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An emergency is a situation that causes an immediate risk to the property, health, or 

lives of civilians and can assume a variety of forms such as traffic accidents, fires, 

personal medical emergencies, terrorist attacks, robberies, natural disasters, etc.  

Emergency response services (ERSs) such as police, fire, and medical services play 

crucial roles in all communities and can minimize the adverse effects of emergency 

incidents by decreasing the response time. Response time is not only related to the 

dispatching system, but also has a very close relationship to the coverage of the whole 

network by emergency vehicles. 

The goal of this dissertation is to develop a model for an Emergency 

Management System. This model will dynamically relocate the emergency vehicles 

to provide better coverage for the whole system.  Also, when an emergency happens 

in the system the model will consider dispatching and relocation problem 

simultaneously. In addition, it will provide real-time route guidance for emergency 

vehicles. In summary, this model will consider three problems simultaneously: area 

coverage, vehicle deployment, and vehicle routing.   

This model is event-based and will be solved whenever there is an event in the 

system. These events can be: occurrence of an emergency, change in the status of 



 

 

vehicles, change in the traffic data, and change in the likelihood of an emergency 

happening in the demand nodes. 

Three categories of emergency vehicle types are considered in the system: 

police cars, ambulances, and fire vehicles. The police department is assumed to have 

a homogeneous fleet, but ambulances and fire vehicles are heterogeneous. Advanced 

Life Support (ALS) and Basic Life Support (BLS) ambulances are considered, along 

with Fire Engines, Fire Trucks, and Fire Quints in the fire vehicle category. 

This research attempts to provide double coverage for demand nodes by non-

homogenous fleet while increasing the equity of coverage of different demand nodes. 

Also, the model is capable of considering the partial coverage in the heterogeneous 

vehicle categories. Two kinds of demand nodes are considered, ordinary nodes and 

critical nodes. Node demands may vary over time, so the model is capable of 

relocating the emergency fleet to cover the points with highest demand. In addition, 

an attempt is made to maintain work load balance between different vehicles in the 

system. Real-world issues, such as the fact that vehicles prefer to stay at their home 

stations instead of being relocated to other stations and should be back at their home 

depots at the end of the work shift, are taken into account. 

This is a unique and complex model; so far, no study in the literature has 

addressed these problems sufficiently. A mathematical formulation is developed for 

the proposed model, and numerical examples are designed to demonstrate its 

capabilities. Xpress 7.1 is used to run this model on the numerical examples. 

Commercial software like Xpress can be used to solve the proposed model on small-

size problems, but for large-size and real-world problems, an appropriate heuristic is 



 

 

needed. A heuristic method that can find good solutions in reasonable time for this 

problem is developed and tested on several cases. Also, the model is applied to a real-

world case study to test its performance. To investigate the model’s behavior on a 

real-world problem, a very sophisticated simulation model that can see most of the 

details in the system has been developed and the real case study data has been used to 

calibrate the model. The results show that the proposed model is performing very well 

and efficient and it can greatly improve the performance of emergency management 

centers. 
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Chapter 1: Introduction 
 

 

1.1 Emergency 

An emergency is a situation that causes an immediate risk to the property, health, or 

lives of civilians. Emergencies can take a variety of forms like traffic accidents, fires, 

personal medical emergencies, terrorist attacks, robberies, natural disasters, etc 

(Yang, 2006). According to the National Highway Traffic Safety Administration 

(NHTSA), the number of fatalities from highway accidents has declined over the last 

5 years as shown in Figure 1.1, but remains unacceptably high. In 2009, there were 

30,000 fatal automobile accidents (Figure 1.1). 

 

Figure 1.1 Fatal Crashes Trends in the U.S. from 1994 to 2009 (NHTSA) 
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Also, from the website of the U.S Fire Administration (USFA), it can be seen 

that in the United States in 2010, more than 1.3 million fires were reported, which 

caused 3,120 deaths, 17,720 injuries, and about 11.6 billion dollars in direct losses. 

The national fire death rate in 2008 was 12 deaths per million people.  The District of 

Columbia had the highest fire-death rate in 2008, which was 32.2 deaths per million 

people. 

Figures 1.2 and 1.3 show the trend for residential building fire deaths and 

residential building fire-dollar losses, respectively, from 2005 to 2009 in the U.S. 

Although the number of deaths declined, dollar losses rose to 7.3 billion dollars in 

2009.  

 

 
Figure 1.2 Residential Building Fire Deaths in the U.S. from 2005 to 2009 

Source: http://www.usfa.fema.gov/ 
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Figure 1.3 Residential Building-Fire Dollar Loss in the U.S. from 2005 to 2009 

Source: http://www.usfa.fema.gov/ 

 

1.2 Emergency Response Centers 

Emergency response centers such as police, fire, and medical centers play crucial 

roles in all communities. Their vital services can minimize the adverse effects of 

emergency incidents on civilians’ life, health and property. Information is an essential 

component —for instance, traffic on the road network in the community, hospital 

vacancies, location and availability of emergency vehicles, and the characteristics of 

emergency incidents are four kinds of information without which these centers cannot 

be effective. 

 

1.3 Emergency Call Center (911) 

Usually the 911 call center has a room staffed by emergency personnel like police 

officers and firefighters, with several computer screens in front of them (see Figure 

1.4). One screen is for displaying the pertinent information about the incoming call, 
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such as telephone number and address, and another is for entering information on the 

emergency incident. Also, there is a screen showing the location of existing 

emergency vehicles in the system.  

When a 911 center receives a call, 90% of the time the screen will display the 

address and phone number from which the call is being made. The 911 worker who 

answers the phone tries to get the basic information about the emergency. He will ask 

about the nature of the emergency in order to decide how many vehicles, and which 

types, should be dispatched to the scene.  

 

Figure 1.4 Ramsey County 911 Call Center: ST. Paul, MN 

Source: http://www.mcgough.com/ 
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1.3 Emergency Response Time 

There are different standards for measuring the effectiveness of an Emergency 

Response System; emergency-response time is one of the most important. The 

duration of an emergency can be divided into four phases (Yang et al., 2005):  

1. Detection time: Time between the start of an emergency and the call to the 

911 center. 

2. Preparation time: Time between the call to the emergency center and the 

dispatch of emergency vehicles to the emergency site. 

3. Travel time: Time required for emergency vehicles to reach the incident.  

4. Treatment time: Time between the arrival of emergency vehicles at the scene 

and completion of the treatment.  

Response time is interval between reception of the call at the emergency 

center and arrival of emergency vehicles at the site of the emergency (Figure 1.5).  

 

Figure 1.5 Emergency Response Time 

Source: Yang et al., (2005) 

 

Response time plays a crucial role in reducing the negative impacts of an 

emergency. The American Heart Association states that brain death starts to occur 4 
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to 6 minutes after cardiac arrest. This can be reversible if treated within a few minutes 

to restore a normal heartbeat. A victim's chances of survival are reduced by 7% to 

10% with every minute that passes without advanced life-support intervention.  

There is no official standard for response time in the United States, but the 

National Fire Protection Association's Standard 1710 (NFPA 1710), which is based 

on a combination of accepted practices and more than 30 years of research, 

establishes 5 minutes for the first-responder response time and 9 minutes for 

advanced life-support services; this objective should be met 90% of the time. Also, 

the NFPA 1710 states that the first fire engine company should arrive at a fire 

incident in 5 minutes, with full response in 9 minutes, 90% of the time (Yang, 2006). 

 

1.4. Motivation for and Objectives of the Research 

The importance of having an efficient emergency management system is undeniable. 

Many deaths, injuries, and loss of properties could be avoided by better planning for 

available resources and the execution of a better algorithm for dispatching emergency 

vehicles. Getting emergency vehicles to the emergency site in the required time is 

crucially important; sometimes decreasing response time by just several seconds can 

mean a victim’s survival. 

The question is how to efficiently respond to these emergency incidents. In a 

greedy algorithm, one may decide to dispatch the closest vehicle to the incident. This 

algorithm may be useful when the system is not loaded, but definitely it will face 

substantial problems when the system is handling several emergency incidents at a 
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time. It is obvious that by having better algorithms and operations, millions of lives 

and billions of dollars could be saved. 

Response time is not only a function of the dispatching algorithm, but also has 

a very close relationship to the coverage of the area with emergency vehicles. If the 

system tries to satisfy coverage of the area with emergency vehicles, there will be an 

available vehicle nearby for future emergency incidents that can answer a call in an 

acceptable response time. 

The goal of this dissertation is to develop a comprehensive relocation and 

dispatching model for emergency call centers or emergency management centers. 

This model can come up with the best relocation and dispatching algorithm based on 

real-time information about the status of the emergency-response fleet, traffic 

information, likelihood of emergency happening at the demand nodes and the status 

of emergency calls. 

  

1.5. Contributions of the Research 

Three categories of emergency vehicles are considered in the system: police, 

ambulance, and fire. The police department is assumed to have a homogeneous fleet, 

but ambulances and fire vehicles are heterogeneous. Two kinds of ambulances 

(Advanced Life Support and Basic Life Support) are considered in the model and 

three types of fire vehicles (Fire Engine, Fire Truck, and Fire Quint), for a total of six 

vehicle types. There is no dispatching model in the literature that considers non-

homogenous vehicles. By having a heterogeneous dispatching algorithm, we can have 
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better allocation of the available resources. For example if a fire quint is sent to an 

emergency scene it can perform the job of one fire engine and one fire truck. 

Also, area coverage is an important part of this model and is addressed 

thoroughly. First of all, the model tries to cover the demand nodes within a predefined 

time (𝑇1minutes), which can be different for each vehicle type. Demand nodes that 

are not covered within 𝑇1 minutes are, ideally, covered within 𝑇2 minutes (𝑇1 ≤  𝑇2). 

By having two specific times for coverage, equity is increased between the different 

demand nodes in the system. This part is also new to the literature. There are some 

researchers that assume adequate number of vehicles and try to cover all demand 

nodes within 𝑇2 minutes and a specific percentage of demand nodes in 𝑇1 minutes. 

However our model is more realistic, because most of the time vehicles are not 

sufficient to cover all demand nodes and in that case we are trying to increase equity 

between different demand nodes. 

In addition two kinds of demand nodes are considered: ordinary demand 

nodes and critical demand nodes. Critical nodes are important demand nodes such as 

critical infrastructures, hospitals and schools, for which an emergency can have 

negative impacts on the performance of the whole system. Having two kinds of 

demand nodes is also new in the emergency vehicle coverage problem and this 

assumption increases the flexibility of applying different policies for different 

demand nodes. 

Also, the model attempts to provide double coverage for ordinary nodes 

within 𝑇2 minutes and double coverage for critical nodes within 𝑇1minutes. There is 

no double coverage model in the literature that considers heterogeneous vehicles.   
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In addition the proposed model is capable of considering the benefits of partial 

coverage. For example in the fire vehicles category, a demand node will have full 

coverage if it is covered by one fire engine and one fire truck or one fire quint in the 

predefined time. However if it is only covered by either a fire engine or a fire truck 

the node will have partial coverage. Also, there is no model in the literature that 

addresses the full coverage and partial coverage together in vehicle relocation 

problem.  

This model attempts to strike a work-load balance between different vehicles 

in the system. It is not desirable, for instance, for one vehicle to work 90% of the time 

and another one only 10% of the time. Therefore, the model attempts to balance the 

work load between vehicles which is new in the literature. 

In addition, some real-life issues are taken into consideration, such as the fact 

that vehicles prefer to stay at their home stations instead of being relocated to other 

stations and that at the end of their work shifts they should be returned their home 

depots. Such a model is a unique and complex tool; to date, there is no study in the 

literature that has addressed this problem sufficiently. 

 

1.6. Organization of the Dissertation 

Previous work on emergency-fleet management will be reviewed in Chapter 2. The 

problem statement is described in Chapter 3 and the mathematical formulation of the 

model is presented. Chapter 4 shows a set of numerical problems that are solved with 

Xpress 7.1 software using the proposed model. These numerical examples are 

designed to demonstrate the capabilities of the proposed model. Then, to illustrate 
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how the running time will increase by increasing the problem size, problems with 

different sizes are generated. The results show that by increasing the problem size, 

running time grows exponentially; commercial software such as Xpress is not suitable 

for this purpose. So, heuristic methods should be used to find near-optimal solutions 

in more reasonable time. In chapter 5, the developed heuristic method that has been 

coded in 𝐶++ language is introduced and explained in detail. Then its results are 

compared to optimal solutions. In chapter 6, a sophisticated simulation model that has 

been developed for this research and has been coded in 𝐶++ language is explained in 

detail. In chapter 7, the input analysis on the case study data on one of the counties in 

the Washington, DC metropolitan area is explained and the distributions of the 

different inputs are shown. In chapter 8, first the results of applying the proposed 

model on the case study is shown and then an extensive sensitivity analysis is applied 

on some important parameters in the model. Finally, in Chapter 9, the summary of 

this research is explained and some areas for future research are discussed. 
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Chapter 2: Literature Review 
 

 

In this chapter a complete review of the emergency vehicle location problem and the 

emergency vehicle deployment problem will be presented. 

 

2.1 Introduction 

The goal of this dissertation is to improve the Emergency Vehicle Management 

System. One of the key effective measurements of the system is response time. 

Response time is not only related to the dispatching system, but also it has a close 

relationship to emergency vehicle coverage. In this dissertation, therefore, the 

proposed model relocates the emergency vehicles to provide better coverage for the 

whole system and also when an emergency happens in the system the model will 

consider dispatching and relocation problem simultaneously. Two areas in the 

literature will be reviewed, the emergency vehicle location problem and the 

emergency vehicle dispatching problem. 

 

2.2 The Emergency Vehicle Location Problem 

The models in the literature that address the emergency vehicle location problem can 

be classified in three main categories: deterministic models, probabilistic models, and 

dynamic models. Each model and the papers that used that kind of model are 

reviewed in the following subsections. Revelle et al. (1977), Batta et al. (1990), 

Marianov et al. (1995), Brotcorne et al. (2003), Goldberg (2004), Jia et al. (2005), 
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Erkut et al. (2007, 2009), and Morohosi (2008) conducted comprehensive literature 

surveys on the emergency vehicle location and relocation problem, and Schilling et 

al. (1993) did a complete survey on coverage problems with facility location. 

 

2.2.1 Deterministic Models 

These models are usually used at the planning stage and ignore the stochastic nature 

of the emergency vehicles regarding their unavailability. Two of the early 

deterministic models were called location set covering problem (LSCP) proposed by 

Toregas et al. in 1971 and maximal covering location problem (MCLP) proposed by 

Church and ReVelle in 1974. These two models were early models for the static 

ambulance location problem.  Several extensions of both models have been proposed 

in the emergency vehicle location literature. The location set covering problem 

(LSCP) determines the minimum number of ambulances needed to cover all 

demands, and the maximal covering location problem (MCLP) model attempts to 

maximize population coverage based on the number of available ambulances. In the 

latter model it is assumed that resources are limited, which is a true assumption in 

most cases.  

These two models considered only one type of vehicles; also, they did not 

consider the case in which vehicles would be unavailable when they are handling an 

emergency incident. Therefore, some extensions of these models have been proposed 

in the literature to counter some of their shortcomings. Schilling et al. (1979) 

developed one of the first models to handle two types of vehicles. Their model is 

called the tandem equipment allocation model (TEAM) and can be applied to fire 
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companies using two types of vehicles (fire engines and fire trucks). Also by a very 

small change it can be applied to ambulance location problem, because two types of 

vehicles are usually being used, the Basic Life Support (BLS) and Advanced Life 

Support (ALS) ambulances. 

 In the models that have been reviewed so far, some points may lose their 

coverage whenever some vehicles become busy. A strategy to handle this problem is 

trying to provide multiple coverage for demand nodes. In this case, if one vehicle 

becomes busy there is still another vehicle left to cover the area. Daskin and Stern 

(1981) extended MCLP and used a hierarchical objective to maximize the number of 

demand points that have multiple coverage.  

Hogan and ReVelle (1986) presented two backup coverage models called 

BACOP1 and BACOP2. In BACOP1 they tried to cover all demand points with P 

ambulances, and at the same time they maximized the number of demands that are 

covered twice. In BACOP2 they used weights in the objective function for demands 

that are covered once and twice and attempted to maximize the total objective 

function with a total of P ambulances.  

Eaton et al. (1986) extended Daskin’s model and maximized the multiple 

coverage of demand in the predefined time with a minimum number of ambulances. 

They used a heuristic method to solve their model and used it on the Santo Domingo 

emergency medical system (EMS) in the Dominican Republic. 

Haghani (1996) proposed two formulations for capacitated maximum 

covering facility location models. He is maximizing the covered demand by his first 

proposed model. In the second one he is maximizing the weighted covered demand 
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and minimizing the average distance from the uncovered demands at the same time. 

Also, he proposed two heuristic approaches to solve these two models. 

Gendreau, Laporte and Semet (1997) proposed a model named the Double 

Standard Model (DSM). They use two coverage standards, r1 and r2, with r1 ≤  r2, 

and they maximize the demands that are covered twice in r1 minutes with P available 

ambulances when they are covering all the demand points in r2 minutes and 

proportion α of the demand in r1minutes. 

As Brotcorne et al. (2003) note, the United States Emergency Medical 

Services Act of 1973 set 10 minutes for r1 and 95% for α, but there is no value for r2. 

However, by having the r2 coverage constraint, the equity between demand nodes can 

be better addressed. 

 

2.2.2 Probabilistic Models 

These models reflect the fact that sometimes emergency vehicles are busy and are not 

always available to answer an emergency call. Chapman and White (1974) proposed 

the first probabilistic emergency model. They developed a probabilistic location set 

covering model called the maximum expected covering location problem (MEXCLP) 

and assumed that servers are not always available. 

Daskin (1983) proposed a simplified version of maximum expected covering 

location problem for ambulances. He assumes that the ambulances are independent 

and the busy fraction of all ambulances is the same and equal to q.  
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Many researchers have used the MEXCLP model or a later extension of it in 

their research. Fujiwara et al. (1987) used this model in Bangkok, where they 

decreased fleet size from 21 to 15 and maintained the same performance level.  

Goldberg et al. (1990) extended MEXCLP and considered stochastic travel 

times in their model, maximizing the expected number of calls covered within 8 

minutes. They used their model on data from the city of Tucson, Arizona, and 

increased the number of calls covered in 8 minutes by 1% and the worst covering 

ratio of a zone from 24% to 53%. 

Also, Repede and Bernardo (1994) developed a model called TIMEXCLP by 

extending MEXCLP. They considered variations in emergency vehicle speed 

throughout the day. They combined their model with a simulation module and applied 

it to Louisville, Kentucky data. The proportion of calls covered in 10 minutes was 

increased from 84% to 95% as a result, and response time decreased by 36%.  

ReVelle and Hogan (1989) proposed two other probabilistic models 

formulating the maximum availability location problem (MALP I and MALP II). In 

MALP I they assume that the busy fraction is the same for all potential location sites, 

but in MALP II this assumption is relaxed and they estimate the busy fraction for 

each location site.  

Estimating the busy fraction for each vehicle is a difficult task, since these 

values are the output of the models, but other researchers have addressed this. Some 

of them, like Larson (1974, 1975) and Burwell et al. (1992) used a hypercube 

analytical tool to come up with busy fractions. Others, like Jarvis (1975) and 

Fitzsimmons and Srikar (1982), used an iterative optimization algorithm; Davis 
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(1981) and Goldberg et al. (1990, 1991) used simulation models to find busy 

fractions. 

Betta et al. (1989) developed an extended MEXCLP and called their model 

AMEXCLP. They relaxed the assumption that ambulances are independent and used 

a hypercube model to estimate busy fractions, which are assumed to be the same for 

the whole system.  

Marianov and ReVelle (1994) proposed the queuing probabilistic location set 

covering problem (QPLSCP), in which the busy fraction is site-specific. 

Ball and Lin (1993) extended the LSCP model to achieve a given reliability 

level. Their model, the Rel-P model, attempts to ensure that the probability of all 

vehicles’ being unavailable to answer a call does not exceed a predefined value. 

In the probabilistic models that have been discussed so far, only one type of 

vehicle is considered. Marianov and ReVelle in 1992 proposed a probabilistic fire 

protection siting model for fire vehicles. The demand points in their network are 

considered to be covered if they are covered by a fire engine and a fire truck. 

Also, Mandell (1998) considered two types of vehicles (ALS and BLS) in 

their two-tiered model, which is called TTM. They assume that the probability of a 

call being served in a demand point i is related to the number h of ALS vehicles 

within 𝑟𝐴 minutes of i, to the number k of ALS vehicles within 𝑟𝐵 minutes of  i, and 

to the number l of BLS vehicles within 𝑟𝐵 minutes of  i. Then they maximize the 

probability that the calls are served in the whole system. 

Beraldi et al. (2009) modeled the problem of designing and planning 

emergency medical services as two-stage stochastic programming with probabilistic 
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constraints. An exact solution method and three heuristics have been developed to 

solve this model, which considers only one type of vehicle. 

Lei et al. (2009) considered the problem of optimal deployment of limited 

ERS units in a metropolitan area to cover critical infrastructures with time-dependent 

service demand and travel time in the system. They used their model in a case study 

in the city of El Paso, Texas, with 45 firefighting units and 23 ambulances among 34 

fire stations to cover 138 critical transportation infrastructures, hospitals, and schools.  

Sorensen et al. (2010) proposed the LR-MEXCLP, a hybrid model combining 

the maximum coverage objective of MEXCLP with the local busyness estimates of 

MALP and showed that LR-MEXCLP results in a modest but consistent service gains 

over both MEXCLP and MALP.  

Ingolfsson et al. (2008) presented an optimization model for allocating a 

specified number of ambulances to stations to maximize expected coverage. Their 

model considers variation in pre-travel delay, variation in travel time, and uncertainty 

in ambulance availability. Only one type of vehicle, however, is considered. 

Another group of probabilistic models uses queuing theory. These models 

reflect the fact that emergency vehicles operate as servers in a queuing with 

exponential arrival time, exponential service time, and c servers (M/M/C), which are 

not always available to answer an emergency call. Larson (1974) was one of the first 

to use this concept and developed a hypercube queuing model as a tool for urban 

emergency service facility location. In 1975 he developed a computationally efficient 

algorithm for a multi-server queuing system with distinguishable servers. In his 

models, one server was assigned to each call. (Yang, 2006) 
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Chelst and Jarvis (1979) and Chelst and Barlach (1981) extended the 

hypercube queuing model. In the former study, the probability distributions of travel 

time are estimated; in the latter, the assumption of only one server for each call is 

relaxed, and the model can capture the simultaneous response of two identical units 

dispatched to a call. However, calls for which there is no available server are lost, 

which is not the case in real-world emergency operations. (Yang, 2006) 

In a two-server, two-customer system, Halpern (1977) demonstrated that a 

more accurate approximation of travel time is required for service time in a 

hypercube model and that the assumption that service time is independent of the 

locations of calls and dispatched units may not be realistic. (Yang, 2006) 

Barker et al. (1989) developed an integer nonlinear mathematical programing 

model based on a multiple-channel queuing system to allocate ambulances to 

different sectors in a county in South Carolina. (Yang, 2006) 

Marianov et al. (1996) proposed a queuing maximal availability model for 

emergency vehicle location that is an extension of the MALP model and is called Q-

MALP. In their formulation, the probability of different servers’ being busy is not 

independent, and they use queuing theory to find these probabilities. 

Iannoni et al. (2007) extended the hypercube model to analyze emergency 

medical systems (EMSs) on highways. They assumed that emergency calls can be of 

different types and considered two types of vehicles in their system (rescue 

ambulances, medical vehicles). Also, their model can send multiple vehicles to 

incidents. They applied their model to a case study of an EMS operating on Brazilian 

highways. The same authors in 2009 combined adoption of the hypercube model with 
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hybrid Genetic Algorithms to optimize the operation and configuration of EMSs on 

highways. They showed that the main performance measures, such as mean response 

time, fraction of calls not covered within a predefined time, and imbalance of 

ambulance workloads, could be improved by relocating ambulance bases and 

simultaneously determining the system’s district sizes. In 2010 they proposed a series 

of simple and straightforward greedy heuristic algorithms to optimize large-scale 

EMS on highways. 

Morabitoa et al. (2008) compared homogeneous servers with 

nonhomogeneous servers in a hypercube queuing model and found that, even when 

the degree of non-homogeneity of the servers is not significant, homogeneity may 

result in poor predictions of the actual operational characteristics of nonhomogeneous 

systems. 

Geroliminis et al. (2009) developed a spatial queuing model (SQM) for 

locating emergency vehicles in urban networks while considering the probability that 

a server is busy. They assume that service rates may vary among servers and are 

dependent on incident characteristics. In 2011 they used a hybrid hypercube–Genetic 

Algorithm approach for deploying emergency response mobile units in an urban 

network.  

In most of the models reviewed in this subsection, only one type of vehicle is 

considered, and only one model (TTM) considers two types.  

In this dissertation, two types of ambulances and three types of fire vehicles 

are considered; therefore, the model developed is much more sophisticated than all 
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previous models. The proposed model also accounts for many real-world issues that 

models currently in the literature are not able to accommodate. 

 

2.2.3 Dynamic Models 

These models have been developed recently to repeatedly relocate emergency 

vehicles throughout the system to provide better coverage for future demand and not 

leave areas unprotected. The first paper on this kind of model was written in 1974 by 

Kolesar and Walker, who used a dynamic model to relocate fire vehicles in New 

York City, which they solved by developing a heuristic algorithm. 

Berman (1978) proposed a model for dynamic positioning of mobile servers 

on networks. He also extended his work on Markovian and stochastic networks in 

1982, 1984, and 1985, in collaboration with colleagues, and they investigated the 

location and relocation of mobile facilities. 

Carson et al. in 1990 worked on the relocation of a single ambulance on the 

Amherst campus of SUNY Buffalo as a case study and they relocated the ambulance 

with the moves of population throughout the day from classroom buildings to dining 

halls to dormitories and improved the level of service. (Yang, 2006) 

Gendreau et al. (2001) developed an ambulance relocation model by 

expanding the Double Standard Model (DSM) they proposed in 1997. The result was 

their dynamic model, called the Dynamic Double Standard Model (DDSM). They 

maximized the demand covered at least twice in r1 minus the cost for relocating the 

ambulances, while covering all the demand points in r2 and proportion α of the 

demand in r1. They used a fast parallel Tabu search heuristic to solve their model and 
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implemented it on the Island of Montreal. They also in 2006 formulated the maximal 

expected coverage relocation problem for emergency vehicles. In considering the fact 

that the vehicles are not always available, they tried to relocate physicians’ cars so as 

to have maximal expected coverage. They used CPLEX software to solve their 

model, which can be solved in a reasonable amount of time when there are few 

vehicles. This is the case for physicians’ cars on the Island of Montreal. Their model 

is helping to decrease average response time and increase the proportion of calls that 

are covered in 8 minutes. 

Sathe and Miller-Hooks (2005) proposed a model for location and relocation 

of response units for guarding critical facilities while considering double coverage, as 

well as probabilistic demand and travel times. 

Nair and Miller-Hooks (2009) adopted Sathe and Miller-Hooks’ 2005 model 

and proposed a multi-objective, probabilistic, integer program to investigate whether 

there are benefits in relocating EMS vehicles. They used concept of probabilistic 

models in dynamic models to develop their own. They compared it with a static 

location policy, and their research shows that with scarce resources, relocation is a 

better alternative for increasing the level of service and decreasing average response 

time. 

Rajagopalana et al. (2008) proposed a set covering location model for 

dynamic redeployment of ambulances. They consider that the demand for ambulances 

fluctuates depending on the day of the week and time of day, and determine the 

minimum number of ambulances and their locations in each time interval while 
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satisfying coverage requirements with a predefined reliability. They consider only 

one type of vehicle in their model.  

Schmid et al. (2010) developed a multi-period double standard model by 

extending the DSM model and considered time-dependent variation in travel times. 

They attempted to optimize the tradeoff between coverage and the number of vehicle 

relocations using a Variable Neighborhood Search heuristic method to solve their 

model. Their model also considers only one type of vehicle. 

Curtin et al. (2010) use Maximal Covering and Backup Covering Location 

Models to relocate available police vehicles to police patrol centers in order to have 

better system-wide coverage. A range of solutions that include tradeoff between 

maximal backup coverage and maximal coverage is presented. They used their model 

on the city of Dallas, Texas, and the results showed improvements in police 

efficiency. 

 

2.3 The Emergency Vehicle Dispatching Problem 

The most crucial role of a dispatcher is sending the required type(s) and numbers of 

emergency vehicles within each category to the emergency site based on the 

incident’s characteristics. Also, these vehicles should reach the incident within the 

required time to be most effective in dealing with the emergency situation. When 

there are only a few emergencies in the system, this is easy and there is no need for 

sophisticated algorithms. The problem arises when the system is loaded with several 

emergencies. In that case, the dispatcher may decide to send the vehicles to more 

severe emergencies and let the minor ones be delayed. Clearly, having an effective 



 23 

 

dispatching system is essential in emergency fleet management. This kind of problem 

generally belongs to the Generalized Assignment Problem (GAP), which assigns n 

tasks to m machines in the best way. This problem is NP-complete and there have 

been several papers on this problem. As Yang (2006) states: some researchers, such 

as Ross et al. (1975), Martello et al. (1984), and Fisher (1986), have tried to find an 

exact solution for this kind of problem. Since it is NP-complete, finding an exact 

solution is very time-consuming; as a result, many studies have used heuristic 

methods. Some of them, such as Brown et al. (1985), Nulty et al. (1988), Trick 

(1992), Lorena et al. (1996), and Narciso et al. (1999) use linear relaxation. Others, 

such as Chu (1997) and Lorena (2002), use Genetic Algorithm heuristics. Catrysse et 

al. (1992) did a survey of studies using heuristic methods for the GAP.  

