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Using new alternative fuels for motorized transportation vehicles has become 

increasingly popular with the growing concerns on the limitation of fossil fuels and 

environmental degradation. Introduction of numerous models of electric vehicles in 

the 21 century raised hope for replacing conventional internal combustion engine 

vehicles with these vehicles; however several barriers has adversely impacted the 

widespread adoption of these vehicles. Providing adequate number of charging 

stations and planning the layout of their infrastructure will help overcome some of the 

existing challenges. In this thesis, two formulations are presented for the optimal 

layout of these stations in rural and urban networks and the models are applied on two 

networks.  For the rural model, the results indicate the solution is highly sensitive to 

the assumptions about the range of vehicles for which we are designing the layout. In 

the urban context, the decision about number and location of chargers is highly 

dependent on the probability threshold we choose for satisfying the demand. 
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Chapter 1: Introduction 

Promoting electric vehicles (EVs) along other alternative fuel vehicles have gained 

interests among government officials and policy makers in recent years due to the 

advantages of these vehicles over the conventional internal combustion engine vehicles. 

The goal of this thesis is to develop a model to optimally locate charging facilities for 

electric vehicles.  

 In sections one and two of this chapter, we will go through some of the features of these 

vehicles and their infrastructures which make them different from the internal 

combustion engine vehicles. In the third section, their advantages and some of the 

challenges that these vehicles are facing are discussed. This will give us a framework for 

stating the problem in the following section. In the fifth and sixth section of this chapter 

the contributions and the structure of this thesis are presented. 

1.1 Types of Electric Vehicles 

There exist different types of vehicles that run with electricity, some of them are 

completely electric and they are known as all-electric vehicles (also called battery-

electric vehicles (BEVs) and some are partially electric, including hybrid electric vehicles 

(HEVs) and plug-in hybrid electric vehicles (PHEV) [1].  

HEVs get most of their power from the internal combustion engine and in most models 

their electric motors work as auxiliary power sources. Batteries of these vehicles are 

charged by internal combustion engines and through regenerative braking and they 
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cannot be plugged to an electric power source to be charged. Unlike HEVs, PHEVs get 

most of their power from the electric motor and they use internal combustion engine as 

back-up. They have larger batteries compared to HEVs and unlike them; they can be 

plugged in to be charged. BEVs get all of their power from an electric motor and they do 

not have an internal combustion engine [1]. 

 Here we use term PEVs when we are referring to both PHEVs and BEVs.  

1.2 Types of Infrastructures 

In terms of recharging, three types of infrastructure exist for PEVs: level 1, level 2, and 

level 3 (also called DC fast charging). Level 1 chargers use alternating current at110-120 

Volts (V) 15Ampers (A) (12A useable) or 20A (16A useable) branch circuit. As a result, 

these chargers can provide relatively small amounts of power and charging the vehicle 

fully may take between 10 to 20 hours, depending on the size of battery. However due to 

availability of 120V outlets and their relatively low installation cost these type of 

chargers are still very common in residential areas [2]. 

Level 2 chargers use 240-280V alternating current, single-phase, 30-80A branch circuit. 

PEVs can be fully charged in 4 to 8 hours. These features make these chargers suitable 

for both residential and public places [2].  

Level 3 chargers are for public places and they are very similar to the gas stations. They 

use 480V alternating current and a three phase circuit. PEVs can be 80% charged in less 

than 30 minutes. Although these chargers have the benefit of being very fast in terms of 

recharging the PEVs, their impact on the grid make the practicality of using these 
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chargers in residential areas dubious [2]. It should also be noted that if they are used on a 

regular basis they can have negative impact on the life of the battery. Tables 1 and 2 

provide cost estimation for installation of level 2 and level 3 chargers in public areas [3]. 

 

Table 1 Cost Estimation for Level 2 Charging Facility
1
 

 

 

1.3 Advantages and Challenges 

EVs have the advantages of being environmentally friendly and cleaner compared to 

vehicles that use fossil fuels. They reduce greenhouse gas emissions depending on the 

technology used for electricity generation and some of them (battery electric vehicles 

                                                 
1
 Source: Charging infrastructure deployment guidelines for the greater San Diego area (2010) prepared by 

electric transportation engineering corporation 
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(BEVs)) emit no tailpipe pollutants (zero-emission vehicle). They also have the benefit of 

reducing dependence on foreign petroleum and contribute to the nation’s energy 

independence. 

Table 2 Cost Estimation for Level 2 Charging Facility
2
 

 

 

According to the Organization for Economic Co-operation and Development (OECD) 

and International Energy Agency (IEA), in 2009 the percentage share of oil demand for 

transportation sector was 57%. According to U.S. Energy Information Administration, 

                                                 
2
 Source: Charging infrastructure deployment guidelines for the greater San Diego area (2010) prepared by 

Electric Transportation Engineering Corporation 
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this number was 72% for US in 2013 and about 40% of total consumed petroleum was 

imported.  

In addition, electric vehicles have other benefits such as having lower noise and better 

efficiency compared to conventional internal combustion engine vehicles which are 

relatively inefficient since the majority of energy is lost as heat during the conversion of 

fuel energy to propulsion. According to Tesla Company, drive efficiency of the Tesla 

Roadster is 88% which is almost three times more efficient than the conventional vehicle 

powered by internal combustion engine.  

Curtin et Al. (2009)  showed the equivalent recharging cost of PEVs would be $.75 per 

gallon which is about 79% less than conventional vehicles [7] assuming that: 

1)  0. 24 kWh consumed per mile for PEV
3
 [4],  

2)  30 mile traveled per gallon of gas
4
 [5], and 

3) national average price of $0.1065 per kWh for residential electricity
5
 [6].However, in 

terms of initial cost, PEVs are expensive due to high cost of their batteries.   

Another challenge besides cost that prevents mass production of these vehicles is the 

limited range of these vehicles compared to conventional vehicles. Range anxiety which 

is defined as “users’ continual concern for being stranded with a fully discharged battery” 

(Tate et al. 2008) has been identified as one of the major drawbacks of these vehicles [8].  

                                                 
3
 Value calculated using Advisor modeling results for the full charge test, which simulates the all‐electric 

mode. Specifically, 0.24 kWh / mile = 33.4 kWh / 1 gal gasoline * 1 gasoline gal equivalent / 142.1 miles 
4
 Value represents the average 2005 fuel efficiency for a light‐duty passenger car 

5
 Value represents the annual average residential retail price of electricity for 2007 
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One survey  of American consumers in 2011 shows that about  55 %, 45%, and 25% of 

consumers think that price, range, and charging time of these vehicles are major 

limitations of these vehicles [9]. According to 2012 Car Brand Perception survey, about 

77 percent of people are concerned about the limited range of EVs [10]. 

Travel adaption including “using a substitute vehicle, choosing another mode such as 

public transportation or changing their travel plan such as canceling the trip” is needed 

when the length of trip is beyond the comfort level which is defined as minimum level of 

battery charge at which drivers are still comfortable driving the BEV) [11]. 

Looking at travel itineraries in which drivers use conventional internal combustion 

engines vehicles can aid us in developing realistic models for the driver’s behavior [11]. 

Based on a report by the U.S. Department of Transportation, over 50percent of all vehicle 

trips are less than 10 miles; however these trips only account for 28 percent of all 

household vehicle miles traveled. This report also shows that although less than one 

percent of all vehicle trips are above 100 miles, these trips account for nearly 15 percent 

of all household vehicle miles traveled [12]. This emphasizes the importance of planning 

for placing charging facilities in rural networks as well as in urban areas. Figure 1 shows 

the distribution of percent daily vehicle trips and percent of daily vehicle miles as a 

function of trip length based on the 2009 National Household Travel Survey.  
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Figure 1 Distribution of Percent of Daily Vehicle Trips and Vehicle Miles
6
 

Another major barrier that is explained in Traut et al. (2012), Melaina and Bremson 

(2008), Leiby and Rubin (2004), and Sperling (1990), that prevents widespread use of 

alternative fuel vehicles is the “chicken and egg” problem consisting of three 

stakeholders: consumers, manufacturers, and fuel providers. Manufacturers do not want 

to produce vehicles that do not have market; consumers do not want to buy vehicles that 

cannot be fueled easily, and fuel providers do not want to provide infrastructure for fuels 

that do not have considerable demand ([13],[14],[15], and [16]).  

In addition, the inability to forecast charging demand and distribution of this demand add 

difficulty to power-grid planning and placing public charging facilities for these vehicles. 

Predicting the spatial pattern of EV ownership and identifying the households and 

neighborhoods that are most likely to own these vehicles can help planners provide 

charging facilities for these demands and consequently promote these vehicles [17].  

                                                 
6
 Source: U.S. Department of Transportation, Federal Highway Administration, Office of Highway Policy 

Information, National Household Travel Survey. 
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Chen et al. have shown that EVs ownership is higherin zones with morenumber of 

households and higher resident-worker densities. (This relationship is similar for internal 

combustion engine vehicles.) Distance to central business district (CBD) has a negative 

impact on EV ownership. Lower income households tend to be unwilling to buy EVs. EV 

ownership is also influenced by “neighbor effect” which suggests that nearby households 

impact each other’s EV ownership decision [17]. 

To overcome these hurdles and  limitations and promote these vehicles many deployment 

efforts have been taken by government officials around the world such as giving financial 

incentives to consumers, giving access to restricted roadways, investment on research 

with the goal of developing high performance battery technologies, and providing 

facilities for charging EVs [19].  

According to global EV outlook [19], by 2012 United States with 38% of global electric 

vehicle stock had the most EV owners, while Japan and France with 24% and 11% were 

in second and third place, respectively. As it is shown in figure 2, in terms of market 

share, Norway and Japan with 3% and 1% respectively had the highest market share in 

2012 [19]. Figures 3 and 4 show world PHEV and BEV sales by country in 2012. Figures 

5 and 6 show the alternative fuel vehicle in use and electric vehicle respectively in the 

United States from 1995 to 2010. Figure 7 shows PEV in use by model for the United 

States from 2010 to 2013. 



