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With the increasing availability of cameras and other mobile devices, digi-

tal images and videos are becoming ubiquitous. Research efforts have been made

to develop technologies that utilize multiple pieces of multimedia information si-

multaneously. This dissertation focuses on the temporal and spatial alignment of

multimedia signals, which is a fundamental problem that needs to be solved to

enable such applications dealing with multiple pieces of multimedia data.

The first part of the dissertation addresses the synchronization of multime-

dia signals. We propose a new modality for audio and video synchronization based

on the electric network frequency (ENF) signal naturally embedded in multimedia

recordings. Synchronization of audio and video is achieved by aligning the ENF

signals. The proposed method offers a significant departure to tackling the au-

dio/video synchronization problem from existing work, and a strong potential to

address previously untractable scenarios.

Estimation of the ENF signal from video is a challenging task. In order to

address the problem of insufficient sampling rate of video, we propose to exploit the



rolling shutter mechanism commonly adopted in CMOS camera sensors. Several

techniques are designed to alleviate the distortions of motions and brightness changes

in videos for ENF estimation.

We also address several challenges that are unique to the synchronization of

digitized analog audio recordings. Speed offset often occurs in digitized analog audio

recordings due to the inconsistency in the tape’s rolling speed. We show that the

ENF signal captured by the original analog audio recording can be retained in the

digitized version. The ENF signal is considered approximately as a single-tone signal

and used as a reference to detect and correct speed offsets automatically.

A complete multimedia application system often needs to jointly consider both

temporal synchronization and spatial alignment. The last part of the dissertation

examines the quality assessment of local image features for efficient and robust

spatial alignment. We propose a scheme to evaluate the quality of SIFT features

in terms of their robustness and discriminability. A quality score is assigned to

every SIFT feature based on its contrast value, scale and descriptor, using a quality

metric kernel that is obtained in a one-time training phase. Feature selection is

performed by retaining features with high quality scores. The proposed approach

is also applicable to other local image features, such as the Speeded Up Robust

Features (SURF).
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Chapter 1

Introduction

Recent years have witnessed rapid growth in the amount of digital multimedia

data. With the advancement in device design and manufacturing technologies, mo-

bile phones and portable cameras with improved imaging quality and large memory

storage capacity are becoming ubiquitous. These developments encourage people to

take photos and audio/video recordings to capture interesting moments and impor-

tant events. Photos created by different people can often include the same objects

such as landmarks. Similarly, events like concerts or speeches may be recorded in

multiple audio and video clips. Numerous applications arise for which the common

content in images and audio/video recordings is exploited.

When an event is recorded simultaneously by multiple independent cameras,

and possibly from a variety of angles, combining the information in these videos may

provide a better presentation and novel experience of the event than any recording

alone. For example, using 3D reconstruction techniques, a dynamic scene may be

1



reconstructed from multiple video streams that allows people to choose from different

viewing angles of a scene. Several videos of various perspective can be “stitched”

together to achieve wider field of view via video panorama [6]. A video sequence of

high space-time resolution can be obtained by combining information from multiple

low-resolution video sequences of the same dynamic scene [53].

Similarly, multiple photos containing the same object or scene can be exploited

to create visually appealing images with panoramic views and super-fine resolutions.

The existence of common objects in multiple images have also motivated research in

content-based image retrieval (CBIR). Given a query image, the goal is to retrieve

from a large database the images containing the same object or scene as in the query

image. CBIR can be useful in scenarios including landmark recognition, direction

aid for tourists, and CD/book automatic annotation.

1.1 Temporal and Spatial Alignment of Multimedia data

Temporal and spatial alignment are two essential problems to solve for many

applications involving multiple pieces of audio-visual data. Temporal alignment, or

synchronization, is the process of finding time correspondence between multiple au-

dio/video streams. Most existing approaches to multimedia signal synchronization

extract and match audio/visual features extracted from the audio/video recordings.

These methods may not perform well in certain situations. For example, it is dif-

ficult to synchronize video sequences using visual features when the videos do not

share sufficient common areas of the scene or when the viewing angles differ sig-
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nificantly; similar limitations apply to alignment of audio recordings that have few

common acoustic or speech components.

In addition to synchronization, a complete multimedia application system must

also address spatial alignment, which is the process of transforming different images

of the same scene or object into one coordinate system. Local image feature is one

of the most successful solution for image alignment. In the local feature framework,

interest points are first selected as distinctive and robust points in the image by a

key point detector. Next, a robust feature descriptor is generated using the informa-

tion within the neighborhood of the interest point. The interest point and feature

descriptor are designed in a way so that the same object can produce interest points

at the same image structure with similar descriptors regardless of the changes of

viewing angles and lighting conditions. The point correspondence between images

of the same scene can be obtained by matching the feature descriptors.

Most of the solutions for CBIR are also built on matching local image features.

To cope with large-scale databases, a visual dictionary-based Bog-of-Words (BoW)

approach has been proposed by Sivic and Zisserman [55]. They propose to quantize

image features into a set of visual words as a codebook by using k-means clustering

on many training features. A given feature can be mapped to its nearest visual word

among the codebook. The images are then represented by the frequency vector of

the visual word occurrences. The similarity between two images is usually measured

using the L1 or L2 distance between their visual word frequency vectors. During

a query, the similarity score can be computed efficiently by using an inverted file

system associated to the database.
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1.2 Main Contributions

We explore two main research problems related to the temporal and spatial

alignment of multimedia data in this dissertation. The first problem asks how to

synchronize audio and video recordings in adverse conditions for conventional meth-

ods. We propose a new synchronization modality that exploits the electric network

frequency (ENF) signal naturally embedded in multimedia recordings. In contrast

to conventional methods, our proposed approach does not rely on the perceptual

audio and visual information of the recordings. It offers a strong potential to address

difficult scenarios that are otherwise intractable. For video synchronization, it im-

poses no major constraints on the viewing angles and camera calibrations, as other

methods do. The second problem we explored is how to improve the robustness and

efficiency of feature-based image matching. Image feature matching remains critical

for image alignment and retrieval. The improvement of image resolution and the

growth of image database in scale may lead to the explosion of the number of local

image features. To expedite feature matching without greatly affecting accuracy,

it is desirable to select a subset of the most reliable and informative features to

represent each image. We propose a method to evaluate feature quality in terms of

robustness and discriminability. Every feature is assigned a quality score used for

feature selection. The topics explored in this dissertation are listed below.
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1.2.1 ENF as a New Modality for Synchronization

ENF is the supply frequency of the alternating current in a power grid. The

nominal value of the ENF is 60Hz in the Americas, Taiwan, Saudi Arabia, and

Philippines, and is 50Hz in other regions except Japan, which adopts both fre-

quencies. The instantaneous value of the ENF constantly deviates slightly and

randomly from its nominal value, as a result of the dynamic interaction between

power generation and consumption and the control mechanism of the power grid.

The instantaneous values of the ENF over time is referred to as the ENF signal.

The variation patterns in the ENF signal are shown to be consistent within the

same power grid, even for distant locations. Multimedia recordings created using

electric devices plugged into the power mains or located near electric activities often

pick up ENF signals in audio due to electromagnetic interference and/or acoustic

vibrations [27]; and in video due to imperceptible flickering in indoor lighting [23].

Viewed as a continuous random process over time, the ENF signal embedded

in audio and video signals can be used as a timing fingerprint that is unique at

any specific time instance. In this dissertation, we propose to match the ENF

signals extracted from audio/video recordings to achieve temporal alignment. After

extracting ENF signals from the recordings to be synchronized, the normalized cross

correlation coefficients are calculated with different lags between the ENF signals,

and the lag corresponding to the maximum correlation coefficient is identified as

the temporal shift between the recordings. The experimental results show that the

synchronization error of the ENF-based method can be under 0.1 second.
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1.2.2 Extraction of ENF from Videos Created with Rolling Shutter

ENF signals may be extracted from the soundtracks of the video recordings,

as well as the image sequences if the video captures the subtle flickering of lights.

Extracting the weak ENF signal from image sequences poses a challenging task

which has not been well addressed. The temporal sampling rate of visual recordings

is generally too low for estimating the ENF signal that may appear at harmonics

of 50 or 60 Hz. The ENF traces in video signals are relatively weak, and they may

easily be distorted by object and camera motions.

We exploit the rolling shutter that is commonly adopted for CMOS sensors

to facilitate ENF estimation from video. Unlike global shutters often employed in

charge-coupled device (CCD) sensors that record the entire frame from a snapshot of

a single point in time, a camera with a rolling shutter scans the vertical or horizontal

lines of each frame in a sequential manner. As a result, different lines in the same

frame are exposed at slightly different times. By treating each line of the frame as

a sample point, the sampling rate can be much higher than the frame rate, which

helps solve the aliasing problem.

Existing work on ENF estimation from image sequence of video is limited to

videos of static scenes. It is more challenging to extract ENF signals from video

recordings with object motions, brightness changes, and camera motions. To address

object motions, if the scene in the video contains a static background, we can use

these static regions to estimate the ENF signal. Many cameras are equipped with

a brightness control mechanism that adjusts the camera sensor’s aperture and/or
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sensitivity to light in response to the illumination conditions, so the overall bright-

ness of the acquired image remains visually pleasing. Such brightness change affects

the estimation of ENF signals. From our study, we find that the brightness changes

may be well modeled by a linear transform. A linear transform is estimated to

compensate for the brightness changes effectively. For videos with camera motions,

optical flow-based method is used to estimate and compensate for the pixel shift

among video frames.

1.2.3 Synchronization and Restoration of Old Audio Recordings

As ENF signal is embedded into multimedia recordings at the time of record-

ing, several interesting challenges arise for ENF analysis on recaptured audio record-

ings. ENF signals in recaptured audio recordings may contain two components: one

is inherited from the original recording, referred to as the original ENF signal; and

the other becomes embedded during recapturing process, referred to as the recaptur-

ing ENF signal. When the original ENF and recapturing ENF overlap, conventional

ENF estimation methods may fail. To solve this problem, a decorrelation based al-

gorithm is designed to estimate effectively both ENF signals from recaptured audio

signals in a sequential order.

In addition to the possible superposition of multiple ENF traces, the “drifting

effect” present another distortion of the ENF signals unique to digitized analog

tape recordings. Due to mechanical imperfection of analog recorders and tapes, the

rolling speed of these tapes often varies over time during recording and replay. The
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inconsistency between the rolling speeds of original recording and playback during

digitization induce speed errors in the digitized audio. Techniques are designed to

compensate for such drifting effect for accurate ENF analysis.

We also show that ENF signals suffering drifting effect can be exploited to

correct tape speed errors. Using the ENF signal as a reference, the speed of au-

dio can be restored by temporally stretching or compressing the audio signal via

rate conversion. We have considered two schemes of rate conversion based on re-

sampling and interpolation, respectively, and their performances are experimentally

compared. The effectiveness of the proposed scheme is shown by a demonstration

of speed restoration with recordings of the NASA Apollo 11 Mission.

1.2.4 Quality Assessment of Image Features For Efficient and Robust

Visual Matching

Feature selection is required to handle image matching efficiently over large-

scale data sets. We propose a quality metric to evaluate the usefulness of individual

image features. Features with low quality scores may be discarded to reduce the

number of features and to improve matching efficiency. We demonstrate the pro-

posed approach with the SIFT feature, which is widely used in computer vision

and image processing applications. The methodology may be generalized to other

features as well.

Our feature quality metric uses a learning-based method. A feature space is es-

tablished that consists of the scale, contract value, and descriptors of SIFT features.
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The whole feature space is quantized into a certain number of bins. To improve per-

formance, we adopt a soft quantization scheme. We collect a set of representative

sample images covering various scene types and categories as training images, and

extract SIFT features from these training images. The SIFT features are mapped

to their nearest bins in the feature space. We conduct synthetic transformations

of interest to the training images, match SIFT features between every original and

transformed image pair, and record the matching results for the features in each

feature space bin. The ratio of the number of correct matches over the total number

of features in each bin is calculated and used as that bin’s quality score. A quality

metric kernel is thus obtained. Given a SIFT feature, we can compute its quality

score using the quality metric kernel. A few nearest feature space bins are first

identified, then the quality score of the feature is computed as the weighted average

of the quality scores of its nearest bins.

The proposed approach is tested on three benchmark datasets for large scale

content-based image retrieval. Feature selection according to the proposed quality

score is shown to perform better than empirical methods, such as selecting features

with largest scales and highest contrast values.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we discuss

how the ENF signal can be estimated from audio signals and used for synchroniza-

tion of audio and video clips. Experiments on various audio and video recordings
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are conducted to demonstrate the effectiveness of the proposed approach. The syn-

chronization accuracy is also tested and analyzed.

In Chapter 3, we study the problem of ENF extraction from visual recordings,

which is more challenging than audio recordings. The rolling shutter mechanism

is first modeled and analyzed using multi-rate signal processing theory. To move

beyond static videos, we propose several techniques to address the object motions,

camera motions and brightness changes in video. We then conduct experiments to

demonstrate that matching the ENF signals estimated from the image sequences of

videos can effectively synchronize multiple video streams.

In Chapter 4, we investigate the ENF analysis on recaptured audio recordings.

A decorrelation based method is introduced to estimate multiple ENF signals that

may superimpose in a recaptured audio recording. The drifting effect of the ENF

signal in digitized audio recording with speed errors is examined. We show that

the ENF signal may serve as a reference signal to correct speed errors. Several

historical recordings of the NASA Apollo 11 Mission are successfully restored with

this method.

In Chapter 5, we investigate the SIFT feature selection for efficient and robust

visual matching. A quality metric considering the scale, contrast value, and the

descriptor of SIFT features is obtained through a learning based method. Feature

selection using the proposed quality metric is shown to be effective on several bench-

mark data sets for large scale image retrieval. We also show that the methodology

applies to other image local features such as SURF.

Finally, in Chapter 6, we conclude this dissertation and outline research issues
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that can be explored in the future.
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Chapter 2

ENF Signal as a New Modality for Video
Synchronization

2.1 Chapter Introduction

The analysis of electric network frequency (ENF) signals has emerged in recent

years as an important technique for digital multimedia forensics [22, 25, 27, 30–32,

50, 51, 58]. ENF is the supply frequency of the alternating current in a power grid.

The nominal value of the ENF is 60Hz in the Americas, Taiwan, Saudi Arabia,

and Philippines, and is 50Hz in other regions except Japan, which adopts both

frequencies. The ENF has three interesting properties. First, the instantaneous

value of the ENF constantly deviates slightly and randomly from its nominal value,

as a result of the dynamic interaction between power generation and consumption

and the control mechanism of the power grid. The instantaneous values of the

ENF over time is referred to as the ENF signal. In second property of ENF, the
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variation patterns in its instantaneous values are consistent within the same power

grid, even for distant locations. For example, there are only three major power

grids in the United States, the Eastern Grid, the Western Grid, and the Texas

or ERCOT (Electric Reliability Council of Texas) Grid. So, there are mainly three

different instantaneous variation patterns of ENF in the United States. Last but not

least, multimedia recordings created using electric devices plugged into the power

mains or located near electric activities often contain ENF signals in audio due

to electromagnetic interference and/or acoustic vibrations [27]; and in video due

to imperceptible flickering in indoor lighting [23]. The ENF signal extracted from

audio or video recordings has been shown to exhibit a high correlation with the ENF

extracted from the power mains measurements at the corresponding time.

Several forensic applications have been proposed based on the analysis of the

ENF signal. For example, ENF signals have been successfully used as a natural time

stamp to authenticate audio recordings [27, 32, 51]. By examining the phase conti-

nuity of the ENF signal, one can detect the region of tampering [50]. Some recent

work shows that the ENF signal can also reveal information about the locations and

regions in which certain recordings are made [22,30,31].

In this work, we explore the potential of the ENF signal from a new perspective

and use it for synchronization of multimedia signals, i.e. the temporally alignment

of audio and video recordings. Synchronization poses a fundamental problem for ap-

plications dealing with multiple pieces of multimedia signals, such as view synthesis

and A/V experience reconstruction.
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2.1.1 Synchronization Challenges and Prior Art

In professional video productions such as sports TV broadcasting, the record-

ing cameras may be synchronized based on coordinated hardware and communica-

tion protocols to provide synchronized timestamps and ensure accurate temporal

alignment. For distributed and ad-hoc settings involving consumer-level devices,

different cameras’ clocks are not easily synchronized to the frame level. Although

an increasing number of devices are now equipped with GPS capabilities that may

supply a universal time stamp, many low-cost and low-power devices are not. One

line of prior art developed mobile applications and protocols to provide synchronized

time tags on video frames [20]. As it requires that users of mobile devices must first

install an application and/or follow a prescribed protocol before their videos can

be aligned, this approach cannot deal with unconstrained streams for general and

less intrusive settings in today’s social media and emerging big data paradigms. In

absence of proactive synchronization mechanisms, the current solution must rely

primarily on visual content and/or sound content, which provides limited alignment

resolution on media streams at a rather high computational cost. For these reasons,

we have seen limited availability of efficient and effective alignment technologies on

audio and video streams, which comes in a sharp contrast with the broad availability

and adoption of “stitching” tools for still images.

