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A wide range of scientific applications involve analyses of longitudinal data.

Whether it is time or location, careful considerations need to be made when apply-

ing different statistical tools. One such challenge is to correctly estimate variance

components in observed data. In this dissertation, I apply statistical tools to solve

problems involving longitudinal data in the field of Biology, Healthcare and Net-

works.

In the second chapter, I apply SSANOVA models to find regions in the genome

that have a specific biological trait. We introduce a direct approach of estimating

genomic longitudinal data of two different biological groups. Using SSANOVA we

then produce a novel method to estimate the difference between the two groups and

find regions (location or time) where this difference is biologically significant.

In the third chapter, we analyze longitudinal network data using an overdis-

persed Poisson model. We build a network of musical writers yearly for a 42 year

period. Using statistical models, we predict network level topology changes and



find covariates that explain these changes. Network level characteristics used for

this chapter include average node degree, clustering coefficient and network density.

We also build a visualization tool using R-Shiny.

The fourth chapter uses data partitioning to study the difference between

insured patients and uninsured patients in health outcomes. There is a disparity

in health outcomes depending on an individual’s type of insurance. The level of

risk for an injury is the longitudinal aspect of this dataset. We partition the data

into four pre-defined risk categories and evaluate the disparity between insured and

uninsured patients using logistic regression models.
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Chapter 1: Introduction

1.1 Definition of Longitudinal data

A wide range of scientific problems involve longitudinal data analysis. It ranges

from Biological problems [10, 12, 20, 32, 36, 38], to Healthcare related problems [51–

53], to Network analyses [68, 74–76, 78, 79]. Longitudinal data are defined as an

experiment where subject outcomes or treatments are collected at multiple time

points, locations, or periods. Longitudinal analysis allows an appropriate solution

for the following problems out of many:

1. How many days will it take to show physical effects after taking drug X?

2. What are specific regions in the genome where a certain trait is observed?

3. How is a variable changing over time and what are good predictors for these

changes?

Because of the dependencies between repeated measurements, modeling of lon-

gitudinal data are a big challenge. Any model appropriate for longitudinal analysis

must capture the complexities of variance structure of the subjects in order to give

accurate predictions. Another challenge is collecting the data itself. Longitudinal
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data needs multiple observations across time, which allows for multiple missing ob-

servations for lack of subject turnout in every time point. There are time varying

covariates which makes the the direction of causality hard to define or estimate.

Failure to do so will result in false estimation of parameters and reporting of signif-

icance [80].

There are many benefits to using longitudinal data [82]. There can be a mea-

surement of individual change and prediction of individual variables across time.

This allows for conclusions across time on an individual basis. A longitudinal study

can simultaneously characterize multiple time scale factors as response and indepen-

dent variables are changing over time. Also possible are comparisons of sub groups

across time. These types of questions can not be addressed without longitudinal

data being available.

1.2 Types of models used for longitudinal data analysis

Following the exposition in Liang [81], there are two main types of model used

for longitudinal data analysis. They are subject specific models and population

mean models. A subject specific model is used to model individual behavior as

subjects in the same groups vary from person to person. Using the same notation

as Hedeker [80], we let Yij be the response for subject i at time or location j. We

assume data for subject i are observed from a stochastic process that differs through

time or location from the group mean. In order to model these changes, a random

variable is included in a model to account for individual variation. Observations
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for this type of analysis consist of responses for an individual i across multiple time

points. A linear model will follow:

Yi = Xβ + Zibi + e (1.1)

where Xβ’s are group effects and bi corresponds to individual random effects. We

assume correlation within subject measurements but independence across subjects.

The second type of model used for longitudinal analysis involves group means

model [80,81]. If we average over subjects for each group and then analyze the data

we are in effect removing individual effects from the model. This can be the only

way to analyze data in certain scenarios. For example; assume we have observations

across time for two groups of patients using two different drugs. We know nothing

about individual characteristics, instead only group characteristics. This will allow

the use of:

Yi = Xβ + e (1.2)

where no individual observations are there for use. Any model, parametric or semi-

parametric, used for longitudinal analysis will fall under one of the two above [80–82].

1.3 Overview of dissertation

For this dissertation we use a variety of models to analyze longitudinal data.

In chapter 2, we use a semi-parametric model called Smoothing Splines Analysis of

variance (SSANOVA) to model genomic data. We use SSANOVA to find regions

of interest where differences between two groups are significant with regards to a

3



biological response. In chapter 3 we use a parametric model to characterize changes

in network structures over time. We used an overdispersed Poisson model to predict

changes of network characteristics in a music writer network. For this, we have

individual and group observations and both are used in our analysis. For chapter

4, we use a logistic regression model to look at differences between insured and

uninsured patients across different levels of injury risk or severity. Here we partition

the longitudinal data (levels of risk) into four disjoint groups and use models to

predict outcomes (mortality rates) across different ages. We use multiple patients

with similar characteristics as repeated measurements across different levels of risks.
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Chapter 2: Finding regions of interest in high throughput genomics

data using smoothing splines

2.1 Overview

High-throughput methods, like microarrays and next-generation sequencing,

are frequently used to obtain quantitative measurements at base-pair resolution

in many important applications: e.g., enrichment scans (ChIP-seq [1] and ChIP-

chip [2], DNAse-seq [3], etc.) and measurements of DNA methylation, a chemical

DNA modification known to play a significant role in gene regulation [4], using

either microarrays [5,6] or sequencing [7,8]. One very important use of these quan-

titative data in these applications is to find contiguous regions in the genome where

measurements differ between two or more populations of interest. For example,

methylation changes are widely understood to be an important part of tumorigene-

sis in solid tumors [9], and genomic regions where these differences occur have been

widely reported [10, 11]. In this case, the inference of interest is to find regions in

the genome where methylation changes in cancer occur.

A common approach to detect regions of interest of this type is to model dif-

ferences between groups with respect to these quantitative measurements as smooth
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functions along the genome and perform statistical inference on these models. In

particular, widely used methods for region finding using DNA methylation data

use local regression methods [5, 12–14] to estimate these smooth functions. An im-

portant aspect of these tools is their ability to incorporate sample characteristics

as covariates in these models, e.g., sex and age in population studies, or technical

factors like processing batches. Incorporating these sources of variability, both bi-

ological and technical [15] is essential in high-throughput studies. Therefore, these

methods require that the models used can accommodate both smooth functions and

sample-specfic characteristic.

The methods mentioned above use an indirect approach to estimate both the

smooth functions underlying the measurement of interest and parameters that model

these covariates: they first estimate point-wise models where a term that captures

differences between groups is included and then fit a smooth function using a method

like LOESS [16] to these point-wise estimates. This is an inefficient approach prone

to removing important characteristics of the data. In this chapter, we introduce an

alternative, direct, approach to this problem using semi-parametric regression tools.

Smoothing spline regression models [17] are commonly used to model longi-

tudinal data and form the basis for methods used in a large number of applica-

tions [19–21]. Specifically, an extension of this methodology called Smoothing-

Spline ANOVA [22] is capable of directly estimating a smooth function of interest

while incorporating other covariates in the model.

We show in this chapter that a direct approach based on Smoothing-Spline

ANOVA is better suited for region finding applications in high-throughput genomic
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data. We show by simulation that our direct approach significantly improves the

accuracy of detecting regions of interest. We apply our approach to methylation

data of colon cancer and normal tissue from the Cancer Genome Atlas (TCGA)

project [23]. Additionally, to demonstrate the generality of this methodology we

also apply this to data from a longitudinal high-throughput metagenomic study

characterizing how diet is associated to changes in gut microbial composition [24].

2.2 Methods

2.2.1 Problem Formulation

We assume data of the form:

Yitk = fi(t, xk) + etk (2.1)

where Yitk is a measured response, i = 0, 1 represents group factor (diet, cell type,

etc.), t = 1, . . . , T represents series factor (for example, time or location), k =

1, . . . , K represents replicate observations, xk are covariates for sample k (including

an indicator for group membership I{k ∈ i}) and etk are independent N(0, σ2)

errors. We assume fi to be a smooth function, defined in an interval [a, b], that can

be parametric, non-parametric or a mixture of both.

Our goal is to identify intervals where the absolute difference between two

groups ηd(t) = f1(t, ·)− f2(t, ·) is large, that is, regions, Rt1,t2, where:

Rt1,t2 = {t1, t2 ∈ x such that |ηd(x)| ≥ C} (2.2)

7



and C is a predefined constant threshold.

To identify these areas we use hypothesis testing using the area At1,t2 =∫
Rt1,t2

ηd(t)dt under the estimated function of ηd(t) as a statistic (Figure 2.1) with

null and alternative hypotheses

H0 : At1,t2 ≤K

H1 : At1,t2 >K

(2.3)

with K some fixed threshold.

8



Figure 2.1: Illustrative example of regions and areas This example
shows the difference function, ηd, with confidence intervals. We choose
regions labeled Rt1,t2 and Rt3,t4 as possible locations where there are
significant difference in response between two groups. The areas under
the curve in these regions, At1,t2 and At3,t4, are calculated. These two
areas are the test statistic being tested using permutation.

9



2.2.2 Region finding via smoothing functions

Recent, widely used, region-finding methods [5, 12–14] based on smoothing

methods fit point-wise linear regression models at each t where there are multiple

observations:

Yitk = βTxk + βtI{k ∈ i}+ etk. (2.4)

In this case βt measures the difference between two groups at point t. Es-

timated β̂t are then treated as realizations of the smooth difference function ηd(t)

of interest. Bumphunter use smoothing methods, e.g., LOESS to smooth β̂t’s and

estimate the difference function of interest (ηd) using model βt = ηd(t) + εt which

measures variability around the difference function of the marginal estimates β̂t.

This is an indirect approach to estimate both the smooth difference function

ηd(t) underlying the measurement of interest and parameters that model relevant

technical or biological effects (βt). This inefficient approach is prone to removing

important characteristics of the data. Error estimates may be biased using this

approach. For instance, these methods do not provide a clean way of interpreting

the two variance estimates obtained above: one from the piece-wise linear model in

equation 2.4, one from the smoothing method. This will effect down-stream infer-

ences that rely on variability estimates, e.g., defining regions Rt1,t2 in equation 2.2.

