the non-zero 

trajectory method.  As a result, there was no nonresponse error for these three index 

estimates.  Of course, without acquiring the missing attitudinal data from the ultimate 

nonrespondents, those who never responded by the agency’s final data collection 

wave, we can consider this only as relative nonresponse error, not absolute 

nonresponse error. 

 

A ubiquitous finding is that the Wald chi-square method tends to declare 

phase capacity much sooner than the non-zero trajectory method.  Indeed, there are 

no instances among the 12 indices tracked where the non-zero trajectory method calls 

for fewer waves of nonrespondent follow-up than the Wald chi-square method.  This 

is certainly influenced by the fact that the former requires a minimum of four waves 

as opposed to two like the latter.  That said, all else equal, the average stopping wave 

for the non-zero trajectory method (6.4) deviates further away from it minimum than 

the like for the Wald chi-square method (2.9).  Given the tendency for the percent 

positive estimates underlying the estimate to increase with each new set of responses 

received, the more expeditious determination of phase capacity is coupled with a 

larger absolute magnitude of nonresponse error.  For instance, we can note from 

Table 4.5 that the maximum absolute nonresponse error in the non-zero trajectory 

method is 0.5, whereas only two indices’ nonresponse error measures fall below that 

threshold in the Wald chi-square method. 
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Table 4.5: Results from the FEVS Application Comparing the Two Multivariate 

Extensions to the Phase Capacity Test When Weighting for Nonresponse. 

 

 

Method: Wald Chi-Square 

 

Method: Non-Zero Trajectory 

Index 
Stopping 

Wave 
Estimate 

NR 

Error  

Stopping 

Wave 
Estimate 

NR 

Error 

Agency 1 
       

JS 4 68.5 -0.6 

 

6 68.8 -0.2 

LKM 3 60.2 -1.4 

 

9 61.6 0.0 

ROPC 2 53.6 -2.6 

 

9 56.2 0.0 

TM 5 59.9 -0.7 

 

9 60.6 0.0 

 
       Agency 2 

       JS 2 69.8 -1.0 

 

5 71.0 0.1 

LKM 2 72.8 -0.4 

 

5 73.1 0.1 

ROPC 4 66.3 0.1 

 

5 66.4 0.2 

TM 2 68.7 -1.3 

 

5 70.0 0.1 

 
       Agency 3 

       JS 3 73.1 -0.7 

 

6 73.5 -0.3 

LKM 2 70.5 -1.3 

 

7 71.5 -0.2 

ROPC 4 63.7 -0.6 

 

5 63.8 -0.5 

TM 2 69.4 -1.0 

 

6 70.2 -0.2 

 

4.5 Conclusion 

This chapter proposed two multivariate extensions of the methods discussed in 

Chapter 3 for detecting phase capacity when weighting for nonresponse.  Hence, one 

notable absence in the chapter is that we did not pursue any multivariate extensions of 

the method detailed in Rao, Glickman, and Glynn (2008), the competing test for 

phase capacity discussed in Chapter 3.  Indeed, as previously noted, we leave this as 

an avenue for further research. 
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The stated objective at the outset was to develop and evaluate multivariate 

methods that consolidate the D wave-specific estimates and their associated measures 

of variability into a single yes-or-no answer as to whether phase capacity has 

occurred.  The first method was to formulate a Wald chi-square test statistic in a 

straightforward multivariate extension of the t tests discussed in Chapter 3.  The 

second method utilized concepts of longitudinal analysis (Singer and Willett, 2003) to 

assess whether the trajectories of change for the D estimates were jointly 

distinguishable from 0.  If not, it would be indicative of a null trend suggesting that 

the estimates have stabilized. 

 

The two methods were contrasted via simulation and application using data 

from FEVS 2011.  Both the simulation and application revealed that, all else equal, 

the non-zero trajectory detection method tends to dictate more wave of nonrespondent 

follow-up are warranted, in large part because it requires a minimum of four waves of 

data, whereas the Wald chi-square method requires only two.  Naturally, in settings 

where nonresponse error lingers even after weighting adjustments have been 

implemented, the non-zero trajectory method yields estimates with a smaller relative 

error.  But the Wald chi-square method’s proclivity for declaring phase capacity 

sooner proves efficient when there is no relationship between response wave and the 

outcome variables, as was the case in Condition 1 of the simulation study. 

 

The four HCAAF indices published by OPM served as the sets of underlying 

estimates jointly tested for phase capacity, which is a bit limiting since focus was 
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restricted only to ratios and differences of ratios.  Future research could investigate 

alternative estimators, such as differences in regression coefficients or quantiles.  For 

more disparate sets of estimators, a replication approach is recommended when 

populating S as part of the Wald chi-square method.  Presently, consideration was 

only given to the Taylor series linearization method for acquiring both the variance 

terms along diagonal of S and the covariance terms populating off-diagonal entries.  

The derivation of linear substitutes following the technique proposed by Woodruff 

(1971) was tractable in our setting, but the same may not be true for other estimator 

differences.  Although we do not anticipate any situations that would lead to 

substantive differences between the Taylor series linearization approach and 

replication, except perhaps tracking quantiles and using the jackknife method of 

variance approximation (Kovar et al., 1988), additional simulations, applications to 

other surveys, or theoretical developments would be welcomed to help eradicate any 

such possibilities. 
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Chapter 5: Prospective Considerations of Phase Capacity 

5.1 Background 

A general criticism about the methods discussed in the first two studies is that 

they are retrospective in nature.  Knowing the most recent wave’s data did not 

significantly modify a key point estimate is useful information, but knowing so before 

conducting an inefficacious wave of data collection would be even more valuable.  

Acknowledging this, Wagner and Raghunathan (WR) (2010) proposed a “stop-and-

impute” test that is prospective in nature.  They focused on a continuous outcome 

variable of which the sample mean is of central interest and, as with RGG (2008), 

assume auxiliary variables are available on a sample frame such that an explicit 

regression imputation model can be fitted.  An additional assumption they make is 

that one knows the current nonrespondents who will become respondents after the 

pending wave.  Armed with this foresight, they derived a measure quantifying the 

variability in the difference between the two nonresponse-adjusted sample means 

calculated at the conclusions of waves k and k + 1.  Essentially, they focus on 

quantifying )ˆˆvar( 1
11
 kk yy as opposed to )ˆˆvar( 1

1
1

kk yy  , the focus of the methods 

previously considered. 

 

Their derivation begins by conditioning on the observed data as of the 

conclusion of wave k, the parameters of an explicit imputation model, and the 

imputed values of nonrespondents.  They reason that the anticipated difference in the 

two wave-specific sample means is zero and variability a function of how far the 
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wave k + 1 observed values fall from their respective expected values from the 

imputation model.  The specific estimated variance term reported on p. 1016 is 
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where 2ˆ is the mean squared error (MSE) of the linear regression imputation model 

fitted as of wave k relating fully-observed covariates to the outcome variable for 

respondents, n is the overall sample size, 1kr represents the current nonrespondents 

who will become respondents after the next wave, 1kx denotes the mean covariate 

vector of these to-be respondents, and 1T
XX

)( is the variance-covariance matrix of the 

imputation model coefficients after having 2ˆ
e factored out front of the expression.  

The basic premise is that one can declare phase capacity once this variance measure 

or some function of it (e.g., a relative variance or coefficient of variation) is 

sufficiently small. 

 

Though a promising improvement, the WR test faces criticism of its own.  Its 

application solely to a continuous outcome variable is restrictive.  As Heeringa et al. 

(2010, p. 149) comment, variables of this type are the exception rather than the rule in 

applied survey research.  Categorical variables are far more prevalent.  In fact, 

outcome variables in the FEVS are exclusively categorical.  There is no guidance for 

imputation procedures other than those utilizing a linear regression model (e.g., hot-

deck imputation).  It is unclear how or if complex survey data features like weights, 
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stratification, and clustering would necessitate formulaic modifications.  Other 

limitations are that a phase capacity test may be desired for statistics other than the 

sample mean, and that it seems unlikely one would have the prescience to know the 

exact set of sample cases that will respond in the pending data collection wave. 

