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Smartphones have become an essential part of our society. The benefits of

having an always present, highly capable device cannot be overstated. As more

aspects of our life depend on our smartphones, it is more important than ever to

ensure the availability of those devices. However, their big advantages also come

with big risks. The fact that we have our smartphones with us all the time means

that it is easier than ever to collect our information, sometimes without our consent.

In this dissertation, we study the two pressing concerns in cellular communications:

energy efficiency and privacy protection. We focus on LTE networks, the current

most advanced global standard for cellular communications.

In the first part of the dissertation, we study the energy efficiency problem from

both device and network perspectives. From the device point of view, we introduce

a new angle to address the battery life concern. We recognize that the value of

battery for the users is not always the same, and that it depends on the user usage.



We also identify, and show in real network, diversity of usage, the phenomenon that

at any instant, there is a diverse distribution of smartphone usage among cellular

users. We propose “Battery Deposit Service” (BDS), a cooperative system which

makes use of device-to-device (D2D) communications underlaying cellular networks

to provide energy sharing in the form of load sharing. We design BDS to take

advantage of diversity of usage to maximize the utility of smartphone battery. We

show that our system increases battery life of cellular users, at almost no cost to

the rest of the network. BDS is designed to be compatible to LTE architecture.

From the network point of view, we design an energy efficient D2D relay sys-

tem underlaying LTE networks. We minimize transmission power of smartphones

by considering relay selection, resource allocation and power control. The overall

problem is prohibited due to its exponential search space. We develop a divide-

and-conquer strategy which splits the overall problem into small sub-problems. We

relate these sub-problems to well-studied graph theoretic problems, and take ad-

vantage of existing fast algorithms. We show that our algorithms meet the runtime

requirement of real-time LTE operations.

In the second part of the dissertation, we address a privacy concern in LTE

networks. In particular, we show that user location can be leaked in current LTE

paging architecture. We propose a mechanism based on signal processing to remedy

this vulnerability. Our method makes use of physical layer identification, which are

low-power tags embedded on the wireless waveform, to signal paging messages to

user devices. We show that our method is stealthy and robust, and that it mitigates

the aforementioned privacy issue.
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Chapter 1: Introduction

In this dissertation we address two pressing problems in cellular communica-

tions: energy efficiency and user privacy.

1.1 Energy concerns for mobile devices in cellular networks

Smartphones have become an essential part of our society. They have been

outselling PC since 2010 [Arthur, 2011]. The number of smartphones as well as the

amount of data they generate keep increasing at a dramatic pace [Cisco, 2014]. Com-

petition between manufacturers drives a very rapid smartphone hardware evolution.

The advancement in software is happening at an even quicker pace. Many applica-

tion developers are now thinking “mobile first”. Not only do individual smartphones

assist individual users, groups of smartphones are also being leveraged to provide

significant benefits. Cooperative relay using smartphones has been shown to be a

viable solution to prolong battery life, improving network reliability, and expanding

coverage [Ta et al., 2014,Ng and Yu, 2007,Sadek et al., 2006]. Participatory sensing

proposes to use smartphones, utilizing their pervasiveness, as distributed sensors

to collect location-aware data, allowing us to observe previously unobservable phe-

nomena [Burke et al., 2006]. Collaborative applications provide higher utility than
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the sum of the parts, such as combining capacity of cellular links to speed up the

download of large files [Ananthanarayanan et al., 2007].

Traditionally, improving network throughput has been the main concern in the

wireless communication community. Many advanced techniques such as OFDMA,

MIMO have been proposed to improve the spectral efficiency of the network. Re-

cently, energy efficiency has gained much attention. A big challenge, perhaps the

biggest, to the applications described above is that smartphones are battery-limited.

Battery technology is still not able to keep up with expanding demand for usage

of these devices. A recent survey by the International Data Corporation, which

collected answers from 50,000 people from 25 countries, showed that battery life is

the number one concern for new smartphone purchasers [Jeronimo, 2014].

The traditional goal of energy efficient designs is to maximize the number of

bits transmitted per energy unit. Solutions are proposed across layers of wireless

networks. On network planning level, the impact of cell size as well as mixed cell

deployment on energy consumption of the devices have been studied [Badic et al.,

2009]. On MAC layer, energy efficiency has been incorporated in resource allocation

algorithms [Meshkati et al., 2009]. On PHY layer, adaptive MIMO modulation

orders according to channel condition have been proposed [Miao et al., 2010].

By maximizing the number of bits transmitted per unit energy, existing work

make an implicit assumption that energy, in absolute quantity (Joules), is worth

the same for all users at any time instant. We, on the other hand, realize that

smartphone battery does not always have the same value for the users.

A straightforward argument is that a user will not value his battery as much when
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he has a high battery bar compared to when he has a low battery bar. We take

this argument one step further. The user will not value his battery much, even if he

has a low battery bar, if he is only a few minutes from home. Therefore the value

of the battery to a user involves both the absolute amount as well as the user’s

target usage. In particular, we introduce the notion of valued battery, defined as the

battery of the smartphone when the user is active and does not have access to a

power source. Similarly, valueless battery is defined as the battery of the smartphone

when the user has access to a power source. We argue that the user’s experience

depends only on his valued battery. Smartphone users often are quite concerned

when they are on the road, and their (valued) battery drops low. However, the

abundant number of occasions when they are at home and their (valueless) battery

is high often go unnoticed.

In realistic cellular networks, users have varied amount of remaining battery.

When the state of the battery (with respect to access to a charging source) is taken

into account, this variation becomes even larger. We call this phenomenon diversity

of usage. It is intuitive that the network as a whole will benefit from converting

valueless battery into valued battery. Since we are still far away from efficient long-

distance wireless energy transfer [Garnica et al., 2013], a more practical approach

to “sharing” battery among users needs to be developed.

We propose a cooperative system, the “Battery Deposit Service” (BDS), which

makes use of D2D communications underlaying LTE, to provide energy sharing in

the form of load sharing. Our system allows users with high battery level to help

relay traffic of users with low battery level through a D2D connection. Since the
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direct link costs much less power than the cellular link, the usage time of users

with low battery level is prolonged. The cooperative selection criteria are designed

carefully such that the amount of energy the helpers expend does not reduce their

usage time to below their target usage. Thus they only spend valueless battery. As

a result, our system takes advantage of diversity of usage to raise the overall amount

of valued battery in the network.

We summarize advancements in D2D research in the following section.

1.1.1 Device-to-device communications underlaying cellular networks

Device-to-device (D2D) communications in the broader sense refer to au-

tonomous connection between wireless devices in a close neighborhood. These de-

vices include sensors, mobile phones, vehicular transceivers, etc. The majority of the

work on D2D communication consider the ad-hoc case, where there is no centralized

control unit. In a distributed fashion, nodes find their neighbors, perform random

access to the wireless medium, create and sustain routes. Because everything is

autonomous, these networks normally operate on unlicensed spectrum (e.g. Wifi,

Bluetooth, Zigbee).

In the next phase of the evolution of D2D communication research, ad-hoc

networks are considered concurrently with infrastructured networks. As the wireless

terminals become more capable, they can operate in both networks (e.g. smart

phones). There are two benefits in this hybrid architecture. Firstly, the ad-hoc

nodes can make use of the sychrnonization provided by the infrastructured network.
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Secondly, the cellular nodes can off load local traffics to ad-hoc networks and save on

the scarce cellular spectrum. The design challenge is to find the optimum switching

point [Michael et al., 2000, Chang et al., 2003]. In the early work, the hybrid

infrastructure is simply the combination of existing infrastructures, i.e. the ad hoc

mode is considered only for the unlicensed spectrum.

In the most recent advancement in D2D communication, ad-hoc and infras-

tructured (in particular cellular) networks are allowed to use the same licensed

spectrum. Advantages of D2D underlaying cellular network over ad-hoc mode in

unlicensed band include:

• A licensed band can guarantee a controlled interference environment and lo-

cal service providers might prefer to pay a small amount of money to offer

guaranteed services avoiding the uncertainties of the license exempt bands.

• The D2D operation itself can be fully transparent to the user. Since both D2D

devices already have a secure connection to the cellular network, it is easy to

setup a secure D2D connection. Thus, compared to WLAN or Bluetooth,

no manual pairing is required. This is very important when user mobility is

considered. Furthermore, mobility is arguably the number one advantage of

wireless communications.

Some use cases of D2D underlaying a cellular network are illustrated in Fig 1.1.

Coming from a different direction, cognitive radio aims to utilize spectrum

sharing techniques to gain from the inefficient use of the licensed spectrum. In fact,

through measurements from 4 locations in Germany, Netherlands, California, [Kone
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Figure 1.1: Use cases for ad hoc networks underlaying cellular networks [Bonta et al.,

2007]

et al., 2010] observes that on average, 50% of the spectrum is never used, 26% is

only partially used. In cellular bands (GSM and UMTS), while downlink channels

are heavily occupied, uplink channels are mostly idle because their signals are signif-

icantly weaker and thus are harder to detect even with high-end spectrum analyzers.

A particular difficulty for cognitive radio in cellular bands is that even though the

spectrum are mostly idle on average, the instantaneous idle bands are scattered ran-

domly. However, in D2D underlaying cellular network, the BS can assist in setting

up the D2D links and thus it knows exactly which channels are available. Recently
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the cognitive radio community have looked at cooperative schemes between primary

and secondary users, which is similar to the scenario of D2D underlaying cellular

network.

To get the most benefit out of D2D communications underlaying cellular net-

works, resource allocation and interference management has to be carefully consid-

ered. The D2D links can be allocated dedicated resources in a similar fashion as

regular cellular links. This case is no different, as far as interference to the cellular

network is concerned, than using unlicensed band for D2D. A better method which

has a potential to significantly increase system throughput is to allow D2D com-

munications to use the same time-frequency resources as cellular links, either in the

uplink, downlink, or both. However, managing interference is a big challenge here

as the D2D nodes and the cellular nodes can be anywhere within the cell.

In summary, D2D communication underlaying cellular network is a viable so-

lution to handle high-bandwidth local communication. Enabling D2D has been

shown to improve system throughput significantly when there is local communica-

tion among cellular nodes in the same cell. The amount of performance gain is

proportional to the percentage of local communication. The Battery Deposit Ser-

vice (BDS) makes use of the underlying D2D structure to allow low cost (in term

of power) links between cellular users to be used instead of high cost links to the

base station. At a very rudimental stage, the BDS can be enabled by dedicating

resource for D2D links. In this case no interference management is needed. The only

requirement for the BS is to be able to find helpers within the proximity of the user

with low battery. In Chapter 3, we describe our design to solve this requirement.
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1.2 Privacy concerns for mobile devices in cellular networks

It is no secret that the telecommunication operators keep detailed records of

their customers. Those giant operators know precisely where we are, what we are

doing as long as our phones are active. This is the tradeoff that we are willing to

make to enjoy the conveniences our smartphones provide. However, when the news

broke that the National Security Agency had been keeping taps on all American

phone records, there was an outrage. It showed that people still care dearly about

their privacy. They are not fond of the idea that someone can get their information

without their consent.

While stopping the NSA is a matter of laws and public policy, stopping indi-

vidual evildoers is very much a research problem. The open nature of the wireless

medium makes the job of eavesdroppers much easier compared to wired communi-

cations. GSM, the first worldwide cellular standard, was developed in the 1990s.

The popularity of GSM makes it an attractive target for hackers. In fact, GSM

has been shown time and time again to leak user information [Nohl and Munaut,

2010, F-Secure, 2011, Soyez, 2012]. Some well-recognized problems with GSM in-

clude: the lack of network authentication which enables fake base stations, weak

encryption that can be cracked in seconds on a regular PC, no authentication for

Home Location Register queries which permits trivial coarse user location leaks.

As GSM is currently being phased out, LTE has become the new global standard

for cellular communications. LTE has addressed most of the well-known security

vulnerabilities with GSM.
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However, LTE has not fixed all of the issues existed for GSM. In [Kune et al.,

2012], it has been showed that, with inexpensive equipment, anyone can learn about

the location of a target by exploiting a vulnerability in the paging architecture of

GSM. After studying LTE paging architecture, we showed in [Ta and Baras, 2012]

that the most advanced cellular standard also has the same vulnerability. While the

security community has been mainly focused on MAC layer and above, we proposed

a solution on the physical layer.

1.2.1 Physical layer security

Traditionally security and privacy protection has been relied on cryptographic

solutions (e.g., block ciphers, digital signatures, keyed hashes). Cryptography tech-

niques deter the adversary from defeating the system by requiring the adversary

to spend tremendous amount of computation and memory. However, as computer

hardware evolves, previously considered hard computational problems have been

solved one after another by commonplace PCs.

Physical layer security is the research initiative which tries to identify commu-

nication and information theoretic security guarantees that cannot be circumvented

regardless of adversarial computational capacity. Physical layer security techniques

exploit the physical layer properties of the communication system (most often wire-

less) such as thermal noise, interference, and the time-varying nature of fading

channels. The original, and still the most common, technique is to take advantage

of the weaker adversarial channel compared to the legitimate channel. The differ-
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ence in capacity can be used to transmit secure information. The main drawback,

and the reason it is still a theoretical approach, is that it requires knowledge of the

adversarial channel. This knowledge cannot be assumed in practice.

We choose a more practical branch of physical layer security research: signal

processing approach. In particular, our solution is based on physical layer wa-

termarking. The authentication problem is solved by superimposing a low-power

watermark, a physical layer identification, into the baseband constellation of the

wireless signal. The watermark has low power such that it is almost indistinguish-

able from thermal noise. The legitimate communicators, which in our case are the

base station and the smartphone, can collect enough statistics through multiple

data symbols to detect if the watermark is present. We show that our technique

effectively solves the vulnerability of LTE paging architecture.

1.3 Contributions of the dissertation

We introduce a new angle to address the energy concerns for smartphones

compared to existing works. From the device point of view, instead of minimiz-

ing the amount of battery consumption, we maximize the utility that smartphone

battery provides the users. We identify that the value of battery for the users is

not always the same. Diversity of usage among smartphone users provides us with

opportunities to raise the overall utility in the network. These opportunities have

not been considered in the literature. We propose “Battery Deposit Service” (BDS),

a cooperative system which makes use of device-to-device (D2D) communications
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underlaying LTE to provide energy sharing in the form of load sharing. Our system

allows users with high battery level to help relay traffic of users with low battery

level through a D2D connection. Since the direct link costs much less power than

the cellular link, the usage time of users with low battery level is prolonged. The

cooperative selection criteria are designed carefully such that the amount of energy

the helpers expend does not reduce their usage time to below their target usage.

Thus they only spend valueless battery and their utility is not degraded.

From the network point of view, we consider the problems of relay selection,

resource allocation and power control in designing an energy efficient D2D relay

system underlaying LTE networks. The main challenge is the stringent runtime

requirement for real-time operations in LTE. The overall problem is prohibited due

to the presence of binary decision variables, which lead to exponential search spaces.

We adopt a divide-and-conquer strategy and split the overall problem into sub-

problems, which can be related to well-studied problems in graph theory. By taking

advantage of existing fast algorithms to solve these sub-problems, our design meets

the runtime requirement of LTE.

Our contributions in addressing the energy efficiency problem are

1. We collect real smartphone data to show the existence of diversity of usage

2. We develop BDS as a Proximity Service for future releases of LTE, as defined

by 3GPP. By doing so, we position our system to have immediate application

in real networks.

3. We develop a general framework to study utility of smartphone battery, which
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can be applied to other types of resource.

4. We formulate the problems of relay selection, resource allocation and power

control to minimize total transmission power in D2D relay-enabled LTE net-

works. We develop a strategy to solve these problems, satisfying LTE runtime

requirement. This mechanism as well as other energy consumption reduction

techniques can be used in conjunction with BDS.

We introduce a physical layer security solution for a user privacy vulnerability

in LTE. The majority of existing security researches consider solutions on MAC layer

and above. Solutions on the physical layer promise to solve security problems in a

more fundamental way, without relying on limitation of adversarial computational

capacity. However, most physical layer security works are still theoretical. We show

that our solution is practical and can be readily incorporated into current LTE

networks.

Our contributions in addressing user privacy problem are

1. We show that LTE paging architecture suffers from the same vulnerability as

GSM. As a result, user location privacy can be leaked.

2. We develop a signal processing technique which makes use of physical layer

identification to address this vulnerability.
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1.4 Organization of the dissertation

This dissertation is organized into four primary parts (four chapters). The first

three chapters address the energy efficiency problem. The last chapter addresses the

user privacy problem.

In Chapter 2, we show the existence of diversity of usage among smartphones

through real user data. We clearly describe our data source and data collection

methods.

In Chapter 3, we describe our cooperative system, the “Battery Deposit Ser-

vice” (BDS), which takes advantage of diversity of usage to raise the overall utility

of smartphone battery in a cellular network. We illustrate how our system can

be implemented as a Proximity Service in future releases of LTE. We introduce a

framework to study utility of smartphone battery as a function of user usage. Our

framework is general so that it can also be applied to other types of resource. We

show the utility gain through detailed system level simulation.

In Chapter 4, we formulate and solve the problem of minimizing total trans-

mission power, through relay selection, resource allocation and power control, in a

device-to-device relay-enabled LTE network. This technique can be used in con-

junction with BDS to further improve network energy efficiency. The performance

gain is confirmed through simulation.