 

 

 

 

 9 

 

 

Figure 2 2012 EVs Sale as % of Total Passenger Vehicle Sales
7
 

 

 

Figure 3 2012 World PHEV Sales, by Country
8
 

                                                 
7
 Source: Bloomberg New Energy Finance and Global EV Outlook 2013 - Understanding the Electric 

Vehicle Landscape to 2020. International Energy Agency 
8
 Source: EVI, Mark Lines Database and Global EV Outlook 2013 - Understanding the Electric Vehicle 

Landscape to 2020. International Energy Agency 
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Figure 4 2012 World BEV Sales by Country
9
 

 

Figure 5 Alternative Fuel Vehicles in Use in the United States
10

 

                                                 
9
 Source: EVI, Mark Lines Database and Global EV Outlook 2013 - Understanding the Electric Vehicle 

Landscape to 2020. International Energy Agency 
10

 Source: EIA’s Annual Energy Review 
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Figure 6 Electric Vehicles in Use in the United States
11

 

 

Figure 7 PEV sales by model in the United States
12

 

                                                 
11

 Source: EIA’s Annual Energy Review 
12

 Source: Hybridcars.com/market-dashboard.html 
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1.4 Motivation and Problem Statement 

Lack of charging facilities is one of the major barriers that exist in increasing the 

adoption rate of alternative fuel vehicles [14]. Studies also show providing faster chargers 

will also help in increasing the adoption rate as a study in Netherland indicates that 

expected EV adopters tend to have relatively high valuation of time spend in charging 

stations. [18]. 

In this thesis, two individual models are presented for the optimal location of charging 

stations in urban and rural network addressing some of the challenges mentioned in the 

previous section such as limited range, uncertainty in demand, and proper combination of 

type of chargers. In the urban context, as the daily travel pattern shows, EV users do not 

need to recharge their car more than once. They can either do it at home, work, or school. 

(Probably the drivers who drive longer distances which need multiple stop for recharging 

with the purpose of doing their daily activity are not eager to buy EVs.) As a result in the 

urban context, only the optimal combination, sizing, and placement are discussed; also 

uncertainty in demand is accounted for in the model. However recharging the vehicle in 

multiple locations is necessary for longer trips which do not happen often, so for the rural 

network the proposed model finds the optimal location considering the fact that vehicle 

might need to stop at multiple charging facilities to be recharged.  

1.5 Contribution 

Several factors distinguish this study from previous studies in this area. First, a new 

formulation is proposed for placing charging stations in order to recharge longer trips.  
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The proposed formulation is more efficient than the formulation introduced by Kuby and 

Lim (2005) in terms of preparing input data [35]. In addition this formulation has the 

advantage of considering paths other than the shortest path (second, third, and … shortest 

path) to place charging facilities in optimal places along the path which is more conform 

to travel behavior of drivers.  

In the urban context, a two stage stochastic model is developed which accounts for 

uncertainty in demands; also two types of charging facilities (level two and level three 

chargers (DC fast charging)) are considered for installation in the proposed model. 

1.6 Structure of Thesis 

In the first chapter of this thesis, some of the features of electric vehicles and their 

charging infrastructure in addition to the challenges they are currently facing were 

discussed. Moreover, the focus of this thesis and its contributions were discussed in this 

chapter as well. In the second chapter, some of the previous research and their 

methodologies are discussed. In the third chapter two models are presented for the layout 

of charging facilities in urban and rural networks. In the following chapter the models are 

applied in two networks and sensitivity analysis is performed on the input data. Finally, 

in Chapter 5, results presented in the previous chapter are interpreted and some 

suggestions for the future research are provided.  
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Chapter 2: Literature Review 

There are quite a few papers in the of literature that focus on the siting and sizing of 

charging stations for electric and other alternative fuel vehicles. Many aspects of these 

vehicles such as their range, their impact on the grid, and their demand distribution along 

with many others have been addressed so far; however there are still some aspects that 

have not been fully addressed. Also, some of the methodologies introduced so far are not 

efficient and can be enhanced to become more efficient. 

Problems involving location decisions have been well studied. Set covering location 

models, maximum covering location models, center models, and median problems along 

with their variants are some of the models that have been developed for facility location 

problems [20].  

Set covering models try to minimize the total cost of opening facilities with the constraint 

that all of the demands need to be covered. Jia et al. (2012) used similar methodology and 

tried to minimize the sum of investment cost, operation cost, and user cost by locating 

charging station in a network of roads. Their results showed that the stations must be 

placed at the nodes or near the nodes since demands are highly concentrated at the nodes 

[21]. 

Church and ReVelle (1974) introduced Maximum covering location model. Unlike set 

covering models this model does not need to cover all demands. Based on the budget the 
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number of facilities is fixed and the objective function tries to maximize the number of 

covered demands based on the weight of each demand node [22]. 

Several papers use this methodology. As an example, Xi et al. (2013) proposed two 

models for locating stations with charger level 1 or level 2 with the aim of maximizing 

the number of served EV and the amount of energy recharged by having constraints on 

the available budget. They apply their model on a case study in central-Ohio region [23]. 

Chen et al. (2013) used parking information from trip records in the Puget Sound 

Regional Council’s 2006 household travel survey to estimate the future demand of EVs 

then a mixed integer programming problem was solved to locate the charging stations 

with the objective of minimizing users’ access cost and unmet demand with limitation on 

the number of installed charging stations [24] 

Gradual covering location model is a variant of maximal covering location model in 

which the optimal location of facilities also depends on their distance to candidate 

locations and the coverage is reduced depending on the distance of demands to the 

facilities [25]. 

Frade et al. (2011) used this model as the basis of proposing a model for locating 

charging stations in a neighborhood of Lisbon which has a mix of residential and 

business uses. They estimate demand for EV recharging based on modeling vehicle 

ownership and volume of employment for each census block respectively and using the 

forecast of European Commission of share of EVs by 2020 and 2030. Using this 
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methodology they maximized the demand coverage within acceptable maximum distance 

[26]. 

Some studies used other methods such as topological techniques to allocate charging 

stations. Koyanagi et al. (2010) used Voroni and priority order circular diagram to make a 

blueprint for the installation of charging stations in Musashino City [27]. Ge et al. (2011) 

divided the study area into several zones with grid partition method and then used genetic 

algorithm to search the feasible region and determine the location and size of charging 

station with the aim of minimizing user loss going to the charging station [28]. 

Another widely use models in locating facilities such as charging stations are flow 

capturing location models (FCLM) which account for demands in the form of traffic 

flows. These models which were introduced by Hodgson (1990) and Berman et al. (1992) 

aim to locate facilities assuming that demands are flows going from preplanned origins to 

preplanned destinations ([29] and [30]). For these models the demands are captured if the 

flow passes the facility. Hodgson et al. (1994) compared the efficiency of exact, vertex, 

and greedy solutions for FCLM problem [31]. Berman et al. (1995) introduce other 

extensions of this model allowing for deviation in the original path (relaxing the 

assumption that flows only can traverse the shortest path to get to their destination) [32].  

In this original flow capturing location model proposed by Hodgson (1990) there is no 

benefit in passing by a facility more than once [29]; however in some of the applications 

such as a model developed by Hodgson and Berman (1997) for locating billboards 

capturing flows even more than once will be beneficial, so they defined an objective 
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function that considers the number of each additional viewing [33]. Locating inspection 

stations is another application of models which can capture flows more than once [34]. 

As currently available EVs have limited ranges compared to conventional vehicles, for 

rural network and between relatively far distance points they need to be recharged more 

than once. This feature is the major difference that distinguishes this problem from 

original FCLM. 

Kuby and Lim (2005) introduce flow refueling location models (FRLM), which are 

different from FCLM in terms of conditions which consider a flow refueled. This model 

only considers a flow refueled if an adequate number of stations are with proper space 

along the path of origin-destination (O-D pair) [35]. Upchurch et al. (2009) also work on 

the capacitated version of flow refueling location model [36]. Equations 2.1 to 2.4 show 

the formulation developed by Kuby and Lim (2005) [35]. 

 

 

  

 

 

Where: 

Parameters: 
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Variables: 

 

 

 

The objective function (2.1) tries to maximize the refueled flow. Constraints (2.2) ensure 

that is equal to 1 only if there exists at least one combination of facilities which all of 

the facilities in that combination are opened and they are capable of refueling that 

specific flow. Constraints (2.3) ensure that all of the facilities need to be opened in order 

that is equal to 1 in constraint (2.2). Constraints (2.4) ensure that the number of built 

facilities is equal to . Constraints (2.5) ensure variables are binary. 

In order to calculate  and an algorithm was developed in Kuby and Lim (2005) 

[35]. This algorithm first generates shortest path for all O-D pairs and a list of all possible 
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combinations h of nodes on the path. After that, facility combinations which cannot 

refuel a vehicle for the given range on the path are removed. In the last step, algorithm 

also removes the feasible combinations which are superset of other combinations.  

As this algorithm is computationally burdensome due to enumerating all possible 

combinations, Lim and Kuby (2010) used heuristic algorithms such as greedy-adding, 

greedy adding with substitution, and genetic algorithm to solve this problem again [37]. 

Kuby and Lim (2007) also extend FRLM by comparing two methods of adding candidate 

sites along arcs and including them as candidate locations for charging facilities in 

addition to the existing nodes [38].  

Similarly to Berman et al. (1995), Kim and Kuby (2012) introduce deviation flow 

refueling location model (DFRLM) ([32] and [39]). This model relaxes the assumption 

that flows only can be refueled if the stations are located in the shortest path. The 

formulation used is similar to Kuby and Lim (2005) and needs to generate all feasible 

combinations of refueling [35]. 

Kim and Kuby (2013) develop a greedy based heuristic algorithm to solve (DFRLM) 

[40]. The advantage of this algorithm is that there is no need to generate all feasible 

combinations of refueling plus it does not need to generate all the deviation paths; 

however reaching to the optimal or near optimal solution is not guaranteed. 