Also, some studies exist that address the dispatching of emergency fleets 

specifically; Chaiken and Larson (1972) did a survey of methods for allocating urban 

emergency units. 

Haghani et al. (2003) proposed a mathematical model for dispatching EMS. They 

used an integer model to minimize the total travel time, and considered a time-dependent 

shortest-path algorithm in their formulation. One of the deficiencies of their work is that 

only one type of vehicle is considered in their model. Also, they assumed that each 

emergency call requires only one vehicle, which may not be realistic in most cases. 

Haghani et al. (2004) developed an integer programing model to deal with 

dispatching and used a dynamic shortest-path algorithm in their formulation. They also 

used a simulation model to test their model’s performance. 

The most complete dispatching model in the literature was developed by Yang et 

al. (2005). Their model can dispatch several emergency vehicles of each type to the 
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emergency incident; they consider three categories of vehicles (police car, ambulances, 

and fire vehicles), but the fleets are homogenous in each category.  

 

2.4 Simulation Models 

This kind of model can provide information about the effect of a proposed policy 

change and show how the whole system works. Also, it can provide information on a 

wide range of variables like response times, workload of units, delays, and unit 

availability. In addition, they can be used as a tool to measure system performance.   

Savas (1969) used a simulation model to test the impact of spatially 

repositioning ambulances on the reduction of travel times. He used his simulation 

model on New York City’s emergency ambulance service.  

Swersey (1970) used a simulation model to analyze the operations of the 

dispatch centers of the New York City Fire Department. Carter and Ignall (1970) used 

a simulation approach to compare a wide range of combinations of fire department 

allocation policies. Also, Adams and Barnard (1970) studied the value of an 

automated dispatch system for the San Jose, California, Police Department by using 

simulation models. 

Fitzsimmons (1973) developed a Computerized Ambulance Location Logic 

model (CALL) for ambulance deployment and applied the model to data from the 

City of Los Angeles. Lubicz and Mielczarek (1987) used their simulation model to 

classify calls into several priorities. Goldberg et al. (1990) proposed a first-call, first-

serve multi-server queuing system. 
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Haghani et al. (2003) developed an optimization model for a real-time 

dispatching strategy and they developed a simulation model to test their formulation 

and see how their optimization model performed. 

Haghani et al. (2004) developed a simulation model and tested different 

dispatching strategies, such as the first-called, first-served strategy, nearest-origin 

assignment strategy, and real-time flexible assignment strategy. They used their 

model with these strategies under different circumstances, like different emergency 

arrival rates, route-change strategies, and dynamic travel times. Their model was 

implemented using data from the Arlington County, Virginia, Fire Department.  

The deficiency of most of these models is that they only consider one type of 

vehicle, and in their simulation model they assume that each emergency incident 

requires only one emergency vehicle. 

Yang et al. (2004) developed one of the most complete simulation models for 

EMS vehicle dispatching. This model is integrated in a Genetic Algorithm to solve an 

EMS location and assignment problem. Different emergency types, their response 

priorities, and the dispatching of multiple units are the characteristics of their model 

that made it more sophisticated and realistic compared to other models in the 

literature. Yang et al. (2005) proposed an optimization model for real-time 

dispatching and routing of emergency vehicles and developed a simulation model to 

check the model’s performance. 

Bjarnason et al. (2009) used a simulation optimization model called SOFER 

for placement of resources and emergency response. 
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2.5 The Emergency Vehicle Dispatching and Relocation Problem 

More recently, researchers have addressed the dispatching and relocation of 

emergency vehicles simultaneously. They consider the fact that by dispatching some 

vehicles to emergency incidents, other areas of the system may be left without good 

coverage and, as a result, the response time for future calls from that area increases. 

In this situation, if the model simultaneously dispatches vehicles to the emergency 

scene(s) and relocates remaining emergency vehicles to provide better coverage of 

the entire area, total average response time will decrease and level of service will 

increase. 

Lee (2010) used a dispatching algorithm based on a quantitative definition of 

preparedness of the area (proposed by Andersson et al. in 2007). The area is 

considered to be ill-prepared if there is not enough coverage for it. He showed that the 

consideration of preparedness in ambulance dispatching can provide significant 

benefits in reducing response time if it is combined with greediness in the 

conventional rule, to consider both current (greediness) and future (preparedness) 

calls. In this dispatching system, the calls have the same importance; no distinctions 

are made as to priority of calls. 

Yang (2006) and Yang et al. (2005) were the first to address this kind of 

problem, with one of the most complex models in the literature. The model considers 

different categories of vehicles (police, fire, ambulance). Also, based on the severity 

of the emergency, the model will dispatch the appropriate types and required numbers 

of vehicle in each category to the incident; in addition, the model tries to have the 

vehicles arrive within the required time. Diversion of vehicles and reassignment to 
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new destinations is also considered in the model. It also attempts to relocate vehicles 

throughout the system so as to provide better coverage. If the overall coverage for 

each type of vehicle is less than 𝜌𝑘, then a penalty would be added to the objective 

function. Yang used a Genetic Algorithm heuristic method to find good solutions for 

her model in the appropriate times. Also, she used a thorough simulation model to 

check the performance of her optimization model and used it on real-world data. One 

of the model’s deficiencies is that vehicles in each category are homogenous. She 

does not consider the fact that if, for example, an Advanced Life Support ambulance 

gets to the incident sooner than a Basic Life Support ambulance, there is no need for 

the Basic Life Support ambulance; also, the Fire Quint can perform as both the Fire 

Engine and the Fire Truck.  

The model in this research, in contrast, has the capability to consider a 

heterogeneous fleet. The coverage aspect of Yang’s model is very simple; for 

instance, she only attempts to cover the area once, and whenever the overall coverage 

is less than 𝜌𝑘, a penalty is added to the objective function. The coverage criteria in 

the proposed model are sophisticated. We attempt to cover demand nodes within 

𝑇1minutes, and if some of the nodes are not covered within 𝑇1 minutes, we seek to 

cover them within 𝑇2 minutes. By this criterion, the equity between demand points is 

increased. We also attempt to have double coverage within 𝑇1 minutes for critical 

nodes in the system and double coverage within 𝑇2 minutes for ordinary nodes in the 

system. There is no model in the literature that considers heterogeneous fleet in 

double coverage problems. Also, this model is capable of considering partial and full 

coverage in heterogeneous categories which is new to the literature. In addition we 
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consider two types of demand nodes: ordinary demand nodes and critical demand 

nodes which is new to the literature. Some other considerations related to the crews of 

these vehicles in the proposed model make it highly useful and suitable for 

application to real-world systems, which will be discussed in the next chapter. 
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Chapter 3: Problem Statement and Mathematical Formulation 
 

 

In this chapter, first the problem and its properties will be described completely and 

then the assumptions addressed in the problem will be provided. The notations, 

parameters, and variables in the model will be described, and, at the end, the 

mathematical formulation will be presented. In the mathematical formulation, the 

objective function will be explained first, after which a brief description of every 

constraint is provided. 

 

3.1 Problem Statement 

Emergency response services such as police, fire, and medical services can minimize 

the negative effects of emergency incidents by decreasing the response time. 

Response time is not only related to the dispatching system, but also has a very close 

relationship to the area coverage of the network by emergency vehicles. The goal of 

this dissertation is to develop a model for an Emergency Management System. This 

model is a dynamic model that will relocate the emergency vehicles to provide better 

coverage for the whole system and also when an emergency happens in the system 

the model will consider dispatching and relocation problem simultaneously. In 

summary, this model will assist the emergency management centers in dispatching 

vehicles to emergency sites, and relocating vehicles to provide better coverage for the 

whole area. The characteristics and components of this problem are explained in this 

section. 



 30 

 

3.1.1 The Dispatching Problem 

Nowadays, because of advanced technologies like global positioning systems and 

powerful computers, interaction between different departments and components of a 

system is possible. For instance, most 911 call centers have access to the location of 

the emergency vehicles and their status all the time. Also, they can access traffic data 

on the network and information on hospital vacancies. When an emergency call 

comes to an emergency center, based on the emergency situation the dispatcher 

should decide the number of vehicles and types of vehicles that should be sent to the 

scene and also the required time within which those vehicles should get to the 

emergency location—the more severe the emergency, the less required time. Also, 

based on the location of the vehicles and their availability, the dispatcher will send 

them from different depots to the emergency site. Some of the vehicles, like 

ambulances, should take patients to hospitals after ambulance personnel are done 

working at the emergency site, so the dispatcher should send them to the nearest 

available hospital. In addition, when real-time traffic data are available, the dispatcher 

can provide the vehicles with the shortest-time route. Also, sometimes the dispatchers 

may decide to divert vehicles from their previous destinations to a new one. For 

example, if a vehicle is going to a station and another emergency happens it may be 

diverted to the emergency site. Another situation will be illustrated in Figure 3.1. 

Suppose that there are only two stations for the emergency vehicles in the system, and 

each one has only one vehicle. At time t an emergency happens at node 1 and the 

dispatcher sends the nearest vehicle, which is from station 2.   
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Figure 3.1 A Simple Example of a Dispatching Problem 

 

Then, at time t+1, something else happens at node 2 in the system. At this time, 

the vehicle dispatched to node 1 is still en route and not at the emergency site yet. Then 

the dispatcher has two options: The first option is letting vehicle 2 continue to the 

previous task in node 1 and send the vehicle from station 1 to node 2 (Figure 3.2). The 

second option is diverting vehicle 2 to node 2 and dispatch the vehicle 1 to node 1 

(Figure 3.3).  

 

Figure 3.2 A Simple Example of a Dispatching Problem 
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Figure 3.3 A Simple Example of a Dispatching and Diverting Problem 

 

By comparing Figures 3.2 and 3.3, it can be seen that the total response time 

will be decreased by considering the diverting situation. It is a very good option when 

the emergency in node 2 is a severe one, but if the emergency in node 1 is very severe 

and the other one is less severe, the dispatcher may prefer to use Figure 3.2’s 

situation. Therefore, by this simple example it is shown that having a good 

dispatching model is essential. 

Another thing that should be mentioned here is that the diverting is not easy 

for drivers and may confuse them. Therefore, whenever there is only a slight positive 

impact on the whole system, diverting will not be considered. It is an option in the 

proposed model only when there is at least a minimum amount of benefit to the whole 

system. By this minimum threshold of benefit, the model avoids having too many 

diversions in the system. 

 

3.1.2 The Coverage Problem 

Response time is not only related to the dispatching system, but also to coverage of 

the whole area for future demands. When the vehicles in an area are busy that section 
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is left without coverage for future demands, and in this situation the emergency fleet 

manager may decide to relocate the vehicles to have better coverage of the whole area 

for future demands. Several models for the coverage problem were investigated and 

explained in the literature review chapter. In this study, several criteria for coverage 

are considered.  

The real street network is considered as a graph with n nodes and m directed 

links. If the network is detailed enough to include lots of nodes, this assumption is 

reasonable (Yang, 2006). These demand nodes belong to two categories, ordinary 

nodes and critical nodes. These two categories of demand nodes have different 

criteria for coverage. 

The critical nodes are the ones that are strictly important to the system like 

hospitals and schools during school sessions. Also, each city has some infrastructures 

on which the city depends, such as subways that are also critical nodes. All other 

nodes in the system are ordinary nodes. 

In this model two time limits for each type of vehicle are considered:  𝑇1 

minutes and 𝑇2 minutes, with 𝑇1 ≤  𝑇2. The goal is to cover all demand nodes within 

𝑇1 minutes first, but if some are not covered within 𝑇1  minutes, the goal is to cover 

them within 𝑇2 minutes. By this assumption the equity between different nodes is 

increased. For instance, it is preferable to cover all nodes with a BLS ambulance in 5 

minutes, but if some nodes are not covered with a BLS in 5 minutes, they should be 

covered in 8 minutes. Being covered in 8 minutes is better than being covered in 20 

minutes. Also, the model attempts to have double coverage for ordinary nodes within 

𝑇2 minutes and for critical nodes within 𝑇1minutes. When the nodes are covered twice 
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it can have a positive impact on the response time, because if one vehicle gets busy in 

an area there is still another vehicle left to cover future demands. 

The coverage problem in this model can be explained in a simple example. 

Figure 3.4 shows a small network that has only 6 nodes and 3 stations. All nodes in 

this example are ordinary nodes and only one type of vehicle (BLS) is considered. 

There is only one vehicle in each staion and there is no emergency at time t in the 

system. Node 1 and node 2 are covered twice within 𝑇1 minutes, and node 4 and node 

5 are covered once within 𝑇1 minutes and twice within 𝑇2 minutes. Also nodes 3 and 

6 are covered once within 𝑇1 minutes. 

 

Figure 3.4 A Simple Example of a Coverage Problem 
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Suppose at time t+1 an emergency happens at node 3 and vehicle 2 from 

station 2 is dispatched to the emergency location at node 3 (Figure 3.5). In this 

situation, all the remaining nodes in the system are covered once within 𝑇1 minutes, 

but if vehicle 1 from station 1 gets relocated to station 2, then nodes 1 and 2 will have 

the same situation and nodes 4 and 5 will have double coverage within 𝑇2 minutes. If, 

in the near future, something happens—for example, at node 6—and vehicle 3 gets 

dispatched to that node, nodes 4 and 5 still have one coverage within 𝑇2 minutes. 

Therefore, depending on the relocation cost of the vehicle, the likelihood of an 

emergency happening in those nodes, and other considerations, the relocation may 

take place.  

 

Figure 3.5 A Simple Example of a Dispatching and Relocation Problem 
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Another scenario that is helpful in illustrating the model’s properties is the 

occurrence of two emergencies at the same time at node 3 and node 6. A vehicle from 

station 2 is dispatched to node 3 and a vehicle from station 3 is dispatched to node 6 

(Figure 3.6). In this situation, node 1 and node 2 have one coverage within 𝑇1 

minutes, but node 4 and node 5 are not covered. If the vehicle from station 1 is 

relocated to station 2, then node 1 and node 2 will have the same situation; however, 

the situation will be improved for node 4 and node 5 and they will be covered within 

𝑇2 minutes. Therefore, by this relocation the model attempts to increase the equity 

between demand nodes.  

 

Figure 3.6 A Simple Example of a Dispatching and Relocation Problem 
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Also if, for example, two emergencies happen at the same time at node 3 and 

node 6—but the emergency at node 3 is not very severe—and the vehicle from station 

1 can satisfy the required service time, the model will send a vehicle from station1 to 

node 3 and let vehicle 2 stays in station 2 to cover future demand nodes (Figure 3.7).  

 

Figure 3.7 A Simple Example of a Dispatching and Coverage Problem 

 

Another thing that should be mentioned is that the nodes do not have the same 

importance. Depending on the expected number of emergencies that can happen in 

each node, their importance varies. Also, the importance of each node can vary over 

time. For example, the downtown of a city can be very important in business hours 

but not that important overnight, and a school is very important during school hours 

but not very important at other times. So for each time step at which the model is 
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solved, the importance of different demand nodes is input to the model, and, based on 

that, the model will decide whether to relocate its vehicles. 

  

3.2 Characteristics of the Problem 

3.2.1 Emergency Vehicle Fleet 

Three categories of emergency vehicles are considered in this study: 

 Police cars: Only one type of police car is considered. 

 Ambulances: Two kinds of ambulances are considered: 

o Basic Life Support (BLS): Provides basic airway management (e.g., 

oxygen therapy), assistance with childbirth, automatic external 

defibrillation, etc. (NFPA 1710, 2001 Edition). 

o Advanced Life Support (ALS): Provides advanced airway management 

(e.g., intubation), advanced cardiac monitoring, drug therapy, etc. (NFPA 

1710, 2001 Edition). 

 Fire vehicles: Three types of vehicles are considered in this category: 

o Fire engine: Equipped with hose lines and water. 

o Fire truck: Equipped with ladders, rescue equipment, and other tools to 

support firefighting activities.  

o Fire quint: Recent additions to fire departments’ fleets, these fire trucks 

also carry a hose line and enough water to perform as both a fire truck and 

a fire engine. 
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Therefore, there are three categories in the emergency fleet and six types of 

vehicles. The police category is the only homogeneous fleet; the other two categories 

have heterogeneous fleets. This heterogeneous characteristic is important for both the 

dispatching and coverage problems. 

 

3.2.2 Demand Nodes 

As was explained earlier, the demand nodes in the system belong to two categories: 

 Critical nodes: Hospitals, schools during school hours, important 

infrastructures like subways, etc. belong to this category. The model attempts 

to provide double coverage for these nodes within 𝑇1minutes. 

 Ordinary nodes: All nodes other than critical nodes belong to this category; 

the model attempts to provide double coverage for these nodes within 𝑇2 

minutes. 

The importance of the nodes in each category is not the same. Nodes that, 

based on historical data, have had more emergency incidents will have more 

importance in the system. In the model, the importance of each node is shown by 

integer numbers ranging from 1 to 4. One means that the expected number of 

emergencies in the node is not high, and 4 shows a high likelihood of emergencies in 

that node. Also, over different time steps the importance of the nodes can vary; for 

example, demand nodes that are near nightclubs will be more important during 

weekend nights, when the clubs are crowded. The model will relocate the vehicles in 

the system based on the importance of different demand nodes. 
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3.2.3 Emergency Calls 

Emergency calls can have different categories, such as traffic accidents, fires, crimes, 

and medical emergencies (Yang, 2006). Based on the characteristic of the emergency, 

the dispatcher will choose the types of vehicles that should be sent to the scene. Also, 

based on the emergency’s severity, the number of vehicles from each type and the 

required time for them to get to the scene will be defined. The more severe 

emergencies have shorter required response times. 

 

3.3 Assumptions 

In this section, the assumptions used in the study are explained. 

 

3.3.1 Coverage Assumptions 

As was mentioned before, there are two types of ambulances; Advanced Life Support 

and Basic Life Support ambulances (ALS and BLS). The ALS ambulances can 

perform the BLS ambulance’s job. Usually the BLS gets to the scene sooner and does 

some preliminary work before the ALS arrives. A demand node is considered as fully 

covered if there is a BLS within 𝑇𝐵 minutes and an ALS within 𝑇𝐴 minutes such that 

𝑇𝐵  ≤  𝑇𝐴. For example, according to the NFPA 1710 guidelines, the BLS should get 

to the emergency scene in 5 minutes 90% of the time and the ALS should arrive in 9 

minutes 90% of the time. In addition, in another situation the node is considered to be 

fully covered if there is an ALS ambulance within 𝑇𝐵minutes; because the ALS can 
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perform the BLS ambulance’s job, there is no need for the BLS. The full coverage 

situation for ambulances is shown in Figure 3.8.  

 

Figure 3.8 Demand Node Full Coverage with Ambulances 

 

However if the node is only covered by one of these vehicles, it will be 

partially covered and it should benefit from the partial coverage. Partial coverage in 

the ambulance category happens if the node is covered either by a BLS ambulance 

within 𝑇𝐵 minutes or by an ALS ambulance in t minutes (where 𝑇𝐵 ≤ 𝑡 ≤  𝑇𝐴 ). In the 

latter case the ALS ambulance which is not within 𝑇𝐵 minutes from the node cannot 

be considered as BLS ambulance in the coverage problem. The partial coverage 

situation for ambulances is shown in Figure 3.9. 

 

Figure 3.9 Demand Node Partial Coverage with Ambulances 
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 Also, three types of fire vehicles are assumed in this study: fire engines, fire 

trucks and fire quints. As was explained earlier, the fire quint can perform as both a 

fire engine and a fire truck. So, a demand node is considered to be fully covered in 

the fire category if it is covered by both a fire engine and a fire truck within 𝑇𝐹 

minutes, or it is covered by a fire quint within 𝑇𝐹 minutes. The full coverage by fire 

vehicles for a node is shown in Figure 3.10. 

 

Figure 3.10 Demand Node Full Coverage with Fire Vehicles 

 

However if the node is covered by either a fire engine or a fire truck, it will be 

partially covered and it should benefit from the partial coverage. The partial coverage 

situation for fire vehicles is shown in Figure 3.11. 

 

Figure 3.11 Demand Node Partial Coverage with Fire Vehicles 
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The coverage of the demand nodes by police cars is quite simple, because 

only one type of police car is considered in this study. The node is covered if the 

police car is within 𝑇𝑃 minutes of the node. The coverage situation is shown in Figure 

3.12. 

 

Figure 3.12 Demand Node Coverage with Police Cars 

 

It should be mentioned that there are two time limits for each type; for 

example, there are 𝑇1𝐹 minutes and 𝑇2𝐹 minutes for fire vehicles and the nodes are, 

ideally, covered at least once within 𝑇1𝐹 minutes. If they are not covered within 𝑇1𝐹 

minutes, the model attempts to cover them within 𝑇2𝐹 minutes. Also, the model 

attempts to provide double coverage for ordinary nodes within 𝑇2𝐹 minutes and for 

critical nodes within 𝑇1𝐹 minutes. For every type of vehicle, therefore, there are two 

time limits for coverage. 

 

3.3.2 Dispatching Assumptions 

In the dispatching problem, some practical assumptions related to the heterogeneous 

characteristics of the fleet are considered in this study. If an emergency happens at a 
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node in the system and a BLS must arrive at the site within 𝑇𝐵 minutes, if an ALS 

gets to the emergency location within 𝑇𝐵 minutes then the need for a BLS is satisfied. 

Also, when an emergency happens, the dispatcher defines the number of fire 

engines and fire trucks that should be sent to that location within 𝑇𝐹 minutes. If a fire 

quint arrives at the location within 𝑇𝐹 minutes, then it can do the job of one fire 

engine and one fire truck. These assumptions are required for real-world applications. 

 

3.3.3 Availability of Emergency Vehicles 

When a vehicle is on-site handling an emergency situation or when it runs out of its 

supply, it is not available for dispatching. For example, if an ambulance runs out of 

drugs it is no longer available and needs to return to a station to restock. When a 

vehicle runs out of resources, it must be sent to a station and should remain there until 

it is refilled; during this time, it is unavailable. To summarize, when emergency 

vehicles are at an emergency site they are unavailable. After they are done with the 

emergency scene, police cars are available because they do not need to recharge any 

supplies. Some vehicles, like ambulances have to restock their medications, so they 

are unavailable. In addition, ambulances may take patients to hospitals; they remain 

unavailable for dispatch to other destinations, as their only destination should be a 

hospital (Yang, 2006). 

 

3.3.4 Divertible Emergency Vehicles 

Vehicles on their way to an emergency site, hospital, or station are divertible. When 

the destination of a vehicle is a hospital, it can be diverted, but the new destination 
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must be another hospital. For example, an ambulance is taking a patient to hospital A 

when the traffic data change and show congestion on the route to that hospital. In that 

case, the ambulance may be diverted to another hospital. Also, when the vehicle is 

out of resources and must go to a station to get recharged, it is divertible—but its 

destination has to be another station. As was mentioned before, because the diversion 

is difficult for the drivers and increases confusion, it is an option only when it has at 

least a predefined amount of benefit to the whole system (Yang, 2006). 

 

3.3.5 Stations of Emergency Vehicles 

Each vehicle category has its own stations. Sometimes different categories share the 

same station; for example, fire stations can be used by ambulances. Fire vehicles can 

use all fire stations in the system as their station and may be relocated to any one of 

them if the capacity of that station allows. Ambulances can use emergency rescue 

centers, hospitals, and fire stations as their station. Police cars can use every node in 

the network for their station and do not need to use police stations only, so police cars 

can be relocated to any node in the system to provide better coverage of the whole 

area.  

Another assumption considered in this study is each station has a set capacity 

and, for example, a fire station cannot hold 10 fire engines when its capacity is only 

3. 
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3.3.6 Dynamic Characteristic and Input Assumptions 

The problem under investigation for this dissertation is a dynamic problem. At each 

time step it is assumed that the traffic data on the road network, the location of the 

vehicles and their status, the capacity of vehicle stations, the likelihood of 

emergencies happening at demand nodes, and information about the capacity of the 

hospitals are known as the input to the model. If an emergency happens at a node in 

the system, based on the emergency type and severity, the number of vehicles in each 

type and the required time to have those vehicles on site will be defined and the 

model is solved to decide which vehicles should be dispatched to emergencies and 

which vehicles should be relocated to provide better coverage of the whole area. 

Also, this model is event-based and will be solved whenever there is an event in the 

system. These events can be:  

 Occurrence of an emergency: When an emergency happens, some vehicles 

need to be sent to the emergency site and others may be relocated to provide 

better coverage. 

 Change in the status of vehicles: When the status of a vehicle changes, for 

example when it is finished at the emergency site and needs to get recharged, 

the model will be solved to send the vehicle to a station to get recharged. If it 

is finished with an emergency and becomes available, it needs to be sent to a 

station to provide better coverage. 

 Change in the traffic data: When the traffic data change, the model needs to be 

resolved. For example, if a vehicle is taking a patient to a hospital and new 

traffic data show that due to congestion on the route to the previous 
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destination another hospital is closer; in that case the vehicle may be diverted 

to the other hospital. 

 Change in the likelihood of an emergency happening in the demand nodes: 

When the importance of the demand nodes are changed, the model should be 

resolved to find better coverage for the system. For example, during the 

daytime more vehicles are needed near schools, but at night the importance of 

those nodes is decreased.  

Therefore, whenever an event happens in the system, the model should be 

resolved to find a new solution. 

 

3.3.7 Assumptions Related to Crews 

3.3.7.1 Preference for Home Stations 

It is obvious that the crews prefer to stay at their home station instead of being 

relocated to other stations. They usually keep their food and personal possessions 

there; sometimes they also have an assigned desk in their home station. The 

preference for their home station is considered in this study. The cost of relocating to 

stations other than the home station is higher than the cost of relocating to the home 

station. The coefficient of this cost is higher for fire vehicles, because their crews are 

the ones that prefer most to stay at their home station. This cost is lower for 

ambulances, because they are more flexible than the fire vehicles. In this study there 

is no such cost for police cars, because it is assumed that they can be relocated to any 

node in the system and therefore there is no preference for them. 
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3.3.7.2 End of the Shift  

Some vehicles are relocated in our study over time and may end up in another station 

at the end of their work shift. Also when it is near the end of their shift it is better for 

them to not be assigned to a job if another vehicle can cover the emergency. 

Therefore, in this study the cost of assigning the crews that are near the end of their 

shifts to incoming jobs is higher than assigning those who are not close to the end of 

their shifts. By this assumption the model attempts to consider the crew’s work hours 

as long as this does not interfere with the emergency incident. It means that if there is 

no vehicle in the required time, the vehicle assigned to crews near the end of their 

shifts should be dispatched to the emergency. 

 

3.3.7.3 Workload Balance 

One of the important characteristics of this model is that it attempts to maintain 

workload balance between different crews of the emergency vehicle fleet. It is 

assumed that the crews assigned to a vehicle always work together in that specific 

vehicle for that shift. In this case, the work hours of the crews in the same vehicle are 

the same. The cost of dispatching a vehicle to a job is higher if the workload of that 

vehicle is higher. The workload of vehicle i is defined as working hours so far for 

those crews divided by the total hours so far in the shift. For example, if the crews of 

vehicle i started working at 7 a.m., it is 11 a.m., and during this time this vehicle 

worked for 1 hour, the workload ratio of this vehicle is 0.25. It is preferable to 

dispatch a vehicle with a lower workload to a job instead of a vehicle with a higher 

workload.  
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3.4 Mathematical Formulation 

As was explained in the problem statement section, two parts are considered in this 

model: 

 Dispatching vehicles to emergencies,  

 Relocating vehicles to provide better coverage for the whole area, and 

In summary, the model has to take into account all of the following goals: 

 Minimize the dispatching and relocation travel time and cost. 

 Maximize the first coverage of the whole area within 𝑇1 minutes. 

 If some nodes are not covered within 𝑇1minutes, try to cover them within 𝑇2 

minutes. 

 Maximize the double coverage within 𝑇2 minutes for ordinary nodes. 

 Maximize the double coverage within 𝑇1 minutes for critical nodes. 

 Prefer to send vehicles to their home station. 

 Prefer not to assign the job to the vehicles whose crews are near the end of 

their shifts. 

 Try to maintain workload balance between vehicles. 

 Ensure that emergencies can be serviced with the required types and numbers 

of vehicles. 

 Ensure that vehicles arrive at the emergency scene within required time. 

 Ensure that vehicle diversions occur with at least a minimal positive impact on 

the whole system performance. 

The real-time dispatching and relocation of the emergency fleet is formulated 

as an integer-programming model based on the above objectives and assumptions. In 
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the following subsections, the notations, coefficients, and variables used in the model 

will be introduced and the objective function and constrains are explained. 