A direct approach that estimates all parameters without relying on point-wise esti-

mates is needed.

Permutation-based methods are used to calculate a null distribution of the
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area statistics At1,t2’s. To do this, the group-membership indicator variables (0-1

binary variable) are randomly permuted B times, e.g., B = 1000 and the method

above is used to estimate the difference function ηbd (b = 1, . . . , B) (in this case

simulation the null hypothesis) and area statistics Abt1,t2 for each random permu-

tation. Estimates Abt1,t2 are then used to construct an empirical estimate of At1,t2

under the null hypothesis. The observed area, A∗t1,t2, is compared to the empirical

null distribution to calculate a p-value. Figure 1 illustrates the relationship between

Rt1,t2 and At1,t2. The key is to estimate regions Rt1,t2 where point-wise confidence

intervals would be appropriate. However, due to the problem of variance estimation

outlined above, this is not possible. We present a direct estimation methodology

based on smoothing-spline methods that addressees these issues.

2.2.3 Smoothing Spline ANOVA models

Smoothing Spline analysis of variance (SSANOVA) [21] is a semiparametric

method that models data generated from a smooth function f(x) by assuming that

f is a function in a Reproducible Kernel Hilbert Space (RKHS) of the form H =

H0 + H1. The set of functions (φv(x))mv=1 spans the finite dimensional subspace

H0 and H1 is a RKHS induced by a given kernel function k. Therefore, f has a

semiparametric form given by

f(x) =
m∑
j=1

djφj(x) + g(x), (2.5)

for some coefficients dj, where functions φj have a parametric form and g ∈ H1
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which is defined by:

g(x) =
∑
α

gα(xα) +
∑
α<β

gαβ(xα, xβ) + . . . (2.6)

where gα and gαβ satisfy the standard ANOVA side conditions. gα are main

effects in the model and gαβ are the interactions in the model. An RKHS Hα is

associated with each term in the model along with the kernel function kα. We can

define a kernel function k(·, ·) =
∑

α θαkα +
∑

αβ θαβkαβ + . . ., where the coefficients

θ are hyper parameters that weigh the relative importance of each term in the

model [25].

The SSANOVA estimate of f given data (xi, yi), i = 1, ..., n, is given by the

solution of a penalized problem,

min
f∈H

(yt − f(x))2 + λJ(f(x)) (1)

where the first term discourages the lack of fit of f and the second term

penalizes the complexity of f with smoothing parameter λ controlling the trade-off

between the two.

Following the representer theorem of [26] and the assumption of gaussian data,

the minimizer of the problem in equation 1 has a finite representation of the form:

f(x) =
m∑
v=1

dvφv(x) +
n∑
j=1

cjk(xj, x) (2.7)

for some coefficients ci and dv. Letting Y be the matrix of observations of

size N × 1, where N includes all observations, including repeated measurements
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for different subjects; S is a N × m matrix where m represents the number of

unpenalized terms in the model; and Q is a N × N matrix which accounts for all

penalized terms in the model; estimation reduces to:

min
d,c

(Y − Sd−Qc)T (Y − Sd−Qc) + nλcTQc. (2.8)

Here S is the matrix described above with the ivth entry being φv(xi) and Q

is the penalized matrix with the ijth entry being k(xi, xj) [27].

We use Generalized Approximate Cross-Validation (GACV), an approximation

to the leave-one-out estimate of the comparative Kullback-Leibler distance between

f̂ and the unknown true f to select regularization parameter λ and θ.

Under SSANOVA, f=f0 + f1, where f0 has a diffuse prior in span{φv, v =

1, ...,m} and f1 has a mean zero Gaussian process prior with covariance function

E[f1(x)f1(y)] = bRj(x, y). The posterior variance for f is the respective element in

the smoother matrix where the smoother matrix is:

A(λ) = I − nλ(M−1 −M−1S(STM−1S)−1STM−1) (2.9)

where M = Q+nλI. The 100(1-α)% confidence interval of fλ(xi) based on the

posterior distribution stated above is fλ(xi)±zα
2
σ
√
ai,i where ai,i is the i, ith element

of A(λ). Bayesian intervals are given to include some confidence to our estimates.

The interval estimates when used with GCV smoothing parameter λ demon-

strate an across the function coverage property (ACP) for η fixed and smooth [22].

Over the sampled points, the average coverage proportion is defined as:

13



ACP (α) =
1

n
{i : |f̂(xi)− f(xi)| ≤ zα

2
σ̂
√
ai,i}, (2.10)

where ai,i is the corresponding element of the smoother matrix A(λ).

Simulation results suggested in [22] that for n large,

E[ACP (α)] ≈ 1− α (2.11)

This coverage property provides a principled way to incorporate interpretable

variance estimates to detect regions of interest Ri,j as defined in equation 2.2.

2.2.3.1 SSANOVA for region finding

We apply the SSANOVA model to region finding by modeling f as semipara-

metric function:

fi(t, xk) = βTxk + f1(t) + f2(I{k ∈ i}) + f12(t, I{k ∈ i}), (2)

where β are coefficients of a linear model of sample covariates (e.g., age, sex), f1

is the main effect term for the series, f2 is the main effect term for group i and f12 is

the interaction term. By encoding group membership using a 0-1 binary variable, the

ANOVA side conditions imply that we can directly estimate the difference function

ηd(t) as ηd(t) = f2(1) + f12(t, 1). In contrast to the bumphunter [12] method above,

we are able to directly estimate ηd. We use the bayesian confidence intervals above

to tune our definition of Rt1,t2 from before as,
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Rt1,t2 = {x ∈ [t1, t2] such that ηd+(x) ≤ C or ηd−(x) ≥ C} (2.12)

where ηd+ and ηd− are the upper and lower 95% confidence intervals. We

use this direct estimate of the difference function ηd(t) to calculate area statistics

At1,t2 used for testing as described above. For permutations, we treat negative ηd

as negative area and positive ηd as positive area. For each cluster we adjust for

multiple testing by using a Bonferroni correction (α/n). For example, if a given

cluster has three candidate regions we would reject if the calculated p-value is less

than .05/3.

2.2.4 Materials

2.2.4.1 Illumina HumanMethylation 450k beadarray data

IDAT files for 17 normal colon and 34 colon tumor samples were obtained from

the TCGA project [23]. Pre-processing was performed using the minfi Bioconductor

package [14]. Data were preprocessed and normalized using the standard Illumina

method. Probes were grouped using the bumphunter clusterMaker function with

a maximum gap parameter of 1000bp following the differential methylation region

finder in minfi. Our SSANOVA region finder was run for each probe group.

2.2.4.2 Metagenomics

We use data from a metagenomic longitudinal study consisting of twelve germ-

free adult male C57BL/6J mice. The twelve mice were all fed a low-fat, plant
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polysaccharide-rich diet and gavaged with healthy adult human fecal material. Fol-

lowing fecal transplant the mice continued on the low-fat, plant polysacchaaride-rich

diet for four weeks. After four weeks, a subset of 6 were switched to a high-fat and

high-sugar diet. Weekly fecal samples for each mouse went through PCR amplifica-

tion of the bacterial 16S rRNA gene V2 region. Further details of the experimental

protocols and descriptions of the data can be found in [24]. Sequences can be down-

loaded from: http://gordonlab.wustl.edu/TurnbaughSE_10_09/STM_2009.html

Count data were distributed as part of the the metagenomeSeq bioconductor pack-

age. Counts were normalized using cumulative sum scaling normalization [28].

2.3 Results

2.3.1 Simulation Study

For our simulation study we used the 17 control samples from the methylation

study on the comprehensive molecular characterization of human colon and rectal

cancer [23]. For 10 of the control samples we inserted bumps uniformly in different

locations in the genome. The widths of the bumps were selected using a uniform

distribution that matches real bumps and the magnitude of the bumps ranged from

one to three. We chose 100 different clusters and inserted one bump by the above

method. Another 100 different clusters were chosen and two random bumps were

inserted this time. Figure 2.2 shows an illustration of a simulation with two bumps

inserted.
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Figure 2.2: An example of a pair of simulated bumps in a fixed
cluster Above is an illustration of a pair of simulated bumps in a fixed
cluster. The two bumps are introduced in this simulation in the shaded
region on the top half of the figure. On the bottom half of the figure
in purple is the predicted difference function using SSANOVA with 95%
confidence intervals.
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2.3.1.1 Span parameter for Bumphunter

We used simulated data to identify an optimal span parameter to use for

LOESS. The span parameter represents the percentage of data used in each poly-

nomial fit. “Leave one out” cross validation was used to calculate an optimal span

parameter. Figure 2.3 shows the results of the cross validation and from this point

forward we used span = 0.3, which gave us the lowest error for all LOESS fitting.

2.3.1.2 Comparing Bumphunting to Splines

We used SSANOVA to estimate the difference function and repeat the same

with Bumphunter (LOESS). We calculated the difference between the true curves

and estimated curves using mean squared error (MSE). Table 2.1 shows the results

of the simulations by comparing MSE of Bumphunter and SS in predicting the true

difference function. When the magnitudes of the bumps are higher (≥ 2 units)

SS performs much better than Bumphunter. The MSE for SS when adding two

units are .20 and .36 for single bump and double bumps simulations. For the same

simulations the MSE for Bumphunter are .29 and .41 respectively. The improvement

is more drastic when three units are added for the bumps. For single bump MSE

for SS is .25 and MSE for Bumphunter is 1.42. For double bumps the MSE values

are .42 and 1.76, respectively. That is an 82% and 75% improvement for higher

magnitude of bumps from Bumphunter to SS.

