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Consider a sensing system using a large number of N microphones placed in multiple di-

mensions to monitor a acoustic field. Using all the microphones at once is impractical because of

the amount data generated. Instead, we choose a subset of D microphones to be active. Specif-

ically, we wish to find the D set of microphones that minimizes the largest interference gain at

multiple frequencies while monitoring a target of interest. A direct, combinatorial approach – test-

ing all N choose D subsets of microphones – is impractical because of problem size. Instead, we

use a convex optimization technique that induces sparsity through a l1-penalty to determine which

subset of microphones to use. Our work investigates not only the optimal placement (space) of

microphones but also how to process the output of each microphone (time/frequency). We explore

this problem for both single and multi-frequency sources, optimizing both microphone weights

and positions simultaneously. In addition, we explore this problem for random sources where the

output of each of the N microphones is processed by an individual multirate filterbank. The N

processed filterbank outputs are then combined to form one final signal. In this case, we fix all the

analysis filters and optimize over all the synthesis filters. We show how to convert the continuous

frequency problem to a discrete frequency approximation that is computationally tractable. In

this random source/multirate filterbank case, we once again optimize over space-time-frequency

simultaneously.
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Chapter 1: Overview

In this work, we explore the design of audio systems to monitor targets in complex envi-

ronments. We propose algorithms to not only choose the placement of microphones but also how

to process each of the microphones sampled signals to monitor a target while attenuating other

interfering sources.

This work is primarily motivated by industrial needs. For example, engineering managers

are interested in monitoring specific bearings on a wind turbine, car manufacturers interested in

the sound of a specific piston, and train conductors interested in detecting aberrant sounds in a

specific wheel set.

These monitoring problems would be trivial if any of the following conditions applied:

• Microphones can be placed adjacent to the target of interest.

• The target source is generated in a quiet or interference-free environment.

• The interference sources’ location and signature are known.

Each of the three previous use cases violate some if not all these conditions.

We will assume our environment contains either a large number of interferences with known

locations or a small number of interferences with unknown locations. In addition, we will assume

we are limited to using only N microphones because of bandwidth constraints.

Furthermore, to make our problem computationally tractable, we will discretize possible
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microphone locations so that there is a finite set of possible microphone locations. Choosing a

fixed number of microphone locations from a set of possible microphone locations is by definition

a combinatorial problem and for even a moderate size problem, the number of possibilities can

be overwhelming. For example, there are approximately 1060 possibilities when choosing 32

microphone locations from a possible set of 1000 microphone locations. In comparison, there are

approximately 1050 atoms that make up planet Earth.

To make reasonable comparisons in our simulations, we conduct exhaustive searches on

small problem setups to discover the global optimum for each setup and compare our algorithm, a

convex optimization scheme, against these global “bests”.

This work consists of three parts, with each subsequent part building on previous parts’

ideas and algorithms. The content of each part, however, is self-contained and can be read indi-

vidually without consulting other parts.

1.1 Part I: Processing Single Frequency Source Using Delay-Scale-Sum Beamformer

In part I, we explore the case where the acoustic source consists of a single frequency.

We propose an algorithm to find not only the microphone locations but also the corresponding

beamforming weights. In other words, we both place the microphones and offer algorithms to

process the sampled output of each the microphones.

Our processing scheme is a basic delay-scale-sum beamformer. Our system takes the out-

put of each of the N microphones, applies a chosen delay and amplitude scaling to each of the

microphone’s output and then sums up the N processed signals to give a final output. In the fre-

quency domain, this delay and scaling beamforming weight can be represented as simply a scaled

complex exponential.

In practice, the processing system works as follows. Each of the N microphones samples
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the continuous time signal at the appropriate sampling rate (>= Nyquist). A Discrete Fourier

Transform (DFT) of sufficient length to achieve the needed frequency resolution is then taken

on each of the N streams of discrete samples. If the original source signals consisted only of a

pure tone and the correct sampling rate and DFT length were chosen, the DFT transform should

produce an output of DFT coefficients with only one non-zero entry. For each of theN sets of DFT

coefficients, the system multiplies the computed beamforming weight at the non-zero frequency

bin. We note that the beamforming weights can vary for each of the N processing streams.

The output of the N processing streams is then summmed to give the final result.

1.2 Part II: Processing Broadband Source Using Delay-Scale-Sum Beamformer

Part II is a direct extension of Part I. Here, we explore the broadband case, where signals are

assumed to be a sum of F narrowband signals. Our algorithm again finds the optimal placement

of microphones but now also computes beamforming weights for each of the F frequencies of

interest.

If the original source signals consisted only of a sum of F pure tones and the correct sam-

pling rate and DFT length were chosen, the DFT transform should produce an output of DFT

coefficients with only F non-zero entries. Our algorithm computes beamforming weights for each

of the F non-zero entries for each of the N processing streams.

1.3 Part III: Processing Broadband Source Using Multi-rate Filterbanks

Part III generalizes the microphone placement and processing scheme of Part I and Part

II. In this part’s setup, we now have N multi-rate filterbanks, each processing the corresponding

output of one of the N microphones. Each of the N filterbanks decomposes the discrete input into

C subchannels, and hence our system uses a total of N · C subchannels. The previous constraint
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of Part I and Part II of using only N microphones because of bandwidth limitations can now be

generalized to the constraint of using only N · C subchannels. We can now use the output of

between N and N · C microphones and still not violate our bandwidth constraint by selecting

which subchannels to process in each filterbank. By using N microphones and each of the N

microphones C subchannels, we fulfill our bandwidth constraint of N · C subchannels. By using

N · C microphones but only choosing to use one subchannel of each of the microphones, we also

fulfill our our bandwidth constraint of N · C · 1 subchannels.

In other words, instead of choosing the placement of N microphones out of a set of P

possible microphone locations, we choose a subset of N · C subchannels to use out of a possible

P · C subchannels. This type of processing scheme would be appropriate when deploying micro-

phones is relatively inexpensive but the transfer of the collected data of each of the microphone is

expensive.

In multi-rate filterbanks, each subchannel is processed by both an analysis and a synthesis

filter. We fix the analysis filters to reduce the computational complexity and instead compute

only the synthesis filters for each of the chosen N · C subchannels. Computing the filters for the

multi-rate filterbanks generalizes computing beamforming weights in Part I and Part II.

The DFT and IDFT implementation of Part I and Part II can be interpreted as the analysis

and synthesis filtering respectively. The choice of beamforming weights of Part I and Part II now

correspond to the choice of the synthesis filters in Part III.
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Chapter 2: Notation

We denote both the label of and the frequency response of the filter by capitalization of a

letter. We denote the impulse response by the lowercase of the same letter. Hence a filter F has

transfer function F and impulse response f . Summation over all possible indices t is indicated by

placing the index variable t below the summation, that is

∑
t

=
∞∑

t=−∞

The complex number
√
−1 is denoted by the letter j, in contrast to the letter i. Hence, we

write Euler’s formula as ejθ = cos(θ) + j sin(θ). The complex conjugate of complex number is

denoted by a bar over the number. Hence we have, for all real a and b,

a+ jb = a− jb

Parameters that are continuous are placed in parenthesis whereas parameters that are dis-

crete are placed in brackets. Hence, the function f(t) = sin(t), 0 ≤ t < 2π has a continuous

parameter t whereas f [t] = 3t, t = 0, 1, 2, . . . , 5 has a discrete parameter t. We denote the

z-transform of a discrete signal r[k] as R(z) =
∑

k r[k]z−k.

The formula for the sum of the first D terms of a geometric series with ratio r 6= 1
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D−1∑
k=0

rk =
1− rD

1− r

yields the useful identity

D−1∑
k=0

e−j2π
n
D
k =


D if n is an integer multiple of D;

0 otherwise.
(2.1)

In addition, we will let WD be the D-th root of unity, that is

WD = e−
2πj
D (2.2)

The delta sequence with a single parameter m, δm, is defined as follows

δm =


1 if m = 0;

0 otherwise.
(2.3)

The Kronecker delta symbol with two parameters m,n, δm,n is defined as follows

δm,n =


1 if m = n;

0 otherwise.
(2.4)

Matrices and in turn vectors will be denoted in bold face. Hence, A refers to a matrix A.

The i-th, j-th entry, the entry of the i-th row and j-th column, of a matrix is denoted as (A)i,j .

Indices of matrixes will begin with 0. Hence(A)2,0 refers to the entry in the third row and first

column of the matrix A. A denotes the matrix A but with each entry complex conjugated. Hence,

we have

(A)i,j = (A)i,j

AT refers to the transpose of the matrix A. Hence, we have

6



(A)i,j = (AT )j,i

A∗ refers to the conjugate transpose of the matrix A where A∗ is obtained by taking the

transpose of A and then taking the complex conjugate of each entry. Hence we have

A∗ = AT

The z-transform of a discrete function x[t], X(z), is defined as follows

X(z) =
∑
t

x[t]z−t

The Discrete Time Fourier Transform (DTFT) of a discrete functon x[t], X(w), is defined

as follows

X(w) =
∑
t

x[t]e−jwt

We note that if we set z = ejw in the z-transform, we have the DTFT, that is

X(ejw) =
∑
t

x[t](ejw)−t = X(w) (2.5)

Using (2.5), we have

X(w + 2π) =
∑
t

x[t](ej(w+2π))−t =
∑
t

x[t](ejw)−t e−j2πt︸ ︷︷ ︸
1

= X(w) (2.6)

In other words, the DTFT is 2π periodic. If we again set z = ejw in the z-transform, we

have the following relationship

X(zW d
D) = X(ej(w−2π d

D
)) = X(ej(w−wD,d)) = X(w − wD,d) (2.7)
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using the shortened notation

wD,d = 2π
d

D
(2.8)

Equation(2.7) connects the z-transform notation and the DTFT notation when z = ejw.

Without loss of generality, we will assume that the z-transform series converge in a region around

the unit circle ejw except possibly for a finite number of points. We will use the z-transform

notation exclusively in this paper, with the assumption z = ejw.

Convolution between two discrete functions f and g, evaluated at time t, is defined as

follows

(f ∗ g)[t] =
∑
τ

f [t− τ ]g[τ ]

A change of variable shows that convolution is commutative, that is

(f ∗ g)[t] = (g ∗ f)[t]

A change of variable also shows that if a[t] = (f ∗ g)[t], then

A(z) = F (z)H(z)

A(w) = F(w)H(w)

In other words, convolution in the time domain becomes a product in the z-domain and

Fourier domain.

The Hilbert-Schmidt norm for a matrix A, sizeM×N , is denoted as ‖A‖2HS and is defined

as follows:

8



‖A‖2HS =
M−1∑
m=0

N−1∑
n=0

|(A)m,n|2 (2.9)

The Hilbert-Schmidt inner product for matrices A and B, both of size M ×N , is denoted

as 〈A,B〉HS and is defined as follows:

〈A,B〉HS = Tr(AB∗) (2.10)
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Part I

Processing Single Frequency Source Using Delay-Scale-Sum Beamformer
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Chapter 3: Processing Single Frequency Source

Using Delay-Scale-Sum Beamformer

3.1 Overview

The main goal of this work is to adaptively employ a large set of microphone sensors dis-

tributed in multiple dimensions to scan an acoustic field. Processing data from a large set of

sensors will necessarily involve intelligent definition of suitable subsets of sensors active at var-

ious times. This paper presents a novel method for optimal beam pattern design for large scale

sensor arrays using convex and non-convex optimization techniques to define optimal subsets of

sensors capable to select a target location while suppressing a large number of interferences. The

first of two optimization techniques we present, uses a LASSO-type approach to convexify the

corresponding combinatorial optimization problem. The second approach employs simulated an-

nealing to search for optimal solutions with a fixed size subset of active sensors. Our numerical

simulations show that for scenarios of practical interest, the convex optimization solution is almost

optimal.
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3.2 Introduction

Consider a large scale microphone array having N microphones that monitors a surveil-

lance area. Here N could be in the order of thousands. Data could be collected from all micro-

phones, processed locally, and further communicated to a central processing unit. For example, for

N = 1000 microphones and a data sampling rate of 100000 samples per second, the bandwidth

requirements for a system performing exhaustive sampling is 1Gsamples/sec, an overwhelming

amount of data for even current hardware systems. Alternatively, the central processing unit could

implement a policy of sparse spatial sampling where only a subset of microphones is polled for

data at any time. This may be desirable for practical reasons: cost (in power consumption, com-

munication or processing bandwidth) is simply too high for an exhaustive strategy. This part

advocates the need for advanced, dynamic control and signal processing of what data should be

manipulated in place of the full extent of the data, and it introduces novel strategies and formal

analysis of what can be achieved when only a sparse subset of microphones is sampled simultane-

ously.

Assume a surveillance area that consists of a set of point sources that we wish to distinguish

from one another. Our task is to sample any given source location using a maximum of V micro-

phones of the very large array (V � N ). We then process the raw data from the V microphones

to estimate the point source at that location. Our system can then scan the room by using different

V -size subsets of microphones for each possible source location at different times. By doing so,

the central processing unit is processing data from V microphones at a time and not all N micro-

phones at a time. Figure 3.1 provides a possible setup scenario. We will thus design and analyze

sparse spatial sampling strategies with near-optimal performance. Specifically, we develop algo-

rithms that minimize the p-norm of interference gains with p = 1, 2,∞ while reconstructing the
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target source perfectly. Conceptually, the system works in two steps. First, the discovery step esti-

mates locations of all point-like sources. Second, the system separates source signals, one source

at a time.

Below we define the problem in precise terms. Throughout this part, we assume the follow-

ing hypothesis:

H1. The total number of microphonesN and their locations(x, y, z-coordinates) are known.

H2. The total number of sources L and their locations (x, y, z-coordinates) are known.

H3. The maximum number of microphones active at any time is fixed in advance and

denoted by V . In general V � L.

H4. Signals are narrow band and operate on the same frequency f .

In practice, the number of sources and their locations are often unknown. By assuming a

large number of known sources and locations, our system can search each possible source location

to detect whether or not a real source is present.
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Fig. 3.1. Sample Scenario: L = 193 sources (1 target and 192 interferences), N = 200 micro-

phones. The 200 microphones are placed on the walls of a 10 m by 8 m room. To monitor the

target located at (3m, 4m), we wish to use only V microphones instead of all N so as not to over-

whelm our central processing unit with data. If we set V = 5, there are
(
N
V

)
=
(

100
5

)
≈ 7.5× 107

possible sets of 5 microphones to use.

3.3 Problem formulation

Consider the setup described earlier and sketched in Figure 3.1. We assume that both the

N microphone and L source locations are known. We use the direct-path model to model the

propagation from source to microphone, and hence the transfer function between source l and

microphone n at frequency f is given by

Hl,n(f) =
e−2πifc‖rl−rn‖

‖rl − rn‖
, 0 ≤ l ≤ L− 1, 0 ≤ n ≤ N − 1 (3.1)

where rn, rl denote the position vectors of microphone n and source l respectively, and c is the

wave propagation speed, which in our case is the speed of sound, 343 m/sec.
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Let xn(τ) denote the continuous time-domain signal received by microphone n. The short-

time Fourier transform (STFT) of xn, Xn(f, t), is related to the STFT of source signals Sl(f, t)

as follows

Xn(f, t) =
L−1∑
l=0

Hl,n(f)Sl(f, t) + νn(f, t) (3.2)

where νn(f, t) is the microphone n noise, f denotes the frequency, and t denotes the time frame

index. In other words, for fixed frequency f and time frame index t, the signal received by mi-

crophone n, in the frequency domain, is a sum of L signals and the noise of microphone n, νn.

Each of the L signals received by the microphone originates from one of the L sources, Sl, and the

propagation of the source signal Sl to microphone n is modeled by multiplying the source signal

Sl by transfer function Hl,n.

Our system estimates one source signal at a time. Hence, one of the sources is declared the

target, and the remaining sources are declared interferences. Our system can then estimate all the

L sources by repeating this process L times – choosing a target source, declaring the rest of the

sources as interferences, and then estimating the target source.

Our system is a delay-scale-sum beamformer. In other words, the input to each microphone,

xn, is delayed and scaled by some variable amount, and then all the delayed and scaled microphone

signals are summed up to give a single final output signal, y. By choosing an appropriate delay

and scaling for each microphone, we wish this final output signal to contain an undistorted target

source signal and attenuated versions of the other L− 1 interference source signals.

The delay and scaling that microphone n performs can be modeled in the frequency domain

as multiplication by a weighted complex exponential or equivalently multiplication by a complex

number, wn(f). A key observation is that if wn(f) = 0, then microphone n is inactive at

frequency f .

For simplicity of notation, we assume the zero indexed source is the target and the remaining
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L− 1 sources are interferences. The STFT of the final output y is given by

Y (f, t) =

N−1∑
n=0

wn(f)Xn(f, t)

=

L−1∑
l=0

(
N−1∑
n=0

wn(f)Hl,n(f)

)
Sl(f, t) +

N−1∑
n=0

wn(f)νn(f, t) (3.3)

We observe from (3.3) that the response factor of source l, Sl, is given by

Rl(f) =
N−1∑
n=0

wn(f)Hl,n(f). (3.4)

We note that Rl(f) is a complex scalar that shows how our delay-scale-sum beamformer

processes source l. By taking the modulus of Rl(f), we get the gain Kl(f), that is

Kl(f) = |Rl(f)| (3.5)

The gain Kl(f) is a real non-negative scalar that measures how much our system attenuates

or amplifies a given source l. If 0 ≤ Kl(f) < 1, the system attenuates the source l and conversely

if Kl(f) > 1, the system amplifies source l. If Kl(f) = 1, the system does not distort the

amplitude of source l but may possibly introduce a phase shift to source l.

Ideally, for fixed frequency f , we wish to choose N beamforming weights such that

Rl(f) = 0 for l = 1, 2, . . . L − 1 and R0(f) = 1. In other words, our system of N microphones

completely cancels out all L− 1 interferences while perfectly reconstructing the the target source,

source 0. This is achievable in the case where there are more microphones than sources, that is

N > L.

In general, for fixed frequency f , we wish to choose N beamforming weights such that

p-norm of the L − 1 interference responses, Rl(f) for l = 1, 2, . . . L − 1, is small while still

achieving perfect reconstruction of the target source, that is R0(f) = 1. We denote the column

vector of interference responses, size (L− 1)× 1, as RI,(L−1)×1(f) where
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RI,(L−1)×1(f) = [R1(f), R2(f), . . . , RL−1]T (3.6)

In our setup, each of the L sources propagates to each of the N microphones where the

L sources consist of 1 target and L − 1 interferences. For the l-th source, there are N transfer

functions modeling the propagation from the l-th source to the N microphones. We denote the

row vector of transfer functions for source l, size 1×N , as Hl,1×N (f) where

Hl,1×N (f) = [Hl,1(f), Hl,2(f), . . . ,Hl,N−1(f)] (3.7)

Since we have a total of N microphones, there are a total of L×N transfer functions. We

denote the source transfer function matrix, size L×N , as HL×N (f) where

HL×N (f) =



H0,1×N (f)

H1,1×N (f)

H2,l×N (f)

...

HL−1,1×N (f)


(3.8)

If we consider only transfer functions corresponding to the L − 1 from interferences, we

can delete the first row of (3.8) to get the interference transfer function matrix, size (L− 1)×N ,

HI,(L−1)×N (f) where

HI,(L−1)×N (f) =



H1,1×N (f)

H2,l×N (f)

...

