
ABSTRACT

Title of dissertation: TOPOLOGICAL STRUCTURE OF
SPATIALLY-DISTRIBUTED NETWORK
CODED INFORMATION

Brenton Walker, Doctor of Philosophy, 2014

Dissertation directed by: Professor Jonathan Rosenberg
Department of Mathematics

In this paper we generalize work using topological methods for testing wire-

less/sensor network coverage to the problem of covering a geographically-distributed

wireless network with linear network coded data. We define the coverage complex,

a new type of simplicial complex built on the nodes of the network which captures

properties of the data coverage, and use tools from algebraic topology, persistent

homology, and matroid theory to study it. The coverage complex shares properties

with the Rips complex, however it also suffers from a more diverse variety of poten-

tial failures. We extend the standard coverage criteria to account for some of these

situations using persistent homology, multi-sheeted localized covers of the space,

and Mayer-Vietoris sequences. We also investigate the combinatorial properties of

the coverage complex, determining the correspondence between it and the lattice of

linear subspaces of a vector space. Finally we present algorithms for computing cov-

erage complexes, present a software package designed to compute and experiment

with coverage complexes, and provide a summary of ongoing and future work.

TOPOLOGICAL STRUCTURE OF SPATIALLY-DISTRIBUTED
NETWORK CODED INFORMATION

by

Brenton Walker

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Jonathan Rosenberg, Chair/Advisor
Professor Wojciech Czaja
Professor William Goldman
Professor Richard La
Professor James Schafer

© Copyright by
Brenton Walker

2014

Acknowledgments

I would like to thank everyone who supported me on the way to this point.

My advisor, Jonathan Rosenberg, and his supreme patience during my meandering

path to a thesis topic. He has been available whenever I had a problem to discuss,

and willingly joined my adventure into computational algebraic topology. Thanks to

my committee members, all of whom have been great teachers and/or collaborators

during my time in College Park. Thanks to Michael Postol and Luke, who have been

like proxy advisors, always available and ready with advice, support, and new ideas.

Thanks to my fellow grad students, Ryan Hoban and Angela Hennessy, for their

friendship and countless hours of studying together and mathematical discussions.

Thanks to Kathy Dolney and Barb Martinko for leading me to really appreciate

math, and realize that I was not that bad at it. Thanks especially to my family and

friends who have encouraged and supported me through everything.

ii

Table of Contents

List of Figures v

1 Network and Erasure Coding 1
1.1 Conventional Model of (Linear) Network Coding 1
1.2 Network and Erasure Coding in Distributed Wireless Networks 7

2 Network Coverage Problems and Topology 16
2.1 Technical Problems and Solutions . 20

2.1.1 Defects of the Rips Complex 21
2.1.2 Network Boundary Identification Problems 23
2.1.3 Disconnected Domain Boundaries 25

2.2 Proving the Coverage Criterion . 25
2.3 Shadows, Lifts, and Chambers’s Isomorphism 27

2.3.1 The Rips Shadow . 27
2.3.2 Shadow Paths and Rips Paths 30
2.3.3 Lifting Shadow Paths . 32

2.4 Extending to Network Code Coverage 34

3 The Network Coded Coverage Problem 38
3.1 The Coverage Complex RC(U) . 40

3.1.1 Simple Examples of RC . 41
3.1.2 Basic Properties of RC . 43
3.1.3 Basic Data Coverage Results For RC 46

3.2 Enumerating the Coverage Complexes 57
3.2.1 Single-Vector Resolvability . 69

3.3 Failure of Chambers’s Proof for RC(U) 71
3.4 Geometric Connections Between X and RC(U,X) 75

3.4.1 Layered Loops in RC(U) . 78
3.4.2 Layered 2-simplices in RC1(U) 80
3.4.3 Layered Loops and Resolvability 82

3.5 Computing RC(U) and RC1(U) . 83

iii

4 Persistent Homology and Discounting Holes in S 89
4.1 Persistent Homology . 93

4.1.1 Applications of Persistent Homology 98
4.2 Structure and Computation of Persistent Homology 102

4.2.1 Persistence Computation Based On Pairing of Simplices . . . 103
4.2.2 Persistence Modules . 106
4.2.3 Persistence Computation Based On Persistence Modules . . . 107

4.3 Discounting Holes in S . 113
4.3.1 Allowing changes to RC(U) 117

5 Using Persistent Homology To Recover Spatial Information From Encounter
Traces 119
5.1 The Encounter Complex Metric . 122
5.2 Building a Witness Complex . 125
5.3 Graph-Based Experiments . 127

5.3.1 A Note on Higher Degree Vertices 132
5.3.2 Dynamic Graphs . 132

5.4 Two-Dimensional Experiments . 134
5.4.1 Detecting Changes in a 2D Space 134
5.4.2 2D Grid With Boundaries vs. a Torus 135

5.5 Experiments With Real Encounter Data 138

6 Patching False Holes in the Coverage Complex 141
6.1 Bubble Boxes and the Mayer-Vietoris Sequence 142
6.2 Local Bases and Local Coverage . 147
6.3 Bubble Baubles and Multi-Fold Intersections 152

6.3.1 The Mayer-Vietoris Spectral Sequence 153
6.3.2 (4n)-vertex Bubble Baubles 156
6.3.3 (4n+ 2)-vertex Bubble Baubles 158
6.3.4 The Spectral Sequence for the Triple Bubble Box 162

6.4 The Wormhole Complex . 164

7 Examples, Software, and Future Work 168
7.1 The CoverageSim Java Package . 168

7.1.1 The Non-Lifting . 172
7.1.2 The Bubble Box . 173
7.1.3 The Layered Loop and Layered Simplex 174
7.1.4 Resolved Hex Points and Resolved Quad Points 175
7.1.5 The Wormhole Complex . 176
7.1.6 The Coverage Grid and Fenced Coverage Square 176

7.2 Ongoing and Future Work . 180
7.2.1 Traversing the RC

r (X , U) Lattice With Zig-Zag Persistence . 180
7.2.2 Filtering RC

r (X , U) by Rips Radius 181
7.2.3 Alternative Coverage Complexes 182
7.2.4 Optimizing Data Arrangements 182

iv

List of Figures

1.1 The butterfly network . 4
1.2 A simple index coding example . 7
1.3 The network-coded data dissemination scenario 8
1.4 The r-local rank in a region at two hour intervals during an experiment 12
1.5 Plot of the minimum spanning radius during an experiment 13

2.1 Model of a region covered by sensors 17
2.2 Communication radius and coverage radius in sensor networks 18
2.3 The constraint on the ratio between communication and coverage radii 20
2.4 The weakly-fenced sensor coverage model 23
2.5 The relationship between points, Rips complex, and Rips shadow . . 29
2.6 Example of data coverage with disks 36

3.1 The situation in Lemma 3.31 . 75
3.2 The situation in Prop 3.33 . 78
3.3 An example of a layered loop . 79
3.4 An example of a layered simplex . 80

4.1 Classic example of a filtered simplicial complex and its persistent
homology . 96

4.2 An example of a sublevel filtration of a manifold 97
4.3 The correspondence between critical values of f(x) and points in the

persistence diagram of the sublevel filtration. 98
4.4 An example of a filtered Rips complex built on point cloud data . . . 100
4.5 The persistence barcode for a point cloud filtration 101

5.1 A comparison of encounter patterns possible in different spaces 120
5.2 The witness complex and persistence barcode for an experiment in

the two-loop graph space . 128
5.3 The persistence barcodes for an experiment in a three-loop space . . . 130
5.4 The witness complex obtained from the expanding/contracting loop

experiment . 133

v

5.5 The witness complex obtained for the repulsion phase of the 2D ran-
dom walk experiment . 135

5.6 The persistence barcodes for the torus and bounded rectangle exper-
iments . 136

5.7 The persistence barcodes of the Haggle Cambridge Computer Lab
experiment . 140

6.1 A data arrangement containing three bubble boxes 148
6.2 The three sheets of a triple bubble box 149
6.3 A data arrangement for a bubble octagon over V = GF(2)4 157
6.4 A data arrangement for a bubble hexagon over V = GF(2)3 159
6.5 Labeled elements of a bubble hexagon 159
6.6 Labeled elements of a triple bubble box 162
6.7 The essential structure of the wormhole complex 165
6.8 The full wormhole complex . 166

7.1 The non-lifting example . 172
7.2 The triple bubble box with generators 173
7.3 A grid of bubble boxes . 173
7.4 A layered loop . 174
7.5 A layered simplex . 174
7.6 An example of resolvable quad points 175
7.7 The wormhole complex . 176
7.8 Some examples of Coverage Grids . 177
7.9 Some examples of Fenced Coverage Squares 179

vi

Chapter 1: Network and Erasure Coding

In this section we will provide an introduction to network coding and network

coded data distribution which motivates the results in this paper. We will also

summarize prior work on topological testing of wireless/sensor network coverage.

Network coding is a huge and active field, and our goal here is not to give a survey,

but just some context.

1.1 Conventional Model of (Linear) Network Coding

Network coding is a more robust and efficient generalization of traditional

routing in data networks. In traditional routing, packets of data are forwarded

from one node to another across network links. In network coded routing, nodes

are allowed to create and transmit linear combinations of the packets. Interest in

network coding has exploded since the publication of several seminal papers on the

topic around 2000 [1, 2].

Information theorists use a simplified and abstract model of data networks to

study network coding. A network is a directed graph consisting of a set of nodes, P ,

and links L ⊆ P ×P . Some nodes in the network are designated as source nodes at

which data packets will originate, and some others are designated as sink nodes which

1

have a demand for some packets coming from the source nodes. Each link connects

two nodes and has some (integer) capacity value, specifying how many packets it can

carry. Typically the capacity will be indicated by drawing multiple links between

nodes (essentially making the network a directed multi-graph). A network coding

problem consists of some such network, with the data packets initially held by source

nodes and the demands of the sink nodes labeled as in the diagram below.

S

A

D

w

w

x
source packets

sink demands

A solution to the network coding problem consists of an assignment of packets

to each edge of the network so that:

• The number of items assigned to each link does not exceed its capacity.

• The packets on the outgoing links from any node must be a linear combination

of the packets on the incoming links.

• The packets on the incoming links to the sink must have the sink’s demands

within their linear span.

Solutions may or may not be unique, depending on the network, source packets,

and sink demands. A solution to the example above would be:

2

S

A

D

w

w

x

w

w

A more complicated example might involve multiple sources, multiple routes,

and multiple demands.

S

A

D

w

w

x

T
y z

B B

y

w

w

x

x+y

y y

y

The canonical example of a network which can be solved with network coding

but not with traditional routing is the butterfly network shown in figure 1.1. The

source, S holds two packets, x and y, and both sink nodes, E and F demand each

of those packets. Each intermediate node except for C has only one input, and

therefore no choice over what to put on its outgoing links. On the outgoing link

from C we must choose to send either x or y. Either choice will result in failing to

meet the demands of either E or F . Figure 1.1a depicts the choice of x, which leads

to E receiving two copies of x and no copies of y.

3

S

A

x y

B

C

x y

D

FE

y

y

x

x

x

x y x y

x x

(a)

S

A

x y

B

C

x y

D

FE

y

y

x

x

x+y

x y x y

x+y

x+y x+y

(b)

Figure 1.1: The butterfly network. In (a) with just traditional routing the demands
of the sink nodes cannot be met. In (b) the network is solved using network coding,
sending the linear combination of two packets on the link from C to D.

In figure 1.1b network coding is used; the linear combination x+ y is sent on

the outgoing link from C, and then on both outgoing links from D. In this case E

receives a copy of x, and can solve for (x+ y) + x = y. Similarly F can recover x.

The number of unique source packets in the network is called the dimension

of the network, because the linear combination of packets on any outgoing link can

be specified as a vector of that dimension. The butterfly network example, for

instance, has dimension 2. In the simplest examples of network coding each packet

can be considered as a single bit (an element of GF (2)) and the linear combinations

will have coefficients in that same field. In more generality the packets and linear

coefficients can be elements of any finite field. In fact not all networks are solvable

over all fields. Furthermore, the technique described here is sometimes called scalar

network coding to distinguish it from vector network coding where messages are

strings of elements from a finite field, and they can be fragmented into smaller

packets, which are then subject to coding. In fact it turns out that some networks

are vector linear solvable, but not scalar linear solvable [3].

4

Solvability deals with the ability to satisfy the demands of sink nodes under

the constraints of the network; however, much network coding research focuses on

showing that certain network codes are optimal for certain networks. Optimality in

these cases deals with the set of sources and sinks for which the network satisfies

the max flow-min cut bound.

Matroid theory has naturally been tied into network coding. [4, 5] introduced

the notion of matroidal networks and an algorithm for deriving a matroidal network

from any matroid. The abstract notion of independence and dependence in matroid

theory naturally capture the requirement that every node’s out edges are dependent

on its in edges. The authors prove that any scalar linear solvable network is ma-

troidal over a representable matroid. Then by applying their matroid-to-network

construction to non-representable matroids, they derive a series of networks which

are not scalar linear solvable.

Recently sheaf cohomology has been connected to network coding [6]. Given

a network code the authors derive an NC sheaf, and by studying its cohomology

are able to prove the max flow-min cut bound, as well as state a criterion for the

network to be robust against link failure.

Another popular, and certainly more practical, research area is random linear

network coding. In random linear coding the linear combinations generated at each

node are random. This type of work takes advantage of the following fact about

finite dimensional vector spaces over finite fields.

5

Proposition 1.1. Let F = GF(q) be a finite field, and let V = FD be a D-

dimensional vector space. LetM1 = {v1, . . . , vn} ⊂ V andM2 = {w1, . . . , wm} ⊂ V

be two collections of vectors in V , such that 〈v1, . . . , vn〉 6⊆ 〈w1, . . . , wm〉. If a1, . . . , an

are chosen uniformly randomly from F, then a1v1 + · · ·+ anvn 6∈ 〈w1, . . . , wm〉 with

probability at least 1− 1/q.

This means that if we randomly choose a linear combination from one set of

vectors, there is a high probability that it will be outside the span of another set.

It happens that random linear coding tends to produce very simple algorithms that

are extremely efficient at disseminating data through a network.

Somewhat closer to our application is the problem of index coding. In an

index coding problem a central node has copies of several messages, and is able to

broadcast to a set of clients. Each client has a list of messages it demands, but

may also have some preexisting side information; that is, some number of messages

or linear combinations of messages it has already collected. The objective is for

the central server to satisfy all the clients’ demands with the minimum number of

broadcasts. A simple example of the index coding problem is depicted in figure 1.2.

The index coding problem turns out to be much more complex than one might

expect. In fact it is shown in [7] that index coding is at least as difficult as network

coding in the sense that any network coding problem can be reduced to an index

coding problem. However index coding problems only have one broadcast domain,

and therefore the geometry of the node arrangement is not an issue. When multiple

server nodes are involved, this index coding begins to intersect with the problem

6

{x,y}

{x} {y}

Figure 1.2: A simple example of the index coding problem. Both clients demand
both packets, x and y, and each has one packet of side information. The central
server can transmit x, then transmit y, or it can satisfy both demands with a single
transmission of x+ y.

of interference alignment, which aims to find ways to avoid interference between

proximal transmitters.

1.2 Network and Erasure Coding in Distributed Wireless Networks

We are interested in an application of network coding for data dissemination

in distributed wireless networks. This is just for the sake of introduction and moti-

vation, so we will describe the problem for random linear binary codes, but it easily

generalizes to linear coding over larger finite fields. Suppose we have a collection

of (stationary) wireless nodes in a region of the plane, X = {X1, . . . , XN} ⊂ R2,

and a large bundle of L bits of data. A mobile source node travels through the

network distributing pieces of the bundle to the stationary nodes as shown in fig-

ure 1.3. Then a mobile destination node travels through the network attempting to

collect the data bundle. Because the source and destination nodes are mobile and

the connections are opportunistic, it isn’t possible to transfer the data bundle in a

single session. The naive solution is to chop the bundle into M = dL
k
e fragments of

7

Figure 1.3: The network-coded data dissemination scenario. A mobile node travels
through a region covered by stationary servers, distributing fragments of a large
data bundle. A destination node also travels through the region, trying to collect
the pieces and reconstruct the data bundle.

k bits each, where k is small enough that at least one fragment can be transmitted

during each contact. The source node could then distribute random fragments to

the stationary nodes, and the destination node could pick them up in the same way.

The classic problem with plain fragmentation is the coupon collector’s problem.