In our simulations, the difference function, ηd, will be zero at most time points

and away from zero at other time points. We compared the two methods to see which
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Figure 2.3: Cross Validation selection of Span parameter We ap-
plied “Leave one out” cross validation technique to calculate the optimal
span to use for LOESS. We used LOESS to predict the true difference
function, ηd from simulated data. We calculated the mean squared error
loss for each span using multiple number of time points randomly chosen.
Across different subset of time points span=0.3 is the optimal selection.
For the rest of our comparisons we use span=0.3 for LOESS.
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performed better in detecting these bumps. Half of our simulations had single bumps

and the other half had double bumps. We show the detection performance using an

ROC curve in Figure 2.4. AUC for splines was 0.9646 while for Bumphunter it was

0.9175 showing a 5% improvement for SSANOVA in detection. The same increase

in performance is seen when a single bump is introduced to the simulation.

Region detection gives us candidate intervals to test using the permutation

methods described above. In order to test these regions we compared the two meth-

ods at calculating the areas of these regions. Since in this simulation study, regions

of interest are known in advance (i.e., where simulated η is not zero), we calculated

the area within these intervals as estimated by SSANOVA and Bumphunter and

compared it to the area from the simulated η. We performed one thousand repli-

cations with random intervals. We calculated the mean absolute error for each of

the thousand simulations and compared the distributions of the two methods. Fig-

ure 2.5 shows that SSANOVA performs better than Bumphunter calculating areas

under η̂ at specific intervals.
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Figure 2.4: ROC for predicting double bumps We use the ROC
curve to compare the two method’s performance on detecting regions
throughout the series where the difference between two groups is different
from a fixed value (e.g., zero in this case). Spline (AUC: .96) performs
much better than Bumphunting (AUC: 0.91).
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Single bump SS BH

Add 1 unit 0.45 0.42

Add 2 units 0.20 0.29

Add 3 units 0.25 1.42

Double bumps SS BH

Add 1 unit 0.84 0.62

Add 2 units 0.36 0.41

Add 3 units 0.42 1.76

Table 2.1: MSE for difference function with varying number of bumps.

We compare SS to Bumphunter by taking MSE (mean squared error loss) of both

method in all types of simulation. In most simulations where the magnitude of the

bump is high, we see a improvement using SS over BH. Sometimes the improvement

is as high as 120%.
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Figure 2.5: Distribution of Absolute Value Error for both meth-
ods. We used absolute value error value to compare the two methods
on simulated data. This boxplot shows the distribution of these error
values in calculating areas of region with true difference. For each of the
1000 simulations we picked random intervals that had definite difference
between the two groups. The error distribution of splines have a lower
mean compared to of the one in LOESS.
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2.3.1.3 Comparing Bi-Seq to Splines

We also applied SS method to Bisulfite Sequencing data. We compared it

to Bi-Seq [36] in detecting differential regions in Bisulfite sequencing data. Bi-

Seq is a five step process that detects differentially methylated regions in targeted

bisulfite sequencing data. It applies a modified indirect method in comparison to

Bumphunter where smoothing is first performed independently for each individual

sample and then testing is done using a beta regression model on the smoothed

data.

We used the same RRBS data of bone marrow specimens published by [37].

We used the 12 control samples (four remission, four CD34+ and four promyelocyte)

and simulated bumps by placing methylation differences with various lengths and

magnitude. We only used chromosome 1 for our simulation. We picked 100 different

clusters uniformly and inserted bumps, which we tried to predict using SS and Bi-

Seq. We show the ROC curves in Figure 2.6. We report the AUC for SS at 0.782

and the AUC for Bi-Seq at 0.614, which shows a 27% improvement with SS.

2.3.1.4 Comparing DER-Finder to Splines

We also applied SS method to RNA-seq data. We used DER-finder [38] to

compare our method at detecting differential regions. Like Bumphunter, DER-finder

uses a linear regression model at each base of the genome to identify differential ex-

pressions. Then segmentation is done comprised of bases showing similar differential

expression signal to find the differentially expressed regions. We used the data avail-
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able from the R-Package to split the control samples in half. We introduced bumps

uniformly with different magnitude and width and tried to predict these bumps with

SS and DER-finder. Figure 2.7 shows the results of the simulations. The AUC for

SS is 0.993, which is an improvement over DER-finder (AUC: 0.952).
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Figure 2.6: ROC for predicting bumps in Bisulfite sequencing
data We compare the two method’s performance on detecting regions
throughout the series where the difference between two groups is different
from a fixed value (e.g., zero in this case) by showing the individual ROC.
Spline (AUC: 0.782) performs much better than Bi-Seq (AUC: 0.614).
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Figure 2.7: ROC for predicting bumps in RNA-seq data We com-
pare the two method’s performance on detecting regions throughout the
series where the difference between two groups is different from a fixed
value (e.g., zero in this case) by showing the individual ROC. Spline
(AUC: 0.993) performs much better than derfinder (AUC: 0.952).
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2.3.2 Applications

2.3.2.1 Colon Cancer Illumina HumanMethylation450k Beadarray

Data

We applied the SSANOVA region-finding method to base-pair resolution DNA

methylation data assayed on the Illumina HumanMethylation450k beadarray [6]

from the Cancer Genome Atlas (TCGA) project [23]. The result is a methylation

value for each of 485k locations in the genome. The resulting methylation values can

be thought of as a data series with each nucleotide representing sampling point. The

goal with methylation data are to identify regions along the genome that correspond

to differentially methylated regions between groups of comparison.

We used SSANOVA to estimate the methylation level of each sample at each

probe using the model in equation 2 . In this application, f1(t) represent main

effect for probe location, f2(I{k ∈ i}) represent main effect for cell type (tumor

vs. normal) and f12(t, I{k ∈ i}) represent interaction of location and cell type.

Figure 2.9 shows the results of the methylation data. The top half of the plot

shows η̂d(t). We showed that using SSANOVA method we were able to find regions

in the sequence where it was differentially methylated. The areas in these regions

were tested using permutations to be significant or by chance. The bottom panel of

Figure 2.9 of the plot shows the permutation results of each region.
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2.3.2.2 Metagenomic Data

To illustrate the generality of this approach, we applied the SSANOVA region-

finding methodology to a longitudinal metagenomic 16S marker-gene survey. Metage-

nomics is the study of genetic material recovered from an environmental sample and

a field growing in its use of time-series analyses as microbial communities do not

exist in equilibrium [39].

In metagenomic 16S marker-gene surveys, conserved regions of DNA from an

environmental sample are amplified through a process known as polymerase chain re-

action (PCR). The DNA is sequenced, usually with 454 R©, resulting in thousands of

reads 200-400 nucleotide bases (depending on the technology) long genetic sequences

representing various bacterial organisms. The reads are annotated to varying phy-

logenetic levels usually by using BLAST - a greedy search algorithm or a naive

bayes classifier called RDP classifier against a database [40, 41]. The abundance of

an organism is the number of sequenced reads annotated for a particular organism.

Counts can be aggregated to determine the relative abundance of various levels in-

cluding, genera, species or phyla. Metagenomic data are inherently biased data due

to the variation in depth of coverage - the total number of sequences produced for

each sample. Data normalization is an initial step in most differential abundance

analyses aimed at making feature counts comparable across samples, but because

of this variation and few time points per sample, smoothing splines are an ideal

candidate to smooth observations. The goal in analyzing metagenomic time-series

data are to identify organisms differentially abundant between groups of comparison
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at biologically relevant intervals in time.

Using SSANOVA we tested the hypothesis that there was no difference in

abundance for a particular class of bacteria due to a difference in diet. We considered

each class of bacteria independent of each other. Twelve germ-free adult male

C57BL/6J mice were fed a low-fat, plant polysaccharide-rich diet. Each mouse was

gavaged with healthy adult human fecal material. Following the fecal transplant,

mice remained on the low-fat, plant polysaccharide-rich diet for four weeks, following

which a subset of 6 were switched to a high-fat and high-sugar diet for eight weeks.

Fecal samples for each mouse went through PCR amplification of the bacterial 16S

rRNA gene V2 region weekly. Details of experimental protocols and further details

of the data can be found in [24]. Counts were normalized per the cumulative sum

scaling method described in [28].

We used SSANOVA to estimate abundance of bacteria using the model in

equation 2 . In this application, xk represent individual mouse effect, f1(t) represent

main effect for time, f2(I{k ∈ i}) represent main effect for diet and f12(t, I{k ∈ i})

represent interaction of diet and time. We estimated ηd which represents the dif-

ference between the two diet groups of mice with respect to their abundance of a

specific type of bacteria. The observed area exceeds the 95% cutoff point, meaning

at any given point in the interval, the two diets produce significantly different levels

of this particular class of bacteria (Actinobacteria) Figure 2.10. The second part

of the plot shows η̂d(t) and the area colored in grey shows the region where there

is a difference between the two groups of mice. The last part of the figure shows

the results of the permutation test to show significant difference with α=.05. We

30



performed the same analysis for different classes of bacteria and found at least one

differential region in the following classes of bacteria: Actinobacteria, Bacilli, Bac-

teroidetes, Deltaproteobacteria, Erysipelotrichi, and Gammaproteobacteria (Table

2.2).
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Figure 2.8: Application of the SSANOVA pipeline on metage-
nomic data. The top panel of the figure shows the estimated functions
of control (black) and cancer (red) samples. The estimated difference
function revealing three candidate regions is shown in the middle panel.
Fixing these intervals and applying permutations to calculate a null dis-
tribution we observe in the bottom panel the distribution of these per-
mutations and how they are used to detect significant differential methy-
lation.
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Candidate regions Days start Days end Area p-value Adjusted p-value