In Chapter 5, we show that LTE paging architecture also suffers from a pre-

viously identified vulnerability of GSM networks. We propose a solution based on

physical layer identification to address this vulnerability. We illustrate why the
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adversary is not capable of performing the mentioned attack.
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Chapter 2: Diversity of usage

2.1 Overview

In realistic cellular networks, users have varied amount of remaining battery.

Moreover, the value of smartphone battery depends on user usage, such as how soon

the users will get access to a charging source. We call this phenomenon diversity of

usage. As discussed in Chapter 1, this phenomenon provides great opportunities for

cooperative applications which allow low-usage users to help high-usage users in a

load-sharing fashion. As a result, the probability of user starving is reduced. Hence,

the overall utility of all users is improved. Therefore, it is very important for us to

understand diversity of usage. We base our study on understanding the distribution

of smartphone battery over user population.

2.1.1 Related work

A direct approach to understand the distribution of smartphone battery is

to study smartphone battery consumption. The most popular method is to ask

volunteers to install a logger in the their phones. The logger routinely collects

battery information, aggregating and sending this information to a remote server for

15



analysis. The main drawback of this method is the limited sample size (usually in the

tens [Rahmati et al., 2007,Jiang et al., 2013], with a few in the low hundreds [Falaki

et al., 2010, Laurila et al., 2012]). In general, it is hard to find volunteers outside

the circle of contacts of the researchers. Privacy concern is a major issue. Even

with the assurance of the researchers, most people are wary about installing an

unknown piece of software into their phones. Objectiveness is another issue. Since

the participants know that their smartphone usage is being tracked, they may divert

from their normal behavior.

A rare exception is [Oliver and Keshav, 2011], where battery information is col-

lected from 20,100 BlackBerry smartphones. The method of recruiting participants

was not discussed in the paper. We conjecture that the authors achieve this through

the help of the original equipment manufacturer (BlackBerry Ltd, previously known

as Research In Motion). Whether user consent was addressed is also not mentioned.

Regardless of recruiting method, this paper possesses the largest sample size that

we found in the literature. It provides valuable insights into user charging patterns.

However, only the mean of the distribution of smartphone battery was presented.

Important insights into the variation of the distribution was not discussed.

The majority of existing work focuses on battery information on a single device.

What we found to be missing is detailed treatment of the distribution of battery

over user population. This distribution is very important to the understanding

of diversity of usage. The availability of battery of the smartphones at any instant

dictates the level of participation that a cooperative scheme can expect. In searching

for our data, we want to avoid the aforementioned drawbacks of previous data
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collection methods. Since we do not have access to an OEM, we looked for a different

approach.

2.1.2 Our approach

The explosion of web and social network traffic has led us into the era of Big

Data. The impact of data abundance reaches almost every corner of our society.

Examples include business, political sciences, public health, and of course, mobile

computing research. Twitter is the most popular platform among the research

community. Similar to many other data sources, Twitter provides unstructured (or

raw) data. These data need to be further processed to draw intelligent conclusions.

An example is a natural language processing application which builds an algorithm

to classify user sentimental states based on tweet texts.

While textual information is still the largest output provided by tweets, we

tap into an increasingly popular Twitter data type: media, and particularly, images.

Twitter users’ main concern is to disseminate real-time information; and the quickest

and most illustrative way to capture information from a smartphone is to take

a screenshot. As a result, there is a growing popularity of tweets that include

screenshots. A smartphone screenshot has exactly the information that we need:

the battery level and a timestamp.

To obtain the results presented in this chapter, we mined Twitter over the

period of 9 weeks, collecting over half a million data samples. We collect only public

information, therefore user privacy is not an issue. The users are also not biased
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because they are not aware of our study.

2.1.3 Summary of contributions

Our contributions in this chapter are

1. We provide the first large-scale study focusing on the distribution of smart-

phone battery over user population. The results of this study help us confirm

the diversity of usage among smartphone users.

2. We make our tools and data publicly available for quick replication/improvement

from interested parties.

2.1.4 Outline of chapter

This chapter is structured as follows. In Section 2.2.1, we bring to the attention

of the readers potential biases in our data set. We thoroughly describe our data

collection method in Section 2.2.2. We show our results and analysis in Section 2.3.

We close with some conclusions and remarks in Section 4.6.

2.2 Smartphone battery distribution over user population

2.2.1 Data set

Similar to other empirical research works, it is important to understand how

well our data represent the subject under study. We are interested in the distribution

of smartphone battery, and our data source is Twitter user smartphone screenshots.
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There are three main sources for bias:

• Fraction of smartphone users who tweet. Prior researches have shown that

Twitter user demographic is not uniform. There are higher relative portions

of young, urban and educated people who use Twitter [Brenner and Smith,

2013]. At the same time, there are also higher relative portions of young,

urban and educated people who own smartphones [PRC, 2014]. Therefore we

can see that there is a positive correlation between smartphone owners and

Twitter users.

• Fraction of smartphone Twitter users who post screenshots. This statistics is

harder to obtain. We did not find any study that addressed this question.

However, it is reasonable to assume that younger people are more likely to

choose this method of sharing information. It is not difficult to identify a

number of our older acquaintances who do not know how to take a phone

screenshot.

• Fraction of data we can collect from Twitter. We obtain our data from Twitter

Streaming API [Twitter, ]. This API returns about 1% of all public tweets.

The sampling mechanism used by Twitter to return that 1% fraction of tweets

is unknown. A study last year showed that the sampler is most likely not

uniform [Morstatter et al., 2013]. However, the sampler has little effect on our

results, unless Twitter designs their sampler based on the battery information

on the tweets that contain screenshot images. We do not see any reason

supporting that hypothesis.
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The exact correlation between our data and the distribution of battery over

all smartphones depends on many other factors such as the composition of age

groups, educational levels, and other demographic categories. In fact, as can be

seen from the three points above, our data are likely biased toward the behavior of

younger smartphone owners. As any other empirical researches, it is not possible

to give an exact value for the correlation coefficient. Nevertheless, we believe our

findings to be informative in providing insights into the battery distribution over

smartphone population. By fully disclosing the data collection process, we hope to

provide parties who are interested in using our data with enough information to

make conclusions for their specific applications.

2.2.2 Data collection method

Our data collection procedure is captured in Figure 2.1.

2.2.2.1 Twitter streaming API

We use an open-source Python library, tweepy [Tweepy, ], to access Twitter

Streaming API [Twitter, ]. By connecting to the GET statuses/sample public

endpoint, we effectively open a long-lived HTTP request to Twitter servers. The

servers return a constant stream of tweets in json format. As stated above, this

stream contains approximately 1% of all public tweets. Each tweet has a number of

information fields. The basic fields include user ID, the time the tweet was created,

the content of the tweet, and the retweet status. Optional information fields include
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Twitter streaming API 

Filtering &  
image gathering 

OCR 

Charge symbol detection 

Duplication removal 

json 

jpg, png 

{time, battery level} 

{time, battery level, charging state} 

Figure 2.1: Data collection procedure

location of the tweet, reply/favorite status, language, etc. The list of all fields can

be obtained from Twitter developer website.

2.2.2.2 Filtering and image gathering

We are interested in tweets which contain images. The json of those tweets

contain the keyword "media url". We use this keyword to filter incoming tweets. A

very important consideration in our data gathering process is to exclude duplicates

as they create biases in the resulting statistics. Duplicates are created in two ways:

1) retweets, and 2) different users posting the same image.

A typical Twitter image URL has the following format

http://pbs.twimg.com/media/BaskppuIYAA8H9O.jpg. As we can see, the images
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are indexed by a 15-character long string. Retweets will result in the same string

appearing in different jsons. We keep a log of unique strings gathered and compare

every new string against this log. To avoid excessive processing during this step, we

refresh the log every day. We rely on post-processing to detect duplicates that span

over multiple days, as shown subsequently.

After passing the check against the log of processed images, a new image is

downloaded. The majority of Twitter images are in jpg format, with a small portion

in png format.

2.2.2.3 Optical character recognition

Next, we want to determine if the downloaded image is a smartphone screen-

shot. Since the time and battery information always appear on the top of a screen-

shot, we only need to focus on this portion of the image. A typical top portion

of a smartphone screenshot is illustrated in Figure 2.2a. We can see that the time

always appear as HH:MM. The display of the battery level information depends on

user settings. We decide to focus on images in which the user displays the battery

level as a percentage, i.e. BB%. In doing so we have excluded images which only have

the battery symbol. We recognize that some low-resolution information about the

battery level can be deduced from these symbols (e.g. whether the battery is above

or below 50%). However, given the large amount of data gathered from Twitter, we

decide to trade off quantity for quality.

To get the time and battery level information, we apply optical character
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(a) The top portion

uoooo au "3 23:32 28% C"!.

(b) Tesseract output

Figure 2.2: A typical top portion of a smartphone screenshot

recognition (OCR) on the cropped top portion of an image. We use an open-source

Linux OCR engine tesseract [Tesseract, ]. The tesseract output of our example is

given in Figure 2.2b. As expected, even though the graphical part of the image is

recognized into garbage, the textual part is recognized correctly. We filter the OCR

outputs to retain only images that contain both of the following patterns HH:MM and

BB%1.

2.2.2.4 Charging symbol detection

To determine if the phone was being charged at the instant the tweet was

created, we need to detect the charging symbol from the image. Since there are

a large variety of smartphones, there are many types of charging symbols. iPhone

screenshots have a few symbols, depending on the version of iOS. Android charging

symbols vary a lot more since on top of various operating system versions, different

phone manufactures often create their own custom Android themes. The vast ma-

jority of the screenshots we collected are from those two operating systems. There

1The battery level can range from 1 to 3 digits
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is a much smaller portion from the other operating systems such as Windows Phone

or BlackBerry.

We use template matching to detect charging symbol from the cropped im-

ages. Template matching only works for exact fits, while there are a wide variety of

screenshot sizes. Again, Android phones contribute a large number of these sizes. It

is not practical to have a version of the templates for each screenshot size, because

we do not have a full list of all sizes. In our algorithm, we selected a default width of

600 pixels and scaled the source images to this size before extracting the templates.

During detection, we scaled the testing images to the default width before applying

template matching.

We created 15 charging symbol templates from reviewing 500 images. We

ran our template matching algorithm against a different set of 1000 test images.

After manual verification, only 2 images were detected incorrectly, giving us 99.8%

detection rate.

2.2.2.5 Duplication removal

As described above, our first attempt to remove duplication is only applied to

images obtained within the same day. There are many cases where a popular image

can appear in tweets weeks apart (e.g. a tweet showing Harry Styles, a popular

singer, started to follow a particular user). To remove these duplicates, we cross-

checked any set of images that return the same OCR value (time, battery level), and

match the same charging template. We perform cross correlation on images within
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Table 2.1: Data set collected from April 30 - July 8, 2014

Number of tweets Tweets with images Images are screenshots

Overall 226,535,001 22,955,047 404,248

Daily2 4,474,500 455,660 8,422

a set (rescaled to the same size) and declare that those with correlation greater than

a threshold (we use 0.95) are duplicates.

2.3 Results

During the period from April 30 to July 8, 2014, we gathered 226 millions

tweets. Among those, 23 millions have images. After pre-processing, we collected

over 400 thousands screenshots with time and battery percentage. The summary of

our data set is listed in Table 2.1. From Table 2.1, we can see that the probability

of getting a good smartphone screenshot from a random tweet is roughly 0.18%.

2.3.1 Distribution of battery levels at different time of day

First let us consider the amount of available battery as function of time of day.

Figure 2.3 illustrates the average battery level over the whole user population. We

can see that the amount of available battery peaks at 7 AM, when most users leave

2We missed a few days at the beginning due to technical difficulty. The daily statistics are

reported from May 28 - July 8, during which our script ran consistently and flagged new-day

marks.

25



0 4 8 12 16 20 24
45

50

55

60

65

70

75

80
Average battery level

Time of day (hour)

B
at

te
ry

 le
ve

l (
%

)

Figure 2.3: Average of battery levels across smartphone population as a function of

time of day.

for work. It drops gradually as the usage increases. The dropping rate is steady

from 7 AM to 4 PM, at roughly 3%/hour. It should be noted that this rate is the

result of the combination of battery consumption and charging. The dropping rate

slows down to about 1%/hour from 4 PM to 9 PM. This is likely to be the result

of reduction in usage. The rate stays flat from 9 PM to 12 AM. It shows that the

overall amount of consumption and charging is leveled during this period. As most

users charge their phones before going to bed, the amount of available battery grows

rapidly from 12 AM to 7 AM, when the cycle starts over.

Next, we investigate the distribution of available battery over user population

at different times of the day. The cumulative distribution functions of battery levels
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Figure 2.4: CDF of battery levels across smartphone population. Each CDF is

plotted using data within 10 minutes from the denoted time instant.

taken at 6 time instants spread out over the day are illustrated in Figure 2.4. The

curve at 8 AM shows that there is a large fraction of users with high battery early

in the morning. The median battery level is 90%. Going into noon, the fraction

of users with high battery shrinks. The median battery level reduces to 70% at 12

PM. Interestingly, the curves at 4 PM, 8 PM and 12 AM almost overlap. Moreover,

without counting about 5% of users with full battery, these 3 CDFs resemble the

CDF of a uniform distribution. This fact shows that the variation of user smartphone

battery is the highest during late afternoon to evening. The curve at 4 AM illustrates

the that during bedtime, charging dominates over consumption.

The previous discussion shows us that smartphone users start their working
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Figure 2.5: Entropy of the distribution of battery levels as function of time of day.

day relatively similarly, with high battery level. They end their working day much

more diversely. This fact is further illustrated in Figure 2.5, where the entropy

of the distribution of battery levels is plotted. The entropy (in bits) of a discrete

distribution with PMF p = {pi} is defined as

H(p) = −
∑
i

pi log2(pi)

H(p) measures the uncertainty, or variation, of the distribution. The higher the

entropy, the more varied the distribution. The uniform distribution has the highest

entropy among those with the same support ([1, 100] in the case of battery levels).

We can see from Figure 2.5 that from 4 PM to 12 AM, the distribution of battery

levels is very close to this maximum entropy.
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2.3.2 User charging behavior

In this section, we investigate user charging behavior across time and battery

levels. We proceed using the fraction of our data in which a charging symbol is

detected. Figure 2.6 shows the heat map of the distribution of charging phones, an

equivalent to the 2-D PDF. The brighter the color, the higher the density. In our

data set, over 13% of the charging phones have full battery. Many users do not

unplug after their phone is fully charged. Since this fraction is too high compared

to the rest, we exclude 100% battery level from Figure2.6 for clarity.

First, let us consider the time dimension. It can been seen that the fraction

of users with their phones plugged in drops significantly around 6 - 7 AM. This

fraction stays low until around 3 PM. Afterwards, it raises up rapidly. This explains

why the average amount of available battery stays above 50% despite usage. This

is in accordance with what we expect from the typical user behavior.

A noteworthy observation can be drawn from the bottom half of Figure 2.6.

We can see that from 3 PM - 12 AM, there are a larger portion of users with low

battery charging their phones. This distinction is less clear at first but gradually

exemplifies towards the end of the day. The high density at the bottom left corner

of Figure 2.6 shows that there are many users who wait until the end of the day,

when their phones run very low, before charging.
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Figure 2.6: Heat map of battery levels among charging phones. The fraction of

phones with 100% battery has been omitted for clarity.
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2.4 Conclusions

In this chapter we have described our study on smartphone battery distribu-

tion over user population. It is clear from the obtained results that smartphone

battery levels vary widely among users. Thus the diversity of usage phenomenon

is confirmed. It is especially apparent in the later half of the day, where the en-

tropy of the battery distribution approaches the maximum entropy of the uniform

distribution. This period provides the best opportunities for our cooperative system.

We believe the findings discussed in this chapter can also be useful to other

designers of cooperation systems utilizing smartphones. Like any other empirical

studies, our results are likely to suffered from biases. We discussed in details three

potential sources for biases. By thoroughly disclosing our data collection method,

we hope to provide interested parties with enough information to decide how to best

use our findings. All of our data are be made publicly available.
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Chapter 3: Energy efficiency from device perspective:

Battery Deposit Service

3.1 Overview

In Chapter 2 we have discussed diversity of usage in cellular networks. In this

chapter we will describe in detail a system which makes use of diversity of usage to

improve smartphone energy efficiency.

Our system, called the “Battery Deposit Service” (BDS), makes use of D2D

communications underlaying LTE, to provide energy sharing in the form of load

sharing. BDS allows users with high battery level to help relay traffic of users

with low battery level through a D2D connection. Since the direct link costs much

less power than the cellular link, the usage time of users with low battery level is

prolonged. The cooperative selection criteria are designed carefully such that the

amount of energy the helpers expend does not reduce their usage time to below their

target usage. We introduce the notion of valued battery, defined as the battery of

the smartphone when the user is active and does not have access to a power source.

Similarly, valueless battery is defined as the battery of the smartphone when the

user has access to a power source. In BDS, the helpers only spend valueless battery.
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As a result, our system takes advantage of diversity of usage to raise the overall

amount of valued battery in the network.

We develop BDS as a proximity service in LTE networks. There are four

main technical areas that need to be addressed in developing our system. The

first area is system architecture. This includes invoking appropriate entities within

the Evolved Packet System (EPS) and developing signaling protocols for UEs to

request and provide help. The second area is studying the utility of battery for

the users to design cooperative criteria such that the overall network performance

is improved. The third area is management of user incentive. The fourth area is

accurate estimation of user target usage. Machine learning algorithms, assisted by a

vast amount of user data, are continuing to produce better prediction [Chon et al.,

2013]. In this chapter, we will assume that we receive accurate user target usages

and address the first three areas.

