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Loading of the intervertebral disc (IVD) alters biomechanical properties by modifying 

fluid distribution in the nucleus pulposus –changing hydrostatic pressure and tissue 

response– during force transmission along the spine. This study combines pressure, 

vertical displacement, and radial bulge measurements to assess biomechanical function 

during healthy and adverse loading of ovine lumbar motion segments. High compressive 

loads and simultaneous transient exertions, representative of obesity or other high-load 

lifestyles, are expected to limit fluid recovery and inhibit IVD biomechanical function 

compared to low compressive load controls with similar transient exertions. Specifically, 

the adverse group will (1) lose the ability to generate intradiscal pressures equivalent to 

control discs at equal loads and (2) exhibit a greater degree of deformation and bulge 

during comparable loading. This study contributes a greater understanding of the effects 

of load on IVD health. Findings may inform future efforts to preserve disc biomechanics 

and reverse IVD loss of function. 
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Chapter 1: Introduction 

1.1  Anatomy and Function of the Intervertebral Disc 

The intervertebral disc (IVD), a soft tissue which supports and transfers loads 

between the vertebrae of the spine, is comprised of an inner nucleus pulposus and an 

outer annulus fibrosis. The nucleus pulposus (NP) is the gelatinous core with a high 

concentration of hydrophilic, poly-anionic proteoglycans to attract and retain water for 

uniform force dispersion. The annulus fibrosus (AF) is a layering of approximately 15-20 

lamellar sheets which form a lattice of concentric layers enclosing the NP (Whatley et al., 

2012). Intervertebral discs interface with each vertebra at a water-permeable cartilaginous 

structure called the vertebral endplate (Figure 1). 

The NP region is predominately designed to withstand compressive loading and 

preserve the structural integrity of the disc. The extracellular matrix, produced by an 

estimated 4 x106 to 6x106 cells/ml within the NP (Cassinelli et al., 2000; Maroudas et al., 

1975), is responsible for bearing a high percentage of the total NP load. Proteoglycans 

like aggrecan, which contain many glycosaminoglycan (GAG) attachments for enhanced 

water attraction, account for ~50% of the NP dry weight. They are comprised of 

negatively charged brush-like structures which function to attract positively charged 

cations (Cassinelli et al., 2000). Attracted cations and their respective counterions, 

increase local ionic concentrations within the aggrecan rich NP. High ion concentrations 

induce an influx of water molecules to equilibrate osmotic pressures (Figure 1C). This 

aggrecan-induced osmotic pressure plays a critical role in resisting compressive loads, 

until age, injury, degradative enzymes, or load history alter the aggrecan structure or  
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Figure 1: Structure of the IVD. Anatomical location of the IVD with respect to vertebrae (A), histology 
and brightfield images of annulus fibrosus and nucleus pulposus (B), and molecular level schematic of 
osmotic pressure generation within the IVD (C). Negatively charged aggrecan molecules attract cations 
associated with anion counterions. High local ion concentration generates influx of water to preserve 
osmotic pressure. Image adapted from Whatley et al. 2012; OpenStax, 2014.   
 
 
fluidic environment within the NP. Unlike the water-attracting proteoglycans which 

function to resist compressive loads, the NP also contains type II collagen (~25% NP dry 

weight) which is thought to provide tensile strength to the NP (Cassinelli et al., 2000). 

Other collagen types and proteins within the NP further organize the structure of the 

IVD’s gelatinous core and account for the remaining percentage of NP dry weight 

(Whatley et al., 2012). 
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The AF is a complex of two concentric regions of collagenous lamellae designed to 

resist tension caused during NP deformation under compressive loading (Figure 1A, B). 

The outer annulus is comprised of densely packed, highly organized type I collagen 

fibrils (75-90% dry weight) which act to retain all tissues internal to the IVD. At a 

position closer to the center of the disc, the inner annulus is comprised of type I collagen 

(40-60% dry weight), and an increasing percentage of proteoglycans (20-30% dry 

weight) relative to the outer annulus (Whatley et al., 2012). The inner annulus loses the 

highly structured lamellar layers and becomes less dense closer to the NP. The inner AF 

is separated from the NP region by a transition zone where high concentrations of 

collagen in the AF give way to elevated proteoglycan concentrations characteristic of the 

NP. The transition zone is less organized, and the lamellae even less structured, than the 

inner AF and acts as an intermediary region between the NP and the AF.  

 
Region Outer Annulus Fibrosus Inner Annulus Fibrosus Nucleus Pulposus 

Proteoglycan 
 

< 20% dry weight 
 

20-30% dry weight 50% dry weight 

Collagen 
 

Type I; densely packed 
and highly organized 
75-90% dry weight 

Type I; less dense and 
less organized  

40-60% dry weight 

Type II;  
25% dry weight  

Table 1: IVD composition by region. Dry weight proteoglycan and collage percentages from the major 
regions of the disc. Note that proteoglycan percentages increase in regions central to the disc, while 
collagen is more prevalent in outer regions. Dry weights for proteins and less prevalent collagen types 
involved in maintenance of structure and organization are not included in this table.  
 
  

The vertebral endplates serve as the attachment point between the lamellae of the AF 

and the cortical bone of the vertebral body. The endplate is predominantly hyaline 

cartilage, reportedly 600-800 microns thick across all lumbar vertebrae, and functions to 

contain the NP region during loading and enable fluid exchange for nutrient transport 
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(Moon et al., 2013). Since the IVD is largely avascular, nutrient transfer via fluid 

exchange is the predominant delivery mechanism. However, during aging, degeneration, 

or injury, endplates may calcify or otherwise exhibit reduced porosity leading to low 

permeability and reduced nutrient exchange (Wu et al., 2013). The distinct components 

of the IVD work together to maintain the fluidic NP environment which enables the spine 

to support compressive loads while also providing a mechanism for nutrient exchange.   

IVDs function as ligaments to hold adjacent vertebrae together and act as joints to 

enable bending and rotation of the torso. They also play an integral role in load 

transmission along the spine (Whatley et al., 2012). When compressive force is applied, 

the hydrated NP is compressed and pressurizes. During this compression, water is 

expelled from the NP when aggrecan-induced osmotic pressure is overcome by 

hydrostatic pressure generated by NP deformation. This expelled water enters the AF’s 

inter-lamellar space and passes across the vertebral endplates. Upon removal of load, NP 

hydration levels return with load and rate dependencies (Johannessen et al., 2004; 

O’Connell et al., 2011).  

IVD biomechanics have been shown to change with age, genetics, and load history, 

but these factors can ultimately be related back to disc hydration. The concentration of 

aggrecan is known to decline beginning in the early twenties, reducing the maximum 

osmotic pressure and limiting IVD resistance to load (Sivan et al., 2014). Genetic factors 

controlling extracellular matrix production, GAG structure, and proteoglycan-degrading 

enzymes are also shown to contribute to large variations in disc health (Kepler et al., 

2013). Loading experiments, characterized by high load magnitudes or excessive range of 

motion, demonstrate tissue dehydration and loss of aggrecan structures (McMillan et al., 
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1996; Walter et al, 2011). The enclosed work describes the effect of load history on IVD 

hydration by observing tissue response to compressive loads in a sheep model.  

1.2 Competing Factors in Disc Health 

1.2.1 Effect of Age on Disc Health 

A number of definitions explain lower back pain in relation to age effects and disc 

degeneration. De Schepper (2010) proposed age-dependent disc space narrowing was a 

causal factor for lower back pain, according to human lumbar radiographs. The study 

reported increased disc space narrowing was associated with increased age, and 

narrowing at two or more levels was associated with lower back pain more often than 

narrowing at a single level (De Schepper et al., 2010). Twomey et al. (1985) showed that 

increase in age alone does not cause decrease in disc height. Instead, reduced patient 

height and spine length in the elderly is often due to loss of transverse trabeculae of 

lumbar vertebrae (end plate collapse) as discs “sink” into the vertebrae (Twomey et al., 

1985).  

Disc thinning contributes to patient height loss only when disc degeneration 

occurs; however, disc degeneration does not always translate to disc thinning 

(Nachemson et al., 1979). Twomey et al. (1985) acknowledged two causes of disc 

thinning: loss of disc material due to herniation and volume loss from dehydration. 

Herniation events are often sudden and severe, and unlikely to trigger only slight 

reduction in volume during aging. This suggests fluid loss as a mechanism of disc 

thinning. Adams et al. (1996) observed fluid loss in aged discs by monitoring disc 

hydrostatic pressure. The study noted hydrostatic pressure loss of up to 30% between 

young and aged discs, and also documented up to 50% reduced NP size in aged tissues. 
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As the NP changed, so too did the force distribution within the disc (Adams et al., 1996). 

Stress profiling of age-degenerate discs demonstrated non-uniform pressure distributions 

and elevated peak pressures within the AF.  

A closer look into the aging process of IVDs shows reduced functionality of the 

NP to attract and hold water. Aging has been related to the shifting of the NP from a gel-

like tissue to a fibrous, less fluid region (Buckwalter, 1995; Livshits et al., 2011). 

Antoniou et al. (1996) reported significantly lower water content in the nucleus of 

mature, aged donors versus donors <25 years of age. In populations aged >30 years, NP 

water content was further reduced in samples with greater degrees of disk degeneration. 

For increasing degeneration, water content increased in the surrounding AF respective to 

the NP. The study also reported reduced GAG concentrations in populations >25 years of 

age (Antoniou et al., 1996). GAGs, long negatively-charged polysaccharide chains 

stemming from proteoglycans, are known to recruit water for tissue hydration and have 

been shown to decrease in concentration along the radial direction of healthy IVDs (Saar 

et al., 2012). Loss of GAGs in the nucleus in aged populations suggests a lower capacity 

to recruit and hold water within the NP. In the oldest age group (60-80 years), Antoniou 

et al. showed that uniform GAG distribution profiles across the NP and AF regions of the 

discs were present. Additionally, this study showed that increased GAG loss from the NP 

was associated with higher levels of disc degeneration, independent of age (Antoniou et 

al, 1996). GAG distribution is critical to maintaining high water content in the NP: 

reduced GAG concentrations and loss of associated water compromise the spine’s natural 

load-bearing mechanism.   



 

 
 

7 
 

Adams et al. (2006) suggests disc degeneration is caused by uncontrollable 

genetic factors, in addition to nutritional imbalances, load history, and aging. Age is not 

the sole causal factor of disc degeneration, but the aging process does play an established 

role in the changing composition of the IVD. Osteoporotic vertebrae cause endplate 

collapse and subsequent disc space narrowing. Forces transmitted down the spine 

pressurize the NP and expel water from the tissue. Age-related loss of GAGs, and the gel-

like to fibrous transition within the NP, limit the hydration and viscoelasticity of the NP 

region. Aging is a naturally unstoppable process, but understanding and reversing the 

effect aging has on NP water retention and fluid recovery is necessary to preserve IVD 

health.      

1.2.2 Effect of Load History on Disc Health 

 Loading events condition the cells of the IVD and thus influence the tissue level; 

however, sustained compressive loads and repeated innocuous cycling can shift internal 

mechanics of IVDs such that subsequent loading events are detrimental to both cell and 

tissue function.  

The diurnal cycle of spine loading ranges from pressures between 0.2MPa (at rest, 

supine) to 0.6MPa (upright posture, load bearing activity) with a frequency from 0.2-1 Hz 

(Chan et al., 2011). Loading within these physiological norms maintains cell and overall 

tissue health while exchanging as much as twenty-five percent of the disc’s water content 

within a single 24 hour period (Sivan et al., 2006).  Both adverse and neutral loading as 

well as complex asymmetric loading have been linked to IVD swelling, cell death, and 

disc degeneration (Stokes et al., 2004; Walsh et al., 2004; Wuertz et al., 2009; Walter et 

al., 2011). Individuals’ daily activity, posture, and exercise also create a broad range of 
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unique spinal loading histories which must be considered when assessing the effect of 

load history on IVD health.   

The cellular response (matrix synthesis and phenotypic shifts) reflects cells’ 

interaction and feedback with their extracellular environment. Pairing RT-PCR with 

novel mechanisms for applying compressive forces to motion segments in vivo, up 

regulation of mRNA coding for anabolic and catabolic proteins can be correlated to 

loading profile (MacLean et al., 2005). Osmolarity has also been linked to altered gene 

and protein expression in IVD cells. Through different osmotic and mechanical loading 

conditions, extracellular environments affect expression of aggrecan and collagen, and 

thus subsequent IVD response to hydrostatic pressures and cyclic strains (Wuertz et al., 

2007).  

 At the tissue level, osmotic pressures within IVDs play a key role in supporting 

applied loads. During loading, fluid displacement from the NP, endplate, and AF 

modifies disc biomechanics. Axial ramp and creep loading data from human lumbar 

spines match with rheological modeling suggesting fast fluid flow through the NP and 

endplate, and a slow response in the AF (O’Connell et al., 2011). MRI imaging shows 

similar water loss after axial fatigue testing (Yu et al., 2003). The expulsion of fluid 

reduces the gel-like character of the disc, and dehydration leads to a stiffer IVD. Ovine 

models demonstrate cyclic axial compression results in increased elastic stiffness as well 

as reduced total relaxation when compared to unloaded motion segments (Johannessen et 

al., 2004). Numerous studies have reported IVD biomechanical property changes with 

varied load histories, and just as many have investigated the restorative rehydration of 

preloaded tissues and the recovery of initial biomechanical properties after loading.  

http://www.ncbi.nlm.nih.gov/pubmed/16140193
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 Recovery is a time, load, and fluid flow dependent process. Ovine disc 

experiments observed full return of disc stiffness and stress-relaxation properties after 

removal of all loads and submersion in PBS for 18 hours (Johannessen et al., 2004). 

Others have paired ex vivo testing with rheological spring-and-dashpot models to 

quantify recovery rates. Eight hours after a 2000N compressive ramping load, human 

discs returned to within 5% of the initial linear-region stiffness and disc height. The same 

study also investigated recovery following a 4 hour, 1000N creep load, reporting the 

recovery response (over 24 hours at 20N applied load) between 44 and 98 percent, 

though these numbers were for healthy and degenerate discs, combined. The reported 

recovery in displacement from initial at equilibrium (after 15 and 24 hours) was modeled 

at about 0.3mm, or 86% recovery from a max displacement of 2.09mm at the conclusion 

of creep tests (O’Connell et al., 2011).  