Bacteroidetes interval: 1 18.00 20.00 6.43 0.00 0.00

Bacteroidetes interval: 2 22.00 72.00 -108.61 0.00 0.00

Bacteroidetes interval: 3 76.00 77.00 -1.45 0.00 0.00

Unknown interval: 1 63.00 77.00 5.30 0.03 0.07

Unknown interval: 2 0.00 22.00 -10.52 0.11 0.22

Bacilli interval: 1 21.00 77.00 472.29 0.00 0.00

Erysipelotrichi interval: 1 0.00 77.00 126.17 0.00 0.00

Betaproteobacteria interval: 1 24.00 34.00 -22.25 0.00 0.00

Epsilonproteobacteria interval: 1 9.00 27.00 -10.36 0.00 0.00

Gammaproteobacteria interval: 1 24.00 28.00 7.43 0.00 0.01

Gammaproteobacteria interval: 2 42.00 48.00 8.18 0.00 0.00

Gammaproteobacteria interval: 3 15.00 21.00 -26.49 0.01 0.04

Verrucomicrobiae interval: 1 15.00 50.00 29.55 0.03 0.03

Deltaproteobacteria interval: 1 14.00 77.00 122.71 0.00 0.00

Actinobacteria interval: 1 9.00 50.00 90.70 0.01 0.01

Cyanobacteria interval: 1 67.00 77.00 -1.96 0.03 0.03

Table 2.2: Results of metagenomic data using the function fitTimeSeries

as stated above. The results for all class of bacteria along with their regions,

calculated area under the curves, p-values and adjusted p-values.
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Figure 2.9: Application of the SSANOVA pipeline on methyla-
tion data. This figure shows the estimated difference function revealing
four candidate regions. Fixing these intervals and applying permutations
to calculate a null distribution we observe in the bottom panel the distri-
bution of these permutations and how they are used to detect significant
differential methylation. The exact areas and p-values for the four can-
didate regions can be found in Table 2.3.
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Interval Start Interval End Area P-value Adjusted p-value

17281469 17282024 389.09 .001 .004

17282172 17282356 67.93 .023 .092

17280978 17281397 -412.46 .000 .000

17282532 17283113 -458.09 .000 .000

Table 2.3: Results of methylation data in Figure 2.9 The calculated statistics

and corresponding p values for the four candidate regions from Figure 2.9
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2.4 Discussion

Splines have been used in the past to address bumphunting problems. [42] used

splines to estimate the smoothing parameter λ, needed to find K number of bumps

in a function. They used L-Splines (Linear differential operator splines) and other

generic smoothing techniques to find the function with the exact number of bumps

needed. They use bootstrap sampling to calculate a p-value for the hypothesis test:

H0 = # of bumps in f ≤ k

H1 = # of bumps in f > k

(2.13)

where k is fixed and in their application range from 0 to 4.

Friedman [43] used a different approach to solve bumphunting problems. Here

instead of directly estimating the function of interest, f , they used a ”box” approach

to the problem. This is where a box is defined by a range of the whole data. It

starts with the whole data being the 1st box. For each box an average is calculated

which represents a weighted estimated value of the response variable in that box.

Then the data are subsetted into smaller and smaller box till there are k number

of boxes with each box having a weighted estimate of the response variable. That

value is then compared to threshold and if its larger or smaller then some threshold

it is defined as a bump in that range. Both a top down peeling and a bottom up

pasting approach to the boxes was used for this bump hunting problem.

We have shown that smoothing spline models provide a direct approach for

region-finding based on smoothing methods for genomics data. Indirect methods
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require that data are present for both groups across the same time points. The

direct SSANOVA does not have this restriction. Data can be distributed across

sampling points for one group, and at the same time have data distributed across a

different set of time points for the other group. This allows SSANOVA to be applied

in a wider range of problems than the indirect approach.

2.5 Conclusion

We have presented a methodology for region-finding using high-throughput

genomic data based on smoothing-spline regression methods. We have shown that

this direct approach has specific advantages in estimation and the interpretation

of these estimates over indirect approaches commonly used for this task. We have

also shown the generality of these methods by applying our method to a cancer

epigenetics study and a longitudinal metagenomics study. As region-finding appli-

cations continue to flourish with the advent of high-throughput assays, specifically

next-generation sequencing, the general methodology presented here will address a

rapidly increasing number of critical applications in genomics.

2.6 Software

All analyses were performed using R version 3.0.2 [29]. The software package

bumphunter was downloaded through bioconductor http://www.bioconductor.

org/ and used with default settings in comparing the accuracy of SS region find-

ing [30]. The package BiSeq package was used to compare with SS on bisulfite se-
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quencing data [31]. The package derfinder was used for RNA-seq simulations [32].

The metagenomeSeq package was used to normalize the metagenomic data in the

applications section [33]. The gss package was used to perform SSANOVA and in

estimating the difference function [34]. The pracma package was used to calculate

the area under the curve of ηd [35]. An implementation of the region / time se-

ries interval finder exists in the metagenomeSeq package version 1.7.18 and higher

through the function fitTimeSeries.

2.6.1 fitTimeSeries

Implemented in the fitTimeSeries function is a method for calculating time

intervals for which bacteria are differentially abundant. Fitting is performed using

Smoothing Splines ANOVA (SSANOVA), as implemented in the gss package. Given

observations at multiple time points for two groups the method calculates a function

modeling the difference in abundance across all time. Using group membership

permutations we estimate a null distribution of areas under the difference curve for

the time intervals of interest and report significant intervals of time. An example is

shows on Figure 2.10.

The R object produced from the above function gives the intervals in which

there is a significant difference between the two groups of interest. It also provides

the user with the areas calculated from each permutation, the fit and se (standard

errors) of the predicted difference function, and a plotting function that can be

used to plot the difference function. Figure 2.11 shows an example of the plotting
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function and the plot it produces.
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Figure 2.10: Example of using fitTimeSeries function in R A
screenshot that shows an example of using the fitTimeSeries function
in R from the metagenomeSeq package.

40



Figure 2.11: Example of using plotTimeSeries function in R A
screenshot that shows an example of using the plotTimeSeries function
in R from the metagenomeSeq package which plots the difference function
from the object provided by using fitTimeSeries.
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Chapter 3: Longitudinal network analysis shows the decline of pop

music in the 21st century

3.1 Overview

On December 3, 2013, Spotify released for the first time the company’s full

business model, source of revenue and artist payouts [69]. Their system keeps 30%

of the revenue and pay artists, labels and others the remaining 70%. In describing

their business model they showed a plot, (Figure 3.1), summarizing data from the

International Federation of Phonographic Industry (IFPI) to describe the decline in

physical sales and increase in importance for revenue sharing systems and business

models [72, 73].

Figure 3.1 shows a drastic change in the music industry that begins around

the mid 90s. The revenues collected from physical music sales (Cassettes, Cd, etc.)

start to level off around the mid 90s and decrease soon afterwards. Following the

internet boom, downloads began to become a significant portion of the overall music

sales. In January, CNN-Money [70] described the decline of revenues in music sales

by using the sales of the number of cassettes, CDs, downloads, and others . The

same declining trend in Figure 3.1 can be seen around the mid 90s for the number
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of total units sold. The reasons for this trend vary from the general public losing

interest in physical albums to the rise of technology and easier alternative access

to music. What is more interesting is the response from the music industry to the

decline in sales during the mid 90s.
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Figure 3.1: Physical sales and download sales over time This figure, posted

by Spotify [69, 73], shows the trend of physical record sales versus download sales.

The trend for physical record sale is decreasing starting in the mid to late 90’s.
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To increase album sales, music labels need to invest in advertising costs, in-

cluding the cost of making and advertising singles. One could argue that singles play

the role of trailers for the albums. To understand the music industry’s response to

the decline in physical sales we decided to investigate the number of writers involved

in each hit single from 1970-2013. These are songs that have peaked at number one

in the Billboard Hot 100 chart [71] released weekly. In a given year, at most 52

singles can make our list if each week there was a different number one song. We

looked at the network formed by the writers of these hit singles. Nodes and edges

define a network graph. In this case, nodes represent writers and edges represent

collaboration for a song in that particular year.

Studies have used longitudinal network analysis to show the spread of infor-

mation (happiness, obesity) in individuals over time [74]. Individual node degree

and edge relationships over time have also been throughly written about in recent

years [79]. Teng has used time series analysis to show that network structure alone

can be highly revealing of the diversity of information being communicated [85].

Nodes need to be the same over time for this method to work, which is different

from the music writer data. Sun [84] uses GraphScope to find communities forming

through time in a larger network setting. This analysis is done without using any

user specific parameters.

We take a similar approach to Hidalgo and Sun [75,84] to study the network as

a whole and how it is changing over time. As noted by McCulloh [78], there are many

types of dynamic changes occurring in a network over time. Markov chain models,

multi agent simulations, and statistical models are used to study individual node
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changes over time and characteristics of these nodes. There are four dynamic states

that are changing in a network. A stable network is defined as a constant network

that does not change over time except for random noise. An evolution occurs when

interactions between node forces the dynamics of the network to change over time.

A shock is an outside covariate affecting the social group in a network and finally,

a mutation is incurred when a shock causes evolutionary changes in a network. For

the music writers network we look at mutations caused by the music industry and

lack of sales.

3.2 Methods

3.2.1 Data collection

The network studied in this chapter is writer networks of Number 1 hit songs

in Billboard top 100 [71]. Billboard releases a top 100 chart weekly where they list

the 100 best songs of that particular week. This chart takes the aggregate of record

sales, radio airplay, downloads and others together to make the list of the 100 best

songs. We looked at any song that went to the top spot of this chart. In a given year

there could be at most 52 unique songs if each week there was a different number

one song. We collected data from 1970-2013 of the Billboard top 100 chart and

made a network out of these song writers.
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3.2.2 Problem

Using the music writer data we construct a network of writers for 43 consec-

utive years. We want to model the changes in network structure using measures

such as degree distribution and network density. In addition, we will analyze dif-

ferent covariate influences on these changes. We are not concerned with individual

subject variables (node and edge presence or absence), instead we focus on how this

music writer network is changing over time as a whole. These changes are called

mutations, that are usually caused by shock events in a network [78].

3.2.3 Overdispersed Poisson model

Following methods in Zheng [67], we use a overdispersed Poisson model to es-

timate degree distribution through time using covariates. A Poisson model assumes

that mean and variance are the same for the variable of interest. We assume:

Yij|λj = Poisson(λj) (3.1)

where Yij is degree of node i = 1, . . . , I at time j = 1, . . . , J . We assume each time

frame has its own rate parameter, λ. Because of the difference between in mean and

variance in our response variable we assume λ to also have a prior distribution:

λj ∼ gamma(r,
1− p
p

) (3.2)

and
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f(λ) =
βα

Γ(α)
λα−1exp(−βλ) (3.3)

where α=r and β=1−p
p

.