Efforts have been made to address the video synchronization problem us-

ing signal processing and computer vision techniques, as shown in the literatures

[13,14,46,54,56,63]. In [56], a three-step approach using a set of corresponding fea-
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ture points is proposed. The method in [13] simultaneously estimates both spatial

alignment and temporal synchronization between two video sequences using spatio-

temporal information. In [14], alignment is achieved by matching trajectories of

moving objects. The authors in [54] present a synchronization method based on

detecting camera flashes present in the video content. Most of the existing work

exploits certain features from the video signals that can be detected in one video

sequence and related to corresponding features in other sequences. These feature-

based methods rely on the visual content of the videos and may not always perform

well. For example, it is difficult to synchronize video sequences using visual features

when they do not share sufficient common contents of the scene, or the viewing an-

gles differ significantly. Some methods impose constraints on the video recordings

to be synchronized, such as calibrated or static cameras and homography between

image sequences. These constraints may not always be satisfied in practice.

2.1.2 New Synchronization Modality via ENF

We propose a new modality for video synchronization by exploiting the ENF

signal naturally embedded in video recordings [60,61]. In viewing the ENF signal as

a continuous-time random process, its realization in each recording may serve as a

timing fingerprint. Synchronization of audio and video recordings therefore can be

performed by matching and aligning their embedded ENF signals. This approach

differs greatly from how the existing work tackles the audio/video synchronization

problem, and it has several advantages over conventional methods. The ENF based
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method does not rely on the analysis of audio and visual content in the recordings to

be synchronized. This property allows it a strong potential to address such difficult

scenarios that remain intractable with existing methods. In video synchronization,

for example, the conventional approaches based on visual cues do not perform well in

situations where arbitrary camera motion occurs or the view overlap is insufficient.

The ENF based method is not affected by these adverse conditions. Additionally,

extracting and aligning ENF signals may be more effective computationally than

the approaches that rely on computer vision and/or extensive learning, so more (or

longer) recordings could be efficiently processed. It can also be easily generalized to

synchronize multiple pieces of recordings.

ENF signals may be extracted from the soundtracks of video recordings, as

well as the image sequences if the video captures the subtle flickering of lightings.

Extracting the weak ENF signal from image sequences presents a challenging task.

The temporal sampling rate of visual recordings is generally too low for estimating

the ENF signal that may appear at harmonics of 50 or 60 Hz. The ENF traces in

video signals are relatively weak and may easily be distorted by object and camera

motions. In this chapter, we focus on exploiting ENF signals from video sound

tracks for synchronization. The extraction of ENF from visual recordings will be

addressed in the next chapter.
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2.2 Multimedia Synchronization using ENF from Audio

2.2.1 Estimation of ENF from Audio Signal

A general and easily implementable approach to estimating the ENF signal

from a source signal, such as audio, is the short-time Fourier transform (STFT),

which is a popular non-parametric tool for frequency analysis of time-varying signals.

It divides a signal into possibly overlapping frames of small durations. Within every

frame, the signal can be regarded as wide-sense stationary, and each of the frames

undergoes Fourier analysis respectively. For ENF estimation, we apply STFT to

a source signal that contains ENF traces, and find the peak frequency within a

certain range near the nominal value or the harmonics in each frame. The values

of the peak frequency from all the frames are concatenated to form the estimated

ENF signal. Plotting the squared magnitude of an STFT for each time frame, a

spectrogram is used to visualize the spectrum of the source signal. The spectrogram

is usually displayed as a two-dimensional intensity plot with the two axes being time

and frequency, respectively.

Comparisons of various frequency estimation approaches for ENF are carried

out in [30, 44]. In [37], the authors evaluate the use of quadratic interpolation over

DFT samples as a means to improve the accuracy of ENF estimation. A multi-tone

harmonic model is used to build a Maximum-Likelihood estimator for ENF in [12].

Similarly, the use of multiple harmonics is also investigated in [29]. The weighted

energy method as used in [23] is adopted here for its robustness and low complexity.
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The audio signal is divided into frames of certain length (e.g 8 seconds), and fast

Fourier transform (FFT) is calculated for every frame. The ENF signal is then

estimated as the dominant frequency within a small vicinity of the nominal value of

ENF:

F (n) =

∑L2

l=L1
f(n, l)|s(n, l)|∑L2

l=L1
|s(n, l)|

, (2.1)

where fs and NFFT are the sampling frequency of the signal and the number of FFT

points, respectively; L1 = (fENF−∆f)NFFT
fs

and L2 = (fENF+∆f)NFFT
fs

, where fENF is

the nominal value of ENF and ∆f defines the range of frequencies in consideration;

f(n, l) and s(n, l) are the frequency and energy in the lth frequency bin of the nth

time frame, respectively.

According to the sampling theory, if a signal contains no components of fre-

quency higher than F Hz, it can be completely determined by its sampled version

when the sampling rate exceeds 2F Hz. The ENF signal embedded in multimedia

recordings is usually present close to its nominal value (50 or 60 Hz) and/or several

higher order harmonics. Digital audio recordings are usually created with a sampling

rate that is much higher than the value of ENF. Therefore, we can down-sample an

audio signal before extracting its ENF signal to reduce computational cost.

The ground-truth ENF signal can be obtained from power outlet measurements

using a step-down transformer and a voltage divider circuit. Fig. 2.1 shows an

example of ENF extraction from audio signal. In this example, an audio recording

and a power measurement recording were made simultaneously in the US where the

nominal value of ENF is 60 Hz. The ENF signal can be extracted from around
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any harmonics of the nominal value of ENF, as long as the ENF traces are strong

enough. Here, we examine the second harmonic for the audio recording and the

base frequency for the power recording. As can be seen from Fig. 2.1, the ENF

signals estimated from the audio recording exhibit variation trends similar to the

ground-truth ENF signal from the power outlet measurements.
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Figure 2.1: Spectrograms and ENF estimates from audio and power signals recorded at

the same time. (a) Spectrogram of the test audio signal around the 2nd harmonic (120

Hz); (b) Spectrogram of the power signal around the base frequency (60 Hz); (c) ENF

signal estimated from the audio signal; (d) ENF signal estimated from the power signal.
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2.2.2 Video Synchronization by Matching ENF Signals

In this section, we discuss in detail how the ENF traces embedded in video

soundtracks can be used for video synchronization. After taking the soundtracks

from two video recordings to be synchronized, we first divide each soundtrack

into overlapping frames of length Lframe seconds. The overlap between adjacent

frames is denoted as Loverlap in seconds. So the shift from one frame to the next is

Lshift = Lframe−Loverlap. For every frame, we estimate the dominant frequency near

the nominal value of the ENF. The values of the estimated frequency are concate-

nated to form the ENF signal of each soundtrack. The normalized cross correlation

coefficients are calculated with different lags between the ENF signals. The lag

corresponding to the maximum correlation coefficients is identified as the temporal

shift between the two videos. In the following, we show the experimental results of

the proposed approach using battery-powered consumer-level cameras.

In the first experiment, we made two video recordings of people playing rac-

quetball in a gym with a Canon PowerShot SX230 HS camera and a Canon Power-

Shot A2300 camera, respectively. During the recording, the cameras were fixed on

tripods shooting the racquetball court from different viewing angles. Both record-

ings are approximately 10 minutes long, and one begins approximately 20 seconds

earlier than the other.

The ENF signals are estimated from the soundtracks of the video clips, and

their NCC is calculated with different values of lags between them. In Fig. 2.2 (a), we

plot the normalized cross correlation (NCC) as a function of the lag, and observe a
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clear peak at 20.52 seconds. We then align the video clips by shifting them relatively

by 20.52 seconds. The ENF signals after alignment, along with the reference ENF

measured from the power outlet, are shown in Fig. 2.2 (b). Both the ENF signals

extracted from the videos exhibit variation trends that are consistent with those of

the reference ENF signal. Fig. 2.2 (c) shows a few sample pairs of images from the

video sequences after alignment. The images in the same row are from the same

video stream, while the images in the same column correspond to the same time

instance. By examining the girl’s movement in the images, we can see that the two

video sequences are well synchronized after using the proposed approach.

For the second experiment, we use the same cameras to make two video record-

ings in an office building. The cameras were placed in different rooms facing a park-

ing lot through glass windows. We estimate the ENF signals from the soundtracks

of the two video recordings and calculate their correlation coefficient as a function

of the lags between them, which is plotted in Fig. 2.3 (a). A peak value of 0.95 is

found at the lag of 92.16 seconds. The estimated ENF signals after alignment and

their reference ENF signal are shown in Fig. 2.3 (b). Although some segments of

the ENF signal estimated from one of the video soundtracks (video 1) suffer from

some short-term distortions around the 110th second, the video clips are still well

synchronized, as shown by the sample image frame pairs in Fig. 2.3 (c).

In the examples shown in this section, the cameras are fixed during recording,

and some view overlap occurs between the videos to be synchronized. These settings

are chosen so that we can appreciate the effectiveness of the proposed approach by

visually examining the image frames. It should be noted that, as an advantage over
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many existing methods, no constraints exist on the camera motion or calibration.

Also, no requirement is necessary for any view overlap when using the ENF signals

extracted from the soundtracks for synchronization of video recordings. Readers

may note the substantial differences of view points and depth of the two cameras in

both examples. For such situations, even when some view overlap occurs, it can be

challenging to handle with traditional computer vision based approaches.

The accuracy of synchronization is important for many applications involving

multiple videos. Experiments are conducted to evaluate the synchronization accu-

racy of the proposed method. We use two audio recorders to make a total of around

17 hours of audio recordings in an office room. A beep sounds at the beginning of the

recording so the ground truth of the lag between the recordings can be obtained by

comparing the waveforms of the beep using audio editing software. The recordings

are divided into clips of Lc seconds, and each clip is treated as an individual test

sample. We apply the proposed method to synchronize the test clips and examine

the synchronization accuracy under two variables: the length of the test clips Lc,

and the strength of the ENF signal in the source signal measured by the signal to

noise ratio (SNR). Assume that the ENF signal is estimated near f0 Hz, which may

be the nominal value of ENF or one of its harmonics. The SNR is estimated as the

ratio of the energy density in the narrow frequency band (f0 − fδ1, f0 + fδ1) to that

in the band (f0 − fδ2, f0 − fδ1) and (f0 + fδ1, f0 + fδ2), where fδ2 > fδ1. To test the

more challenging scenarios with low SNR levels, white Gaussian noise of controlled

strength is added to the original source signals.

Fig. 2.4 shows the synchronization error of each test clip pair and the estimated
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SNR of the ENF signal. As expected, the synchronization accuracy improves with

higher SNR and longer duration of clip. The average absolute synchronization errors

for the test clips without added noise are 0.48, 0.40, and 0.17 seconds for clip sizes

of 5, 10, and 15 minutes, respectively.

Although most demonstrations of ENF being picked up by digital audio and

video recordings in areas of electrical activities have been reported in the recent

decade, the presence of ENF can be found in analog recordings made throughout

the second half of the 20th century. In our recent work, we demonstrated that ENF

traces can be found in digitized versions of 1960s phone conversation recordings

of President Kennedy in the White House [58]. Using ENF to analyze historical

recordings could offer many useful applications for forensics and archivists. For

instance, many 20th century recordings are important cultural heritage records, but

lack necessary metadata, such as the date and time of recording. Also, the need may

arise to timestamp old recordings for investigative purposes, and ENF may provide

a solution.

As an example of exploring historical recording synchronization using the ENF

signals, we analyze two recordings from the 1970 NASA Apollo 13 mission [1] that we

know were recorded at approximately the same time. The first recording comes from

the PAO (Public Affairs Officer) loop, which is the space-to-ground communications

that was broadcast to the media. The second recording is of GOSS Net 1 (Ground

Operational Support System), which is the recording of the space-to-ground audio

as the people in mission control heard it. Both recordings are approximately four

hours long. Figure 2.5 shows spectrogram strips for both recordings about the
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ENF harmonics. We observe that for the first recording, the ENF clearly appears

around all the harmonics, and it is especially strong around 360Hz. For the second

recording, the ENF is noisier, and it appears best around 120Hz and 360Hz.

We extract the ENF of the first recording from around 360Hz. For the second

recording, we use the spectrum combining technique for ENF estimation [29], where

we combine the ENF traces from around 120Hz and 360Hz to arrive at a more reliable

ENF estimate. The resulting ENF signal remains rather noisy; we clean the signal

by locating outliers and replacing them using linear interpolation from surrounding

ENF values. Figure 2.6 (a) shows 20-minute simultaneous ENF segments from both

recordings, with the second ENF signal displaced by 0.05Hz to distinguish them and

see them separately. Visually, the two signals appear similar.

In a synchronization scenario, we would need to match ENF segments from two

or more signals with potentially different lags, then decide on the correct lag based

on the similarity of the segments, using the correlation coefficient as a metric. As a

proof-of-concept for the Apollo data described above, we divide the first Apollo ENF

signal into overlapping 10-min ENF segments, and for each segment, we correlate

it with equally-sized segments from the second Apollo ENF with varying lags. The

two signals were recorded at the same time, so the ground truth suggests that the

highest correlation should be at zero lag. Figure 2.6 (b) shows the mean values of

the correlations achieved for different lags, and we can clearly see that the highest

correlation is achieved for zero lag, which matches the ground truth.

We observe that the techniques discussed earlier for audio and video alignment

can be extended to aligning two historical recordings of interest. This can potentially
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help timestamp old recordings of unknown date of capturing. With old recordings,

we may not always have access to reference power ENF, as in the case considered

here, yet we have the potential to utilize historical recordings of known date and

time to create an ENF database to which we can compare recordings of interest

with uncertain information about capturing time.

2.2.3 Discussions

The prerequisite for the proposed approach is that ENF signals can be ex-

tracted well from the audio recordings to be synchronized. This prerequisite may

not always be satisfied in practice. For example, audio recordings created by battery-

powered recorders at locations far from electrical equipments are likely not to capture

ENF traces. We have conducted experiments to study the existence of ENF signals.

We use battery-powered audio recorders to make recordings at multiple locations

inside a university building. These locations include hallways, classrooms, offices,

computer labs, and study lounges. The reference power recordings are recorded as

well. With a total of 100 test audio recordings, we are able to extract ENF signals

that match with the power reference from 81 of them. It proves that most of audio

recordings in the building can capture ENF signals.

Statistical modeling and analysis of ENF signals can be performed to study

ENF signal’s capability of synchronization theoretically. It is shown in [25] that

the ENF signal can be modeled as an autoregressive random process. Based on

this model, a decorrelation-based approach is proposed to improve the matching
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accuracy. Such study can help understand the effect of ENF signal’s duration and

signal-to-noise ratio to the synchronization accuracy.

2.3 Chapter Summary

In this chapter, we propose to synchronize audio and video recordings by

extracting and matching the ENF signal that is naturally embedded in the audio

clip during its creation. The value of the ENF signal fluctuates around its nominal

value randomly over time. The variation patterns of the ENF are very similar within

the same power grid, even at distant locations. Audio recordings can often capture

the ENF signal due to electromagnetic interference to the recording sensor or the

electric humming. By correlating the ENF signals extracted from audio recordings

or the soundtracks of videos, multiple audio and video clips can be synchronized.

We have conducted experiments to test the synchronization accuracy of the

proposed approach. With a fair signal-to-noise ratio for the ENF signal embedded

in the audio signal, the average synchronization error can be as low as about 0.12

second, which is equivalent of 3-4 frames for most video clips created by consumer

cameras with a frame rate at 30 fps.

Our study also shows that the ENF signal may be present in historical record-

ings as well. In particular, we are able to extract ENF signal from some digitized

analog recordings of the NASA Apollo 13 Mission. As an example, we have success-

fully synchronized two audio clips that were recorded at roughly the same time but

at different loops. Such analysis of old recordings may be of great value for revealing
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unknown historical facts and archiving historical events.