1.3  Role of Pressure Sensing in IVD Biomechanical Assessment 

Fluid distribution within the disc has been shown to indicate disc health. A highly 

fluidic NP enables maximum pressurization for elevated resistance to compressive loads. 

Similarly, fluid expelled during loading, and recovered after, enables nutrient transfer to 

sustain the cells of the IVD. Until recently, fluid presence was measured by freezing 

tissues immediately after exposure to a load or other experimental treatment. After 

slicing, tissues were weighed before and after freeze drying (McMillan et al., 1996). 

Recently, miniaturized pressure sensors have enabled real-time observation of intradiscal 

pressures correlating to intradiscal fluid presence (Wilke et al., 1999; Claus et al., 2008; 

Adams et al., 1996; Vergroesen et al., 2014). Wilke et al. (1999) tracked in vivo pressure 

measurements from a human lumbar IVD during daily activities for a 24 hour period. Just 
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as fluid was expected to return during diurnal resting cycles, pressure also increased 

(Wilke et al., 1999). Similarly, the percentage of water was shown to be highest within 

the NP and dissipate with radial position in the AF (Whatley et al., 2012); pressure 

measurements in human lumbar spines confirm fluid pressures were highest in the NP 

and tapered off in the AF (Adams et al., 1996). Pressure measurements allow the fluid 

distribution within the disc to be monitored, and require only proper sensor placement to 

elucidate pressures within site specific locations throughout the disc.   

 Often, pressure sensors are inserted into tissue using a needle, yet needle puncture 

is also commonly used to induce degeneration within in vivo models (Michalek et al., 

2010). Innovative microfabrication and designs enable smaller sensors for minimally 

invasive measurements and smaller delivery needles. Studies investigating the impact of 

needle size on disc biomechanics suggest that needles with a diameter less than one-

quarter the disc height induce minimal difference in the disc’s typical response to load 

(Elliot et al., 2008; Hwang et al., 2012). Careful consideration of specimen disc height 

relative to the geometry of pressure measurement devices is required to reliably measure 

tissue response and avoid confounding results from needle damaged tissue.  

 Our lab has previously demonstrated in vitro  NP pressure measurements in rat 

caudal discs using miniaturized fiber optic pressure sensors (Nesson et al., 2008; Hwang 

et al., 2012). Motion segments were subjected to an 1800sec prestress load (either 0.05 or 

0.3MPa) before a 900sec exertion load (0.5MPa) was applied. NP pressures recorded 

during the exertion phase were different between the two prestress groups. The 0.05MPa 

prestress group developed 0.5MPa of pressure during the exertion phase, while the 

0.3MPa prestress group exhibited significantly reduced pressure during the same 
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equivalent exertion load. This reduced pressure generation, paired with conclusions 

describing the load-bearing role of the AF and implications of an elevated shear 

environment, suggest certain load histories may accelerate age-related changes to IVDs 

(Hwang et al., 2012). Hwang et al. provided a platform from which additional pressure 

measurement studies could develop. Changes to the pressure sensing system, the switch 

to larger, more relevant tissues, and a novel loading regimen were made such that this 

thesis research builds upon the fundamental understanding of the effects of load history 

on IVD biomechanics.        

1.4  Objectives 

Loading IVDs alters pressure, hydration, and inherent tissue response during, and 

after, force application. We aim to further demonstrate the loss of function and shift in 

biomechanics for different compressive loading regimens. We hypothesize high 

compressive loading with simultaneous transient exertion loads will alter fluid 

distribution, and thus biomechanical function, in sheep lumbar motion segments as 

compared to low compressive loading controls exposed to similar transient exertion 

loads.  

To assess biomechanical function, pressure measurements as well as vertical and 

radial displacements were collected using a variety of instruments. A micro Fabry-Perot 

pressure sensor was designed to observe NP pressure. Axial displacement measurements 

were used in conjunction with disc heights to quantify disc strains. When the NP region is 

compressed under axial load, its volume expands in the radial direction to preserve initial 

NP volume. NP radial expansion is contained by the AF, which in turn also bulges 

radially. This phenomenon, described as disc bulge, has been studied as an indirect 
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measurement of NP pressure (Heuer et al., 2007; Pei et al., 2014). A number of disc 

bulge measurements were attempted in the preparation of this thesis.  

In vitro mechanical tests of sheep lumbar motion segments were used for all data 

collection. Sheep lumbar motion segments –comprised of an intact IVD between 

respective superior and inferior vertebrae– have been validated and used commonly as 

biomechanical models of the human lumbar spine (Wilke et al., 1997; Smit et al., 2002). 

The enclosed findings provide additional understanding of the dynamics of short-term 

loading and recovery of intervertebral discs.  

Further interpretation may provide physiological insight into load-induced 

biomechanical changes to guide clinical prevention and treatment of IVD degeneration 

and loss of function. Applied loads used in this study were representative physiological 

values: both high and low compressive resting loads represent physically relevant 

conditions. High resting loads can be compared to effects of obesity, heavy manual labor 

occupations, or other lifestyle choices which introduce prolonged, elevated compressive 

stresses to the spine. Increased loading magnitudes limit fluid recovery, but prolonged 

loads further restrict recovery such that elevated yet innocuous loads result in 

accumulated, damaging effects on disc biomechanics.             
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Chapter 2: Sensor Construction 
 

2.1 Introduction 

Fabry-Perot sensors are an established tool for reliable pressure measurement 

(Dakin et al., 1987; Wolthuis et al., 1991). Miniaturized versions have been used to 

measure intravenous and other low pressure biological environments, but until recently 

custom Fabry-Perot sensors capable of reading the relatively high physiologic pressures 

associated with intervertebral discs had not been developed (Poeggel et al., 2014; Nesson 

et al., 2008). Fiber optic sensors from commercial manufacturers like Opsens (Quebec, 

Canada) and Fiso (Quebec, Canada) measure relatively small pressures (up to 1MPa, 

though often 0.04MPa) and fell short of physiologic IVD pressure ranges. Signal artifact 

from fiber motion during pressure measurement has also been noted in commercial 

sensors. The companies’ small-diameter sensors rated to measure high physiological 

pressures were larger in diameter (250-800μm) than the custom sensor design. Fiso’s 

FOP-M series sensor exceeded physiological pressures (rated to 6+MPa) and despite an 

800μm outer diameter, was also cost prohibitive: commercial signal conditioners and 

other components have considerable start-up costs associated with acquiring the full 

measurement system. Commercial sensors’ inadequate specifications and high cost 

prompted continued development of custom sensors until the design suited IVD pressure 

measurement, exhibited less sensitivity to fiber motion, and were cost effective.     

With assistance from Dr. Miao Yu and Dr. Hyungdae Bae (Sensors and Actuators 

Lab, University of Maryland) a low profile sensor suitable for high pressure ranges was 

established. Prior collaboration with the Sensors and Actuators Lab yielded a fragile 
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sensor prone to damage by the effects of hydration upon exposure to the aqueous 

environment inherent to IVDs. The methods by which the design was improved, and the 

current sensors were fabricated, are described below.  

2.2 Splicing Fiber Optic Cable to Capillary Tube 

 A length of SMF-28E+ fiber (Fiber Instrument Sales, Oriskany, NY) was cleaved 

at one end and placed opposite of a cleaved, hollow capillary tube 30μm ID/150 μm OD 

(TSP030150; BGB Analytik, Alexandria, VA) in a Type-36 Sumitomo Electric fusion 

splicer (Sumitomo Electric, Research Triangle Park, NC). Low-power spattering arc was 

applied to clean the square ends of the fiber and capillary before alignment along the axis 

of the fiber core. After ensuring slight contact between the aligned fiber and capillary, the 

interface was fused using a splicing arc at the conditions listed in the table below. The arc 

power and arc duration values were manipulated so that the inner diameter of the 

capillary tube did not taper or otherwise deform while splicing arc was applied. Ideally, 

the capillary’s 30μm inner diameter dimension was preserved to ensure maximal passage 

of light across the fiber-capillary interface. Excessively large arc power or arc duration 

values distorted the capillary geometry, while low arc power and arc duration resulted in 

insufficient splice strength.  

 

 

 

   

Table 2: Settings used to fuse capillary tube to the terminus of the optical fiber. Arc Duration and Arc 
Power inputs were manipulated to ensure proper fusion strength. 
 

Arc Property Value 
Arc Duration 00.70 

Pre-fusion 00.00 
Arc Gap 03.50 
Overlap 12.00 

Arc Power 0025 



 

 
 

15 
 

 

 

 

 

 

 

 

 
Figure 2: Side view of capillary/fiber after alignment (A) and fusion splicing (B) of capillary to 
optical fiber. 

2.3 Cleaving the Capillary Tube and Enclosing the Cavity 

Fabry-Perot cavity-based sensors measure the length of the sensor cavity to 

compute local pressure changes. Because of this, the inherent geometry of the cavity is 

important. After visually confirming the spliced capillary tube was cylindrical, the 

capillary tube was cut to proper length. Using a FC-6S fiber cleaver (Sumitomo Electric, 

Research Triangle Park, NC) beneath a 10x microscope, EO-3112C camera, and an MI-

150 High Intensity Illuminator (Edmund Optics, Barrington, NJ) the spliced capillary 

tube was positioned with a 460A Series stage (Newport, Irvine, CA) and cleaved 

approximately 15μm from the spliced interface. The cleaved fiber-capillary was mounted 

on a glass slide until all units in the batch were cleaved.  

To complete the cavity –and enclose the hollow space within the length of 

remaining capillary– a thin layer of UV curable polymer adhesive (OP-4-20641; Dymax, 

Torrington, CT) was applied to the capillary end opposite the spliced interface. A drop of 

polymer was allowed to spread on a surface of water to a thickness of 0.5μm. The 

polymer thin film was then half cured with a Model 22-UV light source (Optical 

A              B 
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Engineering Inc., Santa Rosa, CA) before the capillary tubes were punched through the 

polymer film floating on the water’s surface. The polymer affixed to the capillary was 

full-cured using additional UV light (BlueWave 50AS, Dymax UV Light Curing 

Systems, Torrington, CT). Presence of the polymer diaphragm was confirmed using a 

TMS-1200 microscope (Polytec, Irvine, CA).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3: Sensor tip before (A) and after (B) addition of polymer layer. Striped patterning maps 
topography of sensor face. Note the cavity was enclosed after addition of the polymer.  
 
 

2.4 Sputtering for Sensitivity 

Fabry-Perot sensors measure cavity length, the length from the spliced fiber-

capillary interface to the diaphragm enclosing the distal end of the capillary. The 

diaphragm deflects due to the environment surrounding the sensor tip, and deflection 

results in a changed cavity length. Thus, fluctuations of Fabry-Perot cavity lengths 

correspond entirely to diaphragm mechanical properties. Up to this step in the process of 

A        B 
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sensor assembly, only a 0.5μm polymer diaphragm was present. To create a sensor rated 

for pressures associated with intervertebral disc loading (on the order of MPa) the design 

required an additional diaphragm layer to stiffen the sensor diaphragm. A bilayer 

diaphragm design was achieved by sputtering a layer of Titanium (Ti) onto the 

preexisting polymer layer. Ti was the metal of choice due to its corrosion resistance, 

biocompatibility, and overall common use as a biomaterial (Long et al., 1998). 

An iterative process was used to establish the proper thickness of the diaphragm’s 

metal layer. A balance between sensitivity and durability was required: thinner metal 

layers provided greater deflections at lower pressures for improved sensitivity and 

resolution, yet failed under physiologic pressures due to excessive deflection. Thicker 

metal layers provided a robust diaphragm design, but exhibited reduced sensitivity and 

limited resolution within the intended pressure range. Mathematical formulations were 

used to predict diaphragm behavior under anticipated pressure conditions and inform 

diaphragm geometries. Deflection (y) at the center of the diaphragm (r=0) was computed 

as the relationship between Poisson’s ratio (μ) and Young’s modulus (E) of the 

diaphragm materials as well as the applied pressure (P), and the radius (a) and thickness 

(h) of the diaphragm (MacPherson et al., 1999; Said et al., 2009). 

 

 𝑦(𝑟 = 0) = 3�1−𝜇2�𝑃𝑎4

16𝐸ℎ3
    Equation 2.1  

 

 A standard practice in Fabry-Perot sensor construction is to limit the maximum 

diaphragm deflection to less than one fourth the value of the center wavelength (λo) of the 

illuminating light source (Chin et al., 2007). 
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        𝑦(𝑟 = 0)  ≤   λo
4  Equation 2.2  

 

Chin et al.  (2007) provided additional guidance and outlined construction 

methods to further develop and characterize Fabry-Perot designs. The theory behind 

Equation 2.1 and Equation 2.2 was incorporated into ANSYS code developed by the 

Sensors and Actuators Lab (University of Maryland) and used to model bilayer 

diaphragm deflections to establish dimensions for the diaphragm.  

Using outputs from ANSYS v14.5 (Cannonsburg, PA), a diaphragm with a radius 

of 15μm and thickness of 0.5μm Ti atop 0.5μm of polymer was attempted. Trial 

experiments in pressure chambers and disc tissues demonstrated that sensors with 0.5μm 

Ti were highly sensitive to pressure changes, but burst at physiological loads. Sensors 

with 0.6 μm Ti were fabricated and diaphragm bursting was eliminated. However, tissue 

testing and submersion tests in pressure chambers resulted in drifting pressure outputs, 

most likely due to water absorption. When 0.7μm Ti was sputtered atop a 0.5μm polymer 

layer, water absorption –and sensor drift– abated. The current sensor design uses a 

700nm titanium metal layer atop the polymer diaphragm to provide a hydration resistant, 

sensitive, and reliable sensor. All titanium layers were sputtered in accordance with 

procedures listed in the Sensor and Actuators Lab (University of Maryland) at a 

deposition rate of 0.5 nm/sec. 

 

 



 

 
 

19 
 

 

Figure 4: ANSYS deflection outputs for a bilayer diaphragm (15 micron radius, 0.5 micron thick 
polymer bottom layer) at physiologic loading pressures. Also included as a reference is the maximum 
deflection limit as defined by Chin et al. (2007) based on a center wavelength of 830nm from the light 
source. 
 