 

3.4.1 Notations 

𝑉            Set of emergency vehicles in the system 

𝐾            Set of emergency vehicle types in the system ( 𝑘 = 1, … , 6 ) 

𝑉𝑘           Set of type k emergency vehicles in the system  

𝐾′           Set of categorized emergency vehicle types in the system ( 𝑘′ = 1, 2, 3 ) 

𝑁𝑘           Maximum number of emergency vehicle types in the system (𝑁𝑘 = 6 )            

𝑁𝑉𝑘
         Maximum number of emergency vehicle type k in the system  

𝑉𝑘
𝐼𝑆          Subset of type k emergency vehicles in 𝑉𝑘 that are staying at the station 

    with idle status 

𝑉𝑘
𝑆           Subset of type k emergency vehicles in 𝑉𝑘 that are moving to a station  

𝑉𝑘
𝑆𝑆         Subset of type k emergency vehicles in 𝑉𝑘 that must go to a station to get 

    recharged 

𝑉𝑘
𝑆𝑆𝑆       Subset of type k emergency vehicles in 𝑉𝑘 that must stay in the station to get 

               recharged 

𝑉𝑘
𝑒          Subset of type k emergency vehicles in 𝑉𝑘 that are moving to an emergency 

              site 

𝑉𝑘
𝑒𝑒        Subset of type k emergency vehicles in 𝑉𝑘 that are servicing an emergency 

 

𝑉𝑘
ℎ         Subset of type k emergency vehicles in 𝑉𝑘 that are taking patients to  

   hospitals after finishing on-site service 
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𝑉𝑘
ℎℎ       Subset of Type k Emergency Vehicles in 𝑉𝑘 that are staying at the hospital               

𝑖             Index of vehicles in set 𝑉𝑘 , 𝑖  = 1, 2, …, 𝑁𝑉𝑘
   

𝐸           Set of emergencies in the system 

𝐸0         Set of emergency incidents in the system that are currently being serviced 

𝐸1         Set of emergency incidents in the system that are waiting for service 

𝑗            Index of emergencies in set 𝐸   

𝑆𝑘         Set of emergency vehicle stations for type k 

𝑁𝑆𝑘
       Maximum number of emergency vehicle stations for type k in the system 

𝑠           Index of stations in set 𝑆𝑘 , 𝑠  = 1, 2, …, 𝑁𝑆𝑘
 

𝐻          Set of hospitals 

𝑁𝐻        Maximum number of hospitals in the system 

ℎ           Index of hospitals in set 𝐻, ℎ  = 1, 2, …, 𝑁𝐻 

𝑃          Set of ordinary nodes in the area 

𝑁𝑃        Maximum number of nodes 

𝑝           Index of nodes in set 𝑃, 𝑝  = 1, 2, …, 𝑁𝑃 

𝐼           Set of critical buildings and infrastructures in the system 

𝑁𝐼        Maximum number of critical buildings and infrastructures in the system  

𝑙            Index of critical buildings and infrastructures in set, 𝑙  = 1, 2, …, 𝑁𝐼  

 

3.4.2 Coefficients 

𝑇𝑘𝑗       Upper bound time for vehicle type k reaching emergency j 

𝑃𝑇𝑘𝑗     Penalty for excess time in reaching emergency j by vehicle type k 
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𝑃𝐷𝑘𝑗    Penalty for deficiency of vehicle type k in emergency j  

𝜔𝑠         Minimum threshold of benefit for diverting a vehicle while going to a station   

              (this means that the diversion will happen if the saving for the whole system  

              is larger than 𝜔𝑠). 

𝜔𝑒         Minimum threshold of benefit for diverting a vehicle while going to an  

  emergency incident  (this means that the diversion will happen if the saving  

  for the whole system is larger than 𝜔𝑒). 

𝜔ℎ         Minimum threshold of benefit for diverting a vehicle while going to a  

               hospital (this means that the diversion will happen if the saving for the  

              whole system is larger than 𝜔ℎ). 

𝐸𝐾′𝑝      Likelihood of an emergency at node p that would require category 𝐾′  

               vehicles (𝐸𝐾′𝑝 = 1, … , 4) 

𝐸𝐾′𝑙       Likelihood of an emergency in Critical node 𝑙 that would require 

     category 𝐾′ vehicles (𝐸𝐾′𝑙 = 1, … ,4) 

𝐴𝐴        Benefit of ordinary node first coverage within 𝑇1minutes 

𝐴𝐵       Benefit of ordinary node first coverage within 𝑇2minutes 

𝐴𝐶       Benefit of ordinary node second coverage within 𝑇2minutes 

𝐴𝐷       Benefit of critical node first coverage within 𝑇1minutes 

𝐴𝐸        Benefit of critical node first coverage within 𝑇2minutes 

𝐴𝐹        Benefit of critical node second coverage within 𝑇1minutes 

𝐶𝑘𝑖𝑗       Cost of type k vehicle i to travel to emergency j, which is a function of travel 

              time 𝑡𝑘𝑖𝑗(t) , working hour ratio of the crews and whether or not it is the end 

  of the  working shift for  the crews of vehicle i. 
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𝐶𝑘𝑖𝑠      Cost of type k vehicle i to travel to station s, which is a function of travel 

   time 𝑡𝑘𝑖𝑠(t), working hour ratio of the crews,  whether or not it’s the end of  

   the working shift for the crews of vehicle i, and the station s is the  

   home station for vehicle i or not . 

𝐶𝑘𝑖ℎ      Cost of type k vehicle i to travel to hospital h, which is a function of travel 

               time 𝑡𝑘𝑖ℎ(t) only. 

𝑊𝐻𝑅𝑘𝑖  = (𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑠𝑜 𝑓𝑎𝑟) 𝑘𝑖 (𝑡𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑠𝑜 𝑓𝑎𝑟) 𝑘𝑖⁄    

                Working hour ratio of the crews of vehicle i in type k 

𝑡𝑘𝑖𝑗        Predicted travel time for type k vehicle i to reach emergency j. 

𝑡𝑘𝑖𝑠        Predicted travel time for type k vehicle i to reach station s. 

𝑡𝑘𝑖ℎ       Predicted travel time for type k vehicle i to reach hospital h. 

𝛼𝑒 , 𝛼𝑠 , 𝛼ℎ     Coefficients of the travel times in estimating travel costs 

𝛽𝑒 , 𝛽𝑠              Coefficients of the working hour ratios in estimating travel costs 

𝛾𝑒 , 𝛾𝑠               Coefficients of the end-of-shift indicator in estimating travel costs 

𝜃𝑠        Coefficients of the home-station indicator in estimating travel costs 

𝑁𝑘𝑗       Required number of type k vehicle for emergency j 

𝑇𝐶1𝑘    First critical time (𝑇1 minutes) used for coverage by vehicle type k  

𝑇𝐶2𝑘    Second critical time (𝑇2 minutes) used for coverage by vehicle type k 

𝑡𝑘𝑠𝑝      Predicted travel time for vehicle type k from station s to ordinary node p.  

𝑡𝑘𝑠𝑙     Predicted travel time for vehicle type k from station s to critical node l.  

𝐶𝑎𝑝𝑘𝑠  Capacity of s
st
 station for vehicle type k  

𝐶𝑎𝑝ℎ    Vacancy of hospital h 
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𝑀 A large number 

𝑋𝑘𝑖𝑗
0        = 1 if type k vehicle i was dispatched to emergency j at the previous step,  

  = 0 otherwise; 

𝑋𝑘𝑖ℎ
0      = 1 if type k vehicle i was dispatched to hospital h at the previous step,  

 = 0 otherwise; 

𝑋𝑘𝑖𝑠
0       = 1 if type k vehicle i was dispatched to station s at the previous step, 

             = 0 otherwise; 

𝛿𝑃𝑘𝑠𝑝   = 1 if 𝑡𝑘𝑠𝑝  ≤  𝑇𝐶1𝑘 ,  =0 otherwise; 

𝛾𝑃𝑘𝑠𝑝   = 1 if 𝑡𝑘𝑠𝑝  ≤  𝑇𝐶2𝑘 ,  =0 otherwise; 

𝛿𝐼𝑘𝑠𝑙    = 1 if 𝑡𝑘𝑠𝑙  ≤  𝑇𝐶1𝑘 ,  =0 otherwise; 

𝛾𝐼𝑘𝑠𝑙    = 1 if 𝑡𝑘𝑠𝑙  ≤  𝑇𝐶2𝑘 ,  =0 otherwise; 

𝛿𝑃𝐴𝐵𝑠𝑝 = 1 if 𝑡3𝑠𝑝  ≤  𝑇𝐶12 ,  =0 otherwise; (this means that if ALS from station s  

                 can get to the ordinary node p within BLS’s first critical coverage time,  

                 the node is considered as covered by both ALS and BLS in the first  

                 critical time) 

𝛾𝑃𝐴𝐵𝑠𝑝 = 1 if 𝑡3𝑠𝑝  ≤  𝑇𝐶22 ,  =0 otherwise; (this means that if ALS from station s  

                 can get to the ordinary node p within BLS’s second critical coverage time,  

                 the node is considered as covered by both ALS and BLS in the second  

                 critical time) 

𝛿𝐼𝐴𝐵𝑠𝑙  = 1 if 𝑡3𝑠𝑙  ≤  𝑇𝐶12 ,  =0 otherwise; (this means that if ALS from station s  

                 can get to the critical node l within BLS’s first critical coverage time,  

                 the node is considered as covered by both ALS and BLS in the first  

                 critical time) 
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𝛾𝐼𝐴𝐵
𝑠𝑙

  = 1 if 𝑡3𝑠𝑙  ≤  𝑇𝐶22 ,  =0 otherwise; (this means that if ALS from station s  

                 can get to the critical node l within BLS’s second critical coverage time,  

                 the node is considered as covered by both ALS and BLS in the second  

                 critical time) 

 

3.4.3 Decision Variables 

𝑋𝑘𝑖𝑗      = 1 if the type k vehicle i is dispatched to emergency j at this time step, 

             = 0 otherwise; 

𝑋𝑘𝑖ℎ     = 1 if the type k vehicle i is dispatched to hospital h at this time step, 

             = 0 otherwise; 

𝑋𝑘𝑖𝑠      = 1 if the type k vehicle i is dispatched to station s at this time step, 

             = 0 otherwise; 

𝑋𝐴𝐵𝑖𝑗  = 1 if ALS i reaches emergency j within required time for BLS  

 = 0 otherwise; 

𝐷𝑘𝑗       = Deficiency of type k in emergency j 

𝐸𝑋𝑇𝑘𝑖𝑗  = 1 if travel time for type k vehicle i to emergency j is longer than𝑇𝑘𝑗, 

              = 0 otherwise; 

𝑅𝑘𝑖
𝑒         = 1 if type k vehicle i is diverted while it is going to an emergency,  

 = 0 otherwise; 

𝑅𝑘𝑖
𝑠        = 1 if type k vehicle i is diverted while it is going to a station,           

            = 0 otherwise; 

𝑅𝑘𝑖
ℎ         = 1 if type k vehicle i is diverted while it is going to a hospital, 
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              = 0 otherwise; 

𝑍𝑃𝐹
𝑘′𝑝
1

  = 1 if node p is covered at least once by the first vehicle type in category𝑘′      

                  in the first time,      

  = 0 otherwise; 

𝑍𝑃𝑆𝑘′𝑝
1  = 1 if node p is covered at least once by the second vehicle type in category𝑘′   

                 in the first time,      

 = 0 otherwise; 

𝑍𝑃𝑘′𝑝
1    = 1 if node p is fully covered at least once by category𝑘′in the first time, 

= 0 otherwise; 

𝑌𝑃𝐹𝑘′𝑝
1  = 1 if node p is covered at least once by the first vehicle type in category 𝑘′  

                  in the second time and not covered in the first time,  

 = 0 otherwise; 

𝑌𝑃𝑆𝑘′𝑝
1  = 1 if node p is covered at least once by the second vehicle type in  

                 category 𝑘′ in the second time and not covered in the first time,  

= 0 otherwise; 

𝑌𝑃𝑘′𝑝
1    = 1 if node p is fully covered at least once by category 𝑘′ in the second  

                 time and not fully covered in the first time, 

 = 0 otherwise; 

 

𝑌𝑃𝐹𝑘′𝑝
2 = 1 if node p is covered at least twice by the first vehicle type in  

                category 𝑘′ in the second time  

= 0 otherwise; 
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𝑌𝑃𝑆𝑘′𝑝
2  = 1 if node p is covered at least twice by the second vehicle type in  

                category𝑘′ in the second time  

 = 0 otherwise; 

𝑌𝑃𝑘′𝑝
2   = 1 if node p is fully covered at least twice by category 𝑘′in the second time, 

= 0 otherwise; 

𝑍𝐼𝐹𝑘′𝑙
1  = 1 if critical node 𝑙 is covered at least once by the first vehicle type in  

                category 𝑘′ in the first time 

           = 0 otherwise; 

𝑍𝐼𝑆𝑘′𝑙
1  = 1 if critical node 𝑙 is covered at least once by the second vehicle type in  

                category 𝑘′ in the first time 

           = 0 otherwise; 

𝑍𝐼𝑘′𝑙
1    = 1 if critical node 𝑙 is fully covered at least once by category 𝑘′ in the  

                first time 

           = 0 otherwise; 

𝑌𝐼𝐹𝑘′𝑙
1  = 1 if critical node 𝑙 is covered at least once by the first vehicle type in  

                category 𝑘′ in the second time and not covered in the first time, 

           = 0 otherwise; 

𝑌𝐼𝑆𝑘′𝑙
1  = 1 if critical node 𝑙 is covered at least once by the second vehicle type in  

                category 𝑘′ in the second time and not covered in the first time, 

=0 otherwise; 

𝑌𝐼𝑘′𝑙
1    = 1 if critical node 𝑙 is fully covered at least once by category 𝑘′ in the 

    second time and not fully covered in the first time,  
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            = 0 otherwise; 

𝑍𝐼𝐹𝑘′𝑙
2  = 1 if critical node 𝑙 is covered at least twice by the first vehicle type in 

                 category 𝑘′ in the first time, 

            = 0 otherwise; 

𝑍𝐼𝑆𝑘′𝑙
2  = 1 if critical node 𝑙 is covered at least twice by the second vehicle type in 

                 category 𝑘′ in the first time, 

           = 0 otherwise; 

𝑍𝐼𝑘′𝑙
2   = 1 if critical node 𝑙 is fully covered at least twice by category 𝑘′ in the 

                first time, 

          = 0 otherwise; 

 

3.4.4 The Integer-Programming Model 

The mathematical formulation of the problem is presented in this subsection. First the 

objective function will be presented and explained and then the constraints 

introduced. 

  

3.4.4.1 Objective Function: 

 

Minimize  ∑ ∑ ∑ 𝐶𝑘𝑖𝑗 .  𝑋𝑘𝑖𝑗

𝑗𝑖

 

𝑘

+ ∑ ∑ ∑ 𝐶𝑘𝑖𝑠 .  𝑋𝑘𝑖𝑠

𝑠𝑖

 

𝑘

+ ∑ ∑ ∑ 𝐶𝑘𝑖ℎ .  𝑋𝑘𝑖ℎ

ℎ𝑖

 

𝑘

 

                        + ∑ ∑ 𝑃𝐷𝑘𝑗  .  𝐷𝑘𝑗  

𝑗

 

𝑘

+  ∑ ∑ ∑ 𝑃𝑇𝑘𝑗 .  |𝑇𝑘𝑗 −  𝑡𝑘𝑖𝑗| . 𝐸𝑋𝑇𝑘𝑖𝑗

𝑗𝑖𝑘

  

                       +𝜔𝑒 ∑ ∑ 𝑅𝑘𝑖
𝑒

𝑖𝜖𝑉𝑘
𝑒

 

𝑘

+ 𝜔𝑠 ∑ ∑ 𝑅𝑘𝑖
𝑠

𝑖𝜖𝑉𝑘
𝑠

 

𝑘

+ 𝜔ℎ ∑ ∑ 𝑅𝑘𝑖
ℎ  

𝑖𝜖𝑉𝑘
ℎ𝑘
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                           − ∑ ∑ AA .  𝐸𝑘′𝑝 . (𝑍𝑃𝐹𝑘′𝑝
1 +  𝑍𝑃𝑆𝑘′𝑝

1 + 𝑍𝑃𝑘′𝑝
1

𝑝

) 

𝑘′

− ∑ ∑ AB .  𝐸𝑘′𝑝 . (𝑌𝑃𝐹𝑘′𝑝
1 + 𝑌𝑃𝑆𝑘′𝑝

1 + 𝑌𝑃𝑘′𝑝
1 )

𝑝

 

𝑘′

− ∑ ∑ AC .  𝐸𝑘′𝑝 . (𝑌𝑃𝐹𝑘′𝑝
2 + 𝑌𝑃𝑆𝑘′𝑝

2 + 𝑌𝑃𝑘′𝑝
2 )

𝑝

 

𝑘′

 

                           − ∑ ∑ AD .  𝐸𝑘′𝑙  . (𝑍𝐼𝐹𝑘′𝑙
1 + 𝑍𝐼𝑆𝑘′𝑙

1 + 𝑍𝐼𝑘′𝑙
1 )

𝑙

 

𝑘′

− ∑ ∑ AE .  𝐸𝑘′𝑙  . (𝑌𝐼𝐹𝑘′𝑙
1 + 𝑌𝐼𝑆𝑘′𝑙

1 + 𝑌𝐼𝑘′𝑙
1 )

𝑙

 

𝑘′

− ∑ ∑ AF .  𝐸𝑘′𝑙 . (𝑍𝐼𝐹𝑘′𝑙
2 + 𝑍𝐼𝑆𝑘′𝑙

2 + 𝑍𝐼𝑘′𝑙
2 )

𝑙

  

𝑘′

                     (3.1)   

 Equation (3.1) is the objective of this model and it is a minimization. The first 

row of this equation minimizes the weighted travel cost of vehicles to emergencies, to 

stations and to hospitals.  

The second row of this equation minimizes the penalty if the number of 

vehicles reaching the emergency is less than the required number of vehicles or the 

time that the vehicles can be there is higher than the required time. In an ideal 

situation, the emergencies should get all the vehicles they need and the vehicles 

should get there within the required times, but in reality sometimes the system is very 

loaded and emergencies may not be serviced ideally. In that case, these penalties are 

added to the objective function.  

The third row shows the minimum threshold of benefit for diverting the 

vehicles from their previous destinations. As was said before, because the diversion 

may confuse the crews, there should be a minimum level of positive impact on the 
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system to warrant diversion, and in this row of the objective function these minimum 

levels of positive impact are defined. For example, this means that the total benefit of 

diverting a vehicle from a station to another destination should be more than 𝜔𝑠 on 

the whole system to let that diversion happen, because that diversion itself will 

increase the objective function by 𝜔𝑠. In other parts of the objective function, the 

benefit should be more than 𝜔𝑠 to warrant diversion. By this minimum threshold of 

benefit for diversions, the model attempts to prevent having too many diversions.  

The fourth, fifth and sixth rows of the objective function attempt to maximize 

the coverage for ordinary nodes in the system. The fourth row is for having first 

coverage within 𝑇1minutes and the fifth row is for having first coverage within 𝑇2 

minutes if the node is not covered within 𝑇1minutes. Sixth row attempts to provide 

double coverage for ordinary nodes within 𝑇2minutes. 

The seventh, eighth and ninth rows are the same as the fourth, fifth and sixth 

rows but for critical nodes. The only difference is that the ninth row attempts to 

provide double coverage for critical nodes within 𝑇1 minutes instead of 𝑇2 minutes 

because of the critical characteristics of these nodes. 

In the coverage part, the model considers both partial and full coverage. For 

example if the ordinary node is covered by fire engine within 𝑇1minutes, 𝑍𝑃𝐹𝑘′𝑝
1  gets 

value of 1, if the node is covered by fire truck within 𝑇1minutes,  𝑍𝑃𝑆𝑘′𝑝
1  becomes 1, 

and if it is covered by both types of vehicles within 𝑇1minutes, 𝑍𝑃𝑘′𝑝
1  becomes 1 too 

to include the benefit of having full coverage. 
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One thing that should be mentioned here is how the travel cost to different 

destinations is calculated in this model. The following three equations illustrate how 

travel cost is estimated: 

𝐶𝑘𝑖𝑗 =  𝛼𝑒 . 𝑡𝑘𝑖𝑗 +  𝛽𝑒. 𝑊𝐻𝑅𝑘𝑖 

                + γ𝑒 . (whether it′s the end of the shift for vehicle i or not)                (3.2)  

𝐶𝑘𝑖𝑠 =  𝛼𝑠 . 𝑡𝑘𝑖𝑠 +  𝛽𝑠. 𝑊𝐻𝑅𝑘𝑖 

               + γ𝑠 . (whether it′s the end of the shift for vehicle i or not) 

               + 𝜃𝑠 . (whether the s is the home station for vehicle i or not)              (3.3)  

𝐶𝑘𝑖ℎ = 𝛼ℎ . 𝑡𝑘𝑖ℎ                                                                                                           (3.4) 

Equation (3.2) shows that the travel cost for type k vehicle i to emergency j is 

a function of travel time, working hour ratio of the crew for this vehicle, and whether 

or not it is the end of the shift for the crew.  

Equation (3.3) is for travel cost to station s, which is a function of travel time, 

working hour ratio of the crew of this vehicle, whether or not it is the end of the shift 

for the crews, and whether or not station s is the home station for vehicle i. Also, 

equation (3.4) shows travel cost to a hospital, which is only a function of travel time. 

3.4.4.2 Constraints 

In this subsection the constraints for this model are provided, with a brief explanation 

for each.  

As was mentioned in the notification, 𝐾′ is the set of categorized emergency 

vehicle types in the system ( 𝑘′ = 1, 2, 3 ) and 𝐾 is the set of emergency vehicle 

types in the system( 𝑘 = 1, 2, 3, 4, 5, 6 ). 

In this formulation it is assumed that: 
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𝑘′ = 1 represents the police category 

𝑘′ = 2 represents the ambulance category 

𝑘′ = 3 represents the fire vehicle category 

And: 

𝑘 = 1 represents police cars 

𝑘 = 2 represents BLS ambulances 

𝑘 = 3 represents ALS ambulances 

𝑘 = 4 represents fire engines 

𝑘 = 5 represents fire trucks 

𝑘 = 6 represents fire quints 

 

 Dispatching Constraints 

∑  𝑋𝑘𝑖𝑗

𝑗

+  ∑  𝑋𝑘𝑖𝑠

𝑠𝑘

+  ∑  𝑋𝑘𝑖ℎ

ℎ

= 1                           ∀  𝑘 ∈ 𝐾  &  𝑖 ∈  𝑉𝑘        (3.5) 

Constraint (3.5) ensures that each vehicle is assigned to one and only one 

destination at each time step. 

∑ 𝑋𝑘𝑖𝑗

𝑖

+ 𝐷𝑘𝑗 ≥  𝑁𝑘𝑗                                                      ∀ 𝑘 ∈ {1,3}  & 𝑗 ∈ 𝐸       (3.6) 

𝑖𝑓      𝑡3𝑖𝑗  ≤     𝑇2𝑗         ⟹       𝑋𝐴𝐵𝑖𝑗 =  𝑋3𝑖𝑗            ∀ 𝑖 ∈ 𝑉3  & 𝑗 ∈ 𝐸             (3.7)            

𝑖𝑓      𝑡3𝑖𝑗  >     𝑇2𝑗        ⟹        𝑋𝐴𝐵𝑖𝑗 =  0                  ∀ 𝑖 ∈ 𝑉3  & 𝑗 ∈ 𝐸            (3.8)    

∑ 𝑋2𝑖𝑗

𝑖𝜀𝑉2

+ ∑ 𝑋𝐴𝐵𝑖𝑗

𝑖𝜀𝑉3

+ 𝐷2𝑗 ≥  𝑁2𝑗                               ∀  𝑗 ∈  𝐸                            (3.9) 

∑ 𝑋4𝑖𝑗

𝑖𝜀𝑉4

+ ∑ 𝑋6𝑖𝑗

𝑖𝜀𝑉6

+ 𝐷4𝑗 ≥  𝑁4𝑗                                    ∀  𝑗 ∈ 𝐸                            (3.10) 
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∑ 𝑋5𝑖𝑗

𝑖𝜀𝑉5

+ ∑ 𝑋6𝑖𝑗

𝑖𝜀𝑉6

+ 𝐷5𝑗 ≥  𝑁5𝑗                                    ∀  𝑗 ∈ 𝐸                      (3.11) 

Constraints (3.6) to (3.11) ensure that the emergencies are serviced by the 

required number of emergency vehicles. 𝐷𝑘𝑗 shows the deficiencies that exist in 

emergencies; if it is non-zero, a penalty will be added to the objective function. For 

police cars and ALS ambulances only equation (3.6) is needed, but for BLS and fire 

vehicles, more constraints are needed.  

Constraints (3.7), (3.8), and (3.9) together define the number of deficiencies of 

BLS in the emergencies. Constraints (3.7) and (3.8) state that if an ALS ambulance 

gets to the emergency scene in the required time for a BLS ambulance, it can perform 

the job of a BLS. In that case, 𝑋𝐴𝐵𝑖𝑗 will be 1; otherwise, it is 0. Constraint (3.9) will 

calculate any BLS deficiency number(s) in emergencies. 

Constraint (3.10) calculates the fire engine deficiency and states that if a fire 

quint arrives at the scene (𝑋6𝑖𝑗 = 1), it can take care of a fire engine’s job. Constraint 

(3.11) states the same thing for fire trucks, because a fire quint can perform as both a 

fire engine and a fire truck. Therefore, by this family of constraints the number of 

deficiencies in emergencies will be calculated, and if there are any, the penalty will be 

added to the objective function. 

𝑡𝑘𝑖𝑗 .  𝑋𝑘𝑖𝑗 − 𝑀. 𝐸𝑋𝑇𝑘𝑖𝑗  ≤   𝑇𝑘𝑗          ∀  𝑘 ∈ 𝐾  &  𝑖 ∈  𝑉𝑘  & 𝑗 ∈  𝐸        (3.12) 

Constraint (3.12) ensures that emergency vehicles get to the emergency sites 

in the required time. If they don’t arrive in time, this equation will be defined by 

𝐸𝑋𝑇𝑘𝑖𝑗 = 1, and in that case the penalty will be added to the objective function. 

1 − 𝑋𝑘𝑖𝑗 . 𝑋𝑘𝑖𝑗
0  ≤   𝑀. 𝑅𝑘𝑖

𝑒                     ∀  𝑘 ∈ 𝐾  &  𝑖 ∈ 𝑉𝑘
𝑒  & 𝑗 ∈ 𝐸           (3.13)     
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1 − 𝑋𝑘𝑖𝑠 . 𝑋𝑘𝑖𝑠
0  ≤   𝑀. 𝑅𝑘𝑖

𝑠                     ∀  𝑘 ∈ 𝐾  &  𝑖 ∈ 𝑉𝑘
𝑠  &  𝑠 ∈ 𝑆𝑘          (3.14) 

1 − 𝑋𝑘𝑖ℎ . 𝑋𝑘𝑖ℎ
0  ≤   𝑀. 𝑅𝑘𝑖

ℎ                    ∀  𝑘 ∈ 𝐾  &  𝑖 ∈ 𝑉𝑘
ℎ   & ℎ ∈ 𝐻          (3.15) 

These three constraints are for diversion in the model. As was discussed 

before, diversion will increase crews’ confusion and is allowed to happen only if it 

has at least a minimum level of benefit to the whole system. Constraint (3.13) ensures 

that if a diversion occurs when a vehicle is heading to an emergency, 𝑅𝑘𝑖
𝑒  will be 1 

and it will add 𝜔𝑒 to the objective function. If the benefit of this diversion to the 

whole system is more than 𝜔𝑒 then the diversion will happen. Constraint (3.14) is for 

diversion from a station, and constraint (3.15) is for diversion from a hospital. 

∑ 𝑋𝑘𝑖ℎ

ℎ

=  1                                           ∀  𝑘 ∈ 𝐾  & 𝑖 ∈  𝑉𝑘
ℎ                            (3.16) 

∑ 𝑋𝑘𝑖𝑠

𝑠

=  1                                            ∀  𝑘 ∈ 𝐾  &  𝑖 ∈  𝑉𝑘
𝑠𝑠                         (3.17) 

Equation (3.16) states that a diversion can happen when a vehicle is heading 

to a hospital, but the new destination must be another hospital. 

Equation (3.17) states that the diversion can occur for vehicles that have to go 

to a station to get recharged, but their destination must be another station. 

𝑋𝑘𝑖𝑠 = 𝑋𝑘𝑖𝑠
0                                                ∀  𝑘 ∈ 𝐾  &  𝑖 ∈ 𝑉𝑘

𝑠𝑠𝑠   &  𝑠 ∈ 𝑆𝑘      (3.18)    

𝑋𝑘𝑖𝑗 = 𝑋𝑘𝑖𝑗
0                                                ∀  𝑘 ∈ 𝐾 &  𝑖 ∈  𝑉𝑘

𝑒𝑒 &  𝑗 ∈ 𝐸0       (3.19) 

𝑋𝑘𝑖ℎ = 𝑋𝑘𝑖ℎ
0                                               ∀  𝑘 ∈ 𝐾 &  𝑖 ∈  𝑉𝑘

ℎℎ &  ℎ ∈ 𝐻       (3.20)    

Constraint (3.18) ensures that if a vehicle has to remain at a station to get 

recharged, it must stay there until it has been recharged and cannot be dispatched to a 

job. Constraint (3.19) ensures that the vehicles that are responding to an emergency 

on site should stay at that location and continue their work; they cannot be dispatched 
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to another location. Constraint (3.20) ensures the same thing for vehicles that have to 

remain at a hospital. 