The traces of ENF may also be found in visual recordings, such as the image

sequence of video clips. Extracting the weak ENF signal from image sequences

presents a challenging task. The temporal sampling rate of visual recordings is

generally too low for estimating the ENF signal that may appear at harmonics of

50 or 60 Hz. The ENF traces in video signals are relatively weak, and may be

easily distorted by object and camera motions. In the next chapter, we focus on the

extraction of ENF from visual recordings.
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Figure 2.2: Example-1 of video synchronization by aligning the ENF signals from sound-

tracks. (a) The correlation coefficients of the ENF signals as a function of the relative

lag between them. (b) The ENF signals from the two video recordings after alignment

and the ENF measured from the power mains at the same time. (c) Several sample frame

pairs after alignment. Rows correspond to video sequences, and columns correspond to

time instances.
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Figure 2.3: Example-2 of video synchronization by aligning the ENF signals from sound-

tracks. (a) The correlation coefficients of the ENF signals as a function of the relative lag

between them. (b) The ENF signals from the two video recordings from different viewing

angles after alignment and the ENF measured from the power mains at the same time.

The signals are properly shifted to facilitate comparison. (c) Several sample frame pairs

after alignment. Rows correspond to video sequences, and columns correspond to time

instances.
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Figure 2.4: The synchronization error with clip size being (a) 300 seconds; (b) 600 seconds;

(c) 900 seconds.
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(a)

(b)

Figure 2.5: Spectrogram strips around the ENF harmonics for the Apollo 13 recordings.

(a): PAO recording; (b): GOSS recording.
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Figure 2.6: Synchronize the Apollo 13 mission recordings with the ENF signals.
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Chapter 3

ENF Extraction from Visual Recording

3.1 Chapter Introduction

Most previous work related to the analysis of ENF signals is built on extracting

ENF traces from audio recordings [27, 29, 50, 51]. Recently, it has been found that

indoor lightings such as the fluorescent lights and incandescent bulbs vary their

light intensity in accordance with the AC supply voltage, which varies according to

the AC supply frequency [23]. As a result, cameras can capture the light intensity

variation that can be used to extract the ENF signal. In [23], the authors took

the mean of the pixel values in every frame of video recordings that capture indoor

lightings, then used spectrogram analysis to estimate the embedded ENF signal. The

aliasing effect presents a major challenge of this scheme. Most of the consumer-level

digital cameras adopt a frame rate of around 30 fps, while the ENF signal appears

at the harmonics of 50 or 60 Hz. Therefore, the ENF signal suffers from a severe
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Figure 3.1: The spectrogram of the mean values of the frames from a test video recording

shooting a white wall under under fluorescent lighting. The ENF signal overlaps with the

DC components and is difficult to extract. Figure is best viewed in color.

aliasing effect induced by insufficient sampling speed. In the US, the nominal value

of the ENF is 60 Hz. If the frame rate is exactly 30 Hz, the ENF signal will be

shifted to 0 Hz, i.e., the DC frequency. As a result, it is highly difficult to estimate

the ENF signal due to low signal-to-noise ratio. Figure 3.1 shows the spectrogram

calculated from the mean values of the frames of a video shooting a white wall under

fluorescent lighting. We observe the ENF signal overlaps with the DC components

and is difficult to extract.
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It has been proposed to take advantage of the rolling shutter to address the

problem of insufficient sampling rate [24]. Rolling shutters are commonly adopted for

the complementary metal-oxide semiconductor (CMOS) camera sensors. Cameras

with global shutters in charge-coupled device (CCD) sensors record an entire frame

from a snapshot of a single point in time. However, a camera with a rolling shutter

scans the vertical or horizontal lines of each frame sequentially, so that different

lines in the same frame are exposed at different times. If we treat each line of the

frame as a sample, the temporal sampling rate can be much higher than the frame

rate, which would facilitate the estimation of the ENF signal.

In this work, we conduct a further study on the exploitation of the rolling

shutter for extracting ENF traces from video recordings. We model and analyze the

rolling shutter mechanism with a filter bank, then perform analysis using multirate

signal processing theory. We extend the scope of ENF extraction from videos of still

scenes to those containing motions, which presents a more challenging problem and

has never been formally attempted. Several methods are developed, and promising

results are observed.

3.2 Extracting ENF from Visual Recording

3.2.1 Exploiting the Rolling Shutter Mechanism

With a rolling shutter, each frame is recorded by scanning across the frame

either vertically or horizontally line by line, instead of capturing the whole frame at

a single point in time as in the case of a global shutter. Figure 3.2 illustrates the
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Figure 3.2: Timing of rolling shutter sampling: the rows of a frame are sequentially

exposed, followed by an idle period before proceeding to the next frame.

timing for the image acquisition of rolling shutters, assuming the frame scanning is

done row-by-row. Each row of the frame is exposed sequentially to light, followed

by a possible idle period before proceeding to the next frame. Since pixels in dif-

ferent rows are exposed at different times, but are displayed simultaneously during

playback, the rolling shutter may cause such distortions as skew, smear, and other

image artifacts, especially with fast-moving objects and rapid flashes of light [35].

The sequential read-out mechanism of a rolling shutter has been traditionally

considered detrimental to image/video quality due to its accompanying artifacts.

However, recent work has shown that the rolling shutter can be exploited with

computer vision and computational photography techniques [7,19,28]. Our previous

work [24] exploited the rolling shutter to extract ENF traces from videos of static

scenes. In this work, we investigate the more challenging cases of videos containing

motions [59].
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A Filter Bank Model

For an image captured by a rolling shutter, we can treat the spatial mean of

every row as a temporal sample since all the pixels in a single row are exposed at

the same time. As a between-frame idle period occurs, in terms of capturing the

ENF signal over time, we are equivalently abandoning some samples that would

have been generated in the idle period. The time domain illustration of this model

is shown in Figure 3.3. Here, we assume that the shutter is able to produce M

samples at its full capacity, and only L samples among them are retained while the

rest are discarded, where L ≤ M . We denote the input and output signal as x(n)

and y(n), respectively.

To facilitate frequency domain analysis, we use a L-branch filter bank to model

the relationship between the input signal x(n) and the output signal y(n), as shown

in Figure 3.4. In each branch of the filter bank, the input goes through an M-fold

down-sampler followed by an L-fold up-sampler, with appropriate delays at both

the beginning and the end of the branch.

The DTFT of the signal coming from the lth branch can be analyzed according

to multi-rate signal processing theory [64]:

Yl(ω) =
1

M

(
M−1∑
m=0

X(
ωL+ 2πm

M
)ej

ωL+2πm
M

l

)
e−jωl. (3.1)
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Figure 3.3: A time domain illustration of the rolling shutter sample acquisition.

Every L out of M samples are retained, and the other samples that correspond to

the idle periods are discareded.
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Figure 3.4: A filter bank model of rolling shutter sample acquisition. In each branch

of the filter bank, the input goes through an M-fold down-sampler followed by an

L-fold up-sampler, with appropriate delays at both the beginning and the end of

the branch.
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So the DTFT of the combined final output Y (ω) is given by:

Y (ω) =
L−1∑
l=0

Yl(ω)

=
L−1∑
l=0

1

M

(
M−1∑
m=0

X(
ωL+ 2πm

M
)ej

ωL+2πm
M

l

)
e−jωl

=
M−1∑
m=0

X(
ωL+ 2πm

M
)Fm(ω), (3.2)

where

Fm(ω) =
1

M

L−1∑
l=0

e−j
ω(M−L)−2πm

M
l. (3.3)

Equivalently, with ω = 2πf , we have

Y (f) =
M−1∑
m=0

X(
ωL+ 2πm

M
)Fm(f). (3.4)

T denotes the frame duration of the camera. According to the notations in the

previous section, the sampling rate of the shutter is fs = M/T , and the perceptual

sampling rate of the row signal is L/T . Here, L is the number of rows per frame,

and the exact value of M depends on the CMOS manufacture’s design and is usually

unavailable to the public. The spectrogram of the row signal is computed using the

perceptual sampling rate L/T , instead of the actual sampling rate M/T . Deriving

from Equation 3.4, we can show that the Fourier representation of the row signal is

Y (f) =
M−1∑
m=0

X(
2π

fs
(f +

m

T
))Fm(f). (3.5)

This suggests that the row signal is the weighted summation of a series of trans-

formed versions of x(n) that are shifted by multiple of 1
T

in the frequency domain.
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3.2.2 ENF Estimation

In this section, we describe how to extract ENF traces from videos captured by

rolling shutters. Without loss of generality, we assume the rolling shutter scans the

frame row-by-row. Consider a video signal s(r, c, n), where 1 ≤ r ≤ R, 1 ≤ c ≤ C

and 1 ≤ n ≤ N denote the row index, column index and frame index, respectively.

The video signal contains mainly two components: one is the visual component v

corresponding to the visual scene; and the other is the ENF component e:

s(r, c, n) = v(r, c, n) + e(r, c, n). (3.6)

The authors in [24] use the spatial average of each row in the video as the

source signal to estimate the ENF signal. From Eq. (3.6), we see that the signal-

to-noise-ratio (SNR) of e in s may be low in the presence of the visual component

v. For fixed spatial indices r and c, the visual component v(r, c, n) as a function of

n is in general a low-pass signal. In order to suppress the effect of v and extract the

ENF component e, we propose to apply high-pass filtering to the video signal s. In

the next sections, we describe the high-pass filtering techniques for two cases: for

videos of static scenes and for videos with motions.

We first consider a video recording with a static scene, so the visual signals

of every video frame are identical, i.e., v(r, c, n) = v(r, c). Under this assumption,

Eq. (3.6) is reduced to

s(r, c, n) = v(r, c) + e(r, c, n). (3.7)

We can apply a high-pass filter to s by subtracting from it its mean value across all
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frames:

ŝ(r, c, n) = s(r, c, n)− s̄n(r, c)

= s(r, c, n)− 1

N

N∑
m=1

s(r, c,m)

= e(r, c, n)− 1

N

N∑
m=1

e(r, c,m). (3.8)

Here e(r, c, n) is the sinusoidal ENF signal sampled at the rth row and cth column

in the nth frame. For any given r and c, e(r, c, n) as a function of n = 1, 2, ..., N is

essentially a sinusoid sampled at the frame rate of the video recording. Since the

frequency of the ENF signal is changing over time, e(r, c, n) for n = 1, 2, ..., N tends

to have different phases and cancel out. So, for a sufficiently large N , the average

of these samples is close to 0, i.e.,

ēn(r, c) =
1

N

N∑
m=1

e(r, c,m) ' 0. (3.9)

This leads to

ŝ(r, c, n) ' e(r, c, n). (3.10)

After the high-pass filtering, the SNR of the ENF signal in ŝ is much higher

than that in the original video signal s. We then use the spatial average of each row

in ŝ(r, c, n) as the source signal to estimate the ENF signal:

R(r, n) =
1

C

C∑
c=1

ŝ(r, c, n). (3.11)

R(r, n) is referred to as the row signal hereafter. We can use the frequency estimation

techniques discussed earlier to estimate the ENF signal from the row signal.
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We have conducted experiments using a Canon PowerShot SX230 HS camera

that is battery-powered and equipped with a rolling shutter. Fig. 3.5 shows an

example of ENF estimation from a static video recording. The test video recorded

a white wall under fluorescent lighting, with a camera mounted on a tripod. The

spatial resolution of each video frame is 480 × 320, and the frame rate is 29.97

fps. Fig. 3.5 (a) shows a snapshot of the test video. We calculated the row signal

according to Eq. (3.11), and then vectorized it by concatenating its entries frame

after frame to form the source signal for ENF estimation. Fig. 3.5 (b) shows a

segment of the source signal. We observe that the source signal exhibits sinusoidal

waveforms, except for some periodic phase shifts. These phase shifts exist because

of the idle period of the rolling shutter between exposing the last row of one frame

and starting the first row of the next frame. No recording is conducted during the

idle period, and a phase jump of the source signal may occur on every frame border

(every 240 samples in this experiment).

In this example, the nominal value of ENF is 60 Hz, and the frame rate of the

camera is 1
T

= 29.97 fps. The intensity variations of the fluorescent lightings should

follow the instantaneous energy of the AC power supply, exhibiting a oscillation of

around 120 Hz. By Eq. (3.5), the ENF traces embedded by the row signal from the

video recording should appear at around 120 +m× 29.97 Hz, where m = 1, 2, 3, ....

This holds consistent with what we observe from the spectrogram of the row signal

in Figure 3.6.

The ENF traces can be extracted from the spectrogram of the row signals

around 30 Hz, 60 Hz, 90 Hz... We estimate the ENF signal from close to 60 Hz as
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Figure 3.5: (a) A snapshot of a test video of a static scene of a white wall. (b) The source

signal for ENF estimation.

we see from the spectrogram that the SNR of the ENF signal appears the highest in

this frequency range. The estimated ENF signal from this recording along with the

reference ENF signal simultaneously measured from the power mains are plotted

in Figure 3.7 (a). They are appropriately shifted to lie within the same dynamic

range, as only the variation trends are of interest. The ENF signals from the video

recording and the power measurement exhibit similar variations. The correlation

coefficient between them as a function of the relative time lag is plotted in Figure

3.7 (b), and a clear peak is observed at the ground truth lag of 0 second.

In the second example, the camera was placed in a room illuminated by flu-

orescent lights, which is representative of real-life surveillance scenarios where few

events are expected to occur. Measurements from the power mains at the time of

the video recording were also conducted to provide the reference ENF signal. In

Figure 3.8 (a), we plot the estimated ENF signals from the video and the power
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Figure 3.6: The spectrogram of the row signal from a white wall video recording. Figure

is best viewed in color.
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Figure 3.7: (a) The ENF signals (appropriately shifted) extracted from a test video of

white wall and the power measurement. (b) Correlation coefficient between the video and

power ENF signal as a function of relative time lag.

measurement, and the correlation coefficient between them as a function of lag is

plotted in Figure 3.8 (b).

In the third example, we show that videos of outdoor scenes can also capture

ENF traces. A test video is captured in a dark parking lot illuminated by outdoor

lighting. The camera is fixed, and no object motion occurs in the recording. Fig. 3.9

(a) shows a snapshot of the test video. The ENF signal estimated from the test video

exhibits similar variation patterns to the one estimated from the simultaneous power

measurements, as can be observed in Fig. 3.9 (b). It proves that the outdoor lighting

are connected to the mains, and the ENF signal is successfully extracted from the

video that captures the subtle flickering in the light.
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Figure 3.8: (a) The ENF signals (appropriately shifted) extracted from a surveillance

video and the power measurement. (b) Correlation coefficient as a function of relative

time lag.

3.2.3 Videos with Motions

Extracting ENF signals from video recordings of scenes with moving objects

proves to be more challenging. In such scenario, Eq. (3.7) does not hold anymore,

and the method for high-pass filtering in the previous subsection would no longer

work.

If the scene in the video contains a static background, we can use the static

regions to estimate the ENF signal. Following the notations of last subsection, given

two image frames s(r, c, n) and s(r, c,m), we are interested in finding the regions not

affected by object motion in either frame. The mutual motion-free regions between
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Figure 3.9: (a) Screen shot of the test video of a parking lot. (b) The ENF signals

(appropriately shifted) extracted from the test video and the power measurement.

s(r, c, n) and s(r, c,m) are represented by a binary matrix Mn,m(r, c), defined as

Mn,m(r, c) =


1 if frame n and frame m are both static at pixel (r,c)

0 otherwise

As an example, Fig. 3.10 (a) and (b) show two sample images from a video se-

quence recorded inside an office building. The motion-free regions shown in Fig. 3.10

(c) are found by thresholding the pixel-wise differences of the pixel intensity between

the two images.

Using a strategy similar to that in Sec. 3.2.2, we apply a high-pass filter to

the video signal by subtracting from it a smoothened version of the original signal.

For an image frame s from the video sequence, we search for its mutual motion-

free regions against all the other frames. The pixel values of the frames in their

respective motion-free regions can be averaged to form a smooth version of s, which
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(a) (b) (c)

Figure 3.10: (a) Frame 1. (b) Frame 2. (c) Mutual motion-free regions are highlighted.

is then subtracted from s:

ŝ(r, c, n) =s(r, c, n)−

1∑
m6=nM

n,m(r, c)

∑
m 6=n

s(r, c,m) ·Mn,m(r, c) (3.12)

The row signal is obtained by taking the row average of ŝ, from which the

ENF signal can be estimated. We have conducted an experiment with a video

that records people walking in an office building’s hallway. The video used similar

settings as the experiments in Sec. 3.2.2. We use the proposed scheme to extract

the ENF signal from this test video. The reference ENF signal is also estimated

from a simultaneously recorded power signal. We observe from Fig. 3.11 that the

variation trends of the ENF signal estimated from the test video remain consistent

with those of the reference ENF signal.