2.5 Final Screening and Calibration  

Sensors with a complete bilayer diaphragm were spliced to patch cords in order to 

connect the sensor to the spectrometer interrogation system. Using a LabView program 

adapted from the version currently used in the Sensor and Actuators Lab (University of 

Maryland) the fiber optic wavelength intensity signals was observed. Sensors with signals 

exhibiting distinct peaks of uniform width and height were selected and qualified for 

calibration testing.  

Qualified sensors were calibrated in order to relate ambient pressure change to 

cavity length changes. A pre-existing calibration chamber in the Sensor and Actuators 

Lab (University of Maryland) was initially used to calibrate the sensors. The chamber 

provided consistent air pressure to 20psi (0.138MPa) but was well below the maximum 

design pressure of the sensors. It was expected that as long as the maximum diaphragm 
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deflection was 20-30% of the total diaphragm thickness, the deflection should be linear 

with increasing pressure. This enabled extrapolation of the 0-20psi calibration curve to 

the full rated pressure range of the sensor, but with such large scaling, there were 

concerns about the accuracy of the calibration data and the ability to extrapolate pressures 

to one order of magnitude larger than the experimental calibration pressures.  

A custom calibration chamber was therefore developed, rated to over 400psi 

(3MPa), which was used to calibrate sensors over the entire designed-for pressure range. 

Pressure steps of 0.1MPa were used to characterize cavity length changes for pressures 

between 0.2MPa to 3.0MPa. All high pressure calibrations were conducted using 

compressed Nitrogen gas. A digital reference sensor (Model MG-500-A-9V-R, SSI 

Technologies, Janesville, WI) was used to confirm pressures within the chamber.  

Sensors demonstrating low noise (±6nm cavity length), linear calibration curves, 

and return to initial cavity length upon return to zero pressure, were selected for use in 

the measurement of intradiscal pressures.  

 

 

Figure 5: Custom calibration chamber. Compressed Nitrogen gas was used to calibrate sensors to 3MPa 
in both dry and wet (1X PBS in petri dish) conditions.   
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Figure 6: Calibration Curves.  (A) Calibration curves for a single sensor in both calibration chambers 
(20psi, 3 MPa). It was common for the same sensor to report different initial cavity lengths during different 
experiments. However, to correlate the change in cavity length to a change in pressure, only the slope of the 
line was of interest. Only the slope of the 3 MPa calibration curve was used during all tissue testing. Note 
the total diaphragm displacement (change in Cavity Length) is approximately 0.4 microns after 3MPa 
applied pressure (A). The sensor used for (A) came from a batch using less than 0.7 micron titanium layer. 
Because of the thinner, more flexible diaphragm, slight inflection in the 3 MPa calibration curve is evident. 
Less inflection was observed in 3MPa calibration curves for sensors with 0.7 microns titanium (B). 

A. 

B. 



 

 
 

22 
 

Chapter 3: Influence of Load History on IVD 
Biomechanics 
 

3.1  Introduction 
 

The nucleus pulposus (NP) region of the intervertebral disc (IVD) contains 

approximately 70 to 90% water which functions to support compressive loading 

(Buckwalter, 1995; Iatridis, 1996, Whatley et al., 2012). Load history alters IVD 

biomechanical properties by modifying water distribution in the NP region, changing 

hydrostatic pressure and tissue response, when force is transmitted along the spine. 

The effects that different loading profiles have on ovine IVDs were measured to 

elucidate the effects of load history on NP hydrostatic pressure and tissue response. Discs 

subjected to high recovery loads were expected to, as a result of limited fluid recovery, 

(1) lose the ability to generate equivalent intradiscal pressures and (2) exhibit a greater 

degree of deformation during comparable loading. This study contributes to a greater 

understanding of load effects on IVD pressure and health. Findings may also inform 

efforts to preserve disc biomechanics and reverse loss of disc function. 

3.2 Methods 

3.2.1 Specimen Preparation 

  Ovine lumbar motion segments (L2L3, L4L5) were harvested, surrounding tissues 

removed, wrapped in saline soaked gauze, and frozen (-20°C) until testing. Prior to 

testing, specimens were allowed to thaw overnight. Once thawed, cross-sectional areas of 

the disc were estimated by measuring disc long and short axis dimensions, and used to 

define an applied force required to generate target loading pressures. Preload disc height 
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was approximated using ImageJ (National Institutes of Health, Bethesda, MD) to 

interpret radiograph images from a FlouroScan III imaging system (FluoroScan Imaging 

Systems Inc, Northbrook, IL). Inferior vertebrae were potted into a custom fixture using 

Boswell Fastray Dental Cement (Bosworth Company, Skokie, IL) and a hole was drilled 

parallel to the frontal plane (approximately 3-5mm anterior to the vertebrae’s center of 

mass) in the superior vertebrae so that forces applied to a rod slotted into the hole 

introduced a follower load in the motion segment. A rod was slotted through the superior 

vertebrae and the entire fixture was positioned in an 858 Mini Bionix II material testing 

system (MTS Systems Corporation, Eden Prairie, MN).   

Altogether, ten sheep spines were acquired and twenty specimens were loaded, 

ten adverse and ten healthy, yet neither group had a 100% success rate as specimens 

slipped from the potting cement and pressure sensors broke or otherwise failed. From 

each sheep, L2-L3 and L4-L5 motion segments were harvested. Experimental design 

required each motion segment undergo just one loading regimen, and that segments from 

each sheep combine to receive one adverse and one healthy loading. The levels exposed 

to adverse and healthy loads were also intermixed so that differences between adverse 

and healthy loading groups were independent of level.  

3.2.2 Mechanical Testing 

Previous experimentation demonstrated that rat caudal discs pre-stressed at 

0.05MPa for 1800sec generated greater intradiscal pressures than discs pre-stressed at 

0.30MPa for 1800sec during equivalent exertion phases (Hwang et al., 2012). To better 

understand the effect of load history on intradiscal pressure generation, the current 

experiment divided motion segments into two groups to receive either a relatively high or  
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Figure 7: Specimen potted and ready for mechanical testing. Rollers on the lower fixture enable 
translational freedom. The load cell and actuator (above, out of view) were attached to the U-bracket (top) 
which engaged the motion segment when rod was slotted through pre-drilled holes in the superior 
vertebrae. Also pictured is the sensor (in place for testing) and needle used for sensor delivery.  

 

neutral physiologic loading regimen and multiple short-term, high-load exertion 

challenges.  Herein, the neutral loading profile is referred to as the “healthy loading 

group” with loads meant to simulate appropriate recovery between challenge loads. The 

high loading profile is referred to as the “adverse loading group” since the compressive 

loads applied between challenge loading were elevated from physiological resting levels.  
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The healthy group was subjected to a constant load of 0.05MPa (between 10N and 

25N applied force) axial compression with seven transient 2MPa (between 600N and 

1000N applied force) between challenge loads every 900sec. The adverse group received 

a constant axial compression load of 0.75MPa (between 200N and 400N applied force) 

with similar transient 2MPa challenge loads every 900sec. The 0.05MPa and 0.75MPa 

creep loads, referred to as recovery loads, were intended to replicate in vivo IDPs 

recorded during prone resting (0.05MPa) and standard loading (0.75MPa) activities (Sato 

et al., 1999; Wilke et al., 1999; Claus et al., 2008). Transient 2MPa challenge load 

exertions were meant to replicate high force challenges such as heavy lifting or other 

strenuous activity. Prior to testing, each motion segment was loaded in cyclic 

compression (0.05-0.25 MPa, 1Hz) to resolve any postmortem super-hydration effects 

(McMillan et al., 1996).  

A miniature Fabry-Perot type pressure sensor was inserted into the anterior face 

of the disc to measure hydrostatic pressure in the NP. Sensors were guided by a 22 gauge  

 

 

 

Figure 8: Verification of needle position. Lateral x-ray images were acquired to determine (A) initial 
placement and (B) penetration depth to precisely deliver the pressure sensor to the NP region.  
 
 

B. A. 
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needle into the center of the disc and positioning confirmed by radiograph. Needles were 

rescinded from the disc without disturbing the position of the sensor within the NP.  

Disc bulge measurements were acquired using a Microtrak II laser triangulation 

device (MTI Instruments Inc, Albany, NY). Vertical scans of the disc at a lateral position 

30° offset from the mid-sagittal plane were used to visualize the outer profile of the disc 

and superior and inferior vertebrae. Scans were conducted immediately before and after 

challenge loading events as well as 8 minutes after the conclusion of each challenge. 

  Axial displacement and force values were recorded by the MTS system at a 

frequency of 10Hz. Displacements were recorded as vertical position of the superior test 

fixture during testing.  

At the conclusion of testing, disc radiographs were recorded and Image J was 

used to measure postload disc height.  

 

3.2.3 Pressure Measurement 

Custom Fabry-Perot pressure sensors were constructed by adapting fabrication 

methods presented by Bae (2012). A length of fiber optic cable (OD=150um) was spliced 

at one end to a capillary tube (ID=30um, OD=150um) ensuring the fiber core was aligned 

with the hollow center of the capillary. The spliced capillary was cleaved approximately 

15um from the fiber interface and a 500nm thick UV curable polymer layer was added to 

the freshly cleaved capillary, enclosing the capillary cavity. A 700nm Titanium metal 

layer was sputtered onto the surface of the cured polymer to complete a flexible 

diaphragm atop the capillary cavity. Pressure changes at the capillary terminus cause the 

diaphragm to mechanically deflect so that changes in cavity length could be recorded and 

calibrated to quantify pressure at the sensor tip. All sensors were calibrated to 3MPa with 
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a reference pressure gauge (SSI Technologies Inc, Janesville, WI) in a custom calibration 

chamber. A fiber optic system (USB-4000 Spectrometer and HL-2000 Light Source, 

Ocean Optics, Dunedin, FL; Beam Splitter, Gould Fiber Optics) was used to record 

cavity length data at a frequency of 14.3Hz in LabView 2012 (National Instruments, 

Austin, TX). Signal optimization and processing were completed using MATLAB 

R2012b (MathWorks, Inc., Natick, MA). 

3.2.4 Intradiscal Shear and Intradiscal Pressure Relation  
 
 Intradiscal shear (IDS) has been shown to influence NP cell phenotype and 

morphology (Wang et al., 2011). Previously, to better understand the existence and 

physiological ranges of IDS, a relationship was developed between observed NP pressure 

and IDS, using octahedral shear stress formulations and geometric assumptions for 

axisymmetric discs (Hwang et al., 2012). In the case of ovine lumbar IVDs, axisymmetric 

assumptions are not valid and further experimentation was required to validate key model 

assumptions. The following relation is developed from the definition of octahedral shear 

stress, where σ1, σ2, and σ3 are the three principle stresses. 

 
 𝜏𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒 = 1

3
�(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 +  (𝜎3 − 𝜎1)2  Equation 3.1  

 
 
If σ1 is defined as the stress acting in the vertical direction, its value can be resolved as 

the stress applied to the NP, 𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑁𝑁 .  

 Spinal compressive forces are borne predominantly by the NP region of the IVD, 

such that stresses assumed to act over the entire disc cross section are not representative 

of the stress state within the NP. To control for the natural tendency of the NP to bear a 
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large percent of the overall compressive load, the total load applied to the disc was 

divided by the ratio of cross sectional areas, NP:Total Disc (O’Connell et al., 2007). This 

relation provides an estimate of stress applied to the NP based upon the NP cross 

sectional area relative to the whole disc, to better resolve the load borne specifically by 

the NP region.  

 
 𝜎1 =  𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑁𝑁 = 𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐴𝐴𝐴𝑎𝑁𝑁
𝐴𝐴𝐴𝑎𝐷𝐷𝐷𝐷

 Equation 3.2 

 
It makes sense that 𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑁𝑁  is larger than the overall compressive load, since the NP 

represents only a small percentage of the disc’s cross sectional area, but is responsible for 

resisting a large percentage of spinal compression.  

 The remaining two principle stresses, σ2 and σ3, come from pressures measured 

during in vitro testing. Sensors were inserted into the anterior and lateral faces of the IVD 

and positioned within the NP to observe pressures in the plane perpendicular to the 

direction of applied compression. Ovine disc geometries do not support prior assumptions 

of equal stress in all directions parallel to the plane perpendicular to the direction of 

applied compression, so additional experiments were conducted to understand the ratio 

between pressures acting orthogonal to the direction of applied compression. If 

compression is assumed to act in the z direction, the ratio between pressures measured in 

the x- and y-directions was used to relate experimental x-direction pressures (σ2) to y-

direction pressures (σ3).   

  𝜎2 =  𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑋 Equation 3.3 

   
  𝜎3 = 𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑥  ×  �𝑃𝑃𝑃𝑃𝑃𝑢𝑟𝑒𝑦

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑥
� Equation 3.4  
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 Substitution of the three principle stress values (Eqns 3.2, 3.3, 3.4) into the 

octahedral shear stress equation (Eqn 3.1) generates an estimate of intradiscal shear stress 

within the NP.   

3.3 Results 
 

To demonstrate changes in discs subjected to different load histories, vertical 

displacement, hydrostatic pressure, and radial budge data were recorded. Vertical 

displacement values were recorded as the displacement relative to the position at the 

conclusion of cyclic loading so as to eliminate effects caused by postmortem super 

hydration, but are also reported as percent strain values according to each specimen’s 

respective preload disc height. Strain data was plotted with respect to time as a quasi-

creep curve. Without transient challenges, the loading profiles represent classic creep 

experiments. Strain data were fit to a simple one-dimensional fluid transport model to 

uncover differences in tissue response to adverse and healthy loading conditions. NP 

pressures are similarly reported as the pressure difference respective to the end of cyclic 

preconditioning. NP pressures were used as a basis for computing estimates of intradiscal 

shear using an octahedral shear stress model. Disc bulge data are presented qualitatively 

as silhouette profiles, with vertical position normalized to approximate disc height.  

Statistical differences, often observed between healthy and adverse groups, were 

assessed using two-tailed t-tests for which p-values less than 0.05 were accepted as 

significant.  
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3.3.1 Adverse loading increases axial strain  

 Changes in displacement between challenge loads within a single motion 

segment were statistically different (p<0.03) between healthy and adverse groups. From 

the first to the final challenge, healthy discs displaced -0.09 ±0.04mm while adverse discs 

displaced -0.58±0.34mm. Displacement values from each challenge were normalized to 

the initial challenge’s displacement in which adverse discs displaced a significantly 

greater amount than healthy discs for all but the initial challenge (p<0.05). 