∑ ∑ 𝑋𝑘𝑖𝑠

𝑖𝑘𝜖 𝐾′

 ≤ 𝐶𝑎𝑝𝑘′𝑠                               ∀  𝑘′ ∈ 𝐾′  &  𝑠 ∈ 𝑆𝑘′                      (3.21) 

∑ ∑ 𝑋𝑘𝑖ℎ

𝑖𝑘

 ≤ 𝐶𝑎𝑝ℎ(𝑡)                              ∀  ℎ ∈ 𝐻                                            (3.22) 

Equation (3.21) states that the number of vehicles in each station cannot be 

more than the capacity of that station. Constraint (3.22) ensures that the number of 

patients sent to a hospital will be less than the number of vacancies at that hospital. 

 

 Coverage Constraints for the Police Category 

For the police category: 𝑘 = 1  and 𝑘′ = 1 

∑ ∑ 𝛿𝑃𝑘𝑠𝑝

𝑖𝑠 ∈ 𝑠𝑘

 . 𝑋𝑘𝑖𝑠 −  𝑍𝑃𝑘′𝑝
1  ≥ 0              𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑝 ∈ 𝑃       (3.23) 

Equation (3.23) states that each ordinary node is or is not covered by a police 

car within 𝑇1 minutes. If it’s covered, a benefit will be added to the objective 

function. 

∑ ∑ 𝛾𝑃𝑘𝑠𝑝

𝑖𝑠 ∈ 𝑠𝑘

 . 𝑋𝑘𝑖𝑠 −  𝑌𝑃𝑘′𝑝
1  ≥ 0              𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑝 ∈ 𝑃       (3.24) 

𝑌𝑃𝑘′𝑝
1 +  𝑍𝑃𝑘′𝑝

1  ≤ 1                                        𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑝 ∈ 𝑃        (3.25)    

Equations (3.24) and (3.25) state that the system will attempt to cover 

ordinary nodes that are not covered within 𝑇1minutes, within 𝑇2. Equation (3.25) 

states that ordinary nodes covered within 𝑇1 minutes that are definitely covered 

within 𝑇2 minutes as well will get the benefit of coverage within 𝑇1minutes only.     
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∑ ∑ 𝛾𝑃𝑘𝑠𝑝

𝑖𝑠 ∈ 𝑠𝑘

 . 𝑋𝑘𝑖𝑠 −  𝑌𝑃𝑘′𝑝
0 −  𝑌𝑃𝑘′𝑝

2  ≥ 0     𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑝 ∈ 𝑃  (3.26) 

𝑌𝑃𝑘′𝑝
2  ≤  𝑌𝑃𝑘′𝑝

0                                                         𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑝 ∈ 𝑃   (3.27) 

Constraint (3.26) states that each ordinary node will or will not be covered at 

least twice by a police car within 𝑇2 minutes. If it is, a benefit will be added to the 

objective function. 

Constraint (3.27) ensures that a node should be first covered once and then 

twice.  

∑ ∑ 𝛿𝐼𝑘𝑠𝑙

𝑖𝑠 ∈ 𝑠𝑘

 . 𝑋𝑘𝑖𝑠 −  𝑍𝐼𝑘′𝑙
1  −  𝑍𝐼𝑘′𝑙

2 ≥ 0         𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑙 ∈ 𝐼      (3.28) 

 𝑍𝐼𝑘′𝑙
2  ≤   𝑍𝐼𝑘′𝑙

1                                                   𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑙 ∈ 𝐼             (3.29) 

∑ ∑ 𝛾𝐼𝑘𝑠𝑙

𝑖𝑠 ∈ 𝑠𝑘

 . 𝑋𝑘𝑖𝑠 − 𝑌𝐼𝑘′𝑙
1  ≥ 0                 𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑙 ∈ 𝐼             (3.30) 

𝑌𝐼𝑘′𝑙
1 +  𝑍𝐼𝑘′𝑙

1  ≤ 1                                           𝑘 = 1,  𝑘′ = 1  &   ∀ 𝑙 ∈ 𝐼              (3.31) 

Constraints (3.28) to (3.31) are for critical-nodes coverage by police cars. 

Equations (3.28) and (3.29) state that each critical node will or will not be covered at 

least once or at least twice within 𝑇1 minutes. If it is, a benefit will be added to the 

objective function. 

Constraints (3.30) and (3.31) ensure that the system attempts to cover critical 

nodes that are not covered within 𝑇1 minutes, within 𝑇2 minutes.  

 

 Coverage Constraints for the Ambulance Category 

For the ambulance category:  𝑘′ = 2 

- For BLS Ambulance: 𝑘 = 2  
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- For ALS Ambulance: 𝑘 = 3  

Coverage constraints for the ambulance category are more difficult than 

coverage constraints for police cars. In this category a node is considered to be fully 

covered if there is one BLS within 𝑇𝐵 minutes and one ALS within 𝑇𝐴 minutes (for 

which 𝑇𝐵 ≤ 𝑇𝐴) or one ALS within 𝑇𝐵 minutes from the node. Also a node is 

considered to be only partially covered if there is either a BLS within 𝑇𝐵 minutes or 

an ALS in t minutes (where  𝑇𝐵 ≤ 𝑡 ≤ 𝑇𝐴 ) from the node. 

∑ ∑ 𝛿𝑃𝐴𝐵𝑠𝑝

𝑖∈𝑉3

. 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+ ∑ ∑ 𝛿𝑃2𝑠𝑝

𝑖∈𝑉2

. 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

− 𝑍𝑃𝐹𝑘′𝑝
1 ≥ 0  𝑘′ = 2 & ∀𝑝 ∈ 𝑃 (3.32) 

∑ ∑ 𝛿𝑃3𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

−  𝑍𝑃𝑆𝑘′𝑝
1  ≥ 0                                           𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃  (3.33) 

∑ ∑ 𝛿𝑃𝐴𝐵𝑠𝑝

𝑖∈𝑉3

. 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+ ∑ ∑ 𝛿𝑃2𝑠𝑝

𝑖∈𝑉2

. 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

− 𝑍𝑃𝑘′𝑝
1 ≥ 0   𝑘′ = 2 & ∀𝑝 ∈ 𝑃  (3.34) 

∑ ∑ 𝛿𝑃3𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

−  𝑍𝑃𝑘′𝑝
1  ≥ 0                                             𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃  (3.35) 

        Equation (3.32) states that ordinary nodes are or are not covered in the first 

critical time by BLS. If one ALS is within the BLS’s first critical time from the node, 

then the first component of this equation becomes 1 and  𝑍𝑃𝐹𝑘′𝑝
1  can get 1 and shows 

that the node is covered by BLS ambulance. 

Equation (3.33) states that ordinary nodes will or will not be covered by ALS 

in the ALS’s first critical time.  

Equations (3.34) and (3.35) define that the node is fully covered or not. If it is 

fully covered then  𝑍𝑃𝑘′𝑝
1  becomes 1 and a benefit will be added to the objective 

function. 
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∑ ∑ 𝛾𝑃𝐴𝐵𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+ ∑ ∑ 𝛾𝑃2𝑠𝑝

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

− 𝑌𝑃𝐹𝑘′𝑝
1 ≥ 0  𝑘′ = 2&∀𝑝 ∈ 𝑃 (3.36) 

𝑌𝑃𝐹𝑘′𝑝
1 +  𝑍𝑃𝐹𝑘′𝑝

1  ≤ 1                                                                𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃     (3.37) 

∑ ∑ 𝛾𝑃3𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

− 𝑌𝑃𝑆𝑘′𝑝
1  ≥ 0                                         𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃    (3.38) 

𝑌𝑃𝑆𝑘′𝑝
1 +  𝑍𝑃𝑆𝑘′𝑝

1  ≤ 1                                                                𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃     (3.39) 

∑ ∑ 𝛾𝑃𝐴𝐵𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+ ∑ ∑ 𝛾𝑃2𝑠𝑝

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

− 𝑌𝑃𝑘′𝑝
1 ≥ 0  𝑘′ = 2&∀𝑝 ∈ 𝑃   (3.40) 

∑ ∑ 𝛾𝑃3𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

− 𝑌𝑃𝑘′𝑝
1  ≥ 0                                         𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃      (3.41) 

𝑌𝑃𝑘′𝑝
1 +  𝑍𝑃𝑘′𝑝

1  ≤ 1                                                                   𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃       (3.42) 

Constraints (3.36) and (3.37) define that ordinary nodes not covered in the 

first critical time will or will not be covered by BLS ambulances in the second critical 

time. If they are, a benefit will be added to the objective function. Constraints (3.38) 

and (3.39) are for coverage by ALS ambulances in the second critical time. 

Equations (3.40), (3.41) and (3.42) ensure that if the node is fully covered by 

ambulances in the second critical time and not fully covered in the first critical time, 

the benefit will be added to the objective function. 

∑ ∑ 𝛾𝑃𝐴𝐵𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+  ∑ ∑ 𝛾𝑃2𝑠𝑝

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

−  𝑌𝑃𝐹𝑘′𝑝
0  −  𝑌𝑃𝐹𝑘′𝑝

2 ≥ 0      

                                                                                                      𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃        (3.43) 
 

𝑌𝑃𝐹𝑘′𝑝
2  ≤  𝑌𝑃𝐹𝑘′𝑝

0                                                                    𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃        (3.44)     

∑ ∑ 𝛾𝑃3𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

− 𝑌𝑃𝑆𝑘′𝑝
0  −  𝑌𝑃𝑆𝑘′𝑝

2  ≥ 0              𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃        (3.45) 

𝑌𝑃𝑆𝑘′𝑝
2  ≤  𝑌𝑃𝑆𝑘′𝑝

0                                                                   𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃         (3.46)  
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∑ ∑ 𝛾𝑃𝐴𝐵𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+  ∑ ∑ 𝛾𝑃2𝑠𝑝

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

−  𝑌𝑃𝑘′𝑝
0  −  𝑌𝑃𝑘′𝑝

2 ≥ 0      

                                                                                                    𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃       (3.47) 
 

∑ ∑ 𝛾𝑃3𝑠𝑝

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

− 𝑌𝑃𝑘′𝑝
0  −  𝑌𝑃𝑘′𝑝

2  ≥ 0                𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃         (3.48) 

𝑌𝑃𝑘′𝑝
2  ≤  𝑌𝑃𝑘′𝑝

0                                                                     𝑘′ = 2 & ∀ 𝑝 ∈ 𝑃          (3.49)       

Equations (3.43) and (3.44) state that ordinary nodes do or do not have double 

coverage by BLS ambulances in the second critical time. If they have at least double 

coverage, a benefit will be added to the objective function. Equations (3.45) and 

(3.46) are for determining the double coverage by ALS ambulances. 

Constraints (3.47), (3.48) and (3.49) ensure that if the node has full double 

coverage, additional benefit will be added to the objective function. 

∑ ∑ 𝛿𝐼𝐴𝐵𝑠𝑙

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+  ∑ ∑ 𝛿𝐼2𝑠𝑙

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

−  𝑍𝐼𝐹𝑘′𝑙
1 −  𝑍𝐼𝐹𝑘′𝑙

2  ≥ 0 

                                                                                                𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼             (3.50) 
 

𝑍𝐼𝐹𝑘′𝑙
2  ≤ 𝑍𝐼𝐹𝑘′𝑙

1                                                                  𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼              (3.51) 

∑ ∑ 𝛿𝐼3𝑠𝑙

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

−  𝑍𝐼𝑆𝑘′𝑙
1 −  𝑍𝐼𝑆𝑘′𝑙

2  ≥ 0             𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼               (3.52) 

𝑍𝐼𝑆𝑘′𝑙
2  ≤ 𝑍𝐼𝑆𝑘′𝑙

1                                                                 𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼               (3.53) 

∑ ∑ 𝛿𝐼𝐴𝐵𝑠𝑙

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+  ∑ ∑ 𝛿𝐼2𝑠𝑙

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

−  𝑍𝐼𝑘′𝑙
1 −  𝑍𝐼𝑘′𝑙

2  ≥ 0 

                                                                                             𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                (3.54) 
 

∑ ∑ 𝛿𝐼3𝑠𝑙

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

−  𝑍𝐼𝑘′𝑙
1 − 𝑍𝐼𝑘′𝑙

2  ≥ 0                𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                 (3.55) 

𝑍𝐼𝑘′𝑙
2  ≤ 𝑍𝐼𝑘′𝑙

1                                                                    𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                 (3.56) 
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This set of constraints states that critical nodes will or will not have first 

coverage and double coverage by ambulances in the first critical time. If they do, a 

benefit will be added to the objective function. Equations (3.50) and (3.51) are for 

BLS ambulances, equations (3.52) and (3.53) are for ALS ambulances and equations 

(3.54), (3.55) and (3.56) are for full coverage. 

∑ ∑ 𝛾𝐼𝐴𝐵𝑠𝑙

𝑖∈𝑉3

. 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+ ∑ ∑ 𝛾𝐼2𝑠𝑙

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

−  𝑌𝐼𝐹𝑘′𝑙
1 ≥ 0    𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼  (3.57) 

𝑌𝐼𝐹𝑘′𝑙
1 +  𝑍𝐼𝐹𝑘′𝑙

1  ≤ 1                                                         𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                 (3.58) 

∑ ∑ 𝛾𝐼3𝑠𝑙

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

−  𝑌𝐼𝑆𝑘′𝑙
1  ≥ 0                                𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                  (3.59) 

𝑌𝐼𝑆𝑘′𝑙
1 + 𝑍𝐼𝑆𝑘′𝑙

1  ≤ 1                                                        𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                   (3.60) 

∑ ∑ 𝛾𝐼𝐴𝐵𝑠𝑙

𝑖∈𝑉3

. 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

+ ∑ ∑ 𝛾𝐼2𝑠𝑙

𝑖∈𝑉2

 . 𝑋2𝑖𝑠

𝑠 ∈ 𝑠2

−  𝑌𝐼𝑘′𝑙
1 ≥ 0    𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼      (3.61) 

∑ ∑ 𝛾𝐼3𝑠𝑙

𝑖∈𝑉3

 . 𝑋3𝑖𝑠

𝑠 ∈ 𝑠3

−  𝑌𝐼𝑘′𝑙
1  ≥ 0                                  𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                   (3.62) 

𝑌𝐼𝑘′𝑙
1 +  𝑍𝐼𝑘′𝑙

1  ≤ 1                                                            𝑘′ = 2 & ∀ 𝑙 ∈ 𝐼                    (3.63) 

This set of constraints states that critical nodes not covered by ambulances in 

the first critical time will or will not be covered in the second critical time. If they are, 

a benefit will be added to the objective function. Equations (3.57) and (3.58) are for 

BLS ambulances and equations (3.59) and (3.60) are for ALS ambulances. 

Equations (3.61), (3.62) and (3.63) ensure that if the critical node is fully 

covered at least once in the second critical time and not fully covered in the first 

critical time, the benefit will be added to the objective function. 
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 Coverage Constraints for the Fire Vehicle Category 

For the fire vehicle category:  𝑘′ = 3 

- For fire engines: k = 4  

- For fire trucks: k = 5  

- For fire quints: k = 6  

Coverage constraints for this category are also more difficult than for the 

police category. The fire department’s fleet is heterogeneous, unlike the police 

category where the fleet is homogeneous. This makes these constraints more 

complicated. A node is considered as fully covered by fire vehicles if it is covered by 

both a fire engine and a fire truck or by a fire quint within the required time. Also, a 

node is considered as partially covered if it is only covered by either a fire engine or a 

fire truck.  

∑ ∑ 𝛿𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛿𝑃4𝑠𝑝

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

− 𝑍𝑃𝐹𝑘′𝑝
1 ≥ 0  𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃  (3.64) 

∑ ∑ 𝛿𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛿𝑃5𝑠𝑝

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

− 𝑍𝑃𝑆𝑘′𝑝
1 ≥ 0  𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃  (3.65) 

∑ ∑ 𝛿𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛿𝑃4𝑠𝑝

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

− 𝑍𝑃𝑘′𝑝
1 ≥ 0    𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃   (3.66) 

∑ ∑ 𝛿𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛿𝑃5𝑠𝑝

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

− 𝑍𝑃𝑘′𝑝
1 ≥ 0   𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃   (3.67) 

     This set of constraints states that ordinary nodes will or will not be covered at 

least once within 𝑇1 minutes by fire vehicles. Constraint (3.64) is for coverage by fire 

engines. The first component of this equation shows that a fire quint can do a fire 

engine’s job. Constraint (3.65) is for fire truck coverage and shows that fire quint can 
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do a fire truck’s job as well. Therefore, in total the node is considered as fully covered 

if it is covered by both a fire engine and a fire truck or by a fire quint.  

Equations (3.66) and (3.67) ensure that if the node is fully covered, the 

additional benefit will be added to the objective function. 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃4𝑠𝑝

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

− 𝑌𝑃𝐹𝑘′𝑝
1 ≥ 0 𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃   (3.68) 

𝑌𝑃𝐹𝑘′𝑝
1 +  𝑍𝑃𝐹𝑘′𝑝

1  ≤ 1                                                                 𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃    (3.69) 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃5𝑠𝑝

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

− 𝑌𝑃𝑆𝑘′𝑝
1 ≥ 0 𝑘′ = 3& ∀ 𝑝 ∈ 𝑃    (3.70) 

𝑌𝑃𝑆𝑘′𝑝
1 +  𝑍𝑃𝑆𝑘′𝑝

1  ≤ 1                                                                𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.71) 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃4𝑠𝑝

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

− 𝑌𝑃𝑘′𝑝
1 ≥ 0 𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.72) 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃5𝑠𝑝

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

− 𝑌𝑃𝑘′𝑝
1 ≥ 0 𝑘′ = 3& ∀ 𝑝 ∈ 𝑃     (3.73) 

𝑌𝑃𝑘′𝑝
1 +  𝑍𝑃𝑘′𝑝

1  ≤ 1                                                                    𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.74) 

This set of constraints state that ordinary nodes not covered within 𝑇1 minutes 

will or will not be covered within 𝑇2 minutes by fire vehicles. If they are, a benefit 

will be added to the objective function. Equations (3.68) and (3.69) are for fire engine 

coverage, equations (3.70) and (3.71) are for fire truck coverage and equations (3.72), 

(3.73) and (3.74) are for full coverage. 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃4𝑠𝑝

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

−  𝑌𝑃𝐹𝑘′𝑝
0 − 𝑌𝑃𝐹𝑘′𝑝

2 ≥ 0     

                                                                                                        𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.75) 

 

𝑌𝑃𝐹𝑘′𝑝
2  ≤  𝑌𝑃𝐹𝑘′𝑝

0                                                                      𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.76) 
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∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃5𝑠𝑝

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

−  𝑌𝑃𝑆𝑘′𝑝
0 − 𝑌𝑃𝑆𝑘′𝑝

2  ≥ 0     

                                                                                                       𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.77) 
 

𝑌𝑃𝑆𝑘′𝑝
2  ≤  𝑌𝑃𝑆𝑘′𝑝

0                                                                     𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.78) 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃4𝑠𝑝

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

−  𝑌𝑃𝑘′𝑝
0 − 𝑌𝑃𝑘′𝑝

2 ≥ 0     

                                                                                                      𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃     (3.79) 
 

∑ ∑ 𝛾𝑃6𝑠𝑝

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝑃5𝑠𝑝

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

−  𝑌𝑃𝑘′𝑝
0 − 𝑌𝑃𝑘′𝑝

2  ≥ 0     

                                                                                                     𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃      (3.80) 
 

𝑌𝑃𝑘′𝑝
2  ≤  𝑌𝑃𝑘′𝑝

0                                                                        𝑘′ = 3 & ∀ 𝑝 ∈ 𝑃       (3.81) 

  This set of constraints attempts to cover ordinary nodes by fire vehicles at 

least twice within 𝑇2 minutes. Equations (3.75) and (3.76) are for fire engine vehicles, 

equations (3.77) and (3.78) are for fire truck vehicles and equations (3.79), (3.80) and 

(3.81) are for full coverage. 

∑ ∑ 𝛿𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+  ∑ ∑ 𝛿𝐼4𝑠𝑙

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

−  𝑍𝐼𝐹𝑘′𝑙
1 −  𝑍𝐼𝐹𝑘′𝑙

2  ≥ 0                    

                                                                                                        𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼       (3.82) 

 

𝑍𝐼𝐹𝑘′𝑙
2  ≤ 𝑍𝐼𝐹𝑘′𝑙

1                                                                           𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼       (3.83) 

∑ ∑ 𝛿𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+  ∑ ∑ 𝛿𝐼5𝑠𝑙

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

−  𝑍𝐼𝑆𝑘′𝑙
1 −  𝑍𝐼𝑆𝑘′𝑙

2  ≥ 0         

                                                                                                        𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼       (3.84) 
 

𝑍𝐼𝑆𝑘′𝑙
2  ≤ 𝑍𝐼𝑆𝑘′𝑙

1                                                                           𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼       (3.85) 

 

∑ ∑ 𝛿𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+  ∑ ∑ 𝛿𝐼4𝑠𝑙

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

−  𝑍𝐼𝑘′𝑙
1 −  𝑍𝐼𝑘′𝑙

2  ≥ 0                    

                                                                                                        𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼       (3.86) 
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∑ ∑ 𝛿𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+  ∑ ∑ 𝛿𝐼5𝑠𝑙

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

−  𝑍𝐼𝑘′𝑙
1 −  𝑍𝐼𝑘′𝑙

2  ≥ 0         

                                                                                                       𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼        (3.87) 
 

𝑍𝐼𝑘′𝑙
2  ≤ 𝑍𝐼𝑘′𝑙

1                                                                               𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼        (3.88) 

This set of equations defines whether or not critical nodes are covered at least 

once or at least twice by fire vehicles within 𝑇1 minutes. Constraints (3.82) and (3.83) 

are for fire engines and constraints (3.84) and (3.85) are for fire trucks. 

Equations (3.86), (3.87) and (3.88) ensure that if the critical node is fully 

covered, the additional benefit will be added to the objective function. 

∑ ∑ 𝛾𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝐼4𝑠𝑙

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

− 𝑌𝐼𝐹𝑘′𝑙
1 ≥ 0     𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼      (3.89) 

𝑌𝐼𝐹𝑘′𝑙
1 +  𝑍𝐼𝐹𝑘′𝑙

1  ≤ 1                                                                     𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼      (3.90) 

∑ ∑ 𝛾𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝐼5𝑠𝑙

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

− 𝑌𝐼𝑆𝑘′𝑙
1 ≥ 0    𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼       (3.91) 

𝑌𝐼𝑆𝑘′𝑙
1 + 𝑍𝐼𝑆𝑘′𝑙

1  ≤ 1                                                                   𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼        (3.92) 

∑ ∑ 𝛾𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝐼4𝑠𝑙

𝑖∈𝑉4

 . 𝑋4𝑖𝑠

𝑠 ∈ 𝑠4

− 𝑌𝐼𝐹𝑘′𝑙
1 ≥ 0   𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼        (3.93) 

∑ ∑ 𝛾𝐼6𝑠𝑙

𝑖∈𝑉6

 . 𝑋6𝑖𝑠

𝑠 ∈ 𝑠6

+ ∑ ∑ 𝛾𝐼5𝑠𝑙

𝑖∈𝑉5

 . 𝑋5𝑖𝑠

𝑠 ∈ 𝑠5

− 𝑌𝐼𝑆𝑘′𝑙
1 ≥ 0   𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼        (3.94) 

𝑌𝐼𝑘′𝑙
1 +  𝑍𝐼𝑘′𝑙

1  ≤ 1                                                                       𝑘′ = 3 & ∀ 𝑙 ∈ 𝐼         (3.95) 

This set of constraints states that critical nodes not covered within 𝑇1 minutes 

by fire vehicles will or will not be covered within 𝑇2 minutes. If they are, a benefit 

will be added to the objective function. Equations (3.89) and (3.90) show fire engine 

coverage, and equations (3.91) and (3.92) show fire truck coverage.  
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Constraints (3.93), (3.94) and (3.95) ensure that if the critical node is fully 

covered at least once in the second critical time and not fully covered in the first 

critical time, an additional benefit will be added to the objective function. 

 

 Nonnegativity and Integrality Constraints: 

𝑋𝑘𝑖𝑗, 𝑋𝑘𝑖𝑠, 𝑋𝑘𝑖ℎ, 𝐸𝑋𝑇𝑘𝑖𝑗, 𝑅𝑘𝑖
𝑒 , 𝑅𝑘𝑖

𝑠 , 𝑅𝑘𝑖
ℎ , 𝑋𝐴𝐵𝑖𝑗                          Binary integer variables 

𝑍𝑃𝐹𝑘′𝑝
1 , 𝑌𝑃𝐹𝑘′𝑝

0 ,  𝑌𝑃𝐹𝑘′𝑝
1 , 𝑌𝑃𝐹𝑘′𝑝

2 , 𝑍𝐼𝐹𝑘′𝑙
1 , 𝑌𝐼𝐹𝑘′𝑙

1 , 𝑍𝐼𝐹𝑘′𝑙
2      Binary integer variables 

𝑍𝑃𝑆𝑘′𝑝
1 , 𝑌𝑃𝑆𝑘′𝑝

0 ,  𝑌𝑃𝑆𝑘′𝑝
1 , 𝑌𝑃𝑆𝑘′𝑝

2 , 𝑍𝐼𝑆𝑘′𝑙
1 , 𝑌𝐼𝑆𝑘′𝑙

1 , 𝑍𝐼𝑆𝑘′𝑙
2      Binary integer variables 

𝑍𝑃𝑘′𝑝
1 , 𝑌𝑃𝑘′𝑝

0 ,  𝑌𝑃𝑘′𝑝
1 , 𝑌𝑃𝑘′𝑝

2 , 𝑍𝐼𝑘′𝑙
1 , 𝑌𝐼𝑘′𝑙

1 , 𝑍𝐼𝑘′𝑙
2            Binary integer variables 

𝐷𝑘𝑗                           General integer variables 

 

3.5. Summary 

In this chapter the problem statement and its characteristics were explained first. Also 

the assumptions used in this research were introduced. Then the mathematical 

formulation that is developed for this problem was presented with a brief explanation 

of the objective function and constraints. Some numerical examples are conducted to 

show different features of the model and the results are shown in Chapter 4. 
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Chapter 4: Numerical Study 
 

 

In this chapter a very small-size problem will be introduced and some scenarios will 

be examined to evaluate the features of the proposed mathematical model. Xpress 7.1 

software is used to solve these numerical examples to find the optimal solution. Then, 

to illustrate how the running time will increase by increasing the problem size, 

different size problems are generated. The results show that by increasing the 

problem size, running time grows exponentially; commercial software such as Xpress 

is not suitable for solving the problem.  Next chapter explains the heuristic method 

that has been developed to find near-optimal solutions in more reasonable time. 

 

4.1 A Very Small-Size Problem 

First, the different features of the proposed model will be shown for different 

scenarios on a very small-size problem, which is illustrated in Figure 4.1.  
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Figure 4.1 A Very Small-Size Problem Network and Characteristics 

 

This problem has 7 ordinary demand nodes (shown as blue circles), 1 critical 

node (shown as a red triangle), 3 fire stations (shown as a building shape) and 2 

hospitals (shown with an H). The oval figures represent the emergency vehicles in the 

system. Green ovals represent police cars; there are 3 police cars in the system. 

Yellow ones represent ambulances, with A signifying ALS ambulances and B 

signifying BLS ambulances; there are 2 ALS ambulances and 3 BLS ambulances in 

the system. 

Pink ovals represent fire vehicles, with E signifying fire engines, T signifying 

fire trucks, and Q signifying fire quints; there are 2 fire engines, 2 fire trucks and 1 

fire quint in the system. 
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First, it is assumed that all vehicles reside at their home stations. As shown in 

Figure 4.1, the home station for Q and B1 is fire station 1, the home station for E1, 

T1, and B2 is fire station 2, and the home station for E2, T2, and B3 is fire station 3. 

A1’s home station is hospital 1, and A2’s home station is hospital 2. P1, P2, and P3 

are located at fire station 1, 2, and 3, respectively, but—as was mentioned in Chapter 

3 police cars do not have any home station and can be relocated to any node in the 

system. 

In this problem, fire vehicles can be relocated to other fire stations and 

therefore have three stations. Ambulances can use fire stations and hospitals and 

therefore have five stations. Police cars can use every node in the system and 

therefore have 13 stations. This sample problem is summarized in Table 4.1. 

 

Table 4.1 The Small-Size Problem Specifications 

Number of Ordinary Nodes 7 

Number of Critical Nodes 1 

Number of Police Cars 3 

Number of BLS Ambulances 3 

Number of ALS Ambulances 2 

Number of Fire Engines 2 

Number of Fire Trucks 2 

Number of Fire Quints 1 

Number of Stations for Police Cars 13 

Number of Stations for Ambulances 5 

Number of Stations for Fire Vehicles 3 
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4.1.1 Base Case  

At first it is assumed that the vehicles have just started their working shift, that the 

working hour ratio is 0 for all of them, and that no vehicle is near the end of its shift. 

It is also assumed that all demand points in the system have the same likelihood of an 

emergency occurring, so 𝐸𝑘′𝑝 and 𝐸𝑘′𝑙 for all nodes are assumed to be 1.  

The first and second critical times that are considered in the coverage problem 

are shown in Table 4.2. 