In a second example, we made a video recording of a moving Hexbug toy in

a room with indoor lighting. The Hexbug is a robotic toy with fast movement,

powered by the vibrations of a built-in battery motor. Figure 3.12 shows several
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Figure 3.11: The ENF signal estimated from the test video matches well with the

reference ENF signal. The signals are properly shifted to facilitate comparison.

video frames. The ENF signals extracted from the Hexbug video and its reference

ENF signal from power mains are plotted in Figure 3.13 (a). They exhibit similar

variations, and a correlation peak is observed when they align, as seen from Figure

3.13 (b).

3.2.4 Brightness Change Compensation

Many cameras have a brightness control mechanism that adjusts the camera’s

sensitivity to light in response to the illumination conditions, so the overall bright-

ness of an acquired image remains visually pleasing. As an example, two images

from a video sequence are shown in Fig. 3.14. As the person in the second image is

closer to the camera, the background wall appears brighter than in the first image.
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Figure 3.12: Sample frames of the hexbug test video.

Such brightness changes introduce challenges to the estimation of the ENF signal

when using the techniques described in previous subsections.

To investigate how to mitigate he negative effect of brightness changes, we

have created the following recording: during the first four minutes, a person walked

around in a hallway relatively distant from the camera so the camera’s automatic

brightness adjustment was not triggered; after four minutes, the person moved closer

to the camera and brightness changes occurred, as shown in Fig. 3.14. The ENF

signal is extracted from this test video using the techniques discussed in previous

subsections without addressing the brightness changes. In Fig. 3.16, we observe that

the estimated ENF signal from the test video becomes distorted after four minutes

into the recording as a result of brightness changes.

We have examined the relationship of the pixel values in different images of

the same scene. For two images, we find the regions in which both images remain

static. Each pixel in the static regions is represented as a dot in Fig. 3.15, whose X

coordinate is the pixel value in image 1, and the Y coordinate is the pixel value in
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Figure 3.13: (a) The ENF signals extracted from the test video of the Hexbug and the

power measurement (appropriately shifted). (b) Correlation coefficient as a function of

relative time lag.

image 2. From the figure we observe that the brightness change can be well modeled

by a linear transform. Given two frames s(r, c, n) and s(r, c,m), we have

s(r, c, n) = an,m · s(r, c,m) + bn,m. (3.13)

For a frame s(r, c, n), the pixel values in the static background regions are used

to estimate the parameters an,m and bn,m. For brightness change compensation, we

apply Eq. (3.13) to each frame s(r, c,m). Eq. (3.8) then becomes

ŝ(r, c, n) =s(r, c, n)− 1∑
m 6=nM

n,m(r, c)
·

∑
m 6=n

(
an,m · s (r, c,m) + bn,m

)
·Mn,m(r, c) (3.14)

The described scheme was applied to the test video, and the result of ENF es-

timation is shown in Fig. 3.16. With our proposed brightness change compensation,

the ENF signal estimated from the test video now exhibits consistent variations with
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Figure 3.14: Two image frames from a test video recording demonstrating camera’s

automatic brightness control mechanism.

the reference ENF signal.

3.2.5 Camera Motion Compensation

In previous discussions, we have assumed that the camera is fixed during

recording so that the pixels in different image frames align spatially. In practice,

people may hold the camera by hand to make a video recording, so the camera

would undergo certain movement and the previously described methods may not

apply.

In order to address the situations with camera motions, we first consider

videos of static scenes. For two image frames s(r, c, n) and s(r, c,m), we denote

by (δn,mr , δn,mc ) the pixel-wise shift between them due to the camera motion:

s(r, c, n) = s(r + δn,mr , c+ δn,mc ,m). (3.15)

To compensate for the camera motion, we need to shift the pixels in two frames

relatively by (δn,mr , δn,mc ) so that they align spatially. The registered frames can be
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Figure 3.15: The relationship between the pixel values in static regions of two images

subject to brightness change.
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Figure 3.16: The effectiveness of the brightness change compensation technique. The

signals are properly shifted to facilitate comparison.
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processed as described in the previous subsections. Considering the camera motion

compensation, Eq. (3.8) becomes

ŝ(r, c, n) = s(r, c, n)− 1

N

N∑
m=1

s(r + δn,mr , c+ δn,mc ,m), (3.16)

and the ENF signal can be estimated from ŝ(r, c, n).

Optical flow methods can be used to estimate the pixel-wise displacement

between image frames. These methods calculate the motion field (Vr, Vc) between

two frames s(r, c, n) and s(r, c, n+δn) based on the optical flow equation ∂s
∂r
Vr+

∂s
∂c
Vc+

∂s
∂n

= 0, and certain additional conditions and constraints for regularization. In this

work, we have used the implementation of the optical flow estimation developed

by [36].

An experiment was conducted to verify the proposed camera motion compen-

sation scheme. We used the Canon PowerShot SX230 HS camera to record a video

of a hallway. The camera was hand-held during the recording, and we deliberately

manipulated the camera to create noticeable motion, as shown in the sample frames

in Fig. 3.17. If we ignore the camera motion, the spectrogram of the source signal

extracted from the test video exhibits blurry spectral energy distributions, as shown

in Fig. 3.18 (a). The ENF signal estimated from the test video without camera

motion compensation is shown in Fig. 3.18 (b), and it deviates from the reference

ENF signal. We then apply the proposed camera motion compensation to the test

video. The ENF signal estimated from the video signal after compensation matches

well with the reference ENF signal as shown in Fig. 3.18 (b).

If object motion occurs in the scene in addition to camera motion, we can
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Figure 3.17: Sample frames from a test video with camera motion.

apply camera motion compensation first to the image frames, then use the strategy

in Sec. 3.2.3 to locate and utilize the static backgrounds for extraction of ENF

signals.

3.3 Video Synchronization by Matching ENF from Image Sequence

In Chapter 2, we demonstrated video synchronization by aligning the ENF

signals extracted from the soundtracks of video clips. In certain scenarios, such as

some surveillance recordings, video recordings may have been muted or soundtracks

may have been edited, and thus have no reliable audio available. As an alternative,
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we may extract the ENF signal from the image sequence of the visual track using the

techniques described in Sec. 3.2. In this section, we present experimental results

of this approach.

We used two Canon PowerShot SX230 HS cameras equipped with CMOS

sensor and rolling shutter to video an office building’s hallway illuminated by an

indoor light. The cameras were placed to capture the hallway from different view

angles, and each recording is about eight minutes long. A person walked through

the hallway back and forth, and his movements were captured by both cameras.

We apply the methods discussed in Sec. 3.2 to estimate the ENF signals from

the image sequences of both video recordings. The NCC of the estimated ENF

signals as a function of the lags between them is plotted in Fig. 3.19 (a), from which

we find a peak NCC value of 0.96 at 60.72 seconds. The ENF signals after alignment

are shown in Fig. 3.19 (b), and we observe the variation patterns of the ENF signals

match well. In Fig. 3.19 (c), we show several image frames from the synchronized

video recordings. For comparison, we manually align the two videos by comparing

the image frames and the soundtracks in both video clips, and found the lag to be

60.80 seconds, which is close to the value obtained by the proposed approach.

3.4 Chapter Summary

In this chapter, we have studied the problem of extracting ENF traces from

videos. We have exploited the rolling shutter of CMOS imaging sensors and treated

each line as an ENF impacted signal sample in order to compensate for the low
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frame rate of video recordings. The rolling shutter mechanism was analyzed using

a filter bank model and multirate signal processing theory. Extraction of the ENF

signal from an image sequence present many challenges, and, to the best of our

knowledge, few research attempts have been made to adequately address it. We

have proposed several techniques to overcome the difficulties of extracting the ENF

signal from image sequences, such as the low sampling rate, object motions in the

scene, camera motions, and brightness change. Through our experiments, we have

demonstrated that video recordings can be accurately synchronized by aligning the

inherently embedded ENF signals.

In this chapter together with Chapter 2, We have demonstrated promising

results of video synchronization using the naturally embedded ENF signals in the

soundtracks and image sequences of video clips. As a prerequisite for this method,

the ENF traces available in the audio/video recordings must be strong enough for

reliable estimation. Through our current study and experiments, we find that this

prerequisite may not always be satisfied. The recordings may have been created

in an environment where the ENF traces are relatively weak. For example, audio

recordings created by recorders powered by batteries at locations far from electrical

equipment, and videos made in areas without any electric lighting would probably

not capture any ENF traces. Also, the embedded ENF signals may suffer distor-

tions. Most audio and video recorders apply compression to the output recordings,

and some strong compression artifacts may adversely affect the estimation of ENF

signals. For audio recordings made in loud environments, the strong foreground

sounds or voices may also bring distortions to the ENF signals.
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Most conventional methods of audio/video synchronization extract and match

certain audio and visual features from the contents of recordings. The approach pro-

posed in the paper does not rely on the audio or visual contents of the multimedia

signals, and therefore is fundamentally different from and complementary to exist-

ing work. The ENF-based approach and the audio/visual-cue-based approach may

complement each other and may be combined to solve the problem of multimedia

synchronization more effectively.
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Figure 3.18: Experiment of a video recording with camera motion. (a) The spectrogram

of the source signal without camera motion compensation. (b) The ENF signals estimated

from the test video. The signals are properly shifted to facilitate comparison.
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Figure 3.19: Example of video synchronization by aligning the ENF signals. (a) The

correlation coefficient of the ENF signals as a function of the relative lag between them. (b)

The ENF signals estimated from the two video recordings after alignment. The signals are

properly shifted to facilitate comparison. (c) Several sample frame pairs after alignment.

Rows correspond to video sequences, and columns correspond to time instances.
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Chapter 4

ENF Analysis on Historical Audio
Recordings

4.1 Chapter Introduction

ENF signal is embedded into multimedia recordings at the time of recording,

which leads to several interesting questions about the ENF traces in recaptured

audio recordings. If recapturing of recording happens in the region of the same

nominal ENF as the original recording, the ENF traces, due to the two recording

processes, may overlap with each other. How will such overlap affect the quality

of the ENF signal extraction? ENF signals in recaptured audio recordings may

contain two components: one is inherited from the original recording, referred to as

the content ENF signal; the other is embedded during recapturing process, referred

to as the original ENF signal. The original and recapturing ENF signals may have

different energies; the signal with a higher energy is referred to as the dominant ENF
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and the one with a lower energy as the latent ENF. The ENF signals in a recaptured

audio recording can provide useful information about the audio file in question, such

as when the original recording was created and when it was recaptured.

The question of ENF extraction in recaptured audio is relevant to analyzing

recordings of historical importance. For example, such historical recordings as NASA

Apollo lunar mission audio recordings [1, 2] and President Kennedy’s White House

conversations [9] were conducted in the analog era of 1960’s. These recordings

were recently digitized and made available online. Several interesting tasks can be

accomplished using such recordings. For example, multiple channels of NASA Apollo

mission recordings can be used to create a time synchronized exhibit of the mission.

As an ENF signal is time-varying, it can potentially be used to align multiple audio

recordings archived from such historical events. However, due to the digitization

process, the recordings available online may also have been affected by the ENF

signals corresponding to the time of digitization. To the best of our knowledge,

no prior work has addressed the effect of recapturing of audio recordings on ENF

signals.

As will be shown in this chapter, conventional ENF estimation techniques

can only extract the dominant ENF signal. This observation motivates us to design

algorithms to extract both the dominant and the latent ENF signals from recaptured

recordings. Audio recapturing can also be used as an “anti-forensic” strategy by

an adversary to alter ENF traces to mislead a forensic examiner, so developing

techniques to extract multiple overlapping ENF signals may also complement the

existing techniques to counter such anti-forensic operations [17]. In this work, we
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propose a decorrelation based algorithm to estimate both the dominant and the

latent ENF from a recaptured audio. After estimating the dominant ENF using

conventional ENF signal estimation techniques, a residual signal is computed by

subtracting the estimated dominant ENF signal from the original signal. The latent

ENF is then estimated from the residual signal.

Besides the possible superposition of multiple ENF traces, another distortion

of the ENF signals that is unique to digitized analog tape recordings is the “drifting

effect”. Due to mechanical imperfection of the analog recorders and tapes, the rolling

speed of these tapes often varies during recording and replay. The inconsistency

between the rolling speeds of original recording and playback during digitization

induces speed errors in the digitized audio. For example, if the tape rolls faster

during digitization than during the original recording, the digitized version of the

recording will play faster than normal. As a result, the ENF signal in a digitized

analog audio recording may deviate from its original value. In this work, techniques

have been proposed to compensate for such drifting effect to achieve accurate ENF

analysis. We also demonstrate that ENF signals suffering such drifting effect can be

exploited to detect and correct tape speed errors.

4.2 Distortions of ENF Signal in Historical Audio Recordings

4.2.1 Multiple ENF Traces in Recaptured Audio Recordings

As this work aims to analyze the ENF signals present in a recaptured au-

dio, we conduct the following experiment to test the robustness of ENF signals to
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recapturing. An audio is recorded in an office using a digital recorder. To simu-

late the conditions of recapturing, we play this recording on a stand-alone speaker

in an acoustic anechoic chamber and record the playback using a digital recorder.

Fig. 4.1(a) and (b) show the spectrograms of the original recording and the recap-

tured recording, respectively. From these figures, we observe that the ENF signal

is present at the harmonic frequency of 240 Hz in the original recording and the re-

captured recording. High correlation is observed between the ENF signals extracted

from the original and recaptured recordings around 240 Hz. When we switch-off the

replayed audio, the energy peak present at 240 Hz in the spectrogram of the recap-

tured audio recording disappears. This happens because no interference is present

from power lines at 240 Hz in the acoustic chamber. In this example, the content

ENF signals and the recapturing ENF signals do not interfere with each other.

In another example, Fig 4.2 (a) shows the spectrogram of a historical recording

from President Kennedy’s White House conversations, which are available at [9].

This recording occurred in 1962 on analog tape and was digitized later. From this

figure, we observe that two different ENF signals are present near 240 Hz, and one

of them (present around 239 Hz) disappears well before the end of audio. After

listening to the audio, we note that the original recording is turned off at this time.

We conjecture that the 239 Hz signal is the original ENF signal and the 240 Hz

signal is the recapturing ENF signal.

The two examples have demonstrated the case when the original ENF signal

and the recapturing ENF signal are non-overlapping. From such recordings, both

the ENF signal can be extracted easily by using suitable bandpass filters followed
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by conventional ENF estimation techniques around the frequency of interest. In less

favorable cases, however, the original ENF signal and the recapturing ENF signal

may overlap and interfere with each other. To illustrate this scenario, we conduct

a recording in the acoustic chamber and recapture it in the same place. As the

ENF signal in the same room is embedded from the electromagnetic influences of

the same power sources, the original ENF and the recapturing ENF are overlapping

at a frequency of 120 Hz. From the spectrogram of the recaptured audio shown in

Fig. 4.2 (b), we observe that for the duration of the playback of the original audio

on the speaker, the original ENF and the recapturing ENF overlap with each other

and the energy distribution of the spectrogram appears noisy. After the original

audio is switched-off, the ENF signal becomes cleaner as only the recapturing ENF

is captured.

Conventional ENF signal estimation methods extract dominant frequencies

in a narrowband around the frequency of interest (nominal ENF or its harmonics)

of a given signal. As the original ENF signal and the recapturing ENF signal in

recaptured recordings may overlap with each other at the same frequency range, the

conventional methods fail to extract both the ENF signals. To demonstrate this, we

generate two frequency sequences, Ed(t) and El(t), as following:

Ed(t) = 60 +Nd(t)

El(t) = 60 +Nl(t),

where Nd(t) and Nl(t) are drawn from i.i.d. Gaussian random processes of zero

mean and variance 0.1. Using these two signals, we generate a time domain signal
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(a)

Speaker Turned Off 

(b)

Figure 4.1: Spectrograms of the original and recaptured recordings. (a) original audio;

(b) recaptured audio

that varies according to the frequencies Ed(t) and El(t) as follows:

s(t) = cos(2π

∫ t

0

Ed(τ)dτ) +

√
α cos(2π

∫ t

0

El(τ)dτ) +N(t), (4.1)

where N(t) is a Gaussian random process of zero mean and unity variance, and α

is a constant with 0 ≤ α ≤ 1. We see from Eq. 4.1 that signal s(t) consists of

two sinusoids of different amplitudes with Ed(t) and El(t) being their instantaneous

frequencies at time t. Based on this model of s(t), Ed(t) is the dominant ENF signal

and El(t) is the latent ENF signal, as the energy of the sinusoid corresponding to

Ed(t) is greater than El(t). This model of signal s(t) is similar to when the original

ENF signal and the recapturing ENF signal overlap.