Although many aspects of developing layout for installing charging stations for EVs have 

been addressed so far, many others still remain such as considering uncertainty in the 

demand and decision about the combination of chargers; in addition some of the methods 
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used are not efficient in terms of need for preprocessing the input data. The aim of this 

thesis is to fill some of the gaps mentioned above which exist in the literature.  
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Chapter 3: Methodology 
 

3.1. Locating charging station for electric vehicles in rural networks   

Compared to conventional vehicles, the main challenge of EV users while travelling long 

distances is their limited range. In relatively long trips, we do not need to consider type of 

chargers since DC fast charging stations and battery sweeping stations seems like the 

only plausible facilities to recharge EVs. The goal of this section is to develop a model 

for locating charging stations along the paths that connect origins and destinations (O-D 

pairs) for example cities with long distance from each other with the objective of 

maximizing the total flow recharged with the restriction on the number of facilities that 

can be opened. This is an alternate formulation for the problem described by Kuby and 

Lim (2005) [35]. 

 Similarly to Kuby and Lim (2005) the assumption here is that if there is no facility at 

origin the vehicle starts its origin with half of its battery full and if there is no charging 

stations at its destination, then at least half of its battery must bebe full at the end of trip 

[35]. These assumptions insures that roundtrip could be repeated again and again without 

EV running out of fuel. Another assumption here is that the battery consumption is 

constant and it is proportional to distance traveled by EVs; also nodes are the only 

candidate locations for facilities. Also this model does not account for the effect of 

placing charging facilities on the demand. 

To emphasize the importance of location decision for charging facilities along the rural 

network, an example is provided in figure 8 for a vehicle with range of 8. Table 3 shows 
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the optimal location of charging facilities assuming that only O-D pair A-B has flow 

demand and A-1-2-3-B is the shortest path from A to B. As it is shown, depending on the 

range of the vehicle and the length of the section, optimal location of facilities changes in 

different cases. For larger networks with multiple origins and destinations we need to 

develop an optimization model for placing the stations. 

 

 

Figure 8 Example of Flow Refueling Location Model 

 

 

 

Table 3 Optimal Location of Facilities 
 

Case 

Number 

Length of 

section A-1 

Length of 

section 1-2 

Length of 

section 2-3 

Length of 

section 3-B 

Combination 

of charging 

facilities 

1 4 6 6 4 1,2,3 

2 4 3 4 2 1,3 

3 2 2 2 2 2 

4 4 9 4 2 Not possible 
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3.1.1 Locating charging station along the shortest path  

The formulation proposed for this the problem is as follows: 

 

   

   

 

 

  

 

 

Where: 

 

 

 

 

 

 

 

 

 

  

 

 

 

Variables: 
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The objective function (3.1) is to maximize the flow that can be recharged with the 

opened facilities. Constraints (3.2) indicate that if there isn’t any charging stations at 

origin EVs will start their path with half of their battery full. As it is shown in figure 9, 

each path from each origin to each destination is divided into segments where each 

segment connects one candidate facility to another one.  

 

Figure 9 Formulation Description 

 

For example in figure 9, k-k+1 is one of the segments in a path that connect origin A to 

destination B. is the initial stage of battery at the beginning of segment i and based on 

the assumption is half of the range of the vehicle for the first segment of all the O-D 

pairs. Constraints (3.3) show for each flow (q) and at each segment ( ) the initial 

stage of battery (  ) plus the amount of battery recharged in the station 

 minus the length of trip  is equal to the initial stage of battery in 

the next segment (  ). Constraints (3.4) indicate if  is positive along the path for 

all segments existing in the path and stage of charge is at least equal to half of the battery 
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size at the destination  then the flow can be recharged along the whole path without 

running out of battery. Parameter M in constraints (3.4) can be any number larger than 

the longest path among the overall shortest paths. Constraints (3.5) show the maximum 

capacity of battery and constraints (3.6) make sure that the solutions are integral. 

Constraints (3.7) enforce the maximum number of opened facilities to be p. Term 

  in the constraints (3.3) which is multiplication of a binary variable and 

a continuous variable makes constraint (3.3) nonlinear. To linearize constraint (2) a new 

variable  which is equal to multiplication of and is introduced in the model and 

constraints (3.8) and (3.9) are added to the formulation. It should be noted that M should 

be a number equal or less than minimum of   overall  and  . Here, the 

longest path among shortest paths could be used to make sure this criterion is satisfied. 

 

 

 

3.1.2 Locating charging stations along the path allowing for deviation  

The model described in the previous section assumes that people will use the shortest 

path going from their origin to their destination; however this is not probably the case for 

EV users as they are willing to deviate from the shortest path in order to be able to 

recharge their battery. For example in figure 8, we want to recharge demands going from 

A to B and A to C with maximum number of facility equal to 3 with the assumption that 

length of sections is equal to 4, 6, 6, 4, 4,7, 6, 2, and 2 for sections A-1, 1-2, 2-3,3-B,A-

4,4-5,5-C,C-6,and 6-7. The shortest path going from A to B is A-1-2-3-B and the only 
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path from A to C is A-4-5-C. There is no combination of facilities that can recharge both 

flows along their shortest path with only opening 3 facilities; however if demands choose 

to go to B from the path A-4-5-6-C-7-B then we can recharge both flows with opening 

just 3 facilities. The first model is adjusted and an index n is added to account for the 

paths other than the shortest path. This means that flows should not necessary traverse the 

shortest path and they can use a path that has deviation from the shortest path. Generating 

all the paths that connect O-D pairs is not practical and also not very realistic since 

people are not going to take routes which deviate significantly from the shortest path 

(they either are going to use an alternative vehicle, mode or cancel their trips); hence here 

the maximum allowable deviation is limited to a number. The formulation is revised as 

follows: 

 

 

 

 

 

 

 

Where added parameters and variables are: 

Parameters: 
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Variables: 

 

  

 

   

All the constraints are similar to previous model except that constraint (3.15) is added to 

make sure flows are not captured more than once. 

3.1.3. Maximizing Vehicle-Miles Traveled 

The introduced objective function (maximizing the flow demand) is more appropriate for 

incentivizing people to buy EVs with the assumption that people are willing to buy EVs 

if they can complete more trips [36]. However in some cases the goal is to reduce 

emission or consumed gasoline [36]. If this is the case it is better to maximize vehicle-

miles traveled instead of maximizing the flow recharged [36]. The following objective 

function (3.17) can be used for maximizing the vehicle-miles traveled. 

 

3.1.4. Decay Function 

To simulate the effect of deviation from the shortest path on the decision of people to 

whether or not make the trip, a decay function (3.18) similar to [39] is multiplied to the 

original objective function. Here we assume change in the flow is a linear function of 

deviation. 



 

 

 

 

 28 

 

 

Figure 10 shows change in the decay function value with respect to beta and the ratio 

between the length of deviation and shortest path. 

 

Figure 10 Change in Decay Function with Respect to Length of Deviation 

 

3.1.5. Improving the solution time 

There is no explicit way to describe convex hull for the NP-hard problems; however by 

using valid inequalities we can improve approximations of convex hull. The effect of two 

valid inequalities can be tested for this formulation. 

1) Demands cannot be recharged along the paths with links that are longer than the 

range of vehicles. 

2) The number of facilities in each path should be at least equal to the ceiling value 

of length of the path divided by the range in order to recharge that particular path 
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3.2 Locating charging stations for electric vehicles in urban networks 

In the model for the urban networks, we want to place charger types 2 and 3 in parking 

lots and parking spaces located in downtown of city. Due to uncertainty in demand 

forecasting explained in the introduction, we want to place these chargers at multiple 

stages (here two stages are used). Chargers need to cover at least a certain percentage of 

demand for each of the lots and type of chargers. We have capacity restriction on total 

number of chargers as well as each type of charger that could be placed in a parking lot 

(The restriction on total number of chargers is based on the size of each parking lot and it 

is different for each parking lot. The restriction for each type of charger is based on the 

negative effect of each type of charger on the electrical grid and it has the same value for 

each parking but different value for each type of charger). We assume that the daily 

demand for each type of charger at each parking lot follows a Poisson distribution and the 

mean value does not change during each year.  Also demands in one parking lot can get 

service from nearby charging facilities in other parking lots. It should be noted that if 

demand cannot be satisfied in its original destined parking lot a penalty will be included 

in the objective function. Finally, our objective is to minimize the penalty caused by 

getting service from other lots or in other words the deviation cost given that we have a 

fixed budget for placing charging stations. 

To account for uncertainty in the future demand we assume that at each stage of planning 

we have three possible scenarios for demand of each parking facility and type of charger. 

For each of the facilities the scenarios are dependent, meaning that all of facilities will 
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have either, low, medium, or high demand scenario at each stage. (This assumption is 

logical; however it’s not always true.) The decision tree is shown in figure11. 

 

Figure 11 Decision Tree 

Based on the problem description in the previous section, a formulation was developed 

for this problem as follow: 

Objective function 

Minimize 

     

  

  

  

Demand coverage 
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Budget constraints 

   

 

     

     

Capacity of each parking lot 

 

 

 

 

 

Other constraints 
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Parameters: 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables: 
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As explained before, the objective function tries to minimize the deviation of demands 

from their original destination for using the chargers. Constraints (3.20) to (3.23) ensure 

that we can cover  percentage of demand for chargers type 2 & 3 at each parking lot at 

each stage of planning (probability that numbers of chargers are more than the demand 

for them is at least percent). Assuming that demand at each parking facility has Poisson 

distribution and the demands are independent. We can linearize these constraints by 

writing the cumulative distribution and writing the inverse of the cumulative distribution. 

Constraint (3.26) is the budget constraint. Constraints (3.27) and (3.28) are for the 

capacity of each charging facility and constraints (3.29) and (3.30) are max number of 

each type of charger that can be installed in each facility. Constraints (3.31) and (3.32) 

indicate that we cannot remove the chargers that we already installed at the first stage. 

Constraints (3.33) and (3.34) ensure that the installation cost is included in the total cost. 

