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Complexity is a result of interactions among individual components of a dis-

tributed system, each with their own dynamical time scale. Statistical techniques

such as fluctuation analysis are used to quantify extent of long range correlations

within time series data by estimating a scaling exponent commonly known as Hurst

exponent. Data from magnetospheric dynamics, physiology and finance are known

to show multi-exponent nature (two exponents in particular) in their fluctuation

analysis with a crossover between the power laws. This correlation crossover can be

seen due to the statistical approach taken in the analysis of a range of systems with

differing dynamical time scales, particularly due to the nature of interactions with

one another. We refer to this property as multi-scale nature in the time series data

from complex systems. The main contributions of the thesis are as follows:

Study of crossover in fluctuation analysis of data from magneto-

sphere, physiology and finance. We propose an innovative regression scheme,

whose mathematical model well describes two exponent nature with an intermediate



crossover regime seen in fluctuation analysis - the Hyperbolic regression. Slopes of

the asymptotes of the hyperbola are the Hurst exponents, and, center of the resulting

hyperbolic fit is an estimate of the correlation crossover time. It is key to note that

in this regression, there are no assumptions made about the crossover time, unlike

previous approach to crossover fitting. Different data sets corresponding to differ-

ent physical processes demonstrate multi-scale nature. However, each data presents

a unique challenge to be addressed, as a result of characterization of its scaling

crossover. Application of hyperbolic regression on the crossover seen in fluctuation

analysis of auroral electrojet index data from magnetosphere resulted in estimation

of Hurst exponents before and after the crossover. Also, the correlation crossover

time scale is now measured by improved modeling of such data using a stochas-

tic model that demonstrates crossover in fluctuation functions - the OU-Langevin

model. Characterization of nature of crossover seen in fluctuation analysis of gener-

alized volatility within financial index data has shown differing nature of financial

markets. Such a study would help characterize individual markets utilizing features

which were not used previously. Heart rate variability data from healthy patients

and patients with congestive heart failure demonstrate differing extent of crossover

within the crossover seen in fluctuation functions. This resulted in proposal of a

parameter i.e., the extent of crossover parameter that can be used to distinguish

patients with the congestive heart failure ailment from normal cases.

Quantifying predictability of complex systems using Hurst expo-

nents. Predictability of complex systems suffers due to noise in the data. Long

range correlations in noise are seen to cause extreme events or build ups leading to



extreme events in such data. The increased probability of extreme event occurrence

makes prediction of resulting time series data difficult. Tail exponent is an expo-

nent resulting out of power laws seen in heavy tailed distributions and is used as

a measure of the probability of extreme events in such data. The Hurst exponent

which measures the extent of long range correlations using fluctuation analysis has

a known relationship with the tail exponent through Taqqu’s theorem. Fluctuation

analysis of time series data is oftentimes complicated due to existence of trends in

the time series data. Dynamical features in data commonly reflect as trends, and,

as a result nonlinear dynamical time series prediction techniques can be used to

measure these trends. We refer to this method as Fluctuation Analysis after Trend

Elimination (FATE) and apply it to data from space weather and finance. Hurst

exponent estimated from FATE and its relationship with tail exponent measured by

a commonly used Hill estimator technique are shown. Insufficient data sizes limit

our ability to robustly estimate the tail exponent from observational data as extreme

events are usually rare. This forms the motivation to use Hurst exponent obtained

from FATE as a measure of predictability of complex systems demonstrated by ap-

plication on auroral electrojet index data. Conversely, Hurst exponent can be used

to quantify the ability of a technique to predict time series data as demonstrated

by application of FATE.
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Chapter 1: Introduction

1.1 An overview

Complex systems involves study of how multiple interacting components or

parts results in collective behavior of the system and their relationship with respec-

tive environments. Such systems are modeled using a combination of approaches

from statistical physics, nonlinear dynamics and information theory. Their complex-

ity is due to the nonlinear and seemingly unpredictable outcome of the aggregate

activity commonly measured as an output time series. Due to diverse natures of the

component processes, a formal structure for modeling such systems does not exist,

complicating the simulation of such systems.

Introduction to such complex systems is provided in Section 1.2. It is to be

noted that the statistical analysis techniques which would be introduced are applied

to data from complex systems in this thesis. Hence, all the ideas are presented

within the context of complex systems and in scope of ideas relating to complexity

and fractality of such systems.

We now present the central ideas behind the thesis work in this section as an

overview to better prepare for the in-depth analysis that is to follow later.
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Power laws: Basic ideas

Power laws occur are seen in certain statistical functions over a range of scales

pertaining to input argument of the function (x in Equation 1.1). Mathematically,

a function f(x) is said to exhibit power law (with respect to x) if:

f(x) = kxa (1.1)

where, k and a are constants. Parameter a is generally referred to as the scaling

exponent. Such power laws are seen in a wide range of statistical measures in various

physical systems. The topic of power-law analysis has been extensively reviewed in

various review articles [Mitzenmacher 2004, Newman 2005, Sornette 2006]. Power-

laws are often seen in probability distributions of various physical phenomena such

as solar flares, Earthquake data, internet data, etc. [Clauset et al. 2009].

Long range correlations broadly refer to phenomena where certain statistical

or physical measures exhibit correlation over scales that characterize typical behav-

ior. One such example can be seen in the phenomenon of critical opalescence at the

liquid-gas critical point. Due to breakdown of distinction between a liquid and a

gas at the critical point where due to special combination of pressure and temper-

ature, the liquid is sufficiently hot and compressed that it almost becomes a gas.

Such transitions between liquid and gas at the critical point are second-order phase

transitions and the density fluctuations in the liquid can be seen at all possible

wavelengths leading to the scale free nature.

Such long range correlations seen in the critical regime complicate the anal-
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ysis of phase transitions owing to violation of mean-field approaches which were

widely used in such analysis [Guggenheim 1945]. Development of renormalization-

group [Wilson 1971] helped develop a method for studying systems with scale free

nature. There are many physical measures which exhibit long range correlations.

However, memory within data results in statistical similarity over several time or

length scales [Beran 1994].

Long range correlations in a time series results in the scale free property of

the variance estimated at various time scales. This yields a scaling exponent widely

known as Hurst exponent, which is most commonly estimated using a class of tech-

niques known as Fluctuation Analysis. We are primarily interested in power-laws

seen in fluctuation functions measured from Fluctuation Analysis and the resulting

exponent known as Hurst exponent which is used as measure of extent of long range

correlations.

We now discuss the phenomenon of scaling crossovers seen in fluctuation anal-

ysis and establish a connection between crossovers and multi-scale/multi-fractal na-

ture of complex data in particular.

Multi-scale nature and Scaling crossovers

Dynamically, a multi-scale system can be defined as one that incorporates pro-

cesses at different spatial and temporal scales. Heterogeneity among the interacting

parts results in multiple scales as seen spatio-temporally in the time series. Modeling

of such systems needs an understanding of the role played by different underlying
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components at various scales. Hence, study of various scales existing within the

time series data is imperative in identifying and applying the relevant model for the

data.

Due to the complex nature of interactions, such dynamical time scales are not

always distinguishable. Statistical correlations measured from fluctuation analysis

include correlations of all types-linear and nonlinear. Scaling crossovers refer to the

break in scaling function of interest i.e., fluctuation functions which are a measure

of extent of long range correlations. Particularly, existence of scaling crossovers

implies violation of scale free nature in fluctuation functions. As an example, data

from magnetospheric dynamics demonstrate interactions among the many modes

corresponding to various plasma processes. Although the dynamical time scales

corresponding to individual processes are hard to identify, the statistical correlations

between these processes as seen in data reflect as a power law in fluctuation functions

or power spectral density. Violation of this power law through a crossover implies

changing correlation time scales. We define and refer to this as multi-scale nature

of data throughout the thesis. As the scaling crossover is easily seen in statistical

measures like fluctuation functions, it helps us identify correlation time scales. The

crossover time scale is a measure of change in nature of correlations within the data.

As we introduce later in Chapter 2, Detrended Fluctuation Analysis (DFA)

is one estimation technique widely used for fluctuation analysis of non-stationary

data. Non-stationarity in data can result from trends in data. Such trends are either

built into the system in a additive fashion i.e., data=trend+variability (separable

trends in general) or multiplicative fashion where variability affects the evolution,

4



e.g., noise added to differential equation describing such systems. These effects and

theoretical models explaining them are described in detail in Chapter 4.

Figure 1.1: Illustration demonstrating scaling crossover in power-laws,
particularly in fluctuation functions that measure the extent of long
range correlations within time. Plot (a) represents a mono-scale system
where as plots (b) and (c) represent two-scale systems with increasing
or decreasing long range correlations, respectively.

Data from complex systems oftentimes have processes at different time scales.

Most commonly seen are two-scale systems with low frequency and high frequency

processes i.e., trend and variability respectively. Processes that result in high fre-

quency of power spectrum in such systems contribute to scaling at short times and

those at low frequency contribute to scaling at long times. As an example, we

present an illustration in Figure 1.1 where we present typical fluctuation functions

from various kinds of systems. Power law clearly exists in system that shows linearity

in fluctuation functions such as in plot (a).
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Scaling crossovers in two-scaled systems can be of two different natures as

seen in plots (b) and (c) in Figure 1.1 i.e., increased scaling exponents through

crossover or decreasing exponents through the crossover point, respectively. Data

with crossover nature seen in plot (b) can be readily modeled using additive models

i.e., data=trend+variability because fluctuation functions are additive resulting in

fluctuation function of the data being the sum of fluctuation functions of trend and

the variability. However, crossovers seen in plot (c) need a complicated model which

has noise added to dynamics.

Motivation for crossover analysis

Irrespective of the nature of crossover, one needs to separate the different

scaling behaviors and one way is to identify the point of crossover and measure the

exponents before and after the crossover point. This is the central theme of much

of the work in this thesis.

The existence of multiple scaling exponents implies a violation of the scale

free nature, often seen in fluctuation analysis. The simplest form of multiple scales

would consist of two correlation scales with an intermediate crossover regime. This

separation of scaling features at various time scales can be used as an evidence of

multi-scale nature in observed data of complex systems. Identification and charac-

terization of such a crossover is essential for understanding the nature of underlying

physical processes which may result in a better model for such systems. Proposal

of a novel scheme to study the crossover phenomena in various real world data em-
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bodying complexity and subsequent results from its application constitute one of

the two primary subject matter of this thesis.

Figure 1.2: Illustration showing the comparison between
normal distribution and fat-tailed distributions (From
http://www.fattails.ca/distribution.html). We see that the proba-
bility of occurrence of events of large magnitudes remains finite in
fat-tailed distribution, however the probability of occurrence for similar
events approaches zero for a normal distribution.

Furthermore, we present an additional case that fat-tailed probability distri-

butions (or leptokurtic distributions) that occur due to existence of so called Black-

swan events in data can be interpreted as crossover in the probability distribution.

This is a new way of studying fat-tails. Figure 1.2 shows an illustration that shows

the difference between normal and fat-tailed distributions. Clearly the fat tails oc-

cur due to infinite variance in distribution function and it can be seen as scaling

crossover from normal distribution before crossover to a power-law fat tail after the

crossover.
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Characterization of predictability

Existence of trends often times complicate estimation of Hurst exponent in

time series data. These trends are seen forming the dynamical structure within

the data. Processes at short time scales (high frequency component in the power

spectral density) of time series decrease the predictability of such time series. These

processes are commonly seen as fluctuations or called as noise within the data.

Understanding the long range correlations among fluctuations helps us estimate the

tail exponent or a measure of extreme event probability in such fluctuations. Hence,

the other focus area of this thesis work is a better trend estimator and using Hurst

exponents of the detrended time series to characterize the predictability.

Figure 1.3: Schematic showing the outline of ideas behind the thesis
work.
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The schematic in Figure 1.3 shows the organization of the ideas in the thesis.

Complex data is analyzed using fluctuation analysis in two ways-crossover analysis

and study of predictability using Hurst exponent. The results lead to multi-scale

characterization and understanding predictability of such complex data.

In the following sections, ideas on complexity, introduction to data and tech-

niques used are presented.

1.2 Complex multi-scale systems

The scientific study of complex systems is relatively young in comparison to

conventional fields of science with simple system assumptions, such as from physics

and chemistry. Among the key contributions to the study of complex systems is the

discovery of chaos in deterministic systems, a feature of certain dynamical systems

that is strongly related to nonlinearity. Study of neural networks was also integral

in advancing the mathematics needed to study complex systems. The science of

complex systems mainly deals with the study of how individual interactions give

rise to collective and emergent behaviors and the interaction of the aggregate system

with its surroundings [Bar-Yam 2002].

Multi-scale nature were discovered in data from various real world systems

including those from climate [Goodin et al. 2002], finance [LeBaron 2006], space

weather [Tsurutani et al. 1990] etc., Research work leading to the current thesis first

started with a study of time series prediction techniques applied on space weather

data particularly the auroral electrojet index data corresponding to magnetospheric

9



dynamics. Scaling crossover was seen in power spectral density of auroral electrojet

index data. Fluctuation analysis is an improvement over power spectral density.

Our work identified similar scaling crossover in fluctuation analysis as seen from

power spectral density. Hence, we first introduce magnetospheric dynamics and

auroral electrojet index data in this Section.

Subsequently, existence of two correlation time scales with a distinguishable

crossover was found in data from generalized volatility of financial index in finance

and heart beat variability from physiology. Identification and characterization of

crossovers helped in better modeling of such data. However, problems remained in

the method of characterization of scaling crossover in fluctuation analysis. Our work

focuses on addressing this challenge and studying the following results. Hence, we

next introduce data corresponding to financial indices and heart beat variability in

this Section.

It is to be noted that each data set presents a unique challenge or a problem to

be addressed with respect to its multi-scale property. While existence of a crossover

in scaling is the unifying feature between all the data, our work on characterization

of this feature yielded new and interesting results in each case.

Magnetospheric dynamics

Space weather usually refers to the conditions in the near-Earth space that can

potentially impact the satellites and other technological infrastructure here on and

around the Earth. Bursts of plasma and magnetic field structures from the Sun’s
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atmosphere known as coronal mass ejections (CME) together with solar flares can

cause space weather effects on the Earth. The plasma matter from the Sun during

CMEs travels towards the Earth incorporating various time and spatial scales in

its course as the solar wind. Due to mixing of spatio-temporal scales, the data

corresponding to solar wind is known to be turbulent.

Figure 1.4: A three dimensional sketch of the magnetosphere and the as-
sociated currents, fields and plasma regions [Kivelson and Russell 1995].

As the solar wind approaches a planet with well developed magnetic field

structure around it, such as the Earth, it interacts with its atmosphere. The region

around a planet is the magnetosphere which acts as a shield deflecting the incoming

bombardment of solar wind around rather than reaching the planet’s surface. The

structure of Earth’s magnetosphere with respect to incoming solar wind is shown

in Figure 1.4. Important components of magnetosphere include bow shock, magne-
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tosheath, magnetopause, magnetosphere, northern tail lobe, southern tail lobe and

plasmasphere [Ratcliffe 1972].

Figure 1.5: The sky lit green due to au-
rora at Hamary in Nordland, Norway (From
http://www.telegraph.co.uk/earth/earthpicturegalleries/9269571/Spectacular-
displays-of-the-northern-lights-or-aurora-borealis-in-northern-
Norway.html).

The interaction of the solar wind with the magnetosphere and ionosphere at

higher latitudes leads to the phenomenon of aurora borealis, commonly known as the

aurora shown in Figure 1.5. The orientation of interplanetary magnetic field (IMF)

of the solar wind expectantly controls the configuration of Earth’s magnetosphere.

Solar wind-magnetosphere coupling is enhanced when this IMF turns southward as

a portion of the transferred energy accumulates in the magnetotail and explosively

released in a magnetospheric substorm. Magnetosphere remains highly dynamic

under these conditions and the magnetospheric substorms result in elementary dis-

turbances with a typical time scale of an hour. When the IMF remains southward for
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an extended period of time, the energy transfer from the solar wind into magneto-

sphere continues further and the ring current grows under the influence of the solar

wind variations leading to geospace storms. These are characterized by a strong

decrease in the surface magnetic field. The extremes of space weather occur when

intense solar activity is strongly coupled to the solar wind-magnetosphere-ionosphere

system during geospace storms.

Auroral Electrojet (AE) refers to the large horizontal currents that flow in D

and E layers of the auroral ionosphere. These auroral electrojet currents are known

for their strength and persistence due to increased conductivity of the auroral iono-

sphere. AE was introduced as a measure of the global electrojet activity [Davis and

Sugiura 1966]. This index is derived from geomagnetic variations in the horizontal

component observed at selected observatories along the auroral zone and is a direct

measure of the substorm strength. AE is computed at 1 minute resolution after

removal of an average over five quietest days in a month at each observatory. The

auroral electrojet indices comprise of AU- the upper bound of data from all the

stations, AL-the lower bound, AO-the average between AU and AL, and finally the

AE-the difference between AU and AL indices respectively. The AL index is known

to be particularly sensitive to the input solar wind driver and is used as the data for

our research. This index is obtained from geomagnetic data service of World Data

Center-Kyoto: http://wdc.kugi.kyoto-u.ac.jp/aedir/index.html.

The strength of solar wind is measured as the strength of electric field of

the solar wind flow and thus reflected in the vector cross product between so-

lar wind velocity and IMF strength. These parameters are measured from the
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bulk speed (v in km/s) and strength of IMF in the north-south direction (Bz in

nT) of solar wind as their product-vBz. Data pertaining to these parameters are

obtained real time from measurements by Advanced Composite Explorer (ACE)

space craft that is located at the L1 point in the orbit between Earth and the sun:

http://www.swpc.noaa.gov/ftpdir/lists/ace/.

Study of space weather has been not only necessary but also important due to

the fact that modern day technological infrastructure is risk prone due to extreme

events [Baker et al. 1998]. Because of the non-equilibrium nature of the statistics

of such systems, we rely on the framework provided by nonlinear dynamics and

complexity science to study them [Baker et al. 1990, Sharma 1995, Vassiliadis et al.

1990]. The dynamics of magnetosphere can be described by a trajectory in an

appropriately defined state space which then can be used to describe the system

completely. Applying techniques from dynamical systems theory, we can obtain

these trajectories from observational data, model its internal dynamics and develop

predictions based on the expected evolution of such trajectories, as shown in the

Section 1.4.