Table 4.2 Assumptions for First and Second Critical Times for Coverage Criteria 

Critical Time for 

Coverage Criteria 

(minute) 

Police 

Cars 

BLS 

Ambulances 

ALS 

Ambulances 

Fire 

Engines 

Fire 

Trucks 

Fire 

Quints 

First Critical Time (T1) 5 5 8 5 5 5 

Second Critical Time (T2) 9 9 12 9 9 9 

 

 

 

As shown in Table 4.2, the first critical time for all types of vehicles except 

ALS is 5 minutes, and for ALS is 8 minutes. The second critical time is assumed to 

be 9 minutes for all types of vehicles except for ALS, which is 12 minutes. 5 and 9 

minutes are important response times mentioned in NFPA guidelines. Also, it is 

assumed that these numbers can be changed to 8 and 12 minutes for ALS 

ambulances, because they can get to the incident later than BLS ambulances.  

Therefore, based on these assumptions, the given network and characteristics 

of the problem, Xpress 7.1 is used to find the best location for the vehicles. The 

results show that police car P1 should be relocated to the critical node and police car 

P3 should be relocated to hospital H2 to maintain better coverage of the whole area. 

Figure 4.2 shows the software’s optimal answer for providing better coverage of the 

area. 
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Figure 4.2 Relocation of P1 and P3 to Provide Better Coverage 

 

Table 4.3 shows coverage of the ordinary nodes by different categories of 

vehicles after relocation of P1 and P3. All nodes except P6 are covered by the police and 

ambulance categories at least once within 𝑇1 minutes and twice within 𝑇2 minutes. P6 is 

only covered once within 𝑇2 minutes.  

P3, P4, and P7 are covered by the fire vehicle category at least once within 𝑇1 

minutes, and P1, P2, P5, and P6 are covered at least once within 𝑇2 minutes. Also, all of 

the nodes except P3 have at least double coverage by fire vehicles within 𝑇2 minutes.  

Table 4.4 shows coverage of the critical node by different categories of vehicles. 

The critical node in the system is covered only once within 𝑇1 minutes by all three 

categories. 
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Table 4.3 Full Coverage of the Ordinary Nodes after P1 and P3 Relocation 

Nodes 

Police Category Ambulance Category Fire Vehicle Category 

First 

Coverage  

within 

T1 

First 

Coverage 

 within 

T2 

Second 

Coverage 

 within 

T2 

First 

Coverage 

 within 

T1 

First 

Coverage 

 within 

T2 

Second 

Coverage 

 within 

T2 

First 

Coverage 

 within 

T1 

First 

Coverage 

 within 

T2 

Second 

Coverage 

 within 

T2 

P1 Yes - Yes Yes - Yes - Yes Yes 

P2 Yes - Yes Yes - Yes - Yes Yes 

P3 Yes - Yes Yes - Yes Yes - - 

P4 Yes - Yes Yes - Yes Yes - Yes 

P5 Yes - Yes Yes - Yes - Yes Yes 

P6 - Yes - - Yes - - Yes Yes 

P7 Yes - Yes Yes - Yes Yes - Yes 

 

Table 4.4 Full Coverage of the Critical Node after P1 and P3 Relocation 

Nodes 

Police Category Ambulance Category Fire Vehicle Category 

First 

Coverage  

within 

T1 

First 

Coverage 

 within 

T2 

Second 

Coverage 

 within 

T2 

First 

Coverage 

 within 

T1 

First 

Coverage 

 within 

T2 

Second 

Coverage 

 within 

T2 

First 

Coverage 

 within 

T1 

First 

Coverage 

 within 

T2 

Second 

Coverage 

 within 

T2 
Critical 

Node 
Yes - - Yes - - Yes - - 

 

 

4.1.2 Scenario #1 

In this scenario, it is assumed that two emergency incidents are occurring within the 

system, one in node P1 and the other one in node P3. Both need one police car, one 

BLS, one ALS, one fire engine, and one fire truck. As was mentioned in Chapter 3, if 

an ALS gets to the emergency in the required time for a BLS, there is no need for a 

BLS. Also, a fire quint can do the job of a fire engine and a fire truck.  

The required time for the police car and BLS ambulance to both incidents is 5 

minutes, the required time for the ALS ambulance is 8 minutes, and the time for the 

fire vehicles is 6 minutes. The dispatching and relocation of vehicles for this scenario 

is shown in Figure 4.3. 
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Figure 4.3 Dispatching and Relocation of Vehicles for Scenario #1 

 

As demonstrated in Figure 4.3, P2, B2, E1, and T1 will be dispatched from S2 

to the emergency in node P3 and A2 will be dispatched from hospital H2 to this 

emergency. A2 will arrive at this emergency site later than the required time, but 

other vehicles will get there in time. 

Also, police car P1 will be dispatched from the critical node, Q will be 

dispatched from station S1, and A1 will be dispatched from hospital H1 to the 

emergency in node P1. A1 will arrive at the emergency in 4.5 minutes, so it arrives 

within the required time for BLS—which is 5 minutes—and there is no need for BLS 

at this emergency. Also, Q will serve this emergency as both a fire engine and a fire 

truck. All the vehicles will arrive at this emergency site within the required time. 
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Dispatching to emergency incidents is shown with solid blue lines and 

relocation of vehicles to provide better coverage is shown in dotted red lines. In this 

scenario, E2 and T2 will be relocated from station S3 to station S2 and P3 will be 

relocated from hospital H2 to station S2 to provide better coverage for future demand.  

 

4.1.3 Scenario #2 

In this scenario, we assume that the vehicles are finished working at emergency P3, 

E1 and T1 need to be sent to a station to be recharged, B2 should take a patient to a 

hospital, and A2 and P2 do not need to be recharged. A1, Q, and P1 are still dealing 

with emergency P1. Therefore, the model is solved with this new information to see 

where vehicles should be sent; the results are shown in Figure 4.4.

 

Figure 4.4 Relocation of Vehicles for Scenario #2 
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As seen in Figure 4.4, B2 is taking a patient to hospital H1 (long dashed 

purple lines represent vehicles taking patients to hospitals). P2 and A2 are sent to 

hospital H1, B1 is relocated to station S2, and P3 and B3 are relocated to hospital H2. 

E1 and T1 are sent to station S2, which is their home station, to get recharged, and E2 

and T2 are sent back to their home station, S3.  

 

4.1.4 Scenario #3 

In this scenario, it is assumed that the vehicles are in the middle of their relocation 

when an emergency happens at node P6. This new emergency needs 1 police car in 5 

minutes, 1 ALS in 8 minutes, 1 fire engine and 1 fire truck in 6 minutes. The model is 

run to see which vehicles should be sent to the new emergency incident; results are 

shown in Figure 4.5. 
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Figure 4.5 Dispatching and Relocation of Vehicles for Scenario #3 

 

As demonstrated in Figure 4.5, E1, T1, B1, B2, and B3 will follow their 

previous assignments. A2, P2, E2, and T2 are reassigned to the emergency at node P6 

en route to their previous destinations, and police car P3 is reassigned to station S2. 

 

4.1.5 Scenario #4 

In this scenario, it is assumed that all emergencies have been serviced and the 

vehicles are free to return to their stations. E2 and A2 need to be recharged. E1 and 

T1 have been recharged and are available to be dispatched, and B2 is finished with 

the patient at the hospital and is now free. The model is solved and optimal locations 

for vehicles are shown in Figure 4.6. 
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Figure 4.6 Relocation of Vehicles for Scenario #4 

 

As shown in Figure 4.6, Q will be sent to station S1, A1 will be sent to 

hospital H1, E2 and T2 will be sent to station S3, and A2 and P2 will be sent to 

hospital H2. Police car P1 is choosing node P1 as its station, because police cars can 

reside at any point in the system. 

 

4.1.6 Scenario #5 

This scenario is identical to scenario #4 with only a small change. It is assumed that 

all the emergencies in the system have been serviced and the vehicles are free to 

return to their stations. E2 and A2 need to be recharged, E1 and T1 have been 

recharged and are available to be dispatched, and B2 is finished with the patient at the 
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hospital and is now free. The only change is the likelihood of an emergency occurring 

in the nodes. In this scenario, it is assumed that the importance of node P6 has 

changed, and for some period it will be a 4 instead of a 1. This means that we expect 

more emergencies will occur in this node compared to other nodes in the system. For 

all other nodes in the system, 𝐸𝑘′𝑝 and 𝐸𝑘′𝑙 are 1, and only 𝐸𝑘′𝑝 for node P6 is 4. 

With this new information the model is run, and the optimal locations for vehicles are 

shown in Figure 4.7. 

 

Figure 4.7 Relocation of Vehicles for Scenario #5 

 

By comparing Figures 4.6 and 4.7, it can be seen that there have been some 

changes in the relocation of vehicles. Police car P1 will be sent to hospital H1 instead 

of remaining at node P1. Police car P2 will remain at node P6 instead of being 

relocated to hospital H2, and A2 will be sent to station S2 instead of to hospital H2. 
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Thus, the model is capable of taking into account the variation in likelihood of an 

emergency occurring, and it can relocate vehicles throughout the day based on 

demand variations. 

 

4.1.7 Scenario #6 

In the scenarios that have been shown so far, no vehicle was close to the end of its 

shift. In this scenario, we will demonstrate the model’s capability to consider this 

aspect. B1 is very close to the end of its shift and prefers to return to its home station, 

S1. This new information is a new input to the model; and other inputs are similar to 

scenario #5. The solution of the model is demonstrated in Figure 4.8. 

 

Figure 4.8 Relocation of Vehicles for Scenario #6 
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In this figure, it can be seen that vehicle B1—which is very close to the end of 

its shift—is relocated to its home station S1, and B2 is relocated to station S2 to 

provide better coverage for the whole system. Other relocations are similar to 

scenario #5. 

 

4.1.8 Scenario #7 

In this very simple scenario, the model’s capability for attempting to maintain 

workload balance between the vehicles’ crews is shown. In all the cases that have 

been studied so far, the vehicles’ workload ratios were assumed to be the same. In 

this scenario, it is assumed that after all relocations from scenario #6 have been 

completed, an emergency happens at node P2. This emergency is not severe, and 

needs only one BLS ambulance within 9 minutes. The workload ratio for B1 is 0.1 

and it is very close to its end of the working shift. The workload ratio for B2 is 0.3, 

and the workload ratio for B3 is 0.9. Also, the workload ratios for A1 and A2 are 

assumed to be 0.7.  B1, B2, B3, A1, and A2 can all take care of the job at emergency 

P2, because they are all within 9 minutes of the emergency site. The model prefers to 

send the vehicle with a smaller workload ratio, which is B1. B1 is very close to the 

end of its working shift, however, so the model prefers to send the vehicle that has a 

smaller workload ratio and also is not as close to the end of its working shift. This is 

B2; the optimal solution of the model is shown in Figure 4.9. 
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Figure 4.9 Dispatching of Vehicles for Scenario #7 

 

4.2 Different Size Problems 

Commercial software Xpress 7.1 was used to solve the model. For small-size 

problems, commercial solvers can find the optimal solution in a reasonable time, but 

when the size of the problem increases the running time increases exponentially; at 

some point, it is not practical to use commercial software. To see how the running 

time will increase by increasing the problem size, 14 cases with different sizes have 

been generated. The characteristics of these randomly generated cases are shown in 

Table 4.5.  
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Table 4.5 Characteristics of 14 Cases 

Case 

Number of 

Ordinary 

Nodes 

Number of 

Critical 

Nodes 

Number of 

Vehicles for  

Each Type 

Number of 

Stations for 

Police Cars 

Number of 

Stations 

for Other 

Categories 

Number of 

Emergencies 

Waiting for 

Service 

Case 1 50 5 5 5 5 1 

Case 2 50 5 10 50 50 5 

Case 3 500 50 10 50 50 5 

Case 4 500 50 20 50 50 20 

Case 5 500 50 30 50 50 20 

Case 6 500 50 30 50 50 40 

Case 7 500 50 30 100 100 10 

Case 8 500 50 30 100 100 25 

Case 9 500 50 30 400 50 25 

Case 10 500 50 30 500 50 25 

Case 11 1000 100 30 500 50 25 

Case 12 1000 100 30 750 50 25 

Case 13 1000 100 30 1000 50 25 

Case 14 1500 100 30 1500 50 25 

 

 

 

The model is solved with Xpress 7.1 for each case by one randomly generated 

set of data. The number of constraints and variables and the running time for each 

case are shown in Table 4.6. 

 

Table 4.6 Number of Constraints and Variables and Running Time for 14 Cases 

Case # 
Number of  

Constraints 

Number of 

Variables 

Running Time (Sec) 

(Dispatching) 

Running Time (Sec) 

(Dispatching and 

Coverage) 

Case 1 2690 2132 0.0 0.1 

Case 2 3654 5823 0.1 0.8 

Case 3 26514 22338 1.2 24.2 

Case 4 30529 30568 2.7 193.2 

Case 5 32789 36608 4.2 58.5 

Case 6 39529 45128 4.2 78.2 

Case 7 29869 41348 8.5 120.3 

Case 8 34924 47738 9.4 230.5 

Case 9 34824 49238 7.9 257.2 

Case 10 34924 52238 8.7  4918.3 

Case 11 60324 70588 56.4 295.1 

Case 12 60574 78088 51.1 494.9 

Case 13 60824 85588 60.2 1439.9 

Case 14 N.A. N.A. N.A. N.A. 
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In Table 4.6, the number of constraints and variables for each case are shown. 

Also, there are two running times, one for dispatching only and the other for both 

dispatching and coverage. To find the dispatching running time, all the coefficients of 

demand nodes’ coverage in the objective function are set to 0. In that case, the model 

will send vehicles only to emergencies and not try to relocate vehicles so as to 

provide better coverage for the whole area. As seen in this table, the running time for 

dispatching is at most 60.2 seconds for the 13 cases. In the last row there is no 

solution for dispatching vehicles, because Xpress was out of memory and could not 

even read the input file completely to calculate the number of variables and 

constraints.  

The problem arises when the model wants to consider the coverage problem 

and relocate vehicles. In this situation, the running time for some cases like #10, 13 

and 12 are unreasonable and for the last case, Xpress cannot find the optimal solution.  

In designing these cases, the numbers of stations for different types of 

vehicles is assumed to be equal until case #8, for which the numbers of stations for all 

types of vehicles are assumed to be 100. This is not a realistic assumption; usually, 

the total number of stations for ambulances and fire vehicles is less than 50. 

Therefore, after case #8, the numbers of stations for all types of vehicles (except 

police cars) are limited to 50, which is a reasonable assumption. Police cars can reside 

at every point in the system, so the number of stations for this type of vehicle can 

increase with the increasing of the number of points. 
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4.3. Summary 

In this chapter, a very small size problem was designed. A base-case scenario and 7 

other scenarios for this small-size problem were generated to show the capabilities of 

the optimization model. These scenarios were solved by Xpress 7.1 and optimal 

solutions were discussed and shown in each scenario’s subsection.  

Then, to see how running times increase when the sample size is increased, 13 

cases were generated. The number of ordinary nodes for these cases was between 50 

and 1500, the number of critical nodes between 5 and 100, the number of vehicles 

between 5 and 30, the number of stations between 5 and 1500, and the number of 

emergencies awaiting vehicles between 1 and 40. In these cases, two running times 

were investigated, dispatching running time and dispatching and relocation running 

time. When the model considered the dispatching and coverage problem together, the 

running time could be too high to be practical; also, for some cases, Xpress cannot 

find an optimal solution. It is obvious, therefore, that heuristics algorithms are 

required to solve this optimization model for real-world problems in a reasonable 

time. 
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Chapter 5: Heuristic Method 

 

 
As mentioned in the last chapter, commercial software like Xpress cannot find 

optimal solutions in a reasonable amount of time when the problem size increases.  

Developing a heuristic method that can find sound solutions in reasonable time is a 

must for the nature of this problem. In this chapter the developed heuristic method 

will be introduced and explained in detail; at the end of this chapter the results of the 

heuristic method will be compared to optimal solutions to demonstrate that the 

proposed heuristic works well. 

 

5.1 Overall Explanation of the Heuristic Method  

Figure 5.1 illustrates the heuristic method that has been developed for this research 

and has been coded in 𝐶++ language.  As seen in Figure 5.1, at first, an initial 

solution for dispatching problem will be found. After that, several steps to improve 

the initial solution will be performed. Next, an initial solution for the coverage 

problem will be found and some improvements will be applied to the initial solution. 

Afterward, several improvements addressing the whole problem will be applied until 

a time limit is reached, at which point the solution will be reported. The details of the 

heuristic methods are explained in following sections.  
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Figure 5.1 Heuristic Algorithm 
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5.2 Dispatching Initial Solution  

Finding an initial solution for dispatching problem consists of three steps. First, the 

required vehicles must be sent to hospitals. Second, required vehicles are sent to 

stations to get recharged.  Finally, the vehicles are dispatched to emergency locations. 

 

5.2.1 Send Required Vehicles to Hospitals 

Because some vehicles have to take patients to hospitals, the first step of the initial 

dispatching solution is to find the nearest available hospital for each one of these 

vehicles. The algorithm for this action is: 

1. For all types of vehicles 

  2. For each vehicle 

  3. If the vehicle must go to hospitals 

  4. Examine all available hospitals and choose the nearest one 

  5. Send the vehicle to the nearest available hospital 

  6. End if 

  9. End for 

 10. End for 

 

5.2.2 Send Required Vehicles to Stations to Get Recharged 

Some vehicles deplete their resources after they handle an emergency. For example, 

an ambulance may be out of specific medications and must go to a station to get 
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recharged. In this part, the nearest available station for each vehicle is identified and 

located, and the vehicle is sent to that station. The steps of this algorithm are: 

1. For all types of vehicles 

  2. For each vehicle 

  3. If the vehicle must go to a station to get recharged 

  4. Examine all available stations and choose the nearest one 

  5. Send the vehicle to the nearest available station 

  6. End if 

  9. End for 

 10. End for 

 

5.2.3 Dispatch Vehicles to Emergencies 

This section provides an explanation for dispatching vehicles to emergencies. The 

dispatching algorithm for the various categories of emergency vehicles is different. 

The algorithm for initial dispatching of a police vehicle to an emergency, which is the 

simplest vehicle to dispatch, is called DIS1. When dispatching other categories, the 

DIS1 algorithm will be called. 

 

5.2.3.1 Dispatching Initial Solution for Police Vehicles 

The conceptual framework of the dispatching initial solution for police vehicle 

(DIS1) algorithm is: 

1. Sort waiting emergencies in descending priority 
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 If there are emergencies in the same priority, sort them by their 

existing waiting time in the system in a non-increasing order 

2. Select the first emergency on the list, until all the vehicles are dispatched, or 

all the emergencies are satisfied 

3. Calculate the cost for sending available vehicles to this emergency 

4. Assign the minimum cost vehicle to the emergency and make that vehicle 

unavailable, until the required number of vehicles are satisfied at the 

emergency 

5. Remove the current emergency and go to step 2. 

 

5.2.3.2 Dispatching Initial Solution for Ambulances 

As previously mentioned, the ambulance category is assumed to have two types of 

vehicles - Advanced Life Support (ALS) and Basic Life Support (BLS). The 

conceptual framework of the dispatching initial solution for ambulances is: 

1. Sort waiting emergencies in descending priority 

 If there are emergencies in the same priority, sort them by their 

existing waiting time in the system in a non-increasing order 

2. Start with ALS vehicles 

3. Select the first emergency on the list that needs ALS ambulances; continue 

until all the ALS vehicles are dispatched, or all the emergencies that need 

ALS are satisfied 

4. Calculate the cost for sending available ALS vehicles to this emergency 

5. Assign the minimum cost vehicle to the emergency and make that vehicle 

unavailable 
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6. If the current emergency needs a BLS and the ALS gets to the scene in the 

required time for BLS, decrease the number of needed BLS in this emergency 

by 1 

7. Go to step 5 until the required number of ALS vehicles are satisfied at the 

emergency 

8. Remove the current emergency and go to step 3 

9. Call revised DIS1 algorithm for BLS ambulances 

The ninth step is calling revised DIS1 algorithm. The term revised means that 

all available ALS vehicles are also considered in the pool of available BLS vehicles 

because they can do the job for BLS vehicles too. 

 

5.2.3.3 Dispatching Initial Solution for Fire Vehicles 

As explained in previous chapters, it is assumed that fire departments have three types 

of vehicles: Fire Engines (FE), Fire Trucks (FT), and Fire Quints (FQ). The 

conceptual framework of the dispatching initial solution for fire vehicles is: 

1. Sort waiting emergencies in descending priority 

 If there are emergencies in the same priority, sort them by their 

existing waiting time in the system in a non-increasing order 

2. Start with FE and FQ vehicles (because FQ can do the job for FE too) 

3. Select the first emergency on the list, continue until all the FE and FQ 

vehicles are dispatched, or all the emergencies that need FE are satisfied 

4. Calculate the cost for sending available FE and FQ vehicles to this emergency 

5. Assign the minimum cost vehicle to the emergency and make that vehicle 

unavailable 
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6. If the current emergency needs a FT, too, and a FQ has been assigned to the 

emergency and it gets to the scene in the required time for FT, decrease the 

number of needed FT in this emergency by 1. 

7. Go to step 5 until the required number of FE vehicles is satisfied at the 

emergency 

8. Remove the current emergency and go to step 3. 

9. Call revised DIS1 algorithm for FT vehicles 

The ninth step is calling revised DIS1 algorithm. The term revised means that 

all available FQ vehicles are also considered in the pool of available FT vehicles 

because they can do the job for FT vehicles too. 

 

5.3 Improvement on Dispatching Initial Solution  

After finding an initial solution for the dispatching problem, improvement methods 

are applied to make the initial solution better. These improvement methods are: 

 Swap vehicles between emergencies 

 Send vehicles from emergencies to other emergencies in need 

 

5.3.1 Swap Vehicles between Emergencies 

In this section, one solution that is applied to save resources is to exchange the 

assignment of two vehicles assigned to different emergencies.  At each step, the 

exchange that produces maximum saving will be chosen. The algorithm for this 

action is: 
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1. For k=1 to 6 (for all types of vehicles) 

  2. For V1=1 to 𝑁𝑉𝑘
 

  3. For V2=1 to 𝑁𝑉𝑘
 

  4. If V1 and V2 are assigned to different emergencies 

  5. Calculate Reassignment Saving 

  6. End if 

  7. End for 

  8. Choose the V2 that produces the maximum reassignment saving 

  9. Change the assignment of V1 and V2 

  10. End for 

 11. End for 

As explained in the section 3.4.1, 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicles in the system.  

Calculation of reassignment saving is more complicated for ALS and FQ 

vehicles. For these two types of vehicles, the previous role and the new role of the 

vehicles should be considered. For example, if two FQ vehicles get reassigned, then 

their role in the previous destination should be checked, whether they were working 

as either a FE or a FT or both a FE and a FT, and what their new role will be based on 

the time they can reach the new incident.  These factors should figure in when 

calculating the reassignment saving. 
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5.3.2 Send Vehicles from Emergencies to Other Emergencies in Need 

In this step, it is checked that by removing vehicles from their assigned emergencies 

and sending them to new emergencies in need, how much saving is achieved.  The 

emergency that produces maximum saving will be chosen and that vehicle is assigned 

to this new emergency instead of the previous one selected in the initial solution. This 

process is reviewed for all vehicles assigned to emergencies in the initial solution. 

The algorithm is: 

1. For k=1 to 6 (for all types of vehicles) 

  2. For V1=1 to 𝑁𝑉𝑘
  

3. If V1 is assigned to emergencies 

  4. For all e in 𝐸1  

  5. Calculate Reassignment Saving 

  6. End for 

  7. Choose e that produces the maximum reassignment saving 

  8. Change the destination of V1 to emergency e 

  9. Increase the number of needed vehicle k in the previous    

destination of vehicle V1 by 1.  (Check the previous role if V1 is an 

ALS or a FQ) 

10. Decrease the number of needed vehicle k in emergency e by 1. 

(Check the new role if V1 is an ALS or a FQ) 
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11. End if  

  12. End for 

 13. End for 

As explained in the section 3.4.1, 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicles in the system and 𝐸1 is the set of emergency incidents in the 

system that are waiting for service. 

In step 9 and 10 of this algorithm, if the vehicle is ALS or FQ, some 

precautions have to be taken into account. The previous role of the vehicle should be 

checked. For example, if V1 is a FQ, and it was performing as both a FE and a FT, 

then the number of required FE and FT in the previous destination should be 

increased by one. Also, its role should be checked at the new destination and, if it is 

performing as both a FE and a FT, then the number of required FE and FT at the new 

destination should be decreased by 1.  

Also, if the vehicle is an ALS or a FQ, the reassignment saving calculation 

will be more complicated, because the vehicle’s previous role and new role will be 

important in the calculation. 

 

5.4 Relocation Initial Solution  

The first step in finding an initial solution for a relocation problem is calculating the 

coverage importance of each station. Based on how many ordinary demand nodes and 

critical demand nodes are covered in T1 and T2 minutes by each station, and the 
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importance of the nodes, the coverage importance for each station is calculated. The 

algorithm is: 

1. For k=1 to 6 (for all types of vehicles) 

  2. For s=1 to 𝑁𝑆𝑘
        

  3. Calculate the coverage importance of the station 

              4. End for 

5. End for 

As explained in section 3.4.1, 𝑁𝑆𝑘
 is the maximum number of type k 

emergency vehicle stations in the system. 

Also, it should be mentioned that the coverage importance of the station is 

more complicated for ALS and FQ vehicles. For example, we have to verify the ALS 

vehicles going to each station, how many nodes are going to have ALS, and how 

many nodes are going to have BLS.  Also, partial coverage and full coverage for each 

station should be calculated in this case. 

After identifying the coverage importance of each station, the following 

conceptual algorithm is used to find the initial solution for relocation problem. 

 1. For k=1 to 6 (for all types of vehicles) 

 2. Sort stations in descending coverage importance 

 3. Select the first station on the list, until all the available vehicles are 

assigned. 

 4. Calculate the cost for sending available vehicles to this station 
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 5. Assign the minimum cost vehicle to the current station and make that 

vehicle unavailable.  

 6. Go to the next station in the list and go to step 4 until each station has a 

vehicle. 

 7. Go to step 3 until there is no available vehicle. 

 8. End for 

 

5.5 Improvement on Relocation Initial Solution  

The next step after finding an initial solution for relocation problem is to improve that 

initial solution. Two improvement methods have been applied to the relocation initial 

solution at this stage. These improvement methods are: 

 Swap vehicles between stations 

 Send vehicles from their stations to other stations 

 

5.5.1 Swap Vehicles between Stations 

In this section, the improvement method of saving by exchanging the assignment of 

two vehicles that are assigned to different stations is described.  At each step, the 

exchange that produces maximum saving will be chosen. The algorithm for this 

action is: 

1. For k=1 to 6 (for all types of vehicles) 

  2. For V1=1 to 𝑁𝑉𝑘
 

  3. For V2=1 to 𝑁𝑉𝑘
 



 106 

 

  4. If V1 and V2 are assigned to different stations 

  5. Calculate Reassignment Saving 

  6. End if 

  7. End for 

  8. Choose the V2 that produces the maximum reassignment saving 

  9. Change the assignment of V1 and V2 

  10. End for 

 11. End for 

As explained in the section 3.4.1, 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicles in the system. 

 

5.5.2 Send Vehicles from Their Stations to Other Stations 

In this step, how much can be saved is verified by removing vehicles from their 

assigned stations and sending them to other stations. Then the station that produces 

maximum saving, if there is any, will be chosen, and the vehicle gets assigned to this 

new one instead of the previous one selected in the initial solution. This process is 

checked for all vehicles assigned to stations in the initial solution. The algorithm is: 

1. For k=1 to 6 (for all types of vehicles) 

  2. For V1=1 to 𝑁𝑉𝑘
  

  3. If V1 is assigned to stations 

  4. For s=1 to 𝑁𝑆𝑘
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  5. Calculate Reassignment Saving 

  6. End for 

  7. Choose s that produces the maximum reassignment saving  

  8. Change the destination of V1 to station s 

  9. Adjust the coverage of the nodes in the network by this 

  reassignment 

9. End if  

  10. End for 

 11. End for 

As explained in the section 3.4.1, 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicles in the system and  𝑁𝑆𝑘
 is the maximum number of type k 

emergency vehicle stations in the system. 

Calculation of saving based on reassignment is very complicated because the 

nodes around the previous station are going to lose coverage and the nodes around the 

new assigned station are going to gain coverage.  These changes in the coverage of 

the demand nodes must be calculated and then the improvement in the objective 

function is calculated. Then, the cost saving of this action is evaluated. The 

calculation is more complicated when the vehicle is an ALS or a FQ; in that case 

partial coverage as well as full coverage of the demand nodes must also be 

considered. 
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5.6 Improvement Methods  

So far, we have presented algorithms for constructing an initial solution for 

dispatching and relocation problem, sequentially. Also, some algorithms have been 

introduced to improve the constructed initial solutions.   

Given an initial solution for the dispatching and relocation problems, we can 

apply several improvement methods. The dispatching problem and relocation 

problem are both considered together and the improvement methods are applied. 

These improvement methods are: 

 Swap relocation and dispatching vehicles 

 Swap vehicles between emergencies 

 Swap vehicles between stations 

 Remove  vehicles  that  are  assigned  to emergencies and insert them in the 

best  station 

 Remove  vehicles  that  are  assigned  to stations and insert them in the best 

emergency  in  need 

 

The second and third improvement methods mentioned above are the same as 

5.3.1 and 5.5.1 improvement methods respectively and they are not going to be 

explained in this section again. They are used at this stage again because, after 

swapping vehicles between relocation and dispatching problems, the solution is 

changed, and applying these two improvement methods may produce savings. 
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5.6.1 Swap Relocation and Dispatching Vehicles 

This section explains how to save by exchanging the assignment of two vehicles 

when one of them is assigned to an emergency and the other is assigned to a station. 