Constraints (3.35) and (3.36) ensure that if we put charging facilities in a parking lot, at 
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least mean demand for that facility is satisfied (It also prevents the solver from generating 

illogical solutions). Constraints (3.37) and (3.38) ensure that the solver gives us integral 

solutions. 

 

 



 

 

 

 

 35 

 

Chapter 4: Case Study 

4.1 Locating charging stations for electric vehicles in rural networks   

The proposed FRLM and DRFLM formulations  are tested on a network shown in figure 

12 which has been used in Berman and Simchi-Levi (1988), Hodgson (1990), and Kuby 

and Lim (2005 and 2007), Kim and Kuby (2012 and 2013) ([41],[29],[35],[38],[39], and 

[40]). The network has 25 nodes and 43 edges and the total number of O-D flows is 300. 

The flow demands between O-D pairs are randomly chosen from a number between 50 

and 500, and the total flow demand is 79980. Given that the links’ lengths are between 2 

to 9, the model is tested assuming 3 different ranges 4, 8, and 12 for vehicles.  All the 

models are coded and solved in Xpress IVE by the branch and bound method. 

 

Figure 12 Rural Network 
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4.1.1 Locating charging station along the shortest path 

First, the model is solved assuming the flows only use shortest path to go to their 

destinations. It should be noted that for some of the origin destination paths multiple 

shortest paths exist and if there are enough chargers along any of them then the flow is 

recharged. 

 Percent of flow recharged and running time are presented in table 4 for multiple shortest 

paths. As it is shown in table 4 and discussed before in Kuby and Lim (2005), the 

solution time increases by the increase in range [35]. This is intuitive since increase in 

range results in increase in the size of feasible region therefore the enumeration by branch 

and bound method increases and as a result the solution time increases.  

Another observation is that the solution time for each of the instances has a trend of 

increasing and then decreasing. The increase is due to the change in the feasible region as 

a result of increasing the maximum number of facilities that can be opened and the 

decrease that happens after that is due to decrease in gap between the first integral 

solution and the upper bound.  

With the assumption that electric vehicles have range of 12, opening 16 facilities is 

enough for recharging the total flow demand. However in the instances that the range of 

vehicles is 4 or 8 even opening all of the facilities cannot recharge all the flows. This is 

because some of the links in the network have lengths longer than 4 and 8. This 

emphasizes the importance of considering other candidate locations and not only 

conjunction nodes along the links similar to Kuby and Lim’s work (2007) [38].  
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Tables 5 and 6 show the sequence of opening facilities for electric vehicles with the range 

equal to 4. For instance, if the maximum number of facility that can be opened is 3, 

opening the candidate facilities in node 17, 18, and 20 will give us the optimal solution 

which means this combination can recharge maximum flow demand. The result shows 

that greedy algorithm will not give us an optimal solution since the optimal place of 

facilities change as the maximum number of facilities that can be opened increases. For 

example for p equal to 1 placing charging facility in node 21 will give us the optimal 

solution; however if we increase p to 2, node 21 is not in the optimal solution anymore.  

Tables 7 and 8 show the optimal sequence of opening facilities for vehicles with the 

range of 8. Tables 9 and 10 show this number for vehicles with the range of 12. 

Comparing tables 5, 7, and 9 together and tables 6, 8, and 10 together it can be concluded 

the optimal place of charging facilities is highly dependent on the assumption about the 

range of vehicles. 
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Table 4 Percent of Flows Recharged and Solution Time for Multiple Shortest Paths 
 

Maximum Number of Facilities 

 P=1 P=2 P=3 P=4 P=5 P=6 

Percent of Flows Recharged  

Range =4 0.63 1.14 2.08 3.93 6.01 8.32 

Range =8 2.64 7.27 12.67 18.78 25.19 32.43 

Range =12 4.96 12.63 21.74 32.51 43.53 53.13 

Solution Time (S) 

Range =4 0.2 0.5 1.7 3.9 3.0 3.7 

Range =8 0.4 4.7 19.0 14.2 19.6 17.4 

Range =12 0.5 41 97.1 61.6 161.0 23.9 

Maximum Number of Facilities 

 P=7 P=8 P=9 P=10 P=11 P=12 

Percent of Flows Recharged 

Range =4 11.03 13.68 16.60 18.99 21.31 23.49 

Range =8 37.97 47.34 55.73 63.43 70.47 77.95 

Range =12 62.57 70.41 74.96 82.08 88.36 93.05 

Solution Time (S) 

Range =4 3.7 3.3 2.8 3.6 2.9 2 

Range =8 23.5 18.9 10.2 7.6 6.9 6.6 

Range =12 14.9 8.4 30.9 8.1 3.1 2.2 

Maximum Number of Facilities 

 P=13 P=14 P=15 P=16 P=17 P=18 

Percent of Flows Recharged 

Range =4 25.33 27.51 27.51 28.03 28.91 29.99 

Range =8 84.90 86.12 92.87 94.08 94.72 95.94 

Range =12 95.81 98.26 99.48 100 100 100 

Solution Time (S) 

Range =4 2.3 0.3 0.6 0.9 0.7 0.6 

Range =8 0.8 4 0.9 1.0 1.1 0.4 

Range =12 2.0 0.8 0.5 0.3 - - 

Maximum Number of Facilities 

 P=19 P=20 P=21 P=22 P=23 P=24 

Percent of Flows Recharged 

Range =4 31.0 31.58 31.58 32.02 32.60 32.60 

Range =8 96.51 96.51 96.51 96.51 96.51 96.51 

Range =12 100 100 100 100 100 100 

Solution Time (S) 

Range =4 0.2 0.2 0.3 0.4 0.1 - 

Range =8 0.1 - - - - - 

Range =12 - - - - - - 
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Table 5 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=4 

for 1-12 Maximum Facilities  

 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 1 0 0 0 0 0 0 1 1 

12 0 0 0 0 1 0 0 0 0 1 0 0 

13 0 0 0 1 0 0 0 0 0 0 1 1 

14 0 0 0 0 0 1 1 1 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 1 1 1 1 1 1 1 1 

17 0 0 1 0 1 1 1 1 1 1 1 1 

18 0 1 1 0 1 1 1 1 1 1 1 1 

19 0 0 0 1 0 0 1 1 1 1 1 1 

20 0 1 1 1 1 1 0 1 1 1 1 1 

21 1 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 1 1 1 1 1 1 1 

23 0 0 0 0 0 0 1 1 1 1 1 1 

24 0 0 0 0 0 0 0 0 1 1 1 1 

25 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 6 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=4 

for 13-25 Maximum Facilities  
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 0 0 0 1 1 1 1 1 1 - 

2 0 0 1 0 1 1 1 1 1 1 1 - 

3 0 0 0 1 1 1 1 1 1 1 1 - 

4 0 0 0 1 1 1 1 1 1 1 1 - 

5 0 0 0 0 0 0 1 1 1 1 1 - 

6 0 0 0 0 0 0 0 0 1 1 1 - 

7 0 0 0 0 0 0 0 0 0 1 1 - 

8 0 0 0 0 0 0 0 0 0 1 1 - 

9 0 0 0 0 0 0 0 1 1 0 1 - 

10 0 1 1 1 1 1 1 1 1 1 1 - 

11 1 1 1 1 1 1 1 1 1 1 1 - 

12 1 1 1 1 1 1 1 1 1 1 1 - 

13 1 1 1 1 1 1 1 1 1 1 1 - 

14 1 1 1 1 1 1 1 1 1 1 1 - 

15 1 1 1 1 1 1 1 1 1 1 1 - 

16 1 1 1 1 1 1 1 1 1 1 1 - 

17 1 1 1 1 1 1 1 1 1 1 1 - 

18 1 1 1 1 1 1 1 1 1 1 1 - 

19 1 1 1 1 1 1 1 1 1 1 1 - 

20 1 1 1 1 1 1 1 1 1 1 1 - 

21 0 0 0 0 0 0 0 0 0 0 0 - 

22 1 1 1 1 1 1 1 1 1 1 1 - 

23 1 1 1 1 1 1 1 1 1 1 1 - 

24 1 1 1 1 1 1 1 1 1 1 1 - 

25 0 0 0 0 0 0 0 0 0 0 0 - 
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Table 7 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=8 

for 1-12 Maximum Facilities  
 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 1 1 1 1 1 1 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 1 1 1 

8 0 0 0 0 0 0 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 1 1 1 1 1 1 

11 0 0 0 0 0 0 0 0 0 0 0 1 

12 0 0 0 0 0 1 0 0 1 1 1 1 

13 0 0 0 0 1 1 1 1 1 1 1 1 

14 1 0 0 1 1 1 0 1 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 1 1 1 1 1 1 1 1 1 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 1 1 1 1 1 1 1 1 1 1 1 

21 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 1 0 0 0 1 0 0 0 0 0 

23 0 0 0 1 1 1 0 1 1 1 1 1 

24 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 8 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=8 

for 13-25 Maximum Facilities  
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 0 0 1 1 1 - - - - - 

2 1 1 1 1 1 1 1 - - - - - 

3 0 0 0 0 0 0 0 - - - - - 

4 1 1 1 1 1 1 1 - - - - - 

5 0 0 0 0 1 1 1 - - - - - 

6 0 0 0 0 0 0 1 - - - - - 

7 1 1 1 1 1 1 1 - - - - - 

8 1 1 1 1 1 1 1 - - - - - 

9 1 1 1 1 1 1 1 - - - - - 

10 1 1 1 1 1 1 1 - - - - - 

11 1 1 1 1 1 1 1 - - - - - 

12 1 0 1 1 1 0 0 - - - - - 

13 1 1 1 1 1 1 1 - - - - - 

14 1 1 1 1 1 1 1 - - - - - 

15 0 1 0 0 0 1 1 - - - - - 

16 0 1 0 1 0 1 1 - - - - - 

17 1 1 1 1 1 1 1 - - - - - 

18 0 0 0 0 0 0 0 - - - - - 

19 0 0 0 0 0 0 0 - - - - - 

20 1 1 1 1 1 1 1 - - - - - 

21 0 0 0 0 0 0 0 - - - - - 

22 0 0 1 0 1 1 0 - - - - - 

23 1 1 0 1 0 0 1 - - - - - 

24 0 0 1 1 1 1 1 - - - - - 

25 0 0 1 1 1 1 1 - - - - - 
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Table 9 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=12 

for 1-12 Maximum Facilities  
 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 1 1 1 