Heart rate variability

Heart rate variability (HRV) is the phenomenon of variation in time intervals

between successive heartbeats. Electrocardiography (ECG) is the most commonly

used method of measuring the HRV data. This method involves recording of elec-

trical activity of the heart using electrodes attached to the surface of the skin. The
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measured data is most commonly displayed/recorded externally on a digital inter-

face/recording device.

Figure 1.6: A normal lead II ECG
wave progression for a single cycle (From
http://www.sci.utah.edu/ macleod/bioen/be6000/labnotes/bp/descrip.html).

In Figure 1.6, we see the ECG wave from lead II of a normal sinus rhythm

(NSR) i.e., the voltage between right arm and left leg. A classical ECG signal

contains measurements from 12 such leads. One full cycle of ECG wave contains 6

peaks as shown in Figure 1.6, labeled as P, Q, R, S and T. Among all the peaks,

the R peaks stand out the most in terms of amplitude and hence, is used as the

standard reference to measure the cycle period. This is known as the RR interval

and so the data used is called RR interval data. In terms of RR interval, normal

resting heart rate is between 60 to 100 beats per minute (bpm) which translates to

a duration of 0.6 to 1.2 seconds.

With this background, it is important to understand the relevance of measur-

ing HRV in terms of RR interval data. Clinically, the correlation between reduced or

increased HRV in a patient is well established to conditions such as myocardial in-

farction [Kleiger et al. 1987], congestive heart failure (CHF), depression etc., Hence,

measurement and monitoring of RR intervals over extended periods of time in pa-
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tients is a valuable diagnostic tool to identify the aforementioned ailments which

can be fatal if undiagnosed.

The process of time keeping of heart beat is controlled by a group of cells

located in the wall of right atrium of human heart known as pacemaker cells. These

pacemakers cells are controlled by the sympathetic and parasympathetic nervous

systems. Human nervous system is known to be divided into sympathetic, parasym-

pathetic and enteric nervous systems each taking care of different aspects of human

function. Sympathetic nervous system remains active at a basic level to initiate

“flight or fight” response to maintain homeostasis or a state of constant equilibrium.

The parasympathetic nervous system takes care of functions of internal organs that

occur unconsciously and is responsible for “feed and breed” activities in the body.

Enteric nervous system governs the function of gastrointestinal system and has its

own reflex activity different from sympathetic and parasympathetic.

It is to be noted that the sympathetic and parasympathetic nervous systems

act in opposing terms and are in a constant state of complex interaction to wrest

control over the pacemaker cells [Levy 1971]. This design ensures that the human

heart beat is maintained even when in an unconscious state such as the REM (rapid

eye movement) sleep cycle. However, the process is known to be complex, seemingly

nonlinear in nature [Brennan et al. 2001] due to complicated relationship between

the two competing nervous systems. It is this underlying complexity that is of

interest to our analysis.

In patients with NSR, it is known that these two systems are in near equi-

librium, with some multi-scale nature. However, CHF patients i.e, those patients
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whose heart is unable to pump increased volume of blood in time of increased body

activity have a violation of homeostasis and that leads to a non-equilibrium between

the two nervous systems. This implies an evident multi-scaled nature with processes

of different complexities dominating over different time scales leading to violation

of homeostasis. The analysis of crossover phenomenon is the objective of our work

on the RR interval data.

Financial data

Stock market index is a composite of several stock prices listed on the exchange.

Dow Jones Industrial Average (DJIA), one of the oldest and longest such composite

index comprising of 30 major American companies which was first calculated on

May 26, 1896. A composite index is often estimated as weighted average of prices

of the individual component stocks.

Financial markets and market movements are governed by a set of complex

structures. They involve long term cycles or trends and speculative or regulatory

short term effects. However, the complexity arises, among others, out of the involved

human element which is based on sociopolitical and psychological trends [Cristelli

2014]. Such unpredictable drivers cause unpredictable outcomes and the evidence

from past market booms and crashes supports this assertion e.g., boom of 1920,

crash of 2008 etc., These fluctuations riding on top of known trends are the subject

of much study and speculation in recent work.

Due to separation of time scales leading to the output time series of the index
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values, financial markets are known to show multiple time scales. Particularly of

recent interest is the study of nature of markets globally with respect to differing

behaviors at short and long time scales within various indices. We direct our atten-

tion to apply our crossover analysis on financial index data and show the results in

following chapters. Also, removal of predictable trends from market data yields the

noise or the unpredictable component of the data. Our interest in characterizing

predictability by studying this noise is another reason for choosing financial data as

a data of interest in our studies.

1.3 Long Range Correlations and Hurst exponent

The phenomenon of long range correlations (LRC), sometimes referred to as

long range dependency (LRD) or self similarity [Samorodnitsky and Taqqu 1994],

involves study of decay in statistical correlations/dependence over time or spatial

scales. Harold Edwin Hurst, a British hydrologist, was commissioned by the then

government to study the long term storage capacity of reservoirs during the con-

struction of Aswan low dam on the banks of river Niles, Egypt in the early 20th

century. He was faced with the question of statistically measuring the increased

levels of dam water during flood season and decreasing levels during droughts. His

solution to measure such seasonality involved proposal of a metric, known as Hurst

exponent (H), which is a result of scale free nature of a measure of variability of

changes in water levels [Hurst 1951] at various time windows. The now famous

method measures this variability using a rudimentary technique known as rescaled
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range analysis [Hurst et al. 1965].

Details of this method and an advanced scheme that forms the back bone

of other schemes to measure the exponent in our work are shown in this section.

LRC is explained in greater detail in following chapters in line with the context.

Theoretical models espousing LRC phenomenon are shown in chapters of this thesis

according to their application and relevance to the work.

Rescaled Range analysis

Hurst wanted to measure the level of statistical correlations within a time se-

ries data, particularly stationary in nature. If the level of statistical dependence

increases, then it was hypothesized that the variability in the time series data ob-

tained as a random walk with the original data as the incremental process would

increase. Hence, the variability in the random walk would yield clues to such statis-

tical buildups in the incremental process. If X1, X2, ..., Xn is a discrete stationary

time series, then a mean adjusted series is constructed as Yi = Xi −
∑n

j=1Xj . This

mean adjusting is to ensure that the data has a mean 0 similar to the usual gaussian

noise N (0, σ2) with standard deviation σ.

From the mean adjusted time series Yi, a cumulative deviate series or a random

walk profile is constructed as Zi =
∑i

k=1 Yk. Clearly, Yi is the incremental process

of Zi and hence, increased correlations in Yi reflect in Zi as its increased variability.

This notion is central to any method of measuring LRC. Now, one needs to find the

variability within Zi and there is no unique method for this. Hurst proposed a metric
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based on his observation that the range of Zi within a walk size or time window

length of estimation, normalized by its standard deviation within the window is

known to be scale free in nature with respect to the window length. This observation

is rooted in the fact that in a window of length t, range of a random walk scales as

t0.5 and if there were no correlations then the standard deviation would not depend

on t, i.e., the rescaled range would scale as t0.5 in an uncorrelated data, yielding an

exponent of H = 0.5.

Mathematically, the range Rt within a time window t is constructed as Rt =

max{Z1, Z2, ..., Zt}-min{Z1, Z2, ..., Zt} and St is standard deviation of the series

{X1, X2, ...Xt}. The rescaled range is estimated as Rt/St and it scales as tH . So, a

linear regression between logarithms of Rt/St and t would yield a slope H.

As mentioned earlier, Hurst envisioned his metric for a stationary time se-

ries such as gaussian noise. In fact, a well known theoretical model with normal

distribution that demonstrates LRC called fractional Gaussian noise (fGn) and its

random walk equivalent fractional Brownian noise (fBm) was proposed [Mandelbrot

and Van Ness 1968]. However, it was found that the rescaled range analysis had lot

of loop holes due to the primitive way of estimation of variability. To increase the

robustness of estimation of H, an alternative method of measuring variability was

proposed [Karlin and Brendel 1993] known as fluctuation analysis.
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Fluctuation Analysis

Fluctuation analysis (FA) shares the same basis of rescaled range analysis up

to the point of constructing the random walk profile {Zi} of a time series {Xi}. The

major deviation of this scheme from rescaled range is in the way the variability of

{Zi} is measured. Fluctuation functions are estimation as a function of window size

as F (t) = 〈(Zi+t−Zi)
2〉, where 〈...〉 refers to the ensemble average for all realizations

starting at various initial times i within the data.

This fluctuation function F (t) is extensively used over the course of our work.

Crossovers were found to exist in the logarithmic plot of F (t) versus time window

t for multi-scale data. In data without multiple time scales or negligible crossover

phenomenon, the fluctuation functions demonstrate a scale free nature just like

the rescaled range. Estimation of Hurst exponent H is performed using the same

approach of linear regression between logarithms of F (t) and t as mentioned earlier.

It was found that both rescaled range and fluctuation analysis suffer from

a common limitation-they fail to estimate an exponent in non-stationarity data.

As there is no common approach to detrend a time series of trends a priori, an

alternative that proposes to detrend polynomial trends of fixed order was proposed,

known as Detrended Fluctuation Analysis (DFA) [Peng et al. 1992] and described

in more detail in Chapter 2.
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1.4 Crossover phenomenon in fluctuation functions and probability

distributions

DFA technique is extensively applied to analyze correlations within non-stationary

time series data. It assumes that the random walk profile {Zi} can be separated into

two independent parts i.e., the polynomial trend T and the signal S as: Zi = Ti+Si

with null covariance structure i.e., Cov(T, S)= 0. This assumption is not always

true and is unsupported from the outcome of DFA application on several real world

data.

In fact, data corresponding to many records show that crossovers exist within

the fluctuation functions in FA or DFA [Hu et al. 2001, Liu et al. 1999, Movahed

et al. 2006]. This supports our assertion that multi-scale nature of data manifests

itself as crossover time scales separating regimes in DFA or FA that use fluctuation

functions. We propose to address such crossovers using a new technique as described

in Chapter 3. Results from its application to space weather, heart rate variability

and financial index data are shown in Chapters 3, 4 and 5 respectively.

Crossovers are also known to exist in probability distributions of several com-

plex data. In fact, these crossovers help explain heavy tailed distributions. In

Figure 1.7, we see the evidence of heavy tail nature in the probability distribution

of AL index data when compared to normal distribution drawn using mean of AL

as its mean and median as its variance. This data consists of AL index values for

the past 33 years from 1980-2013 with over 14 million data points and hence can
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Figure 1.7: Probability distribution of AL index data from 1980-2013 (in
blue). Comparison between observed probability and normal distribu-
tion (in red) shows the evidence of heavy tailed nature of distribution.

be considered comprehensive enough to model heavy tail in the distribution. Heavy

tailed distribution in a probability distribution P (x) can be described mathemati-

cally as: P (x > xu) ∝ x−µ for events, x ≥ xu, where xu is a cutoff magnitude above

which heavy tails exist in the distribution. The exponent, µ is commonly referred to

as the tail exponent and can be estimated using a variety of estimator techniques.

Traditionally risk in finance was modeled as a normal distribution without

heavy tails as events whose magnitudes deviate more than 5 times the standard de-

viation (known as 5 sigma events) from the mean of data are usually rarely found.

Existence of heavy tails leading to undefined variance complicate predictability of

financial data violating normal distribution model for risk. This was identified ear-

lier [Mandelbrot 1963; 1997, Taleb 2007] and it was found that a more general stable
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distributions better model returns in finance as against normal distributions. The

extreme events are usually called black swans due to the rarity of their occurrence

in nature compared to abundantly seen white swans.

Due to the existence of crossovers both in fluctuation functions and probability

distributions, its analysis is a crucial step in identification of scales, tail exponents

in data and hence motivated our work in this direction.

1.5 Nonlinear time series prediction

Time series forecasting involves modeling of historical data using the resulting

model to predict/forecast the values at future time step(s). Statistical methods

prescribe to model past data using parametric or non-parametric regression schemes.

These regression models are based on assumptions about the nature of the data

ahead of time, often introducing artefacts due to its presumptive aspect.

Dynamical systems theory proposes an alternative way of modeling historical

data. Under this scheme, based on Taken’s theorem [Takens 1981], the phase space

corresponding to states of the system and the evolution of their trajectories can

be reconstructed using a univariate time series of the system. It must be noted

that this approach is a semi supervised machine learning scheme as the phase space

reconstruction is data derived and involves few to none modeling parameters.

As an example, starting from the past data of x(t) of the three dimensional

Lorenz attractor, one can reconstruct the phase space whose y(t), z(t) were unknown

to begin with. Using the reconstructed phase space, one can retrieve information
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about possible evolution paths from the most recent state. These predicted evolu-

tions can be averaged using a preselected method such as a weighted or unweighted

mean for what are the closest states i.e., nearest neighbors in the reconstructed

phase space [Chen and Sharma 2006, Ukhorskiy et al. 2002].

This method not only affords predictive value as an alternative to the usual

machine learning schemes based on statistical or probabilistic inference approaches,

but also yield us an estimate of trends in data. Using this technique, we uncover the

underlying dynamical features in the data. Trends in data are due to seasonalities

and other long term variations in the data. These correlated effects reflect in data

as dynamics. Due to this equivalence of trends and dynamics, we propose to use

nonlinear time series predictions as a measure of trend in system to be removed to

yield the remnant fluctuations or noise (short term component) within the data.

Hence, understanding this technique is a necessary precursor to follow our work and

analysis in chapter 6 of the thesis.

Time delay embedding and phase space reconstruction are the key elements

in data derived modeling to achieve time series forecasting based on mean-field or

local-linear filters. Finding the appropriate time delay and the embedding dimension

are the primary steps to reconstruct the phase space. We show some of the more

common techniques used to find the time delay, embedding dimension and finally

demonstrate how this reconstructed phase space can be used for prediction when

applied to Lorenz attractor.
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Lorenz attractor-the model

We demonstrate the time series prediction technique using time series data

generated from the well known Lorenz attractor [Lorenz 1963], which is a three

dimensional, nonlinear, deterministic system:

dx(t)

dt
= σ(y(t)− x(t)),

dy(t)

dt
= −x(t)z(t) + rx(t)− y(t),

dz(t)

dt
= x(t)y(t)− bz(t).

(1.2)

The above equations are derived by finite mode truncation of the partial dif-

ferential equations describing the thermal driving of convection in the lower atmo-

sphere. The parameters used in solving the system of equations in equation 1.2 are

r = 28, b = 8/3, and σ = 10.0 with an integration time step of dT = 0.01.

Phase space reconstruction

An inherent property of a nonlinear dissipative system i.e., contraction of phase

space as the system approaches its asymptotic state allows us to model the chaotic

system by a few nonlinearly coupled ordinary differential equations. Such a nonlinear

system has a characteristic attractor which is a set towards which a variable, moving

according to the equations of the dynamical system and which evolves over a span

of time. Its resulting attractor is characterized by a dimension, a minimum number

of independent variables required to obtain the complete information about the

attractor. A complete picture of this phase space can be obtained from one or more

of the system variables given that they are sufficiently nonlinearly coupled [Packard
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et al. 1980, Ruelle 1989, Takens 1981]. Time delay embedding is a technique used

to reconstruct this phase space from a time series data. In this technique, we begin

by splitting our time series into m-component phase vectors Xi such that,

Xi = {x1(ti), x2(ti), ..., xm(ti)} (1.3)

where xm(ti) = x(ti + (m− 1)T ), T is an appropriate time delay.

The process of choosing an appropriate dimension m is known as embedding.

We need a dimension m ≥ 2mA, the attractor dimension, so as to obtain an at-

tractor in the reconstructed phase space which is smoothly related to the attractor

in the original phase space. We now illustrate the most common techniques used

for choosing the time delay and embedding dimension for Time delay embedding

method [Abarbanel et al. 1993].

Mutual Information

Calculating mutual information function between two sets of variables helps

us understand the extent of correlations between the two variables [Shannon 1948]

. Mathematically, if x1 and x2 are the two random system variables with i1 and i2

as the possible outcomes of the respective system measurements, then the average

mutual information between the measurements is defined as [Cover and Thomas

1991]:

I(x1, x2) =
∑

i1

∑

i2

p12(i1, i2) log2

[

p12(i1, i2)

p1(i1)p2(i2)

]

(1.4)

where p1(i1) and p2(i2) are the probability distributions of the random variables x1

and x2 assuming values i1 and i2 respectively and p12(i1, i2) is their joint probability
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Figure 1.8: Estimation of time delay and embedding dimension parameters for phase

space reconstruction of Lorenz attractor.

distribution.

We observe from equation 1.4 that when x1 and x2 are independent, I(X1, X2) =

0 since p12(i1, i2) = p1(i1)p2(i2). This average mutual information function includes

the higher order correlations than the linear correlation function thus yielding a

better measure for nonlinear systems. We can extend this definition of mutual

information to the context of a single time series, x(n) in order to calculate the

appropriate time delay or a good measure of the characteristic time of the system.

The mutual information in equation 1.4 can be calculated in the case of time series

x(n) as a function of time delay T between x(n) and x(n+ T ) [Gallager 1968]:

I(T ) =
N
∑

n=1

p(x(n), x(n+ T )) log2

[

p(x(n), x(n+ T ))

p(x(n))p(x(n+ T ))

]

(1.5)

By calculating I(T ) from equation 1.5, we can find the appropriate time delay

Td as where the first minimum of I(T ) occurs [Fraser and Swinney 1986]. This
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minimum of I(T ) for the Lorenz attractor can be seen in Figure 1.8a, where the

first minimum of I(T ) occurs when time delay Td = 16 steps of integration which

corresponds to 0.16 seconds of time for our Lorenz attractor and this value would

be used as the time delay for phase space reconstruction.

Correlation integral

With the time delay, Td obtained from Mutual information analysis, we can

find the embedding dimension m by calculating a sequence of Correlation integrals.

This process relies on the principle that once a desired minimum embedding di-

mension is achieved, the properties of the resulting attractor which depend on the

distance between points in the respective phase space should be invariant with in-

creasing embedding dimension. One such property we use is Correlation integral,

which is defined for N vectors in an m-dimensional space for the distance r as [Abar-

banel et al. 1993]:

C(r,m) = lim
N→∞

1

N2

N
∑

i=1

N
∑

j=1

Θ(r − |Xi −Xj|) (1.6)

where Θ is the Heavyside function.

The correlation dimension can then be defined as ν = limr→0
log(C(r,m))

r
. From

Figure 1.8b, we see that the slope of this correlation integral is invariant for m ≥ 3.