 

Additionally, the WR test assumes the imputed value for the i
th

 nonrespondent 

at wave k + 1 is the same as the imputed value for that nonrespondent at the 

conclusion of wave k.  Instead, one could argue that the additional wave k + 1 

responses would be used to refit the imputation model, causing its parameters and, 

thus, the distribution of plausible values drawn, to change somewhat relative to the 

imputation model used for the nonrespondents at wave k.  Ignoring this additional 

uncertainty seems injudicious. 

 

Finally, the variance term of the WR test is derived assuming single 

imputation, yet the simulation and application employ multiple imputation.  It seems 

that modifications to the equation would be warranted when performing multiple 

imputation as opposed to single imputation. 

 

Let us introduce a simple, fictitious data set to help illuminate these issues and 

lay the foundation for the new methods to be proposed.  Table 5.1 portrays a survey 

of n = 10 sample units in which six responses have been recorded during wave 1, 

leaving four nonrespondents for which the key continuous survey variable y is to be 

singly imputed.  This is accomplished by exploiting a continuous covariate x known 
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for the entire sample.  The first step is to fit the simple linear regression 

model iii xy   10

 

using the wave 1 respondents.  The estimated model 

is iii xxy  0816.16388.5ˆˆ
10  with an estimated MSE of 3384.0ˆ 2  .  Following 

Example 4.4 in Little and Rubin (2002), the second step is to derive an imputed value 

for the i
th

 nonrespondent by finding the expected value of the outcome variable 

conditional on xi, and then adding a random, normally distributed residual term in 

proportion to the square root of the model’s estimated MSE.  Specifically, imputed 

values are assigned as 3384.00816.16388.5*  iii zxy , where zi is a random normal 

variate. 

 

Table 5.1: An Artificial Data Set to Facilitate the Discussion of Prospective Phase 

Capacity Considerations. 

Sample 

Case ID 
Wave xi yi 

Completed Data 

Set as of Wave 1 

1 1 1.1 4.5 4.5 

2 1 1.7 3.8 3.8 

3 1 2.4 2.8 2.8 

4 1 2.8 3.1 3.1 

5 1 3.1 1.9 1.9 

6 1 4 1.4 1.4 

7 2 1.3 ? 3.6 

8 2 1.9 ? 3.4 

9 2 2.7 ? 2.7 

10 2 3.6 ? 1.5 

  

At the conclusion of wave 1, the estimated sample mean using the completed 

data set is unbiased if the MAR assumption behind the imputation model holds.  Yet 

suppose we know with certainty that a pending follow-up effort will produce data on 
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the four current nonrespondents, and we wanted to use all available information to 

quantify the uncertainty with respect to what value the nonresponse-adjusted sample 

mean will take on once that data is observed.  In essence, using notation defined 

previously, the goal is to approximate )ˆˆvar()ˆvar( 2
1

1
1

2
1 yy  . 

 

Generally speaking, however, )ˆvar( 1k
k carries a subtly different interpretation 

in the prospective setting as compared to the retrospective setting considered in 

Chapters 3 and 4.  Because we condition on the observed and imputed data at wave k, 

the wave k estimate is treated as fixed in the prospective setting, and so the only 

element of uncertainty is that attributable to plausible values of the future wave 

estimate.  Hence, the variance we refer to in this chapter is not a measure of sampling 

error per se, as was the case in previous chapters.  Rather, it is a quantification of the 

expected squared deviation of the nonresponse-adjusted point estimate after the wave 

k + 1 responses have been obtained relative to the current nonresponse-adjusted point 

estimate. 

 

Returning to our artificial example from Table 5.1, the WR derivation asserts 

that 2
1̂ simplifies to the difference between the currently imputed and future observed 

values of the wave 2 respondents.  In other words, if we denote an observed value yi 

and an imputed value
*

iy , the observed values for wave 1 respondents fall out of the 

difference
10
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1010
ˆˆˆ
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yy , and )ˆvar( 2
1 is found 

using equation 5.1. 
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We concur with Wagner and Raghunathan (2010) that the most logical 

estimate of the imputed-to-observed deviation of the outcome variable at the sample 

unit level is 2ˆ , the MSE of the imputation model fitted using the wave 1 respondents.  

But given all of the available information, we argue that the approximation 

of )ˆvar( 2
1 is more straightforward.  In this particular instance, it is simply the number 

of new respondents, 1kr , times the variance of their imputed values, 2ˆ
e , divided by 

the denominator squared,
2

1









n
.  Using data from Table 5.1, this would be calculated 

as 0045.03384.0*4*
10

1
)ˆvar(

2
2

1 







 . 

 

An alternative method to arrive at this quantity is to simulate a large number 

of hypothetical wave k + 1 data collection processes.  While ostensibly unnecessary in 

the present context, the technique’s appeal is that it generalizes to any point estimate 

and any imputation model.  The idea is to impute the wave k + 1 values independently 

many times, say, R = 1,000, thereby creating a sequence of R hypothetical completed 

data sets.  From each, one calculates a simulated wave k + 1 sample mean, which we 

can denote rk
y

)1(
1

ˆ  .  If we define 





R

r

rkk
y

R
y

1

)1(
1

)1(
1

ˆ1ˆ to be the average of the R 

simulated sample means from wave k + 1, then the expected difference to be observed 

once wave k + 1 data is obtained is    
)1(

11
)1(1 ˆˆˆˆ kkk

k
k
k yyE  .  Although in many 

instances it is reasonable to anticipate this value to be close to zero, it may not be 

exactly zero, because we condition on the specific set of imputed values drawn to 
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produce ky1
ˆ , not the expected values of those sample-unit-specific distributions as do 

Wagner and Raghunathan (2010). 

 

Inferences can be made by forming a prediction interval around the estimated 

difference.  Because ky1
ˆ is fixed, variability reduces to only the component attributable 

to the rk
y

)1(
1

ˆ  ’s.  By defining      






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R
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krkkk
k yy

R
y
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2)1(
1

)1(
1

)1(
1

)1( ˆˆ
1

1ˆvarˆvar  , we can 

construct the interval by finding  


  )1(
1

)1( ˆvar*ˆ k
k

k
k z   , where 1z is the 100(1 – α)

th
 

percentile of the standard normal distribution.  

 

Let us motivate an example of this simulation procedure using the data in 

Table 5.1.  First, note that 87.2ˆ1
1 y .  To simulate hypothetical values of 2

1ŷ , 10,000 

completed data sets were generated using the same explicit imputation model initially 

fitted using only the wave 1 respondents.  The average of these simulated wave 2 

means equals 977.2ˆ
10000

1ˆ
10000

1

2
1

2
1  






R

r

ryy , and so 107.0977.287.2ˆ )1(


k

k
 .  Figure 

5.1 illustrates the distribution of the rk
k

)1(ˆ  ’s.  The variance of the simulated mean 

differences is   0046.0ˆˆ
110000

1
)ˆvar(

000,1

1

22
1

2
1

2
1 


 






R

r

r yy , which we can confirm is 

approximately equivalent to the variance calculated by the closed-form version 

discussed above (0.0045).  If a 95% prediction interval on the expected difference 

were desired, we have all the necessary inputs to calculate 

0.0259) 0.2399,(0046.0*96.1107.0  .  Note that we should not be surprised to find 
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the interval centered at zero because we have conditioned on the imputed values used 

to calculate 1
1ŷ . 

 

 

Figure 5.1: Distribution of Simulated Nonresponse-Adjusted Sample Mean 

Differences after a Second Wave of Data is Collected Using the Artificial Data in 

Table 5.1. 