HL−1,1×N (f)


(3.9)
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We can denote the column vector of all beamforming weights, size N × 1, as wN×1(f)

where

wN×1(f) = [w0(f), w1(f), . . . , wN−1(f)]T (3.10)

We observe from the definition of response factor, (3.4), that all L−1 interference response

factors, RI,(L−1)×1(f) , can be expressed as a matrix-vector multiply between interference trans-

fer function matrix HI,(L−1)×N (f) and weight column vector of wN×1(f), that is

RI,(L−1)×1(f) = |HI,(L−1)×N (f)wN×1(f)| (3.11)

In addition, the target perfect reconstruction requirement, that is R0(f) = 1, can be com-

pactly rewritten as 〈wN×1(f), H̄0,1×N (f)〉 = 1, where the bar denotes complex conjugation, to

compensate for the complex conjugation in the inner product.

Hypothesis H3 limits the number of simultaneously active microphones. Microphone n is

considered active if for fixed frequency f , wn(f) 6= 0. Thus an appropriate measure of the number

of active microphones for fixed frequency f is the pseudo-norm ‖wN×1(f)‖0 defined by

‖wN×1(f)‖0 = |{n ; wn(f) 6= 0}| (3.12)

where |U | represents the cardinal of set U . We can now state our optimization problem as follows:

Optimal V -Sparse Beampattern Design Problem for Fixed Frequency f

min ‖HI,(L−1)×N (f)wN×1(f)‖p

wN×1(f)

subject to

〈wN×1(f), H̄0,1×N (f)〉 = 1

‖wN×1(f)‖0 = V

(3.13)
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Note that this is a non-convex optimization problem due to the l0 pseudo-norm constraint ‖w‖0 ≤

V .

3.4 Optimization Strategies

We study two optimization strategies for problem (4.5), which is non-convex and combi-

natorial by nature. First, we present a solution we call the λ-method, which solves a regularized

version the problem. Second, we present a simulated annealing based method, which has global

search capability.

3.4.1 The λ-method

This method is inspired by LASSO regularization [1], a regression technique that minimizes the

sum of squares of residual errors subject to the l1 norm of the coefficients being less than a con-

stant. Furthermore, similar to the sparse signal and model estimation approach in [2], the l0

pseudo-norm (3.12) is replaced by the l1 norm ‖wN×1(f)‖1 =
∑N

n=1 |wn(f)| which is then

incorporated into the optimization criterion using a Lagrange multiplier λ. The optimization prob-

lem (4.5) is first replaced by the following convex optimization problem which is the λ-method:

min ‖HI,(L−1)×N (f)wN×1(f)‖∞ + λ‖wN×1(f)‖1

wN×1(f)

subject to

〈wN×1(f), H̄0,1×N 〉 = 1

(3.14)

As λ increases, the l1 penalty term forces more and more of the weights wn(f) to have very small

magnitude, which means that the corresponding microphones are very near inactive. For very

large λ, the optimization problem finds a solution with exactly one non-trivial weight and hence

exactly one active microphone so that the target perfect reconstruction constraint is fulfilled. As
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λ decreases, the penalty term becomes less expensive and more microphones become active. At

the lower limit of λ = 0, all microphones are allowed to be active. We note, however, in general,

there is no need for more than min(N,L) active microphones.

We note that λ is a data-dependent parameter that needs to be tuned to discover the final

subset of microphones that are to be used. An additional step is needed to find the corresponding

microphone weights.

Bisection method to discover λ that produces V microphones

We discover the λ that produces exactly V microphones using the bisection method. The

algorithim follows:

(1) Choose an upper bound bupper for λ. We note that bupper is user-chosen and data-

dependent. The lower bound blower for λ is automatically set to 0.

(2) Set λ = (bupper + blower)/2.

(3) Solve the optimization problem (3.14) with the λ calculated in step (2).

(4) We measure the number of active microphones returned by the solution of step (3) as

follows. We note that the the solution of (3.14) is a N -length vector of beamforming weights,

i.e. compex numbers. First, we measure how strongly active microphone n is by measuring the

magnitude of its beamforming weight wn. Hence, let gn = |wn(f)|, 1 ≤ n ≤ N be the measure

of activity of microphone n. Sort the sequence (gn)1≤n≤N so that its values are monotonically

decreasing, that is gn1 ≥ gn2 ≥ · · · ≥ gnN . In other words, sort the microphones in terms of how

active they are, with the most active microphones first. If gnVλ+1 is 3 orders of magnitude smaller

than gn1 , we say that Vλ microphones are active. In other words, if the activity of a microphone

is much smaller than the activity of the most active microphone, we consider the microphone

inactive.

(5) If Vλ > V , set blower = λ and go to step (2). In other words, increase λ since there
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are too many active microphones. If Vλ < V , set bupper = λ and go to step (2). In other words,

decrease λ since there are too few active microphones. If Vλ = V , we are done. The set of active

of microphones, A, is then

A = {n1, n2, . . . , nVλ} (3.15)

Remark The above algorithim assumes monotonicity in the number of active microphones with

respect to the tuning parameter λ , that is as λ increases, the number of active microphones is non-

increasing. In practice, we find the assumption holds globally but not always locally. While, in

general, as λ increases, the number of active microphones decreases. we find that small changes in

λ sometimes leads to non-monotonic behavior. For example, a small increase in λ might increase

the number of active microphones from 4 to 6 or similarly a small decrease in λ might decrease

the number of active microphones from 6 to 4.

To handle these cases, we introduce these additional checks in the above algorithm:

(1) We keep track of the number of active microphones discovered by the previous λ it-

eration and also the previous λ value. Before entering step (5), we check if the current λ itera-

tion produces a number of active microphones that exhibits non-monotonic behavior. We define

non-monotonic behavior as an increase in the number of active microphones if λ was previously

increased and, similarly, a decrease in the number of active microphones if λ was previously de-

creased. If non-monotonic behavior has occurred, we immediately return to step (2), and instead

of computing the average of blower and bupper, we choose a random number between blower and

bupper.

(2) To guarantee convergence of the algorithm, we also check the following two termination

conditions:

• In step (2), if the difference between the new λ and the previous λ exceeds a user-defined
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tolerance, terminate the algorithm.

• In step (5), if the number of iterations exceeds a user-defined maximum number of iterations,

terminate the algorithm. An iteration is defined as the completion of one round of steps (2),

(3), and (4).

Discovery of final weights using only V microphones

The final weights are obtained by solving a second time (3.14) restricted to the submatrix

indexed by A with either λ = 0, if the submatrix is well-conditioned, or the same λ otherwise.

This step is known as “debiasing”. This step is needed because of the weight vector found by the

final step (3), while containing V large weights also contains N − V weights that are small but

are still non-zero.

3.4.2 Simulated Annealing (SA)

Our second approach to solve (4.5) uses simulated annealing (SA). We note that the con-

straint on the number of active microphones makes (4.5) a combinatorial optimization problem.

Simulated annealing is a simple randomized technique for iterative improvement introduced in [3].

SA repeatedly traverses a Markov chain by sampling the search space from a neighborhood of the

current point with a probability proportional to exp(f(x)
T ) where T is a temperature parameter and

f is the objective function to be minimized. The idea is that when T is large or, metaphorically

speaking, when the “the iron is hot” and therefore pliable, all points in the space have approxi-

mately equal probability of being selected, and as T decreases or the “the iron cools” and is less

pliable, only points in the space that are close to the current search point have approximately equal

probablity of being selected. The temperature functions follows an user-determined schedule of

heating, cooling, and the re-heating.

If the new point discovered is better, the point is set as the current search point. A key idea
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of SA is that if the new point discovered is worse, the algorithm will accept it as the current search

point with some non-zero probability in order to avoid local minima.

In our case, we wish to find the subset of V microphones out of N and their corresponding

weights that minimize the problem given by (4.5). In other words, we wish to find the subset

of V beamforming weights out of N that minimizes the p-norm of the inteference gains while

maintaining target unity gain, that is achieves target perfect reconstruction. The objective function

value f is then the p-norm of the L − 1 interference gains. If the optimization program fails for

any reason, the objective function value is set to infinity.

SA generates a new random candidate solution point j in the neighborhood of the current

point i, where j’s distance from the current search point (the difference of the microphone indices

moduloN ) is proportional to the temperature parameter. The candidate replaces the current search

point if the candidate’s objective function value improves, i.e. f(j) < f(i). This is also done if

the candidate’s objective function value is worse, but only randomly with a probability given by:

p = exp

(
f(j)− f(i)

T

)
(3.16)

Otherwise, the candidate is rejected.

We index our microphones from 0 to N − 1, and our initial point is the set of V active

microphone indices discovered by the λ-method. By choosing our initial point in this manner, we

guarantee that SA will find a solution no worse than the solution discovered by the λ-method.

We perturb these V indices in proportion to the current temparature T . If v >= N or v < 0,

we set v = v (mod N). By doing so, we make all the new indices valid microphone indices but

also introduce the notion that the microphones are arranged in a circular manner, that is the first

microphone, microphone 0, and the last microphone, microphone N − 1, are only a distance 1

apart.

In our experiments, we use the following SA parameters. The initial temperature is set to
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100, and the annealing schedule decreases the temperature by 5% each iteration. We limit the

length of the Markov walk to a total length of 1200 iterations. After every 100 iterations, the

annealing is restarted by setting the temperature back to its initial value of 100. Further, we rerun

SA ten times.

3.5 Relation to Prior Work

In this section we compare and relate our approach to four problems in the literature: the

beam pattern design, co-array design, grid-based beamforming, and compressive sampling.

Beampattern Design Lebret and Boyd [4] showed that given arbitrary microphone loca-

tions, finding the set of microphone weights that minimizes the maximum interference gain could

be formulated as a convex optimization problem. They modeled sources as point sources, com-

plex exponentials decaying as a function of distance. Specifically, the problem could be showed

equivalent with a Second Order Cone Programming (SOCP) problem and thus efficiently solved

by interior point methods [5].

Our approach is similar in spirit to that of Ling et al. [6]. The authors followed the ap-

proach of [4] but added an additional l1 norm penalty to the weights. The l1 penalty sparsifies the

microphone weights and therefore microphone locations. Specifically, the l1 penalty on weights

causes many of the beamforming weights to be close to zero in magnitude. Our work differs in

the following three aspects. First, we minimize p-norm of interference gains instead of the side

lobes at different incident angles since we are interested in a two dimensional beam pattern. Sec-

ond, our simulations consider microphone locations on the perimeter of a rectangular room, rather

than only on a straight line. Third, we do not add an l2 penalty on the weights to protect against

large gains. Instead, after optimizing over a large set of microphones with a l1 penalty, we select

the microphone locations with the largest weight values and then reoptimize over this subset of

24



locations. During the reoptimization, we use the same l1 penalty.

The performance of the proposed λ-method is compared against the performance of an

exhaustive search, showing how close to optimal the λ-method achieves. The search space of

possible microphone configurations is also analyzed by counting the number of local minima.

Co-array Design A common approach to choose microphone locations for a variety of

problems is to examine the co-arrays formed by the microphone locations [7,8]. Recently, Pal and

Vaidyanathan [9] proposed an alternate method to find microphone positions with desired co-array

properties through the use of nested uniform arrays. However, the theory of co-prime arrays deals

principally with the one dimensional case. The optimization criteria we consider in the present

paper can deal implicitly with two or three dimensional array designs.

Grid-based Beamforming Brandstein and Ward modeled an acoustic enclosure as a rect-

angular grid of point sources in [10]. Grids were labeled either as sources or interferences based

on prior knowledge. Microphone weights were calculated to maximize the optimization criterion

given by the ratio between source gains and interference gains. This prior work did not analyze the

relationship between microphone placement and the optimization criterion. The authors extended

their algorithm [11] to address room reverberation by allowing for sources to lie outside the room,

an idea drawn from the “image” model where reflections of sources off of walls are modeled as

virtual sources lying outside the room [12].

Compressive Sampling The widespread compressive sampling problem (see [13,14]) is to

to minimize the l0 pseudo-norm of a vector x subject to a linear constraint Ax = b in the absence

of noise, or an inequality ‖Ax − b‖p ≤ ε in the presence of noise. Using Lagrange multipliers,

this problem becomes

min
x
‖Ax− b‖p + λ‖x‖0 (3.17)

where p ≥ 1.
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Problem (4.5) can be brought to this form if we make the additional assumption that a

specific microphone is active. For simplicity of notation, assume that we know |wN (f)| > 0, that

is microphone N , the last microphone is active. We know that at least one microphone is active

since if no microphones were active the target unit gain constraint would not be fulfilled. Next, we

solve for wN (f) from the target unit gain constraint 〈wN×1(f), H̄0,1×N (f)〉 = 1 and substitute

back into HI,(L−1)×N (f)wN×1(f). If we denote w̃(N−1)×1(f) as the (N −1)×1 column vector

which consists of the first N − 1 components of wN×1(f), that is

w̃(N−1)×1(f) =



w0(f)

w1(f)

...

wN−1(f)


,

and AL×(N−1)(f) the L× (N − 1) matrix whose l, n entry is given by

(
AL×(N−1)(f)

)
l,n

= Hl,n(f)−
Hl,N (f)H0,n(f)

H0,N (f)
,

and bL×1(f) the L× 1 column vector whose l-th entry is given by

(bL×1(f))l = −
Hl,N (f)

H0,N (f)
,

then (4.5) becomes

min
w̃(N−1)×1(f):‖w̃(N−1)×1(f)‖0=V−1

‖AL×(N−1)(f)w̃(N−1)×1(f)− bL×1(f)‖p (3.18)

which can be converted into a problem similar in form to (3.17):

min
w̃(N−1)×1(f)

‖AL×(N−1)(f)w̃(N−1)×1(f)− bL×1(f)‖p + λ‖w̃(N−1)×1(f)‖0. (3.19)
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A different formulation of (3.19) is to minimize the number of sensors that achieve a given

gain level τ , that is

min ‖w̃(N−1)×1(f)‖0

w̃(N−1)×1(f)

subject to

‖AL×(N−1)(f)w̃(N−1)×1(f)− bL×1(f)‖p ≤ τ

(3.20)

The convex relation is then given by

min ‖w̃(N−1)×1(f)‖1

w̃(N−1)×1(f)

subject to

‖AL×(N−1)(f)w̃(N−1)×1(f)− bL×1(f)‖p ≤ τ

(3.21)

We note that existing literature such as [15] gives guarantees on the quality of solution

found by optimization problems (3.21) if AL×(N−1) satisfies the Restricted Isometry Property

(RIP) [16]. However in our problem setup, AL×(N−1) does not satisfy RIP for reasonable numbers

of available microphones (e.g. N = 1000) since the microphones are closely spaced and hence

columns of AL×(N−1) have high similarity.

3.6 Experimental Results

Below we present two types of results. First we do a comprehensive analysis of the combi-

natorial optimization problem (4.5) for a tractable size. Second, we study a large scale setup. All

reported gain results are in [dB] defined as 10 log10 ‖Hw‖∞.

I). Consider the rectangular room similar to that of Figure 3.1 of size (10m × 8m) but with

the target located at (1m, 4m) and 6200 interferences operating at f = 1kHz. The total number of
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Table 3.1. Number of separated minima of criterion J for D = 5 active microphones out of N

and a neighborhood radius R shows the vast majority of combinations are nonoptimal locally.
@

@
@
@

@@
N

R
1 2 3 4 5 6 7 8 9 10

(
N
5

)

10 13 7 3 2 2 1 1 1 1 1 252

12 13 2 1 1 1 1 1 1 1 1 792

14 29 9 5 1 1 1 1 1 1 1 2002

16 112 27 10 4 4 3 2 2 2 2 4368

18 184 49 15 10 8 7 1 1 1 1 8568

20 288 56 24 13 6 6 2 2 2 2 15504

microphones N runs from 10 to 20 but only V = 5 are active microphones. For each combination

π = (π1, π2, π3, π4, π5) of 5 microphones out of N we solve the reduced optimization problem

J(π) = min
w̃
‖H̃w̃‖∞ , subject to 〈w̃, ¯̃H0〉 = 1 (3.22)

where H̃ is the 6200 × 5 submatrix of H corresponding to the combination π of active micro-

phones. Then we analyze the number of separated (local) minima across the set of
(
N
5

)
combina-

tions. We use the l1 modulo N for distance. We analyze neighborhoods of radius R, with R from

1 to 10. Specifically a combination ρ is a separated minimum if J(ρ) ≤ J(π) for all combinations

π so that d(ρ, π) ≤ R. Table 3.1 summarizes the number of separated minima for a given R. Next

we apply the λ-method where we tune λ to achieve 5 significant nonzero weights. Due to axial

symmetry in cases N=12 and N=14 the 5th and 6th largest weights are equal. In the other cases,

5th largest weight was at least 1000 times larger than the 6th weight. The optimal criterion found

by the λ-method is less than 0.75dB higher than the global minimum (see Table 3.2).

II). We perform simulations to show the performance and properties of the λ-method, where

we aim to separate sounds from a known target location and unknown interference locations. To

account for the unknown locations we consider a uniform grid of 100×80 interferences. We refer

to this grid as the optimization grid. All experiments assume a rectangular room of dimension
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Table 3.2. Comparison λ-method vs. global minimum.

N 10 12 14 16 18 20

λ-method [dB] -0.86 0.94 0.55 -1.39 -0.95 -1.55

Global optim [dB] -1.31 0.54 0.54 -1.6 -1.68 -1.62

10m x 8m and N = 1000 microphones. We disregard interferences that are closer than 0.5m to

the source or the walls of the room and report the worst target to interference gain (WTIG) as

performance measure.

First, we use the λ-method to select a subset of size V = 32 microphones from the original

1000 that achieves the lowest WTIG for a 1kHz target signal at position (x, y) = (3, 4) for a

single path reflection model on a fine 1000 × 800 evaluation grid. This is achieved as discussed

in Section 4.4. The resulting gain beam pattern is illustrated in Fig. 3.2. Here, the WTIG is found

is 1.5dB. The disregarded regions close to the walls and the target are indicated by white coloring.

Note that both inferred microphone locations are beam pattern are symmetric. Also, the beam

pattern shows ray-like regions of higher gains “emitting” from pairs of microphones. These rays

overlap in a 2D design to archive a high gain at the target and to suppress signals at other locations

in the room.

Next, we analyze performance as a function of the number of selected microphones V and

the target location. Figure 3.3 illustrates the WTIG of a 1kHz target signal at positions (1,4) and

(3,4) for D = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000 active microphones and λ = 0.1. This

shows that a small subset of e.g., 32 microphones can be sufficient to achieve performance similar

to the solution of all 1000 microphones. However, it also shows that the necessary number of

microphones, for close to optimum performance, is dependent on the target location. That is, while

sub-selecting 32 microphones results in a WTIG increase over the 1000 microphone solution of

0.1dB for position (1,4) on the evaluation grid, it results in an WTIG increase of 4.8dB for position
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Fig. 3.2. Gain pattern of a 32 element microphone array at 1000 hz found by λ-method. The worst

target to interference gain is 1.5 dB. The array is down-selected from 1000 uniform distributed

microphones.

(3,4).

Finally, we evaluate the quality of the result from our λ-method by comparing it with the

results from the SA method. This is necessary due to the non-convex nature of the optimization

problem (4.5), which suggests that our approach could converge to a sub-optimal local minimum.