So, for phase space reconstruction, we choose m = 3 as the embedding dimension.
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Time series prediction

The reconstructed phase space can be used to predict possible future time

steps from the most recent state. We first define a trajectory matrix as an N ×m

matrix which is a collection of m dimensional state vectors Xi obtained from time

delay embedding. That is, a trajectory matrix X can be written as:

X = N−1/2































x1(t1) x2(t1) . . . xm(t1)

x1(t2) x2(t2) . . . xm(t2)

...
...

. . .
...

x1(tN) x2(tN) . . . xm(tN)































(1.7)

where N is the number of vectors. This N × m matrix contains the dynamical

features of the system contained in the time series data and can be used to find the

evolution in the reconstructed phase space.

Mean Field Filter technique [Ukhorskiy et al. 2002] is commonly used to predict

future state i.e., Xn+1,pred is obtained as an average of evolved states of all the nearest

neighbors(NN in number) of the nth state Xn. A nearest neighbor is defined as a

state closest to a state of interest in terms of the euclidean distance. The average

value of the state vectors of the nearest neighbors is defined usually as the center of

mass.

Xn+1,pred =
1

NN

NN
∑

k=1

Xk,n (1.8)

where {Xk,n} are the evolved states of the nearest neighbors of the most recent state

Xn.

Weighted Mean Field Filter [Chen and Sharma 2006] is another technique
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essentially same as Mean Field Filter except that we attach a set of weight factors

g which depend inversely on the distances of the nearest neighbor from the center

of mass. This should improve the accuracy of prediction because not all nearest

neighbors are identically spaced from the center of mass.

gk =
1

d2k
/
NN
∑

i=1

1

d2i
(1.9)

where di is the Euclidean distance of the ith nearest neighbor from the center of

mass. The resulting predicted future state i.e., Xn+1,pred is calculated as:

Xn+1,pred =
1

NN

NN
∑

k=1

Xk,n • gk (1.10)

In these local linear filters, we use the linear term in an expansion around

the initial conditions and since the linearity of expansion is local, we conserve the

nonlinearity of the system as in the reconstructed phase space. To quantize the

error in the predictions, Normalized Mean Square Error (NMSE) is routinely used:

η =
1

σ0

√

√

√

√

1

N

N
∑

i=1

(Xi −Xi,pred)2 (1.11)

where Xi and Xi,pred are the observed and predicted data respectively and σ0 is the

standard deviation of actual data {Xi}.

Using the previously defined prediction techniques, we predict the future states

of the time series corresponding to x component of Lorenz attractor and quantify

the accuracy of prediction with NMSE measurements. As previously shown, values

of time delay, Td = 16 time steps and embedding dimension, m = 3 were used in the

phase space reconstruction. The number of nearest neighbors, NN were taken to

be 20 for our predictions. Resulting predictions utilizing weighted mean field filter
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Figure 1.9: Prediction of x(t) of Lorenz attractor using weighted mean
field filter technique.

technique are shown in Figure 1.9. The NMSE values for the weighted mean field

filter technique as applied to predict x(t) of the Lorenz system is calculated to be

0.0046.

The data and techniques that would be used in this work are presented so far.

We present a brief outline of the contents of the thesis to conclude this introduction.
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1.6 Outline of Thesis

In Chap. 2, DFA is introduced and its application demonstrated when applied

to a model with a time varying LRC - multifractional Brownian motion (mBm).

This serves as an introduction to DFA and also serves to benchmark its perfor-

mance. Also, evidence of mBm-like nature in AL index data is shown.

In Chap. 3, crossover analysis in fluctuation functions of AL index data is presented.

Technique for such an analysis is introduced and subsequent results follow. A suit-

able model for crossover phenomenon is presented using which salient features such

as crossover time in AL data are robustly estimated.

In Chap. 4, crossover features in physiological data are shown. Analysis of the extent

of crossover helps us propose a metric for diagnostic purposes to identify ailments

such as congestive heart failure.

In Chap. 5, crossovers in fluctuation analysis of generalized volatility of financial in-

dices are shown. Analysis of crossover in terms of increasing LRC versus decreasing

LRC is presented.

In Chap. 6, Fluctuation Analysis after Trend Elimination (FATE) is demonstrated

on a theoretical model with separable trend and signal. FATE on data from finance

and AL index is presented. Correlation is made between Hurst exponent from FATE

and tail exponent in the probability distribution of noise which serves as an innova-

tive method to characterize predictability.

In Chap. 7, conclusions are given with respect to work from each chapter and on an

ending note possible future work is discussed.

33



Chapter 2: Characterizing Detrended Fluctuation Analysis of Mul-

tifractional Brownian Motion

2.1 Overview

We introduced the concepts behind long range correlations and multi-scale

systems in the previous chapter. Detrended Fluctuation Analysis (DFA) is an

important statistical analysis tool to estimate scaling in systems with long range

correlations. Multi-scale systems are defined to be those complex systems whose

component processes are of varied correlation time scales. Separability of these

time scales via scaling crossover in fluctuation analysis is proposed to be the basis

for study of these component processes.

Multifractal systems are also multi-scale in nature as they incorporate pro-

cesses of varying fractal dimensions. Multifractional Brownian motion is a special

class of multifractal systems where the fractal dimension of the Brownian motion is

time varying through the time span of the data. In this chapter, we apply the pop-

ular DFA technique towards artificial multifractional data as a first step in testing

its robustness when applied to data with such a generic multifractal nature. Also,

this chapter serves as an introduction to important features of DFA technique which
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would come up again in latter chapters of this thesis as a result of its widespread

application.

Statistical properties such as trends and correlations of complex phenomena

are important in the study of the mechanisms driving such systems to extreme

events. Due to the non-equilibrium nature of complex driven systems, general sta-

tistical analysis tools cannot be readily applied on them. Long Range Correlations

(LRC) is a key feature and is studied in data from diverse physical systems such

as temperature records [Koscielny-Bunde et al. 1998], river flows [Mandelbrot and

Wallis 1969], heart rate variability [Schäfer et al. 1998], space weather [Sharma and

Veeramani 2011] etc.,

Rescaled range analysis (R/S) [Hurst 1951] and fluctuation analysis (FA) [Kar-

lin and Brendel 1993] are statistical tools developed to estimate the variability of

time series through estimation of Hurst exponent, H [Hurst et al. 1965], a statistic

which is directly related to the scaling in auto-correlation functions, and, also to the

fractal dimension of the time series data. While the scaling exponent, H, is equal to

0.5 for uncorrelated white noise, many natural systems demonstrate values close to

0.7 [Sutcliffe 1979]. An introduction to these concepts was provided in Section 1.3.

These techniques fail to estimate H in non-stationary data and this is their main

shortcoming.

More recently, DFA was developed [Peng et al. 1994] which is widely consid-

ered a better technique than R/S or FA due to its capability to detrend a time

series data whilst estimating H, making it viable for non-stationary systems. With

increased usage of DFA technique, scepticism regarding its detrending capabilities
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arose [Bryce and Sprague 2012] and it is evident that there is need for a better alter-

native detrending schemes for data with atypical trends (e.g., nonlinear trends). In

spite of its purported shortcomings, DFA is recognized as an efficient Hurst exponent

estimation technique. Its efficiency stems from the fact that due to simultaneous

detrending DFA estimates over lesser number of averages than in FA and thus faster.

Fractional Brownian motion (fBm), a generalization of Brownian motion is a

quintessential representative model of the Hurst effect [Mandelbrot and Van Ness

1968]. Since its discovery, there has been increased interest in modeling physical

systems as fBm. However, it was quickly realized that imposing a uniform H over

the span of the data is in fact a restricting condition as uniform level of LRC in

real life data implies mono-fractal nature. This is a very strong condition and

hence, is not commonly found in real world data. Multifractional Brownian motion

(mBm) is a generalization of fBm relaxing this condition [Peltier and Lévy-Véhel

1995], allowing for variable degrees of self-similarity with non-stationary increments

i.e., H varies as H(t) over the time span of the data. Control over H(t), which

is a measure of LRC at each point of time t, is a valuable feature of mBm due to

which there has been increased interest in modeling various geophysical systems as

mBm [Echelard et al. 2010, Gaci and Zaourar 2011, Wanliss and Dobias 2007].

Although there is increasing use of DFA as a technique to study LRC in

time series data, it is widely recognized that it yields a single Hurst exponent,

and thus can not distinguish between multi-fractal and mono-fractal systems, e.g.,

between mBm and fBm respectively. In fact, most systems exhibit time varying

H exponent, but DFA yields a constant H value because it is a single exponent
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technique. Besides which previous studies have shown the effect of data size used

on the Hurst exponent [Lennartz and Bunde 2011, Rybski and Bunde 2009], thus

requiring caution in the interpretation of the estimated values. This is in direct

agreement with our study of effect of data size on the Hurst exponent estimated by

DFA in mBm data as seen in Section 2.5.

Although other schemes such as Multi Fractal Detrended Fluctuation Analysis

(MF-DFA) were proposed [Kantelhardt et al. 2002] as an alternative, they address

the multifractal nature of time series with respect to one fractal dimension at a

time and do not provide a solution with respect to estimating the time varying

fractal structure of mBm. It is apparent that DFA and other similar techniques

were assumed to locally estimate a time averaged Hurst exponent [Carbone et al.

2004, Sheng et al. 2010]. This assumption helps compute H(t) by using estimator

techniques with sliding windows. We believe the success of estimating such a time

average depends on the assumption of local linearity of the Hurst exponents. This

is an assumed result with no systematic study performed in the past and brought

to fore the question- how does DFA perform in estimating a time average exponent

in mBm data?

Using mBm data generated from linearly varying Hurst exponents, H(t), we

show that DFA in fact estimates the time average (of H(t)) and test the dependence

of estimated exponent on various data and technique related parameters. The pri-

mary motivation for our study is to establish a bench mark for the performance

of DFA technique with respect to its ability to estimate a time averaged Hurst

exponents from mBm data, and, identify its limits.
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This work characterizes the performance of DFA on mBm data with linearly

varying H(t) and further test the robustness of estimated time average with respect

to various data and technique related parameters. Our results agree with what

is intuitively expected from such a study and set to serve as a bench-mark for

using DFA as a sliding window estimator to obtain H(t) in a time series data.

Furthermore, given that DFA is one of the primary techniques used for fluctuation

analysis throughout the work mentioned in the current thesis, this chapter serves to

set the context and understand the limits and limitations of applicability of DFA to

data with time varying fractality.

The next section introduces preliminary ideas of LRC, fBm, mBm, and, DFA.

We then proceed to establish our estimation methodology and follow it up with

main results of this study and conclusions.

2.2 Fractional and Multifractional Brownian Motion

LRC is also commonly identified as self-affinity, self-similarity or long-range

persistence and is a statistical property of time series where the rate of decay of

its auto-correlation is slower than exponential decay and most commonly a power

law. This property is usually quantified using the Hurst exponent H (also known

as the Hölder exponent). The Hurst exponent, H ∈ (0, 1) with increasing value of

exponent implying increasing LRC nature of the data, and 0.5 as threshold value

where the correlations are completely absent.

Fractional Gaussian noise (fGn, which is stationary in nature) is proposed
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as a model for data with LRC and fractional Brownian motion (fBm) (its non-

stationary counterpart) is its corresponding Wiener process generated using fGn

as its incremental process. A continuous time fractional Brownian motion (fBm),

BH(t) with Hurst exponent H is a Gaussian process with zero-mean and is H-self

affine i.e.,

BH(λt) ∼= λHBH(t), ∀ λ > 0 (2.1)

Also, its covariance varies by definition as [Kamont 1996],

cov[BH(t1), BH(t2)] =
1

2
(|t1|

2H + |t2|
2H − |t1 − t2|

2H) (2.2)

Thus, H characterizes the relative smoothness of such resulting Brownian motions.

It can also be seen that when H = 1/2 and t1 > t2 (without loss of generality),

cov[BH(t1), BH(t2)] = t2 (from Equation 2.2), thus it is a Wiener process (Brownian

motion). However when H > 1/2, then the increments are positively correlated and

when H < 1/2, the increments are negatively correlated. This means that we have a

smooth long-term correlated time series data for when H > 1/2 and anti-correlated

data for when H < 1/2.

GH(t) = BH(t+ 1)− BH(t) (2.3)

The increments in a fBm is known as fractional Gaussian noise (fGn) and is seen in

Equation 2.3 as GH . It is stationary in nature. One obvious problem with fBms is

that although they capture the self-similarities well, the point wise irregularity given

by the constant Hurst parameter, H is invariant in time. This restricting condition

can be over come by generalizing fBm to a more broader class of Brownian motions
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where the local irregularity is given by a time varying Hurst exponent, H(t), known

as multifractional Brownian motion (mBm).

In order to simulate data with such properties, an fBm BH(t) with a Hurst

parameter, H(t) at a time t is generated and a mBm, WH(t), is calculated to be equal

to BH(t) by interpolation. Each of a field of such fBms can be generated using many

methods. In our simulations, we applied the method of circulant matrices [Wood and

Chan 1994] to generate each of such fBm with different Hurst exponents. Producing

an fBm with a stationary fGn as its incremental process (as in Equation 2.3) requires

a method to filter a typical Gaussian noise of low frequency components to produce a

covariance as described in Equation 2.2 using Fourier filtering technique. Circulant

matrices, which are diagonalized by a discrete Fourier transform allow for faster

solutions for linear equations that contain them [Davis 1970], are used to obtain each

fBm. Subsequently, the field of fBms are interpolated by a krigeage method [Chan

and Wood 1998]. The method of kriging predicts intermediate value of a function at

a given point by computing a weighted average of the known values of the function

in the neighborhood of the point, as against a piecewise-polynomial spline, which

based on smoothness may not produce the most likely values for intermediates. This

method is known to be reliable in simulating discrete time mBm [Coeurjolly 2000]

2.3 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) is a widely used technique for quantify-

ing LRC in time series data, particularly those with non-stationarities [Kantelhardt
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Figure 2.1: Application of Detrended Fluctuation Analysis with
quadratic detrending (DFA2) to fractional Gaussian noise with Hurst
exponents, H=0.3, 0.5 & 0.7.

et al. 2001]. In this technique, a random walk profile Y (j) is created using the

time series as is usually done in FA (shown in Section 1.3). However, its departure

from traditional FA arises due to the simultaneous detrending operation performed

using a polynomial of known order (p) which is locally fit to the walk within a time

window of fixed size. DFA, thus consists of the following steps: The time series data

X(i) of length N is first shifted by its mean 〈X〉 and its cumulative sum calculated

as:

Y (j) =
j

∑

i=1

[X(i)− 〈X〉] (2.4)
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This cumulative sum series, Y (j) is now segmented into time windows of different

lengths ∆T thus yielding a collection of set of random walk profiles of varying sizes.

These profiles are detrended within the windows by estimating their trends as best

fit polynomials of order p, Y
(p)
∆T (j) within each box corresponding to size ∆T . These

trends are now removed by subtracting from the cumulative sum data and the

resulting fluctuations, generally referred to as fluctuation functions are calculated

as the mean squared deviations i.e.,

F (p)(∆T ) = (
1

N

N
∑

j=1

[Y (j)− Y
(p)
∆T (j)]

2)
1

2 (2.5)

If the data X(i) have long-range correlations, it would be reflected in the fluctuation

functions F (p)(∆T ), with a power-law as:

F (p)(∆T ) ∝ (∆T )α (2.6)

The scaling exponent α is calculated from scaling within DFA by best fit of log-

log plot between F (p)(∆T ) versus window size ∆T using linear regression (method of

least squares in our work). This scaling exponent, α is related to the Hurst exponent

H as α = H for fGn and as, α = H + 1 for fBm because fBm is the cumulative

sum or the integral of fGn as seen in Equation 2.3. It must be noted that the Hurst

exponent for both fGn and fBm is equal to 0.5 because it is a measure of LRC

in the corresponding systems, which are of the same extent given that one is an

incremental process of the other. However, as H is not directly measurable in fBm

due to its non-stationarity, α is used as a measure of H.

It is very important to note that this exponent α can be related to other well

known exponents such as β in power spectrum decay (P (f) ∝ f−β) and γ in the

42



power law decay in correlation function (C(L) ∝ L−γ) as:

α = 1− γ/2,&

α = (β + 1)/2

(2.7)

The first relationship between α and γ is due to the dependence of fluctuation

functions in DFA on correlation functions [Kantelhardt et al. 2001]. The second

relationship between α and β is due to the fact that correlation functions are the

fourier transforms of the spectral functions in power spectrum [Buldyrev et al. 1995].

Analogous relationships between H, β and γ can be drawn given the stationary or

non-stationary nature of the data.

DFA technique applied with a detrending of pth order polynomial is commonly

referred to as DFAp. Figure 2.1 shows the application of DFA2 to fGn data with

various H exponents. The fGn data was produced using a popular wavelet-based

synthesis method [Abry and Sellan 1996] details of which are irrelevant to the current

work. From the results in Figure 2.1, we see that H is the slope of fluctuation func-

tions from DFA2. Hence, this shows the application of DFA technique to measure

H exponent, a measure of LRC in time series data.

We now characterize the performance of DFA on systems with time varying

H exponents using simulated mBm data with linearly varying H(t) in time. The

choice of linear H(t) is motivated by the consideration that its time variation will

be gradual, and, the system can be treated as piece-wise local linear (in Hurst

exponents). This allows one to divide the data into segments in which a time

averaged Hurst exponent can be estimated under the local linearity assumption. It

should be noted that piece-wise linearity forms the basis for earlier studies [Sheng
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et al. 2010]. The results of the time averaged Hurst exponent estimated by DFA

technique were found to be in accordance with results from linearly varying H(t).

That is, robustness of H estimated by DFA for mBm data with a sinusoidally

varying H(t) was found to depend on the amplitude and the frequency (of H(t)).

More specifically, increasing the amplitude or frequency of the sinusoidal variation

was found to deteriorate the quality of H estimated by DFA. This can be explained

by the effect of slope of linear H(t) on the quality of exponent estimated by DFA

as seen in Section 2.5. Hence, results from linearly varying Hurst exponents can be

used to explain results for other form of H(t) in real life data by using local linearity

arguments.