Average disc height for each sheep was calculated from lateral radiographs using 

the mean of three heights recorded between the anterior corners of the vertebrae and three 

 
Figure 92: Overview of applied loading profiles with respective pressure and vertical displacement 
data. Loading profiles (Top Row), displacement data relative to the start of cyclic preconditioning (Middle Row), and 
pressure generated within the NP region for healthy and adverse conditions (Bottom Row).  
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heights recorded at a mid-vertebral position. Disc displacements were divided by preload 

disc height to obtain strain values, controlled for every motion segments’ geometry. 

Motion segment disc heights were measured again after successful completion of 

experiments. Under healthy loading, L2L3 motion segments (n=3) lost an average 

0.367±0.248mm and L4L5 motion segments (n=4) lost 0.844±0.589mm. For adverse 

loading, L2L3 motion segments (n=4) lost an average 0.800±1.051mm and L4L5 motion 

segments (n=3) lost 0.784±0.829mm. High standard deviations likely resulted from 

inconsistent timing and procedures between the conclusion of mechanical tests and 

radiograph imaging of post-load discs.  

Motion segments exposed to healthy loading (n=9) exhibited compressive axial 

strains during challenge loading that were significantly smaller (p<0.02) than strains 

measured in adversely loaded discs (n=9) during equivalent challenges. The adverse 

group experienced continuously increasing strains during the 0.75MPa holds and 

averaged -44.0 ± 9.3 percent strain during 2MPa challenge loads. The healthy group 

averaged -30.0 ± 2.9 percent strain for the same 2MPa loads, and exhibited little to no 

additional strain during 0.05MPa holds.  

 

 



 

 
 

32 
 

 

Figure 103: Pre- and Post-load disc heights by level and loading regimen. Average heights decreased 
for all motion segments following loading, Significant loss of disc heights were noted in L4L5 motion 
segments for both healthy and adverse loads (p<0.05).  
 
 
 

 

Figure 41: Measured strain at each transient challenge load. Maximum strains generated at each challenge 
remain approximately 30% of the disc height in the Healthy group (n=8) while strains in the Adverse group (n=9) 
continue to increase with each challenge. For all challenge loads, strain differences are significant (p<0.05) between 
healthy and adverse groups.  
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  Healthy Loading Group Disc Heights 

  Sh2 L2L3 Sh3 L4L5 Sh4 L2L3 Sh5 L4L5 Sh6 L2L3 Sh7 L4L5 Sh8 L4L5 Sh9 L4L5 Sh10 L4L5 Sh11 L2 L3 
PRE-LOAD                     
Anterior Corners -- 3.544 3.392 3.071 3.150 3.057 4.384 4.349 5.570 4.572 

Mid Vertebral -- 4.549 4.636 5.239 4.955 3.791 2.556 3.324 4.502 2.877 

AVERAGE   4.046 4.014 4.155 4.053 3.424 3.470 3.837 5.036 3.724 

POST-LOAD                     

Anterior Corners -- -- 3.362 2.340 2.763 -- 3.144 4.284 4.155 3.789 

Mid Vertebral -- -- 4.490 3.910 4.443 -- 2.007 3.335 3.066 2.532 

AVERAGE -- -- 3.926 3.125 3.603 -- 2.575 3.809 3.611 3.161 
 

  Adverse Loading Group Disc Heights 

  Sh2 L4L5 Sh3 L2L3 Sh4 L4L5 Sh4 L5L6 Sh5 L2L3 Sh6 L4L5 Sh7 L2L3 Sh8 L2L3 Sh9 L2L3 Sh10 L2L3 Sh11 L4L5 
PRE-LOAD                       
Anterior Corners 2.918 3.385 3.086 3.739 2.173 2.334 4.087 3.252 4.086 4.075 3.638 

Mid Vertebral 3.964 4.514 4.867 5.529 3.065 3.858 4.784 2.101 5.443 3.165 2.550 

AVERAGE 3.441 3.950 3.976 4.634 2.619 3.096 4.436 2.676 4.765 3.620 3.094 

POST-LOAD                       

Anterior Corners -- -- -- 2.361 1.901 1.624 2.372 3.331 2.772 4.589 3.843 

Mid Vertebral -- -- -- 3.717 2.916 2.931 2.741 2.759 3.812 3.376 2.468 

AVERAGE -- -- -- 3.039 2.408 2.278 2.556 3.045 3.292 3.982 3.156 
 

Table 3: Pre- and Post-load disc heights. ‘Anterior Corner’ and ‘Mid-Vertebral’ values are representative means of three measurements from lateral 
radiographs. The average of both means was used as the disc height for strain calculations specific to each motion segment’s geometry. 
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3.3.2 Physiological Modeling and Creep Parameters  
 
 Loading profiles were designed as two-hour creep loading experiments subjecting 

motion segments to either relatively high (0.75MPa) or neutral (0.05MPa) physiologic 

loads. Transient challenge loads were added solely to assess disc response during 

maximum compressive forces and identify differences between adverse and healthy 

loading groups. In the 15 minutes of constant applied force following each challenge, 

discs were expected to recover. Strain values from the last three seconds of each recovery 

phase were averaged and plotted in time to develop a quasi-creep curve for each 

specimen. The creep curves were fit to a fluid transfer model which assumes a pressure 

gradient across the vertebral endplate during creep loading. The model is comparable to 

three- and four-parameter viscoelastic solid (spring-and-dashpot) models, but includes 

parameters with greater physiological relevance (Cassidy et al., 1990). Model parameters 

D, G, k, and εo were acquired from curve fits of each motion segment’s creep curve. 

Respectively, they represent strain dependent NP consolidation, time dependent tension 

in AF, endplate permeability, and initial strain.  

 

 𝜀(𝑡) =  𝜀𝑜 + �𝜎𝑜−𝑃𝑜
𝐷

− ℎ𝑖𝐺
2𝑘𝐷2

�  × �1 − exp �− 2𝑘𝑘𝑘
ℎ𝑖
�� + 𝐺

𝐷
𝑡      Equation 3.5 

 
 
 Parameter D, representing the tendency of the NP to compress with strain, was 

significantly higher in the adverse group than the healthy group, independent of level. For 

L2L3, the average adverse group (n=5) value for D was 4.906 ± 2.212N/mm while the 

healthy group (n=4) average was 0.440 ± 0.238N/mm. For L4L5, the adverse group (n=4) 

averaged 3.338 ± 0.620N/mm while the healthy group (n=5) average was 0.598 ± 
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0.096N/mm. Level was insignificant: healthy L2L3’s average D was not significantly 

different from healthy L4L5’s average D. Similar insignificance was found between 

adverse L2L3 and adverse L4L5 D values.  

Parameter G, representing the degree to which the AF was subjected to tensile 

loads over time, was found to be greater for the adverse group in both levels. For L2L3, 

the average adverse group (n=5) value for G was 6.520E-5 ± 1.364E-5 mm2/sec while 

healthy group (n=4) average was 0.164E-5 ± 0.078E-5 mm2/sec. For L4L5, the adverse 

group (n=4) averaged 6.893E-5 ± 0.611E-5 mm2/sec while the healthy group (n=5) 

average was 0.223E-5 ± 0.164E-5 mm2/sec. Level was insignificant: healthy L2L3’s 

average G was not significantly different from healthy L4L5’s average G. The same 

insignificance was found between the adverse L2L3 and adverse L4L5.  

 Parameter k, representing the resistance to fluid transfer across the vertebral 

endplate, was significantly higher in healthy L4L5 motion segments (n=5) than both the 

adverse L4L5 (n=4) and the adverse L2L3 (n=5) groups. There was no significance 

between healthy L2L3 and any of the other average k values due to the high standard 

deviation. To confirm, however, that the trends noted in the L4L5 group are applicable, 

all adverse k values were compared to all healthy k values and found a statistically 

significant difference (p<0.001). Adverse k values were approximately an order of 

magnitude lower than healthy k values.     
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Figure 52: Creep Parameters. Curve fits of strain data were used to generate creep parameters for healthy 
and adversely loaded discs. Model outputs are shown separated by level. Statistical significance (p<0.05) is 
only indicated when appropriate within a level, though statistical significance does exist between levels for 
each parameter.   
 
 

3.3.3 Adverse loading limits the ability to generate consistent pressure  

Mechanical loading yielded two populations of NP pressures. The healthy group 

(n=8) maintained an average pressure of 0.061MPa during recovery loading at 0.05MPa, 

and demonstrated an ability to generate consistent maximum pressures during challenge 

loading: each challenge event generated pressures within 0.092 ± 0.082MPa of the 

pressure generated during the initial challenge. The adverse group (n=7) maintained an 

average pressure of 1.28MPa during recovery loading at 0.75MPa, and  reduced the 

maximum NP pressure generated in each challenge, with an average loss of 0.311 ± 

0.196 MPa in peak pressure between initial and final challenge events. Differences in 

pressure generation from initial to final challenge events were significant (p<0.05) 

between adverse and healthy groups.  

Differences in load site (i.e. position of the rod relative to disc center of mass/axes 

of rotation) and each motion segment’s unique tendency to pressurize resulted in a large 

range of observed NP pressures for the same loading profile. To correct for discs’ ability 

to pressurize, pressures were normalized for each motion segment. Pressures measured 
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during each challenge event were divided by the maximum pressure observed during the 

initial challenge, to normalize the challenge pressures within each experiment. The 

normalized challenge pressures further exposed the trend that the healthy group 

maintained –or slightly increased– NP pressure generation in challenge loading for the 

entire experiment, while the adverse group was unable to generate consistent pressures 

during each challenge event. Changes in normalized maximum pressures were significant 

(p<0.01) between the healthy group’s final challenge event (103.07 ± 2.89 percent initial 

pressure) and adverse group’s final challenge event (90.08 ± 5.56 percent initial 

pressure). 

 

 

Figure 13: Measured NP pressure at each transient challenge load. Maximum pressures generated at each 
challenge load remained relatively stable, and in fact increased, within the Healthy group (n=8) while pressure 
generation decreased across challenge loads in the Adverse group (n=7). Statistical significance (p-value) markers: 0.05 
≥* > 0.01 ≥ # > 0.001 ≥ $. 
 

3.3.4 Intradiscal Shear and Intradiscal Pressure Relation  
 
 From the definition of octahedral shear stress, the principle stress values within 

the ovine disc were acquired as pressure readings and applied compressive force data. 



 

 
 

38 
 

Applied compressive force data from the MTS time history was divided by disc cross 

sectional area measurements recorded prior to testing to generate a value for compressive 

stress. Compressive stress was divided by the ratio of NP cross sectional area to whole 

disc cross sectional area to control for the NP’s elevated resistance to compressive 

loading relative to the AF. O’Connor et al. (2007) reports a whole disc cross sectional 

area of 676mm2 and an NP area of 267mm2 for ovine L4L5 IVDs, suggesting a ratio of 

0.39. Dividing the compressive stress by 0.39 yields the value for the vertical principle 

stress applied to the NP.  

 

 𝜎1 =  𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑁𝑁 = 𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� 267 𝑚𝑚2

676 𝑚𝑚2�
= 𝜎𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒

( 0.39)    Equation 3.6 

 
Again, it was expected that the principle stress applied to the NP was larger than the 

overall compressive load, since the NP represents only a small percentage of the disc’s 

cross sectional area, but was responsible for resisting a large percentage of spinal 

compression.  

 Pressures perpendicular to the frontal plane were measured as described in 

previous sections detailing pressure measurement. Sensors were always inserted into the 

anterior face of the IVD. To compare pressures acting perpendicular to the frontal plane 

against pressures acting perpendicular to the sagittal plane, motion segments (n=2) 

underwent two short-term loading cycles each. For the first loading cycle, sensors were 

positioned to acquire pressures acting perpendicular to the frontal plane (anterior 

insertion). For the second loading cycle, sensors were positioned to acquire pressures 
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acting perpendicular to the sagittal plane (lateral insertion). Sensor position was 

confirmed using radiographs prior to each loading cycle.  

 Similar stress generation was measured in both directions for each motion 

segment. For each step in applied pressure, the average IDP was calculated in both 

directions. The ratio of sagittal:frontal IDP ranged between 0.85 and 1.76, reflecting 

mixed trends. 

 

Figure 64: Force Profile and Observed Pressures for short-term loading cycles. Pressures 
perpendicular to sagittal (lateral needle insertion) and frontal planes (anterior needle insertion) were 
measured in subsequent experiments to compare directionality of stress in non-axisymmetric discs under 
compressive loading. 
 

 

Figure 75: Observed Pressures in lateral and anterior directions. Different pressurization trends were 
noted between the two sheep. Sheep 10 generated higher pressures perpendicular to the sagittal plane, while 
pressures observed in Sheep 11 suggested greater pressure in the direction perpendicular to the frontal 
plane.  
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 SHEEP 10, L4L5 
 Lateral Anterior Lateral/Anterior 

Applied Pressure Average StDev Average StDev Ratio 
0.05 0.081381 0.024884 0.046278 0.027297 1.76 
0.25 0.394675 0.024341 0.364946 0.02507 1.08 

0.4 0.653212 0.034883 0.610481 0.027479 1.07 
 SHEEP 11, L2L3 

 Lateral Anterior Lateral/Anterior 
Applied Pressure Average StDev Average StDev Ratio 

0.05 0.076885 0.021053 0.08899 0.011034 0.86 
0.25 0.37713 0.019122 0.441806 0.01711 0.85 

0.4 0.795716 0.029869 0.922613 0.027126 0.86 
Table 4: Observed pressures (MPa) by direction of needle placement. Average of all ratios is 1.08.  
 
 
 For motion segments from one sheep, sagittal pressures tended to be larger than 

frontal pressures while in the other sheep, frontal pressures were larger, yet the averaged 

sagittal:frontal IDP ratio from all motion segments across all applied pressure steps was 

1.08, and the sagittal:frontal IDP ratio was approximated as 1:1. Thus the remaining two 

principle stresses, σ2 and σ3 are assumed to be equivalent.  

 
  𝜎2 =  𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑋      =        𝜎3 = 𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑥  ×  �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑦

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑥
�  Equation 3.7 

     
 Substitution and simplification of the three principle stress values (Eqn 3.6, Eqn 

3.7) into the octahedral shear stress equation (Eqn 3.1) generates an estimate of 

intradiscal shear stress present within ovine lumbar NP.  