If there are M fragments and the destination has collected M − 1 of them, the

probability that the next one it finds will be the missing piece is 1
M

. One elegant

solution to the coupon collector’s problem is to use erasure coding. In erasure coding

the source node distributes k-bit blocks of data that are encoded in such a way that

the destination can collect any M of them and recover the original data bundle. The

encoded blocks can be mathematically structured to ensure that any M of them are

enough to reconstruct the bundle, or random linear combinations, in which case it

may be necessary to collect slightly more than M encoded fragments. By prop 1.1,

with high probability it suffices to collect only slightly more than M .

8

Using erasure coding in opportunistic networks was first proposed around 2005.

In [8] the authors propose using erasure coding in conjunction with existing op-

portunistic routing methods, and [9] proposes a route selection method based on

portfolio theory to balance risk of sending encoded fragments over different unreli-

able routes. The traditional erasure coding used in these early efforts only allowed

encoded fragments to be generated at the source node; intermediate nodes sim-

ply forward and exchange the encoded fragments verbatim. However, in the case

of random linear coding, adding together encoded fragments produces a new lin-

ear combination of the original fragments, so it is reasonable to allow intermediate

nodes to create new linear combinations from old ones. [10] presented and math-

ematically modeled a random linear coding scheme for effective epidemic routing

wherein all nodes constantly generate new linear combinations of the encoded frag-

ments that they carry, and [11] presents simulation results showing that allowing

such re-encoding can be beneficial. [12] gives details of an implementation of an

opportunistic bundle router based on this random linear coding algorithm.

In this paper we will only consider linear codes. In this motivating example

in particular, we will focus on linear binary coding. We define some terminology to

make the motivation more clear.

Data Bundle: a large block of L bits of data that is to be distributed.

Fragment fi: a data bundle of length L is split into M = dL
k
e fragments of k bits,

which can be thought of as k-long binary vectors, fi ∈ GF(2)k.

9

Coefficient vector c: each encoded fragment has associated with it a vector c =

[c1, c2, . . . , cM], where ci ∈ GF(2) and i ∈ [1,M], specifies which fragments

were summed (xor) to create that encoded fragment.

Encoded fragment wc: an encoded bundle made up of some linear combination

of fragments such that wc =
∑M

i=1 cifi for some coefficient vector c.

Encoding Inventory MX: for a given node, X, its encoding inventory is the col-

lection of coefficient vectors of the encoded fragments it has stored.

Encoding Matrix EX: for a given node, X, a matrix whose rows contain the

coefficient vectors of a node’s encoding inventory.

If a node, X, collects an encoding inventory such that its encoding matrix, EX ,

has full rank, then it can invert EX to recover the original fragments and thereby

the original data bundle. Specifically, assume EX is an M ×M full rank encoding

matrix (if EX has rank M , but more than M rows, we can discard any rows that are

linearly dependent). Say the rows of EX are c1, . . . , cM , corresponding to encoded

fragments wc1 , . . . , wcM . Let d1, . . . ,dM be the rows of E−1
X . Then since

wci =
M∑
j=1

ci,jfj (1.1)

we know

fi =
M∑
j=1

di,jwcj (1.2)

10

With respect to a given node, X, with encoding inventory MX and encoding

matrix EX , an encoded fragment is innovative if adding it to X’s inventory in-

creases the rank of EX . A complementary notion of knowledge is coined in [13]. A

node, X, knows about coefficient vector c if c is not orthogonal to X’s existing

inventory; that is, if EXc 6= 0. Note that in a vector space over a finite field it is

possible for vectors to be self-orthogonal, that is, c 6= 0 but c · c = 0. However the

notion of knowledge is still useful because of the following fact (Lemma 4.2 in [13]):

Lemma 1.2. If node X knows about coefficient vector c and transmits a new encoded

fragment, generated by a random linear combination of its inventory, to node Y , then

Y knows about c with probability at least 1
2
. If the encoding is done over finite field

GF(q), then Y knows about c with probability at least 1 − 1
q
. Furthermore EX has

full rank iff X knows about every non-zero vector in GF(q)M .

Conventionally in opportunistic network research, the special case where only

the source node generates encoded fragments is referred to as Erasure Coding (EC),

and the more general case where in-network coding is allowed, and all nodes may

generate new linear combinations, is called Network Coding (NC). In [11] the authors

simulate and compare random linear NC and EC, and in [14] experiments with them

in several scenarios using the implementation described in [12].

The experiments in [14] are one of the motivations for this work. The authors

ran experiments with the mobile scenario described above, and attempt to quantify

how well the source node is distributing information to the stationary nodes. One

way to quantify the quality of code distribution at a point p ∈ R2 is to draw a circle

11

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000

 0

 50

 100

 150

 200

 250

 300

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000

 0

 100

 200

 300

 400

 500

 600

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Figure 1.4: The r-local rank in a region at two hour intervals during an experiment.
The x and y axes are physical coordinates, and the color gradient labels the r-local
rank at each point in the region. The maximum rank in this experiment is 1000.

of radius r around p, and consider the combined encoding inventories of the nodes

enclosed by that circle. We call this quantity the r-local rank, and denote it by

Rkr(p). Figure 1.4 shows the evolution of the r-local rank at a sequence of times

during an experiment.

The r-local rank gives some quantification of the quality of a distribution of

encoded fragments. Turning this metric around, however we note that the desti-

nation node’s goal is to collect enough encoded fragments to reconstruct the entire

data bundle. Therefore we want to quantify the amount of work necessary to do

12

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000
 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Figure 1.5: Contour plot of the minimum spanning radius in a 5km×5km area at
the end of a 10-hour 50-node experiment. Blue indicates small MSR, and therefore
a high concentration of code diversity.

that at different points in the region. We define the minimum spanning radius

at point p ∈ R2 as the radius of the smallest circle centered at p that encloses nodes

whose encoding inventories are sufficient to reconstruct the data bundle.

Rspan(p) = arg min
r

[Rt
r(x, y) = M] (1.3)

where M is the length of the coefficient vector (i.e. full rank). For this metric,

small values indicate a high concentration of code diversity. A contour plot of the

minimum spanning radius for one bundle at the end of an experiment is shown in

Figure 1.5. As one would expect, the destination tends to collect a full basis more

quickly when it starts out in areas of higher code diversity [14].

These metrics characterize coverage entirely in terms of rank, and omit any

information about the actual vector spaces spanned. In order to diagnose problems

in information coverage in a network, or just generally to understand the mathe-

13

matical structure of the problem, it would be useful to know what subspaces are

not spanned in regions of sparse code coverage. The minimum spanning radius can

be generalized to characterize the coverage of specific subspace. Let V = GF(2)M

be the vector space of all coefficient vectors and let U ⊆ V be a linear subspace.

Define the neighborhood encoding inventory of radius r at the point p to be:

Mr(p) =
⋃

X∈X s.t. |X−p|≤r

MX (1.4)

Then we can define the minimum spanning radius for U at point p as:

Rspan(p, U) = arg min
r

[U ⊆ 〈Mr(p)〉] (1.5)

For a fixed radius r0 and a subspace U ⊆ V , this allows us to define a region of

the plane where the work necessary to collect a set of encoded fragments spanning

U is (in some sense) bounded by a circular region of radius r0.

CCov
r0

(U) =
{
p ∈ R2

∣∣Rspan(p, U) ≤ r0

}
(1.6)

On the other hand it allows us to define a region where any node confined within

a circular region of radius r0 can never collect the encoded fragments necessary to

span U .

CNCov
r0

(U) =
{
p ∈ R2

∣∣Rspan(p, U) > r0

}
(1.7)

14

Thus we can define regions where there are lower and upper bounds on the work

necessary to reconstruct the data bundle.

Unfortunately exactly computing these regions requires detailed location infor-

mation about the nodes, and even with that information is a difficult computational

geometry problem. We will take inspiration from prior work on homological testing

of sensor network coverage to try and derive more practical and computationally

tractable criteria for testing information coverage in a geographically distributed

wireless network.

15

Chapter 2: Network Coverage Problems and Topology

The premise of a sensor network is that a large number of low-cost low-power

wireless nodes with some sort of sensor attached are scattered around a domain

D ⊆ R2. For example sensors could be collecting temperature or air quality readings,

or they could be seismic or motion-sensitive sensors that detect intruders in an area.

A simple model of such a sensor network assumes that each sensor has a circular

coverage area with a fixed radius within which its measurements are effective or

valid. Naturally one would like to distribute sensors in such a way that every point

in the domain is within range of at least one sensor; that is, the domain is covered

by sensors, as depicted in figure 2.1. A more stringent and robust criterion is to

ensure that every point is k-covered, that is, every point in the domain is within the

range of at least k sensors.

Algebraic topology has been employed as a tool for testing the geographic

coverage of a domain by radios and sensors with uniform circular ranges [15–18]. If

X = {X1, . . . , XN} ⊆ R2 are the locations of the sensors, and their sensing radius is

rs, then the criterion we want to test is that D ⊆ ∪Ni=1B(Xi, rs). For now assume that

D is compact Hausdorff and simply connected. In this case a reasonable homological

criterion for coverage would be that:

16

Figure 2.1: In the sensor network coverage problem the goal is to cover a domain,
D ⊆ R2 with balls of a certain radius, with no gaps or holes.

• the domain’s boundary is covered, ∂D ⊆
⋃N
i=1 B(Xi, rs)

• the covered domain is connected, H̃0(
⋃N
i=1 B(Xi, rs)) = 0

• the covered domain has no non-trivial 1-cycles, H1(
⋃N
i=1 B(Xi, rs)) = 0

In order to compute homology groups in practice we need something more

discrete than a union of balls. To make the problem more computationally tractable

we would use the Cech complex, or nerve, of the coverage balls, which we’ll denote

by Crs(X). The Cech complex is a simplicial complex whose 0-simplices correspond

to the individual balls {B(Xi, rs)}Xi∈X, and whose k-simplices correspond to k-fold

intersections of the balls. The Cech theorem states that the Cech complex has the

same homotopy type as the union of the balls, and therefore

Hk

(
N⋃
i=1

B(Xi, rs)

)
= Hk (Crs(X))

17

r
b

r
c

Figure 2.2: In the sensor network model each node has a sensor coverage radius,
rc, and a broadcast radius, rb, within which it can detect and communicate with its
neighbors.

Unfortunately the Cech complex isn’t accessible to us in practice. Since GPS

is expensive and energy-intensive, and generally requires either a large antenna or

a clear view of the sky, it is reasonable to expect that the low-cost low-power nodes

in a sensor network do not know their absolute locations or orientations. The only

local information they can gather is the identities of their immediate neighbors,

and possibly some rough distance indication. Even if the location information were

available, computing all k-fold intersections of a collection of balls is a surprisingly

complex problem, and it is desirable to build coverage criteria requiring only local

information.

Therefore we fall back to the Rips complex, which is the clique complex on

the connectivity graph of the network.

18

Definition 2.1. Given a collection of points X = {X1, . . . , XN} in a metric space

with metric d(·, ·), the Rips complex, Rr(X) for radius r is the simplicial complex

defined by:

• [Xi] ∈ Rr(X)

• [Xi Xj] ∈ Rr(X)⇔ d(Xi, Xj) ≤ r

• [Xi1 . . . Xik] ∈ Rr(X)⇔ [Xs Xt] ∈ Rr(X) ∀s, t ∈ {i1, . . . , ik}

When the vertex set X is clear from the context we will simply write Rr.

Part of the premise of the sensor network is that the sensor nodes have radios

for communication and that they can detect and communicate with their neighbors

within a broadcast radius rb > rc. This allows the nodes to build a connectivity

graph, which becomes the 1-skeleton of a Rips complex.

Since the goal is to cover the domain D with balls of radius rc, but we are

assumed to have a Rips complex with radius rb, certain constraints the ratio of the

two are required to ensure that homological properties of the Rips complex imply

coverage by the sensors. The criterion for planar points is that rc ≥ rb/
√

3, which

is exactly the ratio required to cover an equilateral triangle with sides of length

rb with balls of radius rc as shown in figure 2.3. Essentially this ensures that if a

simplex σ = [X0 . . . Xk] ∈ Rrb , then the convex hull conv(X0, . . . , Xk) is covered

by corresponding balls of radius rc.

19

r
b

r
c

Figure 2.3: The ratio between rc and rb is constrained by the worst-case of an
equilateral triangle.

2.1 Technical Problems and Solutions

There are three main complications that come up in homological sensor net-

work coverage criteria. First are the geometric defects of the Rips complex; the Cech

theorem does not apply to the Rips complex, and the Rips complex does not gen-

erally have the homotopy type of the union of the coverage areas. The relationship

between the coverage radius and broadcast radius complicates this further. Second

is the problem of dealing with the boundaries of the network. The network coverage

criteria that solve the first problem require identifying a sub-complex of the Rips

complex that roughly, geometrically, corresponds to the geographic boundaries of

the domain, D. Third is the possibility of D itself having holes; that is, if ∂D is

not connected. Because of the first problem, all the homological tests for network

coverage can be inconclusive in the negative case. The tests may detect a flaw in

20

the network, even when the coverage is complete. On the other hand, a positive

result is conclusive; when the homological coverage tests succeed, it implies that the

coverage is complete.

2.1.1 Defects of the Rips Complex

The Cech theorem does not apply to the Rips complex, and the Rips complex

does not generally have the homotopy type of the union of the coverage areas. Non-

trivial (and high dimensional) homological features can appear in the Rips complex

Rr(X), even when the corresponding Cech complex Cr/2(X) is contractible. A key

theorem proved by de Silva and Ghrist captures the homology of the Cech complex

between the homologies of two Rips complexes [15, 16]:

Theorem 2.2. Given a collection of points X = {X1, . . . , XN} ⊆ R2 and given two

positive radii r > r′ such that r
r′
≥ 2√

3
, then

Rr′(X) ⊆ Cr/2(X) ⊆ Rr(X) (2.1)

This means that the map induced by the inclusion

i∗ : Hk(Rr′)→ Hk(Rr) (2.2)

passes through the homology of the Cech complex.

21

Hk(Rr′)
i∗ //

&&

Hk(Rr)

Hk(Cr/2)

99
(2.3)

Therefore if 0 6= [α] ∈ Hk(Rr′) and if i∗([α]) 6= 0, then [α] corresponds to a non-zero

element of Hk(Cr/2), and therefore a non-trivial feature in the actual sensor coverage

area.

Using this result requires a complication of the assumptions of the sensor

network model. In [16] de Silva and Ghrist further assume that each node has a

sensor with coverage radius rc, and a radio that can communicate with and detect

neighbors within a weak signal radius rw, and can also detect when its neighbors

are within a strong signal radius rs < rw as shown in figure 2.4. The geometric

constraint on these radii in the planar case is rw ≥ rs
2√
3
.

A similar tool is used by Chambers to deal with quasi-Rips complexes of planar

point sets [19, 20]. Testing the longevity of generators of homology groups across a

filtered complex can be done by computing the persistent homology of the filtration.

This theorem gives a sufficient, but not necessary, criterion for identifying

non-zero elements of Hk(Cr/2). Therefore it is only useful for coverage criteria where

the existence of such a non-zero element implies coverage. It isn’t useful for criteria

based on H1(R) and H1(C), where the existence of a non-zero element would indicate

a coverage defect.

22

r
w

r
s

r
c

Figure 2.4: In the weakly-fenced sensor network model each node has a sensor cov-
erage radius, rc, and two communication radii. It can distinguish between neighbors
within a strong communication radius, rs, and a (longer) weak communication ra-
dius, rw.

2.1.2 Network Boundary Identification Problems

A second challenge for homological coverage testing is identifying the network

boundaries. Considering a collection X = {X1, . . . , XN} of nodes in the plane, in

general the notion of the boundary of the network is not well defined. In general it

isn’t possible to deduce, based on connectivity information alone, which nodes are

at the edge of the network. The simplest solution, taken by de Silva and Ghrist

in [21], is to assume prior knowledge of the network boundary; that the boundary

of the domain, ∂D, is connected and piecewise linear, with specially identified fence

nodes at the vertices, and that neighboring fence nodes are within communication

range of each other. They call this subcomplex the fence cycle, F ⊂ Rrb .

Other papers by de Silva and Ghrist make weaker assumptions about having

prior information about the fence cycle. In [15,18] they assume that the nodes can

23

detect when they are within a certain distance, the fence radius rf , of the domain

boundary ∂D, and define this subset of nodes to be the fence nodes. They define

the fence complex, Fr, for a given radius r, to be the Rips complex on this subset

of points. They define a sub-domain C ⊆ D called the collar which are the areas

within rf + 1
2
rs of ∂D, and concentrate on coverage tests for the interior, D − C.