3.1.1 Related work

We introduced the idea of our system in [Ta et al., 2014]. In that work, we

used two widely accepted channel models, IST WINNER II model [Kyosti et al.,

2007] and UMTS model [3GPP, 1998] to show that the power consumption in a D2D

connection can be 3 to 4 orders of magnitude less than that of a cellular connection.

Therefore, when a user (the helper) relays uplink traffic for another user (the helpee),

the helper carries the cost of that communication session for the helpee. Effectively,

the helper “transfers” some of his energy to the helpee. Equivalently, the helper
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and helpee can be thought of as “depositing” energy into and “withdrawing” energy

out of the network. The diversity of usage in the network ensures that with high

probability, the helper will run low on battery at some other time and receive help.

The depositing and withdrawing analogies are appropriate because they signify that

the helping relationship needs not be immediate or reciprocal. The helper can receive

help from a different user at a different time. These analogies give rise to the name

of our system, the “Battery Deposit Service” (BDS).

We created a simulator (written in MATLAB) [Ta, ] to evaluate the perfor-

mance of BDS under some realistic channel, traffic, and mobility models. In [Ta

et al., 2014], we formulated the cooperative decisions based only on the amount

of available battery of the users. As discussed above, the target usage also plays

an important role. We have improved our simulator to address both values in the

design of cooperative rules.

D2D communications can operate on both unlicensed (out-of-band) and li-

censed spectrum (in-band). In BDS, we choose to use in-band D2D communica-

tions, which is also the preferred method by 3GPP. The main advantage of having

D2D links on licensed spectrum is that interference can be managed. This leads

to predictable performance of the D2D links. Moreover, in-band D2D connection

setup can be transparent to the users. Since each device context has already been

established with the cellular network, a secure D2D connection can be set up auto-

matically (as opposed to manual pairing in Wifi and bluetooth). Since guaranteeing

QoS and low-latency connection setup are a crucial features of our cooperative relay

system, using in-band D2D communications is the nature choice.
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Prior work on in-band D2D have been mainly concerned with interference

management and resource allocation [Janis et al., 2009, Yu et al., 2011, Elkotby

et al., 2012]. If done properly, they enable D2D connections to exist concurrently

with regular cellular connections at “no cost”. In fact, through measurements on a

wide spectrum range (20MHz - 6GHz) from 4 locations in Germany, Netherlands,

California, [Kone et al., 2010] observes that on average, 50% of the spectrum in is

never used, 26% is only partially used. In particular, the cellular uplink bands (GSM

and UMTS) are mostly idle because the uplink signals are very weak to be detected

even with high-end spectrum analyzers. For BDS, it means that the D2D relay links

can coexist with other cellular links with minimal impact on system throughput. In

this chapter we will assume the eNodeB knows the optimal way to allocate resource

for D2D links and focus on the energy sharing problem.

In order to utilize D2D communications in a systematic way, 3GPP created a

work item named “Study on Proximity-based Services” (ProSe) for release 12 [3GPP,

2013]. To enable ProSe, changes need to be made on both network architecture,

Non-access Stratum (NAS) and Access Stratum (AS) protocols. In [Raghothaman

et al., 2013,Yang et al., 2013], additional logical entities are proposed in the Evolved

Packet Core (EPC) to manage D2D-capable devices and ProSe applications. A new

type of data bearer between D2D UEs, D2D bearer, is also proposed. Additional

control signaling to manage D2D bearers is considered. We use these suggestions in

developing our system architecture.

Even though not studied in cellular contexts, energy harvesting networks share

some similarities with our utility analysis. In an energy harvesting network, nodes
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rely on energy from some natural sources to operate. Since the amount of energy and

the harvesting instants are usually random, the value of energy for a node changes

over time. This characteristic is similar to our observation that the value of smart-

phone battery is dependent upon both the amount and the time (with respect to

the user target usage). Prior research on energy harvesting networks have proposed

scheduling algorithms for nodes to adapt to their harvesting process [Kansal et al.,

2007]. The goal is to control the energy expenditure to reduce the probability of ex-

hausting available resource, thus disrupting network operations. In contrast to these

work, in cellular context, the smartphones do not control the user usage. Therefore

the research questions are fundamentally different. Usage, instead of being the out-

put, is given as the input to BDS (in the form of some probabilistic model). The

decision space is to find the best cooperative rules (instants and duration), given

that model and the amount of available battery. In addition, nodes in energy har-

vesting networks are all under the designer’s control. In our case, the users need to

be incentivized to cooperate.

Incentive schemes in wireless networks have been studied for over a decade.

Most existing works aim to create an incentive system for nodes in a mobile ad-

hoc network to forward packets from their neighbors [Buttyan and Hubaux, 2001,

Anderegg and Eidenbenz, 2003,Chen and Chan, 2010,Duan et al., 2012]. Three main

incentive mechanisms have been proposed: reputation, Tit-for-Tat, and currency.

In a reputation system, each time a node cooperates truthfully, its reputation in

the network is increased. Highly reputable nodes receive good service from others.

Nodes with low reputation may be denied from participating. In a Tit-for-Tat
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system, a pair of nodes take turn to perform services for each other in multiple

rounds. Each node therefore has incentive to act honestly in fear of not getting

service from the other in future rounds. In a currency system, nodes buy and sell

services. The price of the service is determined by the market. The currency can

either be real dollars or virtual.

Since in our case, we want a node to be able to interact with many other nodes,

Tit-for-Tat is not suitable. Reputation works well in distributed systems, but the

performance is hard to be predicted exactly. Currency fits our needs the best. It

gives us an exact method to keep track of the transactions in the networks. The

network plays a major role here, as a bank/moderator. In currency system without a

central control entity, accounting is a major challenge. For virtual currency systems,

the amount of virtual money is normally attached to each packet, protected by

cryptographic measures. Not only does it incur processing overhead, cryptographic

key distribution and management also poses as a big problem. Fake virtual money

as well as double spending need to be taken into account as well. Some notable

implementations of distributed virtual currency include Bitcoin [Nakamoto, 2009],

Nuglets [Buttyan and Hubaux, 2001], and WhoPay [Wei et al., 2006].

3.1.2 Summary of contributions

Our contribution in this chapter is to identify new cooperative opportunities

in cellular networks, by taking advantage of diversity of usage, to prolong battery

life on mobile devices. We develop a proximity service as defined by 3GPP for UEs
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to participate in cooperation.

1. System architecture: We identify responsible entities in the Evolved Packet

System and develop signaling for service request and setup.

2. System cooperative rules: We propose a general framework to study utility

of resource and apply that framework to our system. We show that by using

appropriate utility thresholds as cooperative rules, the system performance

can be guaranteed to improve.

3. User incentive: We consider currency systems that provide incentive for users

to participate faithfully.

3.1.3 Outline of chapter

BDS system architecture is described in Section 3.2. In Section 3.3 we intro-

duce a general framework to study utility of resource and apply it to BDS. We discuss

user incentive in Section 3.4. We analyze BDS performance through simulation in

Section 3.5. We conclude and discuss future work in Section 5.5.

3.2 System architecture

We envision Battery Deposit Service (BDS) as a Proximity Service (ProSe) in

future releases of LTE. It is clear that to support ProSe, there need to be additional

entities in EPC as well as new NAS and AS protocols [Raghothaman et al., 2013,

Yang et al., 2013]. We assume that the Mobility Management Entity (MME) has an
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additional function, ProSe Management (PSM), which manages D2D-related device

capabilities, identifier allocation, connection establishment, mobility tracking, etc.

We also assume there is an Application Server (AppSer) that communicates with

the Policy and Charging Rules Function (PCRF) to enforce policy compliance for

ProSe applications. The AppSer can make request to the PSM in the MME to setup

D2D connections for ProSe applications.

We introduced the basic flow of BDS in [Ta et al., 2014]. In this work, we

make use of the additional entities PSM and AppSer to propose a detail signaling

procedure to set up a BDS cooperative relay session. This signaling procedure is

illustrated in Figure 3.1. We consider an example where the helpee UE1 is associated

with eNodeB1. The PSM, which manages UE1’s D2D connections, knows that UE1’s

potential D2D peers are connected to eNodeB1 and eNodeB2. In this example, UE2,

which is connected to eNodeB2, is selected to be the helper for UE1. The PSM

notifies the serving gateway (S-GW) to update UE1’s data path, which changes

from UE1 ↔ eNodeB1 ↔ S-GW to UE1 ↔ UE2 ↔ eNodeB2 ↔ S-GW.

The overall procedure can be divided into three smaller subroutines: discovery,

D2D bearer establishment, and BDS cooperative relay.

Discovery

1. The helpee UE1, under some conditions, decides to request for BDS service.

It sends BDSInitSerReq to the PSM inside the MME.

2. The PSM forwards the request, together with UE1 ID, to the AppSer in the

form of BDSSerReq.
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Figure 3.1: Signaling flow for establishment of a BDS cooperative relay session. UE1

is the helpee, UE2 is the selected helper.
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3. The AppSer checks UE1 policy (by contacting the PCRF) to decide if UE1 is

allowed to use BDS service.

4. Once confirmed, it sends a response BDSSerResp to the PSM.

5. The PSM sends BDSDiscoveryConfig message with the helpee ID (UE1) to

eNodeB1 and eNodeB2.

6. eNodeB1 and eNodeB2 agree on a time/frequency resource for a BDS dis-

covery signal and send this information to UE1 (the discoverer) through a

RRCConnReconfig message. (6a) This time/frequency resource is also sent to

all BDS-enabled UEs within their cells (the listeners) through RRCConnReconfig

messages. We envision that there can be a group control message format to

make this process more efficient.

7. UE1 sends the discovery signal BDSDiscovery.

8. The subset of listeners who were able to hear UE1’s BDSDiscovery send their

replies, in the form of BDSReply messages, to the PSM. The PSM forwards

them to the AppSer.

9. BDSReply messages contain information required by the AppSer to select the

optimal helper for UE1. Some possible decision rules include

• Max-battery: in BDSReply, the UEs include their remaining battery lev-

els. The AppSer selects the UE with highest remaining battery to help.

• Proximity: in BDSReply, the UEs include the received signal strength of
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UE1’s BDSDiscovery signal. The AppSer selects the UE with highest

received signal strength (i.e. it is closest to UE1).

• Currency: to ensure fairness and manage user incentive, a currency sys-

tem is set up by the AppSer. The selection rule in this system is discussed

in Section 3.4.

Let UE2 be the chosen helper. At the end of the discovery phase, the helper/helpee

association is determined.

D2D Bearer Establishment

10. The AppSer sends a request, BDSSerConfigReq, to the PSM to create a D2D

connection for BDS with UE1 and UE2 IDs.

11. The PSM sends D2DBearerSetupReq to request eNodeB1 and eNodeB2 to

allocate resource for a D2D connection between UE1 and UE2. The QoS of

the D2D connection can also be included.

12. eNodeB1 and eNodeB2 send RRCConnReconfig commands to UE1 and UE2

to inform them of the D2D resource.

13. UE1 and UE2 confirm that they are ready to use the allocated resource for

D2D communications by sending RRCConnReconfigComplete.

14. eNodeB1 and eNodeB2 inform the PSM that the D2D bearer setup is complete

by sending D2DBearerSetupResp.
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15. The PSM informs the AppSer that the BDS service configuration is complete

by sending BDSSerConfigResp.

16. The PSM informs the S-GW to update UE1’s status by sending StatusTransfer.

Future IP data packets to UE1 should be routed through eNodeB2.

At the end of the D2D bearer establishment, UE2 is ready to relay UE1’s data

traffic.

BDS Cooperative Relay

17. During the cooperative session, UE1’s data path is updated to UE1 ↔ UE2

↔ eNodeB2 ↔ S-GW.

3.3 Cooperative rules

BDS system architecture allows the UEs to request for service whenever they

want. The potential helpers can also choose when they want to respond to BDSDiscovery.

Intuitively, we want the UEs to only request for service when they cannot satisfy

their own usage demand. At the same time, the UEs should only respond to help

requests if doing so does not hurt their ability to meet their target usage. In this sec-

tion, by studying battery utility for the UEs, we design cooperative rules to enforce

those behaviors.

BDS belongs to a general class of systems in which the resource for each user

is generated and/or consumed according to some random processes. Because of

the randomness, there are possibilities that the available resource of some users
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cannot meet their consumption requests. At the same time, other users may have

unused resource. Therefore the users can benefit from resource transferring among

themselves. We start with a general framework to study resource utility and apply

that utility analysis to design cooperative rules. We then study BDS as a specific

case.

3.3.1 General utility analysis framework

Our framework considers a system in which the users consume a limited

amount of resource over time. The system has two main characteristics

• The resource consumption or the resource generation, or both, are random

• Resource can be transferred between users according to a transfer graph

The goal of the users is to satisfy the resource consumption, given the resource

generation process. We use the notion of a target usage duration to study user

utility. The target usage duration is the period until the next arrival of resource.

Given the current amount of available resource, the utility for a user is related to

his ability to meet this usage.

We first introduce an example of another system that fits our framework.

We then define our terminology. Next, we discuss user performance in term of

utility. Using utility, we consider conditions in which cooperation is beneficial for

participants. Finally, we consider two broad categories of systems and two specific

utility functions that are appropriate to those categories.
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3.3.1.1 Example: Renewable energy system for cloud computing

Cloud computing, or utility computing, offers a way to increase computing

capacity and add capabilities on the fly without investing in new infrastructure.

Cloud service providers such as Amazon, Google, Microsoft have very large data

centers that allow them to easily perform dynamic provisioning of computing and

networking resources. However, these concentrated centers pose huge energy con-

cerns [Berl et al., 2010]. An alternative approach is to distribute computing power

over a large number of smaller sites, and to dispatch energy as demanded to these

sites, rather than to guarantee a high level of available power at all time [Gelenbe,

2012].

Consider a network of geographically distributed renewable energy sources

and the small or large data centers that are the energy consumers, as illustrated

in Figure 3.2. Each energy source has a finite energy storage capacity. A distribu-

tion network connects these sites. For simplicity, let us assume that each energy

source is responsible for a number of energy consumers. The energy consumers

which are connected with multiple energy sources can be thought of as several vir-

tual consumers, each connects to an energy source and have proportional energy

consumption demand.

The goal of the network is to use as much renewable energy as possible before

having to resort to conventional backup sources. Since renewable energy genera-

tion is in general random, and the computational demand in the data centers are

also random, this energy distribution system fits into our framework. The distribu-
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Energy source 

Energy consumer 

Figure 3.2: Renewable energy system providing energy to computing sites.

tion network creates a graph according to which energy can be transferred between

sources. For a solar energy harvesting source, the target usage duration could be

the time until the next sunny day. For a wind farm, the target usage duration could

be the period of the wind speed fluctuation process.

3.3.1.2 Terminology

Let us consider a system with multiple users, indexed by i = 1, 2, . . . At each

instance, the state of user i consists of the following quantities

• Bi: the amount of remaining resource, Bi ≥ 0.
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• Ti: the target usage duration, Ti ≥ 0.

• Li: the parameter for the resource consumption process.

From those instantaneous state variables, the following future quantities can be

derived

• ζLi(τ): the amount of resource consumed for usage duration τ , given the

parameter Li. ζLi(τ) is a random process, ∀L,∀τ ≥ 0 : ζL(τ) ≥ 0.

• TOi: the duration until the resource runs out (time until outage). TOi is a

random variable which satisfies ζLi(TOi) = Bi. TOi ≥ 0.

• TV i: the amount of valued usage time. Valued usage time is smaller of the

time until outage and the target usage. TV i is a random variable defined as

TV i = min(Ti, TOi). TV i ≥ 0.

Subsequently, we will drop the subscript i when it is clear from the context that we

are talking about a general user.

3.3.1.3 User utility

Since the users have limited resource, there is a possibility that they do not

meet their target usage. The likelihood of this possibility depends on future resource

consumption. In this framework, we will consider users to receive maximum utility

if their target usage is met. In the case where the users’ target usage is not met,

their utility depends on the specific type of resource and application. We investigate
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two broad categories of applications in subsequent sections. First, we discuss some

properties of a general utility function.

We consider users with higher utility to be in better states. For the same

target usage, more resource gives better utility. Similarly, with the same level of

remaining resource, the user with shorter target usage has higher utility. Therefore,

the utility function has to be monotonically non-decreasing in B and monotonically

non-increasing in T . In other words,

u(B1, T, L) ≥ u(B2, T, L) for B1 ≥ B2 (3.1)

u(B, T1, L) ≥ u(B, T2, L) for T1 ≤ T2 (3.2)

Through cooperation, resource can be transferred between users, which alters

the time until outage for both parties. The novelty in our approach is the consid-

eration of the target usage time T . In Figure 3.3 we show an example of a utility

function for visualization. The resource B and target usage duration T are nor-

malized to some B∗ and T ∗. The values of B∗ and T ∗ are not important for the

current discussion. Here we are only interested in the shape of the utility surface.

A user i with low resource (Bi small), but requires usage for only a short duration

(Ti small) can have higher utility than a user j with more resource (Bj large), but

also requires usage for a long period (Tj large). As a result, user i can potentially

provide more help than user j. This way we utilize cooperative opportunities that

otherwise were not available in previous frameworks that only consider the amount

of available resource B.

Any utility function needs to have the following properties
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Figure 3.3: A sample utility surface. The resource B and target usage duration

T are normalized. Following a curve with constant target usage time, the utility

function increases with B - property (3.1). Following a curve with constant resource,

the utility function decreases with T - property (3.2).
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P1. Ease of computing: The users need to monitor their utility frequently, therefore

the utility calculation should be very fast.