We can calculate the marginal distribution Yij as:

f(y) =

∫ ∞
0

f(y|λ)f(λ)dy

f(y) =

∫ ∞
0

λy

y!
exp(−λ)λr−1

exp(−λ(1−p)
p

)

( p
1−p)rΓ(r)

dλ

f(y) =
(1− p)rp−r

y!Γ(r)
pr+yΓ(r + y)

f(y) =
Γ(r + y)

y!Γ(r)
py(1− p)r

(3.4)

where Y ∼ N.B(r, p), also known as overdispersed Poisson.

3.3 Results

3.3.1 Number of hit songs and writers of hit songs

We show the trend of the music industry changing over the last forty years

by looking at the number of songs that are number 1 along with the number of

writers working on these songs (Figure 3.2). The number of songs making it to the

Billboard top hit list follows a cyclic relationship over the timespan. It shows the

general public music taste varies from year to year. Some years (around the mid

1970’s) the general public responds to a large number of songs as their favorite and,

in contrast, in other years (around 1980) the general public only listens to specific

songs as the total number of hit single drastically decreases. The overall cyclic trend
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for the total number of songs is seen in a smaller yearly interval while the overall

forty year trend for the total number of songs decrease drastically in the mid 90’s.

Also apparent in Figure 3.2 is the cyclic trend for the total number of writers

working on hit singles on a yearly basis. This cyclic trend, like the trend for number

of song writers, is more evident in smaller yearly intervals. The total number of

writers over the 40 plus years stay relatively constant.

We show the number of writers working on hit singles drastically increase in

the early to mid 90’s. This increase can clearly be seen in Figure 3.3. There are

1-3 writers on average working on hit singles before the mid 1990’s. This number

drastically increases to 2.5 - 4 writers per hit single after that time period. The

music industry changed something in the business model for that increase to occur.

The number of writers working on hit single might have been increased due to low

album sales [69].
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Figure 3.2: Total number of hit songs and writers yearly The total number

of the hit songs yearly and writers working on these songs yearly follow a cyclic

relationship. The overall forty year trend for number of songs is constant while the

number of writers drastically decrease around the mid 90’s.
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Figure 3.3: Average number of writers per song The number of writers working

on hit songs started to increase drastically around the early to mid 90’s. I highlighted

some hit songs for each year such as Like a Prayer (1989), Hypnotize (1997), etc.
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3.3.2 Network of musical song writers

We looked at the network of song writers on a year to year basis. We show

the changes in the topology of music writer networks using characteristics of the

yearly networks. Figure 3.4 shows the change in writer networks over time. Here we

highlighted six network graphs over the years where it is clear the writer networks

are becoming more and more dense over time. Not only are more writers being hired

to work on individual singles, it is also the same writers being hired as can be seen

from the network graph of 2010. Also clear are the disappearance of single nodes in

the network. This indicates fewer songs is being written by only a single individual

in 2010, whereas single songwriters were the norm before the 1990’s.

Figure 3.5 shows the distribution of node degree for six selected years. This

shows the evolution of network density over time. The number of nodes with de-

grees 1 and 0 is very rare after the mid 90’s which corresponds to more and more

collaborations in the music industry for hit songs. This change can also be seen by

looking at other characteristics of the individual networks over time such as network

density, clustering coefficient largest connected component.
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Figure 3.4: Evolution of network overtime Highlighted here are six yearly music

writer networks. Nodes in the individual yearly networks represent writers and edges

between writers represent a collaboration on a number 1 hit song. The drastic change

is seen through time as the networks are getting more and more dense as time pass.
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Figure 3.5: Evolution of node degree distribution overtime Distribution of

node degree is shown here for six of the years. Before the mid 90’s most of the

writers (nodes) had 1-2 collaborators (edges) yearly in comparison to after the mid

90’s where most of the nodes have more than 2 edges. The distribution of node

degree is overdispersed after the mid 90’s.
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3.3.3 Prediction of node degree with covariates

We predict node degree for a given year using some chosen covariates. We

chose multiple variables that we think can help explain these changes in network

density over time. Figure 3.6 shows the predicted values of average node using the

selected independent variables. Even though, these variables can predict the mean

of node degree we wanted to use a overdispersed Poisson model to also predict the

variances of node degree for a particular year.

We used overdispersed Poisson Model [67] to estimate the mean and variance

of node degree for a particular year. Since movie sales provided the best results using

a regular Poisson model we chose this independent variable to predict node degree

using the overdispersed model. Figure 3.8 shows the difference between estimated

variance and observed variance using the two models (regular and overdispersed

Poisson). It clearly shows the overdispersed Poisson model captures the mean and

variance relationship of node degree much better than a regular Poisson model.

We used the overdispersed Poisson distribution to predict node distribution

on a year to year basis. We predicted the node distribution for all the years us-

ing the Poisson models and the overdispersed Poisson model. We observe in the

years where overdispersion occurs, the overdispersed Poisson distribution predicts

the node distribution much better. Figure 3.7 shows an example of such a year

where overdispersion occurs in observed node degree. We clearly show the negative

binomial (overdispersed Poisson) is a more suitable distribution assumption for node

degree where overdispersion is occurring. For the years where overdispersion is not
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occurring a regular Poisson distribution will suffice.

3.3.4 Overdispersed Poisson distribution and Poisson distribution

Figure 3.9 shows the Q-Q plots for different distribution fits using Poisson and

three levels of Negative Binomial distributions. For all four distribution a µ = 3

was used. α was changed for each of the three NB distribution fits. For the NB fits

the mean and variance is defined as E(y) = µ and V ar(y) = µ + µ2

α
. The negative

binomial fit with α = 4.39 estimated from movie sales as the independent variable

has the best fit.
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Figure 3.6: Estimated Poisson regression models In red are predicted values of

average node using the four selected independent variables. Poisson regression was

used to evaluate these predicted lines.
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Figure 3.7: Comparison of Poisson and overdispersed Poisson in estimating

node degree distribution For the year 2001, the observed node distribution is

the top panel of this figure. The middle panel is the estimated node distribution

assuming a Poisson distribution and the last panel is the estimated node distribution

assuming a negative binomial (overdispersed Poisson) distribution.

58



Figure 3.8: Comparison of Poisson and overdispersed Poisson in estimating

node degrees. We plot the average degree and variance of degrees for each year and

try to estimate it using Poisson and overdispersed Poisson model. The overdispersed

Poisson model (in purple) fits the relationship much better.
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AIC (Poisson) AIC (NB) overdispersed estimate

Movie Sales 6642.4716 6409.2316 0.2277

Unemployment % 7280.0963 6776.8428 0.3847

Mets Win % 7321.2478 6795.2497 0.3950

Table 3.1: AIC between two models and overdispersion parameter esti-

mates overdispersed Poisson model (NB) performs much better than a regular

Poisson regression as shown by the lower AIC across all NB models. Also shown

is the estimation of the overdispersion parameter which scales the variance of the

response.
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Figure 3.9: Comparison of Poisson and negative binomial distributions

with node degrees. We show the four Q-Q plots we compare the node degree

distribution with. The negative binomial distribution with the three selected inde-

pendent variable performs better. The best fit appears to be with Movie Sales ($)

as the independent variable.
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3.4 Discussion

The observations in network dynamics can be partially explained by the rev-

enue loss starting in the mid 90’s by the music industry. There was a clear decision

made in the mid 90s to invest more money (implying more writers) into hit sin-

gles. For the first time in more than twenty years, revenues were not increasing, so

something needed to be changed. Once the revenues started to level off again with

the increase of downloads and single sales, the music labels decided to continue the

trend and hire more writers per song. As reported in the the CNN-Money article,

it can be seen that downloads and single sales sum up to a significant portion of

music sales starting in the mid 2000s. This is why even though revenues started to

level off once again, this time, singles became even more important so the number

of writers working on these songs stayed steady.

Also important to note are the writers being hired by the music labels. The

same writers appear in the top singles list over and over again. During the last five

years Max Martin and Lucasz Gottwald appear in the top singles every year more

than once. The music labels are hiring the whole team for top singles. These singles

are bringing in more money into the music labels. The recent Grammy nominations

for 2014 nominated both Lucasz Gottwald and Max Martin for song of the year for

the contributions to Roar by Katy Perry.
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3.5 Conclusion

We used an overdispersed Poisson model to estimate the node degree distri-

bution of musical writers over time. We show the best predictors of node degree of

musical writers are movie sales in dollars. We also use graphical network analysis

to show there was a mutation, cause by declining sales in music industry, in the

musical writer network.

3.6 Software

All analyses were performed using R version 3.0.2 [29]. The software package

igraph was used for all network plots and figures. The function glm was used to

perform Poisson regression and overdispersed Poisson regression on the data. The

package XML was used to scrape the data from Wikipedia.

3.6.1 R-Shiny website

We used the R package Shiny to make an interactive website that summa-

rizes the musical network. The website can be found in http://epiviz-dev.

cbcb.umd.edu/shiny/musicwriters/ with the code found in https://github.

com/htalukder/musicwriters. Figure 3.10 shows a screenshot of the website.

Panel A has a time bar where the user can select the year from 1970-2013. Having

selected an year, panel B and D will simultaneously change automatically. Panel

B displays the network of music writers of that particular year selected in panel A.
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If the user hovers over the network nodes, the name of the writers will be visible.

Panel C has four network dynamic characteristic the user can select from. They

are clustering coefficient, average degree, network density and largely strongest con-

nected component. Here, interactively, the user can hover over the graph and the

point will display the amount for that particular year. Panel D also changes with

the year selection from panel A. A Spotify playlist of the songs that were number

1 hits for the chosen year will show on panel D. The user can listen to each of the

songs as they are learning the writer relationships for a particular year.
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Figure 3.10: Screenshot of Shiny website.
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Chapter 4: Does health insurance matter? Establishing insurance

states as a risk factor for mortality rate.

4.1 Overview

Trauma is the most common cause of death in persons between the ages of

1 and 44 in the United States, and the fifth most common cause of death overall

(CDC). According to the National Hospital Ambulatory Medical Care 2010 Survey,

approximately 37.9 million Americans are treated for traumatic injuries annually.