Both, the λ-method and SA method use the optimization grid to find the microphone locations and

weights. SA is initialized at the final microphone locations of the λ-method to reduce processing

time. The result of this comparison is illustrated in Table 3.3. The small improvement from SA

illustrates the quality of the λ-method result. In Fig. 3.4, the gain pattern is no longer symmetric

but achieves a better WTIG of 1.5 dB.

Table 3.3 and Fig. 3.3 also show that the microphone selection and weights obtained using

the optimization grid perform sub-optimally on the finer evaluation grid. That is, while Table 3.3

reports a WTIG of −12.71dB for position (1,4), where the evalution is based on the optimization

grid, the same position only achieves a WTIG of −4.79dB when the evaluation is based on the

finer evaluation grid. Note that it is computationally infeasible to use the fine evaluation grid for

optimization with the λ-method. 30
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Fig. 3.3. Worst target to interference gain for a number of active microphones and different target

locations. 32 microphones are sufficient to achieve performance similar to 1000 microphones.

The sufficient number of microphones is dependent on the target location.

Table 3.3. WTIG for the λ-method and SA

Method Pos. (1,4) Pos. (3,2.5) Pos. (3,4)

Opt. Grid λ-method -12.71 -7.35 -5.73

(100× 80) SA -13.00 -7.66 -5.73

Eval. Grid λ-method -4.79 0.30 1.5

(1000× 800) SA -5.34 -0.14 0.1
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Fig. 3.4. Gain pattern of a 32 element microphone array at 1000 hz found by Simulated Annealing.

The worst target to interference gain is 0.1 dB. The search was initialized by the result of the λ-

method

3.7 Conclusions

Our problem is acoustic scene understanding, which subsumes a number of high level tasks

such as localization of acoustic sources, tracking of features of the sources, and even source sep-

aration. We aim to utilize a very large number of microphones distributed spatially in the volume

of interest. This paper discusses optimal beam patterns for very large microphone arrays. It shows

that only a sparse active subset of microphones is sufficient at any given time. The equivalent

problem with a small set of microphones would be element spacing. The paper formalizes the

problem of defining active subsets of microphones capable to zoom into a target location while

suppressing a large number of interferences. It shows that near optimal subsets are solutions of a

convex approximation of the originally stated non-convex criterion using a LASSO inspired ap-

proach. Future work will show how solutions representing multiple active subsets of a very large

multidimensional microphone array could be adaptively employed in order to locate and separate

sources of interest.
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Part II

Processing Broadband Source Using Delay-Scale-Sum Beamformer
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Chapter 4: Processing Broadband Source Using

Delay-Scale-Sum Beamformer

4.1 Overview

Consider a sensing system using a large number of N microphones placed in multiple

dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical

because of the amount of data generated. Instead, we choose a subset of V microphones to be

active. Specifically, we wish to find the set of V microphones that minimizes the p-norm of the

gain at multiple frequencies while monitoring a target of interest with p ∈ {1, 2,∞}. A direct,

combinatorial approach – testing all N choose V subsets of microphones – is impractical because

of the problem size. Instead, we use a convex optimization technique that induces sparsity through

a l1-penalty to determine which subset of microphones to use. We test the robustness of the our

solution through simulated annealing and compare its performance against a classical beamformer

which maximizes SNR. Since switching from a subset of D microphones to another subset of D

microphones at every sample is possible, we construct a space-time-frequency sampling scheme

that achieves near optimal performance.
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4.2 Introduction

Consider a large scale microphone array havingN microphones that monitors a surveillance

area. Using all microphones simultaneously may be unreasonable in terms of power consumption

and data processing. For example, for N = 10000 microphones and a data sampling rate of

100000 samples per second, the bandwidth requirement is 1Gsamples/sec. Instead, we could poll

only a subset of D microphones at any one given time. The N choose D number of choices of

microphones allows for a myriad of microphone configurations, and the task is then to choose a

subset that achieves our objective.

Alternatively, our problem is to place D microphones in a constrained region of space. We

convert this non-convex optimization problem into a combinatorial problem by discretizing the

possible set of microphone locations. In this context our approach can be seen as an optimal test

design.

Assume the surveillance area consists of a set of point-like sources. We seek designs that

minimize the p-norm of intereference gains across frequencies from a potentially very large num-

ber of locations while still maintaining target unit gain at each frequency. Throughout this paper,

we assume the following hypotheses:

H1. Microphone locations, that is their (x, y, z-coordinates), are known. Their locations

however can be arbitrary.

H2. The number of real interferences, their locations, and their spectral powers are un-

known.

H3. The maximum number of microphones active at any time, V , is fixed in advance.

H4. All sources, both target and interferences, are broadband that is each source consist of

F frequencies f0, f1, . . . fF−1
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When microphones have local computational processing power, we make an additional

hypothesis:

H5. Microphones can band-pass signals and they can switch data transmission on a sample-

by-sample basis.

Under H5, the system can sample selectively the space-time-frequency domain.

Our system divides the surveillance area into a large number of small, non-overlapping

target areas. For each fixed target area, we find a subset of microphones that minimizes the p-

norm of broadband gains of a large number of virtual interferences with p ∈ {1, 2,∞}. By doing

so, the system is robust to a wide variety of unknown interference configurations. In addition,

we note that the system can choose a different set of microphone locations for each of the three

different p-norms.

After finding a set of V microphones to monitor each of the individual target areas, the sys-

tem begins to iteratively scan each target area by polling the predetermined set of V microphones

for each of the corresponding target areas. We note that the V microphones need not be unique

for each target area but rather the same microphone can be reused across different sets of V mi-

crophone configurations as target areas vary. By polling sets of numactivemics microphone for

each target area, we can measure the signal strength in each target area and hence discover and

monitor the actual targets.

Our goal then is to find for a fixed target area the optimal set of V microphones and their

corresponding broadband weights and that minimizes the p-norm of the broadband gain of the

inteferences while maintain target unity gain at each frequency with p ∈ {1, 2,∞}
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Fig. 4.1. Sample Scenario: L = 193 sources (1 target and 192 interferences), N = 200 micro-

phones. The 200 microphones are placed on the walls of a 10 m by 8 m room. To monitor the

target located at (3m, 4m), we wish to use only V microphones instead of all N so as not to over-

whelm our central processing unit with data. If we set V = 5, there are
(
N
V

)
=
(

100
5

)
≈ 7.5× 107

possible sets of 5 microphones to use. The L sources are assumed to be broadband, that is each

source consists of the F frequencies f1, f2, . . . , fF . We allow theN filter weights to vary for each

of the F frequencies and hence our optimization problem returns a set of F ·N filter weights.

4.3 Problem formulation

Consider the setup described earlier and sketched in Figure 4.1. We assume we know the

microphone locations and then fix a target area. Since the number, location, and power distribution

of each of the interferences is unknown, we assume a large number of virtual interferences, say

L. To account for possible reflections off of walls, we include virtual interferences outside our

survelliance area. Our objective is to minimize the p-norm of the interference broadband gains

with p ∈ {1, 2,∞}.

Assume the zero indexed source is the target, and the remaining L sources are interferences.

For these “virtual”L+1 sources we use the direct-path model, where the transfer function between
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source l and microphone n at frequency fi is given by

Hl,n(fi) =
e−2πific‖rl−rn‖

‖rl − rn‖
, 0 ≤ l ≤ L, 1 ≤ n ≤ N (4.1)

where rn, rl denote the position vectors of microphone n and source l respectively, and c is the

speed of sound, which in our case is the speed of sound, 343 m/sec. The direct path model assumes

that the signal amplitude decays in proportion to distance and the frequency phase varies cyclically

in proportion to both the propagation speed and frequency.

Let wn(fi) denote the processing weight for microphone n at frequency fi. In other words,

we assume that each microphone applies a delay and scaling in the time domain to the signal

for each frequency of interest of fi. This can be accomplished by splitting the signal into fre-

quency bands via bandpass filters and operating on each bandlimited signal individually. A key

observation is that if wn(fi) = 0, then microphone n is inactive at frequency fi.

For a fixed interference l and frequency fi, the the system processing response to source l,

Rl(fi), of our delay-scale-sum system is given by

Rl(fi) =

N−1∑
n=0

Hl,n(fi)wn(fi). (4.2)

We note that for a fixed frequency fi each of theN microphones receives a “copy” of source

l that has been distorted by some transfer function Hl,n that is a function of the distance between

the microphone n’s and source l’s location. Each microphone n’s copy is processed by some

weight wn and all N processed, distorted copies are summed up to give the system processed

source l.

Rl(fi) is then a complex scalar that is exactly the delay-scale-sum system’s effect on source

l for frequency fi. By taking the modulus of Rl(fi), we get the gain Kl(fi), that is

Kl(fi) = |Rl(fi)| (4.3)
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The gainKl(fi) is a real non-negative scalar that measures how much our system attenuates

or amplifies a given source l at frequency fi. If 0 ≤ Kl(fi) < 1, the system attenuates the source

l and conversely if Kl(fi) > 1, the system amplifies source l. If Kl(fi) = 1, the system does not

distort the amplitude of source l but may possibly introduce a phase shift to source l at frequency

fi.

Assume that we have F distinct frequencies of interest,f0, f1,. . .,fF−1. Given F sets of

N microphone weights, each interference l has F different gains, one for each frequency. Note

that for each of the F frequencies, we use a different set of N microphone weights to calculate

the interference gains at that frequency. Our objective is to minimize the p-norm of sum of gains

across F frequencies for interference sources while still achieving target unit response at each

frequency with p ∈ {1, 2,∞}. We call the sum of gains of an interference across F frequencies

an intereference’s broadband gain. Hence, the broadgain for source l for frequencies of interest

f0, f1, . . . , fF−1, Kl(f0, f1, . . . , fF−1),a real non-negative scalar, is given by

Kl(f0, f1, . . . , fF−1) =

F−1∑
i=0

|
N−1∑
n=0

Hl,n(fi)wn(fi)| (4.4)

Assumption H3, however, limits us to V simultaneously active microphones.

In this multi-frequency setup, when H5 is not satisfied, microphone n becomes ac-

tive if wn(fi) 6= 0 for any i. Thus, the number of non-zeros in the N -dimensional vector

{ max
0≤i≤F−1

|wn(fi)|} is an appropriate measure of the number of active microphones. In other

words, if a fixed microphone n has any non-zero weight for any of its F filter weights, the mi-

crophone is considered active. Let ‖w‖0 denote the pseudo-norm which counts the number of

non-zeros in the vector w. We can now state our optimization problem:
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min
(wn(fi))

F−1,N−1
i=0,n=0

‖{
F−1∑
i=0

|
N−1∑
n=0

Hl,n(fi)wn(fi)|}1≤l≤L‖p

subject to
N−1∑
n=0

H0,n(fi)wn(fi) = 1 for i = 0, 1, . . . , F − 1

‖{ max
0≤i≤F−1

|wn(fi)|}0≤n≤N−1‖0 ≤ V

(4.5)

Note that this is a non-convex optimization problem due to the l0 pseudo-norm constraint

‖{ max
0≤i≤F−1

|wn(fi)|}0≤n≤N−1‖0 ≤ V . When hypothesis H5 is satisfied, we can solve the

optimization problem (4.5) independently for each frequency, and then implement an adaptive

space-time-frequency sampling.

4.4 Convex Optimization Strategy

Our method is inspired by LASSO regularization [1], a regression technique that minimizes

the sum of squares of residual errors subject to the l1 norm of the coefficients being less than a

constant. Similar to the sparse signal and model estimation approach in [2], the l0 pseudo-norm is

replaced by the l1 norm ‖w‖1 =
∑N−1

n=0 |wn(f)| which is then incorporated into the optimization

criterion using a Lagrange multiplier λ. The optimization problem (4.5) is then replaced by the

following convex optimization problem which we call the λ-method:

min
(wn(fi))

F−1,N−1
i=0,n=0

max
1≤l≤L

F−1∑
i=0

|
N−1∑
n=0

Hl,n(fi)wn(fi)|+ λ

N−1∑
n=0

max
0≤i≤F−1

|wn(fi)|

subject to
N−1∑
n=0

H0,n(fi)wn(fi) = 1 for i = 0, 1, . . . , F − 1

(4.6)

For very large λ, the penalty term forces many of the microphones to become inactive. Specif-

ically, let WN×F be the N by F matrix of microphone weights produced by the optimization

where a row represents the F filter weights of an individual microphone. With a large λ penalty,

many of the rows of WN×F contain only values very close to zero. If the nth row only con-

tains such small values, microphone n is inactive. As λ decreases, the penalty term becomes
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less expensive and more microphones become active. At the limit, λ = 0, all microphones are

allowed to be active. We fine tune λ until we get V non-zero components. Specifically, this is

accomplished when gn(V+1)
is significantly smaller than gn(1)

(e.g. by 3 orders of magnitude),

where gn = max
0≤i≤F−1

|wn(fi)| and gn(i)
is the i-th largest element in magnitude of the set {gn},

n = 0, 1, . . . , N − 1. We then solve (4.6) using this λ. The final weights are obtained by solving

a second time (4.6) restricted to V microphones and λ = 0, commonly known as the debiasing

step [1].

4.5 Varying Microphone Support Over Frequencies

When we optimize over multiple frequencies (4.6), the support of the chosen microphones

remains fixed over the frequencies. However, we can also run (4.6) for each individual frequency

of interest fi, that is we solve the optimization problem

min
(wn(fi))

N−1
n=0

max
1≤l≤L

|
N−1∑
n=0

Hl,n(fi)wn(fi)|+ λi

N−1∑
n=0

|wn(fi)|

subject to
N−1∑
n=0

H0,n(fi)wn(fi) = 1

(4.7)

We have to run (4.7) a total of F times, once for each frequency of interest fi. A run of

(4.7) for frequency fi means to iteratively choose λi until we discover a λi that produces V active

microphones. We note that every time we test a new candidate λi, the optimization problem (4.7)

needs to be solved .

Each run of (4.7) for fixed fi produces a different set of V microphones and hence the

support of the microphones can vary over frequencies. If the frequencies are chosen with uniform

spacing, we can use non-uniform sampling to reconstuct the signals of interest at each frequency.

Specifically assume we have a total of F frequency bands (e.g. F = 4 as in the results below).

Then each microphone has an additional F -channel filter bank each processing disjoint frequency
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bands. The filter bank outputs are downsampled by F and the corresponding sample streams are

sent according the transmission policy obtained in the optimization step. The central controller

reconstructs the broadband signal by putting together the disjoint frequency bands.

Another method of allowing the microphone supports to vary over frequency is to solve the

following optimization problem

min
(wn(fi))

F−1,N−1
i=0,n=0

max
1≤l≤L

F−1∑
i=0

|
N−1∑
n=0

Hl,n(fi)wn(fi)|+
F−1∑
i=0

λi

N−1∑
n=0

|wn(fi)|

subject to
N−1∑
n=0

H0,n(fi)wn(fi) = 1 for i = 0, 1, . . . , F − 1

(4.8)

Every time (4.8) is solved, F different λi must be chosen. The question arises then how to

iteratively choose the F differnt λi so that V active microphones are chosen for each frequency.

We also note that (4.8) differs from (4.7) in that the objective function includes the broad-

band gain.

4.5.1 Varying λ1 and λ2 For Two Frequencies

We are interested in the pair of lambda values that produces exactly the same number of

significant microphones weights for each of the two frequencies where one lambda is a scalar

multiply of the ell-one norm of microphone weights for the first frequency and the other lambda is

similarly a scalar multiply of the ell-one norm of microphones weights for the second frequency

within the objective function. In other words, we have a fixed number of microphones for each

frequency but the microphone positions and weights are allowed to vary for each frequency.

For example, if we had 100 possible microphone locations, we would have then have 200

total microphones weights we wish to optimize, 100 weights for each of the two frequencies.

We want to find the pair of lambda values that would produce 32 significant weights in the 100

weights corresponding to frequency 1 and 32 significant weights in the 100 weights corresponding
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to frequency 2.

A weight is considered significant if its magnitude is greater than 0.1% of the largest mag-

nitude of the weights for that frequency.

We note that the optimization problem consists of an objective function and a constraint.

The objective function is the sum of three terms: the p-norm of the sum of the interference gain

across the two frequencies, the first lambda multiplied against the ell-one norm of the microphone

weights corresponding to frequency one, and the second lambda multiplied against the ell-one

norm of the microphone weights corresponding to frequency two. In addition, we have the con-

straint that the microphone weights produce unit gain for the target at both frequencies.

We also note by increasing the lambda value corresponding to a single frequency, the num-

ber of significant weights for that that frequency decreases and similarly by deceasing the lambda

value corresponding to a single frequency, the number of significant weights for that frequency

increases. What is unknown is the effect of changing the lambda for a given frequency on the

number of significant weights for the other frequency.

To gain intuition on the effect of varying one lambda on the other frequency’s number of

significant weights, we run the following experiment.

We fix our possible microphones locations, the target, the interferences, and the two fre-

quencies.

We then vary two different lambdas values within our objective function. For example, if

we wish to test the lambda values 0,1, and 100 we would have 32 lambda pairs to test. For each

pair of lambdas we test, we collect four values: the number of significant weights for each of the

two frequencies and the ell-one norm of the microphone weights for each of the two frequencies.

We specify the number of significant microphone weights for each frequency we are inter-

ested in. In our case, 5,8, and 32 microphones weights out of 100.
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For example, for 32 significant microphones, we plot the contour lines for 32 microphones

for each of the two frequencies on the same plot with the the x-axis and y-axis representing the

variation of lambda values tested We have then plotted two different contour lines, one for fre-

quency. We find the intersection of the two contour lines and for that intersection point, a specific

pair of lambdas, we look up the corresponding ell-one norm of weights of each of these two fre-

quencies. This represents two different ell-one weights. One is the ell-one norm of the weights

for frequency one and the other is the ell-one norm of the weights for frequency two.

We note that quantization (round-off error) is involved in finding this intersection point

since not all possible lambda values between smallest lambda and largest lambda, an uncountably

infinite number of points, are tested. The intersection point is chosen to be the pair of lambda

values that are closest in distance to the intersection of the two contour lines where the contour

lines are they themselves interpolated curves.

We then plot the contour lines for two different ell-one weights for both frequencies on the

same plot with the the x-axis and y-axis representing the variation of lambda values tested. This

represents 4 different contour lines.

4.6 Simulated Annealing

We test the robustness of the solution found by convex optimization through simulated an-

nealing (SA). Simulated annealing is a simple randomized technique for iterative improvement

introduced in [3]. SA will probabilistically accept worse transitions in order to avoid local min-

ima. In our case, SA minimizes the objective function given by the largest gain for all interference

positions for a fixed-size subset of microphones over locations of the microphones in the subset.

More precisely, given a fixed number of D microphones, we run the same convex optimization

problem as the λ-method (e.g., find the filter weights that minimize the maximum valid interfer-
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ence over a coarse grid while maintaining a target gain of unity) but with λ set to 0. The objective

function value f is then the largest gain of the valid interferences. If the optimization program

fails for any reason, the objective function value is set to infinity. The initial temperature is set

to 100, and the annealing schedule decreases the temperature by 5% each iteration. We limit the

length of the Markov walk to a total length of 1200 iterations. The initial search point is the point

produced by the λ found through an iterative binary search that produces D = 32 microphones.

We assume that the target location, room size, and the frequency of interest are fixed.

4.7 Relation to Prior Work

In this section, we review prior work in relation to our work.