This more complicated criterion requires additional assumptions about the

curvature and shape of the boundary. The boundary cannot be too undulating, and

the interior of the domain D − C must be connected.

In fact, the problem of identifying boundary cycles in a sensor network with-

out location information is a serious research topic in itself [22]. The main practical

methods proposed for network boundary detection involve either finding nodes with

lower degrees of connectivity (statistical considerations), or detecting certain topo-

logical structures or discontinuities and extremities in the shortest paths through

the network (routing considerations) [22,23]. Neither of these seems to provide the

strong geometric guarantees required in de Silva and Ghrist’s work. Logistically the

the assumption of prior knowledge of the fence cycle seems just as reasonable, and

much simpler, than the fence detection assumptions.

The concept and the metaphor is intuitive, but de Silva and Ghrist and others

use the term “fence” to mean different things in different settings. We will give a a

more precise definition in section 3.1.3 before we use it formally.

24

2.1.3 Disconnected Domain Boundaries

A third challenge for homological criteria for network coverage is the possibility

of internal boundaries, and the shape of the coverage domain, D. If the domain

D itself contains holes, then any criterion based solely on testing H1 of the Rips

complex will be insufficient. Instead of looking for holes in coverage by testing

H1(Rrb), de Silva and Ghrist consider the second relative homology H2(Rrb ,F). If

this is non-zero, then they can almost conclude that the domain D is fully covered

by sensors. It is also necessary to exclude features of H2 that arise because of

Rips complex complications; either using lemma 2.2 or by explicitly requiring a

generator [α] ∈ H2(Rrb ,F) such that ∂α 6= 0. This criterion is effective even

if the boundary of the domain, ∂D is disconnected, as long as the outer and inner

boundaries are distinguished. In chapter 3.1.3 we will generalize these results slightly

for our purposes and then build on them in chapter 4.

2.2 Proving the Coverage Criterion

This summarizes de Silva and Ghrist’s proof for the simplest case, where the

domainD is simply connected and the Rips complex has a well-identified subcomplex

F such that the projection p : F → ∂D ∼= S1 is a homeomorphism. We will deal

with this situation and some extensions more formally in chapter 3.1.3.

The link between the Rips complexes and the geometry comes from the pro-

jection map p : Rr(X)→ R2 which maps each sensor vertex Xi ∈ X to its location

in the plane, and maps each simplex σ = [X0 . . . Xk] ∈ Rr(X) to its convex hull

25

in the plane, p([X0 . . . Xk]) = conv(X0, . . . , Xk). This induces maps between the

long exact sequences for the pairs (Rrb ,F) and (R2, ∂D), giving the commutative

square:

H2(Rrb ,F)
δ∗ //

p∗
��

H1(F)

p∗
��

H2(R2, ∂D)
δ∗ // H1(∂D)

(2.4)

By our assumptions the map p∗ : H1(F) → H1(∂D) on the right side of this

box is an isomorphism. Assume that we have [α] ∈ H2(Rrb ,F) with ∂α 6= 0. Then

p∗δ∗[α] = p∗[∂α] 6= 0. Therefore δ∗p∗[α] 6= 0, so p∗[α] 6= 0.

Let U = D∩
(⋃N

i=1 Brc(Xi)
)

be the subset of the domain, D, actually covered

by sensors. Suppose there is some point in D not covered, x ∈ D − U . Then

p : (Rrb ,F)→ (R2 − x, ∂D) and we can factor the left side of the box:

H2(Rrb ,F)
δ∗ //

p∗

��

p∗vv

H1(F)

p∗

��

H2(R2 − x, ∂D)
i∗

((
H2(R2, ∂D)

δ∗ // H1(∂D)

(2.5)

But H2(R2 − x, ∂D) = 0, so p∗[α] = 0, a contradiction. So there can be no point

x ∈ D not covered by U .

In the case with dual communication radii, rw > rs > rc, the proof is essentially

the same, but the details get much more complicated.

26

2.3 Shadows, Lifts, and Chambers’s Isomorphism

Some of the interesting structure in the sensor network coverage problem comes

from the fact that de Silva and Ghrist’s model assumes a sensing radius that is less

than the communication radius. If one looks at the coverage provided by balls with

the same radius as the Rips radius, and restricting the Rips vertices to R2, then the

result is much simpler and stronger. The fundamental group of the Rips complex

is isomorphic to that of the shadow of the Rips complex. The Rips complex may

still have exotic topological features in higher dimensions, but the one-dimensional

features are well behaved. This was proved by Chambers et al. [19,20]. Here we will

summarize parts of that work. We will use similar notions to define data coverage,

and it will be informative to see how the Rips complex and coverage complex diverge

in the context of Chambers’s proof.

Throughout this section, we fix the Rips radius r = 1.

2.3.1 The Rips Shadow

Given a set of points in the plane X = {X1, . . . , Xn} ⊂ R2 and a simplicial

complex Σ whose 0-simplices are in 1-1 correspondence with the points of X, there

is a natural projection

p : Σ −→ R2 (2.6)

defined by

27

[Xi] 7→ Xi

[Xi0 · · · Xik] 7→ conv(Xi0 , . . . , Xik)

Where conv(X1, . . . , Xk) denotes the convex hull of the specified points.

In the case where Σ is a Rips complex, the image of this map is called the

Rips shadow of X, or simply the shadow.

Definition 2.3. For any finite set of points in the plane X ⊆ R2 with Rips complex

Rr(X), the Rips shadow, Sr(X), is the image of the projection map:

Sr(X) := p(Rr(X)) (2.7)

Often the Rips radius and the set of points will be fixed and we will simply

write S = p(R).

IfRr(X) is a Rips complex, then Sr(X) is a natural approximation to the union

of balls
⋃n
i=1 B(Xi, r) for the following obvious reason.

Lemma 2.4. For any simplex σ = [X0 . . . Xk] ∈ R, and any point x ∈ p(σ) =

conv(X0, . . . , Xk), |x−Xi| ≤ r for each X0, . . . , Xk.

Corollary 2.5. For any simplex σ = [X0 . . . Xk] ∈ R, p(σ) ⊆
⋃k
i=1 B(Xi, r).

Caratheodory’s theorem says that if a point x ∈ Rd lies in the convex hull of

some set of points in Rd, then it lies in the convex hull of some subset of d + 1 of

them. Therefore in our case, for the purpose of investigating π1 we only need to

consider the 2-skeleton of R. Combining this with Corollary 2.5 and extending it

28

pR =R X 

S= p R X={X 1, , X n}⊂ℝ
2

Figure 2.5: The Rips complex of points in the plane projects naturally back down
to the plane. Each vertex maps to itself, and each simplex maps to the convex hull
of its vertices. The image of this projection is called the Rips shadow, S.

to all simplices in R we get

Sr(X) =
⋃

σ∈Rr(X)

p(σ) (2.8)

=
⋃
k∈Z+

⋃
[X0 ··· Xk]∈R

conv(X0, . . . , Xk) (2.9)

=
2⋃

k=0

⋃
[X0 ··· Xk]∈R

conv(X0, . . . , Xk) (2.10)

Now we can state Chambers’s main result.

Theorem 2.6. For any finite set of distinct points in the plane X ⊆ R2 and positive

radius r, the projection map p : Rr(X) → Sr(X) induces an isomorphism between

fundamental groups.

p∗ : π1(Rr(X))
∼=−→ π1(Sr(X)) (2.11)

29

2.3.2 Shadow Paths and Rips Paths

Chambers’s proof relies on the concept of lifting paths from the shadow to the

Rips complex. Explaining this requires some more definitions. Recall that for any

simplicial complex Σ, Σ(k) denotes the k-skeleton of Σ.

Σ(k) = {σ ∈ Σ | |σ| ≤ k + 1} (2.12)

Definition 2.7. Given a finite set of points X ⊆ R2 with Rips complex R = Rr(X):

• A Rips vertex is any 0-simplex [X] ∈ R.

• A Rips edge is any 1-simplex [X Y] ∈ R

• A shadow vertex is the projected image of a Rips vertex or a transverse

intersection of the projection of two Rips edges. The set of shadow vertices

will be denoted S(0).

• A shadow edge xy is the closure of a connected component in p(R(1)) \ S(0).

The set of shadow edges will be denoted S(1).

The idea of shadow vertex and shadow edge could use some more explanation.

Initially one would expect to define a shadow vertex to be the projected image of

a 0-simplex of R, and a shadow edge to be projected image of a 1-simplex in R.

However that definition would be insufficient because the projection of of two Rips

edges can intersect. p is not a bijection and these points of intersection will be used

to capture the effects of that.

30

For example, in the figure below [A], [B], [Y], [Z] are Rips vertices, and [AB], [Y Z]

are Rips edges. Their projections intersect at the point x, so A,B, Y, Z, x are all

shadow vertices. The shadow edges in this case are Ax, xB, Y x, xZ.

A

B

ZY
x

Generally, a path in Rn is a continuous map γ : [0, 1]→ Rn. A cycle (or loop)

is a continuous map γ : S1 → Rn. Any path, γ : [0, 1]→ S(1) with γ(0), γ(1) ∈ S(0)

is homotopic rel its endpoints to a concatenation of paths along individual shadow

edges; γ̃ = γ0 ∗ · · · ∗ γm such that γi([0, 1]) = tihi, γi(0) = ti, γi(1) = hi for

some sequence t0h0, t1h1, . . . , tmhm of oriented shadow edges, such that the head

of the ith edge is the tail of the (i + 1)th edge; hi = ti+1. Similarly, any shadow

cycle γ : [0, 1] → S(1) with γ(0), γ(1) ∈ S(0) is homotopic rel its endpoints to a

concatenation of paths along individual shadow edges; γ̃ = γ0 ∗ · · · ∗ γm such that

γi([0, 1]) = tihi, γi(0) = ti, γi(1) = hi for some sequence t0h0, t1h1, . . . , tmhm of

oriented shadow edges, such that the head of the ith edge is the tail of the (i+ 1)th

edge; hi = ti+1 and hm = t0.

By shadow path and shadow cycle we will be referring to paths and cycles of

this type. To simplify notation, shadow paths/cycles will be denoted by the sequence

of shadow vertices they pass through. For example t0h0, t1h1, . . . , tmhm would be

denoted t0t1 . . . tm. Paths and cycles can also be defined in the Rips complex. A

31

Rips path is an oriented sequence of 1-simplices Γ = [A0 B0], . . . , [Am Bm] such

that Bi = Ai+1. A Rips cycle is a Rips path with Bm = A0.

2.3.3 Lifting Shadow Paths

Lifting here refers to taking a shadow path, α, in S and chaining together

a sequence of Rips edges into a Rips path α̂ that covers α. It is not immediately

obvious that such a lift will exist. In general it is not unique. The important

property, in the case of Rips complexes, is that for any shadow path, lifting and

projecting the lift back to S is homotopic (in S) rel the endpoints of the path to

the original shadow path.

In general if we have a shadow path α = a1a2 · · · an, each edge, aiai+1, lies

in the image of some Rips edge [Xi Yi]. Therefore, given α, we will always have

a corresponding sequence of Rips edges [X1 Y1], [X2 Y2], . . . , [Xn−1 Yn−1] where

aiai+1 ⊆ p([Xi Yi]). However this sequence is not necessarily a Rips path because

successive segments may not share an endpoint.

The figure below shows an example. The shadow path α = a1a2a3a4 has three

segments, but the Rips edges that cover them do not share any endpoints. In order

for a true lift to a Rips path to exist there must be some additional Rips edges

available in R which we can insert into the sequence to chain these Rips edges

together.

The following lemma follows from the triangle inequality, and essentially shows

that lifts of shadow paths to Rips paths exist, and can be used to show that any

32

Y
2

X
2

a
1

Y
1 X

3

a
2 a

3

a
4

X
1

Y
3

two lifts of a shadow path are homotopic, rel the endpoints, in R.

Lemma 2.8. Let {A,B, Y, Z} ⊆ X ⊆ R2. Suppose [A B], [Y Z] ∈ R(X) and

AB ∩ Y Z = {x}, and that Ax is the shortest of the four resulting shadow edges.

Then [A Y Z] ∈ R. In particular Rr({A,B, Y, Z}) is a cone over [A].

In the example above, for instance, considering adjacent shadow edges a1a2, a2a3,

the Rips complex on the four Rips vertices R({X1, Y1, X2, Y2}) is a cone over one

of those Rips vertices. No matter which one, there is a sequence of Rips edges in

R({X1, Y1, X2, Y2}) that can be inserted between [X1 Y1] and [X2 Y2] to give a true

Rips path from [X1] to [Y2], and any such sequence is homotopic to all the possible

ones.

Y
2

a
1

X
3

a
2 a

3

a
4 Y

3

X
2

Y
1

X
1

The following lemma says that lifts toR are well-behaved, and is key to proving

theorem 2.6.

33

Lemma 2.9. Given a shadow path α with endpoints in p(R(0)), for any lift α̂,

p(α̂) ' α (in S) rel the endpoints.

The proof of theorem 2.6 centers on showing that p∗ is injective, and is done

by showing that the boundary of a shadow face must lift to a contractible (in R)

Rips cycle.

We will cite theorem 2.6 several times in this paper, and it will be illuminating

to see where the coverage complexes we define will diverge from the nice behavior of

the Rips complex. For example for the type of simplicial complexes we investigate

lifts may not exist; or if they do they may not project back down to something

homotopic to the original shadow path.

2.4 Extending to Network Code Coverage

In the case of sensor networks, the questions of coverage are entirely geometric.

There is some fixed underlying domainD which must be covered by sensors, and each

node has two associated radii: rb is the radio range, or the range within which two

nodes can detect each others’ presence, and rc < rb, the sensor coverage radius. One

has to derive conclusions about the coverage of balls of radius rc from connectivity

information at radius rb, or the Rips complex Rrb . In extending this approach to

network coded information coverage we can simplify the problem by assuming the

the coverage radius and communication radius are the same. In principle any server

node can communicate just as well with any other server node as it can with any

client node. A practical argument could be made for a case where server nodes

34

are more powerful, or mounted with higher visibility, and therefore their ability

to communicate with each other is better than their ability to communicate with

a mobile client, but the problem of network code coverage will introduce enough

complications without adding the geometric issues of multiple communication radii.

Besides that, the geometric constraint of having the coverage radius smaller than the

radius used to construct the Rips complex has been thoroughly studied by de Silva

and Ghrist.

Regarding network boundaries: in the case of network coded information cov-

erage problems we would like to take the network/node arrangement for what it

is. That is, given an arrangement of server nodes, we can never hope to distribute

coded information in a way that covers an area larger than the limits of the net-

work. Since our only window into the node geometry is the connectivity graph, the

natural domain to aim for is the Rips shadow, S ⊂ R2, discussed in the last section.

Unfortunately in general it is impossible to identify the boundary ∂S based only on

connectivity information. ∂S is piecewise linear, but the vertices of ∂S need not

correspond to vertices of the Rips complex. To make the problem of network coded

information coverage approachable we will make assumptions similar to de Silva

and Ghrist in [21]: that we have prior knowledge of a subcomplex F ⊆ R such that

p : F → ∂S is a homeomorphism.

While the sensor network coverage work is geared toward identifying holes

in coverage so nodes can be added or rearranged to patch those holes, we will be

focused on distributing network coded data amongst the nodes so that any point in

the coverage area of the network, whatever that may be, a mobile user can recover

35

0

1

1

1

1

0

1

0

1

1

1

1

1

0

0

1

0

0

0

1

1

0

0

1

0

1

1

1

1

0

1

1

0

0

0

1

0

1

0

Figure 2.6: The network coded data coverage problem is more complicated. Each
node has a certain inventory of vectors in a vector space. Only the intersection of
a collection of balls whose inventories span the entire vector space are considered
covered. Covered areas are the places where a user is within radius r of the data
necessary to recover the original message.

the complete data bundle with some bounded amount of work. It is important to

decide what our actual coverage goal will be; that is, what we mean by “coverage

area of the network”, and how we will characterize successful coverage.