2.4 Estimation of time averaged Hurst exponent by DFA

The discrete time mBm data is simulated with H(t) = at + b over a time

length t = 1 to T using the data simulation method described in Section 2.2. The

parameters a and b are chosen to control the range ofH(t) i.e., R = max1≤t≤T H(t)−

min1≤t≤T H(t), and, its mean = 〈H〉act. This condition relates various parameters

as:

a = R
T−1

,&

b = 〈H〉act −
R
2
− R

T−1

(2.8)

The time series of the mBm generated using technique described in Section 2.2 is

shown in Figure 2.2.

When H1(t) = 0.75, the mGn corresponding to respective mBm demonstrates

uniform variability as expected. For H2(t) = at + b with a = 10−5 and b = 0.7
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Figure 2.2: Simulated mBm data with various forms of H(t) with the
incremental process, mGn shown in upper panel and the corresponding
mBm in bottom panel. In (a), H1(t) = c = 0.75. In (b), H2(t) = at + b
with a = 10−5 and b = 0.7 i.e., 〈H〉act = 0.75 and R = 0.1. In (c),
H3(t) = H2(t) + ǫt with ǫt drawn from normal distribution, N (0, σ2)
such that σ = 〈H〉act × 10−3. It is interesting to note the differences in
variability in mGn resulting in differences in LRC natures of mBm.

i.e., 〈H〉act = 0.75 and R = 0.1, we see that with increasing t, H increases resulting

in decreasing variance in mGn data thus resulting in increasing LRC in mBm data

when compared to the case in Figure 2.2(a). In Figure 2.2(c), for H3(t) = H2(t)+ ǫt

with ǫt drawn from normal distribution, N (0, σ2) such that σ = 〈H〉act × 10−3,

we see that due to noise in H3(t) data, the variance shows no regular pattern in

mGn and that is reflected in the LRC pattern in mBm. These figures show us

qualitatively the difference in the nature of LRC within data with different forms of
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H(t). If we had no a priori knowledge of the time varying nature of a data’s Hurst

exponent,the differing degrees of LRC between data would be viewed assuming a

uniform exponent. Similarly, a single Hurst exponent estimation technique such as

DFA would measure the time averaged exponent, denoted as 〈H〉est which would be

equal to 〈H〉act under the ideal condition of R = 0 (or a = 0).

While measuring for 〈H〉est using DFA, we apply linear regression between

logarithm of fluctuation function (F (∆T )) and logarithm of the time window (∆T ),

specifically the method of ordinary least squares to find the best-fit slope and the

standard error of least squares slope [McCuen 1985]. We measure the slope (or

Hurst exponent) resulting from the linear regression over logarithmically equi-spaced

values of time windows, ranging from ∆T = 10 to ⌊ T
10
⌋ (the integer rounded floor

value) to eliminate spurious curvatures at lower time windows and also have certain

minimum number of samples to obtain the relevant averaged fluctuation function

at higher time windows.

We denote and measure the standard error as SE(〈H〉est) (shown in error bars

in the following figures) which gives us the precision in 〈H〉est estimated by the

DFA technique. Furthermore, error of estimation of 〈H〉act is measured in terms of

relative error of estimation as:

EE(〈H〉est) =
|〈H〉est − 〈H〉act|

〈H〉act
(2.9)

For some of the sections, we perform ensemble averaging and the resulting

〈H〉est is an average slope over all the ensembles for which the exponent is estimated

and so is the standard error of estimation.
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2.5 Analysis of DFA performance

The ability of DFA to yield H values intrinsic to a system was tested using

the data of mBm. The most basic of which is to test how close 〈H〉est is to 〈H〉act.

It is expected that 〈H〉est would be sensitive to various parameters pertaining to the

technique and of the data. Some of such basic parameters are: p the order of the

polynomial, T the length of the data, R the range of H(t), and, possible noise in

H(t).

We begin our numerical experiments by first testing to see if 〈H〉est = 〈H〉act

whilst simultaneously observing the sensitivity of 〈H〉est to p of DFA.

Time averaged Hurst exponent and its dependence on the order of

detrending polynomial, p

The first studies are designed to test how well a single exponent 〈H〉est com-

puted with DFAp represents 〈H〉act of the mBm data. For our numerical experiment,

we chose mBm data with 〈H〉act values ranging from 0.4 to 0.9 (steps of 0.05) with

R = 0.06. The simulations are performed on mBm of size T = 213 = 8192 for one

ensemble of the data with no ensemble averaging. This length of the data is chosen

keeping in mind the nature of dependence of 〈H〉est on T (discussed in the next

section) and also to optimize the computational time.

Figure 2.3 shows the dependence of 〈H〉est on 〈H〉act for various detrending

polynomial orders (p) of DFAp used. For p = 1, ..., 5, DFA yields exponents close to
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Figure 2.3: Dependence of 〈H〉est on the polynomial order (p) of DFAp
used. The actual average values (〈H〉act) are shown in red. R = 0.06
for all H(t) used and T = 213 = 8192. We see p = 1 has higher EE
compared to other cases.

〈H〉act, albeit with varying accuracy. For each 〈H〉est, from a DFA of order p, we see

that there is no regular pattern of increasing/decreasing accuracy with increasing

〈H〉act. This also concurs with our expectation that for a fixed R, the extent of LRC

as measured by 〈H〉est should not be dependent on 〈H〉act of the data.

But for every 〈H〉act, we see significant differences with in 〈H〉est from various p.

This is expected since lower polynomial orders (p = 1, linear) fit worse than higher

orders because detrending using a linear fit on non-stationary data is expectedly

worse, but this comes with a caveat that this is not necessarily so for higher order

polynomials due to poor conditioning, particularly for lower time windows. This
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may explain why we see that while p = 1 results in higher error (lower accuracy)

as compared to higher order p, there is no definite trend or difference in error for

p = 2, 3, 4, 5. So, in the following studies, we use p = 2, i.e., a quadratic detrending

which is also the most commonly used order.

To further settle on which length of data is appropriate within available com-

putational resources, we proceed to test the effect of T on 〈H〉est in the next section.

Dependence on data size, T

Although this is not a strict condition, it is important to examine the data

size effects on 〈H〉est. This prompted us to set up the next experiment where we

took various mBm data for which 〈H〉act = 0.75 and R = 0.06 but of differing size

T . Figure 2.4 shows this dependence of 〈H〉est and the SE(〈H〉est) on the size of

mBm data (T ) used. Just like in the previous case, our result is for one ensemble

of the data and so, there was no averaging. We fixed 〈H〉act, to make our point in a

more clear fashion as showing different 〈H〉act would confuse one and may make it

hard to see a clear pattern in 〈H〉est.

We see that while longer data sizes do not necessarily effect the accuracy

(difference between blue points and the reference line in red in Figure 2.4), it does

improve the quality of estimation as seen by decreasing error bars - as measured by

SE(〈H〉est). So, we fixed the length of the data to be T = 213 = 8192 for further

simulations to assure lower SE.

The results so far help establish a benchmark on p and T , using which we can
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Figure 2.4: Dependence of 〈H〉est on the length of data used for 〈H〉act =
0.75 and R = 0.06. It is interesting to note that while increasing data
size has no predominant effect on EE, it does improve the quality of
performance or decrease the SE as shown by error bars.

perform further tests. In the next section, we answer an important question: how

R would effect 〈H〉est?

Dependence on range R of H(t)

This result is important because in the assumption of a local linear H(t), one

would like to know how the slope of the linearly varying H(t) as measured by R

for fixed T and for each 〈H〉act, would effect 〈H〉est. To test this particular effect,

we measure EE(〈H〉est) for data with a 〈H〉act (ranging from 0.4 to 0.9 in steps of

0.05) and R (values ranging from 0 to 0.1 in steps of 0.02). This accuracy is plotted
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on a contour map as shown in Figure 2.5. The simulations were performed for 100

realizations of mBm data, each of size T = 8192 and 〈H〉est is estimated using DFA

with detrending order p = 2. Hence, the resulting EE is an average over all the 100

ensembles.

R
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Figure 2.5: Contour map showing the dependence of relative accuracy
of estimation (legend shown in color map on the right) on 〈H〉act and R.
We see interesting features emerging from this picture in that data with
〈H〉act ≥ 0.75 have predominantly lower EE compared to other cases,
and, R = 0.06 serves as a transition point where EE increases rapidly
beyond 2% approaching 5% near R = 0.1.

The ensemble averaging is used mainly because our results for a single sample

of data were inconclusive. However, a clearer picture emerged as we averaged over

several such ensembles. Our results show that there is a generally decreasing trend

in accuracy (increasing EE) with increasing R. This is in line with what we expect
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when R (or the slope a) increases with constant data size T , worsening performance

(or increasing EE) of DFA in estimating 〈H〉act is expected intuitively. This ar-

gument is based upon the premise that when we enforce through the technique to

estimate a single exponent from a data with a spread of exponents, we are actually

averaging all the different possible Hurst exponents. With increasing R, the spread

in various possible exponents, or the standard deviation increases and results in

worsening accuracy as we are essentially trying to fit a broadly distributed (and

possibly skewed) set of exponents to a narrow Gaussian distribution. This results

in worsening accuracy, and, we stop the simulations at R = 0.1 as this is the point

where in general the accuracy starts to fall below 95% or EE ≥ 5% (as seen in

ratio in the contour color map in Figure 2.5). We chose to use 5% as the limiting

condition so as to standardize the benchmarks. Although it might sound arbitrary,

this is a meaningful assumption because data that result in higher EE would typ-

ically show non-convergent behavior in their respective fluctuation plots for DFA,

making it almost look like there are scaling crossovers which is a different phenom-

ena altogether. Also, this result motivated us to use R = 0.06 for our simulations

in previous sections, since for this value of R, although the data is multifractional

in principle, with accuracy in estimation over 98% for most 〈H〉act, the data looks

mono fractional in the view of the DFA technique.

There is another interesting result in Figure 2.5 which was not discussed in

Figure 2.3: with increasing 〈H〉act, over all R, the EE(〈H〉est) is in general decreasing

till 〈H〉act = 0.75 and then remains relatively invariant thereafter. This is interesting

because it contradicts our earlier conclusion on the dependence of 〈H〉est on 〈H〉act.
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It can be reasoned out that with increasing 〈H〉act, as the level or correlations i.e.,

extent of LRC is increasing, DFA could do a better job estimating 〈H〉act with a

threshold occurring at 〈H〉act = 0.75. However, this is an interesting phenomenon

because data with H ≥ 0.7 is known to show predominant LRC behavior than the

condition H ≥ 0.5, which is commonly referred to as the Hurst effect. In data with

〈H〉act ≥ 0.75, and, R ≤ 0.1, the H(t) ≥ 0.7, which might imply a change in intrinsic

nature of the data as speculated previously [Li and Zhao 2012] when compared with

when 0.5 ≤ H(t) ≤ 0.7. This motivates us to use 〈H〉act = 0.75 for cases in previous

sections as this has minimum estimation error over all R, as seen in Figure 2.5.

In the following section, we intend to answer an interesting question- How

robust is the DFA with respect to the presence of noise in linear H(t)?

Dependence on noise in H(t)

The robustness of DFA in the presence of noise is analyzed using a linear

H(t) with additive noise. We simulate mBm data using H(t) = at + b + ǫt, where

ǫt is drawn from Normal distribution (N (0, σ2)), and, a and b are as defined in

Equation 2.8. We control the strength of additive noise using parameter κ such that

the standard deviation, σ = 〈H〉act × κ = 0.75× κ for 〈H〉act = 0.75 and R = 0.06.

Other parameters, p = 2 and T = 8192 are the same as before and we average over

100 realizations of the data for each case.

From the results in Figure 2.6, we see that 〈H〉est is very sensitive to κ, par-

ticularly to those values greater than 10−3 beyond which the relative accuracy falls
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Figure 2.6: Dependence of 〈H〉act on the strength of Gaussian noise
(N (0, σ2)) added to H(t), represented here by κ = σ × 〈H〉est. We note
how rapidly EE increases, well beyond the 5% limit (as shown in green
line) as the strength increases beyond 10−3.

far below the 5% limit of EE. We can see the threshold with respective to the

reference green line which represents 95% of 〈H〉act. It is interesting to note that

while it is expected to have worsening performance with increasing κ, the rate of

loss of accuracy for κ ≥ 10−3 is very high and goes to show how sensitive 〈H〉est is

to noise in H(t).

2.6 Time varying Hurst exponents in AL index data

While mBm data models a more generalization over mono-fractal data, it is

important to mention that AL index data from space weather also exhibits time
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Figure 2.7: Time varying Hurst exponent picture of AL index data from
2001-2012 shown as weekly Hurst exponents.

varying fractal structure. This reflects in the time varying Hurst exponent picture

of AL index. Our analysis estimates weekly Hurst exponents of AL index data

from 2001-2012 and the results are seen in Figure 2.7. This makes a strong case

on the relevance of this benchmarking given the multifractality of AL index data.

Such multifractality was also found to exist in data from finance [Barunik et al.

2012, Bertrand et al. 2012]. In fact, models such as fBm, Levy, Truncated Levy

were found to be incompatible with such multifractal features in financial data and

hence, a multifractal alternative was proposed [Schmitt et al. 1999].
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2.7 Conclusions

The characteristics of DFA in computing Hurst exponents from a non-stationary

data with varying degrees of self-similarity (or LRC) are analyzed using mBm data.

This is motivated mainly by increased use of DFA for real-life data, which more

often than not is multifractional or with varying H [Hongre et al. 1999, Rogerio and

Vasconcelos 2003, Wanlissm and Cersosimo 2006, Wei et al. 2004]. We set out with

a basic and intuitively meaningful assumption that the estimated exponent within

reasonably slowly varying H(t) is an average over time. This was shown to be true

through numerical experiments on synthetic mBm data.

Furthermore, analysis of the effects of data and technique related parameters

on the estimated exponent yielded some interesting insights and benchmarks for

application of DFA on mBm. The following are the main conclusions on the usage of

DFA technique for computing H(t) using sliding window estimation or just estimate

a time averaged Hurst exponent:

1. The order of polynomial, p used for detrending in DFA has a limited and

expected effect on our estimation as we see that even though mBm data is

non-stationary, the non-stationarity is of a relatively simple kind and can be

conveniently addressed by a lower order polynomial such as quadratic (p = 2).

Application of DFAp with p > 2 on mBm (and in general any data) should be

done with caution due to poor conditioning of the higher order polynomial-

more so in the lower time windows of estimation.
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2. Data size (particularly T > 211) does not predominantly affect the estimated

exponent, although it would in general effect the precision (or standard er-

ror SE of least square fitting), more so due to limited number of averages

performed in estimating the variance for fluctuation functions.

3. The range of the data, R which for a fixed data size controls the slope of

H(t) has a major effect on the accuracy of estimation. We find that R = 0.06

i.e., H(t) = 〈H〉act −
R
2
→ 〈H〉act +

R
2
is a limiting condition for various data

irrespective of 〈H〉act. This conclusion is drawn on a 5% tolerance in EE as

the limiting condition.

4. Increasing strength of additive noise diminishes the accuracy of estimation for

obvious reasons. However, it is interesting to note how sensitive estimated

exponents are with respect to the strength of noise. For a 5% tolerance in

accuracy, we would desire that H(t) have no more than 〈H(t)〉 × 10−3 as

standard deviation in noise. A noise of greater strength would quickly degrade

the accuracy of the estimated exponents.

Beyond our observations on the nature of estimated exponents, we could also

see a peculiar behavior of how DFA does a better job of estimating the time aver-

age of exponents when the data is predominantly self-similar (H(t) ≥ 0.7). This

phenomenon although interesting would require further study.

With the knowledge gained through this study about DFA technique and its

applicability, we now proceed to apply it to space weather data i.e., particularly the

AL index data and study the following results in the next chapter.
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Chapter 3: Modeling crossover phenomenon in Detrended Fluctua-

tion Analysis of Auroral Electrojet index data

3.1 Overview

In the last chapter, we introduced Detrended Fluctuation Analysis (DFA)

technique and studied its robustness when applied to a general multifractal model

- the multifractional Brownian motion (mBm). We also presented evidence of time

varying fractal nature of Auroral Electrojet index (AL) data similar to mBm model

(in Figure 2.7). Section 1.2 covers essential features of space weather, magneto-

spheric dynamics and AL index. Besides its time varying fractal nature as seen in

Figure 2.7, AL index also has scaling crossovers in its fluctuation functions from

DFA. Characterization of the crossover, modeling AL with the appropriate model

that shows crossover features and using the aspects of model to estimate important

parameters in AL data is covered in this chapter.

From previous work [Takalo and Timonen 1994], it was seen that the charac-

teristic time scale of the AL index is about 30 minutes from auto-correlation estima-

tion based study. Also, earlier work [Tsurutani et al. 1990] detected a crossover or a

change in the spectral index of the Fourier components which limited the results (as
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shown in Figure 3.1). The time scale corresponding to the frequency of crossover

in power spectral density was estimated to be 5 hours. However, this crossover

time was artificially selected and thus complicates subsequent analysis. There was

no simple scheme to find the point of crossover when the data exhibits a single

crossover in its spectral scaling or fluctuation analysis.

Figure 3.1: Power spectrum of 5 minute AE index from 1978-1980, we
see a break/crossover in the spectrum at the frequency corresponding to
a time of about 5 hours [Tsurutani et al. 1990].

Recently, fluctuation analysis using DFA was performed on AL index data [Sharma
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and Veeramani 2011] where existence of crossover in fluctuation functions with two

exponents was first observed. We replicated these results and extended the analysis

using averaging over multiple ensembles of AL index data. Furthermore, we tested

the dependence of exponents and the correlation crossover time scale on the order of

polynomial used for detrending in DFA. In estimating the correlation crossover time

scale and the Hurst exponents, we prescribe to an advanced regression to model two

exponent power laws using Hyperbolic regression.

Recent work modeled AL index data using stochastic models [Anh et al. 2008,

Rypdal and Rypdal 2010]. These models utilized the property of long range correla-

tions seen in AL index. These models were successful in explaining the intermittency

seen in AL data. However, these stochastic models do not explain the crossover seen

in fluctuation analysis. We identified three theoretical models-two deterministic and

one stochastic that all demonstrate such a crossover in DFA. Studying the nature

of crossover seen in successive derivatives of these models and comparing the same

in AL data, we could identify the stochastic model - Ornstein Uhlenbeck Langevin

(OU-Langevin) best models the crossover effect. The correlation crossover time scale

in OU-Langevin is known to depend on an important parameter in the model - the

dissipation rate. This parametric significance explains the importance of robust

estimation of the crossover time scale from AL data.