P2. Ease of deriving cooperation rules: The purpose of the utility function is to

determine cooperation rules for the users. Therefore, a good utility function

simplifies these rules.

3.3.1.4 Beneficial cooperation

Let us consider a cooperative session in which user i is the helpee and user j is

the helper. The cooperative session has duration Tc. During this session, the helper

transfers an amount of resource, ∆Bji ≥ 0, to the helpee. The resource transferring

loss is denoted δji. Without loss of generality, the transferring loss is associated with

the helpee. Table 3.1 illustrates the condition of the helper and helpee before and

after cooperation.

Definition 1. A cooperative session is beneficial if the total utility with coopera-

tion is at least the total utility without cooperation.

ui(Bi − ζLi(Tc) + ∆Bji − δji, Ti − Tc, Li)

+ uj(Bj − ζLj(Tc)−∆Bji, Tj − Tc, Lj)

≥ ui(Bi − ζLi(Tc), Ti − Tc, Li)

+ uj(Bj − ζLj(Tc), Tj − Tc, Lj). (3.3)

Equivalently, the cooperative utility gain of the helpee is, in magnitude, at least
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Table 3.1: Target usage duration and remaining resource of the helper and helpee

before and after cooperation

Helpee (i) Helper (j)

Target Remaining Target Remaining

usage resource usage resource

Before Ti Bi Tj Bj

After

Non-coop

Ti − Tc

Bi − ζLi(Tc)

Tj − Tc

Bj − ζLj(Tc)

Coop
Bi − ζLi(Tc) Bj − ζLj(Tc)

+∆Bji − δji −∆Bji

equal to the cooperative utility loss of the helper.

ui(Bi − ζLi(Tc) + ∆Bji − δji, Ti − Tc, Li)

− ui(Bi − ζLi(Tc), Ti − Tc, Li)

≥ uj(Bj − ζLj(Tc), Tj − Tc, Lj)

− uj(Bj − ζLj(Tc)−∆Bji, Tj − Tc, Lj). (3.4)

If the system is designed such that only beneficial cooperative sessions are

allowed, the overall utility of the network will increase in cooperation.

Lemma 1. A necessary condition for a cooperative session to be beneficial is that

the resource transferring loss is no greater than the amount of resource transferred

by the helper.

δji ≤ ∆Bji. (3.5)
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Proof. Since the consumption process ζL(·) is non-negative, and the utility func-

tion is monotonically non-decreasing in B, the helper will never gain utility after a

cooperative session

uj(Bj − ζLj(Tc), Tj − Tc, Lj)

− uj(Bj − ζLj(Tc)−∆Bji, Tj − Tc, Lj) ≥ 0. (3.6)

From (3.4)

ui(Bi − ζLi(Tc) + ∆Bji − δji, Ti − Tc, Li)

− ui(Bi − ζLi(Tc), Ti − Tc, Li) ≥ 0. (3.7)

(3.5) follows from property (3.1) of the utility function.

In a beneficial cooperative session, if the transferring loss is positive, the to-

tal amount of resource consumed is greater than that of the non-cooperative case.

However, by definition, the total utility is improved. This is achieved because the

helper and the helpee are on different operating points with respect to their utilities.

For the case where the cooperative session length is much smaller than the target

usage time of both users, Tc � Ti, Tj, from (3.4) we see that the helpee must be

operating on a “steeper” resource-slope than the helper. In other words,

∂

∂B
ui(Bi, Ti, Li) >

∂

∂B
uj(Bj, Tj, Lj). (3.8)

As a result, a larger change in resource for the helper results in a smaller change in

utility. This knowledge can be used to design cooperative rules.
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3.3.1.5 Two categories of systems

In this section we discuss two broad categories of systems and the appropriate

utility function for each category.

C1. The users only concern with whether or not their task is done (all or nothing).

If a user’s target usage is satisfied, he receives utility 1, otherwise he receives

utility 0.

C2. The users concern with the amount of usage they receive, up to the target

usage. Users whose target usage is met receive maximum utility. Whereas

users whose target usage is not met receive utility proportional to their usage

time. Another way to think about this category is that if the users do not

meet their target usage, they incur a cost proportional to the amount of time

they come short. Users who meet their target usage have zero cost.

We consider two utility functions, one for each category of systems, and their

computational complexity. As discussed in Section 3.3.1.3, it is desirable that a

utility function is easy to compute.

Category C1 - Probability of survival

For users who receive utility 1 when their usage is satisfied, and utility 0 other-

wise, the probability of survival, P[TO > T ], is their expected utility. First we define

probability of outage, the probability that a user (with state B, T, L) will run out of
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resource before his target usage

PO = P[TO ≤ T ] = P[ζL(T ) ≥ B]. (3.9)

The utility function is thus

u1(B, T, L) = 1− PO. (3.10)

Category C2 - Expected valued usage time

For this category, the expected amount of valued usage time as a fraction of the

target usage time, E[TV ]/T , is a good performance metric. The reason for normal-

ization can be better understood by an example. Let us consider user A who wants

to use his phone for 4 hours without charging. If his expected valued usage time

is 3 hours, his utility will be 0.75. User B with a 2-hour target usage but only 1

hour of expected valued time has utility 0.5. Notice that in both cases, the user

needs 1 extra hour to meet his target usage. The fact that user A has higher utility

illustrates that one hour is not worth as much for him as it is for user B. This is

justified considering that user A has a larger amount of target usage compared to

user B.
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The expected usage time is

E[TV ] = E[min(TO, T )]

=

∫ T

0

τfTO(τ)dτ +

∫ ∞
T

TfTO(τ)dτ

= E[TO]−
∫ ∞
T

(τ − T )fTO(τ)dτ (3.11)

= T −
∫ T

0

(T − τ)fTO(τ)dτ. (3.12)

The utility function for this category of users is defined as

u2(B, T, L) =
E[TV ]

T
. (3.13)

Here fTO(·) denotes the PDF of the time until outage, the CDF of which is given

by the consumption process

P[TO ≤ τ ] = P[ζL(τ) ≥ B]. (3.14)

Computation of u1(·) and u2(·)

It can be easily verified that both u1(·) and u2(·) satisfy (3.1) and (3.2). Moreover,

we can see that both utility functions depend crucially on the time until outage TO,

which in turn depends on the consumption process ζL(·). Therefore, the computa-

tional speed of these utility functions also depends on the underlying consumption

process. While there are no closed-form expressions for u1(·) and u2(·) for a general

consumption process, we discuss a few cases where efficient approximations can be

used to speed up the computation.

First we consider the two extremes. If the user’s resource is very high compared

to his target usage, i.e. the distribution of TO increases much slower than linear
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before the target usage, then he is very unlikely to go into outage: PO ≈ 0. In this

case the target usage dominates in calculation of the valued usage time. (3.12) can

be used to approximate E[TV ].

If (T − τ)fTO(τ) ≈ 0 for τ ≤ T :

u1 = 1− PO ≈ 1 (3.15)

u2 =
E[TV ]

T
≈ 1. (3.16)

Similarly, if the user’s resource is very low compared to his target usage, i.e.

the distribution of TO decreases much faster than linear after the target usage, then

he is very likely to go into outage: PO ≈ 1. Whereas the time until outage dominates

in the calculation of the valued usage time. (3.11) can be used to approximate E[TV ].

If (τ − T )fTO(τ) ≈ 0 for τ ≥ T :

u1 = 1− PO ≈ 0 (3.17)

u2 =
E[TV ]

T
≈ E[TO]

T
. (3.18)

Outside of the two extremes, a special case where the utility functions can

be efficiently approximated is when the consumption process is Gaussian. In other

words, ζL(τ) ∼ N (µL(τ), σ2
L(τ)). From (3.14), the CDF of time until outage is

P[TO ≤ τ ] = P[ζL(τ) ≥ B] = Φ

(
µL(τ)−B
σL(τ)

)
. (3.19)

Where Φ(·) denotes the standard Normal CDF. The probability of survival is simply

u1 = 1− Φ

(
µL(T )−B
σL(T )

)
= Φ

(
B − µL(T )

σL(T )

)
. (3.20)
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If the mean of the consumption process scales linearly with the duration, i.e.

µL(τ) = λLτ , then

P[TO ≤ τ ] = Φ

(
τ −B/λL
σL(τ)/λL

)
. (3.21)

By approximating τ in σL(τ) by B/λL, we get σL(τ)/λL ≈ σL(B). Denote µL(B) =

B/λL, (3.21) becomes

P[TO ≤ τ ] ≈ Φ

(
τ − µL(B)

σL(B)

)
. (3.22)

As a result, the time until outage can be approximated as having a Gaussian distri-

bution N (µL(B), σ2
L(B)). The calculation of expected valued usage time according

to (3.12) becomes (see Appendix)

E[TV ] ≈ T − (T − µL(B))Φ

(
T − µL(B)

σL(B)

)

+
σL(B)√

2π

e− µL(B)2

2σL(B)2 − e
−

(T − µL(B))2

2σL(B)2

 . (3.23)

With the closed forms (3.20) and (3.23), the utility functions can be computed

efficiently.

Figure 3.4 illustrates the two utility functions when the consumption process

is Gaussian. The utility functions are plotted against the target usage duration T

while fixing the amount of available resource B. The mean usage duration, E[TO], is

used as the reference. For both utility functions, we can see clearly the two discussed

extremes. At their lower (higher) extreme, u1 is very close to 1 (0), whereas u2 is

very close to 1 (E[TO]/T ).

57



0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of survival

T/E[T
O

]

P
[T

O
 >

 T
]

(a) C1 - Probability of survival (3.20)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Expected valued usage time

T/E[T
O

]

E
[T

V
]/T

 

 

E[T
V
]/T

E[T
O

]/T

(b) C2 - Expected valued usage time (3.23)

Figure 3.4: Utility as functions of target usage time for user categories C1 and C2.

The amount of available resource is fixed. Both utility functions show two clear

extremes.

3.3.2 Battery Deposit Service

In this section, we apply the previous framework for mobile UEs in a BDS

system. The resource here is the communication energy budget of the UEs. When

we talk about the battery of a user, we refer to the communication energy bud-

get. As discussed in [Ta et al., 2014], uplink transmission power dominates other

communication-related components in term of energy consumption. Therefore we

will only consider the uplink transmission power in the theoretical analysis. Other

factors such as idle circuit power and downlink reception power are considered in

simulation. As seen in Section 3.3.1, the main component of the system is the

battery consumption process ζL(t).
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3.3.2.1 Battery consumption process ζL(t)

First, we describe the uplink power consumption of UEs in LTE networks. We

then introduce the user’s data traffic model. These two components make up the

battery consumption process.

LTE uplink power control

The battery consumption for the UEs follows LTE uplink power control [Baker,

2011,3GPP, 2011c]. The uplink transmission power in dB is

PUL = P0 + αPL︸ ︷︷ ︸
open-loop

+ ∆TF + f(∆TPC)︸ ︷︷ ︸
dynamic offset

+10 log10(M). (3.24)

PUL consists of two components. The first component depends on the state

of the UE with respect to the eNodeB. This component is further comprised of two

subcomponents: a basic open-loop operating point and a dynamic offset. The second

component depends on the amount of uplink data, which is realized in term of M ,

the number of allocated resource blocks. A resource block (RB) is the basic unit of

time-frequency resource allocation in LTE. It consists of 12 OFDM subcarriers (for

the total bandwidth of 180 kHz with 15 kHz subcarrier spacing) over one slot (0.5

ms).

P0 is a semi-static nominal power level set by the eNodeB. αPL is the path

loss compensation component, where α controls the degree of compensation. PL is

derived from the downlink Reference Signal Received Power. It includes shadowing

but not fast fading. The dynamic control of UE uplink transmit power is designed
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to be an offset from the base operating point. This offset depends on two factors:

the allowed modulation and coding scheme (TF stands for Transport Format) and

a UE-specific transmitter power control (TPC) command.

While P0, PL as well as the dynamic control of PUL change over time, a

complete model of these quantities depends on many factors such as user movement,

traffic load within the cell, eNodeB strategy etc. In this work, we use instantaneous

values of these quantities in the formulation of the consumption process. Each time

a UE computes its utility, it updates these quantities.

The battery consumption process is

ζL(t) = 10
P0+αPL+DO

10 M(t) = ρ0M(t), (3.25)

where DO is the dynamic offset. M(t) is the data arrival process, in unit of resource

blocks.

Traffic model

We model M(t) as a Poisson burst process with rate λ. Each burst size is modeled

as a geometric random variable with parameter ν. Poisson processes are commonly

used in traffic modeling because they capture well the aggregate traffic caused by a

large number of sources (e.g. applications in a smartphone). Similar models were

used by Nokia and Renesas Mobile Europe in their recent 3GPP contributions [Nokia

Corporation, 2012,Renesas Mobile Europe Ltd., 2012].

Let us denote the Poisson arrival process N(t), and the size of each arrival M

(in resource blocks). M is assumed i.i.d. between different arrivals.
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We have, for n ≥ 0

P[N(t) = n] =
(λt)n

n!
e−λt, (3.26)

and for m ≥ 1

P[M = m] = (1− ν)m−1ν. (3.27)

From (3.25),

ζL(t) = ρ0M(t) = ρ0

N(t)∑
i=1

Mi (3.28)

ζL(t) is a Poisson burst process with rate λ and takes values as integer multiplies of

ρ0. As a result, we can discretize the battery using ρ0 as a basic unit.

As seen in Section 3.3.1, computing the distribution of the time until outage,

P[TO ≤ t], is the most important task for the utility methods of BDS. In the following

section, we discuss in detail this computation.

3.3.2.2 Distribution of time until outage TO

In this section we describe two methods to compute exactly the CDF of TO

and an approximation for quick calculation.

Stochastic analysis

Recall that for a UE with state (B, T, L), P[TO ≤ t] = P[ζL(t) ≥ B]. From (3.28),

with the available battery B written as multiples of ρ0, we can write the compliment
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of the CDF of TO as

P[TO ≥ t] = P[ζL(t) ≤ B]

=
∞∑
n=0

P[N(t) = n]P

[
n∑
i=1

Mi ≤ B

]

=
B∑
n=0

P[N(t) = n]P

[
n∑
i=1

Mi ≤ B

]
. (3.29)

Since Mi are i.i.d. geometric(ν) random variables, we can think of
∑n

i=1 Mi

as the total number of Bernoulli trials before the first n successes. Each Bernoulli

trial has success probability ν. Since each Mi ≥ 1, P [
∑n

i=1Mi ≤ B] = 0 for n > B.

For n ≤ B, we have

P

[
n∑
i=1

Mi = B

]

=

 B − 1

n− 1

 (1− ν)B−nνn−1

︸ ︷︷ ︸
first n− 1 successes in B − 1 trials

ν︸︷︷︸
last success

. (3.30)

This is the probability mass function of a negative binomial random variable NB(n, ν).

The CMF of which is

P

[
n∑
i=1

Mi ≤ B

]
=

B∑
k=n

 k − 1

n− 1

 (1− ν)k−nνn (3.31)

=
B∑
j=n

 B

j

 (1− ν)B−jνj (3.32)

= Iν(n,B − n+ 1), (3.33)

(3.31) can be interpreted as while fixing the number of success n we sum over the

cases when the total number of trials is at most B. (3.32) can be interpreted as
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Figure 3.5: Continuous time Markov Chain for remaining battery states

while fixing the total number of trials B, we sum over the cases when the number of

successes are at least n. Iν(·, ·) is the regularized incomplete beta function, whose

expression is given in (3.32) [NIST, 2014].

Plugging (3.33) into (3.29) we have

P[TO ≤ t] = 1− P[TO ≥ t]

= 1−
B∑
n=0

(λt)n

n!
e−λtIν(n,B − n+ 1). (3.34)

Markovian analysis

We can see that ζL(t) is a jump process, therefore it can be analyzed under Marko-

vian theory. The state space is discrete, with each state being the number of re-

maining battery units. As a result, we have a homogeneous continuous time Markov

Chain as shown in Figure 3.5.

Let the state variable be X ∈ N, the transition probability is defined as

pij(t) = P[X(t) = j|X(0) = i], i, j ∈ N. (3.35)
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From (3.30) and (3.33), we have

p00(t) = 1,

pii(t) = e−λt, i > 0

pij(t) =

i−j∑
n=1

(λt)n

n!
e−λt

 i− j − 1

n− 1

 (1− ν)i−j−nνn, i > j > 0

pi0(t) =
∞∑
n=1

(λt)n

n!
e−λt (1− Iν(n, i− n)) , i > 0

pij(t) = 0, i < j

(3.36)

Define the local characteristics for any state i

qi = lim
h→0

1− pii(h)

h
, (3.37)

and for any pair of states i 6= j

qij = lim
h→0

pij(h)

h
. (3.38)

For the Poisson arrival process, as time duration h → 0, the probability of

having 2 or more arrivals during h vanishes. Therefore we only need to account for

n = 1 in the third and fourth terms of (3.36). Taking the limits, we get

q0,j = 0, ∀j

qi = λ, i > 0

qij = λ(1− ν)i−j−1ν, i > j > 0

qi0 = λ(1− ν)i−1, i > 0

(3.39)
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The last equation of (3.39) is derived by plugging in n = 1 in the fourth equation of

(3.36) and using the following properties of the regularized incomplete beta function

[NIST, 2014].