3 0 0 0 0 0 0 0 0 1 1 0 0 

4 1 0 0 0 0 1 1 1 1 0 1 1 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 1 1 1 1 0 1 

8 0 1 1 1 0 1 0 0 0 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 1 0 1 1 1 1 0 0 

11 0 0 1 1 0 1 0 0 0 0 1 0 

12 0 0 0 0 0 0 1 1 1 1 0 1 

13 0 0 0 0 1 0 1 1 1 1 1 1 

14 0 0 1 1 0 1 0 0 0 0 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 1 1 1 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 1 0 1 0 0 0 0 0 0 

20 0 0 0 0 1 0 1 1 1 1 1 1 

21 0 1 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 1 0 1 1 1 1 0 0 

23 0 0 0 0 0 1 0 0 0 0 1 1 

24 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 1 1 
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Table 10 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=12 

for 13-25 Maximum Facilities  
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 0 0 - - - - - - - - 

2 1 1 1 1 - - - - - - - - 

3 0 0 0 0 - - - - - - - - 

4 1 1 1 1 - - - - - - - - 

5 0 1 1 1 - - - - - - - - 

6 0 0 0 0 - - - - - - - - 

7 1 1 1 1 - - - - - - - - 

8 1 1 1 1 - - - - - - - - 

9 1 1 1 1 - - - - - - - - 

10 0 0 0 0 - - - - - - - - 

11 1 1 1 1 - - - - - - - - 

12 1 1 1 1 - - - - - - - - 

13 1 1 1 1 - - - - - - - - 

14 1 1 1 1 - - - - - - - - 

15 0 0 1 1 - - - - - - - - 

16 0 0 0 0 - - - - - - - - 

17 1 1 1 1 - - - - - - - - 

18 0 0 0 0 - - - - - - - - 

19 0 0 0 0 - - - - - - - - 

20 1 1 1 1 - - - - - - - - 

21 0 0 0 0 - - - - - - - - 

22 0 0 0 0 - - - - - - - - 

23 1 1 1 1 - - - - - - - - 

24 0 0 0 1 - - - - - - - - 

25 1 1 1 1 - - - - - - - - 
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4.1.2 Locating charging stations allowing for deviation 

As discussed in chapter 3, accounting for paths other than the shortest path is a 

reasonable assumption when we want to recharge flows. In this section, the optimal 

location of charging facilities with this assumption is presented. 

For the generation of kth shortest paths Yen’s algorithm which is a loopless algorithm for 

the kth shortest path is used [42]. The output of this algorithm is used as input for the 

proposed optimization model. The kth shortest path algorithm has the ability to give all 

the existing paths from an origin to a destination; however putting a maximum deviation 

for generating the paths is more realistic and more consistent to the travelers’ behavior. 

Travelers probably are not going to use paths that make their trips significantly longer. 

Here, the model is tested for two maximum deviations of 10% and 25%. Tables 11 and 

12 show the solution times and percent recharged for the maximum allowable deviation 

of 10% and 25 % respectively. 

Comparing tables 4, 11, and 12 shows that increasing the maximum deviation path has 

significant effect on solution times which is due to increase in number of feasible paths 

which connect O-D pairs.  

The results indicate that although for the allowable maximum deviation of 10 percent and 

vehicle range of 4 and 8 all the flows cannot be recharged, the percent of rechargedflows 

increases from 32.6 to 34.2 for range of 4 and from 96.5 to 99.5 for range of 8. In terms 

of percent of flow recharged for maximum allowable deviation of 25 percent unlike the 

case in which only shortest path were accounted, we can see that allowing for maximum 



 

 

 

 

 46 

 

deviation of 25 percent can recharge all the O-D pairs flows for instance with range equal 

to 8. For range equal to 4 the percent of flows recharged increases from 32.6 to 38.31. 

The maximum gap between the case with deviation and without deviation is 16 percent 

which indicates the importance of considering deviation from the shortest path in the 

formulation. However, the minimum number of facilities needed for recharging all the 

flows for vehicles with range of 12 remains 16 and considering deviation does not have 

any effect on reducing the total number of facilities for recharging all the flows for this 

particular network. 
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 Table 11 Percent of Flows Recharged and Solution Time for 10 Percent Maximum 

Deviation 
 

Maximum Number of Facilities 

 P=1 P=2 P=3 P=4 P=5 P=6 

Percent of Flows Recharged  

Range =4 0.63 1.14 2.08 3.93 6.01 8.32 

Range =8 2.64 7.27 12.67 18.78 25.19 32.43 

Range =12 4.96 13.34 22.80 34.40 46.05 57.12 

Solution Time (S) 

Range =4 0.2 0.7 5.2 6.3 9.6 6.8 

Range =8 3.1 7.1 14.5 18.6 22.2 25.8 

Range =12 2.8 122.9 677.1 17.5 21.1 18.8 

Maximum Number of Facilities 

 P=7 P=8 P=9 P=10 P=11 P=12 

Percent of Flows Recharged 

Range =4 11.03 13.68 16.60 18.99 21.78 23.96 

Range =8 38.83 48.20 56.58 64.28 72.23 80.34 

Range =12 65.06 71.27 77.59 83.38 90.02 93.95 

Solution Time (S) 

Range =4 6.8 6.3 5.6 3.8 3.3 4.2 

Range =8 22.8 20.2 25.4 21.6 10.5 3.4 

Range =12 19.0 21.4 13.4 11.9 4.4 2.1 

Maximum Number of Facilities 

 P=13 P=14 P=15 P=16 P=17 P=18 

Percent of Flows Recharged 

Range =4 26.39 28.57 28.57 29.09 29.97 31.05 

Range =8 86.44 87.92 94.41 95.88 97.77 98.98 

Range =12 96.41 98.66 99.48 100 100 100 

Solution Time (S) 

Range =4 3.6 0.4 1.4 1.4 1.1 1.2 

Range =8 1.3 4.5 1.0 1.3 1.4 0.4 

Range =12 1.5 0.9 0.6 0.2 - - 

Maximum Number of Facilities 

 P=19 P=20 P=21 P=22 P=23 P=24 

Percent of Flows Recharged 

Range =4 32.06 33.22 33.22 33.60 34.24 34.24 

Range =8 99.55 99.55 99.55 99.55 99.55 99.55 

Range =12 100 100 100 100 100 100 

Solution Time (S) 

Range =4 0.8 0.3 0.6 0.6 0.3 - 

Range =8 0.2 - - - - - 

Range =12 - - - - - - 
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Table 12 Percent of Flows Recharged and Solution Time for 25 Percent Maximum 

Deviation 
 

Maximum Number of Facilities 

 P=1 P=2 P=3 P=4 P=5 P=6 

Percent of Flows Recharged 

Range =4 0.63 1.14 2.08 3.93 6.36 8.32 

Range =8 2.64 7.27 12.90 20.22 27.07 35.28 

Range =12 4.96 13.87 26.79 40.94 56.46 69.30 

Solution Time (S) 

Range =4 4.6 25.9 35.7 40.8 36 47.5 

Range =8 5.8 34.9 74.3 121.4 229.2 316 

Range =12 41.1 101.6 125.7 200.1 236.8 200.9 

Maximum Number of Facilities 

 P=7 P=8 P=9 P=10 P=11 P=12 

Percent of Flows Recharged 

Range =4 11.07 13.78 16.73 20.59 24.56 27.12 

Range =8 46.89 56.24 63.94 71.34 78.61 83.91 

Range =12 76.86 82.63 87.62 90.93 95.31 96.88 

Solution Time (S) 

Range =4 42.2 46.5 54.5 39.8 36.7 36.3 

Range =8 330.3 346.9 375.5 244 274.7 155.9 

Range =12 235.1 302.2 375.0 393.5 231.4 144.7 

Maximum Number of Facilities 

 P=13 P=14 P=15 P=16 P=17 P=18 

Percent of Flows Recharged 

Range =4 29.74 32.29 32.29 32.81 33.69 34.83 

Range =8 90.13 93.15 98.09 98.46 99.07 99.63 

Range =12 98.42 99.26 99.63 100 100 100 

Solution Time (S) 

Range =4 30.6 23.9 25.2 26.6 24.9 24.2 

Range =8 110.3 135.4 24.8 27.6 26.5 31.1 

Range =12 87.9 61.7 70.0 41.3 - - 

Maximum Number of Facilities 

 P=19 P=20 P=21 P=22 P=23 P=24 

Percent of Flows Recharged 

Range =4 36.09 37.29 37.29 37.67 38.31 38.31 

Range =8 100 100 100 100 100 100 

Range =12 100 100 100 100 100 100 

Solution Time (S) 

Range =4 22.7 20.6 21.2 21.1 20.4 19.9 

Range =8 25.9 - - - - - 

Range =12 - - - - - - 
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Tables 13 and 14 represent the sequence of opening the facilities allowing for maximum 

25 % deviation from shortest path for vehicles with range of 12. Comparing tables 13, 9, 

14, and 10 shows the difference in chosen facilities when allowing for deviation. An 

additional observation is that multiple optimal solutions can exist in some of the cases. 

For instance for the case that we want to recharge all the demands (maximum opened 

facility of 16) the model which only uses shortest path suggests that a facility should be 

opened in node 23; however the model which allows for  deviation suggest that instead of 

node 23, a facility at node 22 should be opened. 