 

Alternatively, one can make inferences on the simulated distribution itself by, 

for example, assigning the 95% prediction interval boundaries using the 100(α/2)
th

 

and 100(1 – α/2)
th

 percentiles of that distribution.  In many scenarios, as evidenced by 

the one just presented, it would not be implausible to assume that the ultimate 

estimator difference is normally distributed, in which case far fewer than the R = 

10,000 replications demonstrated here would be necessary to obtain satisfactorily 
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precise estimates of its mean and variance for use in the traditional prediction interval 

formulation. 

 

To justify the supposition made previously that transitioning to a multiple 

imputation approach would necessitate some kind of formulaic modification, let us 

return to the same data set portrayed in Table 5.1 and consider two additional 

methods for simulating the R = 10,000 future wave completed data sets.  In the first, 

suppose the same estimated parameters from the explicit regression model fitted to 

the observed data is used to multiply-impute the four nonrespondents’ missing data M 

times.  That is, each future wave mean, ry2
1

ˆ , is calculated by applying Rubin’s 

straightforward combination rule to assimilate the 5 completed data set estimates.  It 

turns out that the expectation of )ˆvar( 2
1
 for this case can be derived similarly as 

before, only with an additional 1/M term included.  Specifically, it is the number of 

new respondents, 1kr , times the variance of their imputed values, 2ˆ
e , divided by both 

the n
2
 and M. 

 

Of course, this particular approach would not be “proper” in Rubin’s (1987) 

terminology, since the imputation model parameters are assumed fixed, but it allows 

for a readily calculable variance to compare against single imputation.  The proper 

approach is to incorporate the imputation model’s uncertainty, something we would 

anticipate introduces more variability.  Unfortunately, this makes the variance 

derivation intractable, yet we can explore the relative difference using the simulation 

approach.  To illustrate, Figure 5.2 plots the distribution of the R = 10,000 simulated 
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sample mean differences for the original single imputation approach and the two 

multiple imputation approaches—improper and proper—both using M = 5.  Notice 

how all distributions are centered at the same expected value, but the multiple 

imputation approaches’ distributions are somewhat narrower.  Recall that the variance 

of the single imputation approach was found to be 0.0046.  The variance of the 

improper multiple imputation approach is approximately one-fifth of that, or 

(1/5)*0.0046 ≈ 0.000912.  The variance of the proper multiple imputation approach in 

this simple example is 0.0031, larger than its improper analog but still less than the 

single imputation approach.  Again, the theoretical derivation of this result, in 

general, is not easily obtainable. 
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Figure 5.2: Comparative Distributions of Simulated Nonresponse-Adjusted Sample 

Mean Differences after a Second Wave of Data is Collected Using the Artificial Data 

in Table 5.1 – Single Imputation, Improper Multiple Imputation, and Proper Multiple 

Imputation. 

 

The purpose of this introductory section of the chapter was to discuss the 

fundamental concepts behind prospective considerations of phase capacity, point out 
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some limitations of the method proposed by Wagner and Raghunathan (2010), and 

motivate a more general alternative approach in which the imminent wave’s data 

collection process is repeatedly simulated.  In the next section we more formally 

support the procedure with theory and discuss a few ways in which a practitioner 

could implement it.  We also introduce an adaptation for surveys that conduct 

weighting adjustments for unit nonresponse.  Section 5.3 contains results from a 

simulation study designed to evaluate the performance of the proposed procedure 

across a diverse set of circumstances, and Section 5.4 reports on an application using 

data from FEVS 2011. 

 

5.2 New Methods 

There are three potential sources of uncertainty inherent in   )1(ˆvar k
k , which 

we will refer to in the most general sense as events and label E1, E2, and E3.  The first, 

E1, is the component associated with which of the current nonrespondents will 

become respondents in the next wave.  The second, E2, reflects the specific values to 

be observed for these future respondents.  And the third, E3, symbolizes the resulting 

impact on the parameters of the imputation model utilized to fill in plausible values 

for those who have not yet responded at the conclusion of wave k + 1. 

 

If we represent

 

all available information (e.g., auxiliary variables, observed 

response patterns, imputation model parameters) at wave k by k
1θ , the joint probability 

distribution we are seeking to make inferences on is )|,,( 1321
kEEEf θ .  Unless certain 

dramatically simplifying assumptions are made, a tractable, closed-form expression is 
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difficult to produce.  Note, however, that we can factor the joint probability 

distribution into a sequence of conditional distributions, 

since ),,|(),|()|()|,,( 2113112111321 EEEfEEfEfEEEf kkkk
θθθθ  .  The conditional 

distributions may still prove intractable, but the alternative form intimates how we 

can pursue a Markov chain Monte Carlo (MCMC) computation approach to 

approximate the joint probability distribution, which is the spirit of the simulation 

approach advocated in the previous section.  In general, the MCMC approach 

proceeds as follows: 

1. Draw )|(~ 11
*
1

kEfE θ , or simulate who will respond during wave k + 1. 

2. Using the result from the Step 1, draw ),|(~ *
112

*
2 EEfE k

θ , or generate a 

pseudo-observed value for each simulated respondent based on the 

same imputation model fitted using respondents as of wave k. 

3. Using the result from the Step 2, draw ),,|(~ *
2

*
113

*
3 EEEfE k

θ .  That is, 

treat the pseudo-observed values from the second step as observed for 

purposes of (re)fitting same imputation model used to form the 

completed data set at wave k.  From this updated model, generate 

imputed values for those wave k nonrespondents not simulated as 

responding in Step 1. 

 

At the conclusion of Step 3, one simulated wave k + 1 completed data set has 

been created.  Therefore, we have one synthetic realization of )|,,( 1321
kEEEf θ from 

which we can produce one simulated wave k + 1 estimate.  The fixed value of the 

estimate at wave k is then subtracted to arrive at a simulated difference, or rk
k

)1(ˆ  .  The 
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idea is to repeat this entire process independently r = 1, …, R times and base 

inferences on the resulting distribution. 

 

The illustration provided in the previous section where we assumed all 

nonrespondents would respond at wave k + 1 can be classified as a special case in 

which there is no variability associated with E1 or E3.  In effect, the problem 

simplifies to approximating the distribution )|( 12
kEf θ , and so Steps 1 and 3 are 

unnecessary, as was implicit in the demonstration.  A related special case worth 

mentioning is when one assumes a fixed wave k + 1 respondent set, but does not 

assume it will include all current nonrespondents.  In other words, one is interested in 

quantifying the uncertainty with respect to how much a particular estimate will 

change given a predetermined set of sample units will respond.  In that case, there is 

no variability associated with Step 1, but one could still repeatedly iterate between 

Steps 2 and 3 to approximate )|,( 132
kEEf θ . 

 

While there may be occasions when the goal is to quantify the uncertainty 

within specific scenarios such as the two just described, there are other plausible 

methods to simulate the wave k + 1 respondent set for each of the R replications.  

Considering imputation processes generally exploit auxiliary variables on the sample 

frame, a resourceful approach would be to draw upon some or all of these, perhaps 

alongside other paradata, to fit a discrete-time hazards model (Allison, 2010), where 

the ultimate objective is to affix an estimated probability that each current 

nonrespondent will respond in the pending wave—Wagner and Hubbard (2014) 
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discuss applications of these models in three example surveys.  Given the estimated 

probability, a stochastic sampling procedure could be implemented in a 

straightforward manner.  As another example, one could independently sample the 

lesser of the number of wave k respondents and the number of nonrespondents 

remaining.  The reasoning behind this approach is the empirically well-documented 

tendency for the absolute count of respondents to decrease in each subsequent wave 

within the same design phase.  Arguably the most appealing feature of this particular 

technique is its simplicity. 