1− Iν(1, i− 1) = I1−ν(i− 1, 1)

= ν
∞∑

j=i−1

(1− ν)j

= (1− ν)i−1 (3.40)

Let qii = −qi, the matrix A = {qij} is called the infinitesimal generator of the

Markov Chain. It takes the form A = −λΛ, where

Λ =



0 0 0 0 0

−1 1 0 0 0

−(1− ν) −ν 1 0 0 · · ·

−(1− ν)2 −(1− ν)ν −ν 1 0

−(1− ν)3 −(1− ν)2ν −(1− ν)ν −ν 1

...
. . .



(3.41)

Denote the transition matrix P(t) = {pij(t)}. From the definition of the local

characteristics qij in (3.37) and (3.38), we have

A = lim
h→0

P(h)−P(0)

h
, (3.42)

where P(0) = I. Since this Markov Chain is homogeneous

P(t+ h)−P(t)

h
= P(t)

P(h)− I

h
=

P(h)− I

h
P(t). (3.43)

Therefore

d

dt
P(t) = P(t)A = AP(t) (3.44)
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(3.44) is referred to as the Kolmogorov’s differential system [Bremaud, 1999], the

solution to which is

P(t) = etA =
∞∑
n=0

(tA)n

n!
(3.45)

Since X = 0 is an absorbing state, the CDF of the time until outage, P[TO ≤ t],

is the probability that the UE enters state X = 0 at or before t, starting with B

battery units at time 0. It can obtained from P(t) as follows

P[TO ≤ t] = P[X(t) = 0|X(0) = B] = pB0(t). (3.46)

Gaussian approximation

In this section we follow the analysis in Section 3.3.1.5 for the case in which the

consumption process is Gaussian. First we establish that ζL(t) can indeed be approx-

imated as a Gaussian random process. Recall from (3.28) that ζL(t) = ρ0

∑N(t)
i=1 Mi.

Since Mi are i.i.d., if N(t) is sufficiently large, we can use the Central Limit Theorem

to approximate ζL(t) as a Gaussian random process N (µL(t), σ2
L(t)). We proceed

to find the mean and variance of this process.

Recall that each Mi is distributed as a geometric random variable M with

parameter ν. We have

E[M ] =
1

ν

Var[M ] =
1− ν
ν2

. (3.47)
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From the law of total expectation,

µL(t) = E

E
ρ0

N(t)∑
i=1

Mi

∣∣∣∣N(t)


= ρ0E[N(t)]E[M ]

= ρ0
λt

ν
(3.48)

From the law of total variance,

σ2
L(t) = E

Var

ρ0

N(t)∑
i=1

Mi

∣∣∣∣N(t)

+ Var

E
ρ0

N(t)∑
i=1

Mi

∣∣∣∣N(t)


= ρ2

0E[N(t)]Var[M ] + ρ2
0Var[N(t)]E[M ]2

= ρ2
0λt

1− ν
ν2

+ ρ2
0λt

1

ν2

= ρ2
0λt

2− ν
ν2

(3.49)

From (3.19), by using the remaining battery B as multiple of the battery unit

ρ0, we have

P[TO ≤ t] = Φ

 λt
ν
−B√
λt2−ν

ν2

 . (3.50)

Using the approximation in (3.22), we replace the value of t on the denominator of

(3.50) with Bν
λ

. (3.50) becomes

P[TO ≤ t] ≈ Φ

 t− Bν
λ

ν
λ

√
λBν

λ
2−ν
ν2


= Φ

 t− Bν
λ√

Bν(2−ν)
λ2

 . (3.51)

Therefore, for a given amount of battery B, the time until outage TO can be

approximated as a Gaussian random variable N (µTO , σ
2
TO

), with

µTO =
Bν

λ
, σ2

TO
=
Bν(2− ν)

λ2
. (3.52)
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Figure 3.6: CDF of time until outage TO calculated by stochastic analysis (3.34),

Markovian analysis (3.46), Gaussian approximation (3.52), and Monte Carlo simu-

lation. The time duration t is plotted with reference to the mean usage duration

E[TO].

We compare the CDF of the time until outage TO calculated by stochastic anal-

ysis (3.34), Markovian analysis (3.46), Gaussian approximation (3.52), and Monte

Carlo simulation in Figure 3.6. It can be clearly seen that the stochastic and Marko-

vian analyses agree with the Monte Carlo simulation. The Gaussian approximation

is very close to this precise distribution.
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3.3.2.3 Beneficial cooperation

In this section we study the conditions which a helpee i and a helper j engaging

in a beneficial cooperative session (Definition 1) must satisfy. Let the duration

of this cooperative session be Tc. The helpee’s consumption process parameter

Li comprises of the battery unit ρ0,i and the helpee’s data arrival characteristics

λi, νi. ρ0,i depends on the helpee’s uplink power control parameters, of which the

main component is the path loss PLi. Similarly, the helper’s consumption process

parameter Lj comprises of ρ0,j, λj, and νj. Because the helper relays the helpee’s

data during the cooperative session, the consumption process parameter Lij of the

cooperative session consists of the D2D path loss PLij (thus battery unit ρ0,ij) and

the helpee’s data arrival characteristics λi, νi. Here we make an implicit assumption

that the transmission power in D2D mode is proportional to the path loss between

the devices. If 3GPP chooses to use constant D2D transmission power then Lij only

depends on λi, νi.

During the cooperative session, the helpee transmits its data through the D2D

link. Its battery consumption is

∆Bi = ρ0,ij

Ni(Tc)∑
k=1

Mi,k (3.53)

During the cooperative session, the helper transmits both of its data and the helpee’s

data to the eNodeB. The amount of battery consumed by receiving D2D data is

very small compared to the uplink transmission, thus can be ignored. The helper’s
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battery consumption is

∆Bj = ρ0,j

Ni(Tc)∑
k=1

Mi,k +

Nj(Tc)∑
l=1

Mj,l

 (3.54)

Refer to Table 3.1, the amount of battery “transferred” by the helper is

∆Bji = ρ0,j

Ni(Tc)∑
k=1

Mi,k. (3.55)

The transferring loss at the helpee is

δji = (ρ0,j − ρ0,i)

Ni(Tc)∑
k=1

Mi,k + ρ0,ij

Ni(Tc)∑
k=1

Mi,k. (3.56)

According to Lemma 1, to have beneficial cooperation, we need δji ≤ ∆Bji.

From (3.55) and (3.56), this condition is equivalent to

ρ0,ij

Ni(Tc)∑
k=1

Mi,k ≤ ρ0,i

Ni(Tc)∑
k=1

Mi,k. (3.57)

In other words, the helpee needs to spend less energy in a D2D link than he would

in the cellular link. This is typically the case, unless the helpee is very close to

the eNodeB. In BDS, we enforce a maximum D2D path loss PLD2D such that only

helpers who receive the BDSDiscovery signal with received path loss smaller than

this value will respond with BDSReply (see Figure 3.1). This threshold essentially

limits the range of the D2D connections, keeping them “local”. The condition in

Lemma 1 can be enforced by only allowing the helpees to request for help when

their path loss is greater than PLD2D. More formally, we have

ρ0,i ≥ ρ0,D2D ≥ ρ0,ij (3.58)

where ρ0,D2D is calculated based on PLD2D.
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3.3.2.4 Design of cooperative rules

In BDS, the cooperative duration Tc is kept small so that user mobility does

not make the D2D link go out of range. If after Tc, the helper and the helpee still

satisfy the beneficial cooperative conditions, they can request the eNodeB to extend

the cooperative duration to another Tc. This will reduce the amount of signaling

as the helpee does not need to go through the full help requesting procedure. With

this choice, (3.8) can be used to guide the design of cooperative rules.

According to (3.8), the rate of change of the helpee’s utility with respect to

battery must be greater than that of the helper. Since we have established that the

battery consumption process under our model can be approximated as a Gaussian

random process, we can use (3.20) and (3.23) to calculate the utility functions

discussed in Section 3.3.1.5. We plot the values of those two functions with respect

to the available battery in Figure 3.7. Notice that we are looking at the resource

dimension of the utility, as opposed to the time dimension as in Section 3.3.1.5.

In Figure 3.7, the available battery B is normalized with respect to µB, the

amount of battery that would give the expected time until outage E[TO] equal to

the target usage time T . From (3.52), we know that E[TO] = Bν/λ. Therefore,

µB = λT/ν. In Figure 3.7b, the dashed line represents the expected valued usage

time when there is much less battery than required to meet target usage, as seen in

(3.18). Since E[TO]/T = B/µB, this line has slope 1.

We can see that for both utility functions, there exists a utility value above

which the resource-slope decreases. Therefore we can use thresholding for our co-
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Figure 3.7: Utility as functions of available battery for user categories C1 and C2.

The target usage time T is fixed. µB = λT/ν.

operative rules and design appropriate thresholds that guarantee beneficial cooper-

ation. To achieve the condition in (3.8), we set a upper cooperative threshold (the

helping threshold) γ2 such that the helper is operating above this threshold, and

thus on the slope-decreasing region. The helpee has to be operating below another

threshold γ1 (γ1 ≤ γ2). For utility type 2, that is all we need to do to ensure that

the helpee’s resource-slope is greater than the helper’s. For utility type 1, the helpee

needs to be above 1−γ2 to have a steeper slope. The intuition is that if the helpee’s

available battery is so far off his target usage, a cooperative session will not improve

his probability of survival much, and he is still very likely to go into outage. This is

a characteristic of the all-or-nothing utility type.
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3.3.2.5 Evolution of user utility over time

In this section we describe what happens to the utility of a user as time

progresses. For the simplicity of the discussion, let us assume that the consumption

parameter L does not change. In this case, there are only two factors affecting

the user’s utility: the remaining time until the target usage T and the amount of

remaining battery B. Between data bursts, the amount of remaining battery stays

the same. The user’s utility thus increases as the time until target usage decreases.

When the user has a new data burst, the battery drops suddenly, which also leads

to a sudden drop in utility.

To illustrate these evolutions, we simulate a user with random data bursts

and plot the values of the two utility functions over time for this user in Figure 3.8.

For this case, the two types of utility function follow a quite similar path, albeit

on different scales. This user starts out with a 0.3 probability of meeting his target

usage. His expected usage duration at the beginning is 0.91 of his target usage

duration T . There is a big data burst at t = 0.05T , resulting in a large dip in the

user’s utility. As time progresses from t = 0.05T to 0.5T , the user has less data

than expected, thus his utility increases (on average). From t = 0.5T to 0.7T , the

user uses the typical amount of data. His utility stays constant on average over this

range. From t = 0.7T to 0.8T he uses more data than expected, which results in

a dip in utility values. His usage decreases to less than typical from t = 0.8T to

the target usage T . He ends up meeting his target usage. However, he becomes

relatively certain about that fact only at t = 0.95T .
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Figure 3.8: Evolutions of user’s utility. Notice the scale difference.

3.4 User incentive

As we discussed in Section 3.1, the helpers do not get any immediate benefit

from a cooperative BDS session. Therefore they need to be incentivized. A currency

system is most suitable for BDS because we can leverage the centralized infrastruc-

ture. We discussed two such currency systems: virtual currency (token-based) and

real currency.

The advantage of a virtual currency system is that it is self-contained. The

amount of credits in the system is controlled by the network. Therefore the behavior

of the users is predictable (as long as they are rational). The advantage of a real

currency system is that it can potentially provide more cooperation as the users

can always request for BDS service. However user interaction is required and the

behavior is harder to predict.
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3.4.1 Virtual currency

In a token-based incentive system, each user is initialized with a number of

tokens, k0, when they activate their phone number. To request BDS service, the user

has to pay one token. The selected helper receives that token. Since the number

of tokens of each user is kept by the network, fake tokens are not an issue. The

network also sees data connections. Therefore a helper cannot lie that he relayed

the helpee’s traffic while he did not. Security of the token system therefore is not a

major concern because of the centralized nature of BDS.

When a UE with k tokens receives RRCConnReconfig for BDS listeners (Fig-

ure 3.1), it estimates the utility cost c for helping in a cooperative session. If the

cost is less than the utility gain then the UE listens for BDSDiscovery. Let the

value of k tokens be Vk. The UE listens for BDSDiscovery if Vk+1 − Vk > c. [Xu

and van der Schaar, 2013] studies a token system for downlink relay service with

the goal of improving data rates. It is shown that the optimal strategy for users

is thresholding. A user receiving help request accepts if his number of tokens is

smaller than a threshold, k ≤ K(c). If all users follow this optimal strategy, the

network designer can control the total number of tokens in the network to achieve

the maximum efficiency, i.e. the probability of a BDS request being accepted.

3.4.2 Real currency

We envision a real auction system where the helpee set a maximum amount

of dollars that he is willing to pay for a help session, dmax. This information is sent
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with BDSInitSerReq. Each potential helper sends an amount they want to receive

for the service, di, in BDSReply. If there are more than one helpers whose request

fees are less than dmax, the AppSer selects the helper with the lowest request fee,

and pays him the amount equal to the second lowest fee. This is known in the

literature as a reversed auction. It is proven that the second lowest request fee is a

form of Vickrey-Clarke-Groves (VCG) payment [Nisan et al., 2007], and it achieves

the optimal social outcome of everybody telling their true price.

A real currency system is simple to implement. However, user interaction is

expected to prevent “surprised” large phone bills. In crowded area (e.g. malls),

there are plenty of potential helpers (high supply). Therefore the service will be

cheaper. In remote area (e.g. parks), there are fewer potential helpers (low supply).

As a result the service will be more expensive. The users, with some level of software

automation, have to adjust their prices based on the area. We foresee a tendency

that the users will keep their battery high in order to gain money. This change of

behavior is interesting to study, but it is out of the scope of this work.

3.5 Performance analysis

We established in Section 3.3.2 that by using thresholding, we can ensure

that the cooperative sessions in BDS improve the overall network performance. In

this section, we analyze this performance improvement through simulation. Our

simulation setup is described in [Ta et al., 2014]. In particular, we use 3GPP

reports [Nokia Corporation, 2012, Renesas Mobile Europe Ltd., 2012, 3GPP, 2012]
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to set the parameters of our traffic model. We use WINNER II channel models

[Kyosti et al., 2007] for our communication links. We use a modified version of the

random waypoint model to simulate user mobility. The reception and idle circuit

energy consumption is modeled as a constant factor, the value of which is derived

from [Nokia Corporation, 2012]. In this work, we implement new functionalities to

calculate battery utility to use in cooperative decisions. The simulation parameters

are shown in Table 3.2. Our simulator source code is available at [Ta, ].

We compare the performance of the UEs when they do and do not cooperate.

When cooperation is used, we compare the cooperative rules using probability of

survival u1(·) (category C1 - Section 3.3.1.5), expected valued usage time u2(·)

(category C2), and battery level B (used in [Ta et al., 2014]) as thresholds. The

valued usage time as a fraction of the target usage time, TV /T , of the UEs for those

algorithms are shown in Figure 3.9. The probability of survival for all 4 algorithms

can also be inferred from Figure 3.9. The intersecting points of the curves with the

right-most vertical line, TV /T = 1, are the probabilities of outage. In addition, we

study the level of cooperation, which leads to performance gain, as the amount of

resource in the network changes. In Figure 3.9a, the users have low battery capacity,

resulting in a probability of outage of 0.5. In Figure 3.9b, we increase the battery

capacity of the users by 14%, which results in a lower probability of outage of 0.41.

We show the overall network gains in valued usage time as a percentage in Table 3.3.

The overall gains in probability of survival are shown in Table 3.4.

We can clearly see that cooperation provides benefit over no cooperation. We

also see that using utility functions as thresholds is better than using battery level.
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Table 3.2: Simulation parameters

Parameter Value

Cell radius 300 m

Number of UEs 500

Mean data inter-arrival time 30 s

Mean burst size 7800 bytes

Speed 0.1 - 6 m/s

Pause duration 0 - 300 s

Walk duration 30 - 300 s

Path loss compensation factor α 0.8

Constant energy cost factor 15 mJ

Base power P0 -69 dBm

Maximum transmit power 24 dBm

Modulation order QAM16

Code rate 1/3

Carrier frequency 2 GHz

eNodeB antenna height 25 m

UE antenna height 1.5 m

Number of walls for indoor NLOS 1

Cooperation threshold γ1, γ2 0.5, 0.9

Cooperation path loss threshold 110 dB

Cooperation radius 30 m
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Figure 3.9: Cumulative distribution functions of the valued usage time for 3 coop-

erative algorithms and no cooperation. The higher battery capacity is 14% more

than the lower battery capacity.
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Table 3.3: Overall network gains in valued usage time

u1(·) = P[TO > T ] u2(·) = E[TV ]/T B

Lower battery capacity 7% 11% 2%

Higher battery capacity 7% 10% 1%

Table 3.4: Overall network gains in probability of survival

u1(·) = P[TO > T ] u2(·) = E[TV ]/T B

Lower battery capacity 6% 6% 4%

Higher battery capacity 13% 13% 8%

As we discussed in Section 3.1, by factoring in the target usage, we can take ad-

vantage of more cooperative opportunities than considering the battery level alone.

Between the two utility functions, u2(·) performs better when we consider valued

usage time. This is consistent because it is designed for this performance metric.

Interestingly, it can be seen that u2(·) does not have any significant performance loss

compared to u1(·) for category C1. Therefore we can conclude that the cooperative

thresholds perform well in limiting the impact on the helpers.

We can see from Table 3.3 that the overall network gains in valued usage time

(as a ratio) are similar for lower and higher battery capacity cases. However the

helpees in the latter clearly benefit more, as can be seen from their CDF curves.