First, each vehicle assigned to an emergency is considered and then vehicles assigned 

to stations are checked to see that how much improvement the objective function can 

have by exchanging the destination of those vehicles. At each step, the exchange that 

produces the maximum saving will be chosen. The algorithm for this action is: 

1. For k=1 to 6 (for all types of vehicles) 

  2. For V1=1 to 𝑁𝑉𝑘
 

  3. For V2=1 to 𝑁𝑉𝑘
 

  4. If V1 is assigned to emergencies and V2 is assigned to 

   stations or Vice Versa  

  5. Calculate Reassignment Saving 

  6. End if  

  7. End for 

  8. Choose the V2 that produces the maximum reassignment saving if 

   there is any. 

  9. Change the assignment of V1 and V2 

  10. End for 
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 11. End for 

As explained in the section 3.4.1, 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicle in the system. 

Calculation of reassignment saving is more complicated for ALS and FQ 

vehicles. The coverage factor would not change because in either case the station is 

going to get the same vehicle and the only difference is the cost of the travel for each 

of the two vehicles. However the emergency situation needs more consideration for 

these two types of vehicles. The role of the first vehicle at the emergency needs to be 

verified as well as what the role of the other vehicle will be at the emergency. For 

example, if two FQ vehicles get reassigned, then the role of the vehicle at the 

emergency needs to be confirmed, whether it was working as one FE or one FT, or 

both a FE and a FT, and also what the role of the other vehicle can be at the 

emergency based on the time it would reach the incident. Once these factors are 

known, then the reassignment saving can be calculated, which is quite complicated. 

 

5.6.2 Remove Vehicles Assigned to Emergencies and Insert Them in the Best Station 

In this part, each vehicle that is assigned to an emergency is checked to see how much 

savings is realized if it is removed from that emergency and is inserted in each 

station. The station that produces the maximum saving, if there is one, will be chosen 

and the vehicle is removed from the emergency and inserted in that station. The 

algorithm is: 

1. For k=1 to 6 (for all types of vehicles) 
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  2. For V1=1 to 𝑁𝑉𝑘
 

3. If V1 is assigned to emergencies 

        4. For s=1 to 𝑁𝑆𝑘
 

                                                5. Calculate Reassignment Saving 

                                                6. End for 

  7. End if 

  8. Choose s that produces the maximum reassignment saving if there is 

  any. 

  9. Change the destination of V1 to station s 

  10. Increase the number of needed vehicle k in the previous destination 

  of vehicle V1 by 1. (Check the previous role if V1 is an ALS or a FQ) 

 11. Adjust the coverage of the nodes in the network by this reassignment 

 12. End for 

 13. End for 

 As explained in the section 3.4.1 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicles in the system and 𝑁𝑆𝑘
 is the maximum number of emergency 

vehicle stations for type k in the system. 
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In step 10 of the above algorithm it is explained that if the vehicle is ALS or 

FQ, then some precautions have to be taken into account. The previous role of the 

vehicle should be checked. For example, if V1 is a FQ, and it was performing as both 

a FE and a FT, then the number of required FE and FT in the emergency should be 

increased by one. In addition, the reassignment saving calculation is more 

complicated if the vehicle is ALS or FQ, because in that case its previous role is 

important. 

Also, the nodes around station s are going to have more coverage and their 

coverage must be adjusted. This coverage adjustment is more complicated when the 

vehicle is ALS or FQ, because the partial coverage as well as full coverage should be 

considered. 

 

5.6.3 Remove Vehicles Assigned to Stations and Insert Them in the Best Emergency in Need 

In this section, each vehicle that is assigned to a station is checked to see how much 

savings will be realized  if it is removed from that station and is inserted in each 

emergency in need. The emergency that produces the maximum saving will be 

chosen if there is any and the vehicle is removed from the station to be inserted in that 

emergency. The algorithm is: 

1. For k=1 to 6 (for all types of vehicles) 

 2. For V1=1 to 𝑁𝑉𝑘
 

3. If V1 is assigned to stations 
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4. For all e in 𝐸1 

5. Calculate Reassignment Saving 

6. End for 

  7. End if 

 8. Choose e that produces the maximum reassignment saving 

 9. Change the destination of V1 to emergency e 

10. Decrease the number of needed vehicle k in emergency e by 1. (Check 

the new role if V1 is an ALS or a FQ) 

11. Adjust the coverage of the nodes in the network by this reassignment 

12. End for 

 13. End for 

As explained in the section 3.4.1 𝑁𝑉𝑘
 is the maximum number of type k 

emergency vehicles in the system and 𝐸1 is the set of emergency incidents in the 

system waiting for service. 

In step 10 of the above algorithm it is explained that if the vehicle is ALS or 

FQ, some precautions have to be taken into account. The new role of the vehicle 

should be checked. For example if V1 is a FQ, and it is performing as both a FE and a 

FT, then the number of required FE and FT in the emergency should be decreased by 

one.  
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Also, the nodes around station s (the previous destination of the vehicle) are 

going to have less coverage according to this reassignment and their coverage must 

be adjusted. This coverage adjustment is more complicated when the vehicle is ALS 

or FQ, because the partial coverage as well as full coverage should be considered. 

 

5.7 Heuristic Results  

To see how the heuristic method is performing, its solution is compared to the 

optimal solution. For this purpose, eight categories were developed, and for each 

category four different cases were defined. These cases varied in the weight of the 

coverage problem and the weights were increased from very low numbers to high 

numbers. The characteristics of these cases are illustrated in Table 5.1. These 

characteristics are: number of ordinary nodes, number of critical nodes, number of 

stations for police cars, number of stations for other emergency service categories, 

number of vehicles for each type, number of emergencies waiting for service, number 

of constraints, number of variables, and coverage importance. The four cases in each 

category are only different in coverage importance and all other characteristics are the 

same.  
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Table 5.1 Characteristics of 32 Cases 

 

For each case, three different input files were randomly generated using three 

different random seed numbers. Each one of these examples was solved with both 

Xpress software and our heuristic method to compare the results. The running time 

for our heuristic was set to 30 seconds. The heuristic gap and Xpress running time are 

shown for each seed on each case in the Table 5.2. The numbers in black illustrate 

that Xpress could solve the problem optimally. For example, in case # 2-3 with seed 

1, the heuristic gap is 2.7% and the running time for Xpress is 612.2 seconds, which 

is more than 10 minutes and is unreasonably high for the nature of our problem. This 

demonstrates that sometimes, even for the problems with small sizes, the commercial 
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software cannot be used and a good heuristic method should be applied. Xpress was 

out of memory in some examples as it is shown in Table 5.2, like case # 3-4, so on 

those examples the heuristic cannot be compared to the optimal solution. 

Also, in some cases, Xpress could not find optimal solutions even after a very 

long running time. In those cases the numbers are shown in red and the heuristic gap 

is showing deviation from the lower bound found with Xpress instead of the deviation 

from the optimal solution. Also, in those cases, after the heuristic gap, there is a 

number in parenthesis; this number is the gap between our heuristic solution and 

Xpress best solution. For example, at case # 5-3, in seed 3, the gap of our heuristic 

with the lower bound found with Xpress is 9.5% and the gap of our heuristic with 

best solution of Xpress after 3436.1 seconds is 4.8%. What is interesting here is that 

in just 30 seconds sometimes our heuristic can find better solution than Xpress in a 

very long running time. These cases are shown with blue numbers in parenthesis. For 

example one of these cases is case # 2-4 with seed 1. The heuristic gap from the lower 

bound found in Xpress is 33% but our heuristic solution is 15.5% better than the 

Xpress best solution after 86396.6 seconds. 
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Table 5.2 Heuristic Gap and Xpress Running Time of 32 Cases with 3 Different Random Seeds 

 

The summary of Table 5.2 is shown on Table 5.3. In Table 5.3, average 

Xpress running time, maximum Xpress running time and average gap of our heuristic 

for 32 cases can be seen. There are some cases like case # 3-3, which have no results 

and they are the ones for which Xpress could not find the optimal solution or Xpress 

ran out of memory. The average Xpress running time for these cases can get as high 

as 8750.3 seconds and maximum Xpress running time can be as high as 10297.5 
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seconds. The average gap for lots of cases was less than 1%. For some cases it was 

around 5%. On two cases, the average gap was higher than 6%; case # 6-1 with an 

average gap of 8.8% and case # 1-4 with the average gap of 10.1%. The average gap 

of all the cases together was 1.99%, which is quite good. 

 

Table 5.3 Average Xpress Running Time, Maximum Xpress Running Time and Average Gap for 32 

Cases 
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The results show that the proposed heuristic works very well. In a very short 

time it can identify results that sometimes Xpress, after running for a very long time, 

cannot find. 

So far, the running time for our heuristic was set to 30 seconds. A sensitivity 

analysis was performed on the running time to see whether a longer or shorter 

running time can be used or 30 seconds is suitable enough. For this purpose, in each 

one of the eight categories mentioned above, two cases were selected and heuristic 

was applied on one example. The running time was set to 1, 2, 5, 30, and 60 seconds 

in different runs and the objective function was compared in these different runs. The 

results are shown in Table 5.4. 

Table 5.4 The Objective Function of Our Heuristic Method with Different Running Times 
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Table 5.4 demonstrates that the objective functions in half of the cases remain 

exactly the same after one second running time, and there is no improvement after 

one second. In the other half of the cases, after two seconds, the objective functions 

remained the same and between one and two seconds, they had improvement. The 

percentage of improvement after one second running time can be seen in Figure 5.2 

for those cases that show improvement. 

Figure 5.2 Objective Function Improvement after 1 Second Running Time 

As it is obvious in the Figure 5.2, after two seconds the objective functions of 

all of the cases remain the same. To be on the safe side, it was decided to set the 

running time of our heuristic to five seconds instead of two seconds. So, there is no 

need to let the heuristic run for 30 seconds and five seconds running time can give 

solutions as good as 30 seconds or even 60 seconds running time. 
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5.8. Summary 

In this chapter first the proposed heuristic method was explained in detail. Then to see 

how the heuristic method performed, several cases were generated and the results of 

the heuristic method were compared to Xpress optimal solutions. The comparisons 

illustrate that the heuristic method is very promising and it can find very good 

solutions in a very short time. Sometimes Xpress couldn’t find optimal solutions after 

running for a very long time and also sometimes it was out of memory. In addition, in 

some examples, in a very short time our heuristic could find better solutions than 

Xpress after running for a long time. At the end of this chapter, a sensitivity analysis 

was performed on heuristic running time and it confirmed that five seconds running 

time is suitable enough for our heuristic. 
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Chapter 6: Simulation Model 
 

 

In Chapter 5, the heuristic method that was developed for this research was explained 

in detail and it was shown that it is capable of finding very good solutions in a very 

short time. However, to see how the proposed model performs in a real-world case 

study, a simulation procedure is necessary. Because the framework of a simulation 

model that can mimic the entire operation of an emergency response system is 

complicated and unique, no existing simulation software was suitable for this 

purpose. As a result, a very sophisticated simulation model that can see most of the 

details in the system has been developed for this research and it has been coded in 

𝐶++ language.  In this chapter, this simulation model will be explained in detail and 

then in chapter 8, it will be applied to a real case study. 

 

6.1 Conceptual Framework of the Simulation Model 

Figure 6.1 illustrates the conceptual framework of the simulation model that is 

developed for this research. In this simulation model, travel times on links are 

randomly generated and all-to-all shortest travel times are calculated using Dijkstra’s 

algorithm.  The location of emergency calls, their type, and their severity are also 

randomly generated.  At each time step, the status of the vehicles and their locations 

are updated.  Additionally, the statuses of emergencies are also updated, reflecting 

whether they are completed or not and whether the emergency’s needs are fully 
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satisfied, or if it still needs more vehicles.  The next event and its time are selected at 

this point, with events being accident arrival, accident removal, or travel time update.  

Based on the optimization model, the vehicles can be dispatched to emergencies or 

sent to stations if they are done at their current emergency, or they may take patients 

to the nearest hospitals if necessary.  Next, vehicles that need to change their 

destinations or paths get reassigned.  At this point, the statistics are updated and the 

simulation time gets updated to let the next event happen in the system. As a result, 

there are different modules in the simulation model. These modules are: 

 Travel time module 

 Emergency call module 

 Vehicle module 

 Emergency module 

 Next event module 

 Optimization module 

 Reassign module 

 Statistics module 

 Simulation time module 
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Figure 6.1 Conceptual Framework of the Simulation Model 

 

6.1.1 Travel Time Module 

It is assumed that the network of the area, the length of the links, and their free flow 

speed are known in advance. By knowing the length of the links and the free flow 

speed on those links, therefore, the travel time of the vehicles, if they travel with the 

free flow speed, can be calculated. Then at each time that the travel time updates, a 
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coefficient between 0.8 and 1.2 is randomly generated for each link and the travel 

time of that link is multiplied by that coefficient. Using this procedure at the points 

when the travel time gets updated, the travel time is randomly generated. The 

assumption of travel time being between 0.8 and 1.2 of the free flow travel time is not 

unrealistic, because these vehicles can use their siren and travel very fast even when 

the roads are congested.  

Whenever the travel time gets updated, Dijkstra’s algorithm is used to 

calculate the shortest travel time paths. The travel time in this simulation model gets 

updated each five minutes, but the code is quite flexible and the five minutes can be 

changed. The minimum time that can be used for travel time update is one minute and 

it is better to not use increments less than one minute, because the running time of 

finding all to all shortest travel time paths by the implementation of Dijkstra’s 

algorithm on 5000 nodes network (which is about the size of a real case) is around 30 

seconds. It is therefore better that the time for travel time update not be less than one 

minute. 

 

6.1.2 Emergency Call Module 

It is assumed that the distribution of the accident arrival time and its mean arrival 

time are known in advance. It is also assumed that the emergencies can only happen 

at the demand nodes and the spatial distribution of the emergencies is known in 

advance. In addition, the emergency calls can belong to different categories and can 

have different severity and priority. As a result, the required number of vehicles in 
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each type and the required time for them to be on the emergency incident will be 

defined based on the type and severity of the accident.  

When it is the time for accident arrival, this module will randomly generate 

the location of the accident based on the spatial distribution. It will also randomly 

define the type and severity of the accident. As a result the number of needed vehicles 

of each type, as well as the required time for them to be on site, are defined. 

 

6.1.3 Vehicle Module 

In this module the vehicles are tracked and their location and their status are updated. 

At each time step the destination, the job and also the route that each vehicle takes is 

defined from the optimization module and the travel time module. So, when the 

simulation time gets updated, the location of the vehicle can be updated by knowing 

the time passed from the last event and also the route that each vehicle was taking to 

get to its destination. For example if the vehicle was assigned to an emergency in the 

last time step, and now another emergency has arrived in the system, the location of 

this vehicle is updated. If it has already reached the destination, its location is the 

location of that emergency and its status becomes busy, because when the vehicles 

reach the emergency they cannot get diverted to another emergency. If it is still en 

route, its location on the route is found. If at this exact time it is on a link between 

two nodes, its location is reported as the next point on that link, which is a reasonable 

assumption if the network is detailed enough. If it is the time that an emergency is 
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finished, the vehicles that were handling that emergency become free. At each time 

step, therefore, this module is called to find the status and location of the vehicles. 

 

6.1.4 Emergency Module 

This module tracks the status of the emergencies in the system. When an emergency 

arrives in the system, based on the type and severity of that emergency, the number of 

vehicles in each type and the time required for those vehicles to reach the emergency, 

are defined from the emergency call module. This module checks to see whether the 

emergencies are fully satisfied or they are still waiting for vehicles, and also checks 

which emergency is still in the process and which one is finished and its vehicles are 

free. 

 

6.1.5 Next Event Module 

The events that can happen in this simulation model are: 

 Travel time update 

 Accident arrival 

 Accident removal 

The next event module checks the time for each one of these events and 

chooses the event that will happen sooner. 
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As was mentioned before, at each five-minute interval, travel time should be 

updated. Also, based on the accident inter-arrival time distribution, the time for the 

next accident arrival can be estimated.  

For the accident removal, first of all it is assumed that the distribution of the 

service time of the accidents is known in advance. Also, based on the type and 

severity of the accidents, the service time required for each emergency can be 

estimated from the known distribution. The time for removal of each accident, 

therefore, can be estimated. 

At each step, this module is called to define the next event and the time  that 

event will happen in the system. 

 

6.1.6 Optimization Module 

This module calls the heuristic procedure. This module should be called whenever an 

event happens in the system and it finds the best destination for vehicles. When an 

accident arrives in the system, this module will send some vehicles to the 

emergencies and relocate others to provide better coverage. When an accident is 

removed from the system, this module will find the best stations for the free vehicles 

or may send them to other emergencies in need. 

Also, after the travel time is updated, this module is called, because with the 

new travel time information another vehicle may be closer to the emergencies in need 

or another station may be closer to the vehicles seeking stations. In addition, based on 

the new travel time information the coverage importance of the stations can be 
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updated and sending the vehicles to other stations may provide better coverage 

overall.   

6.1.7 Reassign Module 

At each time step, the destination of the vehicles is defined. Then in the next time 

step, when the optimization module is called, if the vehicles are still en route, they 

can be reassigned to other destinations. For example a vehicle that is available and is 

heading to a station can get reassigned to an emergency. Even a vehicle can get 

reassigned from one emergency to another emergency or even station. In summary 

the vehicles en-route to an emergency or a station can be reassigned. The vehicles 

that are out of supplies and need to be recharged can get reassigned, too; but their 

destination needs to be another station. Vehicles taking patients to hospitals can get 

reassigned but their new destination must be another hospital that is closer.  

As was explained in chapter 3, the reassignment will confuse the drivers, so it 

will be considered in the model if it produces at least a minimum benefit to the whole 

system. Also, when the travel time gets updated, another route may have shorter 

travel time to the destination of a vehicle and in that case the vehicle gets reassigned 

to use another path instead of its previous one. 

In this module, these cases are defined and they get reassigned to the new 

destination or even the new route. 
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6.1.8 Statistics Module 

In this module the important statistics of the system are updated and saved. These 

important statistics are: 

 Number of emergencies in the system 

 Total response time to emergencies for each type of vehicle 

 Average response time to emergencies for each type of vehicle 

 Maximum response time to emergencies for each type of vehicle 

 Number and percentage of vehicles that got to the scene later than required 

time for each type of vehicle 

 Number and percentage of emergencies that got their first vehicle in each type 

in five minutes  (five minutes is a critical time mentioned in the NFPA 

guidelines) 

 Number and percentage of vehicles that got to the scene later than nine 

minutes for each type of vehicle (nine minutes is a critical time mentioned in 

the NFPA guidelines) 

 Number of reassignment in the system 

 

6.1.9 Simulation Time Module 

This module is the last one in each time step and it will use the time selected in the 

next event module and set the simulation time to that time and let the next event 

happen in the system. 
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6.2. Summary 

In this chapter, the unique and sophisticated simulation model that was developed for 

this research was explained. The simulation model has nine different modules and 

each one of them was explained in detail in this chapter. In chapter 7, the case study 

used for this research will be introduced and the input analysis done on the data to 

prepare it for the simulation model will be discussed. 
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Chapter 7: Case Study Characteristics 
 

 

Real street network and real operational data are available on one of the counties in 

the Washington, D.C. metropolitan area. This case study data is used to calibrate the 

simulation model developed in this research. In this chapter, the input analysis, which 

was done on the data of this case study, is explained and the distributions of the 

different inputs are shown. These distributions are used in the next chapter to 

randomly generate the input for the simulation model to do sensitivity analysis. It 

should be mentioned that Yang (2006) worked with the same case study for her 

dissertation and she did input analysis on the data. As a result, there was no need to 

do the analysis again and in this research her input analysis is used.  

 

7.1 Case Study Network 

The existing network is consisted of 5496 nodes and 7325 directed links. The network 

is shown in Figure 7.1. In this region, there are 10 fire stations that are shown with 

red stars in Figure 7.1. These 10 stations have been used for fire vehicles in the 

analysis. It is also assumed that four hospitals exist in the network and the ambulance 

vehicles can use these four hospitals as well as 10 fire stations, so in total they are 

assumed to have 14 stations in the network.  

Police cars can be relocated to any node in the system. As a result, they can 

have 5496 stations theoretically, but in the analysis usually the number of police 
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stations has been limited to 100 or 200 random nodes in the network, which is a valid 

assumption and there is no need to consider all 5496 nodes as the police stations.  

 

Figure 7.1 Case Study Network with Fire Stations 

Source: Yang (2006) 

 

The lengths of the links in the network are also shown in Table 7.1. By 

looking at this table, it can be seen that more than 96% of the links are shorter than 

300 meters and the assumption of emergencies happening at the nodes is realistic 

when the network is detailed enough like this network.  
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Table 7.1 The Lengths of the Links in the Network  

Source: Yang (2006) 

Link Lengths (m)  Frequency  Cumulative Percentage 

0-100 3941 53.8% 

100-200 2586 89.1% 

200-300 526 96.3% 

300-400 110 97.8% 

400-500 58 98.6% 

500-600 33 99.0% 

600-700 26 99.4% 

700-800 7 99.5% 

800-900 6 99.6% 

900-1000 9 99.7% 

> 1000 22 100.0% 

 

 

7.2 Case Study Operational Data 

The case study data is for ambulances and medical units on November and December 

of 2000. The data has 3029 records and each record is for one dispatched vehicle. 

There are 31 variables associated with each record, some important variables are: call 

type, vehicle identification number, call in time for the emergency, dispatching time 

of vehicles, and arrival time of the vehicles (Yang 2006). 

 

7.2.1 Emergency Vehicles 

Sixteen vehicle identification numbers have been reported in the data, so the fleet size 

of the ambulances is 16. There is no data showing the type of each vehicle, defining 

whether they are ALS or BLS ambulances. In the analysis of the case study, it is 

therefore assumed that 10 of them are BLS and six of them are ALS ambulances.  
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The data is only for ambulances, so based on the fleet number of ambulances 

it is assumed that the number of fleet for fire vehicles is the same and six of them are 

FE, six of them are FT, and four of them are FQ, totaling 16 fire vehicles.  

Sixteen police vehicles seems to be low for a county, so it is assumed that the 

number of police vehicles is twice as much as number of ambulances and fire 

vehicles in the system and it is 32.  The police vehicles are homogeneous, so they are 

all the same.  

 

7.2.2 Number of Dispatched Vehicles 

There are 3029 records of dispatched vehicles but only 2647 calls and it demonstrates 

that some calls get more than one vehicle. Yang (2006) categorized the emergency 

calls in four groups based on the number of dispatched vehicles each call got. The 

results are shown in Table 7.2.   

Table 7.2 Categories of Calls Based on Number of Needed Vehicles  

Source: Yang (2006) 

Number of Dispatched Vehicles Number of Calls Percentage of Calls 

1 2310 87.3% 

2 299 11.3% 

3 32 1.2% 

>=4 6 0.2% 

 

Table 7.2 shows that 87.3% of calls just need one vehicle, about 11.3% need 

two vehicles, 1.2% need three vehicles, and just 0.2% of calls need four vehicles. 
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7.2.3 Emergency Inter-arrival Time 

Based on the analysis of 2646 inter-arrival time between 2647 calls with Arena Input 

Analyzer, Yang (2006) fitted five different distributions to the inter-arrival time 

between emergencies. The fitted functions and their squared error are shown in Table 

7.3. It shows that the best fitted distribution is an exponential distribution 

𝐸𝑥𝑝(0.548), which has the minimum squared error. 

Table 7.3 Five Best Distributions for Emergency Inter-Arrival Time  

Source: Yang (2006) 

Fitted Distribution Squared Error 

Exponential 0.00324 

Lognormal 0.00395 

Beta 0.006 

Normal 0.109 

Triangular 0.196 

 

As a result, 𝐸𝑥𝑝(0.548) distribution is used for emergency inter-arrival time 

in the simulation model. Yang (2006) graphed the real inter-arrival time data versus 

fitted distribution and the results can be seen in Figure 7.2.  
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Figure 7.2 Comparison of Real Inter-arrival Time Data and Fitted Distribution 

Source: Yang (2006) 

 

7.2.4 Emergency Space Distribution 

Another piece of information that is important in analyzing the case study is to see the 

space distribution of emergencies in the network. The emergencies seem to happen 

uniformly in the network and for that reason a uniform distribution of 𝑈(1,5496)  is 

used to randomly generate the location of the emergencies for simulation model in the 

case study. Yang (2006) graphed the real location of emergencies that happened in 

the system versus the fitted distribution and the results are shown in Figure 7.3. 
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Figure 7.3 Comparison of Real Emergency Location and Fitted Distribution 

Source: Yang (2006) 

 

7.2.5 Emergency Service Time 

For the service time, the time the vehicle arrives at the scene is subtracted from the 

time the vehicle departs the scene. Some calls are fake which means the vehicles are 

dispatched to the scene but it is a false alarm and then after a very short time the 

vehicles depart the scene. There are two peaks in the service time distribution graph 

and this illustrates that the service time distribution can be combination of several 

distributions. Yang (2006) analyzed the data for service time and she came up with 

the following conclusions: 

 If further treatment is not needed for the emergency (fake calls), the service 

time distribution is lognormal and the probability of these cases is 20%. 

 If further treatment is needed for the emergency, the service time will have 

normal distribution.  
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Yang (2006) also considered four different normal distributions for the calls 

that need further treatment. So, totally service time distribution can be estimated as 

the combination of five different distributions with 𝑃𝑖 probability for each of them. 

These five distributions and their probability are (Yang (2006)): 

𝑇𝑦𝑝𝑒 𝐼 ∶ 𝐿𝑂𝐺𝑁 (2.7, 0.7)            𝑃0 = 0.2 

𝑇𝑦𝑝𝑒 𝐼𝐼 ∶ 𝑁 (16 , 7)                      𝑃1 = 0.13 

𝑇𝑦𝑝𝑒 𝐼𝐼𝐼 ∶ 𝑁 (57 , 14)                  𝑃2 = 0.56 

𝑇𝑦𝑝𝑒 𝐼𝑉 ∶ 𝑁 (85 , 15)                  𝑃3 = 0.09 

𝑇𝑦𝑝𝑒 𝑉 ∶ 𝑁 (120 , 40)                  𝑃4 = 0.02 

The first type is showing the fake calls; the other four normal distributions are 

for the calls that need further treatment. Type V is the most serious emergency, Type 

II is the mildest one, and Type I is a fake call. By combining these distributions the 

following equation for estimated pdf function of the service time can be obtained 

(Yang(2006)). 

𝑓(𝑥) =  𝑃0 ∗
1

√2𝜋𝜎1
2

𝑒
−

(𝑙𝑛𝑥−𝜇1)

2𝜎1
2

 +   ∑ 𝑃𝑖 ∗
1

𝑥 √2𝜋𝜎𝑖
2

𝑒
−

(𝑥−𝜇𝑖)

2𝜎𝑖
24

𝑖=1          (7.1)   

Figure 7.4 shows the real service time data against fitted distribution, which 

are very well matched. 
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Figure 7.4 Comparison of Real Service Time Data and Fitted Distribution 

Source: Yang (2006) 

 

These five distributions are used to randomly generate the service time needed 

for each type of call. First based on the probabilities of these five distributions, one of 

these call types is generated and then based on the type of the call a random service 

time from the corresponding distribution is generated. 

  

7.3. Summary 

The input analysis on the real case study data was explained in this chapter. The 

analysis was done by Yang (2006) in a similar case study and in this research her 

input analysis has been used to randomly generate the required input data for the 

simulation model. In the next chapter the results of the simulation model in the case 

study will be shown and then sensitivity analysis will be done on some important 

parameters in the model.
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Chapter 8: Case Study Results 
 

 

The proposed model should be tested by using a simulation model on a real case 

study and if it shows improvements, it is safe to apply in real operations. To see how 

the proposed model performs in real operations, the simulation model is applied in the 

case study under investigation. In this chapter, first the results of applying the 

proposed model in the case study are explained and compared with dispatching 

models without coverage problem or with simpler coverage criteria. Then an 

extensive sensitivity analysis is performed on the parameters in the model to see how 

the model will react. 

 

8.1 Proposed Model Results 

As it was mentioned before, the distribution of the accident location, accident type 

and severity, accident inter-arrival time, and accident finish time are estimated based 

on the analysis of the real data and the data for the simulation model have been 

randomly generated using those distributions. Then to find the required output for 

each case, 10 different replications are used and simulation time is set to four days on 

each one of these replications. A different set of random seed numbers is used for 

each replication to come up with reliable and unbiased results. 

In output analysis in simulation models, it is necessary to find the length of 

the warm-up period. When the warm-up period is passed, the system reaches the 
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steady state and the output should be considered after this time. Yang (2006) 

performed the analysis to determine the warm-up period for this kind of problem and 

she showed that the warm-up period is less than 1300 minutes (less than a day) for the 

cases she considered. To be on the safe side, in this research, a one-day warm-up 

period is considered in each replication. It means that in each replication, the 

simulation is run for four days, but the results of the first day is not considered in the 

output analysis and the results from second day to the fourth day are taken into 

account. So, for each replication, 3-day results have been collected and totally each 

case is run for 30 days. (10 replications of 3-day runs) 

It is assumed that there are 32 police vehicles, 10 BLS ambulances, six ALS 

ambulances, six fire engines, six fire trucks, and four fire quints in the system. With 

these numbers of vehicles, the simulation model is applied on the case study. Three 

approaches are considered and compared. The first one set all coefficients of 

coverage problem to zero, which means that the model is performing as only a 

dispatching problem and it is called dispatching (Dis) in the results. In the second 

approach only the simple coverage problem is added to the dispatching problem and 

in the results shown in this chapter it is called dispatching with simple coverage 

(DisSC).  The last one combines the entire proposed coverage problem with 

dispatching problem. It is called dispatching with increased equity and double 

coverage (DisIEDC).  