Estimation of the crossover time scale is an important step towards stochastic

modeling of AL data using OU-Langevin model as mentioned earlier. However, esti-

mation of correlation crossover time scale using DFA is riddled with challenges due to

the additional detrending operation performed while estimating the variance [Havlin
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et al. 1999]. The variance of OU-Langevin can be estimated analytically using mul-

tiple trajectory and single trajectory ensemble approaches which are described in

Section 3.4. Using multiple trajectory ensemble averaging the correlation crossover

time in AL data is estimated to be 4 hours 25 minutes which is close to the 5 hours

crossover time in earlier work.

We begin by showing results from application of DFA on AL data in Sec-

tion 3.2. Then, we present three theoretical models exhibiting crossover in DFA and

present a basis for choosing OU-Langevin as closest model for AL data in Section 3.3.

Next we demonstrate estimation of the dissipation parameter and hence, the corre-

lation crossover time scale using variance estimation by modeling as OU-Langevin

in Section 3.4 followed by conclusion in Section 3.5.

3.2 Fluctuation Analysis and scaling crossovers in AL index data

DFA estimates fluctuation functions for a given length of walk (or time window

here) and under the assumption of scale invariance of these fluctuation functions

estimates an exponent, α as the scaling exponent. This scaling exponent α and

the Hurst exponent, H relate as: α = H for stationary data, and, α = H + 1

for a non-stationary data whose incremental process is stationary. For example, a

non-stationary fBm data is obtained with stationary fGn as its incremental process.

This relationship would help relate H exponent to an exponent α estimated from

DFA technique in the next sections. These ideas have been previously discussed in

Section 2.3. DFA is a step up from FA in that it estimates the variance in random
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walk, detrended in the respective time windows (boxes) using a polynomial fit. The

order of this polynomial (n), used for detrending is fixed and the resulting technique

is generally labeled as DFAn. This n controls the extent of detrending performed in

DFA technique and hence affects the estimated fluctuation functions.

For our analysis, the fluctuation functions from DFAn (for n=1, 2, 3, 4, 5 &

6) are estimated for time windows logarithmically equi-spaced between 10 to 104

minutes. The AL data was prepared in consecutive windows of 10 weeks ( 105

data points in each window) of 1 minute AL data and there were total of 100 such

ensembles in data from 1980-2013. Average fluctuation functions were estimated for

the respective time window as an ensemble average for the 100 ensembles.

Figure 3.2 shows the results for DFA of AL for various orders of detrending

polynomials n. We see that increasing n implies decreasing fluctuation functions

as expected. Furthermore, the plots all converge with increasing n. This can be

explained by the fact that higher order polynomial detrending is redundant after

a certain minimum value of n taking into account the nature of non-stationarities

seen in data.

We do see evidence of crossover in all the fluctuation functions. This implies

we need a method to identify the point of crossover so that we can measure the ex-

ponents before and after the crossover. For a system that exhibits scaling crossover

with one unique crossover point, there are many ways one can estimate the scaling

before and after crossover and the crossover time. However, many of these tech-

niques involve imposing some form or other of tolerance levels by the user. Hence,

we suggest a method that limits such ambiguities and statistical artifacts. This

62



1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log
10

(∆ T(in min))

lo
g 10

(F
(∆

 T
))

 

 

n=1

n=2

n=3

n=4

n=5

n=6

Figure 3.2: DFA of AL index- Fluctuation plots for AL index of 10
weeks in length averaged over 100 ensembles. DFAn for various orders
of detrending polynomial, n = 1, 2, 3, 4, 5 & 6 is shown to illustrate the
dependence of fluctuation plots on n.

method models the fluctuation function exhibiting crossover as a hyperbola with

the respective arms of disparate scales approaching the two asymptotes of the hy-

perbola and the center of the hyperbola denoting the point of crossover.

A given data which exhibits crossover can be fit to a hyperbola following the

method of least square [O’Leary and Zsombor-Murray 2004]. This method is based

on quadratic constrained least-mean-square fitting and yields a best fit hyperbola for

a set of scattered data. From the parameters corresponding to a standard hyperbola,

one can obtain the slopes and intercepts of its asymptotes. Important advantage of

this method is that it is numerically efficient to be applied to large data sets or large
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ensembles of fluctuation functions in our case. Also, this method does not assume

the point of crossover and only fits the data to the best possible hyperbola allowing

us to determine if the nature of fit qualifies the data to be modeled as a hyperbola

or not.

Furthermore, hyperbolic regression technique allows all of the data to model

the nature of change in scales with asymptotic fits before and after the point of

crossover. The slopes of the asymptotes are considered the Hurst exponents before

and after the crossover respectively and the center of the hyperbola would be con-

sidered the crossover time from this technique. It is to be noted that the crossover

point is not an exact time but a measure of where the change in scale takes place

because more frequently the crossover or the transition in the scales takes place over

a finite span of time where we can consider the two scales to be mixed.

Applying the hyperbolic regression to fluctuation functions of AL index data

in Figure 3.2, we measure the respective Hurst exponents and crossover times. The

estimated Hurst exponents for all n are as follows: αshortterm = 1.43 ± 0.007 or

Hshortterm = 0.43 ± 0.007 and αlongterm = Hlongterm = 0.93 ± 0.009. The resulting

asymptotes and their slopes are shown in Figure 3.3. These estimated exponents

imply that the nature of correlations in the data change from non-stationary un-

correlated (anti-correlated) to stationary highly correlated through the crossover

regime.

It can be also be seen from Figure 3.3 that the crossover time changes between

DFA1 and DFA2 from 224 minutes (3 hours 44 minutes) to 420 minutes (7 hours).

This has been seen to be true with other n, i.e., the crossover time Tcrossover increases
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Figure 3.3: Hurst exponent estimation from FA, DFA and cross over
point detection using Hyperbolic least square fitting for AL data. FA
fails to estimate the correct Hurst exponent before the crossover due to
the non-stationary nature of AL data. DFA1 and DFA2 do a better job
but show different crossover points.

with increasing n. From plots in Figure 3.2, we see that the fluctuation functions at

lower values of window lengths i.e., ∆T ≤ 100 minutes before the crossover time do

not converge as much as those at higher values of window lengths i.e., ∆T ≥ 1000

for all n. The two asymptotes from DFA1 and DFA2 from Figure 3.3 are parallel to

each other and this is true irrespective of n. However the crossover time increases

with increasing n. Due to this, the fluctuation functions converge more at higher

window lengths than those at lower window lengths as observed from Figure 3.2.

Hence, it is now established that estimation of long term and short term Hurst
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exponent is not effected by n, but the crossover time changes with n. Due to

this, we select DFA1, the DFA which least effects the data in terms of detrending

operation (removing linear trends) for further analysis. Solar wind (given by −v.Bz

using bulk velocity v of solar wind and magnetic field Bz of IMF) is known to

be the driver for magnetospheric dynamics as described in Section 1.2. However,

magnetospheric response is known to demonstrate internal dynamics with a time

scales of its own [Baker et al. 1997]. In order to correlate and understand the

crossovers better, we compare the fluctuation analysis from DFA1 of AL and solar

wind data as seen in Figure 3.4. The solar wind data is obtained over a span of 12

years from September 2000 to February 2013 which contains roughly 106 time steps

at 5 minute intervals.

We see from Figure 3.4 that there is a scaling crossover in solar wind data

too and it occurs at about 1 day as estimated from the hyperbolic regression. The

time scale at which crossover in solar wind data is seen i.e., 1 day is much larger

than the time scale of crossover of AL data i.e., 5 hours. This implies that solar

wind is primarily single exponent in nature in comparison to time scales relevant to

AL data. However, the Hurst exponent from solar wind before its crossover time

scale at 1 day (≈ 0.9) is estimated to be close to the Hurst exponent from AL data

after its crossover time scale at 3 hours 44 minutes (≈ 4 hours) from DFA1 (= 0.93)

indicative of the driving nature of the solar wind.

DFA technique combined with hyperbolic regression has so far proven to be

an effective tool to estimate Hurst exponents in a two exponent multi-scale system

such as data from AL index. However, we have seen how n the order of detrending
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Figure 3.4: DFA1 of AL (in blue) and solar wind data (in red). We
see that the long term Hurst exponent of AL is equal to the short term
Hurst exponent of solar wind data.

polynomial severely affects the correlation crossover time limiting our ability to

robustly estimating it. Several theoretical models demonstrate similar crossover in

fluctuation functions from DFA. In the next section, we present evidence of three

such models and propose a test to benchmark their crossover features to help us

chose the best model for AL data.

3.3 Theoretical models for crossover phenomena

Time series data from various theoretical models exhibit crossover in fluctua-

tion functions and can be used to model AL data. Most basic are periodic systems
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like sine: x(t) = Asin(2πωt), where A is amplitude and ω its frequency, and strange

attractors like the Lorenz attractor (which was described in Section 1.5). It is to

be noted that 1/ω is a measure of crossover time scale as we show in results from

further analysis. Both of these models are deterministic in nature.

Stochastic systems like OU-Langevin process [Chandrasekhar 1943, Langevin

1908, Uhlenbeck and Ornstein 1930, Wang and Uhlenbeck 1945] also demonstrate

crossover in their fluctuation analysis. The stochastic differential equation describing

OU-Langevin process is:

dx(t)

dt
= −λx(t) + η(t) (3.1)

where η(t), the stochastic driver, is Gaussian noise with 0 mean, σ standard devia-

tion and λ, the dissipation parameter or the coefficient of friction in the drift term.

It is to be noted that 1/λ is measure of crossover time as we show in our results

soon. The Ornstein Uhlenbeck process is primarily used to model the velocity of a

massive Brownian particle suspended in a fluid. This model overcomes, at least the

difficulty encountered if we try to model the location of the particle by Brownian

motion, which results in infinite velocities.

In order to identify the best model that explains the nature of crossover seen in

AL data, we need to test using DFA1 the nature of crossover in these three models.

However, all the three models show decreasing LRC nature i.e., decreasing Hurst

exponents through the crossover. Hence, DFA1 of the time series data corresponding

to these models alone cannot help us conclusively to identify suitable model. So,

we propose to test the DFA1 of successive derivatives or the differences (in discrete
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time) to identify in depth the signature features corresponding to scaling crossover

seen in these models.

Figure 3.5 shows the result for DFA1 on sine data. In particular, Figure 3.5a

shows the result from application of DFA1 on time series corresponding to sine with

a frequency of 1/100 or 1/ω = 100 time steps. As we see, DFA1 is successful in

identifying the crossover time for sine data. The amplitude of the sine wave does

not hold relevance in our analysis because it does not control the crossover time.

Hence, we arbitrarily chose a value of A = 10 for the time series data for sine.

In Figure 3.5b, we see the results for DFA1 of successive differences in sine data.

Derivative of sine is cosine and vice versa. DFA1 of cosine is of similar nature to

DFA1 of sine as the nature of LRC changes at the time scale of 1/ω which remains

the same in the process of taking the derivative or difference. Hence, we see that

with the exception of a constant decrease in fluctuation functions from DFA1, the

nature of crossover exhibited remains the same in time series successive differences

of sine data.

Figure 3.6 shows the result for DFA1 on x-component of the Lorenz data.

Figure 3.6a shows the result from application of DFA1 on time series corresponding

to Lorenz. The system is integrated (using system of differential equations with

standard parameters as mentioned in Section 1.5) such that the correlation time

scale as measured from mutual information is roughly 15 time steps of integration.

This is an estimate of the time scale over which correlations are completely lost

within the data. We see that DFA1 is not successful in identifying the crossover

time for Lorenz data due to the detrending operation. However, we interpret the
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Figure 3.5: DFA1 of sine and its successive differences.

crossover time as the time required to traverse a wing of the Lorenz attractor before

it switches to a different wing.

The asymptotic nature with two exponents is not seen within the time span

over which DFA1 is estimated. In Figure 3.6b, we see the results for DFA1 of

successive differences in Lorenz data. Due to nonlinear nature of the system, the

crossover is seen in DFA1 of successive differences. We noted that the fluctuation

functions reach a noise floor at the 6th difference but this is not shown in the Figure

as it is not relevant for our analysis. We consider these features seen particularly

from result in Figure 3.6a as the signature features of the crossover in data from

Lorenz attractor.

Figure 3.7 shows the result for DFA1 on integrated data from the differential

equation corresponding to OU-Langevin mentioned in Equation 3.1. Figure 3.7a

shows the result from application of DFA1 on time series corresponding to solution of
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Figure 3.6: DFA1 of Lorenz and its successive differences.

OU-Langevin. The system is integrated using an initial condition x(0) = 0 and with

a dissipation parameter λ = 0.055 such that crossover time is 1/λ = 18 time steps

of integration generating discrete time series. The noise added to the differential

equation is drawn from gaussian distribution or normal distribution with 0 mean

and a standard deviation of σ = 40. Due to detrending using linear fits done by

DFA1 method, the crossover time is not estimated exactly as seen in Figure 3.7a.

Figure 3.7b shows the result for DFA1 of successive differences of solution of

OU-Langevin equation. We see that the first difference (or derivative in continuous

time) exhibits crossover in fluctuation functions. Further orders of difference do not

show crossover in fluctuation functions and approach a noise floor for the second

difference. In fact, this reflects in the increasing fluctuation functions from third

difference onwards. This is owing to the fact that the incremental process of gaussian

noise would have a higher standard deviation than the gaussian noise reflecting in
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Figure 3.7: DFA1 of OU-Langevin and its successive differences.

increased variance as estimated through fluctuation functions.

Figure 3.8 shows DFA1 on successive differences in AL data from which we

see strong similarity in the nature of crossovers in fluctuation functions from second

difference as seen previously from Figure 3.7b for solution of OU-Langevin. The

results from DFA1 of successive differences, show that OU-Langevin best explains

the feature seen in AL data. Hence, using this as basis, we model AL data as

OU-Langevin.

There is a driver term in the stochastic differential equation describing OU-

Langevin process which is the additive gaussian noise η in Equation 3.1. The solar-

wind input driving the magnetosphere acts similarly, which due to its turbulent

nature is multifractal in nature. The frictional drift with dissipative term λ as

coefficient of friction in Equation 3.1 represents negative feedback to the system.

This feedback drift term can be seen trying to establish equilibrium or maintain
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stationarity in response to the additive noise. Hence, these similarities show that

the magnetospheric dynamics can be modeled using OU-Langevin process.

Aided by battery of tests using DFA1, we could establish reasons for using OU-

Langevin as the appropriate stochastic model for AL index data. The crossover time

in OU-Langevin is known to be equal to the inverse of dissipative term. Modeling

of AL data using OU-Langevin model helps us estimate the dissipative term from

which we can estimate its crossover time. This crossover time, as discussed in the

introduction is a measure of the time scale in which the correlation nature of the

data changes. Hence, it is a measure of the time scale of the internal dynamics of the

magnetosphere. In the next Section, we demonstrate application of OU-Langevin
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model in estimation of the correlation crossover time scale of AL index data.

3.4 Stochastic modeling of AL index and estimation of crossover time

Fluctuation functions estimated by a fluctuation analysis method utilize a

measure of spread in the random walks constructed using the data as the incremental

process. DFA is necessary to estimate the fluctuation functions in data with non-

stationarities. As AL data is non-stationary in nature at short time scales i.e., before

the crossover time scale, we needed DFA to estimate the fluctuation functions. As

seen in Section 3.2, DFA fails to estimate the correlation crossover time scale due

to the detrending operation. Hence, the main intention behind stochastic modeling

of AL data is to find an alternative method to estimate this crossover time scale.

Variance or spread in the data within a time window can also be measured

without the random walk approach taken by fluctuation analysis techniques such as

DFA. A variance estimated from one realization of the data is not a representation of

the variance of the entire data. Hence, we need an ensemble average to estimate the

mean variance. Of such ensemble averaging methods, Multiple Trajectory Ensemble

(MTE) and Single Trajectory Ensemble (STE) averaging are most commonly seen.

In MTE approach, averaging is performed over independent realizations of the data

all starting with the same initial value i.e., x(0) = 0. In STE approach, averaging

is performed over realizations each of which starts are different initial points. This

is because a single trajectory or data is divided into multiple windows each with

differing initial points. Earlier, equivalence between MTE and STE approaches was
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assumed without proof [Wang and Uhlenbeck 1945].

Recently, it was shown that variance estimated using MTE approach can be

derived analytically for OU-Langevin process as [Ignaccolo et al. 2010]:

σM(t)2 ≡ 〈x(t)2〉M − 〈x(t)〉M
2 =

ση
2

2λ
[1− e−2λt] (3.2)

where the subscript M refers to the MTE averaging method and x(0) = 0 for all the

ensembles.
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Figure 3.9: Variance of AL estimated from multiple trajectory ensem-
ble (MTE) approach (in blue) and the theoretical curve from an OU-
Langevin process with similar crossover time of 265 minutes or 4 hours
25 minutes (in red).

Estimating variance using MTE approach in time series data corresponding

to physical processes is not always possible due to strict requirement of zero initial

conditions i.e., x(0) = 0. However, we could identify 100 independent windows all

with initial conditions of AL values close to 0 nT and whose data length can be as
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high as 1 week of 1 minute values (≈ 104 points). This afforded us the flexibility

of using MTE approach to estimate the variance from such time windows of AL

data. We estimated the variance of AL data at several window lengths similar to

fluctuation analysis by MTE approach. Results for this variance estimation are seen

in Figure 3.9.

Modeling AL data using OU-Langevin process implies that we can estimate

the dissipation parameter λ corresponding to the stochastic model. Equation 3.2

shows that for OU-Langevin model, the variance, as estimation using MTE approach

is analytically exact. Hence, we fit the variance of AL index data to theoretically

expected variance from OU-Langevin model obtained using MTE approach. This

curve is shown in red dashed line in Figure 3.9. The crossover time from variance

of AL index data is obtained using hyperbolic regression as 265 minutes (4 hours

25 minutes). Using this value of crossover time, we can calculate the dissipation

parameter as λ = 1/265. Furthermore, fitting the variance to the theoretically

expected variance from Equation 3.2 with λ = 1/265, we estimated the standard

deviation of the gaussian noise as σ = 13.6 nT.

3.5 Conclusions

We used fluctuation analysis by DFA technique to show the existence of two

Hurst exponents in AL index data. Furthermore, we introduced an innovative and

alternative regression scheme to model such crossovers in power law fits - hyperbolic

regression. This regression scheme helped us estimate the short term and long term
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Hurst exponents in AL data. However, due to shift in fluctuation functions due

to detrending done in DFA technique, we cannot measure the correlation crossover

time scale.