Insurance status, a surrogate for socioeconomic level, has been shown to have perva-

sive effects on outcomes in trauma, particularly mortality. Race, income, and insur-

ance status impact mortality in trauma and play a role in rehabilitation placement

after brain surgery [48, 54]. Insurance status and race predict mortality in pedi-

atric patients with traumatic injuries [56]. Arriving at off-hours worsens outcomes

in trauma, and access to care matters, as studies have shown that level I trauma

centers have better survival outcomes than their level II counterparts [52,77].

In this chapter, we examined disparities in mortality rates between self-pay

and insured adult (18-64) patients using data from the National Trauma Data Bank

(NTDB), a repository of patient data compiled from trauma centers across the
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United States. We examined variables that might act as confounders age, sex, race,

mechanism, severity of injury, region of the country, hospital size and tested whether

self-pay patients and insured patients differ in mortality rates after controlling for

relevant trauma center and patient characteristics.

4.2 Methods

4.2.1 Data

The NTDB is a repository of trauma related data voluntarily submitted by

participating trauma center across the United States. This particular version (V7.2)

contains data on individual patient cases in over 900 trauma centers. It includes

all the data submitted to NTDB with admission year 2002-2006. We obtained the

following variables from the database: sex, race, gender, age, insurance status, in-

hospital mortality, and patient disposition after treatment. Patient disposition after

treatment was divided into those who were discharged to home and those who were

transferred to a rehabilitation hospital. Following methods outlined in extant liter-

ature [55], insurance status was divided into a binary variable: insured or self-pay

patient. The following groups are considered to have insurance: Automobile, Blue

Cross, CHAMPUS, Government Military, Liability insurance, Medicare, Medicaid,

MCO, Crippled Childrens, No fault insurance, other commercial indemnity plan,

Private charity, and Workers compensation.

Different characteristics of trauma centers were also obtained from the database.

For each trauma center, the total number of beds was used as a proxy for the size
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of the trauma center. NTDB includes the location of the trauma centers into four

regions across the United States: Northeast, Midwest, South, and West. The Amer-

ican College of Surgeons Committee on Trauma designates trauma centers as one

of four different levels. For this analysis, we focused on level I and II centers, which

serve as referral centers, receive the greatest number of patients, and have the most

resources. Level II trauma centers are regional facilities that have 24-hour emer-

gency medicine and trauma services that may initiate definitive care, but they have

limited on-site availability of surgical subspecialties (e.g., otorhinolaryngology and

oral maxillofacial surgery are not present on-campus at all times). Level I trauma

centers are tertiary-care referral centers with 24-hour staffing of all surgical and

medical specialties. Because they must also host clinical training programs and

conduct research, level 1 trauma centers are generally staffed by leaders in the field

who have early access to new treatments.

A logistic regression analysis was done using the mortality outcome of patients

as the response variable. A significance level of 5% was used for all hypothesis testing

throughout the data analysis. We use the logistic regression model to specifically

compare outcomes between insured patients and self-pay patients, while controlling

for age, race, gender, size of facility, region of facility, facility level, mechanism of

injury (blunt or penetrating), and time of admittance.

We limited our investigation to adults less than 65 years of age, since that is

when all US citizens qualify for insurance through Medicare. The Injury Severity

Score (ISS) is a non-linear and anatomy-based scale that quantifies the seriousness of

a patients injuries. For this analysis, we followed several examples in the literature
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[8, 9] and categorized the scores into a clinically-relevant scale. ISS< 9 was defined

as being mild, 9-16 was moderate, 16-25 was considered severe, and patients with

an ISS >25 were considered to have a critical injury. Although patients that are

admitted to trauma centers receive an ISS, there is variation in injuries receiving

the same ISS scores. Most of the patients being admitted to facilities either had a

blunt trauma or a penetrating trauma. Penetrating trauma is defined as an injury

in which an object pierces through the skin and tissue. Blunt trauma is physical

trauma caused to a body part without any piercing of the body.
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Figure 4.1: Illustration of data cleanup and merging The separate
data sets from NTDB were cleaned first then merged using the appro-
priate variables. All the analyses were done using the result datasets.
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Different characteristics of trauma centers were obtained from the database.

For each trauma center, the total number of beds was used as a proxy for the size

of the trauma center. The location of the trauma center was divided into four

different regions across the United States; Northeast, Midwest, South, and West.

Trauma centers were designated as two different levels. Level II trauma centers

are regional facilities that have 24-hour emergency medicine and trauma services

that may initiate definitive care, but they are limited in the on-site availability of

surgical subspecialties (i.e., otorhinolaryngology and oral maxillofacial surgery are

not present on-campus at all times). Level I trauma centers are tertiary-care referral

centers with 24-hour staffing of all surgical and medical specialties. Because they

must also host clinical training programs and conduct research, leaders in the field

who have early access to new treatments generally staff level I trauma centers.

4.2.2 Review of Logistic Regression

A logistic regression [18] analysis was done using the mortality outcome of

patients as the response variable. We wanted to specifically look at the trauma

outcomes between insured patients and self-pay patients. We controlled for the fol-

lowing variables: age, race, gender, size of facility, region of facility, facility level,

type of injury (blunt or penetrating), and time of admittance. Because of interac-

tions between ISS scores and other variables we looked at mortality outcomes in

different ISS groups.
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Payment source Number of cases

Automobile Insurance 4201

Blue Cross/Blue Shield 6827

CHAMPUS 786

Government/Military Insurance 2094

Liability Insurance/Under Litigation 687

Managed Care Organization 16228

MCH and Crippled Children’s 27

Medicaid 10568

Medicare 3708

No Fault Insurance 44

Other 22839

Other Commercial Indemnity Plan 7866

Private Charity 63

self-pay 37501

Worker’s Compensation 6683

Table 4.1: Number of cases belonging to each payment source : The payment

source types are taken directly from the NTDB dataset.
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The logistic regression model we use is:

ln(
π

1− π
) = β0X0 + βageXage + βraceXrace + βgenderXgender+

βbedsizeXbedsize + βregionXregion+

βinjury-typeXinjury-type + βtime-of-admitXtime-of-admit+

βpayment-sourceXpayment-source

(4.1)

where the last line is the variable of interest (self-pay vs. insured), π is the proba-

bility of survival.

4.2.3 Estimation of parameters

The likelihood function for the above model (4.1) is:

L(β|y) =
N∏
n=1

ni
yi!(ni − yi)!

πyii (1− πi)ni−yi (4.2)

where yi corresponds to individual groups of patients and ni is the total number of

patients in these groups. After rearranging terms above we have:

L(β|y) =
N∏
n=1

(
πi

1− πi
)yi(1− πi)ni (4.3)

After simplifying the above equation and taking log of both sides we get:

l(β|y) =
N∑
i=1

yi(
K∑
k−1

Xikβk)− nilog(1 + exp(
K∑
k=1

Xikβk)) (4.4)
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By taking derivatives of both sides of 4.4 and solving for each β separately does not

yield a closed form solution. A variation of the Newton-Raphson method of scoring

can be used to get estimates for β [18, 60].

4.3 Results

4.3.1 Raw results

We used 120,123 cases in our final analysis, of which 82,622 were insured and

37,501 were self-pay patients. Table 4.1 shows a breakdown of how many patients

had each type of insurance. Figure 4.3 shows the distribution of patients by age

and insurance type. The proportion of self-pay patients is the highest for 19 year

old patients, yet remains essentially constant until approximately 40 years of age.

After 40 years, the proportion decreases until age 65.

The overall mortality rate for all patients was 3.69%. The mortality rates

varied through different injury types and insurance types. Across all levels of injury

severity and forms of payment, the mortality rate was the highest in self-pay pa-

tients (4.3). As ISS increases, mortality rate for both groups dramatically increases.

However, this increase is disproportionately greater in self-pay patients. For in-

stance, patients with severe (ISS 16-25) and critical injuries (ISS>25) and who were

self-pay, had twice the mortality (12% and 42%, respectively) of insured patients

with similar injuries (6% and 22%). These differences are statistically significant,

with p-values < 0.05.
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Figure 4.2: Distribution of cases by insurance form and age.
This figure shows the distribution of patients by their age and state of
insurance. The proportion of self-pay patients is the highest at age 19
and decreases with older age.

75



0

10

20

30

40

Minor Moderate Major Critical
Type of injury

P
er
ce
nt

Payment source
Insured

Self-pay

Percent of dead patients 
 by insurance and level of risk

Figure 4.3: Percentage of dead patients by insurance type and
injury risk. This figure shows the mortality rates by insurance type
and level of risk. Across all levels of risk the mortality rate of self-pay
patient is higher than insured patients. For the higher risk patients
(Major, critical) there is a 100% increase in mortality rate from insured
patients to self-pay.
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Figure 4.4 shows the distribution of patients admitted to trauma centers by

insurance status and time of day. For all self-pay patients, 57% were admitted

to trauma facilities between 6pm and 6 am. By comparison, only 47% of insured

patients were admitted during the same time period (p-value<.005).

Figure 4.5 shows the proportion of patients with penetrating trauma for each

insurance group. Self-pay patients have a higher proportion of penetrating trauma

incidents than insured patients across all levels of severity. Thus, we have a number

of interesting differences between self-pay and insured patients. Next, we examine

the effect of these differences on survival outcome more formally within the logistic

regression framework.