 

With minimal modification, the same three-step procedure can be used in 

settings where weight adjustment techniques are employed to compensate for 

nonresponse.  One obvious difference is that ky1
ˆ is produced using kw1 , the set of 

nonresponse-adjusted weights for the sample units that responded between waves 1 

and k.  There is nothing different about how the hypothetical wave k + 1 respondent 

sets are generated.  To generate pseudo-observed values for these simulated 

respondents, however, one must fit and utilize some form of imputation model.  At a 

minimum, or in the absence of predictive auxiliary variables, a single-class hot-deck 

routine could be implemented.  The third step is to reweight the respondent set 

defined by the union of wave k respondents and the wave k + 1 simulated 

respondents.  Using this new set of weights and the pseudo-observed values, one can 

then formulate an estimate of rk )1(
1
ˆ   and, thus, rkkrk

k

)1(
11

)1( ˆˆˆ 
  .  The entire process 

is repeated independently R times and inferences can be made using the resulting 

distribution of the rk

k

)1(ˆ  ’s. 
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5.3 Simulation Study 

In an effort to evaluate the performance of the proposed technique in a diverse 

range of scenarios, a simulation study was conducted systematically manipulating the 

following three factors: (1) the relationship between the outcome variable and 

response wave; (2) the nonresponse adjustment technique utilized; and (3) the 

procedure for simulating sets of future wave respondents.  In total, the full factorial 

experimental design consisted of 2 x 3 x 2 = 12 distinct conditions.  We first detail 

the source data and the specific sub-factors whose cross-classification defines the 

twelve conditions, and then define and report on the specific metrics tracked to assess 

performance. 

 

As with the simulation study from Chapter 4, the ultimate sets of FEVS 2011 

respondents from three example agencies were treated as three fully observed sample 

data sets.  We supposed the key point estimates monitored for these three agencies 

were the seven percent positives estimates underlying the HCAAF Job Satisfaction 

index.  The first factor manipulated was the method partitioning respondents into one 

of 10 possible wave cohorts.  The same two allocations provided in Table 4.3 were 

used.  In the first, a sample unit’s response wave was assigned independently of 

anything else and in proportion to the FEVS 2011 empirical distribution of Agency 3 

first reported in Table 1.2.  This simulates a scenario where response timing is 

unrelated to the outcome variable.  In contrast, the second allocation scheme followed 

the same algorithm described in Section 4.3 in which early respondents were 
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disproportionately predisposed to have more negative sentiments.  While the details 

can be referenced from the discussion in Section 4.3, recall this was operationalized 

via a PPS sampling routine in which the measure of size was a respondent-level 

aggregate measure of positivity based on the seven items comprising the HCAAF Job 

Satisfaction index. 

 

The second factor manipulated was the compensation technique used to 

handle unit nonresponse following each simulated wave, or the technique used to 

produce ky1
ˆ and rk

y
)1(

1
ˆ  underlying rkkrk

k yy
)1(

11
)1( ˆˆˆ 

 .  Two techniques were 

investigated: multiple imputation (MI) and weighting.  The application of the two 

adjustment techniques was patterned after what was described in Section 3.3.  To 

promote a balanced comparison, the same set of categorical auxiliary variables was 

exploited in an analogous manner for either technique.  Specifically, four variables 

were used: gender, minority status, supervisory status, and a headquarters vs. field 

office duty station indicator.  For the MI case, the positive/non-positive indicator 

variable for each of the seven Job Satisfaction index items was imputed M = 5 times 

using a logistic regression model with the aforementioned auxiliary variables serving 

as main effects.  For the weighting case, base weights of respondents at the 

conclusion of the wave k were raked such that the weighted sum of each variable’s 

categories matched the known population total. 

 

The third factor manipulated was the method by which the wave k + 1 

respondent sets were simulated.  Three conditions were tested.  Functioning as a 
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control of sorts, the first condition was that the future wave respondents were known 

with certainty.  The second condition called for simulating the future wave 

respondent set by drawing a simple random sample of nonrespondents of size rk, 

where rk represents the number of wave k respondents.  An exception was made 

whenever rk exceeded the number of nonrespondents remaining after wave k; in that 

instance, all nonrespondents were simulated as responding in wave k + 1.  The third 

condition was to derive a probability of responding in the pending wave by fitting a 

discrete-time hazards model (Allison, 2010).  To be specific, if we collectively 

symbolize the set of four auxiliary variables identified above as Xi for the i
th

 sample 

unit, the following model was fitted: 

 

iβX














k

ki

ki
10

1
ln 




      (5.2) 

 

where, following the notation from Chapter 2, ki is the probability (i.e., response 

propensity) for the i
th

 individual responding during wave k, given the individual has 

not previously responded.  To fit this model, following what is prescribed in Allison 

(2010), a person-period data set was constructed whereby each sample unit “at risk” 

of responding during a particular wave has one row of data.  While the auxiliary 

variables comprising Xi were time-invariant for all records in the person-period data 

set associated with a particular individual, k was permitted to vary. 

 

Note that the model parameter estimation process encounters a barrier when 

fitting the model specified in expression 5.2 at the conclusion of wave 1 because, at 
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that particular threshold, the design matrix columns corresponding to α0 and α1k are 

both 1 for all rows.  A simple work-around used when k = 1 was to drop the term α1k 

from the model, in effect reducing the discrete-time hazards model to a standard 

logistic regression model in which the outcome variable is an indicator of responding 

in the first wave. 

 

After fitting the discrete-time hazards model, the estimated parameters were 

used to assign each nonrespondent as of wave k a probability of responding in the 

pending data collection wave.  Denoting this probability ik )1(
ˆ

 , a random uniform 

variate ri between 0 and 1 was generated and the individual was simulated as 

responding if ikir )1(
ˆ

  and not responding otherwise. 

 

Table 5.2 summarizes the three factors and their associated sub-factors 

manipulated as part of the simulation study. 
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Table 5.2: Summary of Simulation Factors and Sub-Factors for the Study Evaluating 

the Newly Proposed Technique for Making Inferences on the Expected Deviation of a 

Nonresponse-Adjusted Point Estimate Following a Future Data Collection Wave. 

 

Factor 1: Relationship between Response Wave and Outcome 

Sub-Factor Description 

1 Wave independent of any outcome variables 

2 Earlier respondents less positive than later respondents with respect to 

HCAAF Job Satisfaction index 

  

 

Factor 2: Nonresponse Adjustment Technique 

Sub-Factor Description 

1 Multiple imputation (M = 5) 

2 Weighting via raking 

  

 

Factor 3: Future Wave Respondent Simulation Technique 

Sub-Factor Description 

1 Future wave respondents known exactly 

2 Random sample of nonrespondents taken, with size equaling the lesser of the 

number of wave k respondents and the number of nonrespondents remaining 

3 Stochastically based on probabilities generated from a discrete-time hazards 

model 

 

For each of the twelve conditions defined by the cross-classification of the 

subfactors, R = 200 replications were conducted at each of the 9 unique wave 

thresholds for each of the three agencies’ Job Satisfaction index items.  In total, 3 

agencies x 7 items x 9 wave thresholds = 189 comparisons were made for each of the 

12 conditions.  In each,  )1(ˆ k

k
 
and   )1(ˆvar k

k were found and a corresponding 95% 

prediction interval was formulated by  


)1()1( ˆvar96.1ˆ k

k

k

k  .  From there, we 

determined whether the actual nonresponse-adjusted point estimate calculated once 

the true set of wave k + 1 responses was obtained fell within its boundaries.  This is 

the principal quantity of interest from our perspective, the prediction interval 

coverage rate with respect to the point estimate difference eventually observed.  
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Tables 5.3a and 5.3b report these coverage rates observed over 1,000 independent 

iterations of the twelve conditions.  The six conditions reported in Table 5.3a 

correspond to the scenario in which wave was assigned independently of the 

outcome, while Table 5.3b reports on the six conditions in which early respondents 

are systematically more negative. 

 

Unfortunately, the results are far from spectacular.  The coverage rates in 

Table 5.3a show how, even for the condition where the expected value of the outcome 

variable does change during the data collection period, the prediction intervals 

contain the true difference between 75 – 80% of the time.  There are hardly any 

noteworthy departures from this marginal rate for a particular agency or survey item.  