Various theoretical models show similar crossover in fluctuation functions from

DFA. One such model is the stochastic model - the OU-Langevin process. Tests using

DFA1 of successive differences in the time series data helped us establish the validity

of OU-Langevin as the appropriate model to explain crossover seen in fluctuation

functions seen in AL data.

Variance estimation using multiple trajectory ensemble (MTE) approach to

estimate crossover time after modeling AL data as OU-Langevin helps us estimate

accurately the crossover time. Results from such an analysis are shown and this is

the first known such study which robustly estimates the correlation crossover time

- a significant multi-scale feature in AL data. This crossover time is a measure

of transition time scale between internal dynamics of AL data and that of driver

solar-wind.

In this chapter, we modeled crossover feature in fluctuation analysis of AL

data. For AL index data, there is no variation in the nature of crossover i.e., the

LRC nature always decreases with time. However, this is not the same for other data

sets from finance and physiology. In the following chapters, we will show that there

are differing natures within crossover phenomenon across global financial index data

or between different heart conditions respectively. We use our approach to model

crossover phenomenon i.e., hyperbolic regression scheme to study these features and

obtain a better understanding of magnetospheric dynamics.
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Chapter 4: Varying nature of crossover phenomenon across global

financial markets

4.1 Overview

In the previous chapter we studied the crossover phenomenon seen in magne-

tosphere data i.e., AL index data. Recently there has been work identifying similar

crossover features in other data i.e., data from finance and physiology. In this chap-

ter, we take data of a set of global composite stock indices and perform crossover

analysis by hyperbolic regression on them. Previous work [Carles 2000, Liu et al.

1999] shows that financial data exhibits scaling crossover phenomenon. In fact this

feature has been used for better modeling of volatility within index data. Analysis

over a more general volatility with a power of the absolute return also demonstrated

crossover in fluctuation analysis [Shi-Hao 2009].

This motivated to use our regression scheme to characterize the crossover seen

in their results. Also, we were motivated to apply the same on data from other

markets different from the Asian markets used in their analysis. Hence, we used time

series data corresponding to daily closing index values of DJIA (American Dow Jones

Industrial Average), NASDAQ (American National Association of Securities Dealers
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Automated Quotations), SSE (Chinese Shanghai Stock Exchange), N225 (Japanese

Nikkei 225 index) and FTSE (UK based Financial Times Stock Exchange). We

considered 2 US stock indices, 1 from China, Japan and UK each, respectively.

These are used considering the fact that they have been around long enough to

provide us with long enough data for fluctuation analysis and their distribution

across various geographies on a global scale.

We chose these particular markets given the apparent differences in the na-

ture of the financial markets in these countries. The level of control exerted on the

local market structure and growth in each case is different. Each index represents

markets that have two kinds of mechanisms driving it as discussed previously in

Section 1.2. One macroeconomic i.e., business cycles within each company included

in the index. The other is more microeconomic or the local investor speculation that

is controlled by the local aspects such as performance of the company and sociopo-

litical influences. These two mechanisms may affect the low frequency and high

frequency components of its power spectrum and thus is reflected in the crossover

seen in fluctuation functions.

Our results throw light on some interesting features within such data. First of

all, there is stark contrast in the nature of evolution of long range correlation (LRC)

nature in the data across the crossover regime for different markets. Particularly, we

see that the DJIA, NASDAQ and N225 indices demonstrate increased correlations

with time, and, SSE demonstrates decreasing correlations with time. FTSE does

not show predominant crossover phenomenon. This is one of the first such study

on such differing natures of financial indices and can help understand the differing
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nature of complexities in diverse markets, while finding regions of similar scaling

between each other. Furthermore, we consider two theoretical models that capture

such increasing (concave) and decreasing (convex) LRC natures and speculate on

the nature of the markets using such models.

4.2 Scaling crossover in financial indices
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Figure 4.1: Daily closing prices for DJIA, NASDAQ, SSE, N225 and
FTSE for 5990 days of trading days till April 27th, 2014.

The data from stock indices is as shown in Figure 4.1 with daily closing prices

for DJIA, NASDAQ, SSE, N225 and FTSE for 5990 days all ending on April 27th,

2014. This length of the data is considered taking into account the length of shortest
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data set-of that of SSE index. Given the closing stock price at time t (in days) as

P (t), the return of the stock index price, R(t), after an interval ∆t (=1 day) is given

as:

R(t) = ln
P (t+∆t)

P (t)
(4.1)

|R(t)| is referred to as volatility and generalized volatility is given as |R(t)|γ, where

γ the power exponent that controls the weights assigned to small volatility (with

γ < 1) or large volatility (with γ > 1) respectively.

Previous work proposed usage of the generalized volatility to control various

crossover features such as the extent of crossover and the crossover time. We first

show results from prior work setting context for our current analysis.

4.2.1 Crossover in financial data and previous results

Previous work [Shi-Hao 2009] demonstrates using the generalized volatility

data to illustrate crossover phenomenon. The results are shown in Figure 4.2. In

Figure 4.2a, we see that DFA is applied to generalized volatility with various γ

values. We see that the spread of scales or the difference in Hurst exponents across

the crossover decreases with increasing γ. The power exponent controls the strength

of small returns and amplifies them. The extent of crossover, as can be measured

by DFA exponent α is shown in Figures 4.2b decreases with increasing γ.

Fixing a particular choice of γ is important to illustrate difference in such

crossover features across different markets. In our study, for all the indices used for

this study, we fix γ = 0.1 in estimating generalized volatility to maintain uniformity.
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(a) DFA of generalized volatility of SSE (b) DFA exponent, α versus γ.

Figure 4.2: DFA of generalized volatility of SSE at various power exponents [Shi-

Hao 2009] in order of increasing power exponents (ordered top to bottom) shown in

(a). Also, the DFA exponent shows the separation of scaling across crossover and is

shown in relation with power exponent in (b).

DFA is applied to generalized volatility of all the indices shown in Figure 4.1. Results

of the analysis are discussed in the next section.

4.2.2 DFA of financial indices and crossover analysis

We first perform DFAn with various polynomial orders n on generalized volatil-

ity (γ = 0.1) of DJIA index to study two important factors - (1) would the crossover

remain at around the same point if the length of the data is changed? and (2) what

is the appropriate n for DFA to be applied?

Results of these analysis are seen in Figures 4.3 and 4.4. In Figure 4.3, DFAn

with n=0, 1, 2, 3 & 4 along with FA of generalized volatility in DJIA data from

1986 till 2014 are shown. Figure 4.4 contains the same analysis as applied to data

from 1990-2014 i.e., the data corresponding to data size of the shortest of all indices
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Figure 4.3: DFAn and FA of DJIA generalized volatility for its complete
data length (1986-2014). Note: window size ∆T is in days.

used-SSE. We see that different orders of detrending polynomial affect the results.

Primarily, we note that FA and DFA0 do not show the crossover in fluctuation

functions due to their inability in handling non-stationarities. We begin to see the

crossover phenomenon for n≥ 1. Also, plots from DFA3 and DFA4 are close, thus

indicating convergence. Usage of higher polynomial particular n≥ 3 complicates the

estimation of fluctuation functions because of artifacts introduced by over detrending

within the windows. This results in additional crossovers in fluctuation functions

which are not due to the data used. Hence we use DFA2, considering all the effects,

for further analysis on other indices.

Also, we see that the crossover time as shown by the black arrows in Figures 4.3

and 4.4 are 100 and 120 days, respectively. This crossover time is estimated using

hyperbolic regression scheme described in the previous Chapter. It is interesting to

note that although the data used for Figure 4.4 is a subset of data used for Figure 4.3,
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Figure 4.4: DFAn and FA of DJIA generalized volatility from 1990-2014.
Note: window size ∆T is in days.

the crossover time is nearly unchanged. This suggests that the features in subsets

of data are maintained as in the whole data. This is a desirable result since we are

truncating the data for other indices to compare data from equal span of time. It

should be noted that we intend to compare the nature of crossover in fluctuation

functions in each stock index. Due to dependence of the Hurst exponents on the

power exponent, γ, and the crossover time on the order of detrending polynomial in

DFA, we do not estimate these parameters.

The features mentioned earlier in our analysis on DJIA are seen in DFAn of

NASDAQ and SSE also, as shown in Figures 4.5 and 4.6 respectively. However, the

primary difference between NASDAQ and SSE is that the extent of LRC decreases

in SSE where as increases in NASDAQ data after the correlation crossover time.

This is an interesting difference which we discuss further in the next section.
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Figure 4.5: DFAn and FA of NASDAQ generalized volatility. Note:
window size ∆T is in days.

Figures 4.7 and 4.8 show results from DFAn and FA of N225 and FTSE indices

respectively. It is important to note that DFA2 stands out as optimal fluctuation

function estimator just as we discussed for DJIA index. The N225 index demon-

strates increased LRC nature similar to DJIA and NASDAQ indices. The FTSE

index data does not show predominant crossover phenomenon in fluctuation func-

tions from any of the DFAn techniques applied.

Figure 4.9 shows the summary of all DFA plots by comparing DFA2 of all in-

dices. We note that SSE and FTSE demonstrate distinguishable features from other

indices. SSE has predominantly decreasing LRC nature and FTSE does not show

crossover phenomenon. However, it is most interesting to note that the fluctuation

function plots from DFA2 of DJIA, NASDAQ and N225 are close by each other

and nearly indistinguishable. This shows the similarity between the three indices,
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Figure 4.6: DFAn and FA of SSE generalized volatility. Note: window
size ∆T is in days.

suggesting their interdependence with each other.

We made a case for scaling crossovers seen in fluctuation functions from DFA2

of various indices from the same period of time. By this analysis, we demonstrated

similarities and differences in the crossover features of generalized volatilities of the

indices. Now we are confronted with the question of what increasing and decreasing

LRC nature means? In order to answer this better we first demonstrate two the-

oretical models for such varied nature of crossovers and discuss further what that

means for the phenomenon seen in each index.

4.2.3 Convexity and concavity in LRC

We discussed briefly about increasing and decreasing LRC natures in Sec-

tion 1.1. Those data that demonstrate increasing LRC nature through crossover
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Figure 4.7: DFAn and FA of N225 generalized volatility. Note: window
size ∆T is in days.

region are defined to be concave in crossover and decreasing LRC nature defined to

be convex in crossover. There are significant differences between these two types of

systems.

Systems with increasing LRC or concave crossover nature are typically mod-

eled with additive noise and trend where the trend is non-stationary and the noise

is stationary by definition. One such example is fractional Gaussian noise (fGn)

added on top of fractional Brownian motion (fBm). These theoretical models were

introduced in Section 2.2 earlier. The noise is modeled by fGn and the trend by

fBm. This choice of trend is to assure single Hurst exponent with no crossovers

in fluctuation functions, which are estimated as variance of detrended data. Vari-

ance of the signal with additive noise and trend components is also additive i.e.,

F 2
signal(∆T ) = F 2

noise(∆T ) + F 2
trend(∆T ). For the DFA1 of fGn+fBm model shown
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Figure 4.8: DFAn and FA of FTSE generalized volatility. Note: window
size ∆T is in days.

in Figure 4.10, we used Gaussian noise (H = 0.5) for fGn and its Brownian mo-

tion counterpart (α = 1.5). We can clearly see that the LRC increases through the

crossover region or with increasing window lengths (∆T ).

Systems with decreasing LRC or convex crossover nature are typically modeled

with noise integrated into trend (or dynamics). One such example is OU-Langevin.

This theoretical models was introduced in Section 3.3 earlier. In this model, the

noise represented by Gaussian noise (H = 0.5) is added to the dynamics (or in the

differential equation representing the model) thus making it a stochastic differential

equation. For the OU-Langevin model we used in Figure 4.10, we used a decay

parameter λ = 1/20 and σ = 40 to obtain the discrete time series after integration

of Equation 3.1. Applying DFA1 to the time series, we can clearly see that the LRC

decreases through the crossover region or with increasing window lengths (∆T ).
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Figure 4.9: DFA2 of generalized volatility of all indices.

Now, with theoretical models presented and compared with each other, we

would like to present the underlying difference between their natures. In the first

model, representing concavity, the noise is added on top of the trend and in the

second model the noise is added to the dynamics and subsequently integrated. This

is a predominant difference to be noted because in one case the noise or the high

frequency component is riding on top of the trend and in other case the noise is

integrated into the process that causes the trend.

In Figure 4.11, we see the Hurst exponents from DFA2 of generalized volatil-

ities of the indices we used for analysis before and after the crossover. The dotted

line represents case where the Hurst exponent does not change through crossover

or that there is not crossover. Concavity is exhibited by those indices above the

dotted line and convexity by those indices below the right, respectively. Further the
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Figure 4.10: Comparison between concave and convex LRC seen in two
theoretical models. Plots correspond to DFA1 of fGn+fBm and OU-
Langevin models with a line representing H = 1 shown for reference.

distance of a point from the line, greater is the crossover. This figure clearly shows

the concavity and convexity in different indices.

From the theoretical models for concavity and convexity proposed earlier, it

is important to note that in SSE which exhibits convexity, the noise within the

volatility of the index are folded into the dynamics. This is in contrast to what

happens in NASDAQ, DJIA and N225. In these three cases, the noise or speculative

component is separable from trend. This implies that the market structure has

separable low frequency (trend) and high frequency (noise) components in these

three markets. In SSE, the speculations are closely integrated within the trends and

their separation not as simple as in the three indices before. Further, FTSE does

not have significant crossover or that the fluctuations and trends are almost of the

same fractality or complexity.
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Figure 4.11: Concavity versus convexity seen in DFA2 of generalized
volatility of various indices. The points show the separation between
long time and short time DFA exponents (αL and αS respectively) in
relation to dotted line that represents absence of crossover.

4.3 Conclusions

Results from our analysis establishes differences among different financial in-

dices and shows how some markets are more informationally inefficient (from efficient

market hypothesis) than others [Eom et al. 2008, Lillo and Farmer 2004]. What is

even more interesting is the fact that all the markets demonstrate scaling crossover

features in their generalized volatility data. Our primary goal was to extend the

crossover analysis by Hyperbolic regression which was developed in earlier chapter

for magnetosphere data to data from finance. Financial indices, particularly the

generalized volatility in index data is known to show crossover in fluctuation func-

tions. Previous work has shown the existence of such crossovers but has fallen short
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of a rigorous analysis. We pick up the idea and extend our crossover analysis to

generalized volatility of five largest global financial indices.

From the crossover analysis, we see that there are differing features with re-

spect to increasing or decreasing LRC natures within the data. In order to explain

the underlying cause of such differing LRC natures, we presented theoretical models.

Concavity in crossover is seen in systems where noise is separable from trend and

convexity is seen in systems where noise is integrated into dynamics of the system.

Using such models we could explain the concave and convex natures seen in financial

data on a global scale. There are aspects in these results that needs deeper under-

standing of economics and finance to better explain them. It is important to note

that we demonstrate an application of our regression scheme to reveal unique and

illuminating aspects allowing us to understand multi-scales features in financial data

better. This work can be considered to be a first step for further analysis of concave

versus convex nature of crossover phenomenon in financial data and utilizing such

features to understand the nature of markets better.
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Chapter 5: Scaling crossover in heart rate variability : Extent of

crossover analysis

5.1 Overview

We applied crossover analysis utilizing hyperbolic regression to data from space

weather in chapter 3 and financial data in chapter 4 respectively. From the analysis

on space weather data, we could estimate important multi-scale parameters such as

the Hurst exponents before and after crossover and the crossover time scale. The

crossover time scale is a measure of the time scale of internal dynamics of such driven

systems. From our analysis on the data from finance in the last chapter, we have

shown differences in nature of crossovers seen in composite indices on a global scale.

Furthermore, using theoretical models, we could see the interdependence between

the high frequency speculative component that changes on a much faster scale and

the trend. Not all systems are equal with respect to separability between the two

components as we have shown. This has been the central theme of work in chapter

4.

Crossover in fluctuation functions from heart rate variability (HRV) data was

identified earlier [Peng et al. 1993; 1995; 1998]. The existence of crossovers result in
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alteration of the scale free nature of the fluctuation functions, typically estimated by

Detrended Fluctuation Analysis (DFA) due to non-stationary nature of such data.

An introduction to HRV data was provided in Section 1.2. Existence of long range

correlation (LRC) phenomenon in physiological processes [Stanley et al. 1994] ne-

cessitates redefining homeostasis taking into account such ideas [Goldberger 1991].

The essential element to be noted here is that the pacemaker cells in heart are con-

trolled by competing processes which account for homeostasis (due to sympathetic)

and LRC (due to parasympathetic) natures respectively. This aspect is discussed

in further detail in Section 5.2.4 where we attempt to interpret our results from

a dynamical theory viewpoint. Existence of a single crossover in fluctuation func-

tions is a common feature between HRV and AL index data (as seen previously in

chapter 3). In this chapter, application of hyperbolic regression on HRV data from

patients with congestive heart failure (CHF) and those with normal sinus rhythm

(NSR) shows some interesting discerning features between the two cases. Patients

with undiagnosed CHF are prone to a severe risk of a heart stroke and potentially

death. A parameter to measure the extent of change in scales, labeled as extent of

crossover parameter, is introduced and used to quantify the difference between the

two cases.

There have been previous efforts to model HRV data using approaches from

chaos theory [Goldberger 1996, Goldberger et al. 1990, Shelhamer 2006]. Given the

complexity in underlying process leading to HRV data, it was assumed that such

modeling would be valid. Poincare plots was commonly used to analyze HRV data.

Approximate entropy and correlation dimension were used to describe the complex-
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ity of HRV data [Storella et al. 1994]. However, lack of evidence for low-dimensional

chaotic nature of HRV data has been shown through further analysis [Kanters et al.

1994]. Hence, it is important to note that in our current work, we do not attempt

to model HRV data using dynamical features. However, using purely data derived

approaches, perform statistical analysis to uncover features that can potentially help

in detecting ailments. As a first step, we present evidence of scaling crossover seen

in DFA of HRV data in the following section.