      

𝜏𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒 =  𝐼𝐼𝐼 = 1
3

  ��𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
( 0.39) − 𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2
+  (𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −

𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
( 0.39) )2   

  Equation 3.8a 
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Additional simplification yields:   

 𝜏𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒 =  𝐼𝐼𝐼 = 1
3

   �2 × �𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
( 0.39) − 𝐼𝐼𝐼�

2
 Equation 3.8b 

 
The final relation between intradiscal shear, vertical compressive stress, and intradiscal 

pressure:  

   𝐼𝐼𝐼 = √2
3

  � 𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
( 0.39) − 𝐼𝐼𝐼� Equation 3.8c 

  
Using the above equation, IDS was calculated at every challenge load. IDS averages for 

healthy and adverse groups were calculated to identify changes in response to loading 

condition with time. IDS values are presented with respect to IDP as the ratio IDS:IDP. 

This ratio demonstrates the trends of the shear stress while incorporating the effect of 

load on NP pressure. An increasing IDS:IDP trend was noted in the adverse group with 

the ratio increasing from 0.321 to 0.413, while a decreasing trend was noted in the 

healthy group, 0.336 to 0.312, between challenge 1 and challenge 7.  

 

 

Figure 86: Intradiscal Shear and Intradiscal Pressure relation. Magnitudes (A) and ratios (B) for IDP 
and IDS demonstrate trends in the individual –and combined—values, for each challenge load. Note in (A) 
that adverse groups exhibit decreased pressure and increasing strain, while IDP and IDS values remain 
stable for the healthy group.  
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3.3.5 Assessment of disc bulge.  

Preliminary bulge measurements were collected by orienting the laser 

triangulation device to a single location 30° laterally offset from the mid-sagittal plane. 

The device was set to observe the radial displacement of a visibly smooth section on the 

anterolateral AF surface at approximately one-third the total disc height, shown 

previously to exhibit the greatest degree of bulge under axial compression (Heuer et al., 

2007; Pei et al., 2014). However, tissue compression during the experiment may have 

lowered the initial target position and readings may no longer represent radial bulge at a 

single location on the disc surface. Additionally, routine PBS sprays to maintain a 

hydrated disc surface resulted in bulge data that exhibited inconsistent readings. It was 

expected that increased bulging would occur during transient challenge loading, and 

while increased bulging was noted during periods of high load, so too were short-term 

increases of bulge noted with the same frequency that PBS hydrating spray was applied. 

Only when paired with time data, were transient increases in bulge due to challenge 

loading distinguishable from bulge increases resulting from PBS spray. The resulting data 

set was inherently noisy and demonstrated poor resolution between bulge measurements 

during challenge and recovery loading.  

In a second attempt at collecting bulge data, a 1mm x 1mm square of reflective 

tape was attached to the disc surface with tissue adhesive, again at a position 

approximately 1/3 the disc height. The reflective tape was selected to provide three 

advantages: increase the amount of light reflected back to the laser device for improved 

signal, provide a consistent target point on the disc at which to aim the laser, and provide 

a surface slightly offset from the tissue surface so that PBS applied via a pipette would 
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not interfere with the reflecting surface. Still, measurements were noisy and resolution 

did not improve.  

The most successful method used to acquire radial bulge measurements employed 

vertical scans across the full disc height at key moments in the loading profile throughout 

the experiment (i.e. before and after challenge loads, midway through each recovery 

stage). Results demonstrate that the outermost annulus was more complex than a single, 

smooth surface. Though the laser-reflecting surface was trimmed of all excess tissue, 

wiped with saline, and confirmed smooth by observation, non-uniformities along the disc 

surface were detected by the scanning apparatus. The disc’s tendency to bulge radially 

under applied compressive loading was still apparent in some samples. Profiles of motion 

segments from the same sheep exposed to either adverse or healthy loading conditions 

are displayed. 

 

Figure 97: Disc profiles from radial bulge measurements. Scans were conducted before and after every 
challenge load but only scans recorded before challenge loads 1, 3, 5, and 7 are pictured. In both plots, 
profiles are drawn with respect to the IVD tissue (grey shading) and represent disc bulging from right to 
left. The vertical axis is representative of the disc height. Position (in mm) is not reported with respect to 
any specific zero point, but is used to measure changes in disc bulge between challenge events.   
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 Average IVD bulge was computed from scans, by computing the mean position 

measuring across the full height of the disc. Pre- and post-challenge scans were compared 

within a challenge and across challenges to understand the effects of load magnitude and 

duration on disc bulge. In the healthy loading group, pre-load bulge values were 

0.011±0.016 mm less than the post-load bulge measurements within the same challenge. 

The adverse loading group demonstrated pre-load bulge values that were 0.046±0.108 

mm less than their respective post-load bulge counterparts.  

While there is little difference in bulge before and after challenge loading there is 

noticeable change in bulge over the course of seven challenge loads, at least in the 

adverse loading case. Average bulge increased with increasing load duration (up to 

0.439±0.040mm at the conclusion of challenge 7) for the adverse loading group but 

remained nearly unchanged in the healthy case (up to 0.057±0.098mm). 

 
  AVERAGE BULGE DISPLACEMENT (mm) 
  Healthy Adverse 
  Pre-Load Std. Dev Post-Load  Std. Dev Pre-Load Std. Dev Post-Load Std. Dev 
Preconditioning -- -- 0 0.1038 -- -- 0 0.1700 
Challenge 1 0.0020 0.1057 0.0192 0.1028 0.0305 0.1914 0.3190 0.0608 
Challenge 2 0.0088 0.0937 0.0412 0.1014 0.3414 0.0635 0.3405 0.0622 
Challenge 3 0.0364 0.1103 0.0462 0.0979 0.3512 0.0609 0.3856 0.0534 
Challenge 4 0.0342 0.1022 0.0208 0.1053 0.3988 0.0735 0.3932 0.0767 
Challenge 5 0.0235 0.0947 0.0458 0.1015 0.4236 0.0434 0.4096 0.0409 
Challenge 6 0.0245 0.0979 0.0394 0.0983 0.4281 0.0427 0.4331 0.0465 
Challenge 7 0.0627 0.1150 0.0565 0.0977 0.4250 0.0496 0.4394 0.0395 

 
Table 5: Bulge values (mm) reported as the change from bulge recorded at the end of 
preconditioning. Positive values indicate outward radial bulge. Average and standard deviations reflect 
only one motion segment for both the Healthy (n=1) and Adverse (n=1) groups.     
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3.4 Discussion  
 

The NP region of IVDs uses its hydrated, gelatinous structure to transmit load 

between vertebrae by pressurizing as the disc was compressed. Different applied loads 

were expected to result in different tissue response, supporting the hypothesis that high 

compressive recovery loading inhibits biomechanical function of sheep lumbar motion 

segments as compared to low compressive recovery loading in ex vivo experiments. 

These different loading regimens were selected to demonstrate the loss of function and 

shift in biomechanics for different compressive loading environments. 

Adverse loading increased strain and reduced the NP pressure during adverse 

loading. Similarly, creep parameters extrapolated from strain curves and shear:pressure 

ratios suggest different tissue responses to adverse and healthy loading conditions. The 

findings are presented herein as part of the larger body of IVD biomechanics research.   

3.4.1 Adverse loading increases axial strain   

In biological tissues, fluid plays a large part in regulating material deformation. 

This inherent viscoelasticity is well characterized in a variety of human tissues including 

the IVD, and dictates loading and recovery rates. Studies report non-degenerate ovine 

discs displacing 0.979±0.313mm, or 15 percent strain, after 5 minutes of creep testing at 

1000N (Pei et al., 2014). Another experiment applied a 1000N compressive load to 

human lumbar levels L3-L4 and L4-L5 for 20 minutes and used magnetic resonance 

imaging to observe pre and post load displacements of 0.63mm, approximately five 

percent strain (O’Connell et al., 2011). Strains, reported as displacement divided by 

initial disc height, during final challenge loading measured 7.5 percent for healthy load 



 

 
 

46 
 

cases, but jumped to 42.2 percent in the adverse group. Excessive creep was noted 

throughout adverse recovery phases, enabling greater displacements during challenges.  

Within the data set prepared for this thesis, adverse loading resulted in up to five 

times more strain than healthy loading. This is in agreement with data suggesting 

damaged and degenerate discs allow greater deflection than healthy equivalents. Human 

lumbar degenerate discs were identified and mechanically tested under 1000N creep 

loading and compared to healthy equivalents. Statistically larger displacements were 

recorded from degenerate discs than the healthy counterparts (O’Connell et al., 2011). 

The loss of NP structure (or loss of load-bearing function) may be the causal factor, as 

the study also cited that discs treated with a two gram nucleotomy –removal of 2g NP 

tissue– resulted in strains similar to untreated degenerate discs.   

Tissues have been shown to recover fully when stored unloaded in a PBS bath 

chilled to 40°F, for 18 hours (Johannessen et al., 2004). Johannessen observed consistent 

disc stiffness and relaxation before and after two rounds of recovery for six lumbar sheep 

spines. Though the Johannessen study does not reflect in vivo conditions, diurnal cycling 

enables equivalent recovery in living tissues. In vivo pressure sensing in human lumbar 

IVDs demonstrates recovery of pressures during a 7 hour night’s sleep, and recovery of 

disc height is expected to match the increasing fluidic pressures (Wilke et al., 1999). 

While the 0.05MPa recovery phase in the healthy loading profile can be observed as a 

recovery period, the time elapsed during 2MPa challenge loads and the 15 minute 

recovery load are not long enough to observe a traditional creep experiment followed by 

a full recovery phase (note that recovery of in vitro discs took 18hours of PBS 

submersion and in vivo recovery requires a seven hour supine position). Testing was 
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designed to observe creep response under 0.05MPa or 0.75MPa with transient challenges 

to measure resilience of IVDs under transient high loads, and thus it is difficult to assess 

alternate, long term relaxation and recovery.  

 

3.4.2 Physiological Modeling and Creep Parameters 

A number of models attempt to equate viscoelastic tissue deflection to load. Few 

are physiologically based, and even fewer represent three-dimensional changes. The 

equation proposed by Cassidy et al. includes parameters relatable to structural and 

physiological behavior, though the model is not perfect: it incorporates time- and strain-

dependent pressure gradients across the vertebral endplates but assesses only one 

dimensional fluid flow from the disc (Cassidy et al., 1990).  Intrinsic to the model are 

permeability (k), found to decrease in magnitude with increased applied stress, and strain- 

and time-dependent parameters (D and G, respectively), found to increase with increased 

stress (Hwang et al., 2012; Palmer et al., 2004). In these experiments, values for D and G 

increased with increasing stress, and k decreased.  

Degeneration, however, may induce confounding effects. In a degenerative disk 

mouse model, increased loading demonstrated the typical increase in D and G and 

decreased k, but degenerate equivalents exhibited significantly lower D and slightly 

elevated k (Palmer et al., 2004). One explanation for such behaviors may be the effect of 

water concentration on the permeability of cartilage. The data collected for this thesis 

suggests permeability decreases with decreasing water content, explained by an intuitive 

consideration that with less water a lower pressure gradient exists. However, discs in the 

degenerative model may exhibit structural damage and disorganized aggrecan such that 
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inconsistencies in tissue hydration enable abnormal dispersion of water such that the one-

dimensional water transport assumptions no longer reflect fluid behavior.  

A complementary mechanism explaining reduced permeability in high load 

events may also relate to deformation of the extracellular matrix. As tissue is compressed, 

the extracellular matrix density increases and pore size is reduced. Compressed pore size 

limits fluid flow resulting in reduced permeability. Pore size is less affected during minor 

loads, since NP deflection is limited. This mechanism indicates that degenerative discs –

those with a degrading, less dense extracellular matrix– will exhibit slightly elevated pore 

size and thus increased permeability, in agreement with Palmer et al. (2004).   

The strain-dependent swelling pressure would increase if there was no fluid flow 

from a constant volume, and as such, parameter D should be expected to increase with 

increased load, as the tissue deflects to an increasing degree under increased load. 

However in the case of degenerate discs the statistically significant lower D value may 

result from the discs reduced ability to generate pressure under increasing strains. While 

strains –and the fluid pressures created by the strains– increase with increased load, 

degenerate models may not reflect an equivalent ability to preserve fluid pressure. 

Increased time-dependency, G, for elevated loading was expected so that shorter time 

was required to reach a steady state strain, a trend which was preserved for increasing 

loads as well as in the degenerate model study.  

Creep experiments performed on mouse, rat, and mongrel canine discs have been 

assessed using the Cassidy fluid model (Palmer et al., 2004; Hwang et al., 2012; Cassidy  

et al., 1990). While magnitudes differ among all species previously studied, similar trends 

for D, G, and k are preserved. The values reported herein may provide guidance for ovine 
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IVD fluid flow experiments and help to validate further applicability of both healthy and 

degenerate ovine disc experimentation to human equivalents.     

3.4.3 Adverse loading limits the ability to generate consistent pressure  

Intradiscal pressure measurements have developed into a standard method for 

observing IVD behavior, and are assessed as a corollary to the fluid within the NP. In 

vitro and in vivo studies have demonstrated the diurnal pressurization of tissues as well as 

IVD response to loading events, with a broad range of sensors (Wilke et al., 1999; Claus 

et al., 2008; Adams et al., 1996; Vergroesen et al., 2014). For this study, discs were 

subjected to one of two compressive creep loads, each with transient challenge loads. The 

0.05 and 0.75MPa recovery loads, were intended to replicate in vivo IDPs recorded 

during prone resting and standard load activities (Sato et al., 1999; Wilke et al., 1999; 

Claus et al., 2008), and transient 2MPa exertions were meant to replicate high force 

challenges such as heavy lifting or other strenuous activity.  

Resultant NP pressures observed for all phases of loading were reportedly greater 

than the target applied pressure. In experiments completed immediately after adverse or 

healthy loading procedures, discs demonstrated pressures approximately 1.73±0.39 times 

greater than the target applied pressure, with no distinct difference between healthy and 

adverse loading groups. This elevated observed pressure can be linked to the discs 

biphasic nature. As was described in the development of the IDS equation, and supported 

by the assessment of creep parameters (notably D, strain-dependence), compressive force 

transmission in not equivalent between NP and AF regions. The fluidic nature of the NP 

resists compression while the fibrous AF resists tensile loads from NP circumferential 

expansion under compressive loads. According to this commonly accepted mechanism, 
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and the NP’s cross section relative to the full disc area, the NP can expect to experience 

higher pressures than the applied loading pressure. 