Figure 2.6 shows the same node arrangement as in figure 2.1 but with one

vector distributed to each node. The yellow shaded areas are areas in range of nodes

collectively holding a full basis for the full vector space V = GF(2)3. In this figure we

are confronted with one major difficulty of network code coverage problems. There

is no clear analogue of the Cech complex for network code coverage. That is, there

is no natural simplicial complex whose vertices correspond to the nodes which will

capture the homotopy type of the covered areas. This is because, while intersections

of convex shapes have a natural hereditary property (if three balls intersect, then

each pair of two of them also intersects), information overlaps are just the opposite.

If X, Y, Z ∈ R2, and the points inside Br(X) ∩Br(Y) ∩Br(Z) are within range of

36

a full basis for V , that is no guarantee that any of the two-fold intersections span

anything. The best we will have are a variety of subcomplexes of the Rips complex

whose shadows are contained in the covered areas.

On the other hand, there is a universal recipe for success in the network code

coverage problem. If all nodes carry a full basis, then the entire network is covered.

Everything else is an optimization on that extreme case, or a diagnosis of its failure.

37

Chapter 3: The Network Coded Coverage Problem

Here we will state a mathematically-abstracted version of the network coded

coverage problem and begin building and studying topological structures based on

it. First we define a abstract mathematical representation of a geographically dis-

tributed collection of network coded data.

Definition 3.1. Let F be a finite field of characteristic q, and let V = FD be a

finite dimensional vector space over F. Then a finite data arrangement over V

is a collection of pairs X = {(X1,MX1), . . . , (XN ,MXN
)} where Xi are points in

a metric space, and MXi
= {~vi,1, . . . , ~vi,ni

} are collections of vectors in V . MXi
is

called the inventory of Xi. If {X1, . . . , XN} ⊆ R2 then we will say that X is a

finite planar data arrangement.

Note that MXi
can be viewed as a vector matroid.

The goal in network coded data dissemination is to arrange the inventories of

the points of X so that every point in the range of the network is in range of a full

basis for V . We will need to clarify what we mean by “in the range of the network”

and “in range of a full basis for V ”. In order to simplify the exposition, we make

the following notational definitions.

38

Definition 3.2. Given a collection of vectors M = {~v1, . . . , ~vk}, ~vi ∈ V = FD we

let 〈M〉 = 〈~v1, . . . , ~vk〉 denote the linear span of the vectors in that collection.

〈M〉 =

{
~v ∈ V

∣∣∣∣∣ ∃ai ∈ F with ~v =
k∑
i=1

ai~vi

}
(3.1)

Given collections of vectors M1, . . . ,Mk, Mi = {~vi,1, . . . , ~vi,li} in V = FD we let

〈M1, . . . ,Mk〉 denote the collective span of the vectors in those sets.

〈M1, . . . ,Mk〉 = 〈M1 ∪ · · · ∪Ml〉 (3.2)

For convenience we extend this notation to define the linear span of points in

X and simplices on those points.

Definition 3.3. For a point (X,MX) ∈ X the span of X, denoted 〈X〉, is the

subspace of V spanned by the vectors of MX

〈X〉 = 〈MX〉 (3.3)

For a simplex σ = [X0 . . . Xk] the span of the simplex is defined as the span of the

union of the inventories of its vertices:

〈σ〉 = 〈MX0 ∪ · · · ∪MXk
〉 (3.4)

39

Finally, given two or more simplices σ1, . . . , σn we define

〈σ1, . . . , σn〉 = 〈σ(0)
1 ∪ · · · ∪ σ(0)

n 〉 (3.5)

3.1 The Coverage Complex RC(U)

Let X = {(X1,MX1), . . . , (XN ,MXN
)} be a finite planar data arrangement.

For such a data arrangement we can define the Rips complex of radius r in the

obvious way, based on the points in the arrangement.

Rr(X) = Rr({X1, . . . , XN}) (3.6)

Definition 3.4. Let V = FD and let X be a finite planar data arrangement over

V with Rips complex Rr(X). Let U ⊆ V be a linear subspace. Then the coverage

complex for U , RC
r (X , U) ⊆ Rr(X), is the subcomplex of the Rips complex

defined by

σ ∈ RC
r (X , U) ⇔ ∃ τ1, . . . , τl ∈ Rr(X) such that

σ ⊆ τi ∀i = 1 . . . l and U ⊆ 〈τ1, . . . , τl〉

In other words given a Rips simplex, σ ∈ Rr(X), we have σ ∈ RC
r (X , U) if

σ is a face in the union of some collection of Rips simplices whose combined span

contains U (under the convention that a simplex is a face of itself).

We could equivalently take the τi to be maximal in the definition above.

40

In much of this paper the data arrangement X and the radius r will be fixed,

so we will tend to leave them off the notation and simply write RC(U) for the

coverage complex for U and R for the Rips complex.

The following fact is obvious, but worth noting.

Lemma 3.5. RC(U) is a simplicial complex.

Proof. RC(U) is a collection of simplices inR. We just need to verify that it satisfies

the hereditary property. That is, if a simplex σ is in RC(U), then all of its faces are

as well.

Suppose σ ∈ RC(U). Then there are some (maximal) simplices τi, . . . , τn such

that σ ⊆ τi for i = 1, . . . , n and U ⊆ 〈τ1, . . . , τn〉. Let σ′ be a face of σ. Then

σ′ ⊆ τi for i = 1, . . . , n, as well, and therefore σ′ ∈ RC(U)

We also note the following.

Lemma 3.6. RC(0) = R.

3.1.1 Simple Examples of RC

Consider an arrangement of four points, A,B,C,D ∈ R2, with the Rips com-

plex R and vector inventories from V = GF(2)2 pictured below.

A

B
C

D

1

0

1

0

0

1

41

Then V = GF(2)2 has three non-zero vectors and 3 + 3 + 1 non-zero linear

subspaces (including V itself. The coverage complexes for the dimension 1 subspaces

are:

RC((1
0)) RC((0

1)) RC((1
1))

A

B
C

D

1

0

1

0

0

1

A

B
C

1

0

0

1

A

B
C

1

0

0

1

In the example above there are two maximal simplices, [A B C] and [B C D].

Since the combined inventories of A and C span all of V , 〈[A B C]〉 = V , and

[A B C] is in all the coverage complexes. On the other hand 〈[B C D]〉 = 〈(1
0)〉, so

[B C D] is only in RC((1
0)).

Next consider the same four points, with the vector inventories pictured below.

A

B
C

D
0

1

1

0

The coverage complexes for the 1D subspaces are shown below. Obviously

〈[A B C]〉 = 〈(1
0)〉 and 〈[B C D]〉 = 〈(0

1)〉. However the 1-simplex [B C] is a

face of both maximal simplices, which together span all of V . Therefore, by the

definition of the coverage complex, [B C] ⊆ [A B C] and [B C] ⊆ [B C D], and

(1
1) ∈ 〈[A B C], [B C D]〉 = V , so [B C] ∈ RC((1

1)).

42

RC((1
0)) RC((0

1)) RC((1
1))

A

B
C

1

0

B
C

D
0

1

B
C

The property illustrated here, that the span of a simplex is the combined span

of all the maximal simplices that it is a face of, leads us to sometimes call the

coverage complex the multi-sponsored coverage complex. This is in contrast to

the single-sponsored coverage complex we will investigate later. The multi-sponsored

coverage complex makes sense geometrically, and is reasonable to compute, but it

is more difficult to deal with in some proofs.

3.1.2 Basic Properties of RC

A lattice is a partially ordered set, (L,≤), with binary operations ∧ (meet)

and ∨ (join). A lattice is bounded if it has a unique minimal element 0̂ which is less

than everything else in the lattice, and a unique maximal element which is greater

than everything else in the lattice.

The collection of subcomplexes of R forms a bounded lattice, (LR,⊆), ordered

by inclusion with:

• minimal element ∅

• maximal element R

• meet operation is set intersection Σ1 ∧ Σ2 = Σ1 ∩ Σ2

43

• join operation is set union Σ1 ∨ Σ2 = Σ1 ∪ Σ2

The collection of linear subspaces of V also forms a lattice, (LV ,⊆), ordered

by inclusion, with:

• minimal element {~0}

• maximal element V

• meet operation is set intersection W1 ∧W2 = W1 ∩W2

• join operation is the span W1 ∨W2 = 〈W1,W2〉

Lemma 3.7. The coverage complex operation:

RC(·) : (LV ,⊆) −→ (LR,⊆) (3.7)

reverses the poset order. That is:

U ⊆ W ⊆ V ⇒ RC(W) ⊆ RC(U) (3.8)

Proof. Suppose U ⊆ W ⊆ V , and σ ∈ RC(W). Then there is a τ1, . . . , τl ∈ R such

that σ ⊆ τi ∀i, and W ⊆ 〈τ1, . . . , τl〉.

But U ⊆ W ⊆ 〈τ1, . . . , τl〉, so σ ∈ RC(U).

It is natural to wonder if there is a complete correspondence between the two

lattices. Do joins in LV correspond to meets in LR, and vice-versa? It turns out

only one of these is true in general.

44

Lemma 3.8. RC(〈U,W 〉) = RC(U) ∩RC(W)

Proof. U ⊆ 〈U,W 〉 and W ⊆ 〈U,W 〉, so by the last lemma RC(〈U,W 〉) ⊆ RC(U)

and RC(〈U,W 〉) ⊆ RC(W). Therefore RC(〈U,W 〉) ⊆ RC(U) ∩RC(W)

Take σ ∈ RC(U) ∩ RC(W). Then there exist τ1, . . . , τl ∈ R such that σ ⊆ τi

for each τi, and U ⊆ 〈τ1, . . . , τl〉.

Similarly there exist τ ′1, . . . , τ
′
k ∈ R such that σ ⊆ τ ′i for each τ ′i , and W ⊆

〈τ ′1, . . . , τ ′k〉. Then 〈U,W 〉 ⊆ 〈τ1, . . . , τl, τ
′
1, . . . , τ

′
k〉. Therefore σ ∈ RC(〈U,W 〉),

and generally RC(〈U,W 〉) ⊇ RC(U) ∩RC(W)

Corollary 3.9. If {~v1, ~v2, . . . , ~vd} is any set of vectors spanning V , then

RC(V) =
d⋂
i=1

RC(〈~vi〉)

The following Hasse diagrams summarize the poset reversal property of the

coverage complex.

〈U,W 〉 RC(U ∩W)

RC(U) ∪RC(W)

U W RC(U) RC(W)

RC(U) ∩RC(W)

U ∩W RC(〈U,W 〉)

=

45

3.1.3 Basic Data Coverage Results For RC

The coverage complex is a geometrically sensible object to use to study network

code coverage because, as a subcomplex of the Rips complex, lemma 2.4 holds: for

any σ ∈ R, every point x ∈ p(σ) is within distance r of each of the vertices of σ.

Therefore if 〈σ〉 = U ⊆ V it is clear that any point x ∈ p(σ) = conv(X0, . . . , Xk) is

within distance r of a set of points whose collective inventories span U . We could

say that every point in p(σ) is covered by U . This is the notion of coverage we want

to capture.

Definition 3.10. Let X = {(X1,MX1), . . . , (XN ,MXN
)} be a finite planar data

arrangement over V = FD, and let r > 0 be some radius. Then for any point x ∈ R2

define the ambient vector matroid of radius r at x,Mr(x), to be the collection

of vectors in the inventories of all points of X within radius r of x.

Mr(x) =
⋃

|x−Xi|≤r

MXi
(3.9)

For any linear subspace U ⊆ V and domain D ⊆ R2 we say that D is covered

by U if ∀x ∈ D, U ⊆ 〈Mr(x)〉.

Lemma 3.11. If σ = [X0 . . . Xk] ∈ RC(U) then p(σ) = conv(X0, . . . , Xk) is

covered by U .

Proof. Let τ1, . . . , τn ∈ R be all maximal cofaces of σ in R, and let Y = {Y1, . . . , Yn}

46

be the collection of all their vertices. Since σ ⊆ τ1, . . . , τn ∈ R every point x ∈

conv(X0, . . . , Xk) is within distance r of each vertex in Y . ThereforeMY1 , . . . ,MYn ⊆

Mr(x). Then, since σ ∈ RC(U), by the definition of RC(U) we know

U ⊆ 〈τ1, . . . , τn〉

= 〈MY1 , . . . ,MYn〉

⊆ 〈Mr(x)〉

Therefore p(σ) is covered by U .

We would also like to define an analogue of the Rips shadow for coverage com-

plexes.

Definition 3.12. Let U ⊆ V be a linear subspace of V , and let RC
r (X , U) be a

coverage complex. The coverage shadow SCr (X , U) for radius r is the image of

RC
r (X , U) under the Rips shadow projection map.

SCr (X , U) = p(RC
r (X , U)) ⊆ R2 (3.10)

Just as with the coverage complex, in contexts where the radius r and the data

arrangement X are clear, we will omit them from the notation and simply write

SC(U).

Then lemma 3.11 implies that the coverage shadow is covered.

47

Corollary 3.13. For a given data arrangement X , radius r > 0, linear subspace

U ⊆ V , SC(U) is covered by U .

So RC gives us a sufficient (but not necessary) criterion for ensuring that the

convex hull of a set of points is covered by a certain vector space. Furthermore we

will see that if there are no “holes” in the coverage complex for U , then we can

conclude that there are no “holes” in the region with access to a basis for U .

The specific properties of the boundary of the coverage domain and its corre-

spondence with the Rips and coverage complexes is a key detail. It is worth defining

exactly what we mean when we talk about a “fence subcomplex”.

Definition 3.14. Given a finite set of points X ⊆ R2 with Rips complex R = R(X)

and a domain D ⊆ R2, we say that a subcomplex F ⊆ R is a fence subcomplex

for D if

• p : F
∼=−→ ∂D is a homeomorphism.

• F = F+ t F− where F+ projects to ∂+D, the outer boundary of D, and F−

projects to ∂−D, the inner boundary components of D.

Note that having a fence subcomplex implies that ∂D is piecewise linear and

that all the 0-simplices of F are on the boundary ∂D. The reason we require that

p : F
∼=−→ ∂D be a homeomorphism, rather than p(F) = ∂D, is a technicality, to

avoid cases where the projection map on the fence subcomplex would not be 1-to-

1. For example for the points shown below, we could have several closely-spaced

colinear points on the boundary of D that lead to several 1-simplices in the Rips

48

complex whose images under p overlap. This would make it possible to choose a

subcomplex F ⊆ R such that p(F) = ∂D but with extra cycles that are degenerate

upon projection to R2.

C BA D

p

C BA D

C

B
A DF

R

Another possible boundary complication that is prohibited under this defini-

tion is the case where the projection of two 1-simplices of F cross transversally in

their interiors, as shown below. In such a case p(F) 6= ∂S.

B
C

A

D

A final complication that is allowed under this definition, but which can of-

ten be discounted, is the case where the outer boundary ∂+S does not have the

homotopy type of a circle, as in the figure below. This is possible when the outer

boundary intersects itself at a Rips vertex.

In this case the outer boundary is homeomorphic to a wedge of circles. In

49

B

D

X
C

A

most coverage criteria we have to either explicitly assume that this does not occur,

or deal with the individual regions enclosed by the sub-cycles of ∂+S separately.

The following theorem is a slight generalization of that proved by de Silva

and Ghrist in [21]. Essentially every simplex in the Rips complex has the geometric

property of lemma 3.11, so therefore the theorem applies to any subcomplex of the

Rips complex.

Theorem 3.15. Let R = Rr(X) be a Rips complex for a finite set of points X ⊆ R2,

and let S = p(R) be its Rips shadow. Let Σ ⊆ R be any subcomplex such that

• There is a fence subcomplex for S, and F ⊆ Σ ⊆ R

• ∂S ' S1

If there exists a 2-chain α ∈ C2(Σ) defining a non-zero homology class 0 6= [α] ∈

H2(Σ,F) such that 0 6= ∂α ∈ C1(Σ), then p(Σ) = S.

Note that for a 2-chain α ∈ C2(Σ) to define a homology class [α] ∈ H2(Σ,F)

it must be a relative 2-cycle. That is, ∂α = 0 in C1(Σ,F), or in other words

∂α ∈ C1(F). This would include the possibility that ∂α = 0 in C1(Σ). The

requirement that 0 6= ∂α ∈ C1(Σ) explicitly rules that out.

Proof. The proof here works exactly the same as that outlined in section 2.2.

50

Since Σ ⊆ R, it is always the case that p(Σ) ⊆ S. We will be proving the

reverse inclusion, that the Rips shadow is contained in p(Σ).