The only condition standing out is the weighting version during which future wave 

respondents were known with certainty.  In all but one instance, its coverage rates 

exceeded 90%. 

 

Table 5.3b reports coverage rates for the condition where early respondents 

are more negative in their attitudes.  Results for this condition were even poorer than 

for the first, although more patterns emerge.  One interesting finding is that the MI 

approach exhibits higher coverage rates than the weighting approach.  Still low by 

most standards, the marginal coverage rate for the former is roughly 48%, whereas 

that figure is around 36% for the latter.  Another noteworthy discrepancy is how the 

coverage rates for Agencies 1 and 3 are much lower than that for Agency 2.  We 
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found this puzzling considering no such differences were found in the first condition; 

there, all three agencies’ marginal coverage rates were very close to one another. 

Table 5.3a: Prediction Interval Coverage Rates for the Simulation Study Condition in 

which Response Wave is Independent of the Outcome Variables. 

 

MI (M = 5) 

 

Weighting 

Future Wave 

 Respondent 

Simulation 

Technique 

Known Random 
DTH 

Model  
Known Random 

DTH 

Model 

Agency 1 
       

Item 
       

4 77.5 78.1 71.1 

 

94.8 75.2 66.7 

5 77.2 76.4 74.2 

 

94.8 80.7 71.1 

13 77.2 79.4 74.4 

 

91.9 77.8 68.1 

63 74.7 80.8 75.3 

 

92.2 78.5 70.0 

67 77.8 77.8 72.2 

 

92.2 76.7 69.6 

69 78.6 83.1 71.9 

 

94.8 79.3 74.1 

70 74.7 80.0 75.3 

 

94.4 77.8 72.6 

 
       Agency 2 

       Item 

       4 74.2 80.8 71.9 

 

92.6 78.5 69.3 

5 73.1 80.0 70.6 

 

91.9 76.3 70.0 

13 72.8 75.8 73.3 

 

93.7 82.6 72.6 

63 77.5 77.8 72.5 

 

94.8 74.1 66.3 

67 77.5 81.4 76.9 

 

94.8 75.9 69.6 

69 75.6 81.1 75.3 

 

94.1 75.6 65.9 

70 73.6 81.9 75.0 

 

91.5 75.9 68.9 

 
       Agency 3 

       Item 

       4 74.4 77.5 75.6 

 

92.2 73.7 65.6 

5 72.8 74.2 73.9 

 

90.7 77.4 71.1 

13 76.1 74.7 73.6 

 

89.3 75.9 62.6 

63 74.2 75.3 73.1 

 

92.2 76.7 68.1 

67 76.4 82.2 73.6 

 

93.7 75.9 62.6 

69 74.7 77.8 75.6 

 

93.7 78.5 67.8 

70 74.4 80.3 73.9 

 

92.2 75.9 68.9 
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Table 5.3b: Prediction Interval Coverage Rates for the Simulation Study Condition in 

which Response Wave is Associated with the Outcome Variables. 

 

MI (M = 5) 

 

Weighting 

Future Wave 

 Respondent 

Simulation 

Technique 

Known Random 
DTH 

Model  
Known Random 

DTH 

Model 

Agency 1 
       

Item 
       

4 34.2 35.6 27.8 

 

24.8 15.9 10.4 

5 43.9 45.3 38.3 

 

35.9 27.8 18.1 

13 46.9 50.0 45.3 

 

45.9 33.7 25.2 

63 28.6 27.2 21.7 

 

16.7 10.4 5.6 

67 26.1 27.8 22.8 

 

17.8 10.4 5.2 

69 24.7 31.1 21.1 

 

19.3 13.7 6.3 

70 45.0 44.4 40.0 

 

32.6 23.0 14.4 

 
       Agency 2 

       Item 

       4 73.6 72.5 66.9 

 

84.4 59.6 51.1 

5 72.5 76.1 68.9 

 

87.0 65.2 54.8 

13 73.9 76.4 68.1 

 

91.1 73.0 62.6 

63 65.0 65.6 66.9 

 

72.6 49.6 43.3 

67 63.9 69.2 64.7 

 

69.6 48.5 40.4 

69 69.7 71.1 66.9 

 

81.1 56.7 47.4 

70 77.2 75.0 65.3 

 

84.4 62.6 55.9 

 
       Agency 3 

       Item 

       4 32.8 35.8 28.1 

 

27.0 14.4 11.5 

5 40.0 40.6 38.9 

 

36.7 20.7 13.7 

13 48.1 50.8 39.4 

 

48.1 29.6 21.9 

63 21.9 25.3 21.7 

 

16.7 11.5 6.7 

67 24.7 25.6 22.5 

 

17.0 11.5 7.8 

69 28.1 33.6 24.7 

 

23.7 12.6 9.3 

70 41.4 46.9 38.1 

 

35.2 21.1 15.9 
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One performance dimension of interest masked by the presentations of Tables 

5.3a and 5.3b is the trend along the progression of data collection wave thresholds.  

Figures 5.3a and 5.3b illustrate how the prediction interval widths decrease over time.  

In these figures, the length of the vertical bars represents the prediction interval 

widths constructed about  )1(ˆ k

k , using Item 4 on the survey for the first iteration of 

Agency 3 as an example.  Figure 5.3a reports on the condition where the response 

wave and the outcome are independent, and Figure 5.3b reports on the condition for 

which a relationship was embedded.  A separate panel is given for each of the six 

permutations of a nonresponse adjustment approach and future wave respondent 

simulation technique.  The overlaid ‘X’ symbolizes the actual difference observed 

once the true wave k + 1 respondent set was incorporated. 

 

The proclivity of prediction interval widths to shrink over the simulated data 

collection period of a design phase is intuitive considering there are steadily 

diminishing counts of (actual and simulated) new respondents contributing to the 

change in the percent positive estimate.  Also intuitive from Figure 5.3a, in particular, 

is how the intervals and observed differences gently oscillate at random about a null 

difference, owing to the fact that this figure report on the simulated condition where 

there was no change in the expected value of the outcome over time.  On the other 

hand, for the condition where early respondents exude more negative attitudes, Figure 

5.3b illustrates how the actual point estimate difference often falls outside the bounds 

of the prediction interval, particularly in the early waves.  It is evident that the 

temporal patterns in the expected value of this particular variable are not fully 
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captured by the four covariates employed in the two nonresponse-adjustment 

procedures investigated. 

 

 

Figure 5.3a: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted 

Sample Mean Differences Observed for the First Iteration of the Simulation 

Condition in which the Response Wave is Independent of the Outcome Variables – 

Using FEVS Item 4 for Agency 3 as an Example. 
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Figure 5.3b: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted 

Sample Mean Differences Observed for the First Iteration of the Simulation 

Condition in which the Response Wave is Independent of the Outcome Variables – 

Using FEVS Item 4 for Agency 3 as an Example. 

 

Figures 5.4a and 5.4b investigate wave-specific coverage trends from a 

somewhat broader perspective.  Rather than focusing on one item, Figure 5.4a plots 

the average coverage rate trend for all seven Job Satisfaction index items for each of 

the six specific conditions in which the MI approach was used to produce a prediction 

interval.  The agency-specific trends are broken out within each panel.  There are no 

discernable trends for any future wave respondent simulation technique when the 

outcome is independent of when individuals respond, but for the condition where 

there is a relationship between those two factors, the coverage rates drop off after the 
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first wave threshold, but gradually climb across the remaining wave thresholds.  For 

completeness, Figure 5.4b illustrates the comparable trends lines for the weighting 

version’s six conditions, but the takeaway messages are generally the same. 

 

 
 

Figure 5.4a: Wave-Specific Prediction Interval Coverage Rates for the MI Method, 

Averaged over the Agency’s Seven FEVS Items Investigated for all Six Sub-

Conditions of the Simulation. 
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Figure 5.4b: Wave-Specific Prediction Interval Coverage Rates for the Weighting 

Method, Averaged over the Agency’s Seven FEVS Items Investigated, for all Six 

Sub-Conditions of the Simulation. 