4.3.2 Estimated results from logistic regression

The survival probability was the lowest in self-pay patients across all levels

of severity and both facility levels (Table 4.2), which explains why the effect of

insurance status is significant across all regressions, except level I patients with minor

or moderate (ISS: 0-15) injuries (Figure 4.6). Moreover, the disparity in survival

rate between self-pay patients and insured patients becomes wider as the severity of

injury increases. For instance, for patients with major injuries (ISS 16-25), self-pay

patients in type I facility have a survival probability of 0.5527, while insured patients

in the same facility type have a survival probability of 0.5811. This amounts to a

4.88% drop in survival probability (p-value<.05). For level II trauma centers, the

effect is even more pronounced: the survival probabilities are 0.5914 and 0.7106 for
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self-pay and insured patients, respectively, or a 16.77% decrease in the survival of

self-pay patients (p-value<.05). The difference in estimated survival probability is

greatest for those patients with critical injuries (ISS>25). In level I trauma centers,

the survival probability of self-pay and insured patients is 0.1958 and 0.2689, or a

27.18% decrease in survival for being self-pay (p-value<.05). The decrease for type

II facilities from insured to self-pay patients is 26.74% (p-value<.05).
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Figure 4.4: Time on admit by payment source. This figure shows
the hourly breakdown of patients within the two groups of payment
source. There are approximately 56% of patients without insurance get-
ting admitted into trauma centers from 6 pm to 6 am. The same time
slot account for 47% of insured patients.
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Figure 4.5: Proportion of patients with penetrating trauma by
payment source. This figure shows the proportion of patients with
penetrating trauma depending on payment source and risk of injury.
The percentage of patients with a penetrating trauma is much higher in
self-pay patients than insured patients across all age levels.
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Facility Level I Facility Level II

Insured self-pay Insured self-pay

Minor (ISS: 0-8) 0.9950 0.9942 0.9706 0.9530

Moderate (ISS:9-15) 0.9890 0.9849 0.9797 0.9660

Major (ISS: 16-25) 0.5811 0.5527 0.7106 0.5914

Critical (ISS: 26-75) 0.2689 0.1958 0.5458 0.3998

Table 4.2: Estimated survival probabilities from logistic regression The

table shows the estimated survival probabilities from logistic regression averaged

over other factors for facility level and injury risks.
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The disparity in estimated survival probability between injury types is also

shown in Table 4.3, grouped by mechanism of injury. Penetrating trauma has a

lower chance of survival in comparison to blunt trauma, which helps explain why

the regression analysis shows the risk factor is higher in penetrating trauma than for

blunt trauma, even if the ISS and other control variables are the same (p-value<.05).

Table 4.4 shows the percentage change from insured to self-pay patients in

survival probability within different racial groups. The greatest racial disparity

between self-pay patients and insured patients occurred in non-white male patients, a

drop in survival probability of 26.91%. The largest gender disparity overall occurred

in males (p-value<.05 for level II facility and Major injuries).

Tables 4.5 and 4.6 shows the estimated coefficients and p-value for all logistic

regressions performed on major and critically injured patients (Level I and II, ISS

of 26-75) are consistent with the findings above. The effect of self-pay is statisti-

cally significant (p-value<.05) and among the largest in magnitude coefficients. As

expected, race, sex, age, ISS and some regions (Northeast and South) also have

significant coefficients (p-value<.05). Across all regression coefficients, the self-pay

variable had a significant impact on the logistic regression.
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Penetrating trauma Blunt Trauma

Minor (ISS: 0-8) 0.9953 0.9931

Moderate (ISS:9-15) 0.9456 0.9729

Major (ISS: 16-25) 0.5634 0.8355

Critical (ISS: 26-75) 0.2285 0.4185

Table 4.3: Estimated survival probabilities from logistic regression by in-

jury type. The table shows the estimated survival probability from logistic regres-

sion by facility level and type of injury.
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We validated the estimated logistic regressions by predicting survival proba-

bility on a held-out test sample consisting of only major and critical patients, since

lower risk patients would result in artificially high scores due to low mortality rates.

Figure 4.7 shows the accuracy of the models with different sets of independent vari-

ables for predicting survival outcomes using an ROC curve. Model 1 in the figure

represents only individual demographics in the model, Model 2 additionally includes

facility level characteristics, and Model 3 is the full model that includes injury type,

time of admittance, insurance status, and all variables in Model 2. For both levels,

we see that the models predictive performance on the held-out test set improves as

more variables are included. For facility levels I and II, the full logistic regressions

have area under the curve (AUC) scores of 0.79 and 0.80 respectively, indicating

accurate predictive models.

Another choice to validating the model is to calculate the pseudo R-squared

values. Table 4.7 shows the pseudo R-squared values for all regression types. It

varies from .05-.21.

84



White Non white

Male -24.63 -26.91

Female -23.82 -25.61

Table 4.4: Estimated survival probability disparity between payment

source by race and gender This table shows the percentage drop, in regards

to survival probability estimated from logistic regression, from insured to self-pay

by gender (male, female) and race (white, non white). The biggest drop in sur-

vival probability happens for non white males at approximately 27%. The data are

restricted to facility level I and ISS of 26-75.
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Figure 4.6: Estimated coefficients plus 95% CI for self-pay pa-
tients across facility levels and risk of injury This figure shows the
estimated coefficients for self-pay patients from all the regression models.
For minor and moderate injuries in facility level I the self-pay coefficient
is not significant. For all other regression models this coefficient was
significant. Level I facility have a higher coefficient for self-pay patient
but the difference is not significant at α=.05.
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Facility Level I ISS: 15-25 ISS: >25

Coefficient Estimate Z-value P-value Estimate Z-value P-value

Intercept 4.02 11.39 0.00 1.67 5.00 0.00

AGE -0.01 -3.74 0.00 -0.01 -3.89 0.00

White 0.04 0.52 0.60 0.22 3.34 0.00

Male -0.11 -1.14 0.26 -0.10 -1.39 0.17

Bedsize (>600) -0.51 -1.72 0.09 -0.10 -0.32 0.75

Bedsize (201-400) -0.41 -1.29 0.20 -0.13 -0.40 0.69

Bedsize (401-600) -0.02 -0.07 0.94 0.36 1.17 0.24

Region NE 0.69 3.73 0.00 0.59 3.94 0.00

Region S 0.06 0.54 0.59 -0.02 -0.18 0.86

Region W 0.22 1.87 0.06 -0.28 -2.85 0.00

Injury (Penetrating) -1.95 -22.68 0.00 -1.13 -12.44 0.00

Hour (6-12) -0.25 -2.12 0.03 -0.20 -2.10 0.04

Hour (12-18) -0.27 -2.51 0.01 -0.15 -1.73 0.08

Hour (18-24) -0.18 -1.74 0.08 -0.09 -1.02 0.31

Self-pay -0.43 -5.32 0.00 -0.70 -10.38 0.00

Table 4.5: Coefficients for Level I regression models Includes estimates of

coefficients, estimated z-values and p-values.
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Facility Level II ISS: 15-25 ISS: >25

Coefficient Estimate Z-value P-value Estimate Z-value P-value

Intercept 4.48 12.21 0.00 2.11 8.13 0.00

AGE -0.02 -3.65 0.00 -0.02 -4.77 0.00

White -0.09 -0.75 0.45 0.01 0.14 0.89

Male -0.27 -1.88 0.06 0.08 0.74 0.46

Bedsize (>600) -1.24 -5.29 0.00 -0.63 -3.79 0.00

Bedsize (201-400) -0.64 -2.46 0.01 -0.11 -0.63 0.53

Bedsize (401-600) -0.30 -1.16 0.25 0.13 0.74 0.46

Region NE -0.98 -4.12 0.00 -0.88 -3.47 0.00

Region S 0.57 2.84 0.01 0.36 2.43 0.02

Region W 0.53 2.70 0.01 -0.03 -0.17 0.86

Injury (Penetrating) -2.09 -15.78 0.00 -1.24 -8.11 0.00

Hour (6-12) -0.03 -0.17 0.86 0.29 2.09 0.04

Hour (12-18) 0.09 0.56 0.58 -0.11 -0.91 0.36

Hour (18-24) 0.18 1.15 0.25 -0.18 -1.45 0.15

Self-pay -0.71 -5.84 0.00 -1.03 -10.36 0.00

Table 4.6: Coefficients for Level II regression models Includes estimates of

coefficients, estimated z-values and p-values.
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Figure 4.7: ROC for facility level I and II regression models The
ROC is used to validate our model in predicting mortality outcomes for
patients. The corresponding AUC for the curves above are .78 (Left,
level I) and .79 (Right, level II) for the full model.
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Facility Level I Facility Level II

Minor 0.0456 0.0855

Moderate 0.0414 0.1081

Major 0.1939 0.2136

Critical 0.1505 0.1439

Table 4.7: Pseudo R-squared values for each regression model This table

shows the pseudo R-squared values for each regression model done.
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4.4 Discussion

This study identifies a disparity in survival outcomes between insured and self-

pay patients in trauma centers across the United States. This disparity increases

with injury severity, a pattern that is consistently found across all races and trauma

center levels. We also identified differences in arrival time and injury types (pen-

etrating and blunt traumas) between insured and self-pay patients that may help

explain the disparity in survival outcome. Previous work [77] has shown that time of

arrival at trauma centers is directly correlated with survival probability of patients,

since the number of resources available during late nights are much less than at peak

hours of the day. We find that self-pay patients are more likely to arrive during late

nights, thus lowering their probability of survival.

Similarly, the percentage of self-pay patients with penetrating trauma is signif-

icantly greater, which we find lowers their survival chances even if their ISS score is

held fixed. This is a potentially important finding, since many ISS scores do not dis-

tinguish between penetrating and blunt trauma. We also found that type II trauma

facilities show a bigger difference between self-pay patients survival probability and

insured patients survival probability. Overall, cases in type II facilities had lower

survival probability than cases in type I facilities, which may be expected since type

I facilities typically have more resources and staffing.

We caution that there are also limitations to our findings due to the data. The

NTDB does not contain unique patient identifiers. As such, it is likely impossible

to track the movement of individual patients through the trauma center system.

91



However, given that the database contains large numbers of records drawn from

every region of the US, it can be considered a representative sample of trauma care

in the country. The NTDB data set is also not exhaustive, in that there are likely

many missing socioeconomic factors that play a significant role in survival outcome

and hence, confound our analysis [54]. Nonetheless, we controlled for a number of

variables, such as time of arrival, injury types, race, and insurance status, which are

proxies for socioeconomic status.

4.5 Conclusion

Using the NTDB V 7.2, we conclude self-pay patients have a lower probability

of survival than insured patients across all facility levels. Two key, statistically sig-

nificant factors that differ between the two groups of patients are identified, namely

arrival time and injury type (penetrating or blunt traumas). The difference in sur-

vival outcome between self-pay and insured patients is not only statistically signifi-

cant, but also large enough in magnitude to be practically meaningful, highlighting

insurance status as an important topic of discussion in public policy and healthcare.