Just as before the projection map p : Σ→ R2 induces maps between the long

exact sequences for the pairs (Σ,F) and (R2, ∂S), giving the commutative square:

H2(Σ)
j∗ // H2(Σ,F)

δ∗ //

p∗
��

H1(F)

p∗ ∼=
��

H2(R2, ∂S)
δ∗ // H1(∂S)

(3.11)

We assumed ∂α 6= 0; in other words α is not a cycle in C2(Σ), and [α] /∈ H2(Σ).

Therefore [α] /∈ im(j∗) in the diagram above, and by exactness of the top row

δ∗[α] 6= 0.

Since we assumed that F is a fence subcomplex (that p : F → ∂D is a

homeomorphism), the right side of this box is an isomorphism, so we have p∗δ∗[α] =

p∗[∂α] 6= 0. By commutativity δ∗p∗[α] 6= 0, in particular p∗[α] 6= 0 in H2(R2, ∂S).

Suppose there is some point in S not covered by U , x ∈ S − p(Σ). Then

p : (Σ,F)→ (R2 − x, ∂S) and we can factor the left side of the box:

H2(Σ,F)
δ∗ //

p∗

��

p∗vv

H1(F)

p∗ ∼=

��

H2(R2 − x, ∂S)
i∗

((
H2(R2, ∂S)

δ∗ // H1(∂S)

(3.12)

But H2(R2 − x, ∂S) = 0, so p∗[α] = 0, a contradiction. So there can be no point

x ∈ S not covered by p(Σ), hence S ⊆ p(Σ).

51

Corollary 3.16. Let X be a finite planar data arrangement over V = FD, and let

U ⊆ V be a linear subspace. Let r > 0 be some finite radius, and let R = Rr(X)

be the corresponding Rips complex and S = p(R) the Rips shadow. Let RC(U) be

the corresponding coverage complex for vector space U , and SC(U) = p(RC(U)) the

coverage shadow. Suppose:

• There is a fence subcomplex for S, and F ⊆ RC(U) ⊆ R

• ∂S ' S1

If there exists a 2-chain α ∈ C2(RC(U)) defining a non-zero homology class 0 6=

[α] ∈ H2(RC(U),F) such that 0 6= ∂α ∈ C1(RC(U)), then SC(U) = S.

Though not immediately amenable to applying with theorem 2.2, it is worth

translating this to give the obvious coverage criterion based on first homology.

Corollary 3.17. Let R = Rr(X) be a Rips complex for a finite set of points X ⊆ R2,

and let S = p(R) be its Rips shadow. Let Σ ⊆ R be any subcomplex such that

• There is a fence subcomplex for S, and F ⊆ Σ ⊆ R

• ∂S ' S1

If ∃ [γ] 6= 0 in H1(F) such that the image i∗[γ] = 0 in H1(Σ), then p(Σ) = S.

Proof. F has no 2-simplices so C2(F) = 0, and H1(F) = Z1(F). Therefore [γ] 6= 0

in H1(F).

Consider the relevant section of the long exact sequence for (Σ,F).

· · · → H2(Σ,F)
δ∗−→ H1(F)

i∗−→ H1(Σ)→ · · ·

52

Our assumption is that i∗[γ] = 0 in H1(Σ). By exactness this means that there

is some [α] ∈ H2(Σ,F) such that δ∗[α] = [γ] 6= 0. Therefore ∂α 6= 0 and by theorem

3.15, p(Σ) = S.

Applying this to data arrangements we conclude:

Corollary 3.18. Under the hypotheses of corollary 3.16, if ∃ [γ] 6= 0 in H1(F) such

that i∗[γ] = 0 in H1(RC(U)), then SC(U) = S.

These results can be generalized to Rips complexes with (known) inner bound-

aries and to general cycles in the Rips complex, just as with de Silva and Ghrist’s

criterion. This means loosening the hypothesis that ∂S ' S1. The following theo-

rem is a slight generalization of another result of de Silva and Ghrist in [21]. The

proof uses the long exact sequence of a triple. Recall that if we have a triple of

topological spaces (X, Y, Z) such that Z ⊆ Y ⊆ X, then there is an exact sequence

of chain groups

0→ C•(Y, Z)
i−→ C•(X,Z)

j−→ C•(X, Y)→ 0 (3.13)

which gives a long exact sequence on homology.

· · · → Hk(Y, Z)
i∗−→ Hk(X,Z)

j∗−→ Hk(X, Y)
δ∗−→ Hk−1(Y, Z)→ · · · (3.14)

53

Theorem 3.19. Let R = Rr(X) be a Rips complex for a finite set of points X ⊆ R2,

and let S = p(R) be its Rips shadow. Let Σ ⊆ R be any subcomplex such that

• There is a fence subcomplex for S, F = F+ t F−, and F ⊆ Σ ⊆ R

• ∂+S ' S1

If there exists a 2-chain α ∈ C2(Σ) defining a non-zero homology class 0 6= [α] ∈

H2(Σ,F) such that 0 6= ∂α ∈ H1(F+), then p(Σ) = S.

Proof. The projection p maps between the triples (Σ,F ,F−)
p∗−→ (R2, ∂S, ∂−S),

inducing maps between the long exact sequences

· · · // H2(F ,F−)
i∗ //

p∗
��

H2(Σ,F−)
j∗ //

p∗
��

H2(Σ,F)
δ∗ //

p∗
��

H1(F ,F−) //

p∗,∼=
��

· · ·

· · · // H2(∂S, ∂−S)
i∗ // H2(R2, ∂−S)

j∗ // H2(R2, ∂S)
δ∗ // H1(∂S, ∂−S) // · · ·

Suppose we have [α] ∈ H2(Σ,F) such that ∂α is non-zero in C1(F+). Tracing

through the snake lemma for the upper long exact sequence, one can see that this is

equivalent to δ∗[α] 6= 0 in H1(F ,F−). By our assumption that F is a fence subcom-

plex, p∗ : H1(F ,F−) → H1(∂S, ∂−S) is an isomorphism, and we have p∗δ∗[α] 6= 0.

By commutativity δ∗p∗[α] 6= 0.

Suppose that p(Σ) 6= S. Then there must be some x ∈ S \ p(Σ), and we can

54

factor one of these projections through H2(R2 − x, ∂S):

H2(Σ,F)
δ∗ //

p∗

��

p∗vv

H1(F ,F−)

p∗,∼=

��

H2(R2 − x, ∂S)
i∗

((
H2(R2, ∂S)

δ∗ // H1(∂S, ∂−S)

(3.15)

The key observation is that the composite map δ∗i∗ : H2(R2 − x, ∂S) →

H2(∂S, ∂−S) is the zero map.

First consider the long exact sequence for the triple (R2 − x, ∂S, ∂−S) and

note that the composite δ∗i∗ is the same as the connecting homomorphism δ′∗ :

H2(R2 − x, ∂S)→ H1(∂S, ∂−S) from dim 2 to dim 1 on this LES. In order to fully

see this one can trace through the snake lemma for the triples (R2, ∂S, ∂−S) and

(R2 − x, ∂S, ∂−S). The key points to notice are that the boundaries ∂S and ∂−S

can be ignored in C2(·, ·), and that C1(∂S, ∂−S) ∼= C1(∂+S). Then both δ∗i∗ and δ′∗

take an element [α] ∈ H2(R2 − x, ∂S) and map it to the homology class of the part

of ∂α that lies in C1(∂+S).

Given this observation we look at the long exact sequence where δ′ appears:

· · · → H2(R2 − x, ∂S)
δ′∗−→ H1(∂S, ∂−S)

j∗−→ H1(R2 − x, ∂−S)→ · · · (3.16)

and see that it will be enough to show that j∗ : H1(R2 − x, ∂−S) → H1(∂S, ∂−S)

is injective. Geometrically this is fairly obvious, since the outer boundary of the

shadow, ∂+S, encloses x, but none of the inner boundary cycles in ∂−S enclose x.

55

This shows that δ∗i∗ is the zero map, contradicting the fact that δ∗p∗[α] 6= 0.

Thus there can be no such x ∈ S \ p(Σ).

This result can also be translated in terms of H1.

Corollary 3.20. Let R = Rr(X) be a Rips complex for a finite set of points X ⊆ R2,

and let S = p(R) be its Rips shadow. Let Σ ⊆ R be any subcomplex such that

• There is a fence subcomplex for S, F = F+ t F−, and F ⊆ Σ ⊆ R

• ∂+S ' S1

If there exists [γ] 6= 0 in H1(F+) such that the image [γ] = 0 in H1(Σ,F−), then

p(Σ) = S.

Proof. Consider the long exact sequence of the triple (Σ,F ,F−).

· · · → H2(Σ,F−)→ H2(Σ,F)
δ∗−→ H1(F ,F−)

i∗−→ H1(Σ,F−)→ · · ·

By excision H1(F ,F−) ∼= H1(F+). So our assumption that 0 6= [γ] ∈

H1(Σ,F−) means that [γ] 6= 0 in H1(F ,F−). The second part of our assumption is

that i∗[γ] = 0. By exactness there is [α] ∈ H2(Σ,F) such that δ∗[α] = [γ] 6= 0. By

theorem 3.19 p(Σ) = S.

So with practically no new work we have a coverage criterion for network

coded data distribution. However the variety of cases where the hypotheses of these

theorems fail despite having complete data coverage are much more extensive than

those arising in the sensor network coverage world from the geometric defects of the

56

Rips complex. We will spend considerable work examining some of those false holes,

and refining the hypotheses of this theorem to account for them.

3.2 Enumerating the Coverage Complexes

Given a finite planar data arrangement X and radius r > 0, for any linear

subspace W ⊆ V there is a coverage complex RC(W) ⊆ R. On the other hand, not

every subcomplex Σ ⊆ R can be expressed as a coverage complex. Consider the

simple case with a single 1-simplex: R = { [A], [B], [A B] }, and let Σ = { [A], [B] }.

If Σ were a coverage complex, it would necessarily also contain [A B], since in this

case 〈[A]〉 = 〈[B]〉 = 〈[A B]〉 = 〈MA,MB〉. This is because A and B only belong to

one maximal simplex in R. However for simplices that are faces of multiple maximal

simplices this becomes more complicated. Consideration of cases like this lead us to

investigate a slightly restricted version of the coverage complex.

Definition 3.21. Let V = FD and let X be a finite planar data arrangement over

V with Rips complex Rr(X). Let U ⊆ V be a linear subspace. Then the single-

sponsored coverage complex or C1-coverage complex for U , RC1
r (X , U) ⊆

Rr(X), is the subcomplex of the Rips complex defined by

σ ∈ RC1
r (X , U) ⇔ ∃ τ ∈ Rr(X) such that σ ⊆ τ and U ⊆ 〈τ〉

57

Note that

RC1
r (X , U) ⊆ RC

r (X , U) ⊆ Rr(X) (3.17)

We would like to characterize the subcomplexes of the Rips complex which

can be obtained as a single-sponsored coverage complex for some vector space V ,

data arrangement X over V , and subspace U . The following definitions are useful.

Definition 3.22. Given a set of points {X1, . . . , XN} ⊆ R2 with Rips complex R,

a subcomplex Σ ⊆ R is resolvable if there exists a vector space V = FD, a data

arrangement X , and a subspace U ⊆ V such that Σ = RC(X , U).

We say Σ ⊆ R is C1-resolvable if there exists a vector space V = FD, a data

arrangement X , and a subspace U ⊆ V such that Σ = RC1(X , U).

Then C1-resolvability is easily characterized. In fact, for a given Rips complex

R there is a sort of universal vector space and data arrangement that can yield ev-

ery possible single-sponsored coverage complex by taking the correct 1-dimensional

subspace of V .

The following definition is a technicality, but necessary to state the results

correctly.

Definition 3.23. For a collection of simplices, Σ, the closure of Σ, Σ is the set of

all simplices σ such that σ ⊆ τ ∈ Σ. That is, Σ is the smallest possible simplicial

complex containing Σ.

When Σ = {τ} contains a single simplex we will simply write τ instead of {τ}.

58

Proposition 3.24. Given a set of points {X1, . . . , XN} ⊆ R2 with Rips complex R,

a subcomplex Σ ⊆ R is C1-resolvable if and only if it is the closure of a union of

maximal simplices of R.

Furthermore if R has M maximal simplices, then there is a data arrangement

X over the vector space V = FM such that every C1-resolvable subcomplex of R

can be obtained as RC1(X , 〈~v〉) for some ~v ∈ V . The C1-resolvable subcomplexes

of R are in 1-1 correspondence with the 1-dimensional subspaces of GF(2)M .

Proof. Let X = {X1, . . . , XN} ⊆ R2 be the set of points and let R be their Rips

complex. Let τ1, . . . , τM be the maximal simplices of R.

First suppose that X = {(X1,MX1), . . . , (XN ,MXN
)} is a data arrangement

over some vector space V , and suppose Σ = RC1(U) for some U ⊆ V . Suppose

that Σ is not the closure of a union of R-maximal simplices. That is, there exists

σ ∈ Σ such that σ is maximal in Σ, but not maximal in R. So there is at least one

τ ∈ R \ RC1(U) such that σ (τ . But then by definition 〈σ〉 ⊆ 〈τ〉, and by the

definition of RC1(U), U ⊆ 〈σ〉, so τ ∈ RC1(U); a contradiction.

Therefore RC1(U) must be a union of R-maximal simplices.

We prove the other direction constructively. Let F be a finite field, and let

V = FM and fix a basis B = {~v1, . . . , ~vM}.

For each point X ∈ X build an inventory:

MX = {~vj ∈ B|X /∈ τj}

Clearly this ensures that ~vj /∈ 〈τj〉.

59

On the other hand, suppose ~vj /∈ 〈τk〉 for some τk 6= τj. By the definition of 〈·〉

for simplices and the specification of MX above this means that for each X ∈ τk,

X ∈ τj, and therefore τk ⊆ τj; a contradiction since the τi are maximal. Therefore

~vj ∈ 〈τk〉 ∀k 6= j.

Thus, for any subset S = {i1, . . . , in} ⊆ {1, . . . ,M}

RC1(〈~vi1 , . . . , ~vin〉) =
⋃

j∈{1,...,M}\S

τj

so each subcomplex Σ ⊆ R consisting of a union of maximal simplices of R is

resolvable. This includes RC1(0) = R and RC1(V) = ∅.

Furthermore, because B is a basis, note that for any ~vi and corresponding τi,

if ~w ∈ 〈B \ ~vi〉, then ~w ∈ 〈τi〉 but ~w + ~vi /∈ 〈τi〉, and therefore τi ∈ RC1(〈~w〉) but

τi /∈ RC1(〈~w + ~vi〉).

Therefore for any Σ =
⋃
j∈S τj for some S = {i1, . . . , in} ⊆ {1, . . . ,M}, we can

take a single vector vΣ =
∑

j /∈S ~vj and by our construction

RC1(〈vΣ〉) = RC1(〈
∑
j /∈S

~vj〉) =
⋃
j∈S

τj = Σ

Finally if we take F = GF(2) the choices for S ⊆ {1, . . . ,M} correspond exactly

to 1-dimensional linear subspaces of V = GF(2)M , and therefore the C1-resolvable

subcomplexes ofR are in 1-1 correspondence with the 1-dimensional linear subspaces

of V .

60

Corollary 3.25. For a Rips complex R with maximal simplices τ1, . . . , τM , there

are exactly 2M C1-resolvable subcomplexes.

Note that corollary 3.25 includes the C1-resolvable simplex R = RC1(0) in

the count.

Of course the number of maximal simplices in R depends on the set of points

X = {X1, . . . , XN}. The collection of maximal simplices of R is a Sperner family

in the power set of X; it has the property that no two elements are subsets of each

other. Therefore by Sperner’s Theorem M ≤
(

N
bN/2c

)
[24]. However R is not an

arbitrary subset of the power set of X. On a purely combinatorial level it is a flag

complex, therefore it is entirely characterized by the cliques in its 1-skeleton. The

problem of counting and producing all maximal cliques of a graph is well known in

graph theory and computer science. A famous theorem of Moon and Moser [25] says

that M ≤ 3N/3. The Rips complex also has geometric constraints on it. However

the number of maximal simplices can still be exponential in extreme cases. The

example that yields an arbitrary-dimensional cross-polytope in the Rips complex

also happens to have 2N/2 maximal simplices [26]. So in that case there are 22N/2

possible single-sponsored coverage complexes.