 

5.4 Application to the Federal Employee Viewpoint Survey 

In this section we discuss an application of these methods in a real-world 

survey.  As in the simulation study, we use data from the 2011 FEVS and focus on 

the seven items comprising the HCAAF Job Satisfaction index; however, instead of 

randomly assigning each respondent’s data collection wave, we use the actual 

response patterns observed in the survey’s administration.  Since Agency 1’s data can 

be partitioned into 9 waves, Agency 2’s data into 8 waves, and Agency 3’s data into 

10 waves, there were a total of 8 + 7 + 9 = 24 unique wave thresholds at which 
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differences in the seven nonresponse-adjusted percent positive estimates could be 

evaluated.  For each comparison, the same three future wave respondent simulation 

techniques detailed in the previous section were investigated independently for each 

of the same two nonresponse adjustment procedures—namely, multiple imputation 

(M = 5) and weighting.  These procedures were carried out in the same manner 

described for the simulation study, using the same set of auxiliary variables.  In all, 24 

x 7 = 168 distinct prediction intervals were formed for the anticipated point estimate 

difference to be observed in each of 3 x 2 = 6 unique combinations of (1) the future 

wave respondent simulation technique and (2) the nonresponse compensation 

procedure.  As in the simulation, R = 200 iterations was deemed sufficient to 

approximate the   )1(ˆvar
k

k

 

term in the prediction -interval  


)1()1( ˆvar96.1ˆ k

k

k

k  . 

 

Table 5.4 reports the agency- and item-specific prediction interval coverage 

rates in each setting, rates that are averaged across all of the given agency’s wave 

thresholds.  For example, a figure of 87.5 implies 87.5%, or 7 out of 8 of that item’s 

prediction intervals encapsulated the difference ultimately observed.  Because 

coverage rates vary so widely, it is difficult to make mention of any prevailing trends 

and patterns.  There is some evidence that the techniques work better in Agency 2, 

which is the notably smaller (n = 1,057) than the other two agencies (n = 16,565 and 

n = 17,177, respectively). 
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Table 5.4: Agency- and Item-Specific Prediction Interval Coverage Rates across All 

Applicable Wave Thresholds. 

 

MI (M = 5) 

 

Weighting 

Future Wave 

 Respondent 

Simulation 

Technique 

Known Random 
DTH 

Model  
Known Random 

DTH 

Model 

Agency 1 
       

Item 
       

4 37.5 75.0 37.5 

 

50.0 75.0 37.5 

5 75.0 37.5 87.5 

 

100.0 100.0 100.0 

13 62.5 75.0 62.5 

 

50.0 62.5 50.0 

63 50.0 50.0 37.5 

 

62.5 87.5 37.5 

67 25.0 62.5 50.0 

 

12.5 37.5 12.5 

69 50.0 50.0 62.5 

 

50.0 62.5 50.0 

70 62.5 25.0 62.5 

 

75.0 87.5 62.5 

 
       Agency 2 

       Item 

       4 71.4 57.1 71.4 

 

85.7 85.7 100.0 

5 71.4 71.4 28.6 

 

100.0 100.0 85.7 

13 57.1 85.7 57.1 

 

100.0 100.0 85.7 

63 42.9 100.0 57.1 

 

85.7 85.7 85.7 

67 42.9 57.1 71.4 

 

85.7 85.7 85.7 

69 71.4 14.3 71.4 

 

100.0 85.7 71.4 

70 100.0 85.7 71.4 

 

100.0 100.0 100.0 

 
       Agency 3 

       Item 

       4 44.4 77.8 66.7 

 

44.4 66.7 44.4 

5 66.7 88.9 22.2 

 

66.7 66.7 44.4 

13 66.7 77.8 66.7 

 

33.3 44.4 44.4 

63 44.4 77.8 66.7 

 

100.0 100.0 88.9 

67 55.6 66.7 66.7 

 

77.8 55.6 66.7 

69 88.9 66.7 55.6 

 

66.7 88.9 100.0 

70 88.9 66.7 55.6 

 

77.8 77.8 66.7 

 

One possible manifestation of Agency 2’s smaller size impacting coverage 

rates is that it tends to produce a larger value of   )1(ˆvar
k

k .  This is evident by visually 
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contrasting the length of the vertical bars in Figures 5.5a, 5.5b, and 5.5c against one 

another, as that length reflect the agencies’ wave-specific prediction intervals for each 

of the six unique combinations of a particular nonresponse-adjustment procedure and 

future wave respondent simulation technique, using FEVS Item 4 as an example.  

Like the analogous plots provided in the previous section, the ‘X’ marks actual 

difference.   Note that the y-axis minima and maxima for Agency 2 are slightly larger 

in magnitude than those for the Agencies 1 and 3.  Even so, as judged by the vertical 

distance of the bars, the prediction intervals are still larger.  At the same time, Agency 

2’s relative magnitudes of actual differences are no greater or less, on average, than 

the other two agencies. 

 

Figure 5.5a: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted 

Sample Mean Differences Observed for the FEVS 2011 Application – Item 4 for 

Agency 1. 
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Figure 5.5b: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted 

Sample Mean Differences Observed for the FEVS 2011 Application – Item 4 for 

Agency 2. 
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Figure 5.5c: Prediction Intervals Overlaid with Actual Nonresponse-Adjusted 

Sample Mean Differences Observed for the FEVS 2011 Application – Item 4 for 

Agency 3. 

 

5.5 Conclusion 

After pointing out some of the limiting factors of the prospective variance 

formula proffered by Wagner and Raghunathan (2010), we introduced a more general 

MCMC procedure that repeatedly simulates the pending wave data collection process 

in a sequence of three steps, sometimes fewer depending upon certain assumptions 

one might be comfortable making.  The first step is to simulate which of the current 

nonrespondents will respond during wave k + 1.  The second step is to use an 

imputation model to fill in a plausible value for those tapped to respond.  For those 

not tapped to respond, the third step is to re-administer the nonresponse adjustment 
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process after updating the underlying model with the pseudo respondents and their 

plausible values.  We discussed the mechanics if one were to use multiple imputation, 

but also an adaptation for when one were using a weighting approach instead.  After 

completion of the third step, one simulated value of a nonresponse-adjusted point 

estimate to be observed following wave k + 1 can be formulated, and the original 

nonresponse-adjusted point estimate can be subtracted to get one plausible point 

estimate difference.  The idea is to independently repeat this procedure R times and 

base inferences on the resulting distribution. 

 

To assess the general performance of the approach, a simulation study was 

undertaken using the seven items comprising the 2011 FEVS HCAAF Job 

Satisfaction index.   For manageability, we restricted focus to the same three 

anonymous agencies investigated as part of the first two studies.  The simulation 

consisted of 12 unique conditions defined by the cross-classification of three methods 

for simulating the future respondent set, whether the multiple imputation or weighting 

adjustments were the nonresponse compensation technique of choice, and whether or 

not there was a relationship between the response wave and the outcome variable’s 

expected value.   In spite of the promise of the newly proposed method, results were 

lackluster.  Naturally, we found this to be deflating.  The performance metric we 

considered crucial for its endorsement was the coverage rate of prediction intervals 

constructed at wave thresholds.  In only one setting were these rates reliably greater 

than 90%, that in which the weighting variant was used and the identities of future 

respondents were known with certainty (i.e., who they were, not what their responses 
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would be).  An application using the actual response patterns observed in the 2011 

FEVS did not fare much better.  The one exception was Agency 2, whose prediction 

intervals widths were notably larger than those of Agencies 1 and 3.  Improved 

coverage from a larger prediction interval, all else equal, is intuitive.  After all, the 

wider the net cast, the more likely the true difference will be captured. 

 

Despite the numerous factors systematically modified in the simulation study, 

there are still additional factors worthy of exploration in future simulation studies.  