Water distribution within the disc was considered a key contributor to the relative 

abilities of discs to pressurize during loading events. During transient challenges, the disc 

was compressed for a short time, causing deflection of the superior vertebrae and 

momentarily reducing the total disc height. Assuming fluidic incompressibility of the NP, 

volume constraints required the NP expand circumferentially into the AF to maintain its 

initial volume. At this point, two mechanisms acted simultaneously to balance the high 

pressures within the NP. The first was the tension afforded by the AF to maintain NP 

position and prevent NP exclusion or herniation. Bulge scans recorded before and after 

challenge loads were insufficient in capturing the short-term effects of high loading on 

AF bulge. However, preliminary experiments that observed a single position on the outer 

AF demonstrated distinct bulging during challenge loads. Simultaneously, the pressure 

gradient across the vertebral endplate enabled a percentage of the pressurized NP fluid to 

permeate the endplate. As load was removed from the motion segment viscoelastic time-

dependent recovery returned NP shape, released AF tension, and enabled fluid return to 

NP. Curiously, higher endplate permeabilities (k) in the healthy loading group, suggest 

greater fluid expulsion from the NP. However only pressure measurements of adverse 

group’s challenge load revealed a continual reduction in maximum pressure generation. 

Challenge loads may be equally effective at expelling water from the NP in both adverse 

and healthy groups, but the enhanced permeability and smaller recovery-phase pressure 

gradient in the healthy group may enable more efficient fluid return following challenge 

loading. Limited return of fluid to adverse loaded motion segments may explain why 
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greater strains and lower pressures are noted over the time course of the loading profile.  

An alternate, yet complementary mechanism relating high endplate permeability to 

consistent NP pressure recovery and limited compressive strain refers back to the density 

of the extracellular matrix. High loading increases strain which compresses matrix 

materials into each other, increasing matrix density, reducing permeability, influencing 

fluid pressure in the NP.    

Relative NP pressure magnitudes within each motion segment were often used to 

establish trends between adverse and healthy loading. Absolute pressure measurements, 

though meaningful, raised more questions than they answered. Experimental design 

necessitated pairing each motion segment with a second motion segment harvested from 

the same sheep to control for genetic, diet, age, activity and other factors. Pressure 

generation was expected to be consistent at least within each sheep, with adversely 

loaded motion segments unable to generate the same IDP as their healthy counterparts 

during the same 2MPa challenge loads. However, for about half of the sheep in which 

both motion segments were successfully tested, pressures during challenge load 1 were 

higher in adverse than healthy groups. Inconsistencies in pressure generation, even within 

motion segments harvested from the same sheep limited the statistical significance of 

absolute pressure data, however, the trends in pressure loss between healthy and adverse 

groups’ challenge loads were still present in the absolute pressure data. During the final 

challenge load, adverse groups average IDP was 2.795±0.521MPa compared to the 

3.127±0.502MPa (healthy). The adverse group lost an average of 0.311MPa between first 

and last challenge while the healthy group’s average IDP increased 0.092MPa between 

the first and last challenge load.  



 

 
 

52 
 

3.4.4 Intradiscal Shear and Intradiscal Pressure Relation 

Shear is known to affect biomechanical regulation of cells in a variety of tissues, 

within all phases of the cell cycle.  Differentiation pathways and post-differentiation 

phenotype have been shown to be shear-responsive. In bone growth and remodeling, high 

shear stress deforms precursor cells initiating formation of fibrous connective tissues; 

lower shear levels stimulate chondrocytes; and the lowest levels of shear enable 

ossification (Lacroix et al., 2002). Within NP cells, mechanoregulation has been linked to 

localized shear stresses (Wang et al., 2011). Cellular bioreactors report phenotypic 

changes under shear in the Pa to kPa range, and considering the lack of protective ECM 

and other experimental limitations in place to protect cell overstress rarely are 

experiments run –or reported—detailing cell death at elevated shear loads. Similarly, 

calculations from an  in vitro rat study report maximum experienced shear stresses to be 

less than 350kPa (Hwang et al., 2012). 

The focus of this thesis, however, was not to assess the effect of shear on cells and 

tissue but to quantify shear stresses present within the NP during in vitro loading events 

and discuss shear stress in the context of disc health. Theoretical calculation of shear 

stress in ovine discs yielded stresses on the order of 1MPa. Differences between the MPa-

range values observed in this testing and the Pa and kPa stresses previously reported in 

bioreactor and small mammal studies may be due to tissue size and structure as well as 

the magnitude of normal physiologic load. While loads were controlled to reflect tissue 

size and geometry, the magnitudes of the applied forces remained larger than forces 

applied to the same cells and tissues in equivalent experiments. Since loading was 

intended to reflect physiological values, and shear stresses were calculated from tissue 

http://link.springer.com/search?facet-author=%22Ping+Wang%22
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responses to physiologic loads, larger mammals may be expected to endure increased 

magnitudes of intradiscal shear.  

High magnitude shear environments are often used to break up cells and 

membranes in a variety of experimental procedures. In the extreme case, mechanical 

disruption of NP cells or ECM may result in high shear environments, triggering 

apoptosis or rupturing cell membranes and releasing cytoplasmic contents. Limited 

vascularization and solute diffusion may further damage surviving cells and inhibiting 

natural function. Though elevated shear stress magnitudes should be considered in NP 

cell processes, the relationship between NP pressure and IDS may indicate additional 

avenues for damage.  

An alternate metric to assess potential damage or hazardous loading of the disc is 

the ratio IDS:IDP. An increasing ratio indicates increased radial migration of the NP, 

resulting in lower NP pressure generation and increased compression loads transmitted 

within the AF (Hwang et al., 2012). The fibrous character of the AF is intended to resist 

tensile loads induced during NP pressurization, not compressive loads between vertebrae. 

Atypical load sharing may contribute to damage –or even degeneration– within the IVD. 

The average IDS:IDP values from both adverse and healthy groups did not exceed 0.45, 

though ratios as high as 1:1 have been reported for adverse preloading experiments 

(Hwang et al., 2012). While IDS:IDP values did not alone reach dangerous levels, the 

trends in the data support an alternate damage mechanism. IDP was shown to decrease 

with each challenge load, and simultaneously, calculated IDS increased. This trend is 

evidence that innocuous, yet elevated loading during rest and recovery may, with time, 

induce damage due to accumulating effects. 
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3.4.5 Assessment of disc bulge. 

Disc bulge measurements have been used in many studies as a non-contact 

method to observe IVD response to a variety of compressive, torsional, and bending 

loads. As early as the 1980’s, human lumbar motion segments have been subjected to 

various loading types and bulge measurements, but the wide range of loading application 

and varied measurement procedures has produced a variety of reported bulges. Axial 

compression to 800N in human lumbar motion segments resulted in bulge up to 2.7mm in 

one study while similar loading resulted in an average bulge less than 1mm in another 

(Reuber et al., 1982; Stokes et al., 1988).  

Recently, extensive scans or observation of multiple positions along the full disc 

height to obtain a more consistent understanding of disc bulge. A 500N compressive 

creep load was applied to L4-L5 human motion segments with 360° scans taken before 

load application and 15 minutes after load application. Greatest bulge, approximately 

1mm, was observed in the anterolateral and anterior regions of the disc, while posterior 

and posterolateral bulge ranged between 0.25 and 0.5mm (Heuer et al., 2007). Motion 

capture of markers distributed across the disc have also enabled bulge assessment. 

Alternatively, alignment of markers in a vertical line on the posterolateral surface enables 

examination of bulge within different horizontal planes. Five markers were positioned 

vertically on the posterolateral surface of fifteen lumbar and thoracic ovine motion 

segments subjected to 200N, 600N or 1000N axial creep loads after a preconditioning 

cycle. While unexpected trends were present for different loads, maximum deformations 

(~0.4-0.5mm) were reported for markers inferior to the midpoint of the disc’s height (Pei 

et al., 2014). Attempts to collect bulge data for this thesis assumed the greatest bulge 

http://www.sciencedirect.com/science/article/pii/S0268003307000836#bib22
http://www.sciencedirect.com/science/article/pii/S0268003307000836#bib28
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would occur at a posterolateral position, and vertical scans were used to assess bulge 

across the full disc height. Maximum deflections of approximately 0.2mm during the 

healthy loading events (0.05MPa, ~140N), and 0.6mm after adverse loading (0.75MPa, 

~400N) were recorded. Profiles were excessively noisy, though displacements are within 

range of reported data. Additionally, the expectedly smooth contour of the outer annulus 

was non-uniform, rendering interpretation difficult.  

Disc bulge has been reported to be time dependent under creep loading, and 

suggested to correlate with both intradiscal pressure and axial compression (Heuer et al., 

2007; Pei et al., 2014). While bulge results align with time dependent and axial 

compression correlations, the continuously increasing bulge values are not complemented 

by increasing NP pressures. While bulge profiles displace further and further following 

each challenge load, sensor outputs indicate NP pressure was maintained. This disconnect 

led to additional review of the paper citing disc bulge as a direct indicator of internal 

hydrostatic pressure (Pei et al., 2014). The authors’ interpretation of literature, namely, 

published work describing hydrogel constructs, may have been flawed. Hydrogels acting 

as a uniform material may be expected to bulge during unconfined compression with a 

predictable value of radial bulge equivalent to the applied load according to Poisson 

effect. While increased NP pressure should correlate to bulge, the direct relation between 

bulge and internal hydrostatic pressure is likely lost due to the multi-phasic nature of IVD 

tissues and complex mechanism for load bearing and NP pressurization.  

A number of improvements could be made to advance radial bulge measurements. 

The current gold standard is a circumferential scan of the disc which simultaneously 

observes the full disc height. Full, 360°, circumferential scans, however, require removal 
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of vertebral posterior features thought to play a role in force transmission and 

stabilization between vertebrae. A scan of approximately 270° centered about the anterior 

face of the disc, sweeping laterally ±135° may be the best method to acquire sufficient 

surface bulge data while preserving the functional components of each motion segment. 

Two-dimensional laser displacement devices exist on the market for a wide range of 

applications and could be used for static observation at a single angular position or 

incorporated into a scanning mechanism for circumferential sweeps to observe bulge at 

all angular positions. The largest characteristic that the bulge data set lacked was distinct 

position values for the bulge measurements. While consistent positons were used as 

maximum and minimum scan heights, there was no record of the vertical position for 

each bulge data point. Distinctions between vertebral bodies and disc profiles were 

approximated using the scan profile and recorded notes from the day of testing.    

3.5 Significance  
 
Load history largely influences fluid-related biomechanics of the IVD. Indirect 

fluid measurements (NP pressure, axial strain, and radial bulge) indicate higher NP 

pressures –and elevated transport rates– during high loading. Endplate permeability was 

shown to be load-dependent: high compressive loads consolidate the NP, increasing ECM 

density, reducing porosity, and limiting fluid recovery despite favorable pressure 

gradients between vertebrae and IVD. High IVD loading was shown to limit fluid 

recovery and does not facilitate consistent pressure generation during subsequent high 

loading events. Reduced IDP generation during adverse loading was correlated to 

elevated IDS which has been shown to indicate damage within IVDs.   
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Chapter 4: Conclusions 
  

4.1 Summary 
 
 Sheep lumbar motion segments are validated and often used to assess IVD 

biomechanical properties translatable to the human lumbar spine (Wilke et al., 1997; Smit 

et al., 2002). The enclosed findings provide additional understanding of the dynamics of 

short-term loading and recovery in ovine intervertebral discs. Further interpretation may 

provide physiological insight into load-induced biomechanical changes to guide clinical 

treatment of IVD degeneration and loss of function in human patients. Key findings from 

this study include: 

• High IVD loading during recovery phases inhibits NP pressure generation 

during challenge loads. For challenge loads 2-7, the adverse loading group 

demonstrated an inability to pressurize to the same level as the first challenge. 

Meanwhile, the healthy loading group consistently met or exceeded the initial 

challenge pressure during all subsequent challenges.  

• Reduced IDP generation indicates elevated IDS. Adverse loading tests 

demonstrated linearly increasing IDS:IDP ratios while healthy controls 

demonstrated decreasing trends. High loading reduced pressure generation, but 

increased shear during each subsequent challenge event.  

• Endplate permeability is load-dependent. Permeability values (k) and 

displacement trends indicate fluid return during recovery phases was enhanced for 

heathy loading groups, and limited for adverse loading groups. Permeability 
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affects more than just fluid recovery, as nutrient transfer within the avascular IVD 

is fluid flow dependent.  

 

Each of these points addresses the hypothesis that high loading limits fluid recovery and 

alters IVD biomechanics. Clinical treatments for lower back pain and degenerative disc 

disease must address the presence –and distribution– of fluid within the NP and 

surrounding tissues.  

Forward thinking, proactive approaches to preserve disc health require novel 

procedures to enhance fluid return to NP tissue, but should also acknowledge the effect of 

lifestyle on disc recovery. Body weight, occupational demands, daily activity levels, 

sleeping habits and a number of other everyday choices can play a role in disc loading 

and more importantly disc unloading and recovery. We demonstrate that relatively high 

recovery loads –associated with obesity, a manual labor work environment, or regular 

sleep deprivation (limited time spend laying in a horizontal position suggests more time 

spent with an erect spine) –  limits disc height recovery, impairs the ability to generate 

consistent NP pressures, increases IDS, and restricts nutrient exchange due to reduced 

endplate permeability. Lifestyles which limit the time IVDs experience neutral, recovery-

promoting loads, increase the potential for damaged, and even degenerate, discs.   

 

4.2 Future directions  
  
 This work was completed as part of a multipart study aiming to identify postural 

interventions effective at reversing critical loss of biomechanical function. Conclusions 
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from this phase of the study inform the time and load history dependencies associated 

with loss of IVD function. The next step will be to assess physical therapy-type motions  

–flexion, extension, torsion, traction or some combination–  which mitigate or even 

reverse the effects of sustained, adverse loading. Regular completion of such 

interventional, non-invasive practices may improve long-term disc health by enabling 

regular recovery of biomechanical function.   