This is because when the overall network resource increases, there are more helpers
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Table 3.5: Probability that a BDS request is accepted

u1(·) = P[TO > T ] u2(·) = E[TV ]/T B

Lower battery capacity 0.46 0.57 0.25

Higher battery capacity 0.51 0.65 0.27

and fewer helpees. As a result, each helpee receives a higher benefit. In addition,

the fraction of helpees brought out of outage also becomes more significant. This

leads to a larger increase in probability of survival, as evident from Table 3.4.

We further quantify the level of cooperation by studying the probabilities

that a BDS request is accepted in the 2 cases of varying battery capacity. These

probabilities are shown in Table 3.5. We can see that using utility functions creates

at least twice the amount of cooperation compared to using battery level B. In

addition, u2(·) consistently leads to more cooperation than u1(·). This explains the

larger amount of valued usage time created by using u2(·). It is also clear that there

are more chances for cooperation to take place when the network resource is high.

3.6 Conclusions

In this chapter we have shown that we can prolong the battery life of mo-

bile devices by utilizing diversity of usage in cellular networks. In particular, we

developed a Proximity Service (ProSe) for future LTE networks which allows UEs

to cooperatively relay traffic of one another. We named our system the “Battery

Deposit Service” (BDS). To utilize diversity of usage, we must understand the value
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of battery for the UEs. We proposed a general framework to study utility of a

resource. We applied this framework to BDS and showed that by setting appropri-

ate thresholds as cooperative rules, the performance of the network is guaranteed

to improve. We discuss currency systems using virtual tokens and real money to

incentivize user cooperation.

Appendix

Expected valued usage time for Gaussian consumption process

We want to calculate the expected valued usage time E[TV ] for the case the

consumption process ζL(t) is Gaussian. As seen in (3.22), the time until outage TO

is approximated as a Gaussian random variable N (µ, σ2). From (3.12)

E[TV ] = T −
∫ T

0

(T − τ)
1√

2πσ2
e−

(τ−µ)2

2σ2 dτ

= T − (T − µ)

∫ T

0

1√
2πσ2

e−
(τ−µ)2

2σ2 dτ +

∫ T

0

(τ − µ)
1√

2πσ2
e−

(τ−µ)2

2σ2 dτ. (59)

Since TO ≥ 0, for the approximation TO ∼ N (µ, σ) to hold we need Φ(−µ
σ

) ≈ 0.

This is true for sufficiently large µ. Consequently, we have

(T − µ)

∫ T

0

1√
2πσ2

e−
(τ−µ)2

2σ2 dτ ≈ (T − µ)Φ

(
T − µ
σ

)
. (60)

To compute the last term of (59), we make the change of variable u = (τ−µ)2

2σ2 .

We have (τ − µ)dτ = σ2du. Therefore,∫ T

0

(τ − µ)
1√

2πσ2
e−

(τ−µ)2

2σ2 dτ =

∫ (T−µ)2

2σ2

µ2

2σ2

σ√
2π
e−udu

=
σ√
2π

(
e−

µ2

2σ2 − e−
(T−µ)2

2σ2

)
. (61)
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Finally (59) becomes

E[TV ] = T − (T − µ)Φ

(
T − µ
σ

)
+

σ√
2π

(
e−

µ2

2σ2 − e−
(T−µ)2

2σ2

)
. (62)
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Chapter 4: Energy efficiency from network perspective:

Relay selection, resource allocation and power con-

trol for minimizing transmission power in device-

to-device relay-enabled LTE networks

4.1 Overview

In Chapter 3, we have studied energy efficiency from the device perspective. In

this chapter, we will look at the problem from the network point of view. It is well-

known that multi-hop communications reduce the total transmission power. Our

goal is to formulate the power minimization problem when D2D relay is enabled,

while taking into account practical LTE constraints. The problems we consider

include relay selection, resource allocation and power control. These optimization

problems have binary decision variables, and thus exponential search spaces. Tack-

ling these problems directly is not suitable for real-time operations. Therefore, we

need to develop faster algorithms to cope with LTE runtime requirement (subframe

level, which is 1 ms).
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4.1.1 Related work

The problem of joint optimization of relay strategies and resource allocation

has been considered in the past. However, past works mainly focus on maximizing

rate, and therefore maximum power is always used. In the context of LTE, quality

of service (QoS) is provided in term of minimum guaranteed bit rate. As a result, it

is more applicable to consider minimizing transmission power while satisfying this

rate requirement. A prominent work in this direction is [Ng and Yu, 2007]. The

authors consider the problem of maximizing an utility function, concave in rate of

each data stream, by relay selection and resource allocation. The solution in [Ng

and Yu, 2007] bases on the assumption that the amount of schedulable resource is

abundant (go to infinity). Even though this assumption may be appropriate for

the number of OFDM tones, it cannot be applied to the number of resource blocks,

the unit schedulable resource in LTE. Furthermore, [Ng and Yu, 2007] proposes to

use an exhaustive search for the optimal relay strategy. This approach limits the

application of their solution in real-time operations.

The majority of existing work use Shannon’s formula to calculate the achiev-

able rate of the UEs. Even though it makes the problem simpler because of the

convexity of Shannon’s formula, it is unrealistic. In real LTE networks, the UEs

are assigned a Modulation and Coding Scheme (MCS) for each transmission. The

achieved rate of the UEs is a function of their assigned MCS. The introduction of

MCS adds another dimension to the variables of the optimization problem, which

makes the search space much larger. As a result, finding real-time algorithms be-
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comes more challenging. In the context of downlink transmission for femtocells, the

authors of [Lopez-Perez et al., 2014] propose to separate MCS from the resource

allocation problem. We follow this idea in our work.

4.1.2 Summary of contributions

Our contributions in this chapter are

1. We formulate the relay selection, resource allocation and power control prob-

lems for minimization of transmission power in a D2D relay-enabled LTE

network. We take into account practical LTE constraints.

2. We develop a divide-and-conquer strategy, splitting the overall problem into

sub-problems. We relate these sub-problems to well-studied problems in graph

theory, so that we can make use of existing fast solutions.

3. We compare the performance of our algorithms with the solution obtained

from CPLEX, an industrial-grade solver. Our algorithms perform very close

to CPLEX, while requiring 3 orders of magnitude less runtime.

4.1.3 Outline of chapter

The chapter is structured as follows. We briefly introduce LTE uplink resource

allocation and power control in Section 4.2. In Section 4.3, we introduce the current

state of D2D development in 3GPP. In Section 4.4, we formulate the power mini-

mization problem through relay selection, resource allocation and power control. We

describe our simulation setup and results in Section 4.5. We conclude in Section 4.6.
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4.2 Uplink scheduling and power control in LTE

In LTE, the UEs transmit data to the eNodeB on physical uplink shared

channels (PUSCH). The eNodeB sends control messages to the UEs on physical

downlink control channels (PDCCH). The UEs with uplink data send buffer status

reports (BSR) to the eNodeB, indicating how much and what type of data they

need to transmit. The eNodeB takes into account buffer status of all served UEs in

allocating PUSCH resource. With dynamic scheduling, resource allocation is done

for every subframe (1ms). To notify the UEs of the resource assignment, the eNodeB

sends uplink grants using downlink control information (DCI) messages on PDCCH.

DCI format 0 is used for uplink grants of single transport block, while format 4 is

used for uplink grants of multiple transport blocks. Also included in the DCI are

the modulation and coding scheme (MCS), and transmission power control (TPC)

messages. The DCI is sent 4 subframes prior to the actual uplink transmission to

allow time for the UEs to process these uplink grants.

In LTE, a UE’s uplink transmission power (in dBm) is controlled by equation

(4.1) (see [Baker, 2011,3GPP, 2011c]).

P = P0 + αPL︸ ︷︷ ︸
open-loop

+ ∆TF + f(∆TPC)︸ ︷︷ ︸
dynamic offset

+10 log10(M) (4.1)

The per-resource block (RB) power control consists of two components: a basic

open-loop operating point and a dynamic offset. M is the number of allocated RBs.

P0 is a semi-static nominal power level set by the eNodeB. αPL is the path

loss compensation component, where α controls the degree of compensation. PL
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is derived from the downlink Reference Signal Received Power. It includes shad-

owing but not fast fading. The dynamic control of UE uplink transmission power

is designed to be an offset from the base operating point. This offset depends on

two factors: the allowed modulation and coding scheme (TF stands for Transport

Format) and a UE-specific transmitter power control (TPC) command.

4.3 Current state of D2D communications underlaying LTE

Proximity services and public safety usage are the main drivers for develop-

ment of D2D in LTE. The target for release 12 is discovery and communication for

public safety. Even though D2D communications have not been fully standardized

in 3GPP, some features have been agreed upon [3GPP, 2014a]. D2D operations

will be considered in two modes: in-coverage (Mode 1), and out-of-coverage (Mode

2). A D2D link is considered in Mode 1 if both UEs are connected to the cellular

networks, and Mode 2 otherwise. We focus on Mode 1 in our work.

For Mode 1, the time/frequency resource for D2D communication (for discov-

ery, scheduling, and data) are configured by the eNodeB. A new DCI format will

be used to relay this scheduling information to the UEs. This new DCI format will

have the same size as DCI format 0. It is also agreed that, at least in the beginning,

D2D communication will occupy the uplink frequency (FDD) or uplink subframes

(TDD). For Mode 1, the eNodeB has the flexibility to optimize system performance.

In this chapter we will consider system performance in term of minimizing UE uplink

transmission power.
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4.4 Problem statement

In this work we consider a single cell with N UEs. All UEs are assumed

capable of D2D. The objective is to design a cooperative relay system that reduces

the overall transmission power on the uplink. Inactive UEs are allowed to receive

data from active UEs through D2D connections, decode and forward to the eNodeB.

Currently, the eNodeB schedules uplink transmissions based on buffer status reports

and channel quality from the UEs. We add one more dimension to this decision

process: relay selection.

Ideally, relay assignment can be done every subframe (1ms). However, the

overhead for signaling such assignment will be too excessive. In fact, the current

consideration for a D2D transmission time interval is 2 frames (20 ms) [3GPP,

2014b]. As a result, in our design, the relay selection is carried out at a large time

scale. During such a period, each UE keeps record of at most one relay. If the relay

is inactive, the eNodeB signals the UE to transmit through the relay. Resource

allocation and power control can be done on a per-subframe basis to cope with fast

fading.

4.4.1 Relay selection

The objective of this phase is to select a relay for each UE such that the total

transmission power is minimized. For fairness, each UE can only choose at most

one other UE as relay and each UE only serves as relay for at most one other UE.

Since the relay selection problem is considered in a large time scale, average
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channel statistics can be used. This design also allows time for the eNodeB to

aggregate D2D channel information. The freshness requirement of this channel

information is not stringent, thus the control signaling overhead can be kept low.

Consequently, we will assume that the eNodeB knows the average channel statistics

of all D2D links.

In addition, operating at a large time scale allows us to use Shannon capacity

formula, instead of discrete MCS levels, to determine the average UE rate. We

consider orthogonal resource allocation and assume no inter-cell interference. For

UE n,

Rn = Wn log2(1 +
PnGn

WnN0

) (4.2)

Where Rn is the achievable rate, Pn is the transmission power, Gn is the average

channel gain, Wn is the allocated bandwidth, and N0 is the thermal noise power

density.

To achieve rate Rn, the required SNR for UE n is

γn = 2Rn/Wn − 1 (4.3)

In this phase, the same bandwidth is considered for all UEs. As a result, γn

can be determined from the rate requirement, and the thermal noise power are the

same for all UEs. Let us denote this noise power σ2. The QoS (SNR) requirement

for UE n is

PnGn

σ2
≥ γn (4.4)

Since decode-and-forward relaying is used, if UE m is selected as relay for UE

n, both the D2D link between UEs n and m and the cellular link from UE m to the
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eNodeB have to satisfy the SNR requirement of UE n.

PnGn,m

σ2
≥ γn (4.5)

P r
mGm

σ2
≥ γn (4.6)

Where P r
m denotes the power used by UE m in D2D relay transmission. Gn,m is the

channel gain of the link between UE n and m.

The problem of minimizing the total transmission power of both relay and di-

rect transmissions can be formulated as the following Mixed Binary Linear Program

min
Pn,P rn ,xn,m

N∑
n=1

Pn + P r
n (RS)

s.t.
PnGn,m

σ2
≥ xn,mγn ∀n,m (4.7)

P r
mGm

σ2
≥ xn,mγn ∀n,m (4.8)

N∑
m=1

xn,m = 1 ∀n (4.9)

N∑
n=1

xn,m − xm,m ≤ 1 ∀m (4.10)

Pn ≥ 0 ∀n (4.11)

P r
n ≥ 0 ∀n (4.12)

xn,m ∈ {0, 1} ∀n,m (4.13)

We introduce the binary variables xn,m to denote that UE m is selected as the

relay for UE n. Constraints (4.7), (4.8) ensure the SNR requirements of selected

links are met. We adopt the convention Gn,n = ∞ so that when xn,n = 1, UE

n always transmits directly to the eNodeB, and thus Pn = 0 and P r
n is the direct

transmission power. Constraint (4.9) ensures that each UE selects exactly one relay
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(including itself). Constraint (4.10) ensures that each UE serves as the relay of

at most one other UE. Constraints (4.11),(4.12),(4.13) indicate the domain of the

decision variables. We do not enforce maximum transmission power so that the

optimization problem always has a feasible solution.

We can see that the most important variable of (RS) is xn,m. Once this relay

selection is determined, the transmission power will follow by solving for equality in

(4.7) and (4.8). (RS) is equivalent to the minimum weight matching problem on a

bipartite graph for the graph illustrated in Figure 4.1. Each side of the graph has

N nodes representing the UEs. A link between node n on the left half to node m

on the right half signifies that xn,m = 1, or UE m is selected as the relay for UE n.

The cost on this link is

Pn + P r
m = γnσ

2

(
1

Gn,m

+
1

Gm

)
(4.14)

The Hungarian algorithm [Kuhn, 1955] can be used to solve the minimum

weight matching problem in O(N3).

4.4.2 Resource allocation and power control

During each subframe, let us denote the set of UEs with non-empty buffer by

A, the set of UEs with empty buffer by I. Consider an active UE n ∈ A with relay

m. If the relay is inactive, i.e. m ∈ I, n always use the relay instead of direct

transmission. As a result, at the beginning of each frame, the eNodeB knows how

much D2D resource is needed. In this section, we formulate the resource allocation

and power control problem. It can then be applied separately for D2D relay and for
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Figure 4.1: Equivalent minimum weight matching on a bipartite graph problem of

(RS).

cellular uplink.

In LTE, the unit for resource allocation is RB pair. Each RB pair consists of

one RB per slot. For localized allocation, the two RBs occupy the same frequency.

Let us denote by K the number of RBs for each slot. K depends on the system

bandwidth and how much frequency resource is allocated for D2D communication

versus cellular uplink. Orthogonal resource allocation is used such that each RB is

only allocated to 1 link.

Let s = 1, . . . , S be the allowable MCS levels. Each MCS consists of a modu-

lation order (e.g. QPSK), and an effective code rate (e.g. 3/4). In LTE, each UE

only uses one MCS per transmission. Without considering HARQ between several

transmissions, the rate of each UE is therefore a function of the MCS level and the
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Table 4.1: Modulation and coding schemes

Modulation
Code SNR Efficiency Rate1

rate (dB) (bits/symbol) (Mbps/RB)

MCS1 QPSK 1/2 2.88 1.00 0.168

MCS2 QPSK 3/4 5.74 1.50 0.252

MCS3 16QAM 1/2 8.79 2.00 0.336

MCS4 16QAM 3/4 12.22 3.00 0.504

MCS5 64QAM 2/3 15.88 4.00 0.672

MCS6 64QAM 3/4 17.50 4.50 0.756

number of allocated RBs. For each MCS s, there is a corresponding required SNR

γs to achieve some predetermined packet error rate (e.g. 10%). These SNR require-

ments are usually obtained by simulation. In this work, we will use the MCS values,

and the corresponding required SNR, from Table 4.1, introduced in [Lopez-Perez

et al., 2014].

Let the allocation variable xn,k,s = 1 denotes that RB k and MCS s are assigned

to UE n; xn,k,s = 0 otherwise. The rate of UE n is

rn =
S∑
s=1

K∑
k=1

xn,k,sΦs (4.15)

Where Φs is the per-RB rate of MCS s. For normal cyclic prefix, each RB consists

of 7 OFDM symbols and 12 subcarriers. Without accounting for reserved reference

and control elements, each RB has 84 resource elements. Since the duration of a

slot is 0.5 ms, we can calculate Φs for each MCS s, as noted in Table 4.1.

1The rates per RB are calculated assuming all 84 resource elements are used for data.

94



In LTE, demodulation reference signals (DM-RS) and sounding reference sig-

nals (SRS) are transmitted by the UEs to help the eNodeB estimate the channel

gains. In this work we will assume that the eNodeB knows the channel gains on

all RBs for all UEs. We also assume that the UEs are capable of using different

transmission power on different RBs. Furthermore, we do not consider infeasible

cases, i.e. there are always enough RBs to satisfy QoS requirement of the UEs.