Some important statistics like “average response time,” “longest response 

time,” “percentage of vehicles arriving at the emergency later than the required time,” 

“percentage of emergencies which received their first vehicle in five minutes,” and 
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“percentage of vehicles with response time greater than nine minutes” are calculated 

for these three approaches. The last two statistics are mentioned in NFPA’s standards. 

The results are shown in Table 8.1 and Table 8.2. Also, these statistics are calculated 

for each type of vehicle separately as it can be seen in Table 8.1 and Table 8.2. The 

only thing that should be mentioned here is that fire quint type does not exist in these 

tables, because when they perform as fire engines, they will be included in fire engine 

analysis and when they perform as fire trucks they will be included in fire truck 

analysis. If they perform as both fire engines and fire trucks, they will be included in 

the analysis of the both vehicles.  

Table 8.1 shows “average response time” and “percentage of emergencies 

which received their first vehicles in five minutes.” Adding coverage to dispatching 

problem does not seem to have improvement on these two statistics. Sometimes these 

two statistics became even worse by adding coverage problem to the dispatching 

problem. The reason is that when the coverage problem is considered, the only goal is 

not to service emergencies in the system in the fastest way. Sometimes the model 

may send a far vehicle to an emergency if that emergency is not severe and prefer to 

keep other vehicles standing by for future demands. That’s why sometimes these two 

statistics show improvement and sometimes they become worse. On the other hand, 

Table 8.2 illustrates great improvement. In this table “longest response time,” 

“percent of vehicles arriving at the emergency later than the required time,” and 

“percent of vehicles with response time greater than nine minutes” are shown. On 

most of them, the DisIEDC model is better than DisSC model and DisSC model is 

better than Dis Model. For example, the longest response time for ALS ambulances is 
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10.54 minutes if only dispatching model is used, it decreases to 9.19 minutes if 

simple coverage is added to dispatching problem. It becomes 7.97 minutes if the full 

proposed coverage model is used with dispatching model, which is a significant 

improvement. Another statistic that is very important is the “percentage of vehicles 

arriving at the emergency later than the require time” and in all of the cases enormous 

improvement is obtained by using the full proposed model (DisIEDC). 

A point that should be mentioned here is that the results shown in Table 8.1 

and Table 8.2 are the average of 10 replications. For example the longest response 

time for fire engine with DisIEDC model is 7.74. This is not the maximum of longest 

response times of different replications, it is the average of the longest response times 

for those replications and that is why 0.1% of the vehicles have response times 

greater than nine minutes for that type of vehicle. 

Table 8.1 Case Study Results by Applying 3 Different Models 

Vehicle Type 

Average Response Time (min) 
Percent of Emergencies Received 

Their First Vehicle in 5 Minutes 

Dis 

Model 

DisSC 

Model 

DisIEDC 

Model 

Dis 

Model 

DisSC 

Model 

DisIEDC 

Model 

Police Car 2.05 1.95 1.96 92.49% 92.49% 92.49% 

BLS 

Ambulance 
2.85 2.79 3.09 67.01% 69.70% 73.41% 

ALS 

Ambulance 
3.72 3.27 3.67 56.55% 62.95% 63.94% 

Fire Engine 2.91 3.09 3.29 70.31% 70.88% 66.64% 

Fire Truck 2.95 3.11 3.22 69.56% 71.38% 69.05% 
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Table 8.2 Case Study Results by Applying 3 Different Models (Continue) 

Vehicle 

Type 

Longest Response Time 

(min) 

Percent of Vehicles Arrived 

at the Emergency Later than 

Required Time 

Percent of Vehicles with 

Response Time Greater than 

9 Minutes 

Dis 

Model 

DisSC 

Model 

DisIEDC 

Model 

Dis 

Model 

DisSC 

Model 

DisIEDC 

Model 

Dis 

Model 

DisSC 

Model 

DisIEDC 

Model 

Police Car 5.18 5.09 5.09 0.38% 0.13% 0.06% 0.00% 0.00% 0.00% 

BLS 

Ambulance 
7.25 7.48 7.62 5.38% 4.80% 3.41% 0.00% 0.00% 0.00% 

ALS 

Ambulance 
10.54 9.19 7.97 6.14% 3.83% 3.24% 2.32% 0.27% 0.00% 

Fire Engine 11.38 7.92 7.74 5.89% 4.54% 3.79% 0.83% 0.41% 0.10% 

Fire Truck 11.11 7.87 7.25 6.49% 4.99% 3.24% 1.03% 0.23% 0.23% 

 

 

8.2 Sensitivity Analysis 

To see how the model is working when the parameters are changing, an extensive 

sensitivity analysis is performed in this research. For the sensitivity analysis, the 

proposed model (DisIEDC) is used. The sensitivity analyses are done on some 

important parameters like “emergency inter-arrival time,” “fleet numbers,” “coverage 

benefit coefficients,” “minimum threshold of benefit for diversion,” and “cost of 

assigning vehicles to non-home stations;” the results are presented in this section. 

 

8.2.1 Emergency Inter-arrival Time 

Based on the analysis of the case study, the emergency inter-arrival time was about 

32.8 minutes. As a result, it is important to see how the results will change if the load 
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of the system increases or decreases. For example, it is interesting to see what the 

longest response time will be if the emergency inter-arrival time becomes 10 minutes 

or 60 minutes. The number of vehicles and all the other characteristics of the system 

are the same as before and just the emergency inter-arrival times have been changed. 

Tables 8.3 to 8.8 show the results for different emergency inter-arrival time.  

Table 8.3 is presenting average response time for different emergency inter-arrival 

times for each type of vehicle. The graphs of the average response time can be seen in 

Figure 8.1. From Table 8.3 and Figure 8.1, it can be found out that when inter-arrival 

time is around 30 minutes, the average response time for almost all vehicles reaches a 

threshold and it does not decrease a lot after that. For some vehicles even at inter-

arrival time around 20 minutes, the average response time becomes almost constant 

and it does not change that much after that. It shows that 30 minutes for some types of 

vehicles and 20 minutes for others are the thresholds for the system to transform from 

loaded system to less loaded one if we only consider the average response time. 

However for a more robust conclusion, other statistics have to be checked too. 

Percentages of emergencies receiving their first vehicle in five minutes for 

different emergency inter-arrival times are shown in Table 8.4 and Figure 8.2. They 

show that more emergencies received their first vehicles in five minutes when the 

emergency inter-arrival time increases and the rate of increase is high until 

emergency inter-arrival time is around 30 minutes. After 30 minutes, most of the time 

they are still improving but with lower rates.  
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Table 8.3 Average Response Time with Different Emergency Inter-arrival Time 

Vehicle Type 

Average Response Time (min) 

Emergency Inter-arrival Time (min) 

10 20 32.8 40 50 60 

Police Car 2.2 1.9 1.9 1.9 1.9 1.9 

BLS 

Ambulance 
3.4 2.9 2.9 2.8 2.8 2.8 

ALS 

Ambulance 
4.2 3.8 3.4 3.4 3.4 3.4 

Fire Engine 3.6 3.0 3.1 3.1 3.1 3.0 

Fire Truck 3.6 2.9 2.9 3.0 3.0 2.9 

 

 

 

 
Figure 8.1 Average Response Time with Different Emergency Inter-arrival Time 
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Table 8.4 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different 

Emergency Inter-arrival Time 

Vehicle Type 

Percent of Emergencies Received Their First Vehicle in 5 Minutes 

Emergency Inter-arrival Time (min) 

10 20 32.8 40 50 60 

Police Car 68.4% 76.6% 91.0% 91.5% 93.4% 98.2% 

BLS 

Ambulance 
41.3% 52.6% 65.6% 65.1% 67.1% 70.9% 

ALS 

Ambulance 
28.3% 41.9% 56.8% 56.7% 57.6% 61.5% 

Fire Engine 41.6% 52.0% 66.0% 70.9% 72.1% 76.9% 

Fire Truck 41.9% 53.3% 70.1% 70.6% 73.9% 79.8% 

 

 

 
Figure 8.2 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different 

Emergency Inter-arrival Time 
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Longest response time for different emergency inter-arrival times is shown in 

Table 8.5 and Figure 8.3.  

Table 8.5 Longest Response Time with Different Emergency Inter-arrival Time 

Vehicle Type 

Longest Response Time (min) 

Emergency Inter-arrival Time (min) 

10 20 32.8 40 50 60 

Police Car 6.3 5.7 5.7 4.3 4.3 4.3 

BLS 

Ambulance 
8.1 7.9 7.9 7.6 7.6 7.6 

ALS 

Ambulance 
11.4 9.6 7.9 7.6 7.6 7.6 

Fire Engine 8.5 7.1 7.1 7.1 6.6 6.6 

Fire Truck 8.3 7.1 7.1 6.6 6.6 6.6 

 

 

 
Figure 8.3 Longest Response Time with Different Emergency Inter-arrival Time 
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Table 8.5 and Figure 8.3, show that by increasing the emergency inter-arrival 

time, the longest response time decreases and it reaches a threshold after inter-arrival 

time reaches about 40 minutes. 

In Table 8.6 and Figure 8.4, the percent of vehicles arriving at the emergency 

later than the required time for different emergency inter-arrival times is presented. 

They show that after emergency inter-arrival time reaches 40 minutes, the percentage 

of vehicles arriving later than the required time does not decreases a lot, sometimes it 

decreases but not that much. However, for most types of vehicles, it decreases a lot by 

increasing the emergency inter-arrival time before this time reaches 40 minutes. 

Table 8.7 and Figure 8.5 show the percent of vehicles with response times 

greater than nine minutes. As it can be seen in Figure 8.5, the ALS ambulance has 

some vehicles with response time greater than nine minutes when the emergency 

inter-arrival time is less than 30 minutes and after that it has no vehicles with 

response time greater than nine minutes. 

In the analyses of the case study, the emergencies could get enough vehicles 

and they did not have vehicle deficiencies. In these cases, when the system gets very 

loaded and, for example, every 10 minutes an emergency occurs in the system, it is 

important to see whether emergencies receive what they need or they have lack of 

vehicles sometime. So, the percent of vehicle deficiencies at the emergencies have 

been investigated with different emergency inter-arrival times, and the results are 

shown in Table 8.8 and Figure 8.6. They show that the ALS ambulance and Fire 

Engine types are the ones that have vehicle deficiencies at the emergencies. 
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Table 8.6 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Emergency Inter-arrival Time 

Vehicle Type 

Percent of Vehicles Arrived at the Emergency Later than Required Time 

Emergency Inter-arrival Time (min) 

10 20 32.8 40 50 60 

Police Car 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
11.5% 6.7% 5.7% 3.5% 2.7% 2.6% 

ALS 

Ambulance 
7.9% 5.9% 1.1% 1.3% 1.3% 1.1% 

Fire Engine 6.6% 5.6% 4.5% 3.2% 3.2% 3.1% 

Fire Truck 7.0% 5.8% 5.0% 3.6% 3.3% 2.7% 

 

 

 

 
Figure 8.4 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Emergency Inter-arrival Time 
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Table 8.7 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Emergency 

Inter-arrival Time 

Vehicle Type 

Percent of Vehicles with Response Time Greater than 9 Minutes 

Emergency Inter-arrival Time (min) 

10 20 32.8 40 50 60 

Police Car 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
3.0% 1.5% 0.0% 0.0% 0.0% 0.0% 

Fire Engine 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Fire Truck 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

 

 
Figure 8.5 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Emergency 

Inter-arrival Time 
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Table 8.8 Percent of Vehicle Deficiencies at the Emergencies for Different Emergency Inter-arrival 

Time 

Vehicle Type 

Percent of Vehicle Deficiencies at the Emergencies 

Emergency Inter-arrival Time (min) 

10 20 32.8 40 50 60 

Police Car 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
19.8% 8.1% 0.0% 0.0% 0.0% 0.0% 

Fire Engine 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 

Fire Truck 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

 

 
Figure 8.6 Percent of Vehicle Deficiencies at the Emergencies with Different Emergency Inter-arrival 

Time 
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Figure 8.6 shows that Fire Engine has a little vehicle deficiency when the 

emergency inter-arrival time is 10 minutes and after that it shows no vehicle 

deficiency, but the problem for ALS ambulance is quite serious. There are about 20% 

vehicle deficiencies when emergency inter-arrival time is 10 minutes and it reaches to 

about 8% when the emergency inter-arrival time is 20 minutes, which is still high. 

Twenty percent of vehicle deficiency means that if the total number of needed ALS 

ambulances in the emergencies that happened in the system was about 100 vehicles, 

the emergencies could get just 80 of them and some emergencies lacked the number 

of needed vehicles, which is not good at all. If the system, in reality, gets this loaded 

and the emergencies occur in less than 30 minutes, then adding the number of ALS 

ambulances is mandatory, otherwise the system will perform very poorly. 

So, from all the results shown in this section, it can be concluded that if the 

emergency inter-arrival time is 40 minutes and above, the system performs very well. 

If it decreases to about 30 minutes, as it is the case right now in the case study, the 

system performs well. But less than 30 minutes emergency inter-arrival time is going 

to put the system in bad shape and for sure in that situation some vehicles have to be 

added to the system especially ALS ambulances. 

 

8.2.2 Fleet Numbers 

Another parameter that is worth looking at is fleet number of each vehicle type. It is 

obvious that with increasing the fleet number the results will improve and by 

decreasing the fleet number the results will deteriorate. It is interesting to see how the 
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results will change by changing the fleet number of each type. In this section, six 

scenarios have been considered with different number of vehicles for each type. The 

number of vehicles for each scenario is shown in Table 8.9. 

Table 8.9 Number of Vehicles for Each Scenario 

Scenarios 

Vehicle Types 

Police 
BLS 

Ambulance 

ALS 

Ambulance 
Fire Engine Fire Truck Fire Quint 

#1 10 4 2 3 3 1 

#2 15 6 3 5 5 3 

#3 20 8 4 6 6 4 

#4 25 10 6 8 8 6 

#5 32 15 8 12 12 9 

#6 40 20 10 15 15 10 

 

Tables 8.10 to 8.15 show the results for different fleet numbers. Table 8.10 is 

presenting average response time for different scenarios with different number of 

vehicles for each type. The graphs of the average response time can be seen in Figure 

8.7. In Table 8.10 and Figure 8.7, it can be seen that when the number of vehicles 

increases (number of vehicles increases when scenario# increases), most of the time 

the average response time decreases, which is expected, because there are more 

vehicles to serve the emergencies and also they can provide better coverage for future 

demands.  
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Percentages of emergencies receiving their first vehicle in five minutes for 

different fleet number scenarios are shown in Table 8.11 and Figure 8.8.  

Table 8.10 Average Response Time with Different Fleet Number Scenarios 

Vehicle Type 

Average Response Time (min) 

Scenarios 

#1 #2 #3 #4 #5 #6 

Police Car 3.7 3.4 3.3 3.3 3.2 3.2 

BLS 

Ambulance 
4.1 4.1 4.0 3.8 3.6 3.4 

ALS 

Ambulance 
4.4 4.4 4.2 3.6 3.4 2.8 

Fire Engine 4.5 4.2 4.2 4.3 3.7 3.8 

Fire Truck 4.3 4.4 4.4 4.2 4.1 3.7 

 

 

 
Figure 8.7 Average Response Time with Different Fleet Number Scenarios 
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Table 8.11 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different Fleet 

Number Scenarios 

Vehicle Type 

Percent of Emergencies Received Their First Vehicle in 5 Minutes 

Scenarios 

#1 #2 #3 #4 #5 #6 

Police Car 58.7% 69.8% 80.7% 84.8% 92.2% 94.7% 

BLS 

Ambulance 
66.9% 72.9% 78.2% 84.6% 85.8% 89.8% 

ALS 

Ambulance 
54.3% 63.5% 72.4% 81.4% 84.1% 84.1% 

Fire Engine 53.7% 64.3% 68.2% 73.3% 85.1% 84.9% 

Fire Truck 48.4% 58.8% 70.7% 75.8% 83.2% 82.0% 

 

 
Figure 8.8 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different Fleet 

Number Scenarios 
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Table 8.11 and Figure 8.8 show that more emergencies receive their first 

vehicles in five minutes when the fleet number increases and the rate of increase is 

higher for the first couples of scenarios and then it diminishes for some types of 

vehicles after scenario #4 and for others after scenario #5.  

Longest response time for different fleet number scenarios is shown in Table 

8.12 and Figure 8.9. They show that overall by increasing the fleet number the 

longest response time decreases. However, there are some exceptions. For ALS 

ambulance the maximum longest response time happens at scenario #3 and the 

longest response time for scenario #1 and #2 is lower. Also, the same thing happens 

for Fire Engine at scenario #2. There exist vehicle deficiencies at emergencies for 

first couple of scenarios and that is the reason that maximum longest response time 

does not always happen at scenario #1 and sometimes it gets shifted to other 

scenarios. Since those maximum longest response times may have been skipped and 

the vehicles that produced the maximum longest response time may have never been 

sent to emergencies at lower scenarios, the maximum response times sometimes get 

shifted to other scenarios. 

In Table 8.13 and Figure 8.10, the percent of vehicles arriving at the 

emergency later than the required time for different fleet number scenarios is 

presented. They show that by increasing the fleet number, the percentage of vehicles 

arriving later than the required time decreases a lot. For police vehicles, it reaches 

zero after scenario #1, for BLS and ALS, it reaches zero after scenario #3 and for Fire 

Engines and Fire Trucks it reaches zero after scenario #5. 
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Table 8.12 Longest Response Time with Different Fleet Number Scenarios 

Vehicle Type 

Longest Response Time (min) 

Scenarios 

#1 #2 #3 #4 #5 #6 

Police Car 9.8 9.5 8.8 7.1 7.6 6.6 

BLS 

Ambulance 
9.3 9.0 7.9 7.8 7.6 7.6 

ALS 

Ambulance 
7.5 7.8 9.8 7.0 6.9 5.2 

Fire Engine 8.8 9.7 8.3 7.8 7.6 7.6 

Fire Truck 7.9 8.3 8.3 7.7 7.8 7.7 

 

 

 
Figure 8.9 Longest Response Time with Different Fleet Number Scenarios 
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Table 8.13 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Fleet Number Scenarios 

Vehicle Type 

Percent of Vehicles Arrived at the Emergency Later than Required Time 

Scenarios 

#1 #2 #3 #4 #5 #6 

Police Car 4.7% 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
5.9% 5.8% 1.9% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
6.3% 3.8% 3.50% 0.0% 0.0% 0.0% 

Fire Engine 16.3% 13.0% 7.4% 3.7% 1.9% 0.0% 

Fire Truck 20.0% 12.0% 8.0% 4.0% 2.0% 0.0% 

 

 

 
Figure 8.10 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Fleet Number Scenarios 
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Table 8.14 and Figure 8.11 show percent of vehicles with response times 

greater than nine minutes for different fleet number scenarios. They demonstrate that 

from scenario #4, none of the vehicles have response times greater than nine minutes. 

Before scenario #4, some types of vehicles have response times greater than nine 

minutes, but the percentage is very low. The maximum percentage for ALS happens 

in scenario #3 and for Fire Engine happens in scenario #2 instead of scenario #1 and 

it may happen because of the vehicle deficiencies in the first couple of scenarios.  

It is also important to see that what are the vehicle deficiencies at 

emergencies. When the fleet number is very low, it is possible that there are vehicle 

deficiencies and emergencies cannot receive the required number of vehicles, which 

is very important. The percent of vehicle deficiencies at the emergencies have been 

investigated with different fleet number scenarios and the results are shown in Table 

8.15 and Figure 8.12. They show that police vehicle type have deficiencies at scenario 

#1 and scenario #2 and after the number of police vehicles becomes 20 at scenario #3, 

there is no deficiencies for them.  The BLS ambulance shows deficiency at scenario 

#1, but from scenario #2 it shows no deficiencies. However, the number of ALS in 

the system also helps BLS ambulances and when there are six BLS ambulances and 

three ALS ambulances in the system like scenario #2, no BLS ambulance deficiencies 

are found in the emergencies. ALS ambulances show no deficiencies from scenario 

#4, which has six ALS ambulances. Fire Engines and Fire Trucks show high 

percentage of deficiencies in scenario #1, but after that their deficiencies reach zero. 

So, the number of FE and FT is five and the number of FQ is three for scenario #2 
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and with these vehicles emergencies can receive their required number of fire 

vehicles.  

Table 8.14 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Fleet 

Number Scenarios 

Vehicle Type 

Percent of Vehicles with Response Time Greater than 9 Minutes 

Scenarios 

#1 #2 #3 #4 #5 #6 

Police Car 2.3% 1.1% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
1.9% 1.5% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
0.0% 0.0% 3.1% 0.0% 0.0% 0.0% 

Fire Engine 0.0% 1.9% 0.0% 0.0% 0.0% 0.0% 

Fire Truck 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

 
Figure 8.11 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Fleet 

Number Scenarios 
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Table 8.15 Percent of Vehicle Deficiencies at the Emergencies for Different Fleet Number Scenarios 

Vehicle Type 

Percent of Vehicle Deficiencies at the Emergencies 

Scenarios 

#1 #2 #3 #4 #5 #6 

Police Car 1.1% 1.1% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
23.5% 11.8% 5.9% 0.0% 0.0% 0.0% 

Fire Engine 20.4% 0.0% 0.0% 0.0% 0.0% 0.0% 

Fire Truck 20.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

 

 
Figure 8.12 Percent of Vehicle Deficiencies at the Emergencies with Different Fleet Number Scenarios 
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As a result, in order to prevent vehicle deficiencies at emergencies, 20 police 

vehicles, six BLS ambulances, six ALS ambulances, five Fire Engines, five Fire 

Trucks, and three Fire Quints are required for the whole system. However for better 

results, like better average response time, better longest response time, or better other 

performance measures, number of vehicles should be increased as much as scenario 

#5 vehicle fleet or even scenario #6 vehicle fleet.  

 

8.2.3 Coverage Benefit Coefficients 

The coefficients of coverage benefit in the objective function are very important 

parameters in the system. If they are set to zero, the model will be changed to a 

dispatching only problem. If they are set to very high numbers, the model will 

prioritize coverage problem over dispatching problem. It is therefore important to see 

how results are changing when these parameters are changing. The parameters should 

be set to reasonable amounts. The goal is to service the emergencies well enough and 

at the same time if some emergencies are not very critical, their response can be 

delayed and good coverage can be provided for future demands.  

As it was mentioned in section 3.4.2, the coverage benefit coefficients that 

exist in the model are: 

𝐴𝐴        Benefit of ordinary node first coverage within 𝑇1minutes 

𝐴𝐵       Benefit of ordinary node first coverage within 𝑇2minutes 

𝐴𝐶       Benefit of ordinary node second coverage within 𝑇2minutes 

𝐴𝐷       Benefit of critical node first coverage within 𝑇1minutes 

𝐴𝐸        Benefit of critical node first coverage within 𝑇2minutes 
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𝐴𝐹        Benefit of critical node second coverage within 𝑇1minutes 

The parameters, therefore, will be shown as (𝐴𝐴, 𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹). In 

the base case these coefficients are (2, 1, 0.5, 4, 2, 1). Then these base case numbers 

are changed to see how the results are changing. 

Tables 8.16 to 8.21 show the results for different coverage benefit 

coefficients. Table 8.16 and Figure 8.13 present average response time for different 

coverage benefit coefficients. They show that overall base case and 100* base case 

scenarios provide better average response time. Some vehicles show better response 

time when the coefficients are set to 10,000 times base case, but this is because in that 

scenario, the system prioritizes coverage over dispatching and sometimes it does not 

send the required vehicles to emergencies and there are deficiencies at emergencies. 

As a result, it would not be a good scenario to choose.  

Percentages of emergencies receiving their first vehicle in five minutes for 

different coverage benefit coefficients are shown in Table 8.17 and Figure 8.14. They 

do not show any significant difference between different scenarios, for some vehicles 

it gets better around base case but for some it does not. The ALS ambulance shows 

very bad results in the last scenario and it is because there are lots of deficiencies in 

emergencies in that scenario.  

Longest response time for different coverage benefit coefficients is shown in 

Table 8.18 and Figure 8.15. They demonstrate that base case scenario and 100* base 

case scenario provide better longest response times. The BLS ambulance show a lot 

of decrease in longest response time in the last scenario and it is probably because the 

vehicle that produced longest response time has not been sent to emergency at all in 
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this scenario and there are deficiencies in the system, which is why it shows better 

results. 

Table 8.16 Average Response Time for Different Coverage Benefit Coefficients 

Vehicle 

Type 

Average Response Time (min) 

Coverage Benefit Coefficients (𝐴𝐴, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹) 
Base Case Coefficients: (2,1,0.5,4,2,1) 

0.0001*       

Base Case 
0.01*Base Case Base Case 100*Base Case 

10000*          

Base Case 

Police Car 3.1 3.1 3.1 3.1 3.1 

BLS 

Ambulance 
3.8 3.8 3.8 3.7 3.5 

ALS 

Ambulance 
3.5 3.5 3.6 3.5 4.3 

Fire 

Engine 
4.7 4.7 4.2 4.3 3.8 

Fire Truck 4.7 4.7 3.9 4.1 4.2 

 

  

 
Figure 8.13 Average Response Time with Different Coverage Benefit Coefficients 
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Table 8.17 Percent of Emergencies Received Their First Vehicle in 5 Minutes for Different Coverage 

Benefit Coefficients 

Vehicle 

Type 

Percent of Emergencies Received Their First Vehicle in 5 Minutes 

Coverage Benefit Coefficients (𝐴𝐴, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹) 
Base Case Coefficients: (2,1,0.5,4,2,1) 

0.0001*       

Base Case 
0.01*Base Case Base Case 100*Base Case 

10000*          

Base Case 

Police Car 73.7% 71.7% 72.7% 72.7% 72.7% 

BLS 

Ambulance 
61.7% 61.7% 59.8% 59.8% 62.7% 

ALS 

Ambulance 
61.2% 61.2% 61.2% 61.2% 34.7% 

Fire 

Engine 
53.7% 53.7% 58.2% 56.0% 53.7% 

Fire Truck 54.6% 54.6% 60.7% 57.0% 53.3% 

 

 

 
 

Figure 8.14 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different 

Coverage Benefit Coefficients 

 

 



 168 

 

Table 8.18 Longest Response Time for Different Coverage Benefit Coefficients 

Vehicle 

Type 

Longest Response Time (min) 

Coverage Benefit Coefficients (𝐴𝐴, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹) 
Base Case Coefficients: (2,1,0.5,4,2,1) 

0.0001*       

Base Case 
0.01*Base Case Base Case 100*Base Case 

10000*          

Base Case 

Police Car 9.2 9.2 8.5 8.5 8.5 

BLS 

Ambulance 
10.0 10.0 9.3 9.3 7.8 

ALS 

Ambulance 
8.3 8.3 7.0 7.0 7.0 

Fire 

Engine 
9.3 9.3 7.6 7.5 8.4 

Fire Truck 9.0 9.0 8.3 8.3 7.9 

 

 

 
Figure 8.15 Longest Response Time with Different Coverage Benefit Coefficients 
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In Table 8.19 and Figure 8.16, the percent of vehicles arriving at the 

emergency later than the required time for different coverage benefit coefficients is 

presented. Again from Table 8.19 and Figure 8.16, it can be concluded that base case 

and 100*base case are the better scenarios. Some vehicles like Fire Engines show 

better results for last scenario, but as was explained earlier, probably because there 

are some deficiencies in the last scenarios and that is why the percentages got better 

for that scenario. 

Table 8.20 and Figure 8.17 show percent of vehicles with response time 

greater than nine minutes for different coverage benefit coefficients. They show that 

the better results are for base case and 100*base case scenarios. The last scenario 

shows the best results here but the results are somehow fake because there are vehicle 

deficiencies for the last scenarios and the fact that there is no response time more than 

nine minutes would not make the last scenario more appealing. 