The figure below shows an example of the universal data arrangement used in

the proof of prop 3.24. The complex has two maximal simplices τ1, τ2, and therefore

requires a 2D vector space with two basis vectors B = {~v1, ~v2}. The vertices B and

C are faces of both τ1 and τ2, so their inventories are empty. A is a face of τ1 so its

inventory contains only ~v2, and D is a face of τ2 so its inventory contains only ~v1.

61

A

B
C

D

2

1

v⃗1

v⃗2

Then V = GF(2)2 has three non-zero vectors and three 1D linear subspaces.

The single-sponsored coverage complexes for the 1D subspaces are as desired. In-

cluding ~v1 eliminates the simplex τ1, and including ~v2 eliminates τ2. The vector

~v1 + ~v2 is outside the span of either maximal simplex, and therefore eliminates the

entire complex.

RC1(~v1) RC1(~v2) RC(~v1 + ~v2)

B
C

D

2

v⃗1

A

B
C

1

v⃗2

∅

The situation for (multi-sponsored) coverage complexes RC(U) is similar but

more complicated. As we observed in the example in section 3.1.1 non-maximal

simplices can be resolvable. It turns out that a condition for resolvability can be

stated recursively; a simplex is resolvable if it is maximal or the intersection of two

resolvable simplices. The construction is almost the same as that used to prove

C1-resolvability.

Proposition 3.26. Given a set of points {X1, . . . , XN} ⊆ R2 with Rips complex

R, a simplex σ ∈ R is resolvable if and only if it is the intersection of maximal

simplices in R. A subcomplex Σ ⊆ R is resolvable if and only if it is the closure of

a union of resolvable simplices.

62

Furthermore if R has M maximal simplices with an intersection poset of size

P , then there is a data arrangement X over V = FP such that every resolvable

proper subcomplex of R can be obtained as RC(X , 〈~v〉) for some ~v ∈ V .

Proof. Let X = {X1, . . . , XN} ⊆ R2 be the set of points and R = R(X).

Just as before, suppose that X = {(X1,MX1), . . . , (XN ,MXN
)} is a data

arrangement over some vector space V , and suppose Σ = RC(U) for some U ⊆ V .

Suppose that Σ is not a union of intersections of closures of R-maximal simplices.

That is, there exists σ ∈ Σ such that σ is maximal in Σ, but not equal to the

intersection of maximal simplices in R. Then σ must be properly contained in at

least one maximal simplex of R. Let τ1, . . . , τk be all the R-maximal simplices

containing σ, so σ (σ′ = τ1 ∩ · · · ∩ τk. But then U ⊆ 〈σ〉 ⊆ 〈τj〉 for each of the

τ1, . . . , τk, so U ⊆ 〈σ′〉, and therefore σ′ ∈ RC(U) contradicting the maximality of

σ. So all resolvable simplices must be the intersection of maximal simplices.

The other direction is similar as well except we take V = FP and fix a basis

B = {~v1, . . . , ~vP}. Let γ1, . . . , γP ∈ R be the simplices that are intersections of

maximal simplices of R. This includes the maximal simplices themselves. For each

point X ∈ X build an inventory that ensures that ~vj /∈ 〈τ〉 for any maximal τ

containing γj:

MX = {~vj ∈ B \ {~vP} | {X} ∪ γj /∈ R}

= {~vj ∈ B \ {~vP} | γj /∈ Cl StX}

= {~vj ∈ B \ {~vP} | {X} /∈ Cl St γj}

63

and let X = {(X1,MX1), . . . , (XN ,MXN
)}. This ensures that ~vj /∈ 〈γj〉, and

further, that ~vj /∈ 〈σ〉 for any σ containing γj

Claim: γi ∈ RC(〈~vj〉)⇐⇒ γj 6⊆ γi

(⇒) Suppose σ ∈ RC(〈~vj〉). Let γi1 , . . . , γik be the maximal simplices and

intersections of maximal simplices containing σ. That is, σ ⊆ γi1 ∩ · · · ∩ γik . By

definition this means that ~vj ∈ 〈γi1 , . . . , γik〉. By our construction of X (construct-

ing all inventories from a single basis) this implies that ~vj ∈ 〈γik〉 for at least one

of them, and that there is an X ∈ γik such that ~vj ∈ MX . Therefore by our con-

struction, {X} ∪ γj /∈ R. Now suppose γj ⊆ σ. Then γj ⊆ σγik , and X ∈ γik , so

γ ∪ {X} ⊆ γik ∈ R, a contradiction.

So σ ∈ RC(〈~vj〉)⇒ γj 6⊆ σ. In particular γi ∈ RC(〈~vj〉)⇒ γj 6⊆ γi.

(⇐) Suppose γj 6⊆ γi. Say that γj = τ1 ∩ · · · ∩ τn for some R-maximal {τ∗},

and that γi = σ1 ∩ · · · ∩ σm for some R-maximal {σ∗}.

γj 6⊆ γi implies that there is at least one maximal σ such that γi ⊆ σ, but that

γj 6⊆ σ.

If {X} ∪ γj ∈]R ∀X ∈ σ then γj ⊆ σ by the maximality of σ, a contradiction.

So ∃X ∈ σ such that {X} ∪ γj /∈ R. Then by our construction ~vj ∈ MX , and

therefore ~vj ∈ 〈σ〉. Since γi ⊆ σ by definition γi ∈ RC(~vj).

This proves the claim.

Now suppose γ = τ1∩· · ·∩τn for some maximal set of τ∗. Construct the vector

64

space Vγ = 〈~vj|γj 6⊆ γ〉. Then by the claim proved above and corollary 3.9:

RC(Vγ) =
⋂
γj 6⊆γ

RC(~vj) (3.18)

= { γi | γi ⊆ γ } = γ

Then, because all inventories are chosen from the same basis we can choose a single

vector ~vγ =
∑

γj 6⊆γ ~vj to get

RC(〈~vγ〉) = RC(Vγ) = γ (3.19)

For any set S ⊆ {1, . . . , P}, if we have σ =
⋃
i∈S γi a union of closures of

intersections of maximal simplices, we can take VΣ = 〈~vj|γj /∈ Σ〉, and then similarly:

RC(VΣ) =
⋂
γj /∈Σ

RC(~vj) (3.20)

= { γi | γi ∈ Σ }

= Σ

And finally, because all inventories are chosen from the same basis we can choose a

single vector ~vΣ =
∑

γj /∈Σ ~vj to get

RC(〈~vΣ〉) = RC(VΣ) = Σ (3.21)

65

The figure below shows our simple example Rips complex with the data ar-

rangement construction used in the proof. For this example the resulting data

arrangement is almost the same as that used to prove C1-resolvability The complex

has two maximal simplices γ1, γ2, with intersection γ3 = γ1 ∩ γ2 and therefore re-

quires a 3 dimensional vector space with three basis vectors B = {~v1, ~v2, ~v3}. The

vertices B and C are faces of both γ1 and γ2, and both share a maximal simplex

with γ3, so their inventories are empty. A is a face of γ1 so its inventory contains

only ~v2, and D is a face of γ2 so its inventory contains only ~v1. Note that ~v3 does

not appear in any inventories.

A

B
C

D

3

1

2

v⃗1

v⃗2

Then V = GF(2)3 has seven non-zero vectors. The resolvable subcomplexes

for the 1D subspaces are as expected. Including ~v1 eliminates the simplex γ1, and

including ~v2 eliminates γ2. The vector ~v1 + ~v2 is outside the span of either maximal

simplex alone, but is in their collective span ~v1 +~v2 ∈ 〈γ1, γ2〉, so the corresponding

coverage complex is their intersection, γ3. The final basis vector ~v3 is not in any

inventories, so eliminates the entire complex.

RC(~v1) RC(~v2) RC(~v1 + ~v2) RC(~v3)

B
C

D

3

2

v⃗1

A

B
C

3

1

v⃗2

B
C

3 ∅

66

 { v1, v3, v4, v5, v7, v10 }

108

7
6

5

4

3

2

1

9

{ v2, v3, v4, v6, v7, v9}

{ v1, v2, v3, v5, v6, v8}

{v⃗2 }{v⃗4 }

{v⃗1}

The figure above shows a more interesting example. The complex has four maximal

simplices γ1, γ2, γ3, γ4, three 2-fold intersections, γ5, γ6, γ7, and three 3-fold intersec-

tions, γ8, γ9, γ10. So a data arrangement over a 10-dimensional vector space with

basis B = {~v1, . . . , ~v10} suffices to resolve every subcomplex that is resolvable. We

show some illustrative examples of RC(U) in the table below.

RC(~v1) RC(~v2) RC(~v4)

108

7
6

5

4

3

2
9

108

7
6

5

4

3

1

9

108

7
6

5

3

2

1

9

RC(~v3) RC(~v1 + ~v2 + ~v4) RC(~v8 + ~v9 + ~v10)

108

7
6

5

42

1

9

108

7
6

5

3

9

∅

RC(~v5) RC(~v6) RC(~v7)

108

7
6

4

3

2
9

108

7

5

4

1

9

108

6

5

2

1

9

RC(~v8) RC(~v9) RC(~v10)

10

7
4

9

108 5

1

8

6

2
9

67

Another way of viewing this is as a poset. Let Γ = {γ ∈ R | γ is resolvable }.

Then (Γ,⊆) is a poset ordered by inclusion. Since RC(U) is a simplicial complex,

and because including the vector ~vj in U has the effect of removing γj from the

complex, it also has the effect of removing all simplices that contain γj. This is

sometimes called the upset of {γj}, written ↑{γj}. For example, including ~v8 in U

eliminates γ8 from RC(U), and also five other resolvable simplices, pictured below.

108

765

431

9

2

So in this construction if F = GF(2) there are 2P vectors in V and they resolve

all resolvable subcomplexes, but the correspondence with coverage complexes is not

1-1. In general if S, T ⊆ {1, . . . , P} and ~v =
∑

i∈S ~vi and ~w =
∑

i∈S ~vi then RC(~v) =

RC(~w) if and only if ↑{γi}i∈S = ↑{γi}i∈T . So the resolvable subcomplexes of R

correspond to the unique upsets of (Γ,⊆). AsR is finite, the upsets are characterized

entirely by their minimal elements. In general for a finite poset the upsets are in

1-1 correspondence with the anti-chains. Therefore the resolvable subcomplexes are

in 1-1 correspondence with the anti-chains of (Γ,⊆). The anti-chains of (Γ,⊆) can

be studied using Sperner’s theorem and Dilworth’s theorem [27,28].

The Rips complex N = 2n-vertex cross-polytope example provides an extreme

case of resolvability. Every simplex is resolvable, and so every subcomplex is resolv-

able. The maximum width of the face poset (the maximum anti-chain size) is at

68

dimension N/2 with width
(
N
N/2

)
. The depth of the poset is of course N − 1, so the

number of resolvable subcomplexes is on the order of N(N
N/2).

3.2.1 Single-Vector Resolvability

In this section we have implicitly used the following fairly obvious fact.

Lemma 3.27. Let X be a data arrangement over a vector space V = GF(q)D

where all inventories Mi are drawn from the same fixed basis B = {~v1, . . . , ~vD} for

V . Then for any U ⊆ V there is a vector ~v ∈ V such that RC(U) = RC(~v). The

same is true for RC1.

Proof. Let V , B, and X be as in the statement of the lemma. Let U ⊆ V be a

linear subspace, and let 〈~w1, . . . , ~wm〉 = U be a basis for U . Since B is a basis each

~wi has a unique expression as a sum of elements of B. Let BU = {~vi1 , . . . , ~vik} ⊆ B

be all of the vectors which are summands for at least one of the ~wi. Then BU is the

smallest subset of B that spans U .

Claim: RC1(U) = RC1(~vi1 + · · ·+ ~vik).

(⊆)

Suppose σ ∈ RC(U). Let τ1, . . . , τn ∈ R be the R-maximal cofaces of σ. Then by

the definition of RC , U ⊆ 〈τ1, . . . , τn〉. Let Bσ =Mτ1 ∪ · · · ∪Mτn . Then we know

U ⊆ 〈Bσ〉. Also, since all the inventories in X are drawn from the same basis we

know Bσ ⊆ B. But BU was the smallest subset of B spanning U , so BU ⊆ Bσ, and

therefore ~vi1 + · · ·+ ~vik ∈ 〈Bσ〉, and σ ∈ RC(~vi1 + · · ·+ ~vik).

69

(⊇)

Suppose σ /∈ RC(U). Let τ1, . . . , τn be all of the R-maximal cofaces σ, and let Bσ =

Mτ1∪· · ·∪Mτn ⊆ B. Then there must be ~v0 ∈ U such that ~v0 /∈ 〈τ1, . . . , τn〉 = 〈Bσ〉.

Since B is a basis there is a unique set of coefficients such that ~v0 = a1~vi1 +· · ·+ak~vik .

But since ~v0 /∈ 〈Bσ〉 there must be at least one ~vix in this sum such that ~vix /∈ Bσ.

Therefore ~vi1 + · · ·+ ~vik /∈ 〈Bσ〉, and hence σ /∈ RC(~vi1 + · · ·+ ~vik).

If we remove the requirement that all inventories be drawn from a single fixed

basis this is not true in general. It is almost true in the case where V = GF(q)2,

because all proper subspaces of V are rank 1, and are spanned by a single vector.

However the example constructed later in figure 6.2 shows a case where no single

vector has RC(~v) = RC(V).

A more interesting counterexample uses rank 2 subspaces instead of individual

vectors to resolve the simplices. Consider a data arrangement over V = GF(2)3

whose Rips complex consists of four isolated 0-simplices, [A], [B], [C], [D], with rank

2 inventories as pictured below.

A DCB

0

1

0

0

0

1

1

1

0

0

1

1

1

0

0

0

0

1

1

0

0

0

1

0

U 1= U 4=U 3=U 2=

Each 0-simplex is maximal, and since none of the Ui are the same, they are each

individually resolved under this data arrangement.

70

RC(U1) = {[A]} RC(U2) = {[B]}

RC(U3) = {[C]} RC(U4) = {[D]}

However for any single vector ~v ∈ V , RC(~v) contains either two of the points or no

points. None of the 0-simplices are resolvable by a single vector (under this data

arrangement).

3.3 Failure of Chambers’s Proof for RC(U)

In the next sections and throughout this paper we will see several counterexam-

ples to the conjecture that the coverage complex satisfies an analogue of theorem 2.6.

It is natural to wonder what are the essential features that allow RC(U) to fail here,

and if there are any restrictions that can be put on X or R(X) that would allow us

to prove an analogue of theorem 2.6. In the latter case we do not have any satisfying

result. In the former case, we have investigated the degree to which the coverage

complex satisfies the preliminary geometric lemmas used by Chambers et al. It turns

out that even for D = 2 dimensional vector spaces there are exceptional arrange-

ments of points and data where lemma 2.8 fails. It is possible to have two edges in

RC(U) whose shadows intersect, but with none of the possible 2-simplices on the

endpoints contained in RC(U). The simplest example of this will be constructed in

section 7.1.1.

The complication for the coverage complex is that we cannot generally look at

71

the induced complex on a subset of the points in isolation. With the Rips complex,

given two points X, Y ∈ X, [X Y] ∈ R(X) iff [X Y] ∈ R({X, Y }). Membership in

RC(U) depends on the collective inventories of maximal simplices. This is captured

by the observation that for {X0, . . . , Xk} ⊆ X:

R({X0, . . . , Xk}) = R(X) ∩ [X0 · · · Xk] (3.22)

but in general, for {(X0,MX0), . . . , (Xk,MXk
)} ⊆X :

RC({(X0,MX0), . . . , (Xk,MXk
)}, U) 6= RC(X , U) ∩ [X0 · · · Xk] (3.23)

The following is a (very restricted) analogue of lemma 2.8 for RC(X , U).

Lemma 3.28. Let X = {(A,MA), (B,MB), (Y,MY), (Z,MZ)} a finite planar

data arrangement over a finite vector space V = FD. Suppose [A B], [Y Z] ∈

RC(X , U) for some U ⊆ V , and AB ∩ Y Z = {x}. Then RC(X , U) is a cone.

Proof. Since AB and Y Z intersect at x, at least one of the shadow edges must be

shortest. Without loss of generality, assume Ax is the shortest shadow edge. Then

by lemma 2.8 [A Y Z] ∈ R. The crux of this proof is to look at all the ways [A B]

and [Y Z] could get admitted to RC(U).