We use a weighted energy frequency estimation method to extract the ENF
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(a)

Original Recording  
Turned off 

(b)

Figure 4.2: Audio recording spectrograms. (a) digitized Kennedy conversation recording;

(b) recaptured audio signal with overlapping ENF signals.

signal from s(t). The spectrogram is computed for s(t), and the ENF for each time

bin is estimated by weighing frequency bins around the nominal ENF value (60Hz)

with the energy present in the corresponding frequency bins. We compute the nor-

malized cross-correlation (NCC) between the estimated ENF signal and the ground

truth frequency sequences Ed(t) and El(t), respectively. The experiment is repeated

multiple times with different realizations of Nd(t), Nl(t), and N(t). The mean and

the variance of the NCC values obtained for different values of α is shown in Fig. 4.3.

From this figure, we observe that when there is a significant difference between the

energy of the dominant ENF and the latent ENF, the correlation between the ex-

tracted ENF and the dominant ENF is high ( 0.6-0.7 range). However, as the energy

of the latent ENF signal increases, this correlation value decreases and becomes low

(< 0.3 for α close to 1). Similar results were obtained for other frequency estimations

methods, such as the subspace based MUltiple SIgnal Classification (MUSIC) and

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT).
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Our preliminary results also show that these subspace-based approaches can only

obtain reliable estimates when a sufficient margin between Ed(t) and El(t) exists.

This experiment on synthetic data verifies that the conventional ENF estimation

techniques fail to extract the overlapped ENF signals, which is usually the case

with recaptured audio recordings. In the following subsection, we describe a new

algorithm to extract both the dominant and the latent ENF from recaptured audio

recordings.
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Figure 4.3: The mean and the variance of the NCC values.

A Decorrelation-Based Solution

Our proposed algorithm to extract both the dominant and the latent ENF

signals in a recaptured audio works in two stages: first the dominant ENF is esti-

mated, followed by the latent one. As discussed earlier, the dominant ENF, denoted
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by Ed(t), in an audio s(t) can be estimated using conventional estimation techniques

such as the weighted energy method. After estimating Ed(t), we match it with the

reference ENF database from the power grid to estimate the time the dominant ENF

signal embedded in the recording. We then subtract the power signal corresponding

to the time of recording of the dominant ENF signal from the audio recording. As

the magnitude of power measurements and the actual embedding in the audio may

differ, the subtraction is performed by estimating the appropriate scaling factor of

the magnitude that makes the ENF signal of resulting audio signal ŝ(t) maximally

decorrelated with the ENF signal of the power recording corresponding to the time

of dominant ENF embedding estimated previously. More specifically, we have:

ŝ(t) =s(t)− â · P (t), with

â=argmin
a
{corr(ENF (s(t)− aP (t)), ENF (P (t)))} ,

(4.2)

where P (t) is the power measurement signal at time t, and â is the estimated mag-

nitude of the power. ENF (·) denotes the weighted frequency estimation function.

As can be understood from the equation, the selection of â is to search for the rel-

ative amplitude of the dominant ENF signal in the audio signal, with respect to

the power signal. Ideally, after the decorrelation process, the resulting signal ŝ(t)

is contains no traces of Ed(t). The ENF signal that remains in ŝ(t) would come

from the latent ENF signal, El(t). We estimate the latent ENF using the weighted

frequency estimation approach from ŝ(t).

To show the effectiveness of the proposed algorithm in extracting the dominant
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and the latent ENFs, we conduct experiments on audio data. An audio recording

was made in an acoustic anechoic chamber and recaptured later in the same place.

The power measurements were also recorded during the original recording and the

recapturing process. The original ENF and the recapturing ENF signals are present

around 120 Hz in this case. The ENF extracted directly from the recaptured audio

signal shows similar fluctuations with the ENF signal estimated from the power

signal at the time of the original recording (NCC 0.62), as can be seen from Fig.

4.4. The content ENF signal is, therefore, the dominant signal in this case. We

then decorrelate the recaptured audio by subtracting the estimated dominant ENF

signal, as discussed previously. The ENF signal in the power measurement record-

ing is centered around 60 Hz, so we transfer it to 120 Hz by squaring the power

signal and feeding it into a bandpass filter with a narrow passband around 120 Hz.

The processed power signal is used for decorrelation as in (3). The ENF signal

estimated from the decorrelated audio signal shows high correlation with the ENF

signal extracted from the power measurements at the time of recapturing (NCC

0.68). Both the original ENF and recapturing ENF are now successfully extracted

from the recaptured audio recording using the proposed decorrelation method. The

time of the original recording and recapturing can then be determined by comparing

the original ENF and recapturing ENF with the reference database obtained from

the power mains.
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Figure 4.4: ENF fluctuations as a function of time. (a) the ENF from the power measure-

ment signal at the time of the original recording; (b) the ENF from the power measurement

signal at the time of recapturing; (c) the dominant ENF estimated from the recaptured

audio recording; (d) the ENF estimated from the decorrelated audio signal.

Applications for Recapture Detection

Assuming that the reference measurements from the power grids are available,

the proposed decorrelation algorithm can be used for audio recapture detection, i.e.,

identify whether the given audio recording is original or a recaptured version. As

discussed earlier, two ENF signals are embedded in a recaptured audio recording.

The ENF signal estimated directly from a recaptured audio recording is the domi-

nant ENF signal Ed. After decorrelation, the latent ENF signal El can be extracted
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from the residue audio signal. When compared with the reference ENF database

measured from power mains, these two ENF signals should match different seg-

ments of the reference database, the time indices of which are denoted as Td and Tl,

respectively.

If the recording is original, Td and Tl are likely to be of similar values. In cases

where Td and Tl differ greatly, the peak correlation C, that is calculated between

the ENF signal estimation from the decorrelated audio signal and the reference

database, should be low since it is a false match. Under a hypothesis framework,

the H1 and H0 cases and the decision rule can be formulated as follows:
H1 : Test audio is recaptured.

H0 : Test audio is original.

1(|Td − Tl| > δ)× C
H1

R
H0

τ

Here 1(·) is an indicator function, and τ is a decision threshold.

We conduct the following experiments to evaluate the proposed audio recap-

ture detection scheme. Audio recordings were made in the acoustic chamber and a

conference room. Some recordings were then recaptured in the acoustic chamber by

playing on a speaker with variant volume. The total test dataset includes 8.5 hours

of original recordings and 16 hours of recaptured ones. The recordings are divided

into short clips of 10, 20, and 30 minutes duration, and each clip is considered a test

sample. We evaluate the false alarm rate and detection rate with different values of

τ to obtain the ROC curves, as shown in Fig 4.5. The detection accuracy increases

with longer clips. Specifically, when considering audio clips of 30 minutes, 95% of
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the recaptured clips are correctly identified without any false alarms.
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Figure 4.5: ROC for audio recapture detection with different clip lengths.

4.2.2 The Drifting Effect

Another challenge of dealing with digitized tape recordings is the “drifting”

effect. This effect refers to the phenomenon that the signal frequency in a digitized

analog audio recording may deviate from its original value. To demonstrate this,

we conducted the following experiment with a cassette tape recorder. We generated

a synthetic single tone acoustic signal of 400 Hz. We then made recordings of it

with the tape recorder and a digital recorder, respectively. The tape recording

was digitized by playing on a speaker and recording with a digital recorder in a

acoustic chamber. The spectrograms of the recordings are shown in Fig. 4.6. As we
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observe from the spectrograms, the digital recording captures the signal at almost

exactly 400 Hz, while the signal frequency of the digitized tape recording presents

random deviations from its original value. This effect occurs probably because that

the mechanical rolling speed of the tape recorder is not identical during recording

and playback. The signal presents at a higher frequency if the rolling speed during

playback is faster than that during recording, and vice versa.

(a) (b)

Figure 4.6: Demonstration of the drifting effect with a synthetic 400 Hz tone signal.

(a) Spectrogram of the digital recording; (b) Spectrogram of the digitized cassette tape

recording.

As the ENF signal has a relatively small dynamic range (less than 0.1 Hz

around 60 Hz), deviations caused by the drifting effect may have a large impact on

the estimation of ENF signals. In Fig. 4.7, the blue curve shows the ENF signals

estimated directly from the digitized tape recordings in our experiment. The ENF
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signals estimated from the simultaneous power measurements (shifted to the same

scale) is shown as the red curve in the figure. Due to the drifting effect, the audio

ENF signals cannot match well with the groundtruth power ENF signals.
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Figure 4.7: Compensating for the drifting effect.

We can compensate for the drifting effect if a reference tone signal of frequency

f t is available, as in our experiment (400 Hz). ENFd denotes the ENF signal

estimated directly from the digitized audio, and f td is the frequency of the tone

signal present in the recording. The adjusted ENF signal can be expressed as

ENFc =
ENFd ∗ f t

f td
(4.3)

In Fig. 4.7, the pink curve is the ENF signal after compensation, and it shows

similar trends as the groundtruth power ENF signal.
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The drifting effect is commonly seen among digitized historical recordings,

such as the tapes of the NASA Apollo mission. Fig. 4.8 shows the spectrogram

of a digitized Apollo Mission 11 audio recording. In the spectrogram, we can see

three strips, two of which exhibit the same variations. The other strip resides at

approximately 120 Hz. Based on previous subsection, we infer that the former

are the original ENF signals and the latter is the recapturing ENF signals from

the digitization process. The original ENF signals that originate from the analog

tape recording deviate from the nominal value of 120 Hz because of the drifting

effect. The discontinuity in the original ENF signals is caused by pauses during

tape recording or deletion of certain content during digitization.

Figure 4.8: The spectrogram of an Apollo Mission 11 recording.

Different from the previously discussed scenario, the reference tone signal is
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not available in those historical recordings. In some situations, the drifting effect

can be approximated well with a linear or piece-wise linear model. We provide an

example in Fig. 10. The ENF signals are extracted from two tapes in the Apollo 11

audio dataset [2] that were recorded at the same time. One of the recordings was

made in the Flight Directors (FD) loop, and the other one was made in the Public

Affair Officers (PAO) loop. These two recordings have been manually synchronized

based on conversational content present in both recordings. Given the drifting

effect, directly correlating the ENF signals from the two recordings fails to find a

true match, which should be at the lag of 0 seconds. We fit the ENF signals with a

piece-wise linear model, as illustrated in Fig. 4.9 (a). Fig. 4.9 (b) shows the residues

between the original ENF signals and their linear approximations as new timing

features, which exhibit consistent variation patterns over time. The correlation

coefficients with different lags are plotted in Fig. 4.10. We can see that before

the linear fitting and residue extraction, no correlation peak can be observed; and

the correlation between the residue signals successfully finds the proper temporal

alignment.

4.3 Audio Speed Restoration

4.3.1 ENF as a Guidance for Speed Correction

The mechanical rolling speed of an analog tape recorder and player is often

not well stabilized. As discussed in Sec. 4.2.2, when an analog tape recording is

digitized, the rolling speed of the tape playback likely to differ from that of the
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Figure 4.9: Using linear fitting to compensate the drifting effect. (a) The ENF signals

from the two recordings and their liner approximation; (b) The residue signals.

creation of the tape. As a result, a speed offset is induced in the digitized version

of the audio. Significant speed errors can sometimes affect the perceptual quality

of the audio recording. Even with minor speed error that may not be audible to

human ears, it is often desirable to perform speed correction. For example, many

old recordings have great historical and archival value, so the digitized version of

the recording should preserve the original audio as faithfully as possible. Certain

historical events were covered by multiple audio recordings [1, 2], and it would be

interesting to synchronize the recordings and play them simultaneously in multiple

channels. Speed errors may hinder such an application, as it is difficult to align

recordings that have unknown and different speed offsets.

As manual detection and correction of speed error in audio may be too costly

and inefficient in practice, an automatic solution is preferred. We have designed a
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Figure 4.10: Correlation coefficients between the ENF signals (upper) and their residue

signals (lower).

tape speed correction scheme exploiting ENF signals embedded in audio recordings.

As discussed in previous sections, the nominal value of the ENF is known

(60Hz in North America, 50Hz in most other parts of the world). The instantaneous

value of the ENF typically fluctuates around its nominal value as a result of the

interaction between power load and generation, and the deviation of the ENF from

its nominal value is usually minuscule given the control mechanism of the power

grid. For example, in the US the ENF deviation is typically less than 0.05Hz from

the nominal value of 60Hz, which is equivalent to about 0.08%. The ENF signal can
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be approximately considered as a single tone signal. If an original analog recording

has captured ENF traces during its creation, and such traces could be retained in

the digitized version of the recording, then we can exploit the ENF signal to detect

speed offsets. The ENF signal appearing at a frequency higher than its nominal

value indicates the audio speed is faster then normal, and vice versa. Further, the

ENF signal may serve as a reference signal to perform speed error correction.

A general diagram of the proposed scheme is plotted in Fig. 4.11. The given

audio signal is first divided into frames of unit length, and the ENF signal f is

extracted for every frame. We refer to each frame as an ENF frame hereafter. A

speed correction ratio is obtained as

r = f/f0, (4.4)

where f0 is the nominal value of ENF. Speed correction is then performed by tem-

porally stretching or compressing of the audio signal.

ENF Estimation 

Input Audio  
Signal 𝑓 

Correction ratio: 𝑟 = 𝑓 𝑓0  

Corrected Audio  
Signal 

Stretching/compression 

Figure 4.11: The diagram of the ENF-based speed correction scheme.

The values of ENF signal in adjacent ENF frames are likely to be different

from each other. This would cause a sudden speed change in the restored audio at
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the frame boundaries. To alleviate such artifact, each ENF frame is further divided

into several smaller chunks, referred to as correction frames. The ENF signal for

the correction frames are obtained via interpolation among the ENF signals of the

ENF frames. Therefore, the values of the ENF signal transit smoothly from one

ENF frame to the next, and each correction frame has its unique correction ratio

that differs slightly from its neighbors.

When choosing ENF frame size, a trade-off exists between the frequency esti-

mation accuracy and temporal resolution. The optimal amount of speed adjustment

of a recording may change quickly over time. Ideally the ENF frame should be as

small as possible to achieve satisfactory temporal resolution. However, accurate

frequency estimation requires that the ENF frame be of a certain length. Dividing

an ENF frame into several correction frames may provide an improved trade-off

between the frequency estimation accuracy and temporal resolution.

Within each correction frame, sample rate conversion is performed on the audio

signal so it becomes temporally stretched or compressed according to the correction

ratio r. Two methods of sample rate conversion are considered in this work, and

their performances will be analyzed and experimentally compared.

One of the most common strategy of rate conversion is up-sampling followed

by down-sampling [45]. The diagram of this scheme is shown in Fig. 4.12. The

correction ratio is converted to a rational number r = U
D

, with U and D being

integers. The audio signal first goes through an U -fold up-sampler which inserts

U − 1 zeros between every adjacent samples, followed by a low-pass filter. Then

a D-fold down-sampler retains 1 out of every D samples, and the output is the
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speed corrected audio signal. The low-pass filter between the up-sampler and down-

sampler replaces zeros in the up-sampled signal in interpolated values, and avoids

aliasing in the following decimation.

  U   D 

Up-Sampler Low-Pass Filter Down-Sampler 

Input Audio  
Signal 

Corrected Audio  
Signal 

Figure 4.12: Speed correction based on up-sampling and down-sampling.

In practice, the correction ratio may not be a rational number. In other cases,

U and D may be extremely large numbers resulting in extraordinary computational

and storage complexity. Therefore, approximations are applied and the values of U

and D are chosen as the smallest integers satisfying the following rule:

|U
D
− r| < δ · r, (4.5)

where δ is a pre-set parameter to adjust the trade-off between efficiency and preci-

sion.

Let f0, ft, f , fr denote the nominal value of ENF, the true value of ENF, the

observed value of ENF in the audio before correction, and the observed value of

ENF in the restored audio, respectively. From the discussion above, we have

r =
f

f0

;

r̂ = r + ∆r,
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fr =
f

rq
,

where ∆r is the rational approximation error introduced from Eq. 4.5. Assume that

the true value of ENF deviates from the nominal value by ∆f :

ft = f0 + ∆f.

The accuracy of the speed correction can be measured by

E = 1− fr
ft

= 1− f

r̂ · ft

= 1− α.

(4.6)

Here,

α =
f

r̂ · ft

=
f0 · r

(r + ∆r)(f0 + ∆f)

=
1

(1 + ∆r
r

)(1 + ∆f
f0

)

(4.7)

From Eq. 4.7, we can see that the accuracy of the speed correction is affected

by two factors: the deviation of the ENF signal from its nominal value (∆f) and

the approximation error in the correction ratio (∆r). The analysis above is based

on the assumption of perfect ENF estimation. If this assumption does not hold,

the speed adjustment is subject to additional distortion due to frequency estimation

errors.

The other sample rate conversion method is based on sample interpolation,

as has been used in [47]. The original audio signal is denoted by s[n], n = 1, 2, ....
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With a given correction ratio r, the ideal corrected audio signal is sopt = s[r · n].