When the coverage benefit coefficients are very high, the system prefers to 

provide good coverage for future and sometimes does not send vehicles to 

emergencies, which is against the goal of swift emergency response. An important 

performance measure to compare scenarios, therefore, would be analyzing the 

number of vehicle deficiencies for each scenario. Percent of vehicle deficiencies at 

the emergencies have been investigated with different coverage benefit coefficients, 

and the results shown in Table 8.21 and Figure 8.18 demonstrate that for the last 

scenario there are lots of deficiencies at emergencies.  
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Table 8.19 Percent of Vehicles Arrived at the Emergency Later than Required Time for Different 

Coverage Benefit Coefficients 

Vehicle 

Type 

Percent of Vehicles Arrived at the Emergency Later than Required Time 

Coverage Benefit Coefficients (𝐴𝐴, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹) 
Base Case Coefficients: (2,1,0.5,4,2,1) 

0.0001*       

Base Case 
0.01*Base Case Base Case 100*Base Case 

10000*          

Base Case 

Police Car 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
2.9% 2.9% 0.0% 0.0% 0.0% 

Fire 

Engine 
16.7% 16.7% 7.4% 7.4% 6.5% 

Fire Truck 16.0% 16.0% 8.0% 8.0% 8.9% 

 

 

 
Figure 8.16 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Coverage Benefit Coefficients 
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Table 8.20 Percent of Vehicles with Response Time Greater than 9 Minutes for Different Coverage 

Benefit Coefficients 

Vehicle 

Type 

Percent of Vehicles with Response Time Greater than 9 Minutes 

Coverage Benefit Coefficients (𝐴𝐴, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹) 
Base Case Coefficients: (2,1,0.5,4,2,1) 

0.0001*       

Base Case 
0.01*Base Case Base Case 100*Base Case 

10000*          

Base Case 

Police Car 1.1% 1.1% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
3.8% 3.8% 1.9% 1.9% 0.0% 

ALS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire 

Engine 
5.6% 5.6% 0.0% 0.0% 0.0% 

Fire Truck 2.0% 2.0% 0.0% 0.0% 0.0% 

 

 

 

 
Figure 8.17 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Coverage 

Benefit Coefficients 
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Table 8.21 Percent of Vehicle Deficiencies at the Emergencies for Different Coverage Benefit 

Coefficients 

Vehicle 

Type 

Percent of Vehicle Deficiencies at the Emergencies 

Coverage Benefit Coefficients (𝐴𝐴, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐷, 𝐴𝐸, 𝐴𝐹) 
Base Case Coefficients: (2,1,0.5,4,2,1) 

0.0001*       

Base Case 
0.01*Base Case Base Case 100*Base Case 

10000*          

Base Case 

Police Car 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 7.3% 

ALS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 52.9% 

Fire 

Engine 
0.0% 0.0% 0.0% 0.0% 14.8% 

Fire Truck 0.0% 0.0% 0.0% 0.0% 10.0% 

 

 

 
Figure 8.18 Percent of Vehicle Deficiencies at the Emergencies with Different Coverage Benefit 

Coefficients 
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So, from the analysis in this section, it can be concluded that the base case 

coefficients and 100* base case coefficients provide better results and the coverage 

benefit coefficients should be set to one of these numbers. If the coefficients are set to 

lower numbers, the dispatching problem will be very important and somehow the 

coverage problem will be ignored. Also, if the coefficients are set to higher numbers, 

the coverage problem will be highly prioritized over the dispatching problem and the 

system will perform poorly. As a result, the base case coefficients and 100* base case 

coefficients are reliable numbers to choose. 

8.2.4 Minimum Threshold of Benefit for Diversion 

In this model the vehicles can be diverted from their previous destinations to a new 

one if the whole system benefits from this action; however, diversion is not easy for 

drivers and it will confuse them. The diversion, therefore, is allowed in the system if 

it produces at least a minimum benefit to the whole system. The parameters that have 

been used in the model are: 

𝜔𝑠: Minimum threshold of benefit for diverting a vehicle while going to a station   

𝜔𝑒: Minimum threshold of benefit for diverting a vehicle while going to an  

emergency incident  

𝜔ℎ: Minimum threshold of benefit for diverting a vehicle while going to a 

hospital 

In the analysis of this section all three minimum thresholds of benefit have 

been set to the same amount and they have been changed from 30 seconds to 10 

minutes to see how the results will change.  
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Tables 8.22 to 8.26 show the results for different minimum diversion benefit 

threshold. Average response time presented in Table 8.22 and Figure 8.19 show that 

by increasing the minimum threshold of benefit for diversion, the average response 

time is increasing. Overall, the 30-second threshold produces the best results.  

Percentages of emergencies receiving their first vehicle in five minutes for 

different minimum diversion benefit thresholds are shown in Table 8.23 and Figure 

8.20. However, a robust conclusion cannot be driven from them because some 

vehicles show better results at 30 seconds or one-minute threshold and others show 

better results with other threshold. This happens because when the vehicles get 

diverted it is not important for the whole system if some emergencies are going to get 

their vehicles in five minutes especially if they are not very severe ones. The goal is 

to provide better response to more severe ones. 

Longest response time for different minimum diversion benefit threshold is 

shown in Table 8.24 and Figure 8.21. They show that the longest response time 

increases a little when threshold is increasing from 30 seconds to two minutes, but 

after two minutes it does not change in these cases. 

Table 8.25 and Figure 8.22 show the percent of vehicles arriving at the 

emergency later than the required time for different minimum diversion benefit 

threshold. They demonstrate that just some Fire Engines and Fire Trucks arrive at the 

emergencies later than the required time and the percentage for other vehicles is zero 

for different scenarios under investigation. It can also be concluded that 30 seconds 

and one-minute thresholds provide better results.  
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Table 8.22 Average Response Time for Different Minimum Diversion Benefit Threshold  

Vehicle 

Type 

Average Response Time (min) 

Minimum Diversion Benefit Threshold (min) 

0.5 1  2 5 10 

Police Car 3.1 3.3 3.3 3.3 3.3 

BLS 

Ambulance 
3.7 3.7 3.7 3.8 3.8 

ALS 

Ambulance 
3.5 3.6 3.6 3.5 3.5 

Fire 

Engine 
4.2 4.2 4.4 4.4 4.5 

Fire Truck 3.9 3.9 4.1 4.3 4.2 

 

 

 
 Figure 8.19 Average Response Time with Different Minimum Diversion Benefit Threshold 
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Table 8.23 Percent of Emergencies Received Their First Vehicle in 5 Minutes for Different Minimum 

Diversion Benefit Threshold 

Vehicle 

Type 

Percent of Emergencies Received Their First Vehicle in 5 Minutes 

Minimum Diversion Benefit Threshold (min) 

0.5 1 2 5 10 

Police Car 72.7% 72.7% 70.8% 70.8% 69.8% 

BLS 

Ambulance 
60.8% 60.8% 59.8% 59.8% 59.8% 

ALS 

Ambulance 
61.2% 61.2% 61.2% 62.6% 62.6% 

Fire 

Engine 
58.2% 58.2% 56.0% 64.9% 56.0% 

Fire Truck 60.7% 60.7% 58.3% 59.5% 59.5% 

 

 

 
Figure 8.20 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different 

Minimum Diversion Benefit Threshold 
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Table 8.24 Longest Response Time for Different Minimum Diversion Benefit Threshold 

Vehicle 

Type 

Longest Response Time (min) 

Minimum Diversion Benefit Threshold (min) 

0.5 1 2 5 10 

Police Car 8.5 9.8 9.8 9.8 9.8 

BLS 

Ambulance 
9.1 9.1 9.3 9.3 9.3 

ALS 

Ambulance 
6.8 7.0 7.0 7.0 7.0 

Fire 

Engine 
7.6 7.6 7.8 7.8 7.8 

Fire Truck 8.3 8.3 8.3 8.3 8.3 

 

 

 
Figure 8.21 Longest Response Time with Different Minimum Diversion Benefit Threshold 
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Table 8.25 Percent of Vehicles Arrived at the Emergency Later than Required Time for Different 

Minimum Diversion Benefit Threshold 

Vehicle 

Type 

Percent of Vehicles Arrived at the Emergency Later than Required Time 

Minimum Diversion Benefit Threshold (min) 

0.5 1 2 5 10 

Police Car 0.0% 0.0% 0.0% 0.0% 0.0% 

BLS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire 

Engine 
7.4% 7.4% 7.4% 7.4% 9.3% 

Fire Truck 8.0% 8.0% 8.2% 8.3% 8.3% 

 

 

 

 

 
Figure 8.22 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Minimum Diversion Benefit Threshold 
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Table 8.26 and Figure 8.23 show percent of vehicles with response time 

greater than nine minutes for different minimum diversion benefit threshold. 

Table 8.26 Percent of Vehicles with Response Time Greater than 9 Minutes for Different Minimum 

Diversion Benefit Threshold 

Vehicle 

Type 

Percent of Vehicles with Response Time Greater than 9 Minutes 

Minimum Diversion Benefit Threshold (min) 

0.5 1 2 5 10 

Police Car 0.0% 1.1% 1.1% 1.1% 1.1% 

BLS 

Ambulance 
1.3% 1.3% 1.9% 1.9% 1.9% 

ALS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire 

Engine 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire Truck 0.0% 0.0% 0.0% 0.0% 0.0% 

 

 

 
Figure 8.23 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Minimum 

Diversion Benefit Threshold 
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As it can be seen in Table 8.26 and Figure 8.23, just police vehicles and BLS 

ambulances have vehicles with response time greater than nine minutes. The 30-

second threshold produces the best results. For BLS ambulances, one-minute 

threshold is still the same, but there is a jump for police vehicles when the threshold 

changes from 30 seconds to one minute. After the two-minute threshold the results 

stay the same.  

So, from the analysis in this section, it can be concluded that the 30-second 

threshold provides the best results and it is obvious, because there is more flexibility 

in the system and the vehicles can get diverted very easily. However, on the contrary 

it may confuse the drivers and it is not easy for them to change their destination very 

frequently. The one-minute threshold is still good and most of the time the results do 

not deteriorate a lot from 30 seconds to one minute. As a result, 30 seconds or one 

minute threshold is recommended in this model based on the sensitivity analysis. 

 

8.2.5 Cost of Assigning Vehicles to Non-home Stations 

It is obvious that drivers of emergency vehicles prefer to stay at their home station 

instead of being relocated to other stations. They usually keep their personal 

belongings at their home stations or even sometimes have an assigned desk at their 

home stations, so it is usually more comfortable for them to not get relocated to other 

stations. The cost of assigning to non-home stations is considered in equation 3.3, 

which is: 

𝐶𝑘𝑖𝑠 =  𝛼𝑠 . 𝑡𝑘𝑖𝑠 +  𝛽𝑠. 𝑊𝐻𝑅𝑘𝑖 
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               + γ𝑠 . (whether it′s the end of the shift for vehicle i or not) 

               + 𝜃𝑠 . (whether the s is the home station for vehicle i or not)              (3.3)  

𝜃𝑠 is the cost for assignment to non-home stations. The police vehicles are 

quite flexible and they can get relocated to other stations easily, but ambulances and 

fire vehicles prefer to stay at their home station. In this section, the costs of assigning 

to non-home stations for all vehicles have been considered to be the same and they 

are changed to see how the results will change. This coefficient is changing from 0 to 

10000 and the results are shown in Tables 8.27 to 8.31.  

Table 8.27 and Figure 8.24 present the average response time. They show that 

overall by increasing the non-home station cost the average response time is 

increasing. However, it is not changing significantly when the cost is changing from 0 

to 10 but when it gets to 1000 or 10000 the average response time is increasing 

significantly for some vehicles.  

Percentages of emergencies receiving their first vehicle in five minutes for 

different non-home station costs are shown in Table 8.28 and Figure 8.25. A robust 

conclusion cannot be driven from them, because it fluctuates. However the last 

scenario shows worst case results.  

Longest response time for different non-home station costs is shown in Table 

8.29 and Figure 8.26. They demonstrate that the longest response time stays the same 

when the non-home station cost increases from 0 to 10, but for the last two scenarios 

it increases and for some vehicles this increase is very significant.  
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Table 8.27 Average Response Time for Different Non-home Station Costs  

Vehicle 

Type 

Average Response Time (min) 

Non-home Station Cost 

0 2 10 1000 10000 

Police Car 3.1 3.1 3.1 3.4 4.0 

BLS 

Ambulance 
3.6 3.7 3.8 4.1 4.1 

ALS 

Ambulance 
3.6 3.6 3.6 3.6 3.6 

Fire 

Engine 
4.3 4.4 4.4 4.5 4.5 

Fire Truck 4.0 4.1 4.1 4.1 4.3 

 

 

 
Figure 8.24 Average Response Time with Different Non-home Station Costs 
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Table 8.28 Percent of Emergencies Received Their First Vehicle in 5 Minutes for Different Non-home 

Station Costs 

Vehicle 

Type 

Percent of Emergencies Received Their First Vehicle in 5 Minutes 

Non-home Station Cost 

0 2 10 1000 10000 

Police Car 87.7% 87.7% 83.8% 84.8% 78.0% 

BLS 

Ambulance 
70.8% 69.8% 68.8% 68.8% 68.8% 

ALS 

Ambulance 
71.2% 71.2% 71.2% 71.2% 71.2% 

Fire 

Engine 
70.4% 68.2% 67.1% 67.1% 66.0% 

Fire Truck 72.0% 69.5% 68.3% 70.7% 68.3% 

 

 

 
Figure 8.25 Percent of Emergencies Received Their First Vehicle in 5 Minutes with Different Non-

home Station Costs 
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Table 8.29 Longest Response Time for Different Non-home Station Costs 

Vehicle 

Type 

Longest Response Time (min) 

Non-home Station Cost 

0 2 10 1000 10000 

Police Car 9.8 9.8 9.8 10.1 14.8 

BLS 

Ambulance 
9.3 9.3 9.3 10.3 11.4 

ALS 

Ambulance 
7.0 7.0 7.0 7.0 7.0 

Fire 

Engine 
7.6 7.6 7.6 8.8 8.9 

Fire Truck 8.3 8.3 8.3 8.5 8.7 

 

 

 
Figure 8.26 Longest Response Time with Different Non-home Station Costs 
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Table 8.30 and Figure 8.27 show the percent of vehicles arriving at the 

emergency later than the required time for different non-home station costs. 

Table 8.30 Percent of Vehicles Arrived at the Emergency Later than Required Time for Different Non-

home Station Costs 

Vehicle 

Type 

Percent of Vehicles Arrived at the Emergency Later than Required Time 

Non-home Station Cost 

0 2 10 1000 10000 

Police Car 0.0% 0.0% 0.0% 1.2% 10.3% 

BLS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

ALS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire 

Engine 
7.4% 7.4% 7.4% 7.6% 7.8% 

Fire Truck 8.0% 8.0% 8.0% 8.5% 9.0% 

 

 

 
Figure 8.27 Percent of Vehicles Arrived at the Emergency Later than Required Time with Different 

Non-home Station Costs 
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As it can be seen in Table 8.30 and Figure 8.27, ALS ambulances and BLS 

ambulances always get to the emergency in required time for all scenarios. Police 

vehicles, Fire Engines, and Fire Trucks sometimes get to the scene later than the 

required time. The percentage of these vehicles reaching the emergency later than the 

required time stays the same for the first three scenarios and it increases when the 

non-home cost reaches 1000 or 10000. Police vehicles show a significant increase in 

the result when non-home cost is changing from 1000 to 10000.  

Table 8.31 and Figure 8.28 show percent of vehicles with response times 

greater than nine minutes for different non-home station costs. They demonstrate that 

just police vehicles and BLS ambulances have vehicles with response times greater 

than nine minutes. Results for the first three scenarios almost stay the same, but they 

increase afterwards specially for the last scenario. 

Table 8.31 Percent of Vehicles with Response Time Greater than 9 Minutes for Different Non-home 

Station Costs 

Vehicle 

Type 

Percent of Vehicles with Response Time Greater than 9 Minutes 

Non-home Station Cost 

0 2 10 1000 10000 

Police Car 1.2% 1.1% 1.2% 1.3% 4.6% 

BLS 

Ambulance 
1.9% 1.9% 1.9% 2.2% 3.4% 

ALS 

Ambulance 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire 

Engine 
0.0% 0.0% 0.0% 0.0% 0.0% 

Fire Truck 0.0% 0.0% 0.0% 0.0% 0.0% 



 187 

 

 
Figure 8.28 Percent of Vehicles with Response Time Greater than 9 Minutes with Different Non-home 

Station Costs 

 

So, from the analysis in this section it can be concluded that the first three 

scenarios when the non-home cost increases from 0 to 10, the results somehow stay 

the same and there is not a lot of difference between them. On the other hand, the last 

two scenarios show poor results, especially the last one when the non-home station 

cost reaches 10000. The results are in the direction of what it is expected. When the 

non-home station cost is in the order of 10, it just forces the vehicles to go to their 

home stations even if they are closer to other stations and their home station is 10 

minutes farther away in the case that two stations provide the same coverage. As a 

result, it is better not to send vehicles especially ambulances and fire vehicles to non-

home stations just because the non-home stations are closer. However, when the non-

home cost is in the order of 1000 or more, it forces vehicles to go to their home 

stations even if other stations provide much better coverage and this is not suitable 

from the coverage perspective. In the last scenario where the non-home cost is 10000, 

the vehicles are forced to just go to their home stations and that is the reason most of 
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the time the results for this scenario are very poor. So, the non-home cost can be set 

to numbers around 10 and in that case the system tries to send vehicles to their home 

stations if the stations provide the same coverage somehow, but if sending the 

vehicles to non-home stations will improve the coverage of the whole network then 

the vehicles will be sent to the best station. Since police cars are very flexible, the 

non-home cost for them can be set to zero.  

 

8.3. Summary 

In this chapter, first the results of applying the proposed model on the case study was 

shown and compared with dispatching models without coverage problem or with 

simpler coverage criteria. The results confirm that the proposed model performs very 

well and most of the time it shows much improvement over other models. Then an 

extensive sensitivity analysis was performed on some important parameters in the 

model, and it was investigated that how the results will change by changing those 

parameters. 

“Emergency inter-arrival time,” “fleet numbers,” “coverage benefit coefficients,” 

“minimum threshold of benefit for diversion” and “cost of assigning vehicles to non-

home stations” are the parameters that were investigated in this chapter.
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Chapter 9: Summary, Conclusion and Future Research 
 

 

9.1 Summary 

In this research, the Emergency Vehicle Management System was studied. One of the 

key effective measurements of the system is response time. Response time is not only 

related to the dispatching system, but also it has a close relationship to emergency 

vehicle coverage. So, a comprehensive relocation and dispatching model for 

emergency call centers or emergency management centers was developed in this 

study. The proposed model relocates emergency vehicles to provide better coverage 

for the whole system and also when an emergency happens in the system the model 

will consider dispatching and relocation problems simultaneously. This model can 

come up with the best relocation and dispatching algorithm based on real-time 

information about the status of the emergency-response fleet, traffic information, 

likelihood of emergency happening at the demand nodes and the status of emergency 

calls.  

Contributions of this research can be summarized as:  

 Three categories of emergency vehicles are considered in the system: 

police, ambulance, and fire. The police department is assumed to have 

a homogeneous fleet, but ambulances and fire vehicles are 

heterogeneous. Two kinds of ambulances (Advanced Life Support and 

Basic Life Support) are considered in the model and three types of fire 

vehicles (Fire Engine, Fire Truck, and Fire Quint), for a total of six 



 190 

 

vehicle types. There is no dispatching model in the literature that 

considers non-homogenous vehicles.  

 The model tries to cover the demand nodes within a predefined time 

(𝑇1minutes), which can be different for each vehicle type. Demand 

nodes that are not covered within 𝑇1 minutes are, ideally, covered 

within 𝑇2 minutes (𝑇1 ≤  𝑇2). By having two specific times for 

coverage, equity is increased between different demand nodes in the 

system. This part is also new to the literature.  

 Two kinds of demand nodes are considered: ordinary demand nodes 

and critical demand nodes. Having two kinds of demand nodes is also 

new in the emergency vehicle coverage problem and this assumption 

increases the flexibility of applying different policies for different 

demand nodes. 

 The model attempts to provide double coverage for ordinary nodes 

within 𝑇2 minutes and double coverage for critical nodes within 

𝑇1minutes. There is no double coverage model in the literature that 

considers heterogeneous vehicles.   

 The proposed model is capable of considering benefit of partial 

coverage. There is no model in the literature that addresses the full 

coverage and partial coverage together in vehicle relocation problem.  

 This model attempts to strike a work-load balance between different 

vehicles in the system and also tries to send vehicles to their home 

stations at the end of their work shifts, which are new in the literature.  
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 A new mathematical formulation is developed in this research that 

takes into account all the contributions mentioned above. 

 A new heuristic model is developed for this problem to come up with 

good solutions in reasonable time. 

 A new simulation model that can see most of the details in the system 

is constructed for this research. 

 The simulation model is applied on a case study to check the 

performance of the proposed model. 

 

9.2 Conclusion 

The performance of only a dispatching problem (Dis) is compared with dispatching 

problem with simple coverage (DisSC) and dispatching problem with increased 

equity and double coverage (DisIEDC) which is the entire proposed model in this 

research. Adding coverage to dispatching problem does not seem to have 

improvement on “average response time” and “percentage of emergencies which 

received their first vehicles in five minutes.” Sometimes these two statistics became 

even worse by adding coverage problem to the dispatching problem. The reason is 

that when the coverage problem is considered, the only goal is not to service 

emergencies in the system in the fastest way. Sometimes the model may send a far 

vehicle to an emergency if that emergency is not severe and prefer to keep other 

vehicles standing by for future demands. On the other hand, “longest response time,” 

“percent of vehicles arriving at the emergency later than the required time,” and 

“percent of vehicles with response time greater than nine minutes” illustrate great 
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improvement. On most of them, the DisIEDC model is performing better than DisSC 

model and DisSC model is performing better than Dis Model. For example, the 

longest response time for ALS ambulances decreases 13% when simple coverage is 

added to the dispatching problem and it improves 24% when the full proposed model 

is used which is a significant improvement. Also, the “percentage of vehicles arriving 

at the emergency later than the required time” is a very important statistic and in all of 

the cases enormous improvement is obtained by using the full proposed model 

(DisIEDC). For example, the percentage of vehicles arriving at the emergency later 

than the required time for fire trucks decreases 23% when simple coverage is added to 

the dispatching problem and it improves 50% when the full proposed model is used. 

So overall, it can be concluded that adding coverage problem to dispatching problem 

shows enormous positive impact on the whole system. This benefit is more when the 

full proposed coverage problem (DisIEDC model) is used comparing with when a 

simple coverage problem (DisSC model) is used.  

Also, to see how the model is working when the parameters are changing, an 

extensive sensitivity analysis is performed in this research. The parameters 

considered for sensitivity analysis on the case study and the results obtained from the 

analysis are as follows: 

 Emergency Inter-arrival Time: If the emergency inter-arrival time is 

40 minutes and above, the system performs very well. If it decreases to 

about 30 minutes, as it is the case right now in the case study, the 

system performs well. However less than 30 minutes emergency inter-

arrival time is going to put the system in bad shape and for sure in that 



 193 

 

situation some vehicles have to be added to the system especially ALS 

ambulances. 

 Fleet Numbers: In order to prevent vehicle deficiencies at 

emergencies, 20 police vehicles, six BLS ambulances, six ALS 

ambulances, five Fire Engines, five Fire Trucks, and three Fire Quints 

are required for the whole system. However for better results, number 

of vehicles should be increased. 

 Coverage Benefit Coefficients: The base case coefficients (2, 1, 0.5, 4, 

2, 1) and 100* base case coefficients provide better results and the 

coverage benefit coefficients should be set to one of these numbers. If 

the coefficients are set to lower numbers, the dispatching problem will 

be very important and somehow the coverage problem will be ignored. 

Also, if the coefficients are set to higher numbers, the coverage 

problem will be highly prioritized over the dispatching problem and 

the system will perform poorly.  

 Minimum Threshold of Benefit for Diversion: 30-second threshold 

provides the best results and it is obvious, because there is more 

flexibility in the system and the vehicles can get diverted very easily. 

However, on the contrary it may confuse the drivers and it is not easy 

for them to change their destination very frequently. The one-minute 

threshold is still good and most of the time the results do not 

deteriorate a lot from 30 seconds to one minute.  
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 Cost of Assigning Vehicles to Non-home Stations: The non-home cost 

can be set to numbers around 10 and in that case the system tries to 

send vehicles to their home stations if the stations provide the same 

coverage somehow, but if sending the vehicles to non-home stations 

will improve the coverage of the whole network then the vehicles will 

be sent to the best station. Since police cars are very flexible, the non-

home cost for them can be set to zero.  

 

9.3 Future Research 

Even though  various issues related to real case situations have been considered, there 

are still some problems left that need to be addressed in future or some parts of this 

research that need improvements. In this section some recommendations for future 

studies are discussed. 

 

9.3.1 Mathematical Formulation 

The real-time dispatching and relocation of the emergency fleet is formulated as a 

deterministic integer-programming model. It is a dynamic model that should be 

solved at each time step. At each time step the model tries to send some vehicles to 

emergencies in need, if there are any in the system, and relocate other vehicles to 

provide good coverage for the next time step. Some parameters like travel time on the 

links for next time step and also the expected number of emergencies happening at 

different demand nodes for future time step are assumed to be known and are 



 195 

 

assumed to be deterministic. One improvement would be changing the model from 

deterministic one to stochastic one and apply it on a real case study and see how 

much improvement can be realized from the stochastic model. 

Another approach that can be investigated for future studies is to divide the 

mathematical formulation into a bi-level problem. Now the objective function is the 

combination of dispatching problem and coverage problem. Another approach to 

tackle this problem would be using a bi-level problem; dispatching problem as the 

upper level and coverage problem as the lower level. This approach also needs to be 

checked on a case study to see how it performs and weather it is going to be better or 

worse than the proposed model. 

 

9.3.2 Heuristic Method 

In the heuristic method, some initial solutions are constructed first and then several 

improvement methods are used on those initial solutions to come up with the final 

solutions. These methods are greedy algorithms and at each time step they try to 

implement a change that produces the maximum saving, but we know that sometimes 

the non-greedy algorithms may produce better results. Also, other meta-heuristic 

methods like Tabu search or Genetic Algorithm can be analyzed for future studies. So 

far, in the examples considered in this research the proposed heuristic performs very 

well and also the five seconds running time is highly efficient, but there may exist 

some other heuristic approaches that can give better results than the proposed 

heuristic.  This is an interesting path for future research. 

 



 196 

 

9.3.3 Lower Bound 

In this research the heuristic solutions were compared with the Xpress optimal 

solutions.  This comparison showed good results and the errors were acceptable in the 

examples compared. However the comparison was done only on the examples that 

Xpress could handle. Xpress cannot solve large size problems even in a very long 

running time, so the comparison of heuristic method with optimal solutions is not 

done on the real size problems. The systematic approach to see how the heuristic 

method performs is to find a good lower bound for this problem that is missing in this 

research and is highly recommended for future studies. Lagrangian Relaxation and 

decomposition methods are very common methods for finding lower bounds. 

However these two methods may not be good enough and then some other methods 

that may be more complicated but more efficient can be investigated in future studies. 

 

9.3.4 Simulation Model 

We tried to develop the framework of a simulation model that can mimic the entire 

operation of an emergency response system. However there are some parts missing in 

the simulation model that can be considered as a recommendation for future studies. 

Some considerations related to the crews of these vehicles are ignored in the 

simulation model. For example, it was difficult to track the vehicles and see how 

much workload they have and enter their workload into the cost estimation. Also, the 

fact that when the crews are near their end of their shift they have to be sent to their 

home station instead of being relocated to other stations was ignored in the simulation 

analysis. These two issues were ignored, because it was difficult to consider the shift 
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of the crews for each vehicle and see how much workload each vehicle has from the 

starting of the shift or check when their shift ends. Also, for simplification it was 

assumed that all types of vehicles are done at the same time in emergency sites, but 

this assumption may not be true. For example, an ambulance may finish its work 

sooner and return to a station, but a police vehicle may have to stay longer at the 

incident for investigation. 

In addition, the number of needed vehicles and the required time they need to 

be at each type of emergency site are assumptions in this simulation model that need 

to be verified by emergency management or 911 centers.   

 

9.3.5 Shortest Travel Time Algorithms 

In the simulation model, travel times on links are randomly generated and all-to-all 

shortest travel times are calculated by implementation of Dijkstra’s algorithm. 

Dijkstra is a very simple algorithm and there are lots of other shortest travel time 

algorithms that may perform better than Dijkstra. Investigation of different shortest 

travel time algorithms and choosing the best one for this kind of problem is an 

important path for future studies.   

Another deficiency that exists in the simulation model is that random 

generation of travel time is not based on time of the day. For example during the peak 

hours, the travel time on links are usually higher compared to non-peak hours travel 

times, but in the simulation model, the random generation of peak hours is the same 

as non-peak hours. 
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9.3.6 Sensitivity Analysis 

An extensive sensitivity analysis was done on some important parameters in the 

model. Something missing here and left for future studies is an economic analysis of 

the tradeoffs between the benefit of the proposed model and the operational cost. For 

example it is interesting to see what the benefit to cost ratio of increasing the fleet 

size for each type of vehicle would be. 

9.3.7 Crew Scheduling 

This kind of problem is in a very close relationship with crew scheduling problem. In 

this research, some preferences related to the crews of the emergency vehicles were 

considered, but combining this problem with crew scheduling problem will be a very 

interesting and difficult area that is left for future studies. 

  

9.3.8 Step Wise Function for Vehicle Delay Penalty at Emergencies 

In the objective function which is equation 3.1, there is a term for calculating the 

penalty if the vehicles arrive at the emergency scene later than the required time. This 

term is: 

∑ ∑ ∑ 𝑃𝑇𝑘𝑗 .  |𝑇𝑘𝑗 −  𝑡𝑘𝑖𝑗| . 𝐸𝑋𝑇𝑘𝑖𝑗

𝑗𝑖𝑘

 

Penalty term which is 𝑃𝑇𝑘𝑗 is only a function of the type of the vehicle and the 

type of the emergency and it is not related to how much delay the vehicle is going to 

have. Another area that is interesting for future research is changing this penalty to a 

step wise function based on how much delay the vehicle has. In that case the 
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objective function will be non-linear and it will complicate the problem, but it is an 

interesting path to follow for future research.  

Another thing that can be considered here is changing the penalty term in the 

heuristic method and make it step wise, in that case it will not make a lot of 

difficulties because in the heuristic method the objective function does not need to be 

linear.  
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