5.2 Scaling crossover in HRV

Hurst exponent (H) is a measure of LRC in time series data. Rescale range

(R/S) analysis was the first method proposed to measure H exponent, followed

by fluctuation analysis (FA). FA works well for stationary data, and fails for non-

stationary data with an inbuilt trend in them. These techniques were introduced in

Section 1.3. DFA overcomes this challenge by addressing typical additive trends of

polynomial orders and estimates an exponent, α with known relationship to H as

α = H, for stationary data, and, α = H + 1, for non-stationary data, even in the

presence of such trends. In estimating α, the method assumes that the fluctuation

functions estimated as the variance of detrended random walks are scale free with

respect to the length of the time window of estimation. We shall label as DFAn,

the DFA scheme when applied to a system with an nth order polynomial used for

detrending.

We obtained cardiac interbeat interval data from physnet ATM service (http://physionet.org/cgi-
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Figure 5.1: Interbeat interval data for 2000 beats of normal healthy
subject (upper panel), and, patient with CHF (lower panel).

bin/atm/ATM) for patients with normal sinus rhythm (NSR) and those with con-

gestive heart failure (CHF). The RR intervals were extracted from ECG data of 15

patients from each group. Such an example of interbeat interval time series is shown

in Figure 5.1 for a patient each with NSR and CHF conditions respectively.

5.2.1 Crossover in RR interval data and previous results

Previous work [Peng et al. 1998] that applies DFA to RR interval data has

shown existence of time scales with different Hurst exponents. Results from this

analysis are shown in Figure 5.2. The fluctuation analysis using DFA technique was

performed on the interbeat times with respect to windows lengths of beat numbers.

It can be seen that NSR case and CHF case are opposite in their LRC nature at
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Figure 5.2: Result from previous work [Peng et al. 1998] showing DFA of
RR interval data from normal (NSR) and congestive heart failure (CHF)
cases. We see that the NSR case has a decreasing LRC while CHF case
has increasing LRC with time respectively. The window lengths here are
in units of beat numbers.

long terms. The LRC nature in NSR case is decreasing, indicative of dominance

by sympathetic nervous system at long times leading to homeostasis. The opposite

is true in CHF case where increasing LRC with time indicates dominance by the

parasympathetic nervous system.

Using the new regression scheme described in section 3.2, we now study not

only the scales before and after the crossover, but also quantify the extent of

crossover or change in scales that occur in such data. This helps us compare the ex-

ponents previously obtained using a manual scheme to select the point of crossover

and draw new conclusions by studying the relationship between the extent of change
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in scales and the nature of cardiac health of a patient.

We measure the extent of the crossover (EOC) parameter (θc) as the separation

of angle between the two asymptotes:

θc = arctan(αl)− arctan(αs) (5.1)

where, αl and αs are the long term and short term DFA exponents respectively. EOC

(measured in degrees(◦)) would define the extent and the nature of the crossover.

As an example, if θc is positive, it implies extent of LRC in the system is increasing,

and, when θc is negative, LRC in the system is decreasing.

5.2.2 Crossover analysis for NSR cases

Previous work [Peng et al. 1998] claims that NSR cases have a negative θc, and,

the crossover occurs at about 10 beats. Our analysis utilizing hyperbolic regression

is not in agreement with this conclusion as crossovers in the system at lower beat

numbers are dominated by crossovers at higher beat numbers. Existence of mul-

tiple crossovers complicates the analysis and the resulting hyperbolic fit would be

equivalent to fit using linear regression in such cases. The analysis can be seen in

Figure 5.3 for one of the cases in our group of 15 subjects with normal sinus rhythm.

Existence of multiple crossovers throws off course the hyperbolic regression scheme

and in essence we obtain a linear fit with parallel asymptotes in many cases.
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Figure 5.3: Hyperbolic regression and asymptotic fit of fluctuation func-
tions from DFA1 of RR interval data of a NSR subject with DFA1 in
blue and regression fit in red. The regression identifies that the two
asymptotes are parallel or that the linear fit is the best fit.

5.2.3 Crossover analysis for CHF cases

The hyperbolic regression scheme is applied to the fluctuation functions from

DFA1 of RR inter-beat interval data for 15 CHF patients. Crossover analysis on

DFA1 of a CHF patient can be seen in Figure 5.4. EOC is measured as θc = 22.31◦

for this particular case. In the next section we discuss in detail the interpretation

of extent of crossover presenting an explanation from dynamical theory viewpoint

of differences in EOC between NSR and CHF cases.
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Figure 5.4: Hyperbolic regression and asymptotic fit of fluctuation func-
tions from DFA1 of RR interval data of a CHF patient. The angle
between the asymptotoes (red and blue dashed lines) in this particular
case is measured to be θc = 22.31◦.

5.2.4 Extent of crossover analysis

As discussed earlier in Section 1.2, sympathetic and parasympathetic nervous

systems actively compete for control over pacemaker cells [Levy 1971]. The sympa-

thetic nervous system is responsible for flight or fight response and the parasympa-

thetic for breed and feed response. Due to instinctive nature of sympathetic nervous

system, it causes sudden changes in the performance or rate of heart beat and hence

is the driver of high frequency component of HRV data. Parasympathetic acts over

extended time scales and does not show up as in the high frequency. The LRC
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seen in HRV data is mainly due to parasympathetic nervous system and the lack of

correlations due to sympathetic. This is considered to be the dynamical basis for

function of pacemaker cells.
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Figure 5.5: EOC for NSR and CHF patients. The EOC parameter for
NSR is shown in circles and for CHF in crosses. We see that θc for most
NSR patients is below 5◦ and for most CHF patients is at or above 10◦.

From results in Figure 5.5, it is important to note that 8 of the 15 cases had

values less than 1◦ indicative of very small separation in scaling exponents before

and after the crossover in majority of NSR cases. For a system to change scales

between αs = 0.5 and αl = 1.5 asymptotically as postulated earlier [Peng et al.

1998], θc would have to be 29.74◦, and, none of the patients from our group show

such a large value of the parameter.

However, interestingly 8 out of the 15 CHF patients have values greater than
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10◦ for EOC. The minimum value from this group is 1.5◦ and maximum value is

22.31◦, and, it must be noted that all are positive indicating consistently increasing

LRC pattern. Hence, 10◦ can be used as the cutoff value to differentiate between

cases with CHF and NSR. In total, out of the 15 CHF cases: 8 cases (≈50%) had

EOC above 10◦, 4 cases between 5◦ and 10◦ and 3 cases (20%) had values less than

5◦. Hence, cases with θc between 5◦ and 10◦ can be treated as border-line cases.

Also, for the 15 NSR cases: only 3 cases (20%) had EOC greater than 5◦, with

just 1 case having a value slightly greater than 10◦. The rest of the cases i.e., 12

cases (80%) had values less than 5◦, and much close to 0◦.
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Figure 5.6: Scatter plot showing αs and αl for short and long terms
respectively for NSR and CHF patients with dashed line representing
αs = αl. We see that the αs is very close to αl for most NSR patients
and the difference in CHF patients is apparent.
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For the cases we analyzed, the scaling exponents before the crossover were

measured as: αs = 0.59 ± 0.15, and, αl = 0.9135 ± 0.22 in CHF cases. This is

indicative of a transition from correlationless Gaussian noise like nature in short term

to highly correlated Gaussian noise/anti-correlated Brownian motion like nature in

the long term. Results for the comparison between the exponents before and after

crossover as measured by hyperbolic regression scheme in NSR and CHF cases can

be seen in Figure 5.6. The greatest value of αl from this group is 1.29 and there were

only 5 cases out of 15 cases with values greater than 1 indicating that the previous

claim of αl 1.5 in the long term may not be totally valid, or, at least unverified from

the analysis we performed on our group. The extent of crossover analysis as seen in

Figure 5.5 essentially reflects in the results we see in Figure 5.6.

Measurement of crossover times from DFA1 may not be a valid proposition due

to the detrending operation, but can give an idea of correlation times in data or the

sampling time required to transit between regions of differing correlation properties

in the system. From our group, the crossover times are found to be: Tc = 303± 135

seconds or in terms of the number beats, ic = 452± 192 beats.

From this analysis, we have shown the difference in EOC between NSR and

CHF cases. Now, we present a discussion covering the interpretation of these results.

As mentioned earlier in this section, sympathetic and parasympathetic nervous sys-

tems try to compete for control over the pacemaker cells in the heart that controls

HRV. In patients with NSR, there is an equilibrium that is established between the

two nervous systems. However, existence of LRC implies departure from correla-

tionless system. Due to better health of heart in NSR, external pressures requiring
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increased function of heart does not significantly disturb equilibrium between the two

autonomous nervous systems. Hence, there is no significant crossover phenomenon

exhibited by HRV data in these patients.

CHF patients usually fail to provide enough blood in conditions where exter-

nal influences necessitate increased heart function [McDonagh et al. 2011]. This

increased requirement in blood flow forces the heart to go out of equilibrium where

the sympathetic and parasympathetic nervous systems fail to reconcile with each

other. Due to this, the two components become separable and seen causing crossover

phenomenon in fluctuation functions. The concavity seen through EOC estimation

is a direct proof of increasing LRC. This can be considered to be the reason why we

see predominant crossover phenomenon in CHF as compared to NSR cases.

5.3 Conclusions

We found that results of our analysis on RR interval data agree with previous

work on many counts, most important of those is the increasing LRC in CHF cases

data due to the violation of homeostasis. We substantiate the same by a parametric

measure, the extent of crossover parameter, which estimates in degrees of angle

the amount of change in the scaling exponent before and after the crossover. The

parameter helps us see major difference in the nature of evolution of LRC in the

data between NSR and CHF cases. Hence, we propose using it as estimated from

24 hour ECG measurements of patients as an early indicator of CHF. Clearly the

results from 15 cases of each group and the statistics of the results are promising
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for the proposal to use EOC parameter as a diagnostic metric.

However, it is important to note that more work to benchmark this parameter

is required which requires compiling RR interval data from many more patients

of NSR and CHF groups. Also, further analysis is necessary to correlate EOC

parameter with the severity of CHF in patients. We hypothesize that increased

EOC indicates increased levels of the CHF ailment. This would imply that one

can directly use the parameter as a measure of the severity of the disease, which

also requires further work to establish this correlation. We have presented crossover

analysis on data from three systems that are completely different from each other-

space weather, finance and physiology. Each case presents a unique challenge with

respect to outcome of our analysis and we addressed the challenge with specific

analysis in each of the cases.

Analysis on AL data from space weather has shown the importance of mea-

suring crossover time. Due to our inability to measure the time scale from DFA, we

presented an alternative approach utilizing modeling it using a stochastic system

that embodies similar crossover phenomenon. Application of the crossover analysis

on data from finance has shown the differences between the nature of markets in

terms of concavity versus convexity in crossover phenomenon. Crossover analysis

on HRV data from physiology in this chapter has allowed us to see the predominant

differences between two class of patients-those with normal heart rhythm (NSR)

and those with an ailment (CHF). Using a proposed metric, we can quantify the

difference between these two cases.
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Chapter 6: Characterizing predictability using fluctuation analysis

6.1 Overview

We presented examples of complex systems that exhibit evidence of multi-

scale nature via scaling crossover seen in fluctuation functions in chapters 3, 4 and

5. Another application of fluctuation analysis has been to use the Hurst exponent of

the high frequency component or noise in the system. This exponent can be related

to a measure of possibility of extreme event occurrence or the tail exponent of its

probability distribution. This is central to the approach taken in the work of this

chapter.

Characterization of predictability of data generally refers to study of residuals

after predicted values are removed from actual values. This usually involves estima-

tion of a mean square value of the residuals as shown in section 1.5 which is widely

used as an estimate of accuracy of the prediction. However, we tend to ignore the

fact that errors, although seemingly normally distributed, may incorporate heavy

tails in them. These are a direct result of our inability to predict or a deterioration

in the quality of prediction. Conventional characterization does not factor in this

possible heavy tailed distribution of resulting error terms.

Study of a heavy tailed distribution usually involves the estimation of a tail
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exponent. The fatter the tail, the larger the value of the exponent, by definition.

However, the estimation of this exponent from data is highly prone to biases in data,

making its estimation very unreliable. In light of this realization, recent studies

show that the degree of self similarity in data, reflects in the heavy-tailedness of

it distribution [Taqqu et al. 1995]. This dependence helped empirically relate the

Hurst exponent, a measure of self similarity in data, to the tail exponent [Stoev

et al. 2011].

Estimation of the Hurst exponent from a data requires detrending to remove

trends. This process is often complicated if done by a priori assumption of the

nature of the trends as done in the DFA technique [Hu et al. 2001]. Time series

predictions based on dynamics of a system often represent the trends well, as trends

contribute to dynamics of a system. This allows us to detrend the data using the

predicted values from historical time series for a data. We label this method as

Fluctuation Analysis after Trend Elimination (FATE), which can be a broad class

of techniques that allow one to remove trends a priori before estimating the Hurst

exponent.

Nonlinear time series prediction techniques are widely used to predict AL

data [Chen and Sharma 2006, Ukhorskiy et al. 2002, Valdivia et al. 1996]. This

involves a series of steps as described in Section 1.5, starting with attractor recon-

struction and then using any of the filters to use information from the reconstructed

phase space to predict future time step(s).

We begin by showing an example of this design as applied to a well known

theoretical model in section 6.2. In our study, we illustrate the working of FATE
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technique on data from finance (Microsoft daily closing stock prices), and, the AL-

Solar wind system as seen in section 6.3. As a comparison, we show the tail ex-

ponents as estimated by another well established technique i.e., the method of Hill

estimator to relate the tail exponent estimated using Hurst exponent from the tail

exponent given by the data, in section 6.4, followed by conclusions in section 6.5.

6.2 Technique demonstrated on a theoretical model

We demonstrate the working of FATE technique, and, use theoretical model

of correlated noise given by fractional Gaussian noise (fGn) with H = 0.9 on a

sinusoidal trend (of the form A sin(ωt)). The value of amplitude of trend is chosen

in relation to the standard deviation of fGn. This is to assure that the crossover in

fluctuation functions is apparent and the trend does not dominate over the noise.

Time delay embedding technique is used to reconstruct the phase space as a

trajectory matrix to be used as training set to search for nearest neighbors to predict

the dynamics of the system through a local linear weighted mean field filter. Details

of this method are described in detail in Section 1.5. This method of prediction helps

us remove the sinusoidal trend near completely and thus the resulting detrended data

shows H = 0.83±0.02, very close to the H = 0.86±0.01 of the fGn used. We apply

DFA2 to estimate H exponent as FA fails in the case of data with sinusoidal trends

to estimate Hurst exponent. These results can be seen in Figure 6.1.

After application of FATE, we retrieve the right Hurst exponent of the un-

derlying variability as modeled using fGn data. The HFATE = 0.83 ≈ 0.86 of the
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Figure 6.1: FATE applied to test data with fGn (H = 0.86) riding on
top of sinusoidal trend. We see that FA of detrended data retrieves most
of the scaling properties of the fGn with explicit detrending of sine trend
using time series predictions.

actual data.

Open complex systems often show heavy tailed distributions. This is reflected

in the power law dependence of probability distribution function (pdf) of a time

series as: pdf(x) ∝ x−γ as x → ∞ where x is the magnitude of an event from within

the time series. Taqqu’s theorem [Leland et al. 1994, Taqqu et al. 1997] relates

the tail exponent γ (a measure of heavy-tailness in probability distributions) to the

Hurst exponent H (a measure of extent of LRC) as:

H =
3− γ

2
(6.1)
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From this result and the HFATE we obtained, the expected Hurst exponent is γ =

1.33.

6.3 Tail exponent estimation using Hill estimator

Hill estimator technique provides a way to estimate the tail exponent from data

using construction of a series that converges to the exponent [Hill 1975]. It must be

noted that the technique is computationally efficient and easy to be implemented on

large data sets. Using Hill estimator technique, we can estimate the tail exponent

of the fGn data used in previous section to be 1.29, which in turn corresponds to a

H of 0.855 very close to the actual Hurst exponent of the data used (0.86).

This is a direct illustration of the FATE technique and the ensuing result

which accurately estimates the tail exponent of the data. It must be noted that

this method does not directly estimate the tail exponent, the process of which is

known to be riddled with data size biases and scaling crossovers in histograms.

Such issues result in what are referred to as Hill horror plots in the technique of Hill

estimator [Resnick 1997, Resnick and Starica 1997].

6.4 FATE and characterization of tail exponent

We apply the demonstrated method to our data from AL index and the Mi-

crosoft stock price (daily closing values).

110



6.4.1 AL index data

The technique of nonlinear time series prediction of the AL and the Dst indices

is well established and has been extensively used to forecast space weather. Method

of prediction is described in greater detail in Section 1.5. Reconstruction of phase

space requires historical time series values. Typically, more data used yields greater

detail of the phase space, thus improving the quality of prediction. Currently, a rou-

tine that forecasts space weather by using real time solar wind measurements is ac-

tive and results are shown on our website: http://spp.astro.umd.edu/gmprediction/.

The data used for phase space reconstruction was prepared using 1 minute

AL values, and, v, Bz values from the ACE explorer measurements. Links to these

sources are given in Section 1.2. Data taken from respective sources for the years

2003-2013 was averaged into 5 minute values to standardize the sampling frequencies

of all three data variables. Following the preparation of historical data for phase

space reconstruction, we use the trajectory matrix obtained as the search space to

find the nearest neighbors, thus allowing us to predict the next step. The details

of this approach are described in Section 1.5. In the process of phase space recon-

struction, one can model the system as independent by itself or as one being driven

by another system i.e., input-output. We label these two methods of modeling as

autonomous and combined models respectively. Additionally, a model which does

not use the data of the magnetosphere i.e., the input is also shown, which we shall

refer to as non-autonomous.

Results for prediction from the three models are shown in Figure 6.2 for 2000
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Figure 6.2: AL (actual in blue) and predicted (in red, black and green)
for autonomous, combined and non-autonomous methods of predictions

time steps. Predictions were performed for data corresponding to 2012-2013 utilizing

trajectory matrix obtained by historical data from 2000-2012. The phase space is

reconstructed with a time delay of 1 time step (= 5 minutes) and an embedding

dimension of 12. For the weighted mean field filter applied for predictions, the

number of nearest neighbors was taken to be 10.

The results for the application of FATE on AL data can be seen in Figure 6.3.

As expected, the non-autonomous model results in least difference from the fluc-

tuation properties of the original data as seen in black and blue plots respectively.
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Figure 6.3: FATE applied to AL data with several prediction methods.
We see that non-autonomous is not very different from FA of AL data.
Also, autonomous predictions result in H = 0.5 with most of crossover
effects removed.