The resource allocation and power control problem can be formulated as the

following Mixed Binary Linear Program

min
Pn,k,s,xn,k,s,yn,s

N∑
n=1

S∑
s=1

K∑
k=1

Pn,k,s (RAPC)

s.t.
Pn,k,sGn,k

σ2
≥ xn,k,sγs ∀n, k, s (4.16)

S∑
s=1

yn,s = 1 ∀n (4.17)

xn,k,s ≤ yn,s ∀n, k, s (4.18)

N∑
n=1

S∑
s=1

xn,k,s ≤ 1 ∀k (4.19)

S∑
s=1

K∑
k=1

xn,k,sΦs ≥ Rn ∀n (4.20)

Pn,k,s ≥ 0 ∀n, k, s (4.21)

xn,k,s ∈ {0, 1} ∀n, k, s (4.22)

yn,s ∈ {0, 1} ∀n, s (4.23)

Here Pn,k,s is the transmission power of UE n on RB k for MCS s, Gn,k is the channel

gain for UE n on RB k, the binary variable yn,s = 1 if MCS s is assigned to UE n.

Constraint (4.16) ensures that the SNR requirement for assigned MCS is met.
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Constraints (4.17) and (4.18) ensure that each UE is assigned only one MCS. Con-

straint (4.19) ensures that each RB is assigned to at most one UE. Constraint (4.20)

ensures the required rate of each UE. Constraints (4.21), (4.22), (4.23) indicate the

domain of the decision variables.

The decision variables of (RAPC) are 3-dimensional. Their large search spaces

make solving the optimization problem time-consuming, not appropriate to a real-

time operation. Since the channel conditions do not change significantly subframe

by subframe, the MCS levels do not need to be updated that frequently. As a result,

we can consider a sub-problem of (RAPC) where the MCS is predetermined. This

sub-problem is only 2-dimensional and can be solved in real time. We provide a

heuristic algorithm to search for the best MCS. This heuristic algorithm is carried

out at a larger time scale (e.g. frame level). For every subframe within each such

large time scale, the eNodeB solves the sub-problem to obtain resource assignment

and power allocation.

4.4.2.1 RAPC for fixed MCS

When MCS s is selected for UE n, the SNR requirement and the per-RB rate
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Figure 4.2: Equivalent minimum-cost flow problem of (S-RAPC). The total flow is∑N
n=1Dn. Each link is annotated with a (capacity, cost) pair. The circular nodes

represent UEs, the squared nodes represent RBs.
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can be associated to the UE so that γn = γs,Φn = Φs. (RAPC) reduces to

min
Pn,k,xn,k

N∑
n=1

K∑
k=1

Pn,k (S-RAPC)

s.t.
Pn,kGn,k

σ2
≥ xn,kγn ∀n, k (4.24)

N∑
n=1

xn,k ≤ 1 ∀k (4.25)

K∑
k=1

xn,kΦn ≥ Rn ∀n (4.26)

Pn,k ≥ 0 ∀n, k (4.27)

xn,k ∈ {0, 1} ∀n, k (4.28)

Similar to the relay selection problem (RS), here we also observe that the

assignment variable xn,k is the most important. Once xn,k is determined, we can

obtain Pn,k by solving for equality in (4.24). For a fixed MCS, the rate of each UE

is proportional to the number of allocated RBs. We can easily see that the rate

requirement (4.26) can be equivalently written as

K∑
k=1

xn,k =

⌈
Rn

Φn

⌉
(4.29)

Let us denote Dn =

⌈
Rn

Φn

⌉
as the required number of RBs for UE n. (S-RAPC)

is equivalent to the minimum-cost flow problem for the graph illustrated in Fig-

ure 4.2. The circular nodes represent the UEs, while the squared nodes represent

the RBs. Each link is annotated with a (capacity, cost) pair. The links from the

source s to the UEs have capacity equal to the required number of RBs Dn. All

other links have capacity 1. The link between UE n and RB k has cost (determined
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from (4.24))

Pn,k =
γnσ

2

Gn,k

(4.30)

The total flow of the network is
∑N

n=1Dn.

Similar to the minimum weighted matching on a bipartite graph, minimum-

cost flow is a well-studied problem. Algorithms with polynomial time complexity

as well as fast practical implementation have been developed [Király and Kovács,

2012].

4.4.2.2 Heuristic search for MCS

We observe that if MCS s satisfies the rate requirement of UE n using only

one RB, then all MCS higher than s will not be selected. This is because an MCS

higher than s will require higher transmission power. Therefore, we first determine

the maximum MCS levels for all UEs.

Next, we sort the UEs by their average channel gains. We initialize all UEs

with their max MCS. We then find the best MCS for one UE at a time, starting from

the UE with the worst average channel gain. Since this UE will likely to require the

most transmission power, the gain from optimizing for this UE is likely to be the

largest.

Our heuristic algorithm to search for the best MCS is illustrated in Algo-

rithm 1. Algorithm 1 essentially runs (S-RAPC) NS times, where S is the number

of MCS. Since (S-RAPC) can be solved in polynomial time, so can Algorithm 1.
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Algorithm 1 Heuristic search for MCS

1: R ∈ RN . Required rate vector

2: Φ ∈ RS . Rate per RB based on MCS

3: U = permutation(1, . . . , N) . Sorted UE index by average channel gain

(ascending)

4: G ∈ RN×K . Channel gain matrix

5: s, smax, smin ∈ {1, . . . , S}N . MCS vectors

6: P, Pmin ∈ R . Total transmission power

7: x,xmin ∈ {0, 1}N×K . Resource assignment matrix

8: procedure GetMaxMcs(R,Φ)

9: for n = 1 to N do

10: if R(n) ≤ Φ(1) then

11: smax(n)← 1

12: else if R(n) > Φ(S − 1) then

13: smax(n)← S

14: else

15: for s = 2 to S − 1 do

16: if R(n) ≤ Φ(s) then

17: smax(n)← s

18: break

19: return smax

20: procedure McsSearch(G, smax, R, U)

21: s← smax

22: smin ← smax

23: [Pmin,xmin]← s-rapc(G, s, R)

24: for n = 1 to N do

25: u← U(n)

26: for s = 1 to smax(u)− 1 do

27: s(u)← s

28: [P,x]← s-rapc(G, s, R)

29: if P < Pmin then

30: Pmin ← P

31: smin ← s

32: xmin ← x

33: s← smin

34: return smin, Pmin,xmin

100



4 6 8 10 12 14 16 18 20

0.5

1

1.5

2

2.5

3

Number of active UEs

C
om

pu
ta

tio
n 

tim
e 

(s
)

(a) CPLEX

4 6 8 10 12 14 16 18 20

10

15

20

25

30

35

Number of active UEs

C
om

pu
ta

tio
n 

tim
e 

(m
s)

(b) Algorithm 1

4 6 8 10 12 14 16 18 20

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of active UEs

C
om

pu
ta

tio
n 

tim
e 

(m
s)

(c) S-RAPC

Figure 4.3: Runtime comparison of CPLEX, Algorithm 1, and minimum-cost flow

(S-RAPC), as functions of the number of concurrent UEs to schedule.

4.5 Simulations

We simulate a single circular cell of N UEs, with no sectorization. The UEs

are dropping uniformly within the cell. We use ITU channel models to calculate

large scale channel loss (pathloss and shadowing) [3GPP, 2010]. We use the urban

marcocell model (UMa) for cellular links, and urban microcell (UMi) model for D2D

links. UMi is currently used by 3GPP in evaluating D2D performance, while waiting
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Figure 4.4: Average transmission power of a UE with resource allocation and power

control in (RAPC). The performance of Algorithm 1 and CPLEX are compared.

for a more accurate model to be developed [3GPP, 2014c]. To simulate frequency

selectivity, we include independent Rayleigh fast fading to each RB of each link.

The parameters for our simulation is included in Table 4.2.

We illustrate the performance gain of enabling D2D relay in Figure 4.4. In

addition, we compare the performance of our heuristic algorithm with CPLEX, an

industrial-grade solver [cpl, ]. Figure 4.4 shows the average transmission power

of a UE with and without D2D relay. We can see that D2D relay can reduce the

average transmission power by roughly 6 dB. Figure 4.4 also shows that Algorithm 1

performs very close to the optimal solution obtained by CPLEX.

The advantage of our heuristic algorithm is illustrated in Figure 4.3. Here we

compare the average runtime of CPLEX, Algorithm 1, and minimum-cost flow prob-
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Table 4.2: Simulation parameters

Parameter Value

Cell radius 500 m

Number of UEs 180

UE dropping Uniform

Carrier frequency 2 GHz

System bandwidth 10 MHz

eNodeB antenna gain 14 dBi

eNodeB antenna height 25 m

eNodeB noise figure 5 dB

UE antenna gain 0 dBi

UE antenna height 1.5 m

UE noise figure 9 dB

Thermal noise density -174 dBm/Hz

Required rate 1 Mbps

Pathloss UE - eNodeB UMa

Pathloss UE - UE UMi

Fast fading Rayleigh
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lem (S-RAPC). We use the open source library LEMON [lem, ] to solve (S-RAPC).

These algorithms are run on our lab desktop machine, with quadcore Intel i7 2.8

GHz CPU, 4 GB RAM. We can see that CPLEX takes seconds to solve (RAPC),

not suitable for real-time operation. Algorithm 1 runs in the order of tens of ms,

suitable to be done in LTE frame level. Meanwhile, (S-RAPC) can be solved in less

than 1 ms. As a result, it can be carried out on LTE subframe level. Moreover, with

specialized hardware, an eNodeB should be able to finish our algorithms even faster.

Figure 4.3 shows that our algorithms can be applied to the current LTE networks.

4.6 Conclusions

In this chapter we have introduced a mechanism to enable device-to-device

relay in LTE networks. We show that with proper relay selection, resource allocation

and power control, D2D relay can significantly reduce the transmission power of

the UEs. Our mechanism contributes to addressing the pressing energy concern

in cellular communications. We divide the overall problem into two parts: relay

selection, and resource allocation & power control. We formulate the relay selection

problem as an equivalent minimum weight matching problem on a bipartite graph,

which has fast algorithms. For resource allocation and power control, we separate

out MCS selection. We show that with a fixed MCS, the resource allocation and

power control problem can be equivalently seen as a minimum-cost flow problem,

which also has fast algorithms. We compare the performance of our heuristic MCS

search to CPLEX solution and show that we perform very close to CPLEX solution.
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While solving the resource allocation and power control problem directly in CPLEX

requires too much time, we show that our two-level approach makes it feasible for the

real-time requirements of current LTE networks. For future work, we will address

the requirement of SC-FDMA that the resource blocks allocated to a UE have to

be contiguous. We will also consider the impact of UE circuit energy consumption.
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Chapter 5: Enhancing privacy in LTE paging system using

physical layer identification

5.1 Overview

In all cellular networks, mobile stations (MS) mostly run on battery. To pro-

long the operational time of the MSs, the network architecture allows them to go

into idle mode after being inactive for a certain period of time. In idle mode, the

MSs do not sustain a connection with the serving base stations (BS). When there

is a need to create a connection with an idle MS, e.g. voice calls, data, or system

information updates, the BS sends out a notification to the MS in the form of a

paging message. The location of an idle MS may have changed since the last time

it was in communication. Therefore, the network maintains a tracking area for each

idle MS. A tracking area consists of several cells. The MS has to report if it moves

out of the assigned tracking area. In general, paging messages are sent without

any confidentiality protection. As a result, everybody can listen to those messages.

The privacy of those who are being paged is provided through the use of temporary

IDs. Those are IDs which only have meaning in the context of the idle MS and the

serving network within the tracking area. Recently, it has been shown that despite
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the use of temporary IDs, the location of a user’s cellphone in a GSM network can

still be leaked.

After reviewing the paging architecture in LTE and proving that the same

attack is possible in LTE networks, we propose a solution using physical layer iden-

tification tags. Most security measures operate on the bit level and above. We go

further down, to the physical level of electromagnetic transmissions. Our method

does not rely on cryptographic primitives.

5.1.1 Related work

In [Kune et al., 2012], Kune et al. show that despite the use of temporary

IDs, the location of a user’s cellphone in a GSM network can still be leaked. In

particular, they show that an attacker can check if a user’s cellphone is within a

small area, or absent from a large area, without the user’s awareness. As the authors

highlighted, such vulnerability can lead to serious consequences. For example, in an

oppressive regime, locations of dissidents are revealed to suppressive agents without

cooperation from reluctant service providers. Another example is that a thief, who

attempts a break-in, can use the knowledge of the absence of the target to reduce

the threat of encounter.

To perform this location attack, the attacker in [Kune et al., 2012] requires 2

capabilities:

• Cause paging request messages to appear on the GSM Paging Control Channel

(PCCH)
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• Listen on the GSM PCCH broadcast channel

In GSM networks, paging messages are sent on dedicated time-division channels.

The Temporary Mobile Subscriber Identity (TMSI) is used for paging messages. The

idea behind the location attack is that the adversary initiates a connection request to

the user cellphone (this of course assumes that he knows the target’s number), which

results in a paging message being sent in the user’s tracking area. By observing the

paging channel, the adversary obtains a set of possible temporary IDs for the target

user. Repeating this procedure several times, the adversary collects several sets of

possible temporary IDs, from which he can do set intersection to get the temporary

ID associated with the user’s cellphone. Practical experiments on T-Mobile and

AT&T GSM networks show that after 2 or 3 repetitions, the adversary can pinpoint

the temporary ID of a user’s cellphone [Kune et al., 2012]. To keep the user unaware

of the attack, the connection request to his cellphone has to be terminated before a

connection is established, but after the paging message is sent out. In [Kune et al.,

2012], the authors, through experiments, show that by calling the target’s number

and hanging up within 5 seconds, a paging message would be sent out, but the user’s

phone would not ring. Another way of achieving this goal is to send “silent SMS”, a

controversial method used by German and French police to track people [Nohl and

Munaut, 2010], [F-Secure, 2011].

Addressing the attack, the mitigations in [Kune et al., 2012] either require

additional control signaling (sending paging messages out to several tracking areas,

changing TMSI more frequently), or introduce delay in response to users’ requests.
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We propose a solution that requires neither. In fact, it requires less signaling than

the current standard. However, it does require additional signal processing steps

and therefore needs to be incrementally deployed. We want to emphasize that even

though the additional signal processing is not in the standard, it is not computation-

ally expensive. Therefore the effect on power consumption of the UEs is minimal.

Our technique is inspired by the physical layer authentication scheme in [Yu et al.,

2008b], [Yu et al., 2008a]. In those works, Yu et al. describe a stealthy authen-

tication technique in which the authenticating entity’s credential is embedded as

a watermark in the transmitted physical waveform. The authenticator detects the

presence of the tag in the received waveform, and decides whether the waveform was

transmitted by the legitimate transmitter or not. We extend this technique to the

LTE paging system by assigning to each user equipment (UE) a unique tag. These

tags are superimposed onto the paging transmitted waveform if the correspond-

ing UEs are paged. The tags are transmitted with very low power such that they

can only be detected, and not decoded. By detecting the presence of its tag, a UE

learns that it is paged. Because of the stealth property of the tags, an eavesdropper

observing the paging waveform learns nothing about who are being paged.

5.1.2 Summary of contributions

Our contributions in this chapter are

1. We show that the LTE paging architecture suffers from the vulnerability iden-

tified in [Kune et al., 2012].

109



2. We propose a solution based on signal processing, which makes use of physical

layer identification to convey paging messages. Our solution does not require

additional control signaling, and can in fact save bandwidth for downlink data

transmission.

5.1.3 Outline of chapter

The chapter is structured as follows. In Section 5.2, we review the LTE paging

system and show that it has the same vulnerability as the GSM system. Next, in

Section 5.3, we describe our scheme. In Section 5.4, we evaluate the performance of

our scheme through simulations. We finish with some conclusions and remarks.

5.2 LTE Paging System

In this section, we highlight some technical specifications of LTE which allow

us to conclude that the location attack in [Kune et al., 2012] can be performed in an

LTE network. We will use these details in the analysis of our scheme in subsequent

sections.

Control signaling: In contrast to the GSM architecture, in LTE there is

no dedicated resource for paging. Instead, the paging messages are delivered in the

same frequency band as normal data; and the existence of such paging messages in

each subframe (1ms) is indicated in the control channel. In normal operation mode,

at the beginning of each LTE downlink subframe, there are up to 4 (out of 14) OFDM

symbols used to transmit control data. These Downlink Control Information (DCI)

110



messages carry resource allocation information, Hybrid-ARQ, system information

and paging indicator among others. Each control message is encapsulated in a

Physical Downlink Control Channel (PDCCH) message. The DCI can be targeted

to a specific user equipment (UE), or a group of UEs as in the case of a paging

indicator. If the DCI is for a specific UE, the 16-bit CRC generated for that DCI

will be XORed with the last 16 bits of the temporary ID of the targeted UE (e.g.

Cell Radio Network Temporary Identifier C-RNTI). If the DCI is for a group of UEs,

its CRC will be masked with one of the predefined IDs for group control information.

The paging indicator ID, P-RNTI, is FFFE (in hexadecimal) [3GPP, 2011a].

UE decoding: The UEs do not know a priori which PDCCH in the control

region of a subframe is intended for them. Therefore they perform blind decoding, in

which they try all possible sizes of PDCCH. The list of such allowable sizes can be

found in [3GPP, 2011c]. If after unmasking the CRC of a possible PDCCH message

with either a common ID or the UE’s temporary ID, the CRC check returns true,

then the UE knows that it has successfully decoded a valid PDCCH message. To

reduce the number of PDCCH the UEs have to try to decode, each UE is given a

search space. The search space is all possible starting positions of a PDCCH. There

are UE-specific search spaces and common search spaces. The latter are locations

which all UEs have to try decoding from. Group control information, including

paging indicator, is sent on the common search space. Due to the requirement that

broadcast control information has to reach users with poor channel conditions, group

PDCCH have bigger sizes than other PDCCH, which allows for lower code rates to be

used. Two allowable sizes for these PDCCH are 72 and 144 resource elements [3GPP,
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2011c]. Resource element is the smallest resource unit in LTE, comprising of 1

subcarrier in 1 OFDM symbol. All control information are modulated with QPSK,

therefore the paging PDCCH can have either 144 or 288 bits.