 To better assess biomechanical function, improvements to the bulge measurement 

system are essential. Current methods do not enable consistent, repeatable measurement 

of radial bulge. Laser displacement systems which enable two dimensional observation 

could be incorporated onto a rotational arm which moves circumferentially about the 

disc. Simultaneous recording of bulge values and circumferential angle and vertical 

position enable three dimensional mapping of the outer AF surface before, during, and 

after loading and any postural interventions.  

 Redesign of the test fixtures is required before physical therapy-type movements 

can be attempted on motion segments loaded in the MTS. The current inferior potting 

fixture stands atop four rollers which enable two degrees of translational freedom and one 

degree of rotational freedom and was designed to support purely compressive loading. If 

torsional or traction forces were to be applied to the current test set-up, the specimen 

would lose contact with the lower platen in the MTS machine.  

Additional work can be done to further elucidate the effects of load history on 

disc properties. Cyclic loading, stress relaxation, and other creep loading profiles can be 

designed –or combined– to better isolate specific tissue response. High load conditions 

may expectably lead to loss of function, but compounding effects of moderate or even 
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low innocuous loads may help or hurt IVD mechanics depending upon prior loading 

conditions. 

Modeling has been used in conjunction with, and as an alternative to, in vitro 

testing to characterize IVD biomechanics. The enclosed work provides data to inform 

more complex models, yet computer models may also improve the assumptions and 

validate conclusions made within this study. A model of the disc, including appropriate 

dimensioning and mechanical properties for the AF and NP regions may enable improved 

predictions of NP stress during development of the intradiscal shear equation. To date, a 

ratio of cross sectional areas was used to predict the stress state in the NP, though models 

of the full disc may more effectively enable NP stress state predictions. The relationship 

between total applied stress and the stresses experienced within distinct regions of the 

IVD will inform IDS calculations and further develop an understanding of disc loading 

environments and mechanisms.   

 Finally, meaningful findings and theories must be translated to the clinic. 

Oftentimes bench-top and other laboratory results are difficult to incorporate safely into 

practice, but this project, and others which will inevitably follow it, must aim to further 

the knowledge of disc biomechanics in a way that can simultaneously maintain disc 

function, preserve disc health, and improve patient care. This work demonstrated that 

different recovery loads influence disc behavior. Specifically, reduced –or removed– 

loads enabled disc recovery after periods of exertion. Proper disc recovery allowed return 

of disc height and consistent pressurization in our testing which may translate to 

improved disc health and extended disc effectiveness later in life. Recovery loading may 

be related to a variety of lifestyle factors, including body weight, daily activity levels, 
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occupation, and sleeping habits. Elevated baseline resting loads associated with obesity, 

heavy manual labor occupations, or regular sleep deprivation (limited time spend laying 

in a horizontal position) may limit IVD recovery, but there may be ways to improve IVD 

recovery through lifestyle choices and  physical therapy type movements. Proactive and 

restorative activities alike should not be developed by researchers and lab technicians 

only to be lost in translation to the clinical environment. Disc health and function can 

only be preserved when research findings are transferable to physicians and patients 

alike, such that IVD research progress directly advances patient care.    
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Appendix 

A.1 Position Data for Displacement Analysis 
 

Position data for pre-challenge (‘Pre’), challenge (‘Max’), and post-challenge (‘Post’) time points for healthy and adverse 

loading conditions, as acquired from the MTS machine. There is no significance to an absolute zero position; instead, the post-

preconditioning position is representative of a starting position for which super-hydration effects have been eliminated. All position 

data is reported in millimeters. Position data is not reported for tests that were stopped due to potting failure or other cases yielding an 

incomplete data set. Data is not reported for Sheep 1.  

  

 
Sheep 2 

 
Healthy Adverse 

 
Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -19.0573 0.0013 -- -- -- -- -8.4205 0.0008 
Ch1 -18.7767 0.0011 -20.1086 0.0145 -19.0129 0.0056 -9.2136 0.0004 -9.8948 0.0122 -9.3794 0.0037 
Ch2 -18.9329 0.0009 -20.1379 0.0125 -19.0629 0.0074 -9.5455 0.0004 -10.1241 0.0088 -9.6140 0.0031 
Ch3 -18.9832 0.0008 -20.1616 0.0099 -19.0741 0.0029 -9.7195 0.0006 -10.2631 0.0071 -9.7660 0.0033 
Ch4 -19.0120 0.0013 -20.1744 0.0114 -19.1120 0.0059 -9.8443 0.0005 -10.3747 0.0060 -9.8839 0.0029 
Ch5 -19.0304 0.0009 -20.1918 0.0073 -19.1157 0.0033 -9.9458 0.0006 -10.4705 0.0056 -9.9835 0.0029 
Ch6 -19.0460 0.0009 -20.2001 0.0078 -19.1357 0.0048 -10.0355 0.0005 -10.5551 0.0055 -10.0676 0.0028 
Ch7 -19.0600 0.0010 -20.2055 0.0073 -19.1447 0.0036 -10.1147 0.0007 -10.6293 0.0055 -10.1462 0.0029 
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  Sheep 3 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -4.0773 0.0031 -- -- -- -- -5.3187 0.0044 
Ch1 -3.9240 0.0010 -5.0649 0.0131 -4.1222 0.0036 -6.1243 0.0007 -6.6600 0.0118 -6.2526 0.0031 
Ch2 -4.0245 0.0010 -5.0944 0.0092 -4.1838 0.0107 -6.4858 0.0008 -6.9540 0.0067 -6.5530 0.0020 
Ch3 -4.0633 0.0011 -5.1082 0.0084 -4.2051 0.0093 -6.7018 0.0004 -7.1485 0.0061 -6.7552 0.0025 
Ch4 -4.0836 0.0010 -5.1202 0.0098 -4.2255 0.0094 -6.8654 0.0006 -7.3075 0.0054 -6.9087 0.0015 
Ch5 -4.1045 0.0010 -5.1299 0.0092 -4.2474 0.0112 -7.0063 0.0005 -7.4443 0.0044 -7.0522 0.0021 
Ch6 -4.1226 0.0011 -5.1354 0.0110 -4.2376 0.0063 -7.1301 0.0005 -7.5612 0.0046 -7.1669 0.0017 
Ch7 -4.1275 0.0014 -5.1422 0.0100 -4.2620 0.0085 -7.2347 0.0005 -7.6614 0.0041 -7.2738 0.0026 

 
 
 

  Sheep 4 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -1.1643 0.0029 -- -- -- -- -3.2545 0.0038 
Ch1 -1.0118 0.0009 -2.1955 0.0170 -1.2117 0.0050 -4.2436 0.0015 -4.9360 0.0134 -4.4646 0.0042 
Ch2 -1.1055 0.0010 -2.2346 0.0125 -1.2552 0.0066 -4.6835 0.0016 -5.2381 0.0131 -4.7650 0.0029 
Ch3 -1.1436 0.0008 -2.2489 0.0156 -1.2688 0.0047 -4.9121 0.0017 -5.4511 0.0087 -4.9769 0.0040 
Ch4 -1.1685 0.0009 -2.2717 0.0123 -1.2797 0.0046 -5.0864 0.0018 -5.6106 0.0100 -5.1419 0.0022 
Ch5 -1.1863 0.0014 -2.2804 0.0153 -1.3118 0.0036 -5.2296 0.0016 -5.7457 0.0082 -5.2858 0.0033 
Ch6 -1.2039 0.0010 -2.2996 0.0082 -1.3348 0.0099 -5.3535 0.0022 -5.8661 0.0099 -5.4051 0.0025 
Ch7 -1.2163 0.0008 -2.3035 0.0123 -1.3401 0.0062 -5.4648 0.0016 -5.9749 0.0081 -5.5160 0.0032 
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Sheep 5 

  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -7.1872 0.0030 -- -- -- -- -- -- 
Ch1 -7.0297 0.0014 -8.3729 0.0289 -7.3225 0.0128 -- -- -- -- -- -- 
Ch2 -7.1822 0.0008 -8.4301 0.0276 -7.3416 0.0048 -- -- -- -- -- -- 
Ch3 -7.2362 0.0007 -8.4672 0.0236 -7.3924 0.0048 -- -- -- -- -- -- 
Ch4 -7.2733 0.0007 -8.4994 0.0144 -7.4323 0.0117 -- -- -- -- -- -- 
Ch5 -7.2965 0.0010 -8.5127 0.0210 -7.4502 0.0089 -- -- -- -- -- -- 
Ch6 -7.3135 0.0011 -8.5266 0.0218 -7.4706 0.0085 -- -- -- -- -- -- 
Ch7 -7.3323 0.0008 -8.5342 0.0233 -7.4703 0.0058 -- -- -- -- -- -- 

 
 
 

  Sheep 6 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -0.7346 0.0020 -- -- -- -- -6.9588 0.0018 
Ch1 -0.6087 0.0007 -1.9291 0.0185 -0.9948 0.0108 -7.6411 0.0005 -8.2269 0.0100 -7.7978 0.0010 
Ch2 -0.8867 0.0006 -1.9789 0.0136 -1.0424 0.0058 -7.9017 0.0003 -8.3792 0.0054 -7.9492 0.0012 
Ch3 -0.9450 0.0006 -2.0119 0.0108 -1.0872 0.0084 -8.0176 0.0007 -8.4813 0.0032 -8.0517 0.0009 
Ch4 -0.9768 0.0009 -2.0317 0.0101 -1.1045 0.0057 -8.1047 0.0005 -8.5604 0.0037 -8.1373 0.0018 
Ch5 -1.0022 0.0007 -2.0474 0.0096 -1.1111 0.0045 -8.1792 0.0005 -8.6256 0.0045 -8.2064 0.0019 
Ch6 -1.0175 0.0010 -2.0574 0.0121 -1.1240 0.0040 -8.2407 0.0008 -8.6862 0.0047 -8.2688 0.0020 
Ch7 -1.0302 0.0007 -2.0722 0.0100 -1.1157 0.0022 -8.2948 0.0011 -8.7408 0.0040 -8.3208 0.0013 
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  Sheep 7 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -- -- -- -- -- -- -5.0282 0.0035 
Ch1 -- -- -- -- -- -- -5.8456 0.0008 -6.4935 0.0127 -6.0607 0.0020 
Ch2 -- -- -- -- -- -- -6.2403 0.0009 -6.7461 0.0084 -6.3069 0.0017 
Ch3 -- -- -- -- -- -- -6.4289 0.0014 -6.9226 0.0056 -6.4802 0.0022 
Ch4 -- -- -- -- -- -- -6.5754 0.0010 -7.0576 0.0074 -6.6175 0.0020 
Ch5 -- -- -- -- -- -- -6.6987 0.0009 -7.1709 0.0057 -6.7351 0.0019 
Ch6 -- -- -- -- -- -- -6.8028 0.0012 -7.2704 0.0051 -6.8398 0.0029 
Ch7 -- -- -- -- -- -- -6.8913 0.0013 -7.3537 0.0034 -6.9273 0.0034 

 
 
 

  Sheep 8 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -0.3081 0.0020 -- -- -- -- -0.3213 0.0021 
Ch1 -2.9032 0.0007 -1.4348 0.0041 -0.2004 0.0025 -0.8263 0.0052 -1.4170 0.0038 -0.9432 0.0019 
Ch2 -2.9772 0.0007 -1.4498 0.0034 -0.2113 0.0029 -0.9806 0.0006 -1.4750 0.0021 -1.0083 0.0013 
Ch3 -2.9935 0.0009 -1.4555 0.0031 -0.2173 0.0015 -1.0356 0.0006 -1.5144 0.0026 -1.0553 0.0015 
Ch4 -2.9999 0.0008 -1.4635 0.0030 -0.2222 0.0022 -1.0760 0.0009 -1.5490 0.0022 -1.0929 0.0013 
Ch5 -3.0035 0.0009 -1.4670 0.0027 -0.2242 0.0019 -1.1106 0.0010 -1.5778 0.0019 -1.1249 0.0010 
Ch6 -3.0082 0.0008 -1.4685 0.0030 -0.2304 0.0016 -1.1393 0.0009 -1.6032 0.0019 -1.1529 0.0011 
Ch7 -3.0077 0.0006 -1.4723 0.0030 -0.2318 0.0017 -1.1651 0.0008 -1.6289 0.0021 -1.1808 0.0012 
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  Sheep 9 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond.  -- -- --  -- -3.0851 0.0029  -- -- --  -- -2.1130 0.0016 
Ch1 -2.9936 0.0005 -4.1956 0.0039 -3.1015 0.0054 -2.6651 0.0006 -3.2520 0.0049 -2.8295 0.0025 
Ch2 -3.0726 0.0005 -4.2105 0.0030 -3.1164 0.0012 -2.8773 0.0004 -3.3383 0.0036 -2.9204 0.0017 
Ch3 -3.0919 0.0006 -4.2199 0.0028 -3.1328 0.0033 -2.9537 0.0006 -3.3964 0.0028 -2.9815 0.0020 
Ch4 -3.1041 0.0006 -4.2276 0.0026 -3.1371 0.0025 -3.0087 0.0004 -3.4468 0.0026 -3.0345 0.0018 
Ch5 -3.1122 0.0006 -4.2335 0.0026 -3.1414 0.0007 -3.0570 0.0004 -3.4916 0.0021 -3.0778 0.0011 
Ch6 -3.1172 0.0007 -4.2383 0.0027 -3.1461 0.0014 -3.0992 0.0005 -3.5298 0.0021 -3.1194 0.0017 
Ch7 -3.1237 0.0005 -4.2407 0.0025 -3.1536 0.0016 -3.1382 0.0005 -3.5622 0.0020 -3.1553 0.0013 

 
 
 