4.1.5 Optimal location of charging facilities with the objective of maximizing 

vehicle-miles traveled  

This section represents the result of applying the model on the network in figure 12 with 

the vehicle-miles traveled as the objective function. Table 15 shows the solution time and 

percent of total vehicle-miles recharged for this objective function. In most cases the 

solution time is higher for the objective of vehicle-miles traveled compared to recharged 

demand especially for the case that ranges of vehicles are 8 or 12. 
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Table 13 Sequence of Opening the Facilities for 25 Percent Maximum Deviation for 

Range=12 for 1-12 Maximum Facilities  
 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 1 

3 0 0 0 0 0 0 1 1 1 0 0 0 

4 1 1 0 1 0 1 0 0 0 1 1 1 

5 0 0 0 0 0 0 1 1 1 1 1 1 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 1 0 0 0 0 0 0 0 

8 0 0 1 1 0 1 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 1 1 1 

10 0 0 0 0 1 1 1 1 1 0 0 0 

11 0 1 1 1 1 1 1 1 1 1 1 1 

12 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 1 1 1 

14 0 0 0 0 0 0 0 0 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 1 1 0 1 0 1 1 0 0 0 

20 0 0 0 0 1 0 1 1 0 1 1 1 

21 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 1 1 1 1 0 0 0 0 

23 0 0 0 0 0 0 0 0 1 1 1 1 

24 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 1 1 1 1 
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Table 14 Sequence of Opening the Facilities for 25 Percent Maximum Deviation for 

Range=12 for 13-24 Maximum Facilities 
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 0 0 - - - - - - - - 

2 1 1 1 1 - - - - - - - - 

3 1 1 1 0 - - - - - - - - 

4 0 0 0 1 - - - - - - - - 

5 1 1 1 1 - - - - - - - - 

6 0 0 0 0 - - - - - - - - 

7 1 1 1 1 - - - - - - - - 

8 1 1 1 1 - - - - - - - - 

9 0 0 1 1 - - - - - - - - 

10 1 1 0 0 - - - - - - - - 

11 1 1 1 1 - - - - - - - - 

12 0 0 1 1 - - - - - - - - 

13 0 0 1 1 - - - - - - - - 

14 1 0 1 1 - - - - - - - - 

15 0 0 0 1 - - - - - - - - 

16 1 1 0 0 - - - - - - - - 

17 0 0 1 1 - - - - - - - - 

18 1 1 0 0 - - - - - - - - 

19 1 1 0 0 - - - - - - - - 

20 0 0 1 1 - - - - - - - - 

21 0 1 0 0 - - - - - - - - 

22 0 1 1 1 - - - - - - - - 

23 1 0 0 0 - - - - - - - - 

24 0 1 1 1 - - - - - - - - 

25 1 1 1 1 - - - - - - - - 
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Table 15 Percent of Total Vehicle Miles Traveled and Solution Time for Multiple 

Shortest Paths 
 

Maximum Number of Facilities 

 P=1 P=2 P=3 P=4 P=5 P=6 

Percent of Total VMT 

Range =4 0.11 0.32 0.80 1.96 3.03 4.85 

Range =8 1.04 3.51 8.30 13.07 18.01 25.22 

Range =12 2.31 9.95 17.67 27.46 38.51 48.38 

Solution Time (S) 

Range =4 0.2 0.3 2 3.2 3.6 4.3 

Range =8 0.8 9.2 11.5 51.7 19.5 42.6 

Range =12 1.2 12.8 872.3 36.3 24.2 66.7 

Maximum Number of Facilities 

 P=7 P=8 P=9 P=10 P=11 P=12 

Percent of Total VMT 

Range =4 7.37 10.04 11.60 13.12 14.45 15.74 

Range =8 32.29 40.58 48.35 55.69 63.40 70.83 

Range =12 57.03 65.10 73.05 82.12 90.64 94.13 

Solution Time (S) 

Range =4 2.8 2.1 2 2.4 1.2 0.7 

Range =8 44.8 27.5 35.5 15.7 17 9.9 

Range =12 20.5 345.4 21.1 11.1 5.8 2.4 

Maximum Number of Facilities 

 P=13 P=14 P=15 P=16 P=17 P=18 

Percent of Total VMT 

Range =4 17.04 18.34 18.34 18.48 18.81 19.21 

Range =8 78.56 85.62 93.35 94.45 94.82 95.87 

Range =12 96.23 98.60 99.70 100 100 100 

Solution Time (S) 

Range =4 0.5 0.3 0.6 0.7 0.6 0.7 

Range =8 6.8 7.7 0.5 1.1 0.9 0.4 

Range =12 2.6 1.2 0.5 0.1 - - 

Maximum Number of Facilities 

 P=19 P=20 P=21 P=22 P=23 P=24 

Percent of Total VMT 

Range =4 19.61 19.88 19.88 19.96 20.18 20.18 

Range =8 96.24 96.24 96.24 96.24 96.24 96.24 

Range =12 100 100 100 100 100 100 

Solution Time (S) 

Range =4 0.2 0.2 0.2 0.3 0.1 - 

Range =8 0.1 - - - - - 

Range =12 - - - - - - 
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Tables 16, 17, 18, 19, 20, and 21 show the sequence of opening the facilities for the 

model which tries to maximize the vehicle miles traveled. Comparing tables 4 and 15, 5 

and 16, 6 and 17, 7 and 18, 8 and 19, 9 and 20, and 10 and 21 shows that the decision of 

opening the facilities as well as the outcome of the project is dependent on the objective 

function we choose. For instance with the assumption that range of vehicles is 12 and the 

maximum number of facilities that can be opened is 8, the optimal solution can cover 

70.41 percent of total flow whereas it can only cover 65.10 percent of total vehicle miles. 

In terms of facilities that should be opened and are different for the two objectives, 

facilities 7, 10, 12 and 22 should be opened to maximize the total flows recharged, but in 

maximizing the vehicle miles traveled facilities 8, 11, 23, and 24 should be opened.  
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Table 16 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=4 

for 1-12 Maximum Facilities  (Maximizing Total VMT) 
 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 1 1 0 0 0 0 0 1 1 

12 0 0 0 0 0 0 0 0 0 1 0 0 

13 0 0 0 1 1 0 0 0 0 0 1 1 

14 0 1 1 0 0 1 1 1 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 1 1 1 1 1 1 1 

17 0 0 0 0 0 1 1 1 1 1 1 1 

18 0 0 0 0 1 1 1 0 1 1 1 1 

19 0 0 0 1 1 0 0 1 1 1 1 1 

20 0 0 0 1 1 1 1 1 1 1 1 1 

21 1 0 0 0 0 0 0 0 0 0 0 0 

22 0 1 1 0 0 1 1 1 1 1 1 1 

23 0 0 1 0 0 0 1 1 1 1 1 1 

24 0 0 0 0 0 0 0 1 1 1 1 1 

25 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 17 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=4 

for 13-25 Maximum Facilities (Maximizing Total VMT) 
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 1 0 0 1 1 1 1 1 1 - 

2 0 0 0 0 0 1 1 1 1 1 1 - 

3 0 0 0 1 1 1 1 1 1 1 1 - 

4 0 0 0 1 1 1 1 1 1 1 1 - 

5 0 0 0 0 1 0 1 1 1 1 1 - 

6 0 0 0 0 0 0 0 0 1 1 1 - 

7 0 0 0 0 0 0 0 0 0 1 1 - 

8 0 0 0 0 0 0 0 0 0 0 1 - 

9 0 0 0 0 0 0 0 1 1 1 1 - 

10 0 1 1 1 1 1 1 1 1 1 1 - 

11 1 1 1 1 1 1 1 1 1 1 1 - 

12 1 1 1 1 1 1 1 1 1 1 1 - 

13 1 1 1 1 1 1 1 1 1 1 1 - 

14 1 1 1 1 1 1 1 1 1 1 1 - 

15 1 1 1 1 1 1 1 1 1 1 1 - 

16 1 1 1 1 1 1 1 1 1 1 1 - 

17 1 1 1 1 1 1 1 1 1 1 1 - 

18 1 1 1 1 1 1 1 1 1 1 1 - 

19 1 1 1 1 1 1 1 1 1 1 1 - 

20 1 1 1 1 1 1 1 1 1 1 1 - 

21 0 0 0 0 0 0 0 0 0 0 0 - 

22 1 1 1 1 1 1 1 1 1 1 1 - 

23 1 1 1 1 1 1 1 1 1 1 1 - 

24 1 1 1 1 1 1 1 1 1 1 1 - 

25 0 0 0 0 0 0 0 0 0 0 0 - 
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Table 18 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=8 

for 1-12 Maximum Facilities (Maximizing Total VMT) 
 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 1 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 1 1 1 1 1 1 1 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 1 0 1 

8 0 0 0 0 0 1 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 1 1 1 1 1 1 1 

11 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 1 0 0 1 0 1 1 1 1 

13 0 0 0 1 1 1 1 1 1 1 1 1 

14 1 0 0 1 1 1 1 1 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 1 1 0 1 0 0 1 1 1 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 1 1 0 1 0 0 1 1 1 1 1 

21 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 1 0 0 0 0 0 0 0 0 0 

23 0 0 0 1 1 1 1 1 1 1 1 1 

24 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 57 

 

Table 19 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=8 

for 13-25 Maximum Facilities  (Maximizing Total VMT) 

 
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 0 0 0 1 1 - - - - - 

2 1 1 1 1 1 0 0 - - - - - 

3 0 0 0 0 0 1 1 - - - - - 

4 1 1 1 1 1 1 1 - - - - - 

5 0 0 0 0 1 1 1 - - - - - 

6 0 0 0 0 0 0 1 - - - - - 

7 1 1 1 1 1 1 1 - - - - - 

8 1 1 1 1 1 1 1 - - - - - 

9 1 1 1 1 1 1 1 - - - - - 

10 1 1 1 1 1 1 1 - - - - - 

11 1 0 1 1 1 1 1 - - - - - 

12 1 1 1 1 1 0 0 - - - - - 

13 1 1 1 1 1 1 1 - - - - - 

14 1 1 1 1 1 1 1 - - - - - 

15 0 0 0 1 0 1 1 - - - - - 

16 0 0 0 0 1 1 1 - - - - - 

17 1 1 1 1 1 1 1 - - - - - 

18 0 0 0 0 0 0 0 - - - - - 

19 0 0 0 0 0 0 0 - - - - - 

20 1 1 1 1 1 1 1 - - - - - 

21 0 0 0 0 0 0 0 - - - - - 

22 0 0 0 1 1 0 1 - - - - - 

23 1 1 1 0 0 1 0 - - - - - 

24 0 1 1 1 1 1 1 - - - - - 

25 0 1 1 1 1 1 1 - - - - - 
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Table 20 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=12 

for 1-12 Maximum Facilities (Maximizing Total VMT) 
 