The author of [17] derives a probabilistic expression for the peak side lobe level for a linear

array with randomly placed elements. The elements’ weights are uniform in magnitude but their

phases are chosen to maximize the main lobe in the direction normal to the array. In our case, we

allow weights to vary in both magnitude and phase.

In [18], the authors address the problem of finding the sparsest linear array given a desired

beam pattern and error tolerance. The elements’ phases are fixed and their magnitudes’ are al-

lowed to vary. They furthermore assume symmetry in their linear array so that their optimization

variables are real. Analogous to our setup, they formulate an l0 quasi norm objective to count the

number of active array elements by counting the number of non-zero weight values. The number

of possible of active array elements available,N in our case, is large but finite to make the problem

computationally tractable. They convert the objective to a lp norm objective with 0 < p < 1 and

solve the optimization problem using a simplex search.

In [19], the author assumes a symmetric linear array setup and formulates an optimization

problem to find the real weights that minimize peak side lobe level for fixed sensor locations. He
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then proposes another optimization problem that finds both sensor weights and sparse locations

simultaneously. To minimize the number of sensors, he formulates a l0 quasi norm objective

to count the number of active array elements by counting the number of non-zero weight. The

optimization problem also includes a user-specified constraint on the maximum allowable peak

side lobe value. He solves this combinatorially difficult problem for small values using a branch

and bound method. In our case, we work with 2-D arrays and optimize over complex weights. In

addition, we fix the number of active microphones rather than trying to minimize the number of

active microphones and seek to minimize the maximum interference gain in the case p =∞. We

relax the l0 quasi norm to an l1 norm to discover microphone locations.

In [20], the authors propose two greedy deletion algorithms and a l1 minimization algorithm

to find a sparse linear array containing the desired number of elements. First is the “minimum in-

crease” algorithm, where for a given array, an element is removed and the performance of the

remaining elements is measured. This procedure is repeated for each element of the array. The

element which affects the performance the least is then deleted. This procedure is then repeated

iteratively until the desired number of array elements remain. Second, is the ”smallest coefficient”

algorithm where the array element with the smallest weight is deleted. This is also repeated it-

eratively until the desired number of array elements remain. The third algorithm relaxes an l0

pseudo-norm constraint to a l1 norm to get a sparse solution. The algorithm then chooses the

elements with the V largest weight magnitudes where V is the desired number of active elements.

Finally, the algorithm finds new weights for the chosen V algorithms, a debiasing step. Our algo-

rithm is similar in spirit to the third algorithm but we instead we rerun the optimization problem,

tuning a sparsity parameter λ using a bisection method, until the l1 norm minimization problem

produces the desired number of V microphones.

In [21], the authors uses the theory of difference sets to place elements. In addition, he
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proposes the idea of “spatial hopping” wherein one part of the array form one desired beampattern

and the other part of the array forms another desired beampattern. This idea is analogous to the

idea of using different subset of microphones to focus in targets at different locations.

The authors of [22] solve the problem of finding the maximally sparse linear array that

matches a given reference beampattern within a specified tolerance by converting the problem to

finding the maximally sparse linear array that matches a given reference beampattern with the

highest a-posteriori probability . They solve the converted problem via Bayesian Compressive

sampling. Their algorithm is dependent on an initial estimate of the error variance, σ2
0 .

4.8 Experimental Results

We run experiments by optimizing over a simpler model and then evaluating over a more

sophisticated model. Our optimization model is as follows: The room size is 10 m by 8 m. The

target of interest is located at (3 m,4 m). There are 1000 possible microphone locations along the

perimeter of the rectangular room. We optimize over four freqencies of 250, 500, 750,and 1000

Hz. There are 6200 virtual interferences, and a direct path model is used to calculate the transfer

functions. We do not place these interferences within 0.5 m of the perimeter of the room or the

target. The evaluation model differs from the optimization model in two ways: There is a denser

set of 620000 interferences, and we include reflections for each of them. We run five types of

experiments to compare the performance of the λ-method. First, we run the optimization problem

(4.6), simultaneously optimizing over the four frequencies. This setup fixes the support of the

microphone setup across all 4 frequencies. Second, we run the optimization problem (4.6) again

four times, once at each individual frequency. The support of the chosen microphones are then

allowed to vary over frequencies. Third, we randomly perturb the set of microphones found by

the multi-frequency optimization of experiment (1) using simulated annealing (SA) to see by how

much we can improve the solution. Fourth, we again use SA to perturb the set of microphones
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found by the single-frequency optimization of experiment (2). Fifth, we test the performance of

the beamformer that maximizes the signal to noise ratio (SNR). This beamformer can be shown to

be the set of microphones that lie closest to the target.

Table (1) shows the worst interference gain in dB for the five setups using the evaluation

model. The results show our multi-freqency λ-method (column 3) outperforming the beamformer

that maximizes SNR (column 2) for every frequency. The single-frequency λ-method performs

better than multi-frequency λ-method since microphone locations are allowed to vary across fre-

quencies. Simulated annealing sometimes but not always finds better performing solutions when

measured with the evaluation model. By algorithm construction, simulated annealing finds a solu-

tion at least as good as the initial point when measured on the optimization model. Figs. 4.2 and

4.3 show the beam patterns for both the λ-method and the maximum-SNR beamformer at 1000

Hz along with the placement of the microphones. Results are in dB, with unit target gain (0 dB).

Fig. 4.4 compares the expected value and variance of the maximum gain among a varying number

of randomly placed interferences in the survelliance area. Finally, Fig. 4.5 shows the sharp drop

in filter weights produced by the multi-frequency λ-method.

f[Hz] BF MF λ SA MF λ SF λ SA SF λ

250 15.6 9.2 3.9 -1.19 -3.1

500 14.5 7.6 4.3 3.3 2.1

750 12.5 3.4 4.1 -0.9 -0.2

1000 10.4 2.4 5.8 1.5 0.1

Table 4.1. Worst interference gains[dB] for: Beamformer, MultiFreq λ-method, SA MultiFreq

λ-method, SingleFreq λ-method, SA SingleFreq λ-method.
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4.9 Conclusions

We aim to utilize a very large number of available microphones by using customized sub-

sets of microphones to monitor specific areas of interest. This selective sampling of microphones

then produces reasonable amounts of data to be processed. An equivalent problem to our micro-

phone subset selection is microphone spacing. Our optimization criterion finds microphones that

suppress a large number of interferences across multiple frequencies while monitoring a target

location. We allow the subset of microphones we choose to have different weights for different

frequencies of interest. We show that our multi-frequency LASSO-inspired convex optimization

technique can find subsets of microphones that give reasonable performance on evaluation models

that contain large numbers of virtual interferences and reflections even though the optimization

criterion assumes many fewer virtual interferences and no reflections. If frequencies of interest

are uniformly spaced, we can achieve even better performance by allowing the active microphone

subset to change over frequencies and then reusing space-time-frequency sampling to recover our

signal of interest.
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Part III

Processing Broadband Source Using Multi-rate Filterbanks
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Chapter 5: Multirate Filterbank Review

We note that this chapter’s derivations are known in literature. In particular, we refer the

reader to [23].

5.1 Filtering Followed by Downsampling

F 
↓D ↑D 

x q v e y
G 

Fig. 5.1. Single channel of multi-rate filterbank

In the first half of Fig. 5.1, the input signal x is first filtered by filter F and then downsam-

pled by integer D. The output after downsampling is denoted by v. The output at time t′ after

filtering but before downsampling is given by the convolution q[t′] =
∑

t f [t′− t]x[t]. If the input

to the down sampler is q, then the output of the downsampler is v[m] = q[mD]. Combining these

two relationships yields the input/output relationship

v[m] = q[mD] =
∑
k

f [mD − k]x[k] (5.1)

Reference [23] in Section 4.1 shows that the z-transform of (5.1) is given by
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V (zD) =
1

D

D−1∑
d=0

F (zW d
D)X(zW d

D) (5.2)

5.2 Upsampling Followed by Filtering

In the second half of Fig. 5.1, the signal v is upsampled by integer D and then filtered by

filter G. We denote the signal after upsampling but before filtering as e[τ ] and the output after

filtering as y[t]. When upsampling by integer D, we have

e[τ ] =


v[ τD ] if τ mod D = 0;

0 otherwise.
(5.3)

The output y is a convolution of the filter G and e so by the previous relationship we can

derive the input/output relationship as follows

y[t] = (g ∗ e)[t]

=
∑
τ

g[t− τ ]e[τ ]

=
∑
k

g[t− kD]e[kD]

=
∑
k

g[t− kD]v[k] (5.4)

In the third line, we let τ = kD with integer k since e[τ ] is only non-zero when τ is an

integer multiple of D. [23] in §4.1 shows that the z-transform of (5.4) is given by

Y (z) = G(z)V (zD) (5.5)
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Fig. 5.2. Filterbank for microphone n. Notice that D, the downsampling and upsampling factor,

is not necessarily equal to C, the number of channels (subbands).

5.3 Filterbank Processing

The output of the n-th’s microphone filterbank, yn, is the sum of each of the C channels

processing result. Hence, we have

yn[t] =

C−1∑
l=0

yn,l[t] (5.6)

where yn,l is the processed result of the l-th channel of the n-th microphone’s filterbank.

The z-transform of (5.6) is simply

Yn(z) =

C−1∑
l=0

Yn,l(z) (5.7)

Using (5.4), we can expand (5.6) as follows

yn[t] =

C−1∑
l=0

∑
k

gn,l[t− kD]vn,l[k] (5.8)

where gn,l is the synthesis filter of the l-th channel of the n-th microphone and vn,l is the
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channel signal after decimation of the l-th channel of the n-th microphone.

From (5.7), (5.2), and (5.5), we can express the output of the n-th microphone as follows

Yn(z) =
1

D

C−1∑
l=0

Gn,l(z)
D−1∑
d=0

Fn,l(zW
d
D)X(zW d

D) (5.9)

(5.9) can also be equivalently be expressed as a scaled product of a row vector, matrix, and

column vector, that is

Yn(z) =
1

D
Gn,0,D,1×C(z)Fn,C×D(z)XT

n,1×D(z) (5.10)

where

Gn,d,D,1×C(z) = [Gn,0(zW d
D), Gn,1(zW d

D), · · · , Gn,C−1(zW d
D)] (5.11)

is a row vector, size 1 by C, containing all C synthesis filters for the n-th filterbank,

Fn,C×D(z) =



Fn,0(z) Fn,0(zWD) . . . Fn,0(zWD−1
D )

Fn,1(z) Fn,1(zWD) . . . Fn,1(zWD−1
D )

...
...

. . .
...

Fn,C−1(z) Fn,C−1(zWD) . . . Fn,C−1(zWD−1
D )


(5.12)

is a C by D analysis modulation matrix ( [24], §4.1) for the n-th filterbank, and

XT
n,1×D(z) = [Xn(z), Xn(zWD), · · · , Xn(zWD−1

D )]T (5.13)

is a column vector, size D by 1, containing aliased versions of Xn(z), the z-transform of

the n-th filterbank. We also define the synthesis modulation matrix, size D by C, for the n-th
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filterbank as follows

Gn,D×C(z) =



Gn,0(z) Gn,1(z) . . . Gn,C−1(z)

Gn,0(zWD) Gn,1(zWD) . . . Gn,C−1(zWD)

...
...

. . .
...

Gn,0(zWD−1
D ) Gn,1(zWD−1

D ) . . . Gn,C−1(zWD−1
D )


(5.14)

If we expand out the matrix vector multiply Fn,C×D(z)XT
n,1×D(z) as follows

Fn,C×D(z) XT
n,1×D(z) =

Xn(z)



Fn,0(z)

Fn,1(z)

...

Fn,C−1(z)


+ Xn(zWD)



Fn,0(zWD)

Fn,1(zWD)

...

Fn,C−1(zWD)


+ . . .+Xn(zW d−1

D )



Fn,0(zW d−1
D )

Fn,1(zW d−1
D )

...

Fn,C−1(zW d−1
D )


(5.15)

and observe that W d
D = e−j2π

d
D is D periodic in d, we notice the following useful equality from

the commutative property of addition

Fn,C×D(zW d
D)XT

n,1×D(zW d
D) = Fn,C×D(z)XT

n,1×D(z) (5.16)

for d = 0, 1, . . . , D − 1. Using (5.16), the input/output scalar equality of (5.10) can be

written in vector form as follows:

YT
1×D =

1

D
Gn,D×C(z)Fn,C×D(z)XT

n,1×D(z) (5.17)

where

YT
n,1×D(z) = [Yn(z), Yn(zWD), · · · , Yn(zWD−1

D )]T (5.18)
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is a column vector, size D by 1, containing aliased versions of Yn(z)
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Chapter 6: Processing Random Source Using Plu-

rality of Multirate Filterbanks

In this chapter, Section 6.1 builds on top of the results of Chapter 5. Section 6.2 presents

the second order description of cyclostationary processes. Sections 6.3 and 6.4 describes how

cyclostationary processes propagate through a plurality of multirate filterbanks, which is one of

our main contributions. We note that the single multirate filterbank description for cyclostationary

processes has been derived in [25].

6.1 Problem Setup

Assume that we have N microphones and that the output of each of the N microphones,

after pre-filtering, is processed by an individual filterbank. Each filterbank is implemented as

a multi-rate, finite-impulse response (FIR) filterbank and each filterbank has the same setup as

shown in Fig. 5.2 with D, the downsampling and upsampling rate, and C, the number of channels

fixed for allN filterbanks. The analysis and synthesis filters for each subchannel of each filterbank,

however, will be allowed to vary. Each of the N filterbanks receives a signal propagating from

source xr . See Fig. 6.1 for the overall system processing setup for a single source xr.

The n-th filterbank receives a sampled input originating from acoustic source xr. Each

microphone samples at the same uniform rate, and this rate is sufficient to recover all I+1 sources,
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Fig. 6.1. A single acoustic source xr propagates to N microphones, and the output of each the

N microphones is processed by an individual multi-rate, finite-impulse response (FIR) filterbank.

The subscript r of xr indexes the I + 1 sources which consist of I interference sources, whose

overall gain we wish to minimize, and 1 target source, whose gain we wish to be exactly 1 so

that our system perfectly reconstructs the target. We index the target source by setting r = 0,

and hence the target source is denoted by x0. The propagation from source xr to filterbank n

is modeled with transfer function Pr,n. The prefilter I0,n inverts the propagation from the target

source, x0, to filterbank n. The cascade of the propagation filter Pr,n and target inversion filter

I0,n is denoted as Hr,n. The output of the N filterbanks are summed to give a processed signal yr

each of which is assumed to be bandlimited. The sampled input is given by xr,n[k] = xr,n(kTs)

where k is an integer time index and Ts is the sampling period. The input signal for filterbank n,

xr,n, is then fed into C subchannels. The l-th subchannel for the n-th filterbank consists of a FIR

analysis filter Fn,l(z), a down-sampler of integer D, an up-sampler (zero interpolator) of integer

D, and FIR synthesis filter Gn,l(z). The outputs of the C subchannels are combined to give an
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output signal yr,n or in the z-domain,

Yr,n(z) =
D−1∑
d=0

(
1

D

C−1∑
l=0

Gn,l(z)Fn,l(zW
d
D)

)
Xr,n(zW d

D) (6.1)

where the above equation is simply a rearrangement of terms of (5.9). Gn,l is the transfer

function of the synthesis filter of filterbank n’s subchannel l and Fn,l is the transfer function of the

analysis filter of filterbank n’s subchannel l. In short, yr,n is the processed output of filterbank n

given an input signal propagating from source xr.

Assume we have I+1 acoustic point sources in the environment. We denote the r-th source

as xr. We set the 0-th source, x0, to be the target of interest and denote all the remaining I sources

as interferences. We wish to minimize the overall gain of these I interferences.

Let Xr,n(z) be the signal received by the n-th filterbank from source xr, and let Pr,n be the

transfer function that models the propagation from source xr to the n-th filterbank. Each filterbank

is pre-filtered with a target inversion filter, that is a filter I0,n that inverts the propagation effect on

the target’s phase from the target x0 to filterbank n. We denote the cascade of the propagation and

target inversion filter from source xr to microphone n as Hr,n , that is

Hr,n(z) = Pr,n(z)I0,n(z) (6.2)

We then have

Xr,n(z) = Hr,n(z)Xr(z) (6.3)

Note that the target inversion pre-filter does not vary with source xr but only varies with

filterbank n.

Remark Ideally, source x0, the target source, enters to each of the N filterbanks with only a

amplitude scaling and with its original phase. If we assume that the propagation P0,n from target
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source x0 to microphone n can be inverted perfectly by prefilter I0,n, then we have

H0,n(z) = P0,n(z)I0,n(z) = α0,nz
−∆Hn , (6.4)

where α0,n is a real scalar representing the amplitude change from propagation and ∆Hn repre-

sents a processing delay.

The processed output of each of the N filterbanks, Yr,n(z), are summed to give the final

output signal Yr(z), the system output from system input Xr(z), that is

Yr(z) =

N−1∑
n=0

Yr,n(z) (6.5)

By substituting the right hand side of (6.1) for Yr,n(z) in (6.5) and then substituting the

right hand side of (6.3) evaluated at zW d
D for Xr,n(zW d

D) in the resulting equation, we have, after

rearranging terms,

Yr(z) =

D−1∑
d=0

(
1

D

N−1∑
n=0

Hr,n(zW d
D)

C−1∑
l=0

Gn,l(z)Fn,l(zW
d
D)

)
Xr(zW

d
D) (6.6)

We want our system to perfectly reconstruct the target source, x0, after some processing

delay ∆, that is we want, in the z-domain,

Y0(z) = z−∆X0(z) (6.7)

By substituting the right hand side of (6.6) with r = 0, the target index, into the left hand

side of (6.7), we get

D−1∑
d=0

(
1

D

N−1∑
n=0

H0,n(zW d
D)

C−1∑
l=0

Gn,l(z)Fn,l(zW
d
D)

)
X0(zW d

D) = z−∆X0(z) (6.8)

For the equality of (6.8) to hold, the following D conditions need to hold:

61



N−1∑
n=0

H0,n(zW d
D)

C−1∑
l=0

Gn,l(z)Fn,l(zW
d
D) =


Dz−∆ if d = 0;

0 if 1 ≤ d ≤ D − 1

(6.9)

where ∆ is some positive integer, denoting the overall delay of the system.

In matrix-vector form, the D target perfect reconstruction of conditions of (6.9) can be

written as



Ḟ0,1×C(z) Ḟ1,1×C(z) · · · ḞN−1,1×C(z)

Ḟ0,1×C(zWD) Ḟ1,1×C(zWD) · · · ḞN−1,1×C(zWD)

...
...

. . .
...

Ḟ0,1×C(zWD−1
D ) Ḟ1,1×C(zWD−1

D ) · · · ḞN−1,1×C(zWD−1
D )


︸ ︷︷ ︸

ḞD×N·C



GT
0,1×C(z)

GT
1,1×C(z)

...

GT
N−1,1×C(z)


︸ ︷︷ ︸

GT
1×N·C

=



Dz−∆

0

...