4.6 Software

All analyses were done using R 3.0.2 using the glm (generalized linear model)

function and predicted values from our model are reported with significance. We

also use a receiver operator characteristic (ROC) curve and the area under the

curve (AUC) statistic [57] to show the accuracy of our model in predicting survival
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outcome. We divided the data into a testing set (30% of data) and a training set

(70% of data) to produce the ROC curves. The NTDB data contained a large

number of records with missing data. Of the 1,926,245 unique incidents reported

in the data, 120,123 complete records with no missing data in the fields of interest

were kept for our analyses.
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Chapter 5: Conclusion

For my PhD research, I have developed and applied multiple parametric and

semi-parametric models to analyze longitudinal data. The tools I have developed

can help solve problems from a variety of different fields.

For biological data, I developed a method using SSANOVA that can find

regions of interest in biological data. Regions of interest here is defined by locations

where the difference between two groups in some measurement is significant. For

this project I also developed an R function, fitTimeSeries, which is currently

part of metagenomeSeq package. This chapter was submitted as a paper recently

and is currently under review [44]. I also used fitTimeSeries for another project

analyzing longitudinal data of lung microbiota in monkeys over 15 months of SHIV

infection [47].

For the second project, I developed a statistical method to analyze degree dis-

tribution in longitudinal network data. Using writers of hit singles, I build networks

which was then analyzed using an overdispersed Poisson model. I developed a visu-

alization tool using shiny package in R that illustrates the network data as well as

other statistical graphs involved with the data. This chapter as a paper is currently

under preparation and will be submitted soon [46].
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For the final project, I used a partitioning technique to analyze longitudinal

data in the field of healthcare. After partitioning the data, a logistic regression was

used to analyze longitudinal data. I showed the disparity that exist in healthcare

between insured and uninsured patients. Using different statistical methods I showed

the accuracy of the regression model in predicting mortality. This chapter will

submitted be as a paper [45].

95



Bibliography

[1] Johnson, D., Mortazavi, A., Myers, R., Wold, B.: Genome-Wide Mapping
of in Vivo Protein-DNA Interactions. Science (June), 1497–1502 (2007)

[2] Buck, M.J., Lieb, J.D.: Chip-chip: considerations for the design, analy-
sis, and application of genome-wide chromatin immunoprecipitation experi-
ments. Genomics 83(3), 349–360 (2004)

[3] Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng,
Z., Furey, T.S., Crawford, G.E.: High-resolution mapping and characteri-
zation of open chromatin across the genome. Cell 132(2), 311–22 (2008).
doi:10.1016/j.cell.2007.12.014

[4] Laird, P.W.: Principles and challenges of genome-wide dna methylation
analysis. Nature Reviews Genetics 11(3), 191–203 (2010)

[5] Irizarry, R.A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S.A.,
Jeddeloh, J.A., Wen, B., Feinberg, A.P.: Comprehensive high-throughput
arrays for relative methylation (CHARM). Genome Research 18(5), 780–
790 (2008)

[6] Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J.M., Delano,
D., Zhang, L., Schroth, G.P., Gunderson, K.L., Fan, J.-B., Shen, R.: High
density DNA methylation array with single CpG site resolution. Genomics
98(4), 288–295 (2011)

[7] Lister, R., Pelizzola, M., Dowen, R., Hawkins, R., Hon, G., Tonti-Filippini,
J., Nery, J., Lee, L., Ye, Z., Ngo, Q., Edsall, L., Antosiewicz-Bourget, J.,
Stewart, R., Ruotti, V., Millar, A., Thomson, J., Ren, B., Ecker, J.: Human
DNA methylomes at base resolution show widespread epigenomic differences.
Nature (2009)

96



[8] Meissner, A., Gnirke, A., Bell, G.W., Ramsahoye, B., Lander, E.S., Jaenisch,
R.: Reduced representation bisulfite sequencing for comparative high-
resolution dna methylation analysis. Nucleic acids research 33(18), 5868–
5877 (2005)

[9] Feinberg, A.P., Tycko, B.: The history of cancer epigenetics. Nature Reviews
Cancer 4(2), 143–53 (2004). doi:10.1038/nrc1279

[10] Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango,
P., Cui, H., Gabo, K., Rongione, M., Webster, M., Ji, H., Potash, J.B.,
Sabunciyan, S., Feinberg, A.P.: The human colon cancer methylome shows
similar hypo- and hypermethylation at conserved tissue-specific CpG island
shores. Nature Genetics 41(2), 178–186 (2009)

[11] Hansen, K.D., Timp, W., Bravo, H.C., Sabunciyan, S., Langmead, B., Mc-
Donald, O.G., Wen, B., Wu, H., Liu, Y., Diep, D., Briem, E., Zhang, K.,
Irizarry, R.A., Feinberg, A.P.: Increased methylation variation in epigenetic
domains across cancer types. Nature Genetics 43(8), 768–775 (2011)

[12] Jaffe, A.E., Murakami, P., Lee, H., Leek, J.T., Fallin, M.D., Feinberg, A.P.,
Irizarry, R.A.: Bump hunting to identify differentially methylated regions in
epigenetic epidemiology studies. International journal of epidemiology 41(1),
200–209 (2012)

[13] Hansen, K.D., Langmead, B., Irizarry, R.A.: BSmooth: from whole genome
bisulfite sequencing reads to differentially methylated regions. Genome Bi-
ology 13(10), 83 (2012)

[14] Aryee, M.J., Jaffee, A.E., Corrada Bravo, H.J., Ladd-Acosta, C., Feinberg,
A.P., Hansen, K.D., Irizarry, R.A.: Minfi: A Flexible and Comprehensive
Bioconductor Package for the Analysis of Infinium DNA Methylation Mi-
croarrays. (2014). doi:10.1093/bioinformatics/btu049

[15] Leek, J.T., Scharpf, R.B., Bravo, H.C., Simcha, D., Langmead, B., Johnson,
W.E., Geman, D., Baggerly, K., Irizarry, R.A.: Tackling the widespread
and critical impact of batch effects in high-throughput data. Nature reviews
Genetics 11(10), 733–739 (2010)

[16] Cleveland, W.S.: Robust locally weighted regression and smoothing scat-
terplots. Journal of the American statistical association 74(368), 829–836
(1979)

[17] Wahba, G.: Spline Models in Statistics. CBMS-NSF Regional Conference
Series. London England Chapman and Hall 1983. Philadelphia, PA (1990)

97



[18] McCullagh, P., Nelder, J.: Generalized Linear Models. Chapman and Hall
1983., London, England (1989)

[19] Bravo, H.C.: Graph-based Data Analysis: Tree-structured Covariance
Estimation, Prediction by Regularized Kernel Estimation and Aggregate
Database Query Processing for Probabilistic Inference. ProQuest, (2008)

[20] Harezlak, J., Naumova, E., Laird, N.M.: Longcrisp: A test for bumphunting
in longitudinal data. Statistics in Medicine, 1383–1397 (2007)

[21] Wahba, G., Wang, Y., Gu, C., Klein, R., Klein, B.: Smoothing spline anova
for exponential families, with application to the wisconsin epidemiological
study of diabetic retinopathy: the 1994 neyman memorial lecture. The An-
nals of Statistics 23(6), 1865–1895 (1995)

[22] Gu, C.: Smoothing Spline Anova Model. Springer Series in Statistics.
Springer, (2002)

[23] Cancer Genome Atlas Network: Comprehensive molecular characterization
of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)

[24] Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., Gordon,
J.I.: The effect of diet on the human gut microbiome: a metagenomic analy-
sis in humanized gnotobiotic mice. Science translational medicine 1(6), 6–14
(2009)

[25] Bravo, H.C., Lee, K., Klein, B., Klein, R., Iyengar, S., Wahba, G.: Exam-
ining the relative influence of familial, genetic, and environmental covariate
information in flexible risk models. PNAS, 8128–8133 (2009)

[26] Kimeldorf, G.S., Wahba, G.: A correspondence between bayesian estimation
on stochastic processes and smoothing by splines. The Annals of Mathemat-
ical Statistics 41(2), 495–502 (1970)

[27] Wang, Y.: Smoothing Splines: Method and Applications. CRC Press,
(2011)

[28] Paulson, J.N., Stine, O.C., Bravo, H.C., Pop, M.: Differential abundance
analysis for microbial marker-gene surveys. Nature methods (2013)

[29] R Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2013). R Foundation
for Statistical Computing. http://www.R-project.org/

98



[30] Irizarry, R.A., Aryee, M., Bravo, H.C., Hansen, K.D., Jaffee, H.A.: Bum-
phunter: Bump Hunter. (2013). R package version 0.99.34

[31] Hebestreit, K., Klein, H.-U.: BiSeq: Processing and Analyzing Bisulfite
Sequencing Data. (2013). R package version 1.0.3

[32] Frazee, A., Collado-Torres, L., Leek, J.: Derfinder: Differential Expression
Analysis of RNA-seq Data at Base-pair Resolution. (2013). R package version
1.0.2. https://github.com/alyssafrazee/derfinder

[33] Paulson, J.N., Talukder, H., Pop, M., Bravo, H.C.: metagenomeSeq: Sta-
tistical Analysis for Sparse High-throughput Sequncing. (2013). R package
version 1.7-18. http://cbcb.umd.edu/software/metagenomeSeq

[34] Gu, C.: Gss: General Smoothing Splines. (2013). R package version 2.1-0.
http://CRAN.R-project.org/package=gss

[35] Borchers, H.W.: Pracma: Practical Numerical Math Functions. (2014). R
package version 1.6.1. http://CRAN.R-project.org/package=pracma

[36] Hebestreit, K., Dugas, M., Klein, H.-U.: Detection of significantly differen-
tially methylated regions in targeted bisulfite sequencing data. Bioinformat-
ics 29(13), 1647–1653 (2013)

[37] Schoofs, T., Rohde, C., Hebestreit, K., Klein, H.-U., Göllner, S., Schulze,
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