The Hurst exponent of the AL index not accounting for any crossover effects is

0.84 ± 0.01 (slope of blue plot), and, the Hurst exponent of the FATE applied to

AL with non-autonomous modeling is 0.83± 0.01. This minimal effect of removing

the trend with non-autonomous model for predictions can be seen directly in the

negligible difference in the Hurst exponents.

The Hurst exponent of the FATE applied to AL with autonomous modeling

is 0.63± 0.01 (slope of red plot), and, with combined modeling is 0.78± 0.01 (slope

of green plot). It must be noted that relatively low standard errors in all the

Hurst exponents may be due to the increased averaging of fluctuation functions from
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fluctuation analysis technique used for estimation in all these models. Clearly, the

method of autonomous modeling detrends the data best of all periodic effects in the

original data, and yields H exponent closest to 0.5, corresponding to uncorrelated

Gaussian noise. As expected, the combined model still retains effects of trends

and yields an intermediate value of Hurst exponent between that of actual data

(trend+noise) and the noise.

0 5 10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (hrs)

Lo
ca

l s
lo

pe
 o

f f
lu

ct
ua

tio
n 

fu
nc

tio
ns

 

 

FA of AL
FATE autonomous
FATE combined
FATE non−autonomous

Figure 6.4: Local slope of FATE on AL. We see that the non-autonomous
model (in black) retains most of the crossover effects shown in AL data
(in blue).

The ability of each prediction model in detrending the system has been demon-

strated from the results in Figure 6.3. We have seen in Chapter 3 the existence of

crossovers in fluctuation functions of AL index data. Local slopes of the fluctuation

114



functions from Figure 6.3 are estimated as the slope of the power law fit between two

consecutive time windows. This local slope picture as shown in Figure 6.4 helps us

understand the point of crossover and the exponents before and after better by cap-

turing changes in the exponents. Also, local slopes from each of the models shown

in Figure 6.4 shows the ability of the respective models to remove the crossover

effects in fluctuation functions. The local slopes in fluctuation functions from each

model and the original data show an asymptotic approach to a long term exponent

value after 24 hours which is much greater than the internal dynamics time scale

of 4 hours 25 minutes as estimated previously in chapter 3. The local slope picture

shows us that this crossover remains in the FATE that uses non-autonomous mod-

eling and to an extent in the one that uses combined modeling. However, FATE

with autonomous modeling best addresses this crossover and in essence removes the

crossover nearly completely resulting in constant local slopes.

Errors are usually expressed in terms of the standard deviation of residuals.

One such calculation, known as normalized mean square error (NMSE) was discussed

in Section 1.5. The NMSE values for autonomous, combined and non-autonomous

models are 0.1126, 0.4270, and, 1.0172 respectively. Effect of each of these method

on the quality of predicted AL values can be further characterized using the resulting

Hurst exponents. The basis for this approach, as described on the test case, is that

if one were to predict the system well then the residuals or the error terms would

be void of correlations. Or, the Hurst exponent of the errors would be close to

0.5-of that of correlation less Gaussian noise. To correlate the estimated exponents

with the tail exponents of the respective errors, we estimate the tail exponent using
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Hill estimator as described in Section 6.3. Using the Hurst exponents estimated

by FATE, one can estimate the expected tail exponent using Taqqu’s theorem.

For the autonomous model of prediction, the expected tail exponent is γ = 1.74,

and the tail exponent from Hill estimator is γ = 1.78. Combined model yields

expected tail exponent as 1.44, where as the tail exponent using Hill estimator

is 1.48. The difference in the Hill estimate from different models is due to the

fact that errors in prediction differ in their heavy-tailness (as measured by their

respective tail exponents) for predictions made using different modeling assumption

i.e., autonomous or combined in this case.

We find that the non-autonomous model and the actual data still retain the

scaling crossover effects in their respective fluctuation plots as seen in Figure 6.4.

Existence of multi-scales as evidenced by the crossover makes the estimation of a

single tail estimation complicated and thus unreliable. The Hurst exponent esti-

mated by FATE using non-autonomous model of 0.83 implies a tail exponent of

1.34. However, the Hill estimator technique is non-convergent and make estimation

of a single tail exponent unreliable.

These results on AL index data show that we can use nonlinear time series

predictions as a measure of trend. This dynamical trend, when used to detrend the

data before hand, allows us to estimate the Hurst exponent in data with crossovers

and other trend induced effects. Also, this method of detrending the data does not

assume a polynomial form for the trend, thus is an improvement over DFA which is

prone to crossover effects and other statistical artefacts.

Besides detrending the data, it could also be shown that the Hurst exponents
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obtained using FATE can be used to estimate the tail exponent of the distribution

of errors. This translates to characterization of the quality of predictions as postu-

lated earlier. We demonstrate this way of error characterization on AL data as the

expected tail indices from different models are close to the values estimated by Hill

estimator technique.

6.4.2 Microsoft stock price data

The scheme of FATE and the tail exponent estimation from distribution of

errors is also applied to data from finance. We obtained the daily opening/closing

stock prices of Microsoft (traded as MSFT) from Yahoo finance. This data consists

of the stock prices since its first IPO in 1986 till September 2014. The analysis is

carried out on the daily closing prices. It is to be noted that we use the actual stock

prices for FATE analysis as we want to demonstrate the effect of trends in the actual

stock prices as estimation of daily returns is a way of removing the non-stationarities

and is undesirable for our analysis.

Results from prediction can be seen in Figure 6.5. Due to no well established

attributes that can be used as input for the stock prices other than the usual eco-

nomic indicators, using which would take the extent of this work beyond our scope,

we use only the autonomous model for predictions in this study.

We employed the method of constant updating most recent time steps in for-

mation of trajectory matrix to best utilize information rather than use a constant

set of historical values. This method of updating is highly beneficial in systems
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Figure 6.5: MSFT closing stock price (actual in blue) and predicted (in
red) for 1000 trading days ending on September 11th, 2014.

that are size limited allowing one to improve the predictions in such cases. In this

method, with each update in time series, vectors are updated within the trajectory

matrix thus increasing the amount of available phase space information with each

update. Single time step predictions were made for 5000 consequent trading days of

which predictions from the last 1000 trading days ending on September 11th, 2014

are shown in Figure 6.5.

For the process of phase space reconstruction, we used a time delay of 1 day

(shortest time step) and an embedding dimension of 100. The short time delay was

due to the short correlation time within the data mainly due to the stochastic nature

of the system. With such stochastic systems, increasing embedding dimension is a
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Figure 6.6: FATE applied to MSFT stock price data. The DFA2 of
MSFT yields α = 1.41 or H = 0.41, where as FATE yields H = 0.51.

necessity as higher complexity implies a higher dimensional system. For our data, we

chose this particular dimension taking into account the data size and the necessity of

a higher embedding dimension. A weighted mean field filter technique was applied

for the prediction of future time steps, with 15 nearest neighbors. Typically increas-

ing the nearest neighbors beyond a certain value would not contribute to accuracy,

and in contrary would deteriorate the quality of predictions. The optimization of the

simulation parameters such as number nearest neighbors and embedding dimension

was performed considering performance of prediction methods over a wide range of

choices and the computational efficiency of the algorithm.

Using the predictions, and, the resulting residuals, we perform fluctuation
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analysis using the FATE approach. The following results are shown in Figure 6.6.

We applied DFA2 technique to estimate the Hurst exponent of actual data due to

its non-stationary nature. The Hurst exponent of the daily closing stock price of

MSFT is 0.41 ± 0.01 (from the blue plot in Figure 6.6), corresponding to a slight

anti-correlated nature, albeit with a non-stationarity of the first order.

FATE analysis utilizing the predictions as trend, yields a Hurst exponent of

0.51±0.02 which shows that the system is near correlation less. Also, if one were to

use this value as a measure of the quality of predictions, the expected tail exponent

of distribution of errors would be 1.98. The value of the tail exponent using Hill

estimator technique is measured to be 2.02. We can note the accuracy of estimation

of tail exponent from these two values, one through Hurst exponent and the other

through the data.

Results from FATE imply that the predictions utilizing nonlinear techniques

are the best possible because the Hurst exponent of errors is ≈ 0.5. This signifies

that the errors are near correlationless. Interesting aspect here is that the trends as

measured by predictions are separable from the noise or errors. If we compare this

to the crossover exhibited in composite indices in Chapter 4, we see that the data

from MSFT consists of separable trend and noise similar to NASDAQ, DJIA and

N225 indices respectively. Furthermore, the DFA2 of the MSFT index measures the

effect of trends within the data as seen by α = 1.41.

The application of FATE on finance data demonstrates that we have a better

technique to detrend data and obtain the Hurst exponent of the noise in data. We

also demonstrated the applicability of the Hurst exponent of errors in estimation of
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the tail exponent even in presence of the non-stationarities. The Hurst exponent

so obtained can be both used as a measure of the level of correlations in the noise

within the data and as a measure of predictability of the data utilizing a technique

such as nonlinear time series predictions. It is also interesting to note that we could

demonstrate through H = 0.51 using FATE that our predictions remove most of the

correlations within the system thus yielding noise that is correlationless or void of

LRC.

6.5 Conclusions

Time series data pertaining to complex systems oftentimes require detrending

the data to estimate the Hurst exponent due to non-stationarities from trends within

the data. This Hurst exponent aids us in the study of the nature of complexity in

such systems as it is measure of LRC in noise within such systems. However, due

to existence of atypical trends, process of detrending is complicated and riddled

with biases. Our proposed technique detrends such systems a priori and due to

lack of assumptions of the nature of trends, is void of any statistical artefacts.

This method has been demonstrated on a theoretical model with additive trends of

periodic nature such as correlated gaussian noise added to a sinusoidal trend. DFA

is unable to remove the effect of the trend in such cases and often times, the range

of estimation of the Hurst exponent which we refer to as the operating range is quite

limited as shown in Figure 6.1. FATE provides a way to address such trends a priori

with no assumptions.
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Also, prediction of complex systems is complicated due to noise or high fre-

quency aspect within the power spectrum of their data. Understanding their pre-

dictability thus is essential to improve the technique of prediction or model them

better. Characterization of predictions using a mean square estimate of the residuals

(or errors) is simplistic and ignores the existence of heavy tails in their distribution.

Also, such a method of characterization may not yield information with respect to

LRC nature of the noise due to which heavy tails occur. Utilizing the existence of

a well known Taqqu’s theorem that relates the Hurst exponent to the tail index of

heavy tailed distributions, we propose to use the Hurst exponents estimated after

applying FATE on data to characterize the error. This method of characterizing

error, not only yields more information about the quality of predictions, but also

helps estimate a tail index in cases where such estimation is complicated due to

many reasons. These ideas are applied to data from space weather i.e., AL index

and finance i.e., daily stock closing prices for Microsoft.

Our analysis yields that we can successfully detrend the data and obtain Hurst

exponents in cases with non-stationarities. We also demonstrate how these Hurst

exponents are used to estimate the tail exponent. The estimated tail exponents

are seen to be very close to the ones estimated from a well know Hill estimator

technique. Further work is necessary to demonstrate how this scheme would improve

tail exponent estimation in multi-scale data.
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Chapter 7: Summary

Fluctuation analysis is being widely applied to uncover long range correla-

tion structure within various time series data. Complex systems often demonstrate

multi-scale nature, particularly in time, due to interactions between distributed sys-

tems at different scales. Identification of crossover in fluctuation functions has been

discovered previously in heart beat variability data, more recently in volatility data

from finance and most recently in space weather index data due to our work.

Existence of such scaling crossover aids in characterizing the multi-scale na-

ture of data. Taking advantage of this, we propose a regression scheme to model

two asymptotic scales with a scale mixed regime. Application of this scheme on

aforementioned data yielded valuable new results for each case. This is one of the

two applications of fluctuation analysis shown in this dissertation.

Predictability of data is effected by heavy tailed distribution of noise in it. Self

similarity has a propensity to cause extreme events due to build up by correlations.

An improved scheme to estimate the Hurst exponent, a measure of self similarity

or long range correlations, is proposed and applied on our data. Hurst exponent

obtained from this scheme can be related to the tail exponent-a measure of fat tailed-

ness in probability distribution. Hence, the second application of fluctuation analysis
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includes characterizing predictability of complex systems using Hurst exponent of

noise in such systems.

We explain in greater detail the importance of work, results presented in this

dissertation, and, propose a possible course for future work in each case.

1. Characterizing DFA of mBm data

Detrended Fluctuation Analysis (DFA) is a valuable and widely used tool for

fluctuation analysis in non-stationary data. More practical systems have a time

varying Hurst exponent structure as the concept of self similarity does not assure

homogeneity in scales at all times. Multifractional Brownian motion (mBm) is

a theoretical model that incorporates such time varying Hurst exponents. Monte

Carlo methods simulating ensembles of mBm with DFA applied to them helps us

understand its performance as a technique to estimate exponents in a sliding window

fashion, as it is most commonly applied. This serves as an introduction to DFA and

sets benchmarks on its robustness [Setty and Sharma 2015].

We also present our motivation for choosing mBm model due to the observed

time varying Hurst exponents in AL index data from space weather. While we

do our best to present a case for DFA as a sliding window estimator, there were

some unanswered questions with regards to results seen in this work. Particularly,

improved performance of DFA in cases where the data is predominantly self similar

i.e., the Hurst exponent is greater than 0.7 for most of the time is unexplained.

Future work would require explanation for this phenomenon. Also, one needs to

correlate the time averaged Hurst exponent within a window with other factors

from data such as its seasonality or other relevant factors. This would be a valuable
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step in explaining time varying nature of the exponents in mBm like data.

2. Scaling crossover analysis in space weather, physiology and fi-

nance

Identification and measurement of the crossover phenomenon is critical to un-

derstand multi-scaled nature in data from complex systems. We selected data from

varied physical systems that all demonstrate two scales asymptotically. A hyper-

bola has two asymptotes and an intermediate curved region. Regressing fluctuation

functions with a single crossover onto a hyperbola, hence, is the logical method for

scale exponent estimation in such systems.

Space weather data is known be multi-scaled from previous work. Taking cue

from this, we applied fluctuation analysis and proved the existence of crossover in

data for the first time. Furthermore, using hyperbolic regression, we could measure

the asymptotic scaling exponents before and after the crossover time. However,

variance is offset when DFA is applied to measure fluctuation functions due to the

detrending operation. Hence, a better method is required to estimate crossover time

scale in our data. This necessitated proposal of a model for crossover phenomenon

i.e., stochastic OU-Langevin and using theoretical variance from this model to es-

timate the crossover time. In this work, we demonstrate how crossover can be

characterized, and, how modeling the crossover can help us measure important fea-

tures pertaining to its multi-scaled nature. Further work is required in the direction

of stochastic modeling of AL data, particularly, attention is required to better un-

derstand the nature of stochasticity in AL data. Fractional Gaussian noise with

similar Hurst exponent as that of our AL data fails to explain the sudden bursts or
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intermittency seen in the data. We need to find an alternative model that captures

scaling crossover feature whilst explaining the bursting behavior.

Generalized volatility data from composite stock indices are known to exhibit

crossover(s) in fluctuation analysis. The extent of crossover can be controlled by

a weight factor from the definition of generalized volatility. However, generalized

volatility of indices with same weight factors have been found to show opposing

features with respect to concavity and convexity in the crossover. It is interesting to

note that this property has a globally varying aspect owing to factors that impact

the index at a particular geography. This is one of the first such analysis performed

with respect to varying nature of markets. Due to interesting aspects discovered

from our analysis, this study should be expanded to include more global indices

besides the five indices used in our work. Characterization of financial markets

using crossover in fluctuation analysis is a novel idea and further work is required

in this direction.

Heart rate variability data exhibits multiple time scales due to competition

between sympathetic and parasympathetic nervous systems to control cardiac pace-

maker cells. We applied hyperbolic regression to such scaling crossover and studied

the results closely. Very interesting ideas emerged due to this study. A new pa-

rameter that measures the extent of crossover (EOC) is proposed. What is striking

about this parameter is that there is a wide separation in EOC values between NSR

and CHF cases. Further work is required in this direction to better characterize the

EOC parameter in many more patients. It would involve a blind study to test if

EOC is effective in differentiating CHF from NSR cases. Furthermore, being even

126



more ambitious, we feel that there is a correlation between magnitude of EOC and

severity of CHF condition in the patient which needs to be better understood. We

feel that increased EOC may imply higher intensity of the ailment adding further

value to the utility of EOC parameter.

3. Characterizing predictability using Hurst exponents

Trends and seasonality seen in empirical data make estimation of Hurst expo-

nent difficult. Although DFA estimates Hurst exponents from non-stationary data,

it does not remove the trend as claimed. The resulting fluctuation functions are

effected, particularly when the trends are not polynomial addressable. As a solution

to this problem, we propose removing trends beforehand using nonlinear time series

predictions and label this method as Fluctuation Analysis after Trend Elimination

(FATE). This method is applied on a test case and its success is quite evident.

We refer to that what cannot be predicted or the residual after removing

what can be predicted as noise in systems. Certain types of noise with heavy-tail

distributions have higher probability of extreme event occurrence in them and hence

in systems containing them. Hence, the predictability of data that contain these

heavy-tailed noise as variability suffers. Long range correlations (LRC) in noise

can cause extreme events because of buildups by correlations. Hurst exponent is a

measure of LRC. Hence, it is logical to use Hurst exponent of fluctuations in systems

to characterize their predictability and forms the basis for our work. We estimate

Hurst exponents using FATE on data from space weather and finance. Relationship

between Hurst exponent and tail exponent from probability distribution is well

established. Using this relationship, we can relate the tail exponent measured by
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a well known technique called Hill estimator to the Hurst exponents obtained by

procedure mentioned earlier proving the validity of our idea.

Hill estimator, although to a large extent is successful in measuring tail expo-

nents from empirical data is prone to many issues. One of them is non-convergence

in the series leading to the tail exponent. This and other such aberrations are

comically referred to as Hill horror plots. “If it did not happen yet, it cannot be

measured” can be used to describe the problem, particularly for extreme events.

LRC and evidence of LRC is present in the system and can be seen even without

the existence of extreme events in the data. Further work is necessary to prove the

ability of obtaining tail exponent from Hurst exponent of finite small data sets. This

is an essential step to solve problems in tail exponent estimation particularly from

techniques such as the Hill estimator.
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