Here, r may be an arbitrary positive real number, so the product of r and n is likely

not an integer. For a non-integer x, the value of s(x) can be obtained with nearby

samples at integer indices using interpolation. In this work, we demonstrate this

idea with a simple linear interpolation method. Assume the largest integer that is

less or equal to x is bxc = k. With a linear interpolation as illustrated in Fig. 4.13,

s(x) is determined by

s(x) = w1 · s(k) + w2 · s(k + 1),

where w1 = k + 1− x, and w2 = x− k.

k k+1 x 

s(k) 

s(k+1) 

s(x) 

Figure 4.13: Linear interpolation for tape speed adjustment.
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4.3.2 Experiments and Examples

Experiments have been conducted in order to evaluate the proposed audio

speed correction approach and compare the two sample rate conversion methods.

Audio recordings are created using a digital recorder in an office, and a synthetic tone

signal of 400 Hz is generated during the recording. The speed of the recordings are

then intentionally altered following random patterns via stretching and compressing

of the audio signals. We extract ENF signals from the altered audio recordings and

apply the proposed speed correction approach. Frequency analysis is performed on

the audio signals before and after correction. The synthetic signal of 400 Hz provides

a way of measuring the speed correction accuracy. If the audio speed is perfectly

restored, the tone signal should appear at exactly 400 Hz.

A total of 100 tape recordings are used in our experiment, each being about

five minutes long. The proposed speed correction approach is applied to all the

audio signals using both rate conversion methods. The size of the ENF frame and

correction frame are set as four seconds and one second, respectively. The ENF

signals for the correction frames are obtained by linear interpolation of the ENF

estimates of the ENF frame.

Fig.4.14 shows the spectrogram of an audio signal before speed restoration.

Both the tone signal and the ENF signal have been distorted by the tintometric

tampering with the audio speed. Fig.4.15 shows the spectrogram of the audio signal

after speed restoration. Our approach is effective, and the tone signal is resorted

close to its ground truth value.
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(a) (b)

Figure 4.14: The spectrogram of a test audio before correction. (a) The 400 Hz tone

signal. (b) The ENF signal.

The effectiveness of the speed correction is measured by the closeness of the

observed tone signal to its groundtruth value of 400 Hz. The restored audio signal

is divided into frames of four seconds, and the dominant frequency around 400 Hz

in the ith frame is estimated as tone(i), i = 1, 2, ..., N . The overall speed correction

error is defined as root-mean-square-error (RMSE) of tone(·):

e =
1

N

N∑
i=1

√
(tone(i)− 400)2. (4.8)

Two rate conversion methods are tested in the experiment: re-sampling with

up-sampler and down-sampler, and interpolation. For the re-sampling method, the

error correction ratio is converted to a rational number, according to Eq. 4.7, in order

to avoid excessive computational and memory cost. The average values of RMSE of

the tone signal over all test audio clips are calculated and listed in Table 4.1, along

with the average time needed for restoring a test audio clip with our implementation.
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(a) (b)

Figure 4.15: The spectrogram of a test audio after correction. (a) the 400 Hz tone signal.

(b) the ENF signal.

The experimental results demonstrate that the accuracy of speed restoration with

the re-sampling method is improved using smaller approximation threshold δ, at the

price of more the computational cost. The interpolation method for rate conversion

generally outperforms the re-sampling method in both accuracy and efficiency, and

therefore is chosen as the default method in the experiments in this chapter.

We have also conducted experiments to test the speed correction accuracy

under different settings of values of ENF frame size Le and correction frame size

Lc. The results are listed in Table 4.2, from which several observations can be

made. The speed offset of the audio may change quickly over time. Within each

correction frame, a constant correction ratio is used to stretch or compress the audio

signal. It is therefore desirable to adopt small correction frames to improve the speed

correction accuracy. As for the size of ENF frame, it should not be either too large
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Table 4.1: Comparison of the speed correction error using different rate conversion

methods.

Rate conversion method average RMSE average time (sec.)

re-sampling with δ = 0.01 1.81 1.04

re-sampling with δ = 0.005 0.83 1.74

re-sampling with δ = 0.001 0.15 1039

interpolation 0.12 0.103

or too small. A single dominant frequency value is estimated for each ENF frame,

so the ENF frames should be reasonably short to adapt to the evolvement of the

ENF signal over time. however, the number of samples in each ENF frame needs to

be sufficient for reliable frequency estimation.

At the end of this section, we demonstrate the application of the proposed

speed correction approach for restoration of certain digitized Apollo 11 recordings.

The Apollo 11 mission, operated by NASA, had the objective to perform a crewed

lunar landing and return to Earth. The mission launched on July 16, 1969, and

finished on July 24, 1969. On July 20, the mission completed the first-ever human

lunar landing. During the mission, a large amount of audio recordings were recorded

of the communications among the crew of the spacecraft and the mission control

staff. These recordings, made as historical documentation during the mission, were

recorded on analog equipment that is now obsolete. When digitizing the recordings,
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Table 4.2: Comparison of the speed correction error using different sizes of ENF

frame (Le) and correction frame (Lc).

Le \Lc (sec.) 1 2 4 6 8

1 0.66

2 0.17 0.19

4 0.12 0.14 0.21

6 0.16 0.18 0.23 0.30

8 0.22 0.23 0.27 0.33 0.40

these machines no longer operate at the correct speed even under optimum circum-

stances. In some extreme cases, the tape is so greatly off speed that the recorded

speech becomes unintelligible. Speed correction is therefore needed to preserve these

tapes of tremendous archival value.

The spectrogram of a sample recording with serious speed offset is shown in

Fig. 4.16 (a). From the figure, we observe the capture of ENF traces around 60

Hz. The value of the ENF signal decreases gradually to as low as 45-50 Hz in the

earlier part of the recording, and then returns to close to 60 Hz through to the end.

The proposed speed restoration scheme is applied on this recording using the ENF

signals estimated around 60 Hz that is shown in Fig. 4.17 (a). The spectrogram and

the estimated ENF signal from the audio after restoration is shown in Fig. 4.16 (b)

and Fig. 4.17 (b), respectively.
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(a) (b)

Figure 4.16: The spectrogram of an Apollo mission control recording before and after

speed correction. (a) Before speed correction; (b) After speed correction.

One way of measuring the speed correction accuracy with the Apollo recordings

is to examine the Quindar tones in the audio. The Quindar tones have been used

in Apollo Missions for Mission Control to simulate the action of the push-to-talk

(PTT) and release-to-listen button. Two tones exist as pure sine waves that were

250 ms long but at slightly different frequencies around 2500 Hz. The “intro tone”

is generated at 2525 Hz and signals the keypress of the PTT button that un-mutes

the audio. The “outro tone” is generated at 2475 Hz and signals the release of the

PTT button that mutes the audio.

Most Quindar tones sound loud and clear in the recording, resulting in a high

signal to noise ratio. Their frequency therefore can be accurately estimated. The
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Figure 4.17: The ENF signal extracted from a Apollo mission control recording, (a)

before and (b) after speed correction.

amount of deviation of the Quindar tones from their nominal values indicates the

level of speed offset in the audio. For the audio clip whose spectrogram is shown in

Fig 4.16 (a), Quindar tones’ frequencies before and after speed correction is shown

in Fig. 4.18. The frequencies of the Quindar tones in the original audio during the

first 400 seconds are generally much lower than the nominal values of 2525 and 2475

Hz. The worst one is at about 2050 Hz, which is more than 17% lower than the

nominal value. A measurement of the Quindar tone deviation can be defined in the

following form:

dQ =

√√√√ 1

n

n∑
i=1

(Qi − 2500)2,

where Qi is the frequency of the ith of a total of n Quindar tones. The Quindar

tone deviation in the original audio is 176. After restoration, the offset of the
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Quindar tone frequencies is reduced, as can be seen from Fig. 4.18, and the Quindar

tone deviation decreases to 60.8. This demonstrates that our proposed approach is

effective in reducing the speed offset.
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Figure 4.18: The Quindar tones in an Apollo Mission recording before and after restora-

tion.

As indicated by the Quindar tone deviation, although the speed offset is re-

duced, the audio speed is not perfectly recovered. This is because that the ENF

signal cannot be well estimated. Two factors contribute to this issue. First, from

the spectrogram we observe that the ENF traces in the recording spread to a wide

frequency strip, hindering accurate estimation of the dominant frequency. Second,

it can be inferred from the Quindar tones in Fig. 4.18 that the speed offset of this

recording changes quickly with time: some of the Quindar tones that occur close in
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time have very different frequencies. As a result, the value of the ENF signal in the

recording also changes quickly. As the frequency estimation must be performed on

an ENF frame of sufficient length, the temporal resolution of the ENF estimation

is not sufficient to cope with such fast changes.

4.4 Chapter Summary

In this chapter, we studied the ENF analysis on recaptured audio recordings.

As ENF signal is embedded into multimedia recordings at the time of recording,

multiple ENF traces may exist in a recording that has been recaptured. If the

recapturing of the recording is performed in the region of the same nominal ENF as

the original recording, the ENF traces of the two recording processes may overlap.

Conventional frequency estimation methods may fail in such situations. We propose

a decorrelation based algorithm to estimate multiple ENF signals from a recaptured

audio in a sequential order, assuming that the power measurements are available as

reference.

ENF extraction from recaptured recordings are relevant to analyzing digitized

old recordings of historical importance. Many audio recordings that record historical

events and conversations were created using analog recorders. These recordings are

often digitized to facilitate preservation and transmission of the audio. During the

digitization, a new ENF signal may be captured. A particular distortion for the ENF

signal in digitized audio recordings is the drifting effect. It refers to the phenomenon

that the value of the ENF in a digitized analog audio recording may deviate from
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its original value. The mechanical rolling speed of analog tape recorder and player

is often not well stabilized. When an analog tape recording is digitized, the rolling

speed of the tape is likely to differ from that of the tape’s creation. As a result,

a speed offset is induced in the digitized version of the audio, causing the drifting

effect.

We propose to correct speed error of digitized audio recording using ENF as

a reference signal. The ENF signal fluctuates minimally around a known nominal

value. It therefore can be considered as a single tone signal. The ENF signal

appearing at a frequency higher than its nominal value indicates the audio speed

is faster then normal, and vice versa. Speed error correction can be performed by

stretching or compressing the audio signal according to the amount of deviation of

the ENF signal. The proposed method has been applied to audio recordings from

the NASA Apollo 11 Mission, and it has been shown to be effective.
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Chapter 5

Quality Evaluation of Image Features for
Efficient and Robust Spatial Alignment

In the previous chapters, we have discussed audio/video synchronization that

presents a fundamental task for applications involving multiple pieces of audio-

visual data, such as video panorama, 3D reconstruction, and video superresolution.

Spatial alignment of images and video frames, which is often performed together

with or following synchronization, is another essential alignment problem for these

applications. Spatial alignment is also useful for identifying common objects in

images, facilitating such applications as image retrieval. Local image feature offers

one of the most successful and popular methods for visual matching of images. In

this chapter, we investigate feature quality evaluation for efficient and robust spatial

alignment of images/video frames.
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5.1 Chapter Introduction

5.1.1 Motivation

With the rapid growth of storage capacity and the development of manufac-

turing technologies, digital cameras are becoming ubiquitous, and the quantity of

digital images is increasing drastically. The existence of common objects in these

images have motivated research in content-based image retrieval (CBIR). Given a

query image, the goal is to retrieve from a large database the images containing

the same object or scene as in the query image. CBIR can be useful in scenarios

including landmark recognition, direction aid for tourists, and CD/book automatic

annotation. A special application of CBIR is mobile visual search [26], in which

users can use their phone cameras to take a picture of an object, such as landmarks,

and send the picture or the extracted image features via broadband data connec-

tions to a server. The server then conducts image retrieval and object recognition

to identify the object in the picture and send desired information about the ob-

ject, such as annotations, back to the user. Examples of commercial products in

this category include Google Goggles [3], Nokia Point and Find [4], and Amazon

SnapTell [5]. Mobile visual search poses unique challenges. The retrieval process

must be conducted within stringent memory, computation, power, and bandwidth

constraints. The communication and processing latency should be minimized to

ensure satisfactory user experience. This means that the size of data transmitted

between the mobile client and the server should be as small as possible, and the
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image retrieval should be as computationally efficient as possible.

Most of state-of-the-art solutions for CBIR are built on the usage of local

image features. In the local feature framework, interest points are first selected

as distinctive and robust points in the image by a key point detector. Next, a

robust feature descriptor is generated using the information within the neighborhood

of the interest point. The images may have gone through different lighting and

viewing conditions, so desirable features should be robust to various distortions.

Among all the proposed local image features [40, 52], the Scale-Invariant Feature

Transform (SIFT) [38] is regarded as a seminal work given its robustness. The

interest points used in SIFT are extrema in the Difference-of-Gaussian scale space,

and the descriptors are vectors consisting of the histograms of the weighted gradient

orientations in a local patch around every interest point. The histogram is calculated

on a 4-by-4 block for 16 such blocks in the neighborhood of the interest point.

Each histogram has 8 bins covering 360 degrees, giving a SIFT descriptor of 128-

dimension. The patches are orientation and scale normalized, so SIFT is resilient

to rotation and scaling variations.

A query image can be matched against an image database by computing the

pair-wise distances between the SIFT descriptors. However, this scheme is computa-

tionally expensive for large corpora and does not scale well. To cope with large-scale

databases, a visual dictionary-based Bog-of-Words (BoW) approach has been pro-

posed by Sivic and Zisserman [55]. The idea is to quantize image features into a

set of visual words as a codebook by using k-means clustering on many training

features. A given feature can be mapped to its nearest visual word among the code-
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book. The images are then represented by the frequency vector of the visual word

occurrences. The similarity between two images is usually measured using the L1 or

L2 distance between their visual word frequency vectors. During a query, the simi-

larity score can be computed efficiently by using an inverted file system associated

with the database. To improve the retrieval accuracy, Nister and Stewenius use the

hierarchical k-means clustering to generate a vocabulary tree for a much larger BoW

codebook [43]. Alternatively, Philbin, et al., propose approximate k-means utilizing

randomized k-d trees to achieve a better partition of the descriptor space [48]. Other

extensions of this approach include query expansion [18], hamming embedding [34],

and soft quantization [49].

The visual dictionary-based approach has proven to be significantly more effi-

cient than contentional methods. Much of the computational gain comes from the

inverted file system that decreases the fraction of images in the database that need

to be considered for computing the similarity scores. In order to expedite the re-

trieval process, the visual world frequency vector of each image should be as sparse

as possible so that the number of image hits is minimized. To achieve efficient and

accurate retrieval, it is desirable to select from among all available features a sub-

set of the most reliable and informative features to represent each image. Feature

selection is especially beneficial to mobile visual search for which communication

and processing latency should be minimized to ensure satisfactory user experience.

As bandwidth is a limited resource in wireless communications, smaller number of

features help reduce the data transmission load and communication latency between

the mobile client and the server. The computational complexity of image retrieval
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is significantly reduced with fewer, yet more resilient, features. Not only does this

reduce the server side processing latency, it also potentially enhances the search

performance. Another possible benefit of feature selection is smaller feature storage

cost which keeps the size of the feature database feasible for large-scale applications.

In this work, we focus on designing a scheme to evaluate the quality of SIFT

features in terms of their robustness and discriminability. A quality score is assigned

to every SIFT feature based on its contrast value, scale, and descriptor, using a

quality metric kernel that is obtained in a one-time training phase. The quality

score predicts how the usefulness of a SIFT feature is in describing certain object or

scene. Feature selection can be performed by retaining features with high quality

scores. We also show the proposed methodology can be generalized and applied to

other local image features, such as SURF.

5.1.2 Related Work

Several techniques proposed in recent years have the potential to improve the

efficiency and accuracy of feature matching for image alignment and retrieval. Tur-

cot and Lowe [62] considered multi-view scenarios and proposed to select only a

small subset of useful image features to reduce the number of visual descriptors and

also improve the recognition accuracy. Their method is based on an unsupervised

pre-processing step to retain descriptors that are geometrically consistent across

multiple views. The descriptors are ranked according to the time of appearances in

the training images, and the top ones are retained. This method was improved in
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both speed and accuracy by Naikal, et al., [42] by using sparse Principal Component

Analysis (PCA). Fritz, et al., [21] present an information theoretic feature selection

framework by employing the selection criteria of H(O|f) < λ. Here λ is a threshold,

and H(O|f) is the estimated conditional entropy of the object O given the feature

f , defined as H(O|f) = −
∑

k P (Ok|f)log(P (Ok|f)); P (O|f) is the conditional dis-

tribution of the object class variable O given that feature f comes from O, and

this distribution can be estimated from the feature matching results of the training

images. Further, Baheti, et al., [10] associate each descriptor to a weight factor that

represents the relative importance of the feature in the database. They devise a

three step approach of feature pruning, including intra-object pruning to remove re-

dundancies between the views of the same object, inter-object pruning to retain the

most informative features across different objects, and keypoint clustering to fur-

ther reduce the number of features. Feature descriptor compression [15, 16, 26] has

also been proposed for compact storage and reduced network transmission. SIFT

descriptor can be compressed to around 2 bits per dimension with almost no per-

formance degradation.