To start, suppose U ⊆ 〈A,B〉 and U ⊆ 〈Y, Z〉. Then U ⊆ 〈A, Y, Z〉 and

since [A Y Z] ∈ R, we have [A Y Z] ∈ RC(U). The only thing that could go

wrong is if [B Y] or [B Z] is in RC(U). Suppose [B Y] ∈ RC(U). In that case

[A B], [B Y], [A Y] ∈ R, and therefore [A B Y] ∈ R. Since U ⊆ 〈A,B〉 ⊆ 〈A,B, Y 〉,

72

[A B Y] ∈ RC(U). By the same argument, if [B Z] ∈ RC(U), then [A B Z] ∈

RC(U). In any of these cases RC(U) is a cone over A.

On the other hand suppose U 6⊆ 〈A,B〉. Since [A B] ∈ RC(X , U) it must be

contained in some set of maximal simplices whose inventories together span U .

Say [A B Y] ∈ R and U ⊆ 〈A,B, Y 〉. Then [A B Y] ∈ RC(U), and if

[B Y] ∈ RC(U) then [A B Y Z] ∈ R, and hence [A B Y Z] ∈ RC(U). The

same argument applies if [A B Y] ∈ R and U ⊆ 〈A,B, Y 〉. On the other hand if

U 6⊆ 〈A,B, Y 〉 and U 6⊆ 〈A,B,Z〉. Then in order to get [A B] ∈ RC(U) we must

have U ⊆ 〈A,B, Y, Z〉, and either [A B Y Z] ∈ R, or [A B Y], [A B Z] ∈ R (which

implies [A B Y Z] ∈ R). So in either case [A B Y Z] ∈ RC(U), and RC(U) is a

cone over each vertex.

This example worked because X consisted of only four points. When even

one more point is involved it becomes very difficult to draw conclusions. When two

more points are involved the analogue to lemma 2.8 fails, even for RC1.

When more points are involved, verifying an analogue of lemma 2.8 splits up

into many cases, indexed by the linear dependences between the inventories of the

points. We will give an example of one of those cases for the five-point situation.

The investigation will require another lemma that captures some geometry of the

triangle inequality. This is Lemma 4.2 from another paper by Chambers et al. [29].

Lemma 3.29. Let {A,B, Y, Z} ⊆ X ⊆ R2. Suppose [A B], [Y Z] ∈ R(X) and

AB ∩ Y Z = {x}. Then either [A Y] ∈ R(X) or [B Z] ∈ R(X).

73

Proposition 3.30. Let V = FD be a vector space and let

X = {(A,MA), (B,MB), (C,MC), (Y,MY), (Z,MZ)} be a finite planar data ar-

rangement over V , and U ⊆ V a linear subspace. Suppose [A B], [Y Z] ∈ RC(X , U)

for some U ⊆ V , AB ∩ Y Z = {x}, and that Ax is the shortest of the four shadow

edges impinging on x. Suppose further, that U ⊆ 〈A,B,C〉, U ⊆ 〈Y, Z〉, and

[A B C] ∈ R. Then RC(X , U) ∩ [A B Y Z] is a cone over [A].

Proof. By lemma 2.8 we have [A Y Z] ∈ R, and since we assumed U ⊆ 〈Y, Z〉 we

have U ⊆ 〈A, Y, Z〉, so [A Y Z] ∈ RC(U).

The possible problem we face here is if [B Z] ∈ RC(U) but [A B Z] /∈ RC(U),

or similarly for [B Y]. Because of the symmetry in this arrangement we need only

consider the [B Z] case.

Y
x

A

C

Z

B

Suppose [B Z] ∈ RC(U). Note first that if [B Y] ∈ R then [A B Y Z] ∈

R and since U ⊆ 〈Y, Z〉 ⊆ 〈A,B, Y, Z〉 we have [A B Y Z] ∈ RC(U). Then

RC(X , U) ∩ [A B Y Z] is still a cone over [A].

So we may assume that [Y Z] /∈ R.

Since [B Z] ∈ RC(U) it must be in the intersection of some maximal simplices

of R whose collective inventories span U . Fortunately, without [B Y] there aren’t

many possible maximal simplices left.

74

p

 

Figure 3.1: The situation in Lemma 3.31. If a vertex X lies inside the projection
in R2 of a simplex σ ∈ RC(U), then there is a simplex τ ∈ RC(U) containing both
σ and X.

Note that now [A B Z] ∈ R. If U ⊆ 〈B,Z〉 or U ⊆ 〈A,B,Z〉 then [A B Z] ∈

RC(U) and RC(X , U) ∩ [A B Y Z] is still a cone over [A].

The only remaining possibility is if U ⊆ 〈B,C, Z〉. But then [A B C Z] ∈ R,

and U ⊆ 〈A,B,C, Z〉, so [A B C Z] ∈ RC(U) ⇒ [A B Z] ∈ RC(U), and therefore

RC(X , U) ∩ [A B Y Z] is still a cone over [A].

3.4 Geometric Connections Between X and RC(U,X)

In this section fix the Rips radius r = 1. Let V = FD and let X be a finite

planar data arrangement over V with Rips complex R = Rr(X) and Rips shadow

S = p(R). Let U ⊆ V be a linear subspace, and let RC(U) ⊆ R be the coverage

complex for U , with coverage shadow SC(U) = p(RC(U)). We will look at both the

coverage complex, RC(U) and the single-sponsored coverage complex, RC1(U).

Lemma 3.31. If (X,M) ∈X and X ∈ p(σ) for some simplex σ = [Y0 Y1 · · · Yk] ∈

RC(U,X), then [Y0 Y1 · · · Yk X] ∈ RC(U).

Similarly if X ∈ p(σ) for some σ = [Y0 Y1 · · · Yk] ∈ RC1(U,X), then

[X Y0 Y1 · · · Yk] ∈ RC1(U).

75

Proof. X ∈ p(σ) = conv(Y0, Y1, . . . , Yk), so by lemma 2.4 for any maximal τ ∈ R

with σ ⊆ τ we have X ∈ τ .

In the case of RC1(U), if σ = [Y0 Y1 · · · Yk] ∈ RC1(U) then there is τ ∈ R,

σ ⊆ τ , such that U ⊆ 〈τ〉. By the observation above [X Y0 Y1 · · · Yk] ⊆ τ , so

[X Y0 Y1 · · · Yk] ∈ RC1(U).

In the case ofRC(U), if σ = [Y0 Y1 · · · Yk] ∈ RC(U) then there are τ1, . . . , τm ∈

R, σ ⊆ τi ∀i = 1, . . . ,m, such that U ⊆ 〈τ1, . . . , τm〉. By the observation above

[X Y0 Y1 · · · Yk] ⊆ τi ∀i = 1, . . . ,m as well, so [X Y0 Y1 · · · Yk] ∈ RC(U).

Lemma 3.32. Let Σ ⊆ RC(U) ⊆ R be such that p(Σ) = S. Let Σ̃ be the closure

of the set of maximal simplices in RC(U) which have a face in Σ. Then all of the

vertices in R are also in Σ̃. That is, Σ̃(0) = RC(U)(0) = R(0).

The same is true of RC1(U).

Proof. We already know Σ̃(0) ⊆ RC(U)(0) ⊆ R(0). We must show R(0) ⊆ Σ̃(0).

Let [X] ∈ R(0). Since X ∈ S = p(Σ) there must be some σ = [Y0 · · · Yk] ∈ Σ

such that X ∈ p(σ). Then by lemma 3.31 [Y0 · · · Yk X] ∈ RC(U), which has a

face in Σ, as does any RC(U)-maximal simplex containing [Y0 · · · Yk X]. Therefore

[X] ∈ Σ̃(0). The same proof applies for RC1(U).

If RC(U) has a contractible fence subcomplex, then every point of X is in the

coverage complex, and there are no isolated/disconnected points (besides any that

are in R. The same is true for RC1(U).

76

Proposition 3.33. Assume there is a fence subcomplex for S, F ⊆ RC1(U) ⊆

RC(U) ⊆ R with F+ ' S1. Let 0 6= [γ] ∈ H1(F+).

If [γ] = 0 in H1(RC(U)) then RC(U)(0) = R(0) and H0(RC(U)) = H0(R).

If [γ] = 0 in H1(RC1(U)) then RC1(U)(0) = R(0) and H0(RC1(U)) = H0(R).

Proof. For finite simplicial complexes and their shadows, connectedness and path

connectedness coincide. The following proof also works for RC1.

Since [γ] = 0 in H1(RC(U)) there must be a 2-chain α ∈ C2(RC(U)) such that

∂α = γ. Let Σα ⊆ RC(U) be the closure of the set of 2-simplices with non-zero

coefficients in α. Then by Corollary 3.17, p(Σα) = S. Therefore by lemma 3.32

there is a RC(U)-maximal simplex σ ∈ RC(U) such that X ∈ σ. In particular

[X] ∈ RC(U). Since X was any point in X we conclude that every point in X is

in RC(U). So RC(U)(0) = R(0). Furthermore X is connected to every vertex of σ,

and therefore connected to Σα by at least one 1-simplex.

Also, because p(F) = ∂S, we know p∗ : H0(RC(U)) → H0(S) is surjective.

Suppose we have two vertices X, Y ∈X that lie in the same connected component

of S, namely [X] = [Y] in H0(S). By the argument above X and Y are each

connected to vertices X ′, Y ′ in Σα by at least one 1-simplex. Since X ′ and Y ′ both

lie in the same component of S we can draw a path between them in S. This path is

homotopic rel its endpoints to a path lying entirely in the shadow of the 1-skeleton

of Σα. This path can be lifted to Σα, giving a path from X ′ to Y ′ in RC(U), and

therefore a 1-chain ρ ∈ C1(RC(U)) such that ∂ρ = [X] − [Y]. Therefore [X] = [Y]

in H0(RC(U)).

77

p

 

S

∂ S

Figure 3.2: The situation in Prop 3.33. C1(RC(U)) contains a 1-cycle γ that
projects to the boundary of the Rips shadow, ∂S. We assume [γ] = 0 in H1(RC(U)),
so there is a 2-chain α ∈ C2(RC(U)) with ∂α = γ.

Another intuitive fact about the Rips complex is that in the situation of

prop 3.33, where the outer fence subcomplex F+ is null-homologous, then we must

have H1(R) = 0. This follows from Chambers’s isomorphism, theorem 2.6. This

turns out not to be true in general for both RC(U) and RC1(U). Even in the special

case with a contractible fence subcomplex we do not always have H1(RC(U)) ∼=

H1(SC(U)) or H1(RC1(U)) ∼= H1(SC1(U)). The following sections give examples of

two distinct ways this can fail for RC(U).

3.4.1 Layered Loops in RC(U)

In RC(U) it is possible to have a null-homologous outer fence subcomplex,

F+ ⊆ RC(U) such that H1(F+)
i∗−→ H1(RC(U)) is the zero map, and still have

H1(RC(U)) 6= 0. Figure 3.3 shows a “layered loop” example with V = GF(2)2. The

78

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

A

B

X Y

W

Z

DC

Figure 3.3: The example used in section 3.4.1 in which the outer fence cycle [γ] ∈
H1(F+) is null-homologous in H1(RC(V)), but H1(RC(V)) 6= 0. The green edges
highlight a 2-chain with γ as its boundary. [X Y] is a maximal 1-simplex.

solid green edges show the 1-skeleton of a 2-chain α with p(∂α) = ∂S. The gray

dashed edges show other 1-simplices included in RC(U). The orange dashed edge

[X Y] is a maximal 1-simplex in RC(V).

We see that both of the 2-simplices [A B C] and [A B D] are in RC(V).

Therefore by lemma 3.33 [A B C X], [A B D Y] ∈ RC(V). Also [X Y W] ∈

RC(
(

1
0

)
) and [X Y Z] ∈ RC(

(
0
1

)
), but neither is in RC(V). However [X Y] ∈

RC(
(

1
0

)
) ∩ RC(

(
0
1

)
) = RC(V). So [X] and [Y] are contained in different maximal

simplices with faces in α, but [X Y] is not contained in any 2-simplex. Therefore

[X Y] is part of a 1-cycle, but it is not bounding to any 2-chain, and so there is a

1-cycle ρ ∈ C1(RC(V)) containing [X Y] such that [ρ] 6= 0 in H1(RC(V)).

Prop 3.33 basically ensures that this sort of layered loop cannot be more than

one hop long.

79

1

0

0

A

B

X

Y

Z

E

C

DF
0

1

0

0

0

1

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

1

0

0

Figure 3.4: The example used in section 3.4.2 in which the outer fence cycle [γ] ∈
H1(F+) is null-homologous in H1(RC(V)), but H1(RC(V)) 6= 0. In this case there
is a maximal (in RC(V)) 2-simplex, [X Y Z], that only intersects the contractible
2-chain at its vertices.

3.4.2 Layered 2-simplices in RC1(U)

The example in section 3.4.1 is not a problem for the single-sponsored coverage

complex. The problematic 1-simplex, [X Y], is admitted to RC(V) because it is in

the intersection of two maximal simplices that together span V . In the case of the

single-sponsored coverage complex, a simplex must be contained in a single maximal

simplex that spans V , so in the example in figure 3.3, [X Y] /∈ RC1(V).

It is still possible in RC1(U) to have a null-homologous outer fence subcom-

plex, F+ ⊆ RC1(U) such that H1(F+)
i∗−→ H1(RC1(U)) is the zero map, and still

have H1(RC1(U)) 6= 0. In fact it is possible create a data arrangement that has a

RC1(U)-maximal 2-simplex σ ∈ RC1(U) that only intersects the rest of RC1(U) at

its vertices. More generally it is (at least) possible to construct a data arrangement

80

that contains a maximal (3k− 1)-simplex that only intersects the rest of RC1(U) at

three (k − 1) simplices. This type of example works in RC(U) as well.

An example of a layered 2-simplex is shown in figure 3.4. Just as before, fix

the Rips radius at r = 1, let V = GF(2)3, and let ~v1, ~v2, ~v3 ∈ V be the three standard

basis vectors (or any basis) for V . To produce a RC1 complex with a covering 2-

chain we place three points, A,B,C evenly spaced at 120◦ to each other around

a circle of radius R1 =
√

3/3 centered at the origin. Each of these three points

is given a single basis vector so that [A B C] ∈ RC1(V). We place another three

points, D,E, F , around a concentric circle of radius R2, where
√

3/3 < R2 ≤ 2
√

3/3,

rotated 60◦ relative to the points on the inner circle. Each of these three points is

within distance 1 of two of the points on the inner circle, and is given a single basis

vector such that it spans V when combined with those two inner-circle points. This

ensures [A F C], [B D A], [C E B] ∈ RC1(V). Finally we place three final points,

X, Y, Z, on the inner circle of radius R1 with the same 60◦ offset as the points on

the outer circle. Each of these points is given the same basis vector as one of the

two inner-circle points that it is adjacent to, and such that 〈X, Y, Z〉 = V . This

ensures that [X Y Z] ∈ RC1(V).

However consider the points A,X,Z. The simplex [A X Z] is maximal in R,

but because 〈X〉 = 〈A〉 we have V 6⊆ 〈A,X,Z〉, and therefore [A X Z] /∈ RC1(V).

Likewise with [B X Y] and [C Y Z]. We are left with [X Y Z] maximal in RC1(V),

and only intersecting the rest of the complex at its vertices. H1(RC1(V)) has rank 2.

It is possible to repeat this pattern to tile the plane, however (unless we extend

the vector space) the missing simplices that make this example interesting end up

81

in RC(V) except on the edges of the data arrangement. It is only on the corners

of the data arrangement that we can have two missing simplices under the same

layered 2-simplex to give a non-trivial feature in H1.

3.4.3 Layered Loops and Resolvability

Given what we know about resolvability of simplices inRC(U), the examples in

sections 3.4.1 and 3.4.2 should not be that surprising. Any time we have a 1-simplex,

σ ∈ R, such that σ = τ1 ∩ · · · ∩ τn for some maximal simplices τ1, . . . , τn ∈ R, there

is a vector space V , a data arrangement X over V , and a vector ~v ∈ V such that

σ ∈ RC(~v) but σ is not contained in the boundary of any 2-simplex in RC(~v). The

interesting part about the example in section 3.4.1 is that it is possible to eliminate

all of the maximal cofaces of σ but still retain a 2-chain bounded by γ.

The examples with layered 2-simplices require a resolvable (or C1-resolvable,

i.e. Rips-maximal) 2-simplex. Notice that the example in section 3.4.2 contains

the same arrangement of points used to demonstrate the existence of dimension 3

cross-polytopes in the Rips complex of planar points.