Opened 
Facilities  

P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 1 1 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 1 1 1 1 1 1 1 

5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 1 1 0 0 0 0 0 0 1 

8 0 1 1 0 0 1 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 1 1 1 1 

10 0 0 0 1 1 0 0 0 0 0 0 0 

11 0 0 1 0 0 1 1 1 1 1 1 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 

13 0 0 0 0 1 0 0 1 0 1 1 1 

14 0 0 1 0 0 1 1 1 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 1 0 0 1 1 

18 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 1 1 0 1 0 0 0 

20 0 0 0 1 1 0 0 0 0 1 1 1 

21 0 1 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 1 1 0 0 0 0 0 0 0 

23 0 0 0 0 0 1 1 1 1 1 1 1 

24 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 1 1 1 1 1 1 
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Table 21 Sequence of Opening the Facilities for Multiple Shortest Paths for Range=12 

for 13-25 Maximum Facilities (Maximizing Total VMT) 
 

Opened 
Facilities  

P=13 P=14 P=15 P=16 P=17 P=18 P=19 P=20 P=21 P=22 P=23 P=24 

1 0 0 0 0 - - - - - - - - 

2 1 1 1 1 - - - - - - - - 

3 0 0 0 0 - - - - - - - - 

4 1 1 1 1 - - - - - - - - 

5 0 1 1 1 - - - - - - - - 

6 0 0 0 0 - - - - - - - - 

7 1 1 1 1 - - - - - - - - 

8 1 1 1 1 - - - - - - - - 

9 1 1 1 1 - - - - - - - - 

10 0 0 0 0 - - - - - - - - 

11 1 1 1 1 - - - - - - - - 

12 1 1 1 1 - - - - - - - - 

13 1 1 1 1 - - - - - - - - 

14 1 1 1 1 - - - - - - - - 

15 0 0 0 1 - - - - - - - - 

16 0 0 1 0 - - - - - - - - 

17 1 1 1 1 - - - - - - - - 

18 0 0 0 0 - - - - - - - - 

19 0 0 0 0 - - - - - - - - 

20 1 1 1 1 - - - - - - - - 

21 0 0 0 0 - - - - - - - - 

22 0 0 0 1 - - - - - - - - 

23 1 1 1 0 - - - - - - - - 

24 0 0 0 1 - - - - - - - - 

25 1 1 1 1 - - - - - - - - 

 

4.1.4 Optimal location of charging facilities considering the decay function in the 

objective 

The model is also tested with decay function for maximum deviation of 25 percent and 

the value of beta was set to 0.5. Table 22 shows the solution time and percent of flows 
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recharged considering a reduction in flow demand of O-D pairs if the flow is not using 

the shortest path. 
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Table 22 Percent of Flows Recharged and Solution Time for 25 Percent Maximum 

Deviation with Decay Function 
 

Maximum Number of Facilities 

 P=1 P=2 P=3 P=4 P=5 P=6 

Percent of Flows Recharged 

Range =4 0.63 1.14 2.08 3.93 6.31 8.32 

Range =8 2.64 7.27 12.84 19.47 25.91 34.04 

Range =12 4.96 13.29 25.74 38.99 54.23 66.20 

Solution Time (S) 

Range =4 4.5 25.3 33.1 46.1 40.9 45.2 

Range =8 32.5 51.3 95.1 149.7 253.9 390.5 

Range =12 42.8 113.3 141.2 206.3 224.1 247.1 

Maximum Number of Facilities 

 P=7 P=8 P=9 P=10 P=11 P=12 

Percent of Flows Recharged 

Range =4 11.03 13.72 16.60 19.94 23.68 26.31 

Range =8 45.30 54.38 62.28 69.98 77.27 82.90 

Range =12 73.50 79.56 84.92 88.98 93.88 95.95 

Solution Time (S) 

Range =4 48.6 45.2 50.3 40.9 34.7 32.2 

Range =8 512.6 360.2 458.8 247.5 184.3 121.4 

Range =12 285.6 331.6 310.6 407.6 105.2 92.1 

Maximum Number of Facilities 

 P=13 P=14 P=15 P=16 P=17 P=18 

Percent of Flows Recharged 

Range =4 28.92 31.47 31.47 31.99 32.87 33.95 

Range =8 89.48 91.72 97.45 97.93 98.70 99.26 

Range =12 97.64 98.99 99.51 100 100 100 

Solution Time (S) 

Range =4 31.6 23.1 24.4 24.6 23.6 24 

Range =8 98.1 93.9 48.6 43.7 44 43.6 

Range =12 79.3 57 57.4 48.1 - - 

Maximum Number of Facilities 

 P=19 P=20 P=21 P=22 P=23 P=24 

Percent of Flows Recharged 

Range =4 35.17 36.37 36.37 36.75 37.39 37.39 

Range =8 99.75 99.75 99.75 99.75 99.75 99.75 

Range =12 100 100 100 100 100 100 

Solution Time (S) 

Range =4 20.9 19.6 20.3 20.4 19 19 

Range =8 40 - - - - - 

Range =12 - - - - - - 
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4.1.3 Improving the solution time 

Table 23 shows the solution time and the percentage change in the solution time by 

adding valid inequalities to the constraints for the instance in which range is equal to 12 

and the maximum deviation is equal to 25 percent. As it is shown in the table, in all cases 

except 3 adding these inequalities decrease the solution time.  

Table 23 Solution Time and Percentage Change in Solution Time by Adding Valid 

Inequalities for 25 Percent Maximum Deviation 
 

Maximum Number of Facilities 

 P=1 P=2 P=3 P=4 P=5 P=6 

Solution Time (S) 

Range =12 35.2 115.0 123.0 179.3 251.4 138.0 

Percentage Change in Solution Time 

Range =12 14.4 -13.2 2.1 10.4 -6.2 31.3 

Maximum Number of Facilities 

 P=7 P=8 P=9 P=10 P=11 P=12 

Solution Time (S) 

Range =12 153.8 132.8 253 170.2 81.4 74.5 

Percentage Change in Solution Time 

Range =12 34.6 56.1 32.5 56.7 64.8 48.5 

Maximum Number of Facilities 

 P=13 P=14 P=15 P=16 P=17 P=18 

Solution Time (S) 

Range =12 67.2 60 51.2 43.7 - - 

Percentage Change in Solution Time 

Range =12 23.5 2.8 26.9 -5.8 - - 

Maximum Number of Facilities 

 P=19 P=20 P=21 P=22 P=23 P=24 

Solution Time (S) 

Range =12 - - - - - - 

Percentage Change in Solution Time 

Range =12 - - - - - - 
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4.2 Locating charging station for electric vehicles in urban networks   

To test the proposed formulation for urban networks, 100 random nodes from a network 

shown in figure 13 with 407 nodes and 1284 edges, were selected as candidate facilities 

and demand points (left figure). The red circles in the right figure show these nodes. Each 

of these parking facilities has a specific demand distribution for each type of chargers. 

(The assumption here is that the demand follows a Poisson distribution.) For first stage 

demand predictions, the expected values of demand (Poisson distribution parameters) are 

randomly generated in Microsoft Office Excel. They have values between 1 to 5 for 

charger type 2; and 1 to 3 for charger type 3 for medium demand. For the low and high 

demand, medium demands are increased and decreased by 25 percent and then these 

demands are adjusted to reflect the change in the demand for the second stage. Here, we 

assume that the maximum coverage length of trip (time) in network for charger type 3 is 

10 minutes. For charger type 2, this number is increased to 20 minutes meaning that the 

demand in a facility for charger type 2 can be charged only in other facilities within its 20 

minutes. The reason that coverage distance of two chargers is different is that these two 

chargers have relatively different charging time. For charger type 2 charging time is 

between 4 to 8 hours whereas this number is less than 1 hour for charger type 3, hence it 

is more probable that the maximum deviation that user of charger 3 are willing to make is 

far less than users of charger type 2. The penalty for deviation is assumed to be the 

product of value of time, planning horizon of the stages and the average number of 

vehicles that each of chargers will service on a daily basis. Value of time is assumed to be 

$22 per hour, the planning horizon for each of the stages is assumed to be 1 year (total of 
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two years for two stages), and the average daily number of vehicles that are serviced by 

charger type 2 is 2 and for charger type 3 is 12. (These numbers are calculated based on 

12 hour daily service time and the average charging time of 6 and 1 hour for charger type 

2 and 3 respectively). Installation cost is assumed to be $5,300 for type 2 charge and 

$9,900 for type 3 and installing each additional charger costs $3,200 for charger type 2 

and $28,400 for charger type 3. (These numbers are estimated based on table 1 and table 

2. However these numbers are not reliable and the true costs can be different than the 

assumed numbers.) Capacity of parking facilities for installing chargers are randomly 

generated in Microsoft Office Excel and have values between 20 to 36. Maximum 

number of chargers type 2 that can be placed in each charging facility is 18. This number 

is assumed to be 12 for charger type 3. In addition, the internal rate of return is assumed 

to be 5 percent. 

 

Figure 13 Urban Network 
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Tables 24, 25, 26, 27, 28, and 29 show the result of modeling for alphas of 10, 50, and 90  

(for example alpha 10 indicates that with probability of 0.1, number of chargers are more 

than the number of demands)  respectively and the indicated fixed budget. It should be 

mentioned solving for alpha equal of 90 percent is not very cost effective since this 

means with probability of 0.9 the demand will be less than the number of chargers 

installed, but here for the purpose of comparison the result for this value is also included. 