0


(6.10)

where the matrix ḞD×N ·C , size D by N · C, consists of D · N row vectors, size 1 by C,

defined as

Ḟn,1×C(z) = H0,n(z) · [Fn,0(z), Fn,1(z), · · · , Fn,C−1(z)] (6.11)

and the column vector GT
1×N ·C , size N · C by 1, consists of N column vectors, size C by

1, defined as

GT
n,1×C(z) = [Gn,0(z), Gn,1(z), · · · , Gn,C−1(z)]T (6.12)
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Fig. 6.2. FIR multi-rate filter bank for n-th microphone

6.2 Cyclostationary Processes

The output of each microphone is processed by a corresponding multirate filterbank, Fig.

6.2, and hence it is useful to introduce cyclostationary processes when analyzing such filterbank’s

statistical properties.

Definition 6.2.1. The correlation function of two zero mean discrete random processes xn1 , xn2 ,

evaluated at time t1, t2, is defined as

Rxn1 ,xn2 [t1, t2] = E[xn1 [t1]xn2 [t2]] (6.13)

Definition 6.2.2. Two zero mean discrete random processes xn1 , xn2 are said to be jointly wide-

sense stationary (WSS) if their correlation function depends only on the difference of their time

evaluation, t1 − t2, that is

Rxn1 ,xn2 [t1, t2] = Rxn1 ,xn2 [t1 − t2, 0] for all t1, t2 (6.14)

To shorten notation for the correlation of jointly WSS signals, we will define the following

equivalence:
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Rxn1 ,xn2 [t1 − t2, 0] ≡ Rxn1 ,xn2 [t1 − t2] (6.15)

Definition 6.2.3. The spectral density of two zero mean discrete random processes xn1 , xn2 which

are jointly WSS is the z-transform, evaluated at ejw, of their correlation function, that is

Sxn1 ,xn2 (ejw) =
∑
τ

Rxn1 ,xn2 [τ ]e−jwτ (6.16)

Definition 6.2.4. Two zero mean discrete random processes xn1 , xn2 are said to be jointly wide-

sense cyclostationary (WSCS) with period D if their correlation function is periodic, that is

Rxn1 ,xn2 [t1 +D, t2 +D] = Rxn1 ,xn2 [t1, t2] for all t1, t2 (6.17)

Remark Assume xn1 , xn2 are jointly WSS, then we have

Rxn1 ,xn2 [t1 + P0, t2 + P0] = Rxn1 ,xn2 [t1 − t2] = Rxn1 ,xn2 [t1, t2] (6.18)

(6.18) shows that jointly WSS is a special case of jointly WSCS since jointly WSS implies

jointly WSCS with period 1.

Remark Assume xn1 , xn2 are jointly WSCS with period D and fix an integer u0. Then their

correlation function, defined as a function of integer k,

Rxn1 ,xn2 [u0 + k, k] (6.19)

is D periodic with respect to input parameter k.

Definition 6.2.5. The cyclic correlation function for period D and integer d with 0 ≤ d ≤ D − 1

is defined as
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Rd/Dxn1 ,xn2
[u] =

1

D

D−1∑
k=0

Rxn1 ,xn2 [k + u, k]e−j2π
d
D
k (6.20)

The value d/D is known as the cyclic frequency.

Remark From equation (6.17), we observe that for fixed u, Rxn1 ,xn2 [k + u, k] is a periodic

sequence in k with period D if xn1 , xn2 are jointly WSCS with period D . Hence, Rd/Dxn1 ,xn2
[u] are

the Fourier coefficients of Rxn1 ,xn2 [k + u, k], that is

Rxn1 ,xn2 [k + u, k] =
D−1∑
d=0

Rd/Dxn1 ,xn2
[u]W−kdD (6.21)

(6.21) can be verified by substituting in (6.20) into the right hand side and using (2.1).

Remark If xn1 , xn2 are jointly WSS, then the application of (2.1) for any D ≥ 1 shows that

Rd/Dxn1 ,xn2
[u] =


Rxn1 ,xn2 [u] if d = 0 mod D;

0 if 0 < d ≤ D − 1.

(6.22)

Definition 6.2.6. The cyclic spectral density for period D and integer d is the z-transform, evalu-

ated at ejw, of the cyclic correlation function for period D and integer d:

Sd/Dxn1 ,xn2
(ejw) =

∑
u

Rd/Dxn1 ,xn2
[u]e−jwu (6.23)

where w ∈ [0, 2π).

Remark If xn1 , xn2 are jointly WSS, we observe from (6.22) that the cyclic spectral density for

d = 0 is exactly the spectral density, that is

S0
xn1 ,xn2

(ejw) = Sxn1 ,xn2 (ejw) (6.24)
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6.3 System Input/Output Relationship

The following section derives an input/output relationship for the system given in Fig. 6.3.

We note that Fig. 6.3 is identical to that of Fig. 6.1 except the subscript r has been dropped from

the source x since in the following derivations we are assuming a fixed source xr. We assume that

the source x is white noise and hence WSS and with uncorrelated time samples and the output y

is the sum of N multirate filterbanks each processing a signal propagating from the source x.

In the following, we drop the subscript r from our notation

Remark We will show in the following section that when the input signal x is WSS, then xn1 , xn2 ,

the input to the n1 and n2 filterbank respectively, are jointly WSS. Furthermore, vn1,p, vn2,q, the

p and q subchannel signal of the n1 and n2 filterbank respectively are also jointly WSS. However,

yn1 , yn2 , the output of the n1 and n2 filterbank respectively, are jointly WSCS with period D.

6.3.1 Filterbank Input Cyclic Spectral Density

Lemma 6.3.1. Assume the fixed source x is WSS with spectral density Sx,x(ejw) and is processed

with the scheme depicted in Fig. 6.3. Then xn1 and xn2 are jointly WSS with cyclic spectral

density given as follows:

Sd/Dxn1 ,xn2
(ejw) =


Sx,x(ejw)Hn1(ejw)Hn2(ejw) if d = 0 mod D;

0 if d 6= 0 mod D.

(6.25)

where D is any given period, D ≥ 1.

In the special case when the input signal x is white noise, that is x is WSS and decorrelated,

with variance σ2
x, then the cyclic spectral density simplifies to the following:
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Fig. 6.3. A single acoustic source x propagates to N microphones, and the output of each the

N microphones is processed by an individual multi-rate, finite-impulse response (FIR) filterbank.

The propagation from source x to filterbank n is modeled with transfer function Pn. The prefilter

I0,n inverts the propagation from the target source, x0, to filterbank n. The cascade of the propa-

gation filter Pn and target inversion filter I0,n is denoted as Hn. The output of the N filterbanks

are summed to give a processed signal yr

Sd/Dxn1 ,xn2
(ejw) =


σ2
xHn1(ejw)Hn2(ejw) if d = 0 mod D;

0 if d 6= 0 mod D.

(6.26)

where as before D is any given period, D ≥ 1.

Proof. The inputs xn1 and xn2 to the n1-th filterbank and n2-th filterbank respectively from a

single WSS source x are jointly WSS, that is

Rxn1 ,xn2 [t1, t2] = Rxn1 ,xn2 [t1 − t2] (6.27)
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A simple proof of this statement follows:

E[xn1 [t1]xn2 [t2]] = E[
∑
k

x[t1 − k]hn1 [k]
∑
l

x[t2 − l]hn2 [l]]

=
∑
k

∑
l

hn1 [k]hn2 [l]E[x[t1 − k]x[t2 − l]]

=
∑
k

∑
l

hn1 [k]hn2 [l]Rx,x[t1 − t2 − k + l]︸ ︷︷ ︸
function[t1−t2]

where the last line follows because the source x is assumed to be WSS.

To show our desired result, we first note that (6.22) implies for d 6= 0 mod D, Sd/Dxn1 ,xn2
(ejw) =

0 since xn1 and xn2 are jointly WSS. Hence, we now calculate the cyclic spectral density between

xn1 and xn2 for period D and d = 0.

S0
xn1 ,xn2

(ejw) =
∑
u

R0
xn1 ,xn2

[u− 0]e−jwu

=
∑
u

E[(
∑
k

hn1 [u− k]x[k])︸ ︷︷ ︸
(x∗hn1 )[u]

(
∑
l

hn2 [−l]x[l])︸ ︷︷ ︸
(x∗hn2 )[0]

]e−jwu

=
∑
k

∑
l

∑
u

hn1 [u− k]hn2 [−l]E[x[k]x[l]]︸ ︷︷ ︸
Rx,x[k−l]

e−jw(u−k)e−jw(k−l)e−jwl

=
∑
l

∑
k

∑
u

hn1 [u− k]e−jw(u−k)

︸ ︷︷ ︸
Hn1 (ejw)

Rx,x[k − l]e−jw(k−l)hn2 [−l]e−jwl

= Hn1(ejw)
∑
l

∑
k

Rx,x[k − l]e−jw(k−l)

︸ ︷︷ ︸
S0
x,x(ejw)

hn2 [−l]e−jwl

= Hn1(ejw)Hn2(ejw)S0
x,x(ejw) (6.28)

Hence, we have proven (6.25). If the source signal x is white noise with variance σ2
x, then

we have

Rx,x[k + u, k] = Rx,x[u] = σ2
xδu (6.29)
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Using the definition of cyclic spectral density, (6.23), (6.22), and the correlation of white

noise, (6.29), we then have

S0
x,x(ejw) =

∑
u

R0
x,xe

−jwu =
∑
u

Rx,x[u]e−jwu = σ2
x (6.30)

Substituting (6.30) into (6.28), we then have the desired

S0
xn1 ,xn2

(ejw) = σ2
xHn1(ejw)Hn2(ejw) (6.31)

which proves (6.26).

6.3.2 Downsampled Subchannel Signal Spectral Density

We now derive the spectral density of subchannel signals vn1,p and vn2,q where vn,k is the

signal of the k-th subchannel of the n-th filterbanks after being processed by the analysis filter

Fn,k and then downsampled by D. As before, n = 0, 1, · · · , N − 1 indexes the filterbanks, and

k = 0, 1, · · · , C − 1 indexes the subchannels. See Fig. 5.2.

Lemma 6.3.2. The signals vn1,p and vn2,q are jointly WSS with spectral density given by

Svn1,p,vn2,q(e
jDw) =

1

D

D−1∑
m=0

Fn1,p(e
j(w−wD,m))·

D−1∑
n′=0

Fn2,q(e
j(w−wD,n′ ))S(n′−m)/D

xn1 ,xn2
(ej(w−wD,m))

(6.32)

where as in (2.8), wD,d = 2π
D d.

Remark The statement of this lemma holds true even under the weaker assumption that xn1 , xn2

are jointly WSCS with period D. The following proof remains the same under the weaker as-

sumption.
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Proof. We note that this derivation parallels the derivation in Appendix I of [25]. First we show

that the downsampled subchannel signals vn1,p, vn2,q are jointly WSS so that their spectral density

exists. Using (5.1), we can derive a relationship between the correlation of the downsampled

channels vn1,p, vn2,q and the correlation of filter input signals xn1 , xn2 . See Fig. (5.2) for the

setup of a single filterbank.

Rvn1,p,vn2,q [m,n] = E[vn1,p[m], vn2,q[n]]

= E

[∑
k

fn1,p[k]xn1 [Dm− k]
∑
k′

fn2,q[k
′]xn2 [Dn− k′]

]
=

∑
k

∑
k′

fn1,p[k]fn2,q[k
′]Rxn1 ,xn2 [Dm− k,Dn− k′]

=
∑
k

∑
k′

fn1,p[k]fn2,q[k
′]Rxn1 ,xn2 [D(m− n)− k,−k′]︸ ︷︷ ︸

function [m− n]

(6.33)

where we subtracted −Dn from both arguments in the second line since xn1 , xn2 are

jointly WSS, (6.27), and therefore jointly WSCS with period 1, (6.18). The last line shows that

Rvn1,p,vn2,q [m,n] is a function of only m− n and therefore vn1,p, vn2,q are jointly WSS.

We now begin the derivation of (6.32) with the definition of the spectral density of vn1,p

and vn2,q, (6.16), evaluating the spectral density at the argument ejDw:

Svn1,p,vn2,q(e
jDw) =

∑
τ

Rvn1,p,vn2,q [τ ]e−jDwτ (6.34)

We now substitute in (6.33) into (6.34) by letting τ = m− n, yielding

Svn1,p,vn2,q(e
jDw) =

∑
τ

∑
k

∑
k′

fn1,p[k]fn2,q[k
′]Rxn1 ,xn2 [Dτ − k,−k′]e−jDwτ

We factor out common terms in the summations (e.g. push summation onto only the terms

that vary with the summation index), add and subtract k′ in the first argument of Rxn1 ,xn2 , and let
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τ ′ = Dτ + k′ − k to get the following:

=
∑
k

∑
k′

fn1,p[k]fn2,q[k
′]
∑
τ

Rxn1 ,xn2 [−k′ +Dτ + k′ − k︸ ︷︷ ︸
τ ′

,−k′]e−jDwτ

=
∑
k

∑
k′

fn1,p[k]fn2,q[k
′]

∑
τ ′:τ ′−k′+k=0 mod D

Rxn1 ,xn2 [−k′ + τ ′,−k′]e−jw(τ ′−k′+k)

We next insert the following identity that can be verified using the formula for the sum of

terms of a geometric series.

1

D

D−1∑
m=0

W
−m(τ ′−k′+k)
D =


1 if τ ′ − k′ + k is a multiple of D;

0 otherwise.

where, as before, WD = e−j2π/D. By inserting this identity, the summation over τ ′ :

τ ′ − k′ + k = 0 mod D can be simplified to be a summation over all τ ′

Hence, we have

=
∑
k

∑
k′

fn1,p[k]fn2,q[k
′]
∑
τ ′

Rxn1 ,xn2 [−k′ + τ ′,−k′]( 1

D

D−1∑
m=0

W
−m(τ ′−k′+k)
D )e−jw(τ ′−k′+k)

We now use equation (6.21) to expand Rxn1 ,xn2 [−k′ + τ ′,−k′] into its Fourier Series rep-

resentation, rearrange terms, and use the definition of the Discrete Time Fourier Transform to get

the following:

=
1

D

D−1∑
m=0

D−1∑
n=0

∑
k

∑
k′

fn1,p[k]fn2,q[k
′]
∑
τ ′

Rn/Dxn1 ,xn2
[τ ′]Wnk′

D ·W−m(τ ′−k′+k)
D e−jw(τ ′−k′+k)

=
1

D

D−1∑
m=0

D−1∑
n=0

∑
k

∑
k′

fn1,p[k]e−jwkW−mkD fn2,q[k
′]ejwk

′
W

(m+n)k′

D

∑
τ ′

Rn/Dxn1 ,xn2
[τ ′]e−jwτ

′
W−mτ

′

D

=
1

D

D−1∑
m=0

D−1∑
n=0

Fn1,p(e
j(w−wD,m)) · Fn2,q(e

j(w−wD,m+n))Sn/Dxn1 ,xn2
(ej(w−wD,m))

71



where as in (2.8), wD,d = 2π
D d. We again factor out common terms in the summation and

let n′ = m+ n to get

=
1

D

D−1∑
m=0

Fn1,p(e
j(w−wD,m)) ·

m+D−1∑
n′=m

Fn2,q(e
j(w−wD,n′ ))S(n′−m)/D

xn1 ,xn2
(ej(w−wD,m))

For fixed m with 0 ≤ m ≤ D− 1, the inner sum over n′ has (m+D− 1)− (D) + 1 = m

terms whose n′ index is greater than or equal toD. Each of these “overflow” indices can be shifted

by −D to make them each less than m because of the following two relationships, each of which

can be verified by direct substitution:

S(n′−m)/D
xn1 ,xn2

(ej(w−wD,m)) = S(n′−D−m)/D
xn1 ,xn2

(ej(w−wD,m))

Fn2,l(e
j(w−wD,n′ )) = Fn2,l(e

j(w−wD,n′−D))

After shifting the “overflow” indices, the summation over n′ runs from 0 to D − 1 instead

of from m to m+D − 1. We then have the desired result:

Svn1,p,vn2,q(e
jDw) =

1

D

D−1∑
m=0

Fn1,p(e
j(w−wD,m))·

D−1∑
n′=0

Fn2,q(e
j(w−wD,n′ ))S(n′−m)/D

xn1 ,xn2
(ej(w−wD,m))

6.3.3 Filterbank Input and Downsampled Subchannel Signal Matrix Relationship

We first define the cyclic spectral density matrix of filterbank input signals xn1 and xn2 of

size D ×D as follows

(Sxn1 ,xn2 ,D×D(ejw))m,n = S(n−m)/D
xn1 ,xn2

(ej(w−wD,m)) (6.35)
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where m,n = 0, . . . , D − 1 and wD,m = 2π
Dm, as in (2.8). Note that when xn1 , xn2 are

jointly WSS, Sxn1 ,xn2 ,D×D(ejw) is a diagonal matrix. Then (6.25) implies we can decompose the

matrix Sxn1 ,xn2 ,D×D(ejw) as follows

Sxn1 ,xn2 ,D×D(ejw) = Hn1,D×D(ejw)Sx,x,D×D(ejw)H∗n2,D×D(ejw) (6.36)

where

Hnk,D×D(ejw) = diag(Hnk(ejw), Hnk(ej(w−wD,1)), . . . ,Hnk(ej(w−wD,D−1)) (6.37)

for k = 0, 1, . . . , N − 1 and

Sxn1 ,xn2 ,D×D(ejw) = diag(Sx,x(ejw), Sx,x(ej(w−wD,1)), . . . , Sx,x(ej(w−wD,D−1)) (6.38)

If x is white noise with variance σ2
x, then (6.36) simplifies to

Sxn1 ,xn2 ,D×D(ejw) = σ2
xHn1,D×D(ejw))H∗n2,D×D(ejw) (6.39)

We observe that the scalar spectral density of downsampled subchannel signals, (6.32), can

then be written as product of a row vector, matrix, and column vector, that is

Svn1,p,vn2,q(e
jDw) =

1

D
Fn1,p,1×D(ejw)Sxn1 ,xn2 ,D×D(ejw)F∗n2,q,1×D(ejw) (6.40)

where

Fn,r,1×D(ejw) = [Fn,r(e
jw), Fn,r(e

j(w−wD,1)), . . . , Fn,r(e
j(w−wD,D−1))] (6.41)
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Notice that in (6.32), the subchannel indexes p and q are both fixed. Each of the two fil-

terbanks n1, n2 has C subchannels and therefore both p, q can vary between 0 and C − 1, that is

0 ≤ p, q ≤ C−1. To capture all C×C spectral density relationships between different downsam-

pled subchannels of filterbanks n1 and n2, we define the spectral density matrix of downsampled

subchannel signals, size C × C, as follows:

(Svn1 ,vn2 ,C×C(ejDw))pq = Svn1,p,vn2,q(e
jDw) (6.42)

Then using (6.40), the modulation matrix of the analysis filters, (5.12), and (6.36), we have

Svn1 ,vn2 ,C×C(ejDw) =
1

D
Fn1,C×D(ejw)Sxn1 ,xn2 ,D×D(ejw)F∗n2,C×D(ejw)

=
1

D
Fn1,C×D(ejw)Hn1,D×D(ejw)Sx,x,D×D(ejw)H∗n2,D×D(ejw)F∗n2,C×D(ejw)

(6.43)

6.3.4 Filterbank Output Cylic Correlation

We now derive the following cyclic correlation between two filterbanks’ output signals yn1

and yn2 where yn is the output of the n-th filterbank in terms of correlation between downsampled

subchannel signals and vn,l is the l-th subchannel signal of the n-th filterbank after downsampling.