  Sheep 10 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond.  -- -- --  -- -0.4667 0.0026  -- -- --  -- -1.2718 0.0016 
Ch1 -0.3104 0.0010 -2.1202 0.0057 -0.6376 0.0057 -1.6930 0.0007 -2.2408 0.0028 -1.7753 0.0008 
Ch2 -0.5899 0.0012 -2.1415 0.0057 -0.6660 0.0059 -1.8115 0.0008 -2.2943 0.0023 -1.8335 0.0012 
Ch3 -0.6179 0.0010 -2.1589 0.0040 -0.6804 0.0039 -1.8609 0.0006 -2.3339 0.0019 -1.8760 0.0012 
Ch4 -0.6387 0.0011 -2.1676 0.0040 -0.6992 0.0035 -1.9000 0.0008 -2.3675 0.0016 -1.9135 0.0011 
Ch5 -0.6535 0.0016 -2.1764 0.0034 -0.7140 0.0069 -1.9336 0.0007 -2.3993 0.0021 -1.9479 0.0010 
Ch6 -0.6643 0.0014 -2.1796 0.0050 -0.7149 0.0030 -1.9640 0.0011 -2.4263 0.0020 -1.9786 0.0017 
Ch7 -0.6709 0.0012 -2.1871 0.0037 -0.7285 0.0048 -1.9911 0.0008 -2.4510 0.0017 -2.0018 0.0011 
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  Sheep 11 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. --  -- -- -- -2.5901 0.0023 -- -- -- -- -0.7638 0.0018 
Ch1 -2.4960 0.0017 -3.5932 0.0058 -2.6574 0.0081 -1.3312 0.0012 -1.9450 0.0044 -1.4617 0.0019 
Ch2 -2.5976 0.0015 -3.6098 0.0041 -2.6722 0.0032 -1.5191 0.0012 -2.0227 0.0035 -1.5480 0.0017 
Ch3 -2.6234 0.0021 -3.6198 0.0039 -2.6884 0.0043 -1.5888 0.0012 -2.0823 0.0028 -1.6113 0.0018 
Ch4 -2.6404 0.0019 -3.6272 0.0041 -2.6998 0.0051 -1.6451 0.0013 -2.1309 0.0027 -1.6628 0.0015 
Ch5 -2.6511 0.0018 -3.6314 0.0032 -2.7063 0.0039 -1.6920 0.0014 -2.1759 0.0030 -1.7081 0.0018 
Ch6 -2.6620 0.0019 -3.6347 0.0041 -2.7120 0.0028 -1.7337 0.0010 -2.2138 0.0033 -1.7483 0.0016 
Ch7 -2.6687 0.0019 -3.6397 0.0035 -2.7222 0.0049 -1.7745 0.0014 -2.2490 0.0042 -1.7895 0.0018 
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A.2 NP Pressure Data 
 

Pressure data for pre-challenge (‘Pre’), challenge (‘Max’), and post-challenge (‘Post’) time points for healthy and adverse 

loading conditions, as acquired from processed sensor signals. Post-preconditioning pressure is a representative zero NP pressure for 

which super-hydration effects have been eliminated, but is not an absolute measurement of NP pressure. All pressure data is reported 

in MPa. Position data is not reported for tests that were stopped due to potting failure or other cases yielding an incomplete data set. 

Data is not reported for Sheep 1.  

 

  Sheep 2 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- 0.6739 0.0251 -- -- -- -- 0.4192 0.0112 
Ch1 0.2773 0.0223 8.2059 0.0202 0.4629 0.0169 1.5645 0.0143 4.6963 0.0334 1.7032 0.0151 
Ch2 0.4171 0.0189 8.1909 0.0144 0.5041 0.0214 1.5416 0.0138 4.2224 0.0097 1.6144 0.0127 
Ch3 0.4352 0.0239 8.3470 0.0190 0.4937 0.0146 1.5119 0.0146 4.1900 0.0140 1.5568 0.0138 
Ch4 0.4128 0.0337 8.1193 0.0178 0.4885 0.0261 1.4752 0.0113 4.1738 0.0067 1.5041 0.0129 
Ch5 0.4034 0.0211 8.0800 0.0082 0.4689 0.0191 1.4342 0.0130 4.0943 0.0111 1.4926 0.0111 
Ch6 0.3871 0.0216 8.0759 0.0127 0.4630 0.0245 1.4194 0.0154 4.0553 0.0111 1.4293 0.0218 
Ch7 0.4006 0.0217 7.9337 0.0130 0.4623 0.0201 1.3940 0.0148 4.0048 0.0089 1.4270 0.0168 
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  Sheep 3 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- 0.2492 0.0410 -- -- -- -- -- -- 
Ch1 0.0634 0.0166 3.6649 0.0221 0.1303 0.0138 -- -- -- -- -- -- 
Ch2 0.1036 0.0152 3.7350 0.0185 0.1228 0.0115 -- -- -- -- -- -- 
Ch3 0.1562 0.0127 3.7362 0.0213 0.1469 0.0200 -- -- -- -- -- -- 
Ch4 0.1310 0.0182 3.7859 0.0168 0.1617 0.0206 -- -- -- -- -- -- 
Ch5 0.1554 0.0145 3.7865 0.0199 0.1962 0.0135 -- -- -- -- -- -- 
Ch6 0.2029 0.0166 3.7812 0.0159 0.2037 0.0147 -- -- -- -- -- -- 
Ch7 0.1662 0.0118 3.8017 0.0166 0.1994 0.0113 -- -- -- -- -- -- 

 
 
 

  Sheep 4 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- 0.2125 0.0097 -- -- -- -- 0.6611 0.9538 
Ch1 0.0535 0.0062 2.8966 0.0115 0.1347 0.0290 1.7105 0.0144 3.9357 0.0282 1.8069 0.0189 
Ch2 -0.0056 0.0043 2.8952 0.0136 0.0759 0.0159 1.7197 0.0152 3.8844 0.0290 1.7872 0.0251 
Ch3 -0.0257 0.0063 2.8868 0.0105 0.0348 0.0284 1.7200 0.0139 3.8135 0.0296 1.7731 0.0153 
Ch4 -0.0482 0.0052 2.8729 0.0104 -0.0160 0.0369 1.7142 0.0188 3.7523 0.0344 1.7598 0.0193 
Ch5 -0.0707 0.0053 2.8752 0.0092 -0.0195 0.0420 1.7033 0.0176 3.6809 0.0261 1.7374 0.0205 
Ch6 -0.0794 0.0047 2.8596 0.0112 -0.0373 0.0359 1.6847 0.0218 3.6386 0.0271 1.7046 0.0201 
Ch7 -0.0878 0.0068 2.8567 0.0096 -0.0539 0.0281 1.6689 0.0223 3.6111 0.0319 1.6815 0.0156 
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  Sheep 5 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -0.0728 0.0176 -- -- -- -- -- -- 
Ch1 -0.2803 0.0150 1.9869 0.0210 -0.1795 0.0281 -- -- -- -- -- -- 
Ch2 -0.3380 0.0121 2.0391 0.0128 -0.3071 0.0123 -- -- -- -- -- -- 
Ch3 -0.3297 0.0153 2.0678 0.0134 -0.3034 0.0167 -- -- -- -- -- -- 
Ch4 -0.3423 0.0149 2.0860 0.0151 -0.3125 0.0150 -- -- -- -- -- -- 
Ch5 -0.3445 0.0196 2.1062 0.0160 -0.3211 0.0270 -- -- -- -- -- -- 
Ch6 -0.3655 0.0134 2.1298 0.0194 -0.3283 0.0186 -- -- -- -- -- -- 
Ch7 -0.3564 0.0173 2.1394 0.0168 -0.3318 0.0131 -- -- -- -- -- -- 

 
 
 

  Sheep 6 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- 0.1672 0.0173 -- -- -- -- 0.1581 0.0149 
Ch1 -0.0196 0.0143 3.1910 0.0386 -0.0592 0.0177 0.9405 0.0173 2.4459 0.0209 0.9408 0.0144 
Ch2 -0.0577 0.0159 3.1260 0.1054 -0.0751 0.0153 0.9442 0.0141 2.3220 0.0268 0.9441 0.0145 
Ch3 -0.0706 0.0147 3.2005 0.0188 -0.0632 0.0146 0.9386 0.0121 2.2344 0.0331 0.9346 0.0171 
Ch4 -0.0411 0.0195 3.1260 0.1054 -0.0222 0.0153 0.9237 0.0069 2.1713 0.0218 0.9258 0.0172 
Ch5 -0.0375 0.0148 3.1260 0.1054 -0.0296 0.0164 0.9181 0.0134 2.1126 0.0173 0.9215 0.0126 
Ch6 -0.0308 0.0190 3.1260 0.1054 -0.0220 0.0164 0.8913 0.0144 2.0630 0.0198 0.8941 0.0142 
Ch7 -0.0147 0.0186 3.1260 0.1054 -0.0165 0.0155 0.8951 0.0154 2.0075 0.0162 0.8977 0.0156 
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  Sheep 7 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- -- -- -- -- -- -- 0.0320 0.0219 
Ch1 -- -- -- -- -- -- 1.1017 0.0196 3.1600 0.0167 1.1344 0.0183 
Ch2 -- -- -- -- -- -- 1.0924 0.0223 3.1210 0.0172 1.1226 0.0221 
Ch3 -- -- -- -- -- -- 1.0987 0.0232 3.1071 0.0206 1.1229 0.0265 
Ch4 -- -- -- -- -- -- 1.1073 0.0209 3.1064 0.0205 1.1221 0.0230 
Ch5 -- -- -- -- -- -- 1.0805 0.0193 3.0461 0.0217 1.0944 0.0241 
Ch6 -- -- -- -- -- -- 1.0562 0.0248 2.9867 0.0236 1.0799 0.0212 
Ch7 -- -- -- -- -- -- 1.0260 0.0147 2.9259 0.0232 1.0706 0.0253 

 
 
 

  Sheep 8 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- 0.3743 0.0724 -- -- -- -- 0.2671 0.0465 
Ch1 0.1452 0.0702 3.4530 0.0811 0.2400 0.0544 1.2846 0.0544 3.1295 0.0566 1.4143 0.0552 
Ch2 0.1844 0.0684 3.4821 0.0794 0.2181 0.0590 1.4034 0.0499 3.0745 0.0440 1.4440 0.0537 
Ch3 0.2113 0.0613 3.4941 0.0831 0.2630 0.0810 1.3768 0.0495 3.0751 0.0773 1.4118 0.0548 
Ch4 0.2642 0.0659 3.5537 0.0787 0.2486 0.0641 1.3853 0.0656 3.0221 0.0718 1.4003 0.0710 
Ch5 0.2458 0.0586 3.5135 0.0620 0.2347 0.0638 1.3906 0.0499 2.9972 0.0576 1.4141 0.0662 
Ch6 0.2591 0.0654 3.5226 0.0541 0.2474 0.0670 1.3879 0.0519 2.9979 0.0644 1.3878 0.0679 
Ch7 0.2369 0.0468 3.5311 0.0635 0.2804 0.0644 1.3799 0.0577 2.9717 0.0729 1.3895 0.0664 
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  Sheep 9 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond. -- -- -- -- 0.1370 0.0121 -- -- -- -- 0.0956 0.0261 
Ch1 0.1879 0.0092 3.5545 0.0124 0.3050 0.0127 1.8016 0.0307 2.8983 0.0311 1.8234 0.0276 
Ch2 0.3558 0.0092 3.7043 0.0119 0.4294 0.0118 1.8310 0.0401 3.4978 0.0357 1.9740 0.0253 
Ch3 0.3109 0.0079 3.6661 0.0108 0.3782 0.0104 2.2196 0.0346 3.5779 0.0454 2.2033 0.0277 
Ch4 0.4214 0.0065 3.7687 0.0099 0.5147 0.0156 2.2827 0.0287 3.5121 0.0276 1.9548 0.0285 
Ch5 0.3246 0.0105 3.6700 0.0112 0.3861 0.0115 1.9726 0.0230 3.6346 0.0364 1.7863 0.0288 
Ch6 0.2799 0.0104 3.6215 0.0091 0.3611 0.0117 1.7921 0.0313 3.6327 0.0214 1.7732 0.0317 
Ch7 0.2752 0.0078 3.6168 0.0110 0.3112 0.0107 1.8548 0.0212 3.6368 0.0249 1.8626 0.0254 

 
 
 

  Sheep 10 
   Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond.  -- -- -- -- -0.0128 0.0203 -- -- -- -- 0.2135 0.0212 
Ch1 0.0945 0.0137 3.1618 0.0155 0.1253 0.0140 1.2146 0.0284 2.9907 0.0310 1.2502 0.0187 
Ch2 0.1251 0.0170 3.2036 0.0168 0.1519 0.0122 1.2276 0.0221 2.9957 0.0241 1.2628 0.0191 
Ch3 0.1450 0.0127 3.2257 0.0174 0.1642 0.0137 1.2197 0.0190 2.9940 0.0255 1.2418 0.0245 
Ch4 0.1648 0.0175 3.2482 0.0200 0.1734 0.0130 1.1907 0.0173 2.9695 0.0287 1.2113 0.0207 
Ch5 0.1669 0.0115 3.2724 0.0139 0.1993 0.0172 1.1701 0.0145 2.8971 0.0255 1.1880 0.0239 
Ch6 0.1892 0.0119 3.2714 0.0242 0.2023 0.0125 1.1314 0.0187 2.8468 0.0358 1.1570 0.0208 
Ch7 0.1914 0.0184 3.2909 0.0198 0.2190 0.0160 1.1110 0.0180 2.8183 0.0439 1.3956 0.2180 
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  Sheep 11 
  Healthy Adverse 
  Pre Stdev Max Stdev Post Stdev Pre Stdev Max Stdev Post Stdev 

Precond.  -- -- -- -- 0.1401 0.0124 -- -- -- -- 0.2275 0.0118 
Ch1 0.0816 0.0092 3.7190 0.0137 0.1164 0.0140 1.2279 0.0094 3.3638 0.0101 1.3087 0.0093 
Ch2 0.0877 0.0105 3.8882 0.0167 0.1104 0.0117 1.2849 0.0110 3.3828 0.0129 1.3205 0.0101 
Ch3 0.0845 0.0086 3.9031 0.0164 0.1171 0.0096 1.2872 0.0122 3.3528 0.0168 1.3140 0.0161 
Ch4 0.0910 0.0131 3.9075 0.0160 0.1069 0.0131 1.2738 0.0081 3.3167 0.0148 1.2991 0.0128 
Ch5 0.0917 0.0112 3.9199 0.0149 0.1158 0.0113 1.2583 0.0092 3.2737 0.0115 1.2787 0.0085 
Ch6 0.0942 0.0120 3.9143 0.0127 0.1189 0.0109 1.2382 0.0117 3.2238 0.0133 1.2591 0.0116 
Ch7 0.0936 0.0102 3.9298 0.0166 0.1189 0.0108 1.2216 0.0121 3.1749 0.0142 1.2341 0.0124 
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