One is the size of M for the MI version of the technique.  Earlier, we remarked that 

the variability of the simulated mean differences shrunk in proportion to 1/M, albeit 

for the “improper” example.  It seems possible that the increased precision associated 

with a larger M, say, M = 100, could have an effect on results.  Another potential 

factor is the ability of auxiliary variables to control the deviations in nonresponse-

adjusted estimates over the data collection period.  In this study, while there were 

advantages of using real survey outcomes and auxiliary variables, the fact of the 

matter is that the imputation and weighting approaches did little to curb the upward 

mobility exhibited by estimates using the accumulating data.  Systematically varying 

whether or not that kind of movement can be accounted for by a nonresponse 

adjustment procedure would be interesting.  That said, we found that coverage rates 

were only around 75 – 80% for the simulation condition where response wave was 

assigned independently of all else.  In that particular case, the point estimates’ 

movement was technically bridled, since there were only minor, random fluctuations.  

Another potentially fruitful extension would be to account for additional sources of 
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variability.  For instance, in the discrete-time hazards modelling approach to simulate 

the future wave respondent set, we stochastically sampled from the nonrespondent 

pool using the same estimated future-wave response propensities in all R replications.  

A bootstrap step (Efron and Tibshirani, 1993) could have been embedded to reflect 

the uncertainty of the given estimated propensity. 
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Chapter 6: Discussion 

6.1 Dissertation Summary 

According to Biemer and Lyberg (2003), a tenet of overall survey quality is 

timeliness, and a key driver of a survey’s timetable is the data collection period.  

Invariably, not all sample units respond in the first recruitment attempt, and a 

sequence of follow-ups in the form or reminder mailings, phone calls, or in-person 

visits typically ensues.  Some survey sponsors sanction this process to continue 

indefinitely in pursuit of a target response rate or minimum respondent count, with 

the tacit assumption that the magnitude of nonresponse error decreases with each 

additional wave of data collected.  In Chapter 2, we illustrated how that assumption 

can be false, both theoretically and via the analogy of a partitioned water tank, not to 

mention the widespread empirical findings in the nonresponse literature (Merkle and 

Edelman, 2002; Groves and Peytcheva, 2008) suggesting that the (non)response rate 

is only weakly associated with nonresponse error. 

 

Bearing these issues in mind, Groves and Heeringa (2006) encourage 

practitioners to employ paradata and other real-time evaluations to inform when to 

cease data collection or, more generally, when to segue into a different design phase.  

They defined the notion of phase capacity being the point during a fixed design phase 

when estimates stabilized.  A critical element absent in their exposition, however, is a 

well-defined, calculable rule practitioners can follow to determine whether phase 

capacity has occurred.  The aim of this dissertation was to fill that void.  Over the 

span of three methodological studies involving simulations and an application using 
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data from the 2011 FEVS, several specific tests for phase capacity were proposed and 

their performance assessed. 

 

In the remainder of this section, we briefly recapitulate the essence and 

motivation behind the methods proposed in each study.  In the section that follows, 

we take a step back and discuss the limitations of the research undertaken as part of 

this dissertation from a broader perspective, identifying several worthwhile avenues 

for further research. 

 

To be fair, the origins of testing for phase capacity had appeared in the 

literature prior to this dissertation, albeit not exclusively motivated by the ideas 

conveyed in Groves and Heeringa (2006), and with ample room for improvement.  To 

our knowledge, Rao, Glickman, and Glynn (2008) offered the first such contribution. 

While they evaluated several methods, they concluded that their third “stopping rule” 

performed best, yet a significant limitation is that it supposes auxiliary variables are 

employed to multiply-impute the missing data caused by unit nonresponse.  Even 

when auxiliary variables are available, many surveys prefer to adjust the base weights 

of respondents to compensate for nonresponse.  To that end, the first study reported in 

Chapter 3 proposed a variant operating similarly in spirit to Rao et al.’s third rule, but 

amenable to surveys that conduct weight adjustment methods in lieu of multiple 

imputation.  Through several simulated data collection scenarios and an application 

using a real-world survey data set, the 2011 FEVS, the two tests’ performance were 

compared.  All else equal, we found the weighting variant to be more sensitive to 
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estimate changes and, thus, less likely to make the phase capacity declaration.  By 

indirectly teasing apart all components of the estimated variance of the adjacent wave 

sample mean difference, we discovered that the covariance accounting for the shared 

data up through wave k -1 was handled differently in the multiple imputation version.  

In general, the reduction of the overall variance term after accounting for the 

covariance was much more drastic in the weighting version. 

 

A limitation of the tests described in the first study is that they are univariate 

by design, meaning they focus on only one point estimate at a time.  It is not 

immediately obvious how one would proceed if the test were conducted on two or 

more point estimates and contradictory conclusions resulted.  The purpose of the 

second study was to adapt concepts of the weighting technique proposed in the first 

study into a multivariate technique permitting the practitioner to make a single yes-or-

no determination of phase capacity for a battery of D point estimates simultaneously.  

Two methods were outlined for comparison.  The first took the form of a Wald chi-

square test statistic in a straightforward multivariate extension of the weighting 

variant discussed in the first study.  The second was an adaptation of a method 

commonly used in longitudinal analysis to measure whether there a change has 

occurred over some timespan.  We referred to this approach as the non-zero trajectory 

method.  Both methods were able to detect phase capacity quickly and without any 

noteworthy residual nonresponse error when the expected value of the outcome was 

stable over the data collection period.  All else equal, however, the non-zero 

trajectory method tends to determine phase capacity later than the Wald chi-square 
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approach, given it requires a minimum of four waves of data.  When there is a trend 

in the expected value of an outcome variable over the data collection period, a trend 

that cannot be corrected for by some form of nonresponse adjustment procedure, the 

additional waves dictated by the non-zero trajectory method prove advantageous. 

 

The methods proposed in the third and final study were not tests or rules per 

se; they were ways to quantify the uncertainty with respect to how much an estimate 

is expected to deviate from its current value once the pending wave of data is 

collection.  This took the form of what we referred to as a prediction interval.  It 

builds upon ideas of Wagner and Raghunathan (2010), who approached the task of 

detecting phase capacity from a prospective stance.  Rather than determining whether 

the most recent wave of data collection substantively altered a key point estimate, 

they attempted to quantify the likelihood of phase capacity being concluded after a 

pending wave.  Several limitations to their method were noted, and a more widely 

applicable, three-step MCMC simulation procedure was proposed.  Regrettably, 

results were not great.  The key quantity investigated in the simulation study and 

2011 FEVS application was the coverage rate of the prediction intervals, meaning the 

portion of the time the actual nonresponse-adjusted point estimate was contained 

within the interval constructed.  Over a variety of simulation conditions, even some in 

which the response timing was independent of everything else, coverage rates were 

generally well below any satisfactory level. 
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6.2 Limitations and Ideas for Further Research 

For several reasons, some political in nature, the actual adoption of a phase 

capacity testing approach to guide the FEVS data collection process would face 

headwinds.  At the forefront of resistance is the OPM survey administration team’s 

dogma that each agency be treated equitably and abide by a common set of rules and 

restrictions.  While the team tries to remain open to the each agency’s unique needs 

and objectives for conducting the survey, to avoid any perception of favoritism and to 

facilitate the unwieldy process of emailing several million survey invitations and 

reminders during the field period, certain leniencies and flexibilities once offered had 

to be curtailed in recent years.  For example, in the 2011 FEVS and administrations 

prior, agencies were given generous amounts of leeway with respect to the length and 

timing of their field period.  As the survey’s sample size continued to grow, however, 

accommodating these agency-specific requests became increasingly challenging.  

Consequently, beginning with the 2012 FEVS, the field period for all agencies was 

preset at six weeks, with each agency choosing from one of two possible start dates 

that are one week apart. 