Lemma 6.3.3. For any integer u and 0 ≤ d ≤ D − 1,

Rd/Dyn1 ,yn2
[u] =

1

D

C−1∑
p,q=0

∑
r

∑
τ

gn1,p[r + u−Dτ ] · gn2,q[r]Rvn1,p,vn2,q [τ ]e−j2π
d
D
r (6.44)

Proof. First, we derive an expression for the correlation between two filterbanks’ outputs in terms

of their downsampled subchannel signals where yn is the multirate output of the n-th filterbank,

n = 0, 1 . . . , N−1, and vn,l is the l-th subchannel signal after downsampling of the n-th filterbank,

l = 0, 1, . . . , C − 1. We use (6.13) ,(5.8), and (6.33) to get the following:
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Ryn1 ,yn2 [n, k] = E[yn1 [n]yn2 [k]]

= E

C−1∑
p=0

∑
m′

gn1,p[n−Dm′]vn1,p[m
′]
C−1∑
q=0

∑
m

gn2,q[k −Dm]vn2,q[m]


=

C−1∑
p,q=0

∑
m′

∑
m

gn1,p[n−Dm′] · gn2,q[k −Dm]Rvn1,p,vn2,q [m
′ −m] (6.45)

We can verify that the correlation of processed filterbank outputs are cyclostationary with

period D, that is

Ryn1 ,yn2 [n+D, k +D] = Ryn1 ,yn2 [n, k] (6.46)

using two changes of variables (m′′ = m′− 1,m′′′ = m− 1) in (6.45). If we let n = k+u

and τ = m′ −m in (6.45), we have

Ryn1 ,yn2 [k+u, k] =
C−1∑
p,q=0

∑
τ

∑
m

gn1,p[k+u−D(τ+m)] ·gn2,q[k−Dm]Rvn1,p,vn2,q [τ ] (6.47)

We substitute (6.47) into the definition of the cyclic correlation function, (6.20), rearrange

terms, and then multiply by ej2π
d
D
Dm = 1 for integers d and m to get

Rd/Dyn1 ,yn2
[u] =

1

D

D−1∑
k=0

C−1∑
p,q=0

∑
τ

∑
m

gn1,p[k + u−D(τ +m)] · gn2,q[k −Dm]Rvn1,p,vn2,q [τ ]e−j2π
d
D
k

Rd/Dyn1 ,yn2
[u] =

1

D

C−1∑
p,q=0

∑
τ

Rvn1,p,vn2,q [τ ] ·

(
D−1∑
k=0

∑
m

gn1,p[k −Dm+ u−Dτ ] · gn2,q[k −Dm]e−j2π
d
D

(k−Dm)

)

We observe that
∑D−1

k=0

∑
m f [k − Dm] =

∑
r f [r], and hence we let r = k − Dm to

combine the summations over k and m into one summation over r to get the desired cyclic cross

correlation.
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Rd/Dyn1 ,yn2
[u] =

1

D

C−1∑
p,q=0

∑
r

∑
τ

gn1,p[r + u−Dτ ] · gn2,q[r]Rvn1,p,vn2,q [τ ]e−j2π
d
D
r

6.3.5 Filterbank Output Cyclic Spectral Density

We now derive the filterbank output cyclic spectral density in terms of the spectral density

of downsampled subchannel signals. We begin with the definition of cyclic spectral density (6.23),

substitute in (6.44), factor out common terms in the summations, multiply by ejw(r−r+Dτ−Dτ) =

1, and use the definition of the Discrete Time Fourier Transform to get the following:

Sd/Dyn1 ,yn2
(ejw) =

∑
u

Rd/Dyn1 ,yn2
[u]e−jwu

=
1

D

C−1∑
p,q=0

∑
u

∑
r

∑
τ

gn1,p[r + u−Dτ ] · gn2,q[r]Rvn1,p,vn2,q [τ ]e−j2π
d
D
re−jwu

=
1

D

C−1∑
p,q=0

∑
r

gn2,q[r]e
j(w−2π d

D
)r
∑
τ

Rvn1,p,vn2,q [τ ]e−jwDτ

·
∑
u

gn1,p(r + u−Dτ)e−jw(r+u−Dτ)

=
1

D

C−1∑
p,q=0

Gn2,q(e
j(w−wD,d))Svn1,p,vn2,q(e

jDw)Gn1,p(e
jw) (6.48)

where, as before in (2.8), wD,d = 2π d
D .

6.3.6 Downsampled Subchannel Signal and Filterbank Output Matrix Relationship

We observe that (6.48) can be written as a product of a row vector, matrix, and column

vector, that is

Sd/Dyn1 ,yn2
(ejw) =

1

D
Gn1,0,D,1×C(ejw)Svn1 ,vn2 ,C×C(ejDw)G∗n2,d,D,1×C(ejw) (6.49)
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where

Gn,d,D,1×C(ejw) = [Gn,0(ej(w−wD,d)), Gn,1(ej(w−wD,d)), . . . , Gn,C−1(ej(w−wD,d))]

We define the cyclic spectral density matrix of output signals yn1 , yn2 , size D ×D, as

(Syn1 ,yn2 ,D×D(ejw))m,n = S(n−m)/D
yn1 ,yn2

(ej(w−wD,m)) (6.50)

where, as before in (2.8), wD,m = 2πmD . Then, using (6.49) and the modulation matrix of

synthesis filters, (5.14), we have

Syn1 ,yn2 ,D×D(ejw) =
1

D
Gn1,D×C(ejw)Svn1 ,vn2 ,C×C(ejDw)G∗n2,D×C(ejw) (6.51)

6.3.7 Matrix Relationship Between Filterbank Inputs and Filterbank Outputs

Combining the previous matrix relationships of (6.36), (6.43), and (6.51) gives the follow-

ing statistical input/output relationship of two different filterbanks n1, n2.

Syn1 ,yn2 ,D×D(ejw) =
1

D2
·
(
Gn1,D×C(ejw)Fn1,C×D(ejw)Hn1,D×D(ejw)

)
Sx,x,D×D(ejw)

(
H∗n2,D×D(ejw)F∗n2,C×D(ejw)G∗n2,D×C(ejw)

)
(6.52)

To shorten notation, we define the following relationship:

Qn,D×D(ejw) = Gn,D×C(ejw)Fn,C×D(ejw)Hn,D×D(ejw) (6.53)

where synthesis modulation matrix Gn,D×C(ejw) is given by (5.14), analysis modulation

matrix Fn,C×D(ejw) is given by (5.12), and propagation and target inversion cascade matrix

Hn,D×D(ejw), a diagonal matrix, is given by (6.37)
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Hence, we can write (6.52) as simply

Syn1 ,yn2 ,D×D(ejw) =
1

D2
Qn1,D×D(ejw)Sx,x,D×D(ejw)Q∗n2,D×D(ejw) (6.54)

In the case when x is white noise with variance σ2
x, then (6.54) simplifies to

Syn1 ,yn2 ,D×D(ejw) =
σ2
x

D2
Qn1,D×D(ejw)Q∗n2,D×D(ejw) (6.55)

6.4 Time Averaged Energy of Output

We now show that the time averaged energy of the system output y, the sum of processing

from N filterbanks, from a single source x is related to the trace of the cyclic spectral density

of filterbank outputs Syn1 ,yn2 ,D×D. We measure the time averaged energy of the output, σ2
y , as

follows:

σ2
y = lim

T1→∞
T2→∞

1

T1 + T2 + 1

T2∑
t=−T1

E[y[t]y[t]] (6.56)

The following theorem is used to measure the gain of a single WSS source being processed

by a plurality of multirate filterbanks.

Theorem 6.4.1. Assume source x is white noise with variance σ2
x. Then the output y after

processing through the system given by Fig. 6.1, has time averaged energy given as follows:

σ2
y =

σ2
x

2πD2

D−1∑
d1=0

D−1∑
d2=0

∫ π
D

−π
D

|

(
N−1∑
n=0

Qn,D×D(ejw)

)
d1,d2

|2dw (6.57)

where Qn,D×D(ejw) = Gn,D×C(ejw)Fn,C×D(ejw)Hn,D×D(ejw) as defined in

(6.53).
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To simplify the notation of (6.57, we define the 2-norm of a D ×D matrix valued function

QD×D(ejw) as

‖QD×D(ejw)‖22 ≡
D−1∑
d1=0

D−1∑
d2=0

∫ π
D

−π
D

|
(
QD×D(ejw)

)
d1,d2
|2dw (6.58)

With the above definition, (6.57) becomes

σ2
y =

σ2
x

2πD2
‖
N−1∑
n=0

Qn,D×D‖22 (6.59)

Proof. In Fig. 6.1, for a given interference x, the output y is a sum of N outputs from each

microphone’s filter bank, that is

y[t] =
N−1∑
n=0

yn[t] (6.60)

where yn is the output of the n-th microphone’s filter bank.

Using (6.60) and (6.46), we can verify that y is WSCS with period D. Hence, we can

measure the energy of the output just over one period D as the following calculation shows:
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σ2
y = lim

T1→∞
T2→∞

1

T1 + T2 + 1

T2∑
t=−T1

E[y[t]]2

= lim
Np→∞

1

D(2Np + 1)

Np∑
p=−Np

D−1∑
l=0

E[y[l + pD]y[l + pD]]

=
1

D

D−1∑
l=0

lim
Np→∞

1

(2Np + 1)

Np∑
p=−Np

E[y[l + pD]y[l + pD]]

=
1

D

D−1∑
l=0

lim
Np→∞

1

(2Np + 1)
(2Np + 1)E[y[l]y[l]]

=
1

D

D−1∑
l=0

E[y[l]y[l]]

=
1

D

D−1∑
l=0

Ry[l, l] (6.61)

Expanding the correlation of y,Ry[l, l], shows that we are interested in the correlation of

each of the N filterbank’s outputs.

Ry[l, l] = E[y[l]y[l]]

= E[
N−1∑
n1=0

yn1 [l]
N−1∑
n2=0

yn2 [l]]

=
N−1∑
n1=0

N−1∑
n2=0

Ryn1 ,yn2 [l, l] (6.62)

Substituting (6.62) into (6.61) and changing the order of the finite summations, we have

σ2
y =

N−1∑
n1=0

N−1∑
n2=0

1

D

D−1∑
l=0

Ryn1 ,yn2 [l, l] (6.63)

We observe that the weighted inner sum is simply the time averaged energy of the cross

correlation between filter bank outputs yn1 , yn2 (see (6.61)), that is

σ2
y =

N−1∑
n1=0

N−1∑
n2=0

σ2
yn1 ,yn2

(6.64)
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The following deriviation relates σ2
yn1 ,yn2

to the trace of the cyclic spectral density matrix

Syn1 ,yn2 .

σ2
yn1 ,yn2

=
1

D

D−1∑
l=0

Ryn1 ,yn2 [l, l]

=
1

D

D−1∑
l=0

∑
u

Ryn1 ,yn2 [l + u, l] · 1

2π

∫ π
D

−2π+ π
D

e−jwudw︸ ︷︷ ︸
1 if u = 0 and 0 otherwise

=
1

2π

∫ π
D

−2π+ π
D

∑
u

1

D

D−1∑
l=0

Ryn1 ,yn2 [l + u, l]︸ ︷︷ ︸
R0
yn1 ,yn2

[u]

e−jwudw

=
1

2π

∫ π
D

−2π+ π
D

∑
u

R0
yn1 ,yn2

[u]e−jwu︸ ︷︷ ︸
S0
yn1 ,yn2

(ejw)

dw

=
1

2π

D−1∑
r=0

∫ π
D

− π
D

S0
yn1 ,yn2

(ej(w−wD,r))dw

=
1

2π

∫ π
D

− π
D

D−1∑
r=0

S0
yn1 ,yn2

(ej(w−wD,r))dw

=
1

2π

∫ π
D

− π
D

Tr(Syn1 ,yn2 ,D×D(ejw))dw (6.65)

The third and fourth line follow from the definition of cyclic correlation, (6.20), and cyclic

spectral density, (6.23), respectively. The fifth line breaks apart the integration into D intervals

each of length 2π
D , and the last line follows the definition of Syn1 ,yn2 ,D×D(ejw), (6.50). Substitut-

ing (6.65) into (6.64) yields:

σ2
y =

1

2π

∫ π
D

−π
D

N−1∑
n1=0

N−1∑
n2=0

Tr(Syn1 ,yn2 ,D×D(ejw))dw (6.66)

Using (6.55), the definition of the Hilbert-Schmidt inner product, (2.10), and the definition

of the Hilbert-Schmidt norm, (2.9), we can simplify the integrand of (6.66) as follows:
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N−1∑
n1=0

N−1∑
n2=0

Tr(Syn1 ,yn2 ,D×D(ejw)) =
σ2
x

D2

N−1∑
n1=0

N−1∑
n2=0

Tr(Qn1,D×D(ejw)Q∗n2,D×D(ejw))

=
σ2
x

D2

N−1∑
n1=0

N−1∑
n2=0

〈
Qn1,D×D(ejw),Q∗n2,D×D(ejw)

〉
HS

=
σ2
x

D2

〈
N−1∑
n1=0

Qn1,D×D(ejw),
N−1∑
n2=0

Q∗n2,D×D(ejw)

〉
HS

=
σ2
x

D2
‖
N−1∑
n=0

Qn,D×D(ejw)‖2HS

=
σ2
x

D2

D−1∑
d1=0

D−1∑
d2=0

|

(
N−1∑
n=0

Qn,D×D(ejw)

)
d1,d2

|2 (6.67)

Substituting (6.67) into (6.66) yields the desired

σ2
y =

σ2
x

2πD2

D−1∑
d1=0

D−1∑
d2=0

∫ π
D

−π
D

|

(
N−1∑
n=0

Qn,D×D(ejw)

)
d1,d2

|2dw
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Chapter 7: Optimization Over Synthesis Filters

Using a Sparse Number of Subchan-

nels

7.1 Overview

Our overall objective is to minimize the p-norm of interference source gains while both re-

constructing perfectly the target source and using a sparse number of subchannels. In our problem

setup, there are two types of sources, I interferences, whose gains we wish to attenuate and a

single target, whose gain from system processing we wish to be exactly equal to 1. In other words,

our system will process the target source with no distortion. Specifically, our desired optimization

problem reads

min
Gn,D×C(ejw)

‖

{
‖
N−1∑
n=0

Gn,D×C(ejw)Fn,C×D(ejw)H
(r)
n,D×D(ejw)‖22

}
1≤r≤L

‖p

subject to
N−1∑
n=0

Gn,D×C(ejw)Fn,C×D(ejw)H
(0)
n,D×D(ejw) = Dejw diag

[
(e−

2πjd
D )D−1

d=0

]
N−1∑
n=0

‖{ max
−π≤w≤π

|
(
Gn,D×C(ejw)

)
0,l
|}0≤l≤C−1‖0 ≤ VS

(7.1)

where H
(r)
n,D×D(ejw) refers to the product of two frequency domain objects: the propaga-
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tion of source r to microphone n and the target inversion filter specific to microphone n, D is the

decimation factor, C is the number of subchannels per filterbank, and VS is the desired number of

active subchannels. Unfortunately, this is not a convex optimization problem.

We assume our set of N ·C analysis filters, denoted by F , are fixed and known where N is

the number of microphones and C is the number of subchannels for each microphone, that is

F =
(
Fn,l(e

jw)
)

0≤n≤N−1
0≤l≤C−1
w∈[0,2π)

(7.2)

is a known quantity.

We further assume that the locations of the sources and microphones and known and hence

the cascade of the source propagation and target inversion filters, denoted by H , is also known.

There are I + 1 sources with I interferences and a single target source and N microphones and

hence H consists of (I + 1) ·N transfer functions. We define H as follows

H =
(
Hr,n(ejw)

)
0≤r≤I

0≤n≤N−1
w∈[0,2π)

(7.3)

Our optimization is then over the N · C synthesis filters, denoted by G, where G is defined

as follows

G =
(
Gn,l(e

jw)
)

0≤n≤N−1
0≤l≤C−1
w∈[0,2π)

(7.4)

To make finding our unknown G computationally tractable, we will discretize the continu-

ous variable w, 0 ≤ w < 2π, with Nf equally spaced points, that is we let

w =
2πf

Nf
with f = 0, 1, . . . , Nf − 1 (7.5)
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To simply our computations, we will also make the assumption that Nf , the number of

discretized frequencies, is an even multiple of D, the downsampling factor, that is

Nf = M ·D (7.6)

withM a positive even integer. In addition, to vectorize our computations, we will combine

the indexes n and l over s (for subchannel) by letting

s = l + nC and S = N · C (7.7)

Hence, the discretized version of unknown synthesis filters G, Gcompute, consists of S ·Nf

unknown complex numbers, that is

Gcompute =

(
Gn,l(e

j( 2π
Nf

f)
)

)
0≤s≤S−1

0≤f≤Nf−1

(7.8)

By penalizing non-zero subchannel synthesis tap coefficients in our optimization problem

with an absolute value penalty term, in the spirit of the LASSO algorithm given in [1], we will

force certain subchannels to be considered inactive and create a sparse set of active subchannels.

A subchannel will be considered inactive if its synthesis tap coefficients are zero are close to zero.

We will measure gain using the time-averaged energy given by (6.57). Notice that (6.57)

assumes a fixed source x, and hence we will need to compute (6.57) for each of our I + 1 sources

xr.

In this chapter, we first review the prior work before detailing our problem solution. Next,

we discuss the the objective function which consists of two terms, the p-norm of interference

source gains and the sparse subchannel penalty term. Afterwards, we discuss the target source

perfect reconstruction constraint and then combine the results in the final section to give the full

optimization problem.

85



7.2 Prior Work

Our work optimizes both the placement of microphones and the design of the multirate

filterbanks processing the microphone’s inputs simultaneously. To the best of our knowledge,

this is a novel contribution. There has been extensive work, however, in both the areas of sensor

placement and optimization of multirate filterbanks.

7.2.1 Sensor Placement

There has been extensive work in the sensor placement problem using a variety of strate-

gies. In [26], the authors use simulated annealing to simultaneously optimize both weights and

sensor locations on a linear array. In [27], the authors address a parameter estimation problem

that includes sensor location using convex optimization. They relax a binary variable of a sensor

being off, 0, or on, 1, by letting the variable instead be in the range of [0, 1]. In [28], the authors

relax the binary variable of a sensor being off, 0, or on, 1, by converting the unknown vector to a

matrix of 0s and 1s which belongs to the class of Steifel matrices. The relaxation is to a 1-d sphere

and they jump to multiple dimensions using a greedy algorithm. The authors here are interested

optimizing an objective criteria involving the KullbackLeibler divergence. [29] minimizes the side

lobe produced by a sparse linear array using a greedy deletion algorithm.

[30] maximizes the Fisher Information in their optimization criteria. When formulating an

optimization problem to choose sensors, they convert a matrix equality to a matrix inequality in

their convex relaxation.

[31] address the problem of recovering K target sources emanating from a N possible

locations using N sensors where K << N . They convert the problem to one of selecting rows

that minimize the correlation coefficient and propose a genetic algorithm that is data-dependent.
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[32] addresses the the following problem: Given a desired beampattern response and er-

ror tolerance, what is the sparsest sensor setup that will achieve the desired beampattern within

the given error tolerance? The authors address this problem using reweighted l − 1 minimization

and assuming the use of regularly spaced rectangular array, symmetric subarrays, and weights

with conjugate symmetry. In [22], the authors address the same problem using a regularization

approach inspired by Bayesian statistics. [33] also addresses the same problem. The author con-

strain microphone distances and guess a configuration and the perturb the configuration seeking a

better solution. [34] address the same problem for a beampattern produced by a transmission array

and propose a greedy addition algorithm.