The DCI format for paging indicator is either 1A or 1C [3GPP, 2011c]. De-

pending on the system bandwidth (1.4 - 20 MHz), DCI format 1A, and 1C can have

36 - 44, and 24 - 31 bits respectively [Baker and Moulsley, 2011]. This DCI has the

location of the paging record in the data portion of the subframe. The UE decodes

that location in the Physical Downlink Shared Channel (PDSCH) to get the record.

The paging record contains a list of IDs of UEs being paged, which can be either

System Architecture Evolution TMSI (S-TMSI) or International Mobile Subscriber

Identity (IMSI) [3GPP, 2011d]. In normal cases, the temporary ID S-TMSI is used

instead of the permanent ID IMSI. If the UE sees its ID in the list, it knows that it

is paged. Figure 5.1 illustrates an example of paging PDCCH and PDSCH positions

in an LTE downlink subframe.

Attacker model: We will use an analogous attacker model as [Kune et al.,

2012]. The only difference is that our attacker is capable of causing paging request

messages in LTE networks and listen on LTE paging channels. While the first

capability of the attacker remains the same as in the original paper, the above

procedure serves to justify the practicality of the second capability. The attacker

can listen on the control channel, and unmask PDCCH with P-RNTI. Once he

decodes a paging indicator, he can go the specified location in PDSCH to obtain

the list of paged IDs. In [Kune et al., 2012], Kune et al. use an open source GSM

baseband software implementation [Osmocombb, ] to read the TMSI of paged MSs.
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Figure 5.1: An example of positions of paging PDCCH and PDSCH in an LTE

downlink subframe. Pilots and other types of physical channels are omitted for

clarity.
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While an equivalent open source software for LTE baseband is not available at this

moment, it is reasonable to expect that one will be developed in the future. We

therefore conclude that the same location attack is feasible in LTE, and security

measures should be taken proactively.

5.3 Privacy-Enhanced Paging Messages

To combat the vulnerability in the LTE paging system described in Section 5.2,

we propose to use a UE’s temporary ID as an input to create a tag unique to that UE.

If a UE is paged during a subframe, its tag is embedded onto the paging PDCCH.

The only requirement for the tags is that tags from 2 different UEs are uncorrelated.

Here “embed” means that the tag is superimposed onto the PDCCH QPSK symbols.

To be backward compatible with older user equipment, the content of the paging

indicator is left unchanged. A simple scenario where one old UE (Alice) and one

new UE (Bob) are paged in the same subframe is illustrated in Figure 5.2. If the tag

embedding does not cause too much degradation to the PDCCH signal quality, Alice

is still able to decode the control information and follow the standard procedure to

see if she is paged. Bob, however, can determine if he is paged just by detecting the

presence of his unique tag in the PDCCH. Therefore he does not need to decode

the PDSCH, which saves battery considering that most UEs which expect paging

messages are in idle mode. Listening on the paging channel, Eve can obtain Alice’s

temporary ID, but she cannot get Bob’s tag. As will be shown later, Bob’s tag

is transmitted with very low power so that nobody (including Bob) can decode it.
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Figure 5.2: (a) Simple scenario with one old UE (Alice) and one new UE (Bob)

being paged at the same subframe. The eavesdropper, Eve, can listen on the paging

broadcast channel and analyze the PDCCH waveform; (b) PDCCH and PDSCH

paging messages
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Bob, however, can detect the presence of his tag in the paging PDCCH. Another

benefit of this scheme comes in the form of downlink data bandwidth increase. Since

Bob’s ID is no longer needed to be transmitted in PDSCH, that bandwidth can be

used for data transmission. The new UE capability as well as paging mechanism

can be negotiated with the base station (eNodeB in LTE terms) at connection

establishment. The operations at the eNodeB and UE are shown in Figure 5.3.

Figure 5.3: Flow charts for (a) eNodeB and (b) User Equipment. Dashed boxes are

additional operations required by the scheme.

To maximize the robustness of the tags, we choose to put a tag symbol on every

paging indicator PDCCH symbol. We use QPSK to modulate the tags. With this

configuration, the tags have the same length as the paging indicator PDCCH, which
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is either 144 or 288 bits. During a subframe, multiple tags can be superimposed on

the same PDCCH, corresponding to multiple UEs being paged at the same time.

In LTE standard, the maximum size of the paging record is 16 [3GPP, 2011d]. In

other words, the 3GPP standard leaves room for up to 16 UEs to be paged during

1 subframe. In subsequent sections, we analyze the performance of our scheme with

respect to the number of simultaneous tags, Nt.

5.3.1 eNodeB Operations

Let b be the paging DCI. The PDCCH symbols that encapsulate this DCI are

s = fe(b). Here fe(·) is the encoding function, which includes CRC, convolutional

encoding, rate matching, and QPSK modulation. Let ki, i = 1, . . . , Nt, be the ith

paged UE’s ID. Generate the tag ti = g(ki). As mentioned above, the functionality

of the generator function g(·) is to create uncorrelated tags. The elements of b and

ki are in bits; while the elements of s and ti are in QPSK symbols {±1,±i}. The

tags are superimposed onto the PDCCH to create the transmitted message

x = ρss +
ρt√
Nt

Nt∑
i=1

ti (5.1)

Let s = (s(1), . . . , s(L)), i.e. there are L QPSK symbols in the PDCCH signal.

For paging indicators, L = 72 or 144. Assuming that each symbol of the PDCCH

signal and of the tag has zero-mean and unit variance, we have

E[s(k)] = 0,E
[
|s(k)|2

]
= 1 for k = 1, . . . , L

E[t
(k)
i ] = 0,E

[
|t(k)
i |2

]
= 1 i = 1, . . . , Nt (5.2)
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Since the tags are uncorrelated among themselves and independent of the PDCCH

symbols,

E[sHti] = 0, i = 1, . . . , Nt (5.3)

E[tHi tj] = 0, i, j = 1, . . . , Nt, i 6= j (5.4)

In (5.1), ρs and ρt are system parameters controlling the amount of power

allocated to the signal and the tags, respectively. The power constraint is

ρ2
s + ρ2

t = 1 (5.5)

From (5.1) - (5.5), we have

E[s] = E[ti] = E[x] = 0

E[|s|2] = E[|ti|2] = E[|x|2] = L, i = 1, . . . , Nt (5.6)

5.3.2 User Equipment Operations

5.3.2.1 Decode DCI

Assuming a frequency selective fading channel, the received signal at the UEs

is

y = Hx + w (5.7)

where H is a diagonal matrix, with the elements being the attenuations at each

subcarrier frequency. w is thermal noise at the transmitter and receiver circuitry.

In LTE, pilot symbols are transmitted on fixed resource elements to help in channel

estimation at the receivers [3GPP, 2011b]. There are many techniques that the
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receiver can use to perform channel estimation, e.g. LMMSE [Edfors et al., 1998].

In general, the channel estimate can be written as

Ĥ = H + ν (5.8)

where ν is the estimation error.

Let Ĥ(k), k = 1, . . . , L be the diagonal elements of Ĥ, the receiver estimates

the message symbols as

x̂(k) =
Ĥ(k)∗

|Ĥ(k)|2
y(k)

= x(k) − ν(k)x(k)

Ĥ(k)
+
w(k)

Ĥ(k)
(5.9)

It then decodes the DCI

b̂ = fd(x̂) (5.10)

Here fd(·) is the decoding function, which maps QPSK symbols to bits, undoes rate

matching, performs Viterbi decoding, and removes CRC. After unmasking with the

paging ID (FFFE ), the CRC check returns true if the DCI is successfully decoded.

5.3.2.2 Tag detection

The UE regenerates the message symbols from the decoded DCI, ŝ = fe(b̂),

and subtracts it from the received signal to get the residue

r =
1

ρt
(x̂− ρsŝ) (5.11)

Assuming that the UE performs perfect channel estimation, we have

r =
1√
Nt

Nt∑
i=1

ti +
1

ρt
Ĥ−1w (5.12)
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It then checks for the presence of its tag, t, by performing hypothesis testing on the

statistic

τ = tHr (5.13)

The hypotheses are

H0 : t is not present in r (null hypothesis)

H1 : t is present in r (alternative hypothesis)

The statistic under null hypothesis:

τ |H0 =
1√
Nt

Nt∑
i=1

tHti +
1

ρt
tHĤ−1w (5.14)

Condition on t, the second term in (5.14) is the sum of L Gaussian random variables

η2 =
1

ρt
tHĤ−1w =

1

ρt

L∑
k=1

t(k)∗w(k)

Ĥ(k)
(5.15)

The resulting Gaussian random variable has mean zero and variance

σ2
η2

=
1

ρ2
t

L∑
k=1

σ2
w

|Ĥ(k)|2
=

1

ρ2
t

L∑
k=1

1

γ(k)
(5.16)

where γ(k) is the SNR of the kth subcarrier.

The first term in (5.14) can be written as

η1 =
1√
Nt

Nt∑
i=1

tHti =
1√
Nt

Nt∑
i=1

L∑
k=1

t(k)∗t
(k)
i (5.17)

η1 is the sum of NtL i.i.d. symbols from the set {±1,±i}. According to the Central

Limit Theorem, it can be approximated by a Gaussian random variable with zero-

mean and variance σ2
η1

= L.
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From (5.14) - (5.17), we have

τ |H0 ∼ N

(
0, L+

1

ρ2
t

L∑
k=1

1

γ(k)

)
(5.18)

The statistic under alternative hypothesis: Without loss of generality, let t = t1.

The statistic is

τ |H1 =
1√
Nt

(
|t1|2 +

Nt∑
i=2

tH1 ti

)
+

1

ρt
tH1 Ĥ−1w (5.19)

Condition on t1, the term inside the parentheses in (5.19) can be approximated as

a Gaussian random variable with mean |t1|2 = L and variance (Nt− 1)L. Therefore

τ |H1 ∼ N

(
L√
Nt

,
Nt − 1

Nt

L+
1

ρ2
t

L∑
k=1

1

γ(k)

)
(5.20)

The UE performs a threshold test on τ to determine the presence of its tag in

the residue.

H =


H0 if τ ≤ τ 0

H1 if τ > τ 0

(5.21)

In making the comparison in (5.21), we use only the real part of τ . The imaginary

parts of τ |H0 and τ |H1 have very similar statistic, and therefore do not provide

much information. By abuse of notation, we still call the real part τ . The threshold

τ 0 is a value between
[
0, L/

√
Nt

]
. The greater τ 0 is, the higher the probability of

miss detection; whereas the smaller τ 0 is, the higher the probability of false alarm.

We choose τ 0 = L/2
√
Nt for good performance in both criteria. With this choice of

the threshold, the probability of missing a tag is

Pm = Φ

 − L
2
√
Nt(

Nt−1
Nt

L+ 1
ρ2t

∑L
k=1

1
γ(k)

)1/2

 (5.22)
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where Φ(·) is the standard Gaussian cumulative distribution function. To get an

idea of the theoretical performance of the scheme, let us look at a special case where

the channel is flat fading with SNR = 10dB. Assume 10% of the transmitted power

is allocated to tags, i.e. ρ2
t = 0.1; and 288 bits are used for PDCCH message, i.e.

L = 144. When 4 users are paged simultaneously, i.e. Nt = 4, we have Pm = 0.01.

So we can see under that condition, the tags are detected 99% of the time.

5.4 Simulations

As mentioned in Section 5.2, the PDCCH messages are designed to be very

robust. In particular, convolutional code with low rate (1/3) is used. In addition,

the paging DCI message can have 24 - 44 bits. Together with a 16-bit CRC, the size

of the message before convolutionally encoded ranges from 40 to 60 bits. Thus the

size of the message after convolutionally encoded ranges from 120 to 180 bits. When

the PDCCH size is 144 bits, puncture may occur during rate matching. When the

PDCCH size is 288 bits, redundant encoded bits are transmitted, which effectively

increases the SNR at the receiving UEs. In order to evaluate the effect of our

embedded tags on the probability of successfully decoding the DCI, we first simulate

the DCI decoding performance with respect to different SNR levels. The result is

shown in Figure 5.4. Here we use the energy per bit to noise power spectral density

(EbNo) as the metric for SNR. Also shown is BER of the PDCCH message at

the same EbNo levels. Figure 5.4 gives us a clear intuition of the PDCCH BER

requirements for various DCI decoding performances. For instance, with PDCCH
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size of 288 bits, we can see that the probability of unsuccessfully decoding a paging

DCI decreases rapidly from 0.4 at EbNo = -1 to 10−5 at EbNo = 5. Thanks to the

convolutional encoder, the BER requires for PDCCH to achieve 10−5 DCI error rate

is only 0.03. When the size of PDCCH is 144 bits, the UEs need an additional 1dB

in SNR to get equivalent performance.
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Figure 5.4: DCI decoding performance as a function of SNR. Here the DCI size is

44 bits. The PDCCH size is (a) 144 bits, (b) 288 bits

Next we want to see the effect of allocating part of the transmission power

to the tags on the PDCCH BER. As long as the resulting BER conforms to the

requirement obtained above, our scheme will not have negative effect on the DCI

decoding performance. Figure 5.5 shows the BER of PDCCH message for various

tag powers. We can see that the effect of tag embedment is minimal for ρ2
t ≤ 0.02.

When the channel condition is good, e.g. EbNo = 10dB, 20% of the power can be

allocated to tags, which results in BER of 0.04. Referring back to Figure ??, this

BER corresponds to a DCI decoding error rate of 10−4.
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Figure 5.5: PDCCH BER for various values of tag power allocation. Here the

PDCCH size is 288 bits, 16 tags are embedded.

124



After confirming that we can indeed allocate part of the transmission power

to the identification tags, we evaluate the tag detection performance under various

system settings. In particular, we alter 3 parameters: tag length, tag power and

number of simultaneous tags. We expect the detection performance to increase with

tag length and decrease with number of simultaneous tags. Referring back to (5.18)

and (5.20), we see that the variance of the test statistic decreases monotonically

with increased tag power, and therefore the detection performance will increase

monotonically with increased tag power. However, we also know that increasing

tag power degrades DCI decoding performance. If that degradation causes the UEs

to fail to decode the paging PDCCH then the tags will be useless. Referring to

Figure 5.5, we choose tag power allocation ρ2
t = 0.05 to be conservative.

Figure 5.6 shows the probability of detecting that the unique tag for a UE is

present in 2 cases: the UE is being paged, and the UE is not being paged (misdetec-

tion). We can see a clear superior performance when 288-bit PDCCH is used. Let us

consider a rather bad channel condition, EbNo = 2dB, 4 UEs are paged simultane-

ously. Figure 5.6 shows that our scheme still provides tag detection rate of 90% and

false alarm rate of 2% if we use 288-bit PDCCH and allocate 5% of the transmission

power for the tags. A natural question would be how this performance compares

to the current paging system’s. Both schemes rely on the successful decoding of

the paging PDCCH. After this stage, our scheme’s performance ties directly to the

detection probability of the tags; whereas the current scheme’s performance depends

on the success of decoding the paging PDSCH. Since these are apples and oranges,

a meaningful comparison can only be done through experiments. We are certainly
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interested in pursuing them in our future work. For now, it is worth noticing that

the constellation size and code rate used for data channels are a lot more aggressive

than those used for control channels. Therefore it is expected that decoding perfor-

mance of data channels are worse than that of control channels in the same SNR

condition.

The idea behind the physical layer identification technique is to make use of

channel noise to obfuscate the tags at the eavesdropper. Assuming that the eaves-

dropper, Eve in Figure 5.2, successfully decodes the paging PDCCH, regenerates the

signal s in (5.1), and subtracts it from her received waveform. What she has left is

the sum of the superimposed tags and the channel noise. Since the individual tags

are modulated as QPSK symbols {±1,±i}, the normalized sum of multiple tags will

have the constellation as in Figure 5.7. The identity of a UE’s tag, say Bob’s, is

hidden under 2 layers. First, the channel noise limits Eve to only partial information

about the normalized sum of the tags. Second, since the tags are uncorrelated, the

sum of them does not reveal any information about Bob’s tag to Eve. We conclude

that Eve has no reliable way of obtaining Bob’s tag, and thus she cannot perform

the location attack described in Section 5.1.

5.5 Conclusions

In this chapter we have proposed a novel method to page user equipments in

LTE network while protecting their privacy. The proposed method makes use of

physical layer identification tags, which are designed to be robust and stealthy. Our
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Figure 5.6: Probability of tag detection for PDCCH size (a) 144 bits, (b) 288 bits.
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Figure 5.7: Eavesdropper’s received constellation at SNR = 20dB, Nt = 4.

scheme protects the privacy of paged users by hiding their ID in the transmitted

waveforms. Using channel noise to our advantage, the scheme prevents an attacker

from decoding the paged user’s tag. As a result, attacks on the open nature of paging

channel, e.g. [Kune et al., 2012], are no longer a threat. The scheme also provides

bandwidth saving by not requiring the actual user IDs to be transmitted. Here we

analyze our technique specifically for an LTE network; however, our technique is

also applicable to other cellular networks such as GSM, WCDMA, WiMAX.
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