The feature selection method presented in this paper works by assigning a

quality score to every individual image feature and retaining the features with the

highest scores. This scheme is not as database-specific as some of the existing

methods. It can also be potentially combined with state-of-the-art techniques.
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5.2 Quality Evaluation of SIFT Features

5.2.1 Definition of Quality Metric

Useful features should provide true matches more frequently than generate

false matches. A natural way of measuring the quality of features is to analyze their

behaviors statistically. In [57], we estimate the probability of true match and false

match of SIFT features and use them as quality metric. We apply vector quantiza-

tion to the 128-dimension SIFT descriptor space to generate a set of visual words.

SIFT features are extracted from many training images and assigned to their nearest

visual words. The training images then undergo certain synthetic transformations,

such as rotation and blurring. Feature matching is conducted between every pair of

original and transformed images. Since the transformation is synthetic, the ground

truth of point correspondence is known. If n features exist in a certain visual word

bin, and nt of them are correctly matched while nf of them are falsely matched,

then the probabilities of true match and false match are estimated as nt
n

and
nf
n

.

The quality score of the features f belonging to this visual word bin can be defined

in the form:

Q(f) = Rtrue(f)− αRfalse(f), (5.1)

where Rtrue(f) and Rfalse(f) are the true match rate and false match rate respec-

tively, and α is a weighting parameter. Note the sum of Rtrue(f) and Rfalse(f) is

not necessarily 1 because some features may not be matched to any other features

at all. A simplified assumption for this method is that features with descriptors
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quantized into the same visual word are of the same quality.

Fig. 5.1 shows an example of using the approach in [57] to prune SIFT features.

The left figure shows the direct SIFT feature matching between the template image

and an image containing the same object in the red circle, where many of the matches

are incorrect. The right figure shows the matching result when using only those with

good quality scores. Almost all false matches are eliminated while retaining all true

matches.

Several heuristics to identify desirable SIFT features exist, such as selecting

features with highest contrast value or largest scale [39,62]. The contrast value refers

to the keypoint’s response to the Difference-of-Gaussian filter at its characteristic

scale. These empirical rules may also provide useful information for evaluating

feature quality. In the following sections, we extend the work in [57] by incorporating

contrast and scale information, and apply learning techniques to form a feature

quality metric kernel. The whole contrast-scale-descriptor space is quantized into a

set of bins, and each bin is characterized by its contrast quantization index, scale

quantization index, and visual word index. We then analyze the statistical behavior

of the features in each bin. We refer to the scale-contrast-descriptor space as the

feature space.

5.2.2 Soft Quantization in Feature Space

The feature space quantization is necessary to make the feature quality evalu-

ation feasible. Instead of assigning a quality score to every possible feature, we only
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(a)

(b)

Figure 5.1: Comparing SIFT feature matching with and without feature pruning. The

query object is shown on the left and the image containing the query object in the red circle

is shown on the right. Figure (a) demonstrates matching result using all the extracted

SIFT features; (b) demonstrates matching result using only selected features. The figures

are best viewed in color.

need to deal with a limited number of feature space bins. However, the quantization

provides only a relatively coarse approximation to the actual points in the feature

space. The quality evaluation accuracy may be affected by quantization, especially

for the features that fall near quantization boundaries. To alleviate the negative

impact of quantization, we employ the soft quantization strategy, as in [49]. Instead

of a hard quantization where a feature is assigned to a single bin in the feature
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space, the soft quantization mechanism maps each feature to a set of weighted bins.

The weights assigned to the bins can be determined by the distances between the

feature point and the bin centroids. An exponential weighting is adopted in this

paper.

Consider a SIFT feature f with scale Sf , contrast value Cf , and descriptor

vector Df . Suppose that (ScennS , C
cen
nC
, Dcen

nD
) is the feature space bin centroid cor-

responding to the nS-th scale level, the nC-th contrast level and the nD-th visual

word, where nS ∈ {1, 2, ..., NS}, nC ∈ {1, 2, ..., NC}, and nD ∈ {1, 2, ..., ND}, for

a total of NS, NC and ND quantization levels for scale, contrast, and descriptor,

respectively. We denote (ScennS , C
cen
nC
, Dcen

nD
) by (nS, nC , nD) in the following. The

indices of the KS nearest neighbors of Sf among {ScennS |nS ∈ {1, 2, ..., NS}} are de-

noted as {ISt |t = 1, 2, ..., KS}, i.e., the t-th nearest neighbor of Sf is Scen
ISt

. Similar

notations are defined for the nearest neighbors of Sf and Df (in L-2 distances).

{ICt |t = 1, 2, ..., KC} and {IDt |t = 1, 2, ..., KD} are the nearest neighbor indices of

Sf and Df , respectively.

For hard quantization, f is assigned to a single feature space bin (IS1 , I
C
1 , I

D
1 ).

With the soft quantization strategy, f is mapped to a set of KS ·KC ·KD nearby

bins that are closest to (Sf , Cf , Df ), denoted by {ISt1 , I
C
t2
, IDt3 |t1 = 1, ..., KS, t2 =

1, ..., KC , t3 = 1, ..., KD}. We assign different weights to each bin according to the

distance between the feature point and the bin centroids. Denoting the L2 distance
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as d(·, ·), the weight assigned to bin {ISt1 , I
C
t2
, IDt3 } is

w(ISt1 , I
C
t2
, IDt3 ) = αS · exp(−

(d(Sf , S
cen
ISt1

))2

σ2
S

)

×αC · exp(−
(d(Cf , C

cen
ICt2

))2

σ2
C

)

×αD · exp(−
(d(Df , D

cen
IDt3

))2

σ2
D

)

= wS(ISt1) · wC(ICt2) · wD(IDt3 ), (5.2)

where σS, σC and σD are tunable parameters. αS, αC and αD are normalization

coefficients defined as

αS =

[ ∑
t=1,2,...,KS

exp(−
(d(Sf , S

cen
ISt

))2

σ2
S

)

]−1

,

αC =

[ ∑
t=1,2,...,KC

exp(−
(d(Cf , C

cen
ICt

))2

σ2
C

)

]−1

,

αD =

[ ∑
t=1,2,...,KD

exp(−
(d(Df , D

cen
IDt

))2

σ2
D

)

]−1

. (5.3)

The weights assigned to the bins that are not among the feature point’s nearest bins

can be thought of as 0. It can be shown that the sum of the weights across all the

bins is unity:

NS∑
t1=1

NC∑
t2=1

ND∑
t3=1

w(t1, t2, t3)

=

NS∑
t1=1

NC∑
t2=1

ND∑
t3=1

wS(t1)wC(t2)wD(t3)

=

(
KS∑
t1=1

wS(ISt1)

)(
KC∑
t2=1

wC(ICt2)

)(
KD∑
t3=1

wD(IDt3 )

)
= 1. (5.4)
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5.2.3 Kernel Training and Quality Assessment

In this subsection, we explain how we integrate the techniques discussed above

to form and utilize the SIFT feature quality metric kernel.

Quality Metric Kernel Training

To begin, we collect a set of representative sample images covering various

scene types and categories as training images, and extract SIFT features from these

training images. We then randomly select a subset of these features to estimate

the quantization centroids for scale, contrast and descriptors, using K-means and

Lloyd’s algorithm. The numbers of quantization levels for each dimension, i.e., NS,

NC and ND, are determined empirically. The feature space is thus divided into bins

that are indexed by their scale, contrast, and visual word indices. Then, we apply

soft quantization to the features from the training images according to equation (2).

The quantization weights are aggregated into a 3-dimension table Ntotal:

Ntotal(t1, t2, t3) =
∑

all features

w(t1, t2, t3), (5.5)

where t1 ∈ {1, 2, ..., NS}, t2 ∈ {1, 2, ..., NC} and t3 ∈ {1, 2, ..., ND}. We then con-

duct synthetic transformations of interest to the training images, and match SIFT

features between every original and transformed image pair. The matching results

for each feature from the original images are recorded. Ntrue and Nfalse are used to

store the weight aggregates of each feature space bin corresponding to correctly and
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falsely matched features, respectively:

Ntrue(t1, t2, t3) =
∑

correctly matched features

w(t1, t2, t3),

Nfalse(t1, t2, t3) =
∑

falsely matched features

w(t1, t2, t3). (5.6)

The quality metric kernel can be established using the three tables above:

Qker(t1, t2, t3) =
Ntrue(t1, t2, t3)− α ·Nfalse(t1, t2, t3)

Ntotal(t1, t2, t3)
, (5.7)

where α is a parameter adjusting the weights between the true match rate and false

match rate.

Quality Assessment

Given a SIFT feature f , we compute its quality score using the quality metric

kernel. We first soft-quantize f to obtain the weights for each bin in the feature

space according to equation (2), denoted by wf (t1, t2, t3). Then its score is calculated

as the dot product of wf (t1, t2, t3) and the quality metric kernel Qker:

Q(f) =

NS∑
t1=1

NC∑
t2=1

ND∑
t3=1

wf (t1, t2, t3) ·Qker(t1, t2, t3). (5.8)

Features with higher quality scores are more desirable.

5.3 Experiment Results

5.3.1 Implementation and Experiment Setup

We collect about 40000 images from Flickr, covering various scene types and

categories, as the training dataset. The resolution of these images is generally around
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500-by-300. Some sample images are shown in Fig. 5.2. This dataset provides about

20 million SIFT features using the VLFeat SIFT implementation [65]. The number

of quantization levels are chosen as Ns = 10, Nc = 10, Nd = 4096. 8000 images are

randomly selected as the training images for estimating the quantization centroids

and boundaries. We employ efficient hierarchical K-means to generate the visual

word codebook. The transformations used for the quality metric kernel training and

the corresponding parameters are listed in Table 5.1. The matching results between

the original images and their transformed counterparts are used to learn the feature

quality metric kernel as previously discussed. The parameters in Eq. 5.2 are set as

σ2
S = 2, σ2

C = 2, σ2
D = 10000. The number of nearest neighbors for scale, contrast,

and visual word are chosen as KS = 2, KC = 2, KD = 10, respectively.

Figure 5.3 provides an example of feature selection on an image from the

University of Kentucky Benchmark dataset [43]. The location of the features are

indicated by the center of the red circles, and the radius of the circles are proportional

to the feature scale. The first figure shows all the SIFT features extracted from

the image. The other three figures demonstrate the features selected with highest

quality score, largest scale, and highest contrast value, respectively. The example

shows that the proposed quality score captures more informative and representative

features than the other empirical schemes.
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Table 5.1: List of transformations used in quality metric kernel Training

Transformation Parameter Value

Rotation Rotation Angle 15, 30, 45, ..., 165

JPEG Quality factor 80, 70, ..., 10

AWGN Noise variance 0.01, 0.02, 0.03, 0.04

Average Filter Filter size 3, 5, 7, 9

Gaussian Filter Filter variance 0.5 1.0 , ... 3.0

Median filter Filter size 3, 5, 7, 9

Histogram Output level 256, 128, 64, 32

equalization numbers
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Figure 5.2: Sample images in the training dataset. The training dataset consists of

around 40,000 images that are crawled from Flickr, including categories such as aircraft,

cars, rocks, trees, etc.

5.3.2 Feature Selection Performance

To demonstrate the effectiveness of the proposed SIFT feature quality metric

as a tool for selecting useful features, we conduct experiments on three datasets: the

University of Kentucky Bechmark, the Oxford Buildings Dataset, and the INRIA

Holidays Dataset. These are popular datasets in the literature and are often used as

benchmarks for image retrieval. The three datasets are of different scales (10K, 5K,

and 1.5K, respectively), and also provide a wide variety in terms of image content.
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(a) (b)

(c) (d)

Figure 5.3: Comparing different feature selection schemes. (a) shows all the SIFT features

extracted from the sample image; (b) shows the top 20 features with the highest quality

scores; (c) shows the top 20 features of the largest scales; (d) shows the top 20 features

with the highest contrast values. The features shown in red circles are best viewed in

color.

The University of Kentucky Benchmark

The University of Kentucky Benchmark (UKB) [43] dataset consists of 10200

images of 2550 objects such as shoes, bottles, and CD covers. Each object is rep-
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resented by 4 640×480 images from different viewpoints. The most popular per-

formance metric for this database is the average top. Each image is employed as

a query, and the perfect result provides all 4 images of the query object (including

the query image itself) as top returned images. The average top is defined as the

average number of correctly matched images that are in the top 4 returned images,

taken over all possible query images.

We use the BoW approach in the experiments, and the vocabulary is obtained

using the Hierarchical K-Means (HIK) method [43] with 1 million cluster centers. N

SIFT features are selected to represent each image, and these features (10200×N)

are assigned to their corresponding visual words. The similarity between images

is measured with the tf-idf weighted scalar product between the frequency vectors

of the visual word occurrences. An invert file system is built to facilitate efficient

calculation of the similarity scores.

It is desirable to achieve a satisfactory average top score with the number of

features N being as small as possible for efficient retrieval. Determining the best

method of choosing the representative features for every image presents the key

problem. With the proposed quality metric, we can calculate the quality scores of

the SIFT features and choose the features with the highest scores. To show the

effectiveness of our approach, we compare it with several other empirical feature

selection schemes such as picking features with the largest scales or the highest

contrast values. The average top scores under different settings of N are plotted in

Figure 5.4.

In Fig. 5.4, the magenta curve with triangle symbols corresponds to the method
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Figure 5.4: Average Top Scores on the UKB dataset using different feature selection

schemes.

proposed in [57], where the quality metric is established considering only the de-

scriptor information using hard quantization with 4096 visual words. The blue curve

with cross symbols and the green curve with circle symbols show the performance

of selecting by large scale and selecting by high contrast value, respectively. The

red curve shows the performance using the proposed feature selection method (with

α = 0). The figure shows that the feature selection scheme, based on our proposed

feature quality score, achieves superior performance when compared to other em-

pirical methods, especially with smaller values of N , when the selection of useful

feature is more crucial. Typically, a 20% saving of feature number can be obtained

to achieve the same average top score. Detailed results are listed in Table 5.2.
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We have also tested the effect of α in equation (7), as illustrated in Figure 5.5.

The matching accuracy is not sensitive to the choice of α. This observation remains

consistent over all three datasets we are testing on. In the following experiments,

we consider the case when α is 0.
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Figure 5.5: Effect of α on the Average Top Score.

In Table 5.3 we list the average number of hits and retrieval time per image

using different number of features to represent each image. For a certain image, a

hit happens when one of its visual words is found in another image. The number of

hits directly affects the retrieval efficiency of the invert file indexing system. From

the table we observe reduced number of features benefits the retrieval efficiency

substantially. It is also interesting to note that at certain point where the number
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Table 5.2: Number of features needed to achieve pre-defined Average Top on the

UKB dataset

Target Average Top 1.8 2.2 2.4 2.6 2.9

Selection by Proposed Quality Metric 16.9 37.7 57.5 92.7 219.3

Selection by High Contrast 26.8 51.2 72.6 105.9 236.1

Selection by Large Scale 33.2 47.9 70.6 156.2 NA

Selection by the Quality Metric in [57] 29.2 74.6 118 186.6 NA

NA: Not Achievable in the experiments

The target Average Top is listed in the first row. The numbers of features needed to

achieve the target average top are listed in the following rows.

of features is large enough, using more features actually degrades the matching

accuracy.

It should be noted that the average top score we have obtained here is slightly

worse than the numbers reported in other literatures. One possible reason is that we

employ SIFT feature points (DoG point detector) that are only robust to scaling and

Table 5.3: Average number of hits and retrieval time

Number of features per image 50 100 200 300 500 700 1000

Number of hits per image 157.6 439.0 1265.4 2382.5 5425.0 9299.2 15159.4

Retrieval time per image(ms) 3.7 9.3 26.3 49.9 119.6 220.8 378.4

Average top score 2.33 2.63 2.87 2.96 3.02 3.01 2.96
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rotation, whereas more sophisticated affine invariant interest point detectors are used

in other literatures. Techniques that can improve the retrieval performance, such as

Approximate K-means [48], soft visual word assignment [49] and query expansion

[18], are not adopted in our current implementation. However, our experiments

suffice to show the effectiveness of the proposed feature quality metric as a way of

identifying and selecting useful features.