In contrast, our work addresses the following problem: Given a fixed number of sensors,

what is the best possible beampattern achievable?

7.2.2 Filterbank Optimization

There has also been extensive work in the optimization of filterbanks. [35], a work pub-

lished in 1980, was an early forerunner in the field. The author optimizes a quadrature mirror

filterbank to meet a user-given frequency response criteria. He minimizes both the ripple energy

and out of band energy using a search algorithm whose success is highly dependent on both the

starting point and step size. Similar to our proposed problem setup but for a single filterbank, [36]

fixes the analysis filters and optimizes the synthesis filters to achieve the best possible reconstruc-

tion given a user-specified integer time delay. They convert their problem to a H∞ problem to

take advantage of existing software. In [37], the authors design a multi-dimensional perfect re-

construction filterbank where both the analysis and synthesis filter are FIR filters of equal length.

They directly embed this non-linear and non-convex constraint into their optimization problem

where the objective function measures the difference between a desired analysis filterbank and the
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optimized analysis filterbank. The author of [38] designs perfect reconstruction and near perfect

reconstruction filterbanks using a quadratic constrained least-squares optimization problem. The

author solves a relaxed problem by converting the quadratic constraints to linear constraints. The

authors of [39] design a cosine modulated filterbanks with a linear phase prototype filter using

convex optimization by converting a non-convex set to a convex set. More recently, Davidson

in [40] provides a novice-friendly tutorial of convex optimization techniques when designing FIR

filters. Finally, [25] optimizes a single FIR filterbank to minimize the time-averaged mean-squared

error when the high-frequency subband is dropped. We build off their techniques to derive an in-

put/output relationship for our system consisting of a plurality of filterbanks.

7.3 Objective Function

Our objective function is the sum of two terms, one measuring the p-norm of the gain of the

I interferences, JI,p, and the other penalizing active subchannels, JS , that is those subchannels

with non-zero synthesis filters responses. Typical p-norms of interest would be p = 1, 2,∞.

We adjust the severity of our active subchannel penalty by choosing a non-negative constant λ

to weight our active subchannel term JS . The larger a λ chosen, the more severe the active

subchannel penalty and the fewer number of active subchannels our optimization problem will

recover. Conversely, the smaller a λ chosen, the less severe the active subchannel penalty and the

greater number active subchannels our optimization problem will recover. By choosing λ equal to

0, we eliminate the active subchannel penalty altogether and allow the use of all N · C channels.

Our optimization is over N · C synthesis filter responses where N is the number of micro-

phones and C is the number of subchannels for each microphone. We denote these set of filter

responses by G defined in (7.4). Hence our objective function J can be written as
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J(G) = JI,p(G) + λ · JS(G) (7.9)

G as stated above is a function of continuous variable w and to make J(G) computation-

ally tractable, we will discretize G using Gcompute, defined in (7.8), and update both JI,p and JS

accordingly. Hence, what we will compute for our objective function J(G) will be the approxi-

mation Jcompute(Gcompute), that is,

J(G) ≈ Jcompute(Gcompute)

= JI,p,compute(Gcompute) + λ · JS,compute(Gcompute) (7.10)

7.3.1 p-norm of Interference Gains Term

We let the p-norm of the interference gains be the p-norm of the interference sources’ time-

averaged energies, that is

JI,p(G) = ‖(σ2
yr)r‖p (7.11)

where the time-averaged energy σ2
yr is given by (6.57). We observe that (6.57) is a function

of Qn,D×D which varies with n, the microphone index. The definition of Qn,D×D,(6.53), further

shows that for fixed n, Qn,D×D varies with Hn,D×D, the cascade of propagation and target and

inversion filter responses, Fn,C×D, the analysis filter responses, and Gn,D×C , the synthesis filter

responses. As stated above, we assume that both H and F , the set of target and inversion filter

responses and analysis filter repsonses for all n respectively, are fixed and known and hence in our

setup, the time-averaged energy only varies with synthesis filter repsonses for each n, that is G.
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For the case p =∞, JI,p(G) then becomes

JI,∞(G) = max
r
σ2
yr (7.12)

7.3.2 Discretization of σ2
yr

In the following derivations, we will discretize the value σ2
yr over frequency w with a set

of finite, uniformly spaced points to give σ2
yr,compute, a computationally tractable term. We will

further assume all our sources have equal variance σ2
x to further simplify computationsf to give

σ̂2
yr,compute

To begin, we use (6.57) to expand σ2
yr and observe that the d1, d2 term of the sum of N

Qn,D×D matrices is equal to summing each of the d1, d2 terms of the same set of N matrices to

get the following:

σ2
yr =

σ2
x

2πD2

D−1∑
d1=0

D−1∑
d2=0

∫ π
D

−π
D

|

(
N−1∑
n=0

Qn,D×D(ejw)

)
d1,d2

|2dw

=
σ2
x

2πD2

D−1∑
d1=0

D−1∑
d2=0

∫ π
D

−π
D

|
N−1∑
n=0

(
Qn,D×D(ejw)

)
d1,d2
|2dw (7.13)

Next, by observing that Hn,D×D(ejw) is a diagonal matrix in the definition of Qn,D×D(ejw),(6.53),

we can write the scalar expression
(
Qn,D×D(ejw)

)
d1,d2

as follows

(
Qn,D×D(ejw)

)
d1,d2

=

C−1∑
l=0

Gn,l(e
j(w−wD,d1 ))Fn,l(e

j(w−wD,d2 ))Hr,n(ej(w−wD,d2 )) (7.14)

Substituting (7.14) into (7.13) yields,
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σ2
yr =

σ2
x

2πD2

D−1∑
d1=0

D−1∑
d2=0

·

∫ π
D

−π
D

|
N−1∑
n=0

C−1∑
l=0

Gn,l(e
j(w−wD,d1 ))Fn,l(e

j(w−wD,d2 ))Hr,n(ej(w−wD,d2 )|2dw

(7.15)

We can then approximate the integral in (7.15) as follows:

∫ π
D

−π
D

|
N−1∑
n=0

C−1∑
l=0

Gn,l(e
j(w−wD,d1 ))Fn,l(e

j(w−wD,d2 ))Hr,n(ej(w−wD,d2 )|2dw

=

∫ π
D

− π
D

∣∣∣∣∣
N−1∑
n=0

C−1∑
l=0

Gn,l(e
j(w− 2πd1

D
))Fn,l(e

j(w− 2πd2
D

))Hr,n(ej(w−
2πd2
D

))

∣∣∣∣∣
2

dw

≈ 2π

Nf

NF
2D
−1∑

f=−NF
2D

∣∣∣∣∣
N−1∑
n=0

C−1∑
l=0

Gn,l(e
j2π( f

Nf
− d1
D

)
)Fn,l(e

j2π( f
Nf
− d2
D

)
)Hr,n(e

j2π( f
Nf
− d2
D

)
)

∣∣∣∣∣
2

(7.16)

Substituting (7.16) for the integral in (7.15), yields σ2
yr,compute, an approximation of σ2

yr

that is computationally tractable, that is

σ2
yr ≈ σ2

yr,compute

=
σ2
xr

D2Nf

D−1∑
d1=0

D−1∑
d2=0

·

NF
2D
−1∑

f=−NF
2D

∣∣∣∣∣
N−1∑
n=0

C−1∑
l=0

Gn,l(e
j2π( f

Nf
− d1
D

)
)Fn,l(e

j2π( f
Nf
− d2
D

)
)Hr,n(e

j2π( f
Nf
− d2
D

)
)

∣∣∣∣∣
2

(7.17)

If we assume that each source xr has the same variance, that is σ2
xr = σ2

x for all r, we can

treat the leading coefficient as a constant and (7.17) becomes
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σ̂2
yr,compute =

σx2

D2Nf
·

D−1∑
d1=0

D−1∑
d2=0

NF
2D
−1∑

f=−NF
2D

∣∣∣∣∣
N−1∑
n=0

C−1∑
l=0

Gn,l(e
j2π( f

Nf
− d1
D

)
)Fn,l(e

j2π( f
Nf
− d2
D

)
)Hr,n(e

j2π( f
Nf
− d2
D

)
)

∣∣∣∣∣
2

(7.18)

To simply notation, we define the following equality:

Ḟn,l,r(e
j2π( f

Nf
− d2
D

)
) ≡ Fn,l(e

j2π( f
Nf
− d2
D

)
)Hr,n(e

j2π( f
Nf
− d2
D

)
) (7.19)

We note that the value of (7.19) is known by assumption. We also combine the summations over

n and l inside the magnitude squared into a single summation over s (for subchannel) by letting

s = l + nC and S = N · C (7.20)

Hence, (7.18) becomes

σ̂2
yr,compute =

σx2

D2Nf

D−1∑
d1=0

D−1∑
d2=0

NF
2D
−1∑

f=−NF
2D

∣∣∣∣∣
S−1∑
s=0

Gs(e
j2π( f

Nf
− d1
D

)
)Ḟs,r(e

j2π( f
Nf
− d2
D

)
)

∣∣∣∣∣
2

(7.21)

To efficiently compute (7.21), we would like to rewrite it as a product of a row vector,

matrix, and column vector where the row and column vector contain the unknown discretized

frequency responses of all S synthesis filters. To begin, we first expand the magnitude squared of

(7.21) and rearrange the finite summations to get
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σ̂2
yr,compute =

σx2

D2Nf

D−1∑
d1=0

NF
2D
−1∑

f=−NF
2D

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π( f

Nf
− d1
D

)
)Gs2(e

j2π( f
Nf
− d1
D

)
) ·

D−1∑
d2=0

Ḟs1,r(e
j2π( f

Nf
− d2
D

)
)Ḟ s2,r(e

j2π( f
Nf
− d2
D

)
)


︸ ︷︷ ︸

Φr(s1,s2,f)

(7.22)

We choose the symbol Φ since it represents capital “F ” in Greek. In order to to reduce the

summations over both d1 and f to a single summation over f , we make the assumption that Nf is

an even multiple of D, that is

Nf = M ·D (7.23)

with M a positive even integer. Rewriting the arguments to Gs1 and Gs2 , we then have

σ̂2
yr,compute =

σx2

D2Nf

D−1∑
d1=0

NF
2D
−1∑

f=−NF
2D

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π(

f−Md1
Nf

)
)Gs2(e

j2π(
f−Md1
Nf

)
)Φr(s1, s2, f)

(7.24)

A calculation in the appendix, (A.1), shows that Φr(s1, s2, f) is M -periodic in f , that is

Φr(s1, s2, f −M) = Φr(s1, s2, f) (7.25)

Hence, we then have

σ̂2
yr,compute =

σx2

D2Nf

D−1∑
d1=0

NF
2D
−1∑

f=−NF
2D

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π(

f−Md1
Nf

)
)Gs2(e

j2π(
f−Md1
Nf

)
)Φr(s1, s2, f −Md1)

(7.26)

By letting f = −NF
2D , . . . ,

NF
2D − 1 and d1 = 0, 1, . . . D − 1 in the relationship f̂ = (f −

Md1) mod Nf , we have f̂ = 0, 1, . . . , Nf − 1. In addition, we observe that the z-transform is 2π
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periodic in w for z = ejw which means we can re-index f −Md1 mod Nf in the arguments of

Gs1 and Gs2 . Finally, since Nf = M ·D by assumption, Φr(s1, s2, f) is also Nf periodic in f

which means we can also re-index f −Md1 modNf in the arguments of Φ. We can then combine

the summations over d1 and f into one summation over f in (7.26) as follows

σ̂2
yr,compute =

σx2

D2Nf
·
Nf−1∑
f=0

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π( f

Nf
)
)Gs2(e

j2π( f
Nf

)
)Φr(s1, s2, f)

(7.27)

If we make the assumption that the analysis and the synthesis filters’ FIR coefficients are

real, the term Gs1(e
j2π( f

Nf
)
)Gs2(e

j2π( f
Nf

)
)Φr(s1, s2, f) is conjugate symmetric in continuous

variable f . Hence we can write (7.27) as follows:

σ̂2
yr,compute =

σx2

D2Nf
[2

Nf
2
−1∑

f=1

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π( f

Nf
)
)Gs2(e

j2π( f
Nf

)
)Φr(s1, s2, f)

+
S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π( 0

Nf
)
)Gs2(e

j2π( 0
Nf

)
)Φr(s1, s2, 0)

+
S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π(

Nf
2
Nf

)
)Gs2(e

j2π(

Nf
2
Nf

)
)Φr(s1, s2,

Nf

2
)]

(7.28)

For a fixed f , any of the three summations over s1 and s2 of (7.27) can be expressed as

product of a row vector, matrix, and column vector, that is

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π( f

Nf
)
)Gs2(e

j2π( f
Nf

)
)Φr(s1, s2, f)

= G1×S(e
j2π( f

Nf
)
)Φr,S×S(f)G∗1×S(e

j2π( f
Nf

)
) (7.29)

where
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G1×S(e
j2π( f

Nf
)
) = [G0,1×C(e

j2π( f
Nf

)
),G1,1×C(e

j2π( f
Nf

)
), . . . ,GN−1,1×C(e

j2π( f
Nf

)
)] (7.30)

is a row vector, size 1 × S, containing all S synthesis filters’ responses at discretized fre-

quency f . The entries of the square matrix Φr,S×S(f), size S × S, is given as

(Φr,S×S(f))s1,s2 = Φr(s1, s2, f) =
D−1∑
d2=0

Ḟs1,r(e
j2π( f

Nf
− d2
D

)
)Ḟ s2,r(e

j2π( f
Nf
− d2
D

)
) (7.31)

In addition, Φr,S×S(f) can be expressed as the product of the analysis matrix Ḟr,S×D(e
j2π( f

Nf
)
)

and its conjugate that is

Φr,S×S(f) = Ḟr,S×D(e
j2π( f

Nf
)
)Ḟ∗r,S×D(e

j2π( f
Nf

)
) (7.32)

where the matrix Ḟr,S×D(e
j2π( f

Nf
)
), size S by D, is defined as

Ḟr,S×D(e
j2π( f

Nf
)
) =

Ḟr,0,1×C(e
j2π( f

Nf
)
) Ḟr,1,1×C(e

j2π( f
Nf

)
) · · · Ḟr,N−1,1×C(e

j2π( f
Nf

)
)

Ḟr,0,1×C(e
j2π( f

Nf
− 1
D

)
) Ḟr,1,1×C(e

j2π( f
Nf
− 1
D

)
) · · · Ḟr,N−1,1×C(e

j2π( f
Nf
− 1
D

)
)

...
...

. . .
...

Ḟr,0,1×C(e
j2π( f

Nf
−D−1

D
)
) Ḟr,1,1×C(e

j2π( f
Nf
−D−1

D
)
) · · · Ḟr,N−1,1×C(e

j2π( f
Nf
−D−1

D
)
)



T

(7.33)

and consists of D ·N column vectors, size C by 1, defined in row vector notation as

Ḟr,n,1×C(e
j2π( f

Nf
− d
D

)
) =

Hr,n(e
j2π( f

Nf
− d
D

)
) · [Fn,0(e

j2π( f
Nf
− d
D

)
), Fn,1(e

j2π( f
Nf
− d
D

)
), · · · , Fn,C−1(e

j2π( f
Nf
− d
D

)
)]

(7.34)
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with d ∈ {0, 1, . . . , D − 1}. Hence, we can further rewrite (7.29) as follows

S−1∑
s1=0

S−1∑
s2=0

Gs1(e
j2π( f

Nf
)
)Gs2(e

j2π( f
Nf

)
)Φr(s1, s2, f)

= G1×S(e
j2π( f

Nf
)
)Φr,S×S(f)G∗1×S(e

j2π( f
Nf

)
)

= G1×S(e
j2π( f

Nf
)
)Ḟr,S×D(e

j2π( f
Nf

)
)Ḟ∗r,S×D(e

j2π( f
Nf

)
)G∗1×S(e

j2π( f
Nf

)
)

= ‖Ḟ∗r,S×D(e
j2π( f

Nf
)
)G∗1×S(e

j2π( f
Nf

)
)‖2 (7.35)

We can then express the right hand side of (7.28) as a product of a block diagonal matrix

and column vector, that is,

σ̂2
yr,compute =

σx2

D2Nf
· 2‖Ḟ∗

r,S(
Nf
2

+1)×D(
Nf
2

+1)
(e
j2π( f

Nf
)
)G∗

1×S(
Nf
2

+1)
(e
j2π( f

Nf
)
)‖2 (7.36)

and by transpose and conjugation we have

σ̂2
yr,compute =

σx2

D2Nf
· 2‖G

1×S(
Nf
2

+1)
(e
j2π( f

Nf
)
)Ḟ

r,S(
Nf
2

+1)×D(
Nf
2

+1)
(e
j2π( f

Nf
)
)‖2 (7.37)

where

Ḟ
r,S(

Nf
2

+1)×D(
Nf
2

+1)
(e
j2π( f

Nf
)
) =

diag

(
1√
2
Ḟr,S×D(ej2π(0)), Ḟr,S×D(e

j2π( 1
Nf

)
), · · · , Ḟr,S×D(ej2π(

Nf
2
−1)),

1√
2
Ḟr,S×D(ej2π(

Nf
2

))

)
(7.38)

and

G
1×S(

Nf
2

+1)
(e
j2π( f

Nf
)
) =

[
G1×S(ej2π(0)) G1×S(e

j2π( 1
Nf

)
) · · · G1×S(ej2π(

Nf
2

))

]
(7.39)
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7.3.3 Computationally Tractable Approximation of JI(G)

Using (7.37), we then have the computationally tractable approximation of (7.11), that is

JI,p(G) = ‖(σ2
yr)r‖p

≈ ‖(σ̂2
yr,compute)r‖p

= JI,p,compute(Gcompute) (7.40)

7.3.4 Sparse Subchannels Penalty Term

In the following section, we will derive a computationally tractable and efficient sparse

subchannel penalty term JS,compute(Gcompute). The derivation begins by defining JS,sgn(G),

which counts the number of active subchannels by seeing whether each subchannel’s synthesis

filter frequency response is non-zero or not. Next, the continuous frequency variable w is dis-

cretized along a finite, uniformly spaced set of points to give the computationally tractable term

JS,sgn,compute(Gcompute). Finally, an L-1 like penalty is substituted to not only increase computa-

tional efficiency but also to induce sparse solutions to give the desired JS,compute(Gcompute).

Our goal is to find an objective function that not only minimizes the gain (time-averaged

energy) of interference sources but also encourages sparse subchannels, that is only a few of the

N ∗C subchannels are active. As before,N is the number of microphones, and C is the number of

subchannels of each microphone. We say a subchannel is inactive if its synthesis filter frequency

response is zero or very small in magnitude. We measure the number of active subchannels as

follows:

JS,sgn(G) =
N−1∑
n=0

C−1∑
l=0

sgn2

(
max

0≤w<π
|Gn,l(ejw|

)
(7.41)
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where sgn2(x) is 1 if x < 0, 0 if x = 0, and 1 if x > 0. In other words, a channel is

considered active if any portion of its frequency response is non-zero. We note that 0 ≤ w < π

rather than 0 ≤ w < 2π since we assume our filter taps are real and hence the frequency response

is conjugate symmetric. (7.41) counts the number of active subchannels and since sgn is applied

to the max of absolute values, the value of (7.41) lies in the appropriate range of 0 to N · C.