Overall, due to the structure of the objective function most of the chargers are placed in 

the first stage. The results also show that if the demand of first year is low we do not need 

to place any chargers at the beginning of second stage. This is because of the method 

used for generation of data from first year demand and the relationship between demand 

of first year and second year and can be changed with using different input data.  
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Table 24 Modeling Result (Number of Chargers and Objective Value) for Urban Network 

with Alpha Equal to 10 Percent 
 

alpha =10 percent 

Budget ($) 7.5*10^6 8.5 *10^6 9.5*10^6 10^7 

Solution Time 

(S) 
11466.9 2.8 0.7 1.3 

Deviation 

(Objective 

Function ($)) 

1.80477*10^8 7.69963*10^7 3.70948*10^7 2.27846*10^7 

Number of 

Charger type 2 

at stage 1 

304 397 410 408 

Number of 

Charger type 3 

at stage 1 

157 171 196 211 

Number of 

Charger type 2 

at stage 2 (L) 

304 397 410 408 

Number of 

Charger type 3 

at stage 2 (L) 

157 171 196 211 

Number of 

Charger type 2 

at stage 2 (M) 

342 447 461 459 

Number of 

Charger type 3 

at stage 2 (M) 

186 194 224 240 

Number of 

Charger type 2 

at stage 2 (H) 

437 558 573 571 

Number of 

Charger type 3 

at stage 2 (H) 
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260 293 311 
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Table 25 Modeling Result (Number of Opened Facilities) for Urban Network with Alpha 

Equal to 10 Percent 

 

alpha =10 percent 

Budget ($) 7.5*10^6 8.5 *10^6 9.5*10^6 10^7 

Number of Opened 

Facility (type 2) at 

stage 1 

53 94 100 99 

Number of Opened 

Facility (type 3) at 

stage 1 

49 63 73 78 

Number of Opened 

Facility (type 2) at 

stage 2 (L) 

53 94 100 99 

Number of Opened 

Facility (type 3) at 

stage 2 (L) 

49 63 73 78 

Number of Opened 

Facility (type 2) at 

stage 2 (M) 

53 94 100 99 

Number of Opened 

Facility (type 3) at 

stage 2 (M) 

50 64 74 79 

Number of Opened 

Facility (type 2) at 

stage 2 (H) 

54 94 100 99 

Number of Opened 

Facility (type 3) at 

stage 2 (H) 

57 71 80 85 
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Table 26 Modeling Result (Number of Chargers and Objective Value) for Urban Network 

with Alpha Equal to 50 Percent 
 

alpha =50 percent 

Budget ($) 1.10*10^7 1.12*10^7 1.14*10^7 1.16*10^7 

Solution Time 

(S) 
2780.5 196.9 7.5 3.6 

Deviation 

(Objective 

Function ($)) 

9.42488*10^7 5.42865*10^7 2.19783*10^7 2.567892*10^6 

Number of 

Charger type 2 

at stage 1 

385 389 408 410 

Number of 

Charger type 3 

at stage 1 

256 257 257 260 

Number of 

Charger type 2 

at stage 2 (L) 

385 389 408 410 

Number of 

Charger type 3 

at stage 2 (L) 

256 257 257 260 

Number of 

Charger type 2 

at stage 2 (M) 

431 436 459 461 

Number of 

Charger type 3 

at stage 2 (M) 

287 289 289 293 

Number of 

Charger type 2 

at stage 2 (H) 

537 544 570 573 

Number of 

Charger type 3 

at stage 2 (H) 

353 355 355 360 
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Table 27 Modeling Result (Number of Opened Facilities) for Urban Network with Alpha 

Equal to 50 Percent 
 

alpha =50 percent 

Budget ($) 1.10*10^7 1.12*10^7 1.14*10^7 1.16*10^7 

Number of Opened 

Facility (type 2) at 

stage 1 

69 75 92 96 

Number of Opened 

Facility (type 3) at 

stage 1 

78 89 93 99 

Number of Opened 

Facility (type 2) at 

stage 2 (L) 

69 75 92 96 

Number of Opened 

Facility (type 3) at 

stage 2 (L) 

78 89 93 99 

Number of Opened 

Facility (type 2) at 

stage 2 (M) 

69 75 92 96 

Number of Opened 

Facility (type 3) at 

stage 2 (M) 

78 89 93 99 

Number of Opened 

Facility (type 2) at 

stage 2 (H) 

72 76 92 96 

Number of Opened 

Facility (type 3) at 

stage 2 (H) 

78 89 93 99 
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Table 28 Modeling Result (Number of Chargers and Objective Value) for Urban Network 

with Alpha Equal to 90 Percent 

 

alpha =90 percent 

Budget ($) 1.52*10^7 1.55*10^7 1.57*10^7 1.6*10^7 

Solution Time 

(S) 
4582.5 604.8 55 1.8 

Deviation 

(Objective 

Function ($)) 

1.40269*10^8 6.70056*10^7 3.07685*10^7 2.60557*10^6 

Number of 

Charger type 2 

at stage 1 

458 472 481 502 

Number of 

Charger type 3 

at stage 1 

389 389 390 391 

Number of 

Charger type 2 

at stage 2 (L) 

458 472 481 503 

Number of 

Charger type 3 

at stage 2 (L) 

389 389 390 391 

Number of 

Charger type 2 

at stage 2 (M) 

510 525 538 561 

Number of 

Charger type 3 

at stage 2 (M) 

430 430 432 433 

Number of 

Charger type 2 

at stage 2 (H) 

634 646 659 681 

Number of 

Charger type 3 

at stage 2 (H) 

512 512 514 519 
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Table 29 Modeling Result (Number of Opened Facilities) for Urban Network with Alpha 

Equal to 90 Percent 

 

alpha =90 percent 

Budget ($) 1.52*10^7 1.55*10^7 1.57*10^7 1.6*10^7 

Number of Opened 

Facility (type 2) at 

stage 1 

52 77 84 100 

Number of Opened 

Facility (type 3) at 

stage 1 

69 82 91 99 

Number of Opened 

Facility (type 2) at 

stage 2 (L) 

52 77 84 100 

Number of Opened 

Facility (type 3) at 

stage 2 (L) 

69 82 91 99 

Number of Opened 

Facility (type 2) at 

stage 2 (M) 

53 77 84 100 

Number of Opened 

Facility (type 3) at 

stage 2 (M) 

69 83 91 99 

Number of Opened 

Facility (type 2) at 

stage 2 (H) 

55 78 85 100 

Number of Opened 

Facility (type 3) at 

stage 2 (H) 

73 85 92 100 
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Figure 14 shows the change in the objective function which is the total monetary value of 

deviation occurring during the two years of planning horizon with respect to the budget 

limit. As it is shown in the figure and can be understood from the formulation presented 

in the previous chapter, there is a tradeoff between the budget limit and the deviation. If 

the budget is increased, more facilities can be opened and as a result demands can use 

facilities that are more nearby. Figure 15 shows the relationship between the budget limit 

and solution time. The solution time is low for infeasible region and becomes high in the 

boundary between feasibility and infeasibility and again becomes low in the feasible 

region (actual trend is increasing and then decreasing for a fixed alpha; however in the 

figure just the solution time for budgets with feasible solution has been shown). 

 

 

Figure 14 Tradeoff between Budget and Deviation 
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Figure 15 Solution Time Sensitivity 
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Chapter 5:  Conclusions and Future Work  

In the rural context, a new formulation for the FRLM and FRDLM was proposed in this 

thesis. The advantage of this formulation compared to previous model introduced by 

Kuby and Lim (2005) is that this model needs less preprocessing in terms of input data 

[35]. The formulation was tested on a small size network; however for further 

investigation of practicality of this model, it should be tested in a realistically sized 

network. Several different variants of the model were tested on the sample network. For 

example different objective functions, including maximizing vehicle-miles traveled and 

maximizing total flow accounting for reduction in the demand in the case of allowing for 

deviation from shortest path (decay function), were tested to explore the sensitivity of the 

solutions with respect to different objectives.  

The results confirm that the sequence of opening the facilities is highly dependent on the 

parameters of the model such as range, max deviation, and maximum number of facilities 

and also the undertaken policy.  

Allowing for deviation in the model resulted in choosing different set of candidate 

facilities. In solving the FRDLM, maximum deviation should be chosen with great 

caution since the results show that increasing the maximum deviation will greatly affect 

the solution time for the problem. The value chosen for this number is also important in 

terms of placing charging facilities in optimal locations. This number could be estimated 

based on the empirical data or stated preference surveys. 
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In terms of assumption about range of vehicles, the results indicate that optimal location 

of facilities is highly related to the range of the vehicles. This emphasizes the need for 

research on the tradeoff between the cost of making higher capacity batteries and cost of 

placing charging stations similar to Nie and Ghamami’s work (2013) [43].  

In this study, valid inequalities were added to the formulation to improve the solution 

time of the model. In most cases adding these inequalities results in better solution time; 

however more sophisticated methods such as cutting plane method should be used in the 

future to refine the feasible region of the problem and reduce the solution time especially 

for large size problems.  

In the urban context, a two stage stochastic optimization model was presented with the 

objective of siting and sizing the charging facilities at two stages in order to minimize the 

deviation of users from their original destinations. Sensitivity analysis was performed to 

see the effect of change in the objective function with respect to budget limit and the 

probability of satisfying the predicted demand. For this model, several other factors can 

be considered in the objective function in the future. For example, the running cost and 

the revenue gathered from the users can be accounted for. These cost and revenue are not 

reflected in the proposed model since currently, the cost of using these facilities for the 

users is highly dependent on their location for example in most educational facilities the 

users can use these chargers for free in order to incentivize people to buy these vehicles. 

Moreover, in including uncertainty in demand, the assumption is that in the future all the 

facilities will either have low, medium, or high demand; however this is not always the 
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case and sometimes it is probable that some facilities will have high demand whereas 

others will have low or medium demand. In the future, more scenarios can be added to 

the problem to consider the possibility of having low, medium, and high demand at the 

same time. 
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