The Oxford Buildings Dataset

The Oxford Buildings Dataset [48] consists of 5062 images collected from Flickr

by searching for Oxford landmarks. The dataset has been manually annotated to

generate a comprehensive ground truth for 11 different landmarks, each represented

by 5 queries. To evaluate retrieval performance, we use the Average Precision (AP),

defined as the area under the precision-recall curve. Precision is the ratio of the

number of retrieved true positive images to the total number of retrieved images.

Recall is defined as the ratio of the number of retrieved true positive images to the

the total number of true positive images in the gallery. The perfect precision-recall

curve has precision 1 over all recall values, which corresponds to AP of 1. The AP

score is computed for each of the 55 query images in the dataset. The average of

these AP scores, termed as Mean Average Precision (mAP), is used to evaluate the

overall performance on this dataset.

We use similar settings to the UKB dataset. A visual word vocabulary is

obtained using the HKM method with 1 million cluster centers. Each query and

117



training image is represented by N selected SIFT features, and these features are

mapped to visual words according to the vocabulary. In Figure 5.6, we plot the mAP

scores for different values of N . Feature selection by the proposed quality metric

again performs the best among all the methods that we have tested. To achieve

the same mAP score, fewer features are needed by the proposed scheme than the

selection by large scale or high contrast method, as can be seen from Table 5.4.
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Figure 5.6: The mAP scores on the Oxford Buildings dataset using different feature

selection schemes.
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Table 5.4: Number of Features Needed to achieve Pre-defined mAP on the Oxford

Dataset

Target mAP 0.15 0.2 0.25 0.3 0.35

Selection by Proposed Quality Metric 39.9 117.1 222.9 433.2 674.4

Selection by High Contrast 60 200.7 332.2 487.8 760.6

Selection by Large Scale 76 166.6 372.3 616.3 NA

Selection by the Quality Metric in [57] 94.8 86.4 320 612.5 NA

NA: Not Achievable in the Experiments

The INRIA Holidays Dataset

The INRIA Holidays dataset contains a set of personal holiday photos of

mainly outdoor scenes captured by the authors of [34]. The dataset contains 1,491

images divided into 500 groups, each of which represents a distinct scene or object.

In the experiment, we use the first image of every image group as query images

and evaluate the mean average precision as defined in Sec. 5.3.2. As this dataset is

relatively small, the retrieval is performed with nearest neighbor match instead of

using the BoW approach. N SIFT features are selected from every image to form a

feature gallery. When an image is used as a query, we take each of its N features and

find the 3 nearest neighbors among the feature gallery. The images that contain at

least one of the 3 nearest features receive one vote. After considering all the query

features, the images with the most votes are regarded as top matches. Approximate

Nearest Neighbor (ANN) techniques [8,33,41] are adopted to accelerate the nearest
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neighbor search. Using the implementation provided by [41], we can speed the near-

est neighbor search by as many as 50 times while guaranteeing that the searching

result is correct with a probability above 95%. As illustrated in Figure 5.7 and

Table 5.5, the proposed feature selection scheme continue to outperform the other

methods.
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Figure 5.7: The mAP scores on the INRIA Holiday dataset using different feature selec-

tion schemes.

For mobile visual search applications, the size of the feature data transmission

over the network between client and server can be further reduced by applying

feature compression techniques [15,16,26] to the selected features. Here, we conduct

experiments to reduce the feature dimensionality via Principle Component Analysis
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Table 5.5: Number of Features Needed to achieve Pre-defined mAP on the INRIA

Holiday Dataset

Target mAP 0.55 0.60 0.65 0.70 0.75

Selection by proposed quality metric 7.2 11.2 19.4 36.8 69.7

Selection by high contrast 18.8 28.7 40.3 63.7 103.7

Selection by large scale 7.2 11.8 22.8 40.6 75

Selection by the quality metric in [57] 11.7 18.9 33.4 59 108.2

(PCA). The eigenvectors are learned from all features in the dataset, and the features

selected by the proposed quality metric is projected to M eigenvectors with the

largest eigenvalues, resulting in M -dimension PCA features. Each dimension of

the features is then quantized to 8 bits. These PCA features are used for nearest

neighbor match. Figure 5.8 shows the mAP scores achieved with various feature

size, from which we observe the efficiency is improved with PCA on the original

SIFT features.

The proposed feature selection scheme using the quality metric performs con-

sistently better than other empirical schemes on all three benchmark datasets that

we have tested on. Each of these three datasets covers images of distinct and com-

plementary characteristics. For example, the UKB contains images of mainly small

objects, texture contents, and CD covers, and we note that features with high con-

trast are more informative than those of large scale. For the INRIA Holiday dataset

that contains images of mostly outdoor scenes, features of large scale are more use-
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Figure 5.8: The mAP scores on the INRIA Holiday dataset as a function of feature size.

ful than high-contrast features. Our feature quality metric considers all the scale,

contrast, and descriptor information, so it offers a more stable and effective method

of selecting useful features for a broad variety of image contents.

5.4 Discussions

5.4.1 Examining the Quality Metric Kernel

To gain a better understanding of the characteristics of SIFT features, we

look closely at the quality metric kernel. The kernel is essentially a 3-dimensional

matrix, with each entry representing the robustness and discriminability of the point
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in the feature space indexed by its scale, contrast, and descriptor. It is enlightening

to examine the marginal quality metric, i.e., the quality score as a function of only

one of the feature properties (scale, contrast, or descriptor). With the 3-dimensional

kernel as a joint quality metric, we can compute the marginal of one feature property

by averaging across the other two. In Figure 5.9 we demonstrate the quality score

as functions of scale and contrast, respectively. The quality score reaches its peak at

the scale near 10-20. Then, it starts to decrease significantly as the scale increases.

However, features of extremely large scale (larger than 20) are rare (as can be seen

from the CDF curve). So, although selecting features of the largest scale is not

optimal, it still works much better than random selection. Similar rules apply for

the key point contrast. As the contrast increases, the quality score first improves to

its peak at around 20-25, then decreases.

Figure 5.10 provides some examples of visual words of high quality score (top

row) and low quality score (bottom row). We observe that the descriptors with

high scores generally have multiple significant gradient orientations, while those

with low scores have a single outstanding peak along the dominant direction. This

is correspond with the intuition that the former corresponds to image patches at

complex structures with more discrimination power, and the latter corresponds to

image patches around simple line structures, which are not as useful to distinguish

different objects.
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5.4.2 Generalization To Other Local Image Features

Although we demonstrated the feature quality evaluation scheme with SIFT

features, we expect the methodology to apply to other image local features, such as

Speeded Up Robust Features (SURF) [11] and Gradient Location and Orientation

Histogram (GLOH) [40], as well. We demonstrate briefly the results we obtained

with SURF. The key point detector in the SURF algorithm is an integer approxima-

tion to the determinant of Hessian blob detector. The descriptor is a 64 dimension

vector comprising the statistics calculated from the wavelet responses of the 4 4-by-4

regions near the key point.

We repeat the feature quality kernel training process as we employed for the

SIFT features, and conduct experiments on the INRIA Holiday dataset. We repre-

sent each image in the dataset with N SURF features selected with different strate-

gies. The retrieval scores (mAP) as a function of N are illustrated in Fig. 5.11.

The selection scheme based on the proposed feature quality metric outperforms the

other empirical schemes, similar to SIFT features.

5.5 Chapter Summary

In this chapter, we have focused on local image feature selection for efficient

visual matching. Local image feature presents a powerful tool to find point cor-

respondences between multiple images of the same object or scene. Many of the

most successful solutions for image registration and content-based image retrieval

are built on the use of local image features. The increase of the image resolution
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and the growth of the scale of image database may lead to the explosion of the

number of image features. Feature selection becomes important in order to improve

the feature matching efficiency.

To solve the problem of feature selection, we have presented a quality evalua-

tion method for SIFT features. Our approach is built upon a quality metric kernel,

which is essentially a 3-dimensional matrix indexed by SIFT feature’s quantized

scale, contrast and descriptor. In the training phase, a set of training images cov-

ering various scene types are collected. We conduct feature matching between the

training images and their synthetically transformed versions. The matching results

are aggregated to the metric kernel, so every entry of the kernel reflects how the

features belonging to the corresponding scale-contrast-descriptor feature space bin

behave statistically. The ratio of the number of correct matches over the total num-

ber of features in each bin is calculated as the quality score for the corresponding

bin. In the application phase, a given feature’s quality score is computed based

on the its affinity to the feature space bins in the kernel and the quality scores of

the bins. The proposed approach is tested on 3 benchmark datasets for large scale

content-based image retrieval. Feature selection according to the proposed qual-

ity score is shown to perform better than the empirical methods, such as selecting

features with largest scales and highest contrast values.
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Figure 5.9: Analyzing the quality score as a function of scale and contrast value, respec-

tively. (a) shows the quality score of features at different scales; (b) shows the cumulative

distribution function (CDF) of feature scale; (c) shows the quality score of features with

different contrast values; (d) shows the CDF of feature contrast value
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Figure 5.10: Visual words with low quality scores (top) and high quality scores (bottom).
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Figure 5.11: The mAP scores on the INRIA Holiday dataset using different SURF feature

selection schemes.
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Chapter 6

Conclusions and Future Perspectives

In this dissertation, we have considered the temporal and spatial alignment of

multimedia signals. For temporal alignment, we propose a new modality for audio

and video synchronization by exploiting the electric network frequency (ENF) signal

naturally embedded in multimedia recordings. The value of the ENF signal fluctu-

ates randomly around its nominal value over time, and the variation patterns remain

consistent within the same power grid, even at distant locations. Synchronization of

audio and video recordings can therefore be achieved by matching and aligning their

embedded ENF signals. The ENF based method does not rely on the audio and vi-

sual contents in the multiple recordings to be synchronized. This property provides

a strong potential to address such difficult scenarios that are intractable by existing

methods. Taking video synchronization for example, the conventional approaches

based on visual cues do not work well in situations with arbitrary camera motion or

with insufficient view overlap, while the ENF based method is not affected by these
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adverse conditions. Additionally, extracting and aligning ENF signals may be more

effective computationally than the approaches that rely on computer vision and/or

extensive learning, so more (or longer) recordings could be efficiently processed. It

can also be easily generalized to synchronize multiple pieces of recordings. To the

best of our knowledge, our work is the first in the endeavor to exploit the ENF for

multimedia signal synchronization.

The extraction of ENF signals from multimedia recordings is extensively stud-

ied in the this dissertation, especially for visual recordings. ENF signals may be

extracted from the soundtracks of the video recordings, as well as the image se-

quences if the video captures the subtle flickering of lightings. Extracting the weak

ENF signal from image sequences presents a challenging task. The temporal sam-

pling rate of visual recordings is generally too low for estimating the ENF signal

that may appear at harmonics of 50 or 60 Hz. The ENF traces in video signals

are relatively weak, and may be easily distorted by object and camera motions.

Along with the direction of previous work, we have performed a further study ex-

ploiting the rolling shutter to extract ENF traces from video recordings. We model

and analyze the rolling shutter mechanism with a filter bank using multirate signal

processing theory. We then extend the scope of extracting ENF traces from videos

of still scenes to those containing motions, which is a challenging problem and has

never been formally attempted. We have proposed several techniques to overcome

the difficulties of extracting the ENF signal from image sequences, such as the low

sampling rate, object motions in the scene, camera motions, and brightness change.

We also address several challenges unique to the ENF analysis of recaptured
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audio recordings, such as digitized historical recordings. Multiple ENF traces may

exist in recaptured audio recordings. Traditional estimation methods may fail when

the ENF signals corresponding to different time instances interfere with each other.

A decorrelation based method is proposed to extract multiple ENF signals from

recaptured audio recordings in a sequential manner. The ENF signal in a digitized

analog recording may also suffer from the drifting effect, which refers to the phe-

nomenon that the value of the ENF signal deviates severely from its original value.

The mechanical rolling speed of analog tape recorder and player is usually not well

stabilized. When an analog tape recording is digitized, the rolling speed of the tape

is likely to differ from that of the creation of the tape. As a result, a speed offset

is induced in the digitized version of the audio, causing the drifting effect. We have

proposed to detect and correct such speed errors using the ENF signal as a reference

and utilizing digital signal processing techniques. The proposed method is used to

restore several digitized historical audio recordings of the NASA Apollo 11 Mission.

Local image features are widely used to detect common objects among multiple

images and to obtain the spatial alignment of the images. In the local feature

framework, interest points are first selected as distinctive and robust points in the

image by a key point detector. Next, a robust feature descriptor is generated using

the information within the neighborhood of the interest point. Since the images

may have gone through different lighting and viewing conditions, desirable features

should be robust to various distortions.

Many of the most successful solutions for image registration and content-based

image retrieval are built on the use of local image features. The increase of the image
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resolution and the growth of the scale of image database may lead to the explosion

of the number of image features. Feature selection becomes important in order to

improve the feature matching efficiency. To solve the problem of feature selection, we

have presented a quality evaluation method for SIFT features. Our approach is built

upon a quality metric kernel, which is essentially a 3-dimensional matrix indexed

by SIFT feature’s quantized scale, contrast, and descriptor. In the training phase,

a set of training images covering various scene types are collected. We perform

feature matching between the training images and their synthetically transformed

versions. The matching results are aggregated to the metric kernel, so every entry

of the kernel reflects how the features belonging to the corresponding scale-contrast-

descriptor feature space bin behave statistically. The ratio of the number of correct

matches over the total number of features in each bin is calculated as the quality

score for the corresponding bin. In the application phase, a given feature’s quality

score is computed based on the its affinity to the feature space bins in the kernel

and the quality scores of the bins. The proposed approach is tested on 3 benchmark

datasets for large scale content-based image retrieval, and is shown to outperform

the empirical methods.

Several interesting research topics along the directions of the work in this

dissertation can be further explored. The ENF-based approach emerges as a new

modality for audio and video synchronization. Unlike most conventional methods

taht extract and match certain audio and visual features from the contents of the

recordings, it utilizes the embedded ENF traces that are usually considered as noise.

The ENF-based approach and the audio/visual cue-based approach may therefore
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complement each other and may be combined to solve the problem of multimedia

synchronization more effectively. For example, the ENF-based method can first be

applied to obtain synchronization of two video clips efficiently with frame-level ac-

curacy. The synchronization then can be refined by certain visual cue based-method

to a sub-frame accuracy with more computation. Some video clips may consist of

segments that are in different conditions for various synchronization methods. For

a video clip, we may choose the best synchronization method for each segment,

and combine these results of the segments to reach the final lag estimation for the

whole clip. Video synchronization systems that exploit multiple modalities can be

explored in the future.

The estimation of the ENF signal is crucial for the proposed multimedia syn-

chronization method that relies on matching the embedded ENF signals. In the dis-

sertation, we use the short time Fourier transform (STFT) based-method to extract

ENF signals from audio and visual recordings due to its efficiency and simplicity.

This method divides a source signal into possibly overlapping frames of small du-

rations. Within every frame, the signal can be regarded as wide-sense stationary,

and each of the frames undergoes Fourier analysis respectively. For ENF estima-

tion, we apply STFT to a source signal that contains ENF traces, and find the peak

frequency within a certain range near the nominal value or the harmonics in each

frame. The values of the peak frequency from all the frames are concatenated to

form the estimated ENF signal.

Several challenges need to be addressed in order to improve the synchronization

accuracy. The STFT based-method works well when the signal to noise ratio (SNR)
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of the ENF signal is fairly high. However, when the noise distortion is strong,

the estimation performance degrades severely. Another problem is the temporal

resolution of the frequency estimation. The length of the frame needs to be large

enough to ensure reliable estimation, which limits the resolution of the estimate. The

resolution of frequency estimation is critical to the multimedia signal synchronization

accuracy. How to improve the frequency estimation accuracy in the case of low SNR

and to increase the resolution is therefore an important research topic.

With the image feature selection scheme proposed in this dissertation, we can

identify image features that are statistically more likely to be useful for describing

visual structures. By retaining only these features, the transmission load and the

storage cost for image features can be lowered. The matching accuracy can be

potentially improved as well. However, the computation for generating the features

is not reduced in any way, because the feature selection is performed after all feature

candidates have been generated. An interesting direction to explore is to study

whether feature selection can be carried out earlier and incorporated into the feature

generation process. Much of the time for feature generation is spent on calculating

the feature descriptor vector. Similar to the approach purposed in this dissertation,

for a interest point, we can try to predict its robustness and discriminability using

such information as its scale, contrast value, and some other features abstracted

from its neighbor pixels. Then the feature descriptors are calculated only for those

interest points that obtain a high quality score. The saving in descriptor calculation

may improve feature generation efficiency substantially.
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