To make (7.41) computationally tractable, we discretize the continuous variable w using

Nf points as in (7.16) so (7.41) becomes

JS,sgn(G) ≈ JS,sgn,compute(Gcompute)

=

N−1∑
n=0

C−1∑
l=0

sgn2

(
max

f∈{0,1,...,Nf/2}
|Gn,l(e

j2π f
Nf |
)

(7.42)

We combine the summations over n and l into a single summation over s using (7.20) as

before. In addition, similar to the spirit of Compressive Sampling, we replace the sgn2 function

by the absolute value. Hence (7.42) becomes

JS,abs,compute(Gcompute) =
S−1∑
s=0

(
max

f∈{0,1,...,Nf/2}
|Gs(e

j2π f
Nf |
)

(7.43)

In the objective function that we will compute, (7.10), we will use (7.43) and hence we will

shorten its notation as follows:

JS,compute(Gcompute) = JS,abs,compute(Gcompute) (7.44)
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7.4 Target Source Perfect Reconstruction Condition

The target perfect reconstruction condition, TPR, is given by (6.9). To make (6.9) compu-

tationally tractable, we discretize the continuous variable w using Nf points as in (7.16) so (6.9)

becomes for f = 0, 1, . . . , Nf − 1

TPRcompute(f, d) =

N−1∑
n=0

H0,n(e
j2π( f

Nf
− d
D

)
)

C−1∑
l=0

Gn,l(e
j2π( f

Nf
)
)Fn,l(e

j2π( f
Nf
− d
D

)
)

=


De

j2π( f
NF

)(−∆) if d = 0;

0 if 1 ≤ d ≤ D − 1

(7.45)

Since we haveD constraints for each of ourNf discretized frequencies, the TPR condition

now has a total of Nf ·D constraints.

In matrix-vector form and analogous to (6.10), the D target perfect reconstruction of con-

ditions of (7.45) for a fixed f ∈ {0, 1, . . . , Nf − 1} can be written as

TPRcompute(f) = ḞT
S×D(e

j2π( f
Nf

)
)GT

1×S(e
j2π( f

Nf
)
) = De

j2π( f
NF

)(−∆) · eT0,1×D (7.46)

where S = N · C, the number of subchannels. The matrix ḞT
S×D(f), size D by S, is

defined as

ḞT
S×D(e

j2π( f
Nf

)
) =



Ḟ0,1×C(e
j2π( f

Nf
)
) Ḟ1,1×C(e

j2π( f
Nf

)
) · · · ḞN−1,1×C(e

j2π( f
Nf

)
)

Ḟ0,1×C(e
j2π( f

Nf
− 1
D

)
) Ḟ1,1×C(e

j2π( f
Nf
− 1
D

)
) · · · ḞN−1,1×C(e

j2π( f
Nf
− 1
D

)
)

...
...

. . .
...

Ḟ0,1×C(e
j2π( f

Nf
−D−1

D
)
) Ḟ1,1×C(e

j2π( f
Nf
−D−1

D
)
) · · · ḞN−1,1×C(e

j2π( f
Nf
−D−1

D
)
)


(7.47)
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and consists of D ·N row vectors, size 1 by C, defined as

Ḟn,1×C(e
j2π( f

Nf
− d
D

)
) =

H0,n(e
j2π( f

Nf
− d
D

)
) · [Fn,0(e

j2π( f
Nf
− d
D

)
), Fn,1(e

j2π( f
Nf
− d
D

)
), · · · , Fn,C−1(e

j2π( f
Nf
− d
D

)
)]

(7.48)

with d ∈ {0, 1, . . . , D − 1}.

The column vector GT
1×S(e

j2π( f
Nf

)
), size S by 1, is defined as

GT
1×S(e

j2π( f
Nf

)
) =



GT
0,1×C(e

j2π( f
Nf

)
)

GT
1,1×C(e

j2π( f
Nf

)
)

...

GT
N−1,1×C(e

j2π( f
Nf

)
)


(7.49)

and consists of N column vectors, size C by 1, defined as

GT
n,1×C(e

j2π( f
Nf

)
) = [Gn,0(e

j2π( f
Nf

)
), Gn,1(e

j2π( f
Nf

)
), · · · , Gn,C−1(e

j2π( f
Nf

)
)]T (7.50)

The column vector eTk,1×D, size D×1, is defined as the D×1 zero vector but with the k-th

entry set to 1, that is

eTk,1×D = [0, . . . 0, 1︸︷︷︸
k-th entry of D size vector

, 0, . . . 0]T (7.51)

We note that if we use the same set of C analysis filters for each filterbank that is

[Fn1,0(e
j2π( f

Nf
− d
D

)
), Fn1,1(e

j2π( f
Nf
− d
D

)
), · · · , Fn1,C−1(e

j2π( f
Nf
− d
D

)
)]

= [Fn2,0(e
j2π( f

Nf
− d
D

)
), Fn2,1(e

j2π( f
Nf
− d
D

)
), · · · , Fn2,C−1(e

j2π( f
Nf
− d
D

)
)] (7.52)
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for all 0 ≤ n1, n2 ≤ N − 1, 0 ≤ d ≤ D− 1, and 0 ≤ f ≤ Nf − 1, and the target inversion

pre-filter removes the effect on phase from propagation perfectly, that is

H0,n(e
j2π( f

Nf
− d
D

)
) = α0,n (7.53)

for all 0 ≤ n ≤ N − 1, 0 ≤ d ≤ D − 1, and 0 ≤ f ≤ Nf − 1, then (7.47) is of rank =

min(D,C) since every C columns are scalar multiples of the previous C columns. Since we need

to fulfill D constraints, these two additional assumptions imply that D ≤ C.

If we assume that all filter taps are real, then we can almost halve the number of constraints

using the conjugate symmetry of filter responses and the 2π periodicity in w in the z-transform

for z = ejw . First if (7.46) holds for 0 ≤ f ≤ Nf − 1, then the conjugate of the entire equation

also holds, that is

ḞT
S×D(e

j2π( f
Nf

)
)GT

1×S(e
j2π( f

Nf
)
) = D · eT0,1×D = D · eT0,1×D (7.54)

where the last equality follows because eT0,1×D contains all real entries. Next, we have

ḞT
S×D(e

j2π( f
Nf

)
)GT

1×S(e
j2π( f

Nf
)
) = D · eT0,1×D

ḞT
S×D(e

j2π(−f
Nf

)
)GT

1×Se
j2π(−f

Nf
)
) = D · eT0,1×D

ḞT
S×D(e

j2π(
−f mod Nf )

Nf
)
)GT

1×S(e
j2π(

−f mod Nf )

Nf
)
) = D · eT0,1×D

where the second line follows from conjugate symmetry and the third line follows from

2π periodicity in w. In summary, we have shown that if TPRcompute(f) holds, so does

TPRcompute(−f mod Nf ). Hence, we can express the constraints of (7.46) for all f as a

product of a block-diagonal matrix-vector multiply, that is
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ḞT

(
Nf
2

+1)S×(
Nf
2

+1)D
GT

1×(
Nf
2

+1)S
= D · ĖT

0,1×(
Nf
2

+1)D
(7.55)

and by transposition we have

G
1×(

Nf
2

+1)S
Ḟ

(
Nf
2

+1)S×(
Nf
2

+1)D
= D · Ė

0,1×(
Nf
2

+1)D
(7.56)

where the block diagonal matrix Ḟ
(
Nf
2

+1)S×(
Nf
2

+1)D
, size (

Nf
2 + 1)S × (

Nf
2 + 1)D , is given by

Ḟ
(
Nf
2

+1)S×(
Nf
2

+1)D
=

diag(
1√
2
ḞS×D(e

j2π( 0
Nf

)
), ḞS×D(e

j2π( 1
Nf

)
), . . . , ḞS×D(e

j2π(

Nf
2 −1

Nf
)
),

1√
2
ḞS×D(e

j2π(

Nf
2
Nf

)
))

(7.57)

the row vector of unknowns G
1×(

Nf
2

+1)S
, size 1× (

Nf
2 + 1)S, is given by

G
1×(

Nf
2

+1)S
= [G1×S(e

j2π( 0
Nf

)
),G1×S(e

j2π( 1
Nf

)
), . . . ,G1×S(e

j2π(

Nf
2
Nf

)
)], (7.58)

and the row vector of constraints E
0,1×(

Nf
2

+1)D
, size 1× (

Nf
2 + 1)D, is given by

Ė
0,1×(

Nf
2

+1)D
=

[
1√
2
e
j2π( 0

NF
)(−∆)

e0,1×D︸ ︷︷ ︸
f=0

, e
j2π( 1

NF
)(−∆)

e0,1×D︸ ︷︷ ︸
f=1

, . . . ,

e
j2π(

Nf
2 −1

NF
)(−∆)

e0,1×D︸ ︷︷ ︸
f=

Nf
2
−1

,
1√
2
e
j2π(

Nf
2
NF

)(−∆)
e0,1×D︸ ︷︷ ︸

f=
Nf
2

]

(7.59)

As before, S represents the total number of subchannels and is equal to the product the

number of filterbanks N and the number of subchannels per filterbank C, that is S = N · C.
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In addition, by conjugating (7.55), we make the terms consistent with (7.35) where the

unknown synthesis filters are a column vector, and hence we have

TPRcompute = Ḟ∗
(
Nf
2

+1)S×(
Nf
2

+1)D
G∗

1×(
Nf
2

+1)S
= D · Ė∗

0,1×(
Nf
2

+1)D
(7.60)

7.5 Optimization Problem

We can now combine the results of the previous sections to give an optimization problem

that is computationally tractable.

minimize
Gcompute

Jcompute(Gcompute) = JI,p,compute(Gcompute) + λJS,compute(Gcompute)

subject to TPRcompute
(7.61)

where Gcompute is given by (7.8), JI,p,compute is given by (7.40), JS,compute is given by

(7.44), and TPRcompute is given by (7.56).

We note again that λ is a user chosen constant that denotes the severity of the sparse sub-

channel penalty and the problem (7.61)is convex.
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Chapter 8: Numerical Results When Optimizing

Over Synthesis Filters

In this chapter, we detail our numerical simulations. Our simulations rely heavily on

Michael Grant’s CVX Toolbox, a package for specifying and solving convex programs [41] ,

and its integration with the professional solver MOSEK.

Fig. 8.1. Room environment.

The rectangular room shown in Fig. 8.1 has dimensions 10 meters by 8 meters and 32

microphones are placed uniformly along its 4 walls. The lower left hand corner of the room is
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defined as the origin, coordinate (0,0), and our target source is located at (3, 2.5). There are 1240

virtual interferences in our room. Four-fifths of the interferences lie outside the room and model

reflections off the four walls. We model our room environment using a large number of virtual

interferences since we do not apriori where the actual sources lie.

Each microphone is processed by a two channel filterbank, with each channel being deci-

mated and then later upsampled by a factor of 2. Hence we have 32 ∗ 2 = 64 subchannels. We

fix the two analysis filters of each of the filterbanks to be Haar filters. We wish to design the

synthesis filters that will minimize the maximum gain of the interferences and hence let p = ∞.

In addition, we wish to perfectly reconstruct the target source and use only 20 out of the possible

64 subchannels. In other words, only 20 out of the 64 synthesis filters are allowed to be active

and have non-zero frequency responses. We note that 64 choose 20 is approximately 2 ∗ 1016, and

hence we have an overwhelming number of subsets of subchannels to choose from.

Fig. 8.2. Performance on optimization grid consisting of 1240 interferences in db.

We run our optimization problem iteratively, tuning the parameter λ at each iteration until
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we find exactly 20 active subchannels. λ, a non-negative scalar, is found through a bisection

algorithm since as λ increases, the number of active subchannel decreases, and similarly as λ

decreases, the number of active subchannels increase. A subchannel is considered inactive if the

maximum magnitude of its synthesis filter is less than 1
1000 of the maximum magnitude of all the

synthesis filters. Fig. 8.3 shows the maximum magnitude of each subchannel’s synthesis filter

after our iterations completed. Notice that 20 of the 64 subchannel have non-trivial synthesis

filters .

Fig. 8.3. Maximum magnitude of each subchannel’s synthesis filter for the λ value that produced

the desired number of subchannels.

Our optimization problem finds a sparse number of synthesis filters and thus a sparse num-

ber of active subchannels. However, the frequency response of the inactive synthesis filters are not

exactly zero.

Hence, we run our optimization routine one more time, optimizing the synthesis filters of

only the previously discovered active subchannels and setting our sparsity parameters λ to zero.
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This is known as the debiasing step. In some sense, this step redistributes the “crumbs” of energy

in the inactive subchannels’ synthesis filters to the active subchannels’ synthesis filters. Fig. 8.4

shows each subchannel’s maximum synthesis filter magnitude after this debiasing step.

Fig. 8.4. Maximum magnitude of each subchannel’s synthesis filter after debiasing.

Our optimization routine returns a setup that uses slightly more low-frequency subchannels

than it does high-frequency subchannels. Furthermore, the setup even occasionally uses only a

single subchannel of a filterbank and not the other subchannel. See Fig. 8.7,8.8, 8.9, and 8.10 for

sample synthesis filter frequency responses of the 64 subchannels, 20 of which are active. Fig. 8.5

shows the locations of the active low-frequency subchannels, and Fig. 8.6 shows the locations of

the active high-frequency subchannels. We optimized over 16 discrete frequencies, 9 of which are

unique since we assume all our filter taps are real and therefore frequency responses are conjugate

symmetric. Notice that the total number of active subchannels sums to the desired number of

active subchannels, 20.

Fig. 8.2 shows how the 20 synthesis filters we found performed on the set of sources we
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Fig. 8.5. Locations of active low frequency subchannels.

optimized over. The target gain is 0 db because an optimization constraint was target perfect

reconstruction. The worst interference gain is −8.27 db. While this result is impressive, a more

realistic measure of performance is to test our system’s filters in a room with a denser set of

interferences, as in Fig. 8.11 where the worst interference gain is 1.84 db. Not surprisingly, the

performance is worst near the microphones. However, the target gain is again 0 db, and the gain

map decays very smoothly.
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Fig. 8.6. Locations of active high frequency subchannels.

Fig. 8.7. The synthesis filters frequency responses of a filterbank whose low frequency subchannel

is only active.
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Fig. 8.8. The synthesis filters frequency responses of a filterbank whose high frequency subchan-

nel is only active.

Fig. 8.9. The synthesis filters frequency responses of a filterbank whose subchannels are both

active.
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Fig. 8.10. The synthesis filters frequency responses of a filterbank whose subchannels are both

inactive.

Fig. 8.11. Performance on evaluation grid consisting of 4960 interferences in db .
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Chapter A: Properties of Γr

In the following, we assume that Nf , the number of discretized frequencies, is a multiple

of D, the downsampling factor, that is Nf = M ·D with M a positive integer. We now show that

Γr(s1, s2, f) is M -periodic in f , that is

Γr(s1, s2, f +M) = Γr(s1, s2, f) (A.1)

Proof. To simplify notation, we let φs1,s2,r(e
j2π(

f−Md2
Nf

)
) = Ḟs1,r(e

j2π(
f−Md2
Nf

)
)Ḟ s2,r(e

j2π(
f−Md2
Nf

)
).

Also let d
′
2 = d2 − 1. Then we have
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Γr(s1, s2, f +M) =

D−1∑
d2=0

φs1,s2,r(e
j2π(

f−M(d2−1)
Nf

)
)

=
D−2∑
d
′
2=−1

φs1,s2,r(e
j2π(

f−Md
′
2

Nf
)
)

= φs1,s2,r(e
j2π( f+M

Nf
)
) +

D−2∑
d
′
2=0

φs1,s2,r(e
j2π(

f−Md
′
2

Nf
)
)

= φs1,s2,r(e
j2π( f+M

Nf
)
e
j2π(−MD−M+M

Nf
)
) +

D−2∑
d
′
2=0

φs1,s2,r(e
j2π(

f−Md
′
2

Nf
)
)

= φs1,s2,r(e
j2π(

f−M(D−1)
Nf

)
) +

D−2∑
d
′
2=0

φs1,s2,r(e
j2π(

f−Md
′
2

Nf
)
)

=

D−1∑
d
′
2=0

φs1,s2,r(e
j2π(

f−Md
′
2

Nf
)
)

= Γr(s1, s2, f)

where the fourth line uses the fact that the z-transform is 2π periodic in w for z = ejw.

We now show that the matrix Γr,S×S(f) is positive semi-definite, that is

x∗Γr,S×S(f)x ≥ 0 (A.2)

for any non-zero column vector x in CS .

Proof. From (7.31), we have
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x∗Γr,S×S(f)x

=

S−1∑
s1=0

S−1∑
s2=0

xs1xs2

D−1∑
d2=0

Ḟs1,r(e
j2π(

f−Md2
Nf

)
)Ḟ s2,r(e

j2π(
f−Md2
Nf

)
)

=
D−1∑
d2=0

S−1∑
s1=0

xs1Ḟs1,r(e
j2π(

f−Md2
Nf

)
)
S−1∑
s2=0

xs2Ḟ s2,r(e
j2π(

f−Md2
Nf

)
)

=
D−1∑
d2=0

∣∣∣∣∣
S−1∑
s=0

xsḞs,r(e
j2π(

f−Md2
Nf

)
)

∣∣∣∣∣
2

≥ 0

where xk is the k-th entry of the vector x.

Chapter B: Parseval Relationship For Energy of

Filters

The following equation gives a relationship between the l2 energy of a filter g’s tap coeffi-

cients and the l2 energy of its transfer function.

∑
l

|g[l]|2 =
1

2π
|G(w)|2 dw (B.1)

Proof. The following inverse Discrete Time Fourier Transform relates the tap cofficients of a filter

g to its frequency response G

g[l] =
1

2π

∫ 2π

0
G(w)ejwldw (B.2)
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The following Poission summation formula gives us an useful “time-frequency” relation-

ship.

∑
n

e2πjnx =
∑
k

δ(x− k) (B.3)

We note that the delta distribution δ(x) has the following scaling property:

|a|δ(ax) = δ(x) (B.4)

We can now relate the l2 energy of the filter’s tap cofficients to the l2 energy of the filter’s

transfer function.

∑
l

|g[l]|2 =
∑
l

∣∣∣∣ 1

2π

∫ 2π

0
G(w)ejlwdw

∣∣∣∣2
=

∑
l

1

4π2

∫ 2π

0
G(w1)ejlw1dw1 ·

∫ 2π

0
G(w2)e−jlw2dw2

=
1

4π2

∫ 2π

0

∫ 2π

0
G(w1)G(w2)

∑
l

e2πjl
w1−w2

2π

︸ ︷︷ ︸∑
n δ(

w1−w2
2π

−n)

dw1dw2

=
1

2π

∑
n

∫ 2π

0

∫ 2π

0
G(w1)G(w2)δ(w1 − w2 − 2πn)dw1dw2

=
1

2π
|G(w)|2 dw

Note that w1 −w2 < 2π since both w1’s and w2’s limits are from 0 to 2π and hence the sum over

n produces non-zero δ(w1 − w2 − 2πn) only when n = 0. (We ignore the difference of exactly

2π because it has measure 0.)
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