 

Confirmation of phase capacity for a portion of the participating agencies, if 

leading to an abridged data collection period, would introduce efficiencies for certain 

aspects of the survey cycle, such as the survey support center operation, which only 

provides assistance for individuals in those agencies for which the survey is still open.  

In all honesty, however, these efficiencies doubtfully constitute sufficient grounds to 

convince and secure buy-in from agency stakeholders.  As evidenced by the trend in 
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Figure 1.1, a trend seen for most items and across almost all agencies, the tendency is 

for point estimates to increase over the course of data collection.  As yet, this 

tendency cannot be extirpated by any kind of nonresponse adjustment procedure.  The 

agency stakeholders alluded to are human resources managers tasked with more than 

just liaising with the OPM survey administration team on logistical aspects of the 

survey.  They are charged with analyzing the results and developing action plans to 

drive organizational change and improve employee morale, with the end goals of 

boosting productivity and improving the overall quality of work output.  More and 

more frequently, despite the FEVS not having been designed for this purpose, the 

success of these their efforts is measured by future years’ FEVS estimates.  From 

these stakeholders’ perspective, the higher the point estimates, the better.  Therefore, 

there will be opposition to any tactic, shortening the data collection period included, 

believed to result in lower point estimates, even if only by a statistically undetectable 

amount. 

 

The methods presented over the course of this dissertation are not applicable 

to all types of surveys.  Because nonresponse adjustments must be conducted in real-

time, or at least periodically during the field period, surveys that do not collect data 

electronically in a more or less instantaneous manner might be precluded.  For 

example, it may prove cumbersome testing for phase capacity in a survey for which 

the key point estimate is derived from survey staff categorizing an open-ended 

question or from a self-administered survey instrument that is not machine-readable. 
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Another working assumption thus far unexpressed is that the entire sample, or 

some germane subset (e.g., individuals within a particular agency), is “active,” 

meaning all sample units are contacted for participation at the same time.  This may 

be impractical for some surveys, such as an in-person household survey covering a 

vast geographical expanse with a sample listing taking weeks or months to exhaust.  

A related scenario is when a sample is partitioned into subsamples, perhaps for 

periodic release into the field.  For example, Parsons et al. (2014) discuss how the 

National Health Interview Survey yearly sample is allocated into four marginally 

representative panels as “a contingency to handle potential budget cuts” (p. 16).  

Research investigating the feasibility of testing for phase capacity when the totality of 

sample units is not contemporaneously being contacted to participate could shed light 

on which situations permit direct application of these methods and which should be 

avoided. 

 

There are also settings where the entire sample is active, but initial invitations 

and reminders do not occur at precisely the same time.  A sensible adaptation to 

address this circumstance is to redefine a data collection wave using some alternative 

temporal demarcation.  For example, while a wave of data was defined in this 

dissertation as the set of responses obtained between two reminders, one could 

instead define a wave as data collected between predetermined calendar days, days 

which need not necessarily be spaced equally apart. 
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In spite of our aversion to the phrase “stopping rule,” arguing previously that 

determining phase capacity does not necessarily imply data collection should be 

terminated altogether, only that a new design phase is warranted, a major limitation of 

this dissertation is that the sole design phase transition examined is, in fact, 

terminating the nonrespondent follow-up process.   More research is needed to 

understand how these techniques perform under alternative design phase changes, 

particularly switching data collection modes.  One fitting data source for studies of 

this ilk would be the American Community Survey (ACS), which follows up with 

nonrespondents using a sequential mixed-mode design in the following order: self-

administered Internet, self-administered mail, computer-assisted telephone 

interviewing (CATI), and computer-assisted personal interviewing (CAPI).  The 

sequence is designed such that data are collected using the least expensive method 

first and followed by progressively more expensive modes.  As described in Chapter 

7 of Torrieri (2014), the yearly ACS sample is divided into independent monthly 

samples, and each is allotted three months for data collection efforts, one month for 

each of the Internet/mail, CATI, and CAPI stages.  Figure 7-1 of Torrieri (2014) is a 

nice diagram illustrating the chronology and overlap of the stages with respect to the 

monthly samples.  While the monthly allocation scheme assuredly facilitates 

logistical aspects of the data collection process, further research exploring an adaptive 

transitioning methodology founded on concepts of phase capacity testing might 

introduce additional cost-saving efficiencies. 
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Indeed, analyses on the data collection cost savings, if any, attributable to 

adopting a phase capacity testing strategy are urgently needed.  A formidable 

hindrance to that occurring, however, is the proprietary nature of much of that data.  

This is especially true in the United States, where many of the nationally 

representative surveys disseminating data to the general public free of charge are 

sponsored by federal government agencies that typically award contracts to private 

research organizations to handle data collection for the survey.  These private firms 

surely maintain and scrutinize detailed cost information from current and recently 

completed survey projects for budgeting purposes and to help arrive at the bidding 

price of a proposal.  From these firms’ perspective, however, there is concern 

disclosing this information could lead to it being used against them in some way, 

perhaps by a competitor. 

 

Despite the paucity of detailed cost information in large-scale surveys and the 

fact that the incremental per-complete cost in an exclusively Web-based survey such 

as the FEVS is marginal, there are untapped avenues to indirectly measure cost 

savings.  For example, one of the FEVS sample frame variables is the employee’s 

annual salary.  Considering that the survey takes approximately 20 minutes to 

complete, one could multiply the sampled employee’s salary by [1/(2080 work hours 

in a year] x [1/(3 twenty-minute intervals in an hour)] = 1/6240 to get a crude 

measure of the opportunity cost associated with taking time away from one’s official 

duties to fill out the questionnaire.  Sample unit opportunity costs could be aggregated 
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in a variety of meaningful ways to provide insight as to whether the responsive design 

approach under consideration genuinely reaps cost savings. 

   

With respect to prospective considerations of phase capacity, one anticipated 

extension is the desire to make inferences on the expected change in a point estimate 

following wave k + 2 or beyond.  To tackle that particular problem, a more 

straightforward approach might be to draw upon time series analysis methods 

(Hamilton, 1994).  For instance, econometricians make routine use of the economic 

indicators (e.g., unemployment rate, jobless claims) estimated from repeated survey 

efforts such as the Current Population Survey to generate forecasts of the future value 

of those estimates.  It seems reasonable that those methods could be tailored to 

generate forecasts within the arena of a single survey effort’s data collection period. 

 

Another interesting application of these methods would be in a survey with 

two or more disparate stages of data collection, such as a survey where the respondent 

provides partial information that gets supplemented with information acquired from 

administrative records.  This strategy is common in surveys charged with capturing 

highly technical or exceptionally detailed information the typical respondent is unable 

to readily recall with satisfactory precision.  For example, the National Immunization 

Survey obtains general information about an age-eligible child from a telephone 

interview with the child’s parent or guardian, but the detailed vaccination history is 

obtained in a subsequent data collection stage from the child’s medical provider(s).  

As another example, the Residential Energy Consumption Survey commences with 
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an onsite interview during which the head of the household provides basic 

information about the housing structure and its gas, electricity, and heating and air 

conditioning equipment, but the critical measures of energy consumption and 

expenditures are obtained later upon following up with the energy supplier(s).  One 

could certainly test for phase capacity in one or both stages.  The potentially 

complicating factor, however, is that one is faced with unit nonresponse in the first 

stage, but what Brick and Kalton (1996) refer to as partial nonresponse in the second 

stage, a murky middle ground falling somewhere in between unit and item 

nonresponse.  And although certain point estimates are formulated using data 

collected during the first stage, the preeminent estimates are those derived from the 

secondary data collection stage.  Hence, assigning variable levels of tolerance, or 

detectability, across the two stages is a foreseeable goal.  (Of course, this could also 

be a goal with respect to mixed-mode survey designs.)  It may prove enlightening to 

delve deeper into the tradeoffs survey administrators must consider in this setting.
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Appendix: Data Set Visualization of RGG Rule 3. 
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