Looking at the example in figure 3.4 one naturally wonders if it would be

possible to cover S with two “sheets” of 2-simplices such that no 1-simplices are

homotopic between sheets in RC(U). Of course this turns out not to be possible.

Considering figure 3.4, [X] lies in the shadow of [A B D] giving rise to 3-simplex

[A B D X]. If [X Y Z] were part of a second sheet covering S then each of A, B,

and D would lie inside the shadow of some 2-simplex in that sheet and this leads to

82

common 1-simplices between sheets. Continuing this on all sides ends up producing

a non-trivial 2-cycle between the two sheets.

We can however tile the plane by repeating the pattern in figure 3.3. Since

each copy of [X Y Z] is still resolvable we can produce arbitrarily many of these 2-

cycles over a sufficiently large vector space. The fact that we produced the example

in figure 3.3 over GF(2)3 instead of GF(2)8 is interesting though. Trying to extend

the pattern while restricting V to rank 3 leads to more interesting structure that we

do not intend to exposit here.

3.5 Computing RC(U) and RC1(U)

Here we will give a rough algorithm for computing the coverage complex. We

would like for the algorithm to allow each node to deduce which simplices it is a

vertex of based on local information. Then collecting these simplex lists from all

the nodes would constitute the entire coverage complex. On the other hand if the

simplex structure is known locally, a distributed homology computation could be

done.

Note however that if each node computes all of the simplices that it is a vertex

of, there will be a great deal of duplicated effort. Each k-simplex will be added to the

complex k+ 1 times. When testing the membership of a simplex in RC(U) requires

matrix reductions this amounts to a lot of wasted computation. This algorithm

avoids that duplication by assuming each node has a unique sortable ID value, and

stipulating that in a given simplex σ, the node with the smallest ID value is the

83

owner of σ, responsible for testing its membership in RC(U). This algorithm is

written from the perspective of a single node, X, but could be used in a centralized

way by iterating through all nodes and applying it to each.

We assume that each node has the following information about itself.

ID the identity of the node

N the set of all immediate neighbors of the node

N+ the set of all immediate neighbors of the node with an ID value greater
than its own

M the vector inventory of the node

We also assume that each node has the following information for each imme-

diate neighbor, Y :

Y .ID the identity of the neighbor, Y

NY the list of neighbors of Y

N+
Y the list of neighbors of Y that have an ID greater than Y .ID (this is

computable from Y .ID and NY).

MY the vector inventory of Y

This means that each node, X, is required to maintain a list of its neighbors,

and share with its immediate neighbors:

• its ID

• the list of its neighbors

• its inventory vectors, MX

84

In the pseudocode below the recursive procedure findCoverageCofaces()

takes a simplex σ = [X0 X1 · · · Xi] with the property that X0.ID < X1.ID < · · · <

Xi.ID, and finds all cofaces τ = [X0 · · · Xj], j ≥ i, of σ (including σ itself) which

are in RC(U) up to dimension k, such that X0.ID < X1.ID < · · · < Xj.ID. As a

minor optimization we also pass in a set Ncom containing all of the neighbors that

are common to the nodes in σ.

Algorithm 1 Compute the simplices of RC(U) owned by a node X

1: procedure computeCoverageComplexSimplices(k, U)
2: mySimplices.clear() . initialize the set of simplices computed
3: findCoverageCofaces([X], N, k, U) . call a recursive helper function
4: end procedure
5:

6: procedure findCoverageCofaces(σ, Ncom, k, U)
7: M =

⋃
Y ∈Ncom

MY

8: if rank(M∪ U) > rank(M) then . test if σ ∈ RC(U)
9: return

10: end if
11: mySimplices.add(σ)
12: if size(σ)> k then
13: return
14: end if
15: Z = lastVertex(σ)
16: for all Y ∈ N+

Z do . Test higher-dim cofaces of σ
17: findCoverageCofaces(σ ∪ [Y], Ncom∩ NY , k, U)
18: end for
19: end procedure

After executing this procedure on a node, X, the set mySimplices will con-

tain exactly the simplices of RC(U) owned by X. First note that throughout this

procedure every node added to the simplex σ is a neighbor of X, so the iteration

on line 16, where we iterate over the elements of N+
Z , is reasonable because Z is

a vertex of σ. Recall that Ncom contains all the neighbors that are common to all

85

of the nodes in σ. Therefore on line 7 we are effectively computing 〈τ1, . . . , τn〉 for

the maximal simplices τi ⊇ σ. Then on line 8 we test whether or not the span of

these vectors contains U . It is clear, then, that this procedure only adds simplices

to mySimplices if they are actually in RC(U). On the other hand, every simplex

σ ∈ RC(U) can have its vertices reordered to give a simplex σ̃ = [X0 X1 · · · Xi]

such that X0.ID < X1.ID < · · · < Xi.ID. If σ ∈ RC(U), then all of its faces are

in RC(U) as well. In particular σ̃− = [X0 X1 · · · Xi−1] ∈ RC(U). If σ̃− is added

to mySimplices, then the procedure will continue to call findCoverageCofaces()

for σ̃, and σ̃ will be added to mySimplices. By induction we conclude that every

simplex in RC(U) owned by X will be added to mySimplices.

Also note that no simplex is added to mySimplices more than once. To see

this notice that in order to reach a point where we call findCoverageCofaces()

with a simplex σ = [X0 X1 · · · Xi] we must have X0.ID < X1.ID < · · · < Xi.ID,

and therefore the chain of recursive calls to findCoverageCofaces() is unique.

This procedure can be used in a centralized way by having computeCoverage-

ComplexSimplices() iterate over the list of all nodes. In the distributed setting

this algorithm will tend to require nodes with low-numbered IDs to do more work.

For example the node in the network with the smallest ID will own every simplex

it is part of, and the node with the largest ID will not own any simplices. This

unfair work distribution could be a problem in a situation where the nodes are

battery-powered, because lower-ID nodes would drain their battery more quickly. It

is also an issue for performance overall because computing all of RC(U) is limited

by the slowest node. Since our implementation is centralized it is not a big issue,

86

but optimizing this algorithm is a good area for future research.

Computing RC1(U), on the other hand, is a bit more difficult, even if we

only want to compute the k-skeleton. Suppose we only want to compute the 2-

skeleton, RC1(U)(2), and suppose we have a 2-simplex σ ∈ R. In order to determine

if σ ∈ RC1(U) we need to find at least one maximal τ ∈ R such that σ ⊆ τ

and U ⊆ 〈τ〉. If σ /∈ RC1(U) we may have to iterate through all of the Rips-

maximal cofaces of σ. In general there is one optimization based on the fact that

RC1(U) ⊆ RC(U). Namely if in our search we come across a simplex such that

σ /∈ RC(U) then we do not need to pursue any of its maximal cofaces. We can write

a simple modification to the RC(U) algorithm incorporating this optimization.

In the algorithm below the procedure findMaximalCoverageCofaces() fills

the set mySimplices with all of the Rips-maximal simplices in RC(U). Then by

taking all faces of these simplices up to dimension k we obtain the k-skeleton

of the single-sponsored coverage complex. The implementation of the procedure

addAllFaces(σ, k) is not spelled out, but it is a simple enumeration of the sub-

sets of σ of size up to k + 1.

The findMaximalCoverageCofaces() only adds each admissible Rips-maximal

simplex to myMaximalSimplices once. However the individual k-faces of these sim-

plices may appear in more than one maximal simplex, and therefore may be added

to mySimplices multiple times.

Another natural optimization to investigate is to deal efficiently with changes

in the data arrangement. Suppose we compute the coverage complex, compute its

homology, and find a defect. We will want to add more vectors to some nodes’ inven-

87

tories to fix the defect and continue testing for coverage as the changes take place.

On the other hand, there may be too much redundancy in the data arrangement and

we want to remove vectors from some nodes’ inventories while maintaining coverage.

There are interesting optimizations possible to cache certain data structures on the

nodes so that it is not necessary to repeat this entire computation from scratch after

each change. These optimizations are independent of optimizations to the homology

computation that can handle changing simplicial complexes, such as the vineyard

algorithm or zig-zag persistent homology, and we will not elaborate on them here.

Algorithm 2 Compute the simplices of RC1(U) owned by a node X

1: procedure computeSSCoverageComplexSimplices(k, U)
2: mySimplices.clear() . initialize the set of simplices computed
3: myMaximalSimplices.clear() . initialize the set of maximal simplices

computed
4: findMaximalCoverageCofaces([X], N, U) . call a recursive helper

function
5: for all σ ∈ myMaximalSimplices do
6: addAllFaces(σ, k)
7: end for
8: end procedure
9:

10: procedure findMaximalCoverageCofaces(σ, Ncom, U)
11: M =

⋃
Y ∈Ncom

MY

12: if rank(M∪ U) > rank(M) then . test if σ ∈ RC(U)
13: return
14: end if
15: if size(σ)=size(Ncom) then . Check if σ is maximal
16: myMaximalSimplices.add(σ)
17: return
18: end if
19: Z = lastVertex(σ)
20: for all Y ∈ N+

Z do . Test higher-dim cofaces of σ
21: findMaximalCoverageCofaces(σ ∪ [Y], Ncom∩ NY , U)
22: end for
23: end procedure

88

Chapter 4: Persistent Homology and Discounting Holes in S

When distributing vectors amongst the points in a data arrangement, we can-

not expect to verify coverage of an area larger than the Rips shadow. We would

prefer not to assume too much about the shape of the Rips shadow. Theorem 3.19

and corollary 3.20 already gave us a criterion for testing if the Rips shadow is cov-

ered even when it suffers from topological holes. However that criterion relies on

computing a homology or relative homology group from three different spaces, and

requires that the outer boundary of the shadow be a simple closed curve. It also

requires knowing the identity and decomposition of the fence subcomplex. It turns

out that we can build on this and relate the results of chapter 3.1.3 to a persistent

homology computation that makes testing coverage of the Rips shadow simpler and

more intuitive, and will only require that the fence subcomplex exist. We do this

by studying the inclusion map

i : RC(U) ↪→ R (4.1)

and the associated long exact sequence.

We will still assume that there is a fence subcomplex F ⊆ RC(U) ⊆ R.

Given this assumption, the cycles of F− give all the generators of H1(R) (by the

89

Chambers isomorphism). Therefore if 0 6= [α] ∈ H1(R), since F ⊆ RC(U), there is

an [α̃] ∈ H1(RC(U)) such that i?[α̃] = [α]. Namely α is homologous to some sum of

fence cycles, and those fence cycles are all contained in C1(RC(U)).

This means that if we are looking for non-zero elements of H1(RC(U)) to

indicate flaws in the data coverage, we want to discount any such elements which

do not map to zero under i?. That is, a cycle [α̃] ∈ H1(RC(U)) is only problematic

if [α̃] ∈ ker(i?). So if ker(H1(RC(U))
i?−→ H1(R)) = 0 then every point in the shadow

of R is also in the shadow of RC(U), i.e. S = SC(U).

Looking at the long exact sequence for the pair (R,RC(U))

· · · → H2(R,RC(U))
δ?−→ H1(RC(U))

i?−→ H1(R)→ H1(R,RC(U))→ · · · (4.2)

we note that ker(i?) = im(δ?), so checking that either one is zero gives us a more

general coverage criterion based on H1.

Proposition 4.1. Let R = R(X) be a Rips complex for a finite set of points X ⊆ R2,

and let S = p(R) be its Rips shadow. Let Σ be a subcomplex containing a fence

subcomplex F = F+ t F− ⊆ Σ ⊆ R.

If ker(H1(Σ)
i?−→ H1(R)) = 0 then p(Σ) = S.

Proof. We will assume that F+ ' S1, and therefore that S is connected. If there

are multiple components this proof can be applied to each of them separately. If

the outer boundary has the homotopy type of a wedge of circles, then the points of

intersection must be Rips vertices (by lemma 2.8), and this proof can be applied to

the component contained inside each sub-cycle of F+ separately.

90

First we will show that:

ker(H1(Σ)
i?−→ H1(R)) = 0 ⇒ ker(H1(Σ,F−)

i?−→ H1(R,F−)) = 0

The inclusion map on pairs i : (Σ,F−) ↪→ (R,F−) induces maps between the

long exact sequences. We assumed i∗ : H1(Σ)→ H1(R) is injective.

H1(F−)
ι∗ // H1(Σ)� _

i∗
��

j∗ // H1(Σ,F−)
δ∗ //

i∗
��

H0(F−)

H1(F−)
ι∗ // H1(R)

j∗ // H1(R,F−)
δ∗ // H0(F−)

Suppose we have 0 6= [α] ∈ H1(Σ,F−). If δ∗[α] 6= 0 then by commutativity

δ∗i∗[α] 6= 0, and therefore i∗[α] 6= 0. On the other hand, if δ∗[α] = 0 then by

exactness there is [β] ∈ H1(Σ) such that j∗[β] = [α]. By our assumption of injectivity

i∗[β] 6= 0. If j∗i∗[β] = 0 then there must be a [γ] ∈ H1(F−) such that ι∗[γ] = [β].

But this [γ] is in H1(F−) in the top row too, so we have ι∗[γ] = [β] in H1(Σ), which

contradicts the exactness of the top sequence. Therefore j∗i∗[β] = i∗j∗[β] = i∗[α] 6=

0. We conclude that i∗ : H1(Σ,F−)→ H1(R,F−) is injective.

To apply corollary 3.20 we need 0 6= [γ] ∈ H1(F+) such that [γ] = 0 in

H1(Σ,F−). We assumed that F+ ' S1, so we can take [γ] to be a generator for

H1(F+). Note that by excision H1(S, ∂−S) = 0 and so by Chambers’s isomorphism

H1(R,F−) = 0. Since i∗ : H1(Σ,F−) → H1(R,F−) is injective we must have

H1(Σ,F−) = 0, and therefore [γ] = 0 in H1(Σ,F−).

By corollary 3.20 p(Σ) = S.

91

Just to be explicit we can apply this to coverage complexes.

Corollary 4.2. Let X be a finite planar data arrangement over V = FD, and let

U ⊆ V be a linear subspace. Let r > 0 be some finite radius, and let R = Rr(X) be

the corresponding Rips complex and S = p(R) the Rips shadow. Let RC(U) be the

coverage complex for vector space U , and SC(U) = p(RC(U)) the coverage shadow.

Suppose F = F+ t F− ⊆ RC(U) ⊆ R is a fence subcomplex.

If ker(H1(RC(U))
i?−→ H1(R)) = 0 then SC(U) = S.

In order to apply this refined criterion we need to test either ker(H1(RC(U))
i?−→

H1(R)) = 0 or im(H2(R,RC(U))
δ?−→ H1(RC(U))) = 0. Testing the kernel seems

more straightforward.

Our assumptions about the fence subcomplex being contained in RC(U) es-

sentially ensure that H1(R) ⊆ H1(RC(U)). Therefore one approach is simply to

compute both H1(R) and H1(RC(U)) and compare their ranks. If H1(RC(U)) has

a higher rank, then i? must have non-zero kernel. If they have the same rank then

ker(i?) = 0. A drawback of this is that there is not much room for optimization; we

must compute two homology groups no matter what, and no work is shared even

though the boundary operators involved share a lot of their structure. Another

problem is that just comparing ranks does not identify which of the basis elements

of H1(RC(U)) corresponds to a new hole in coverage.

For a more comprehensive test we can look at the basis elements of H1(RC(U))

themselves. To test if the kernel is zero we can start by computing a basis β1, . . . , βn

for H1(RC(U)). Each of these is still a cycle when viewed in C1(R). To see if they

92

are part of ker(i?) we only need to test if they become bounding when included into

R. The boundary map in question is

C2(R)
∂1−→ C1(R)

∂1 for R can be naturally expressed as a boundary matrix, M1, relative to a basis

compatible with that for RC(U); for example by representing all 1-simplices in R

but not RC(U) in the bottom rows of the matrix. Then we would need to test if

βi ∈ im(M1) for each βi; or in other words, if βi ∈ span(columns of M1). If that is

the case for any βi we have found a non-zero element of ker(i?). This test could be

carried out by Gaussian elimination.

This approach is also not particularly optimized. It turns out that testing the

kernel of i? could be computed more efficiently and discussed more elegantly using

the tools of persistent homology. WithRC(U) ⊆ R we have a two-step filtration and

we want to check that all non-empty persistence intervals are infinite; that is, there

is no torsion in the H1 persistence module. We will devote the next few sections to

background on persistent homology and an example of its use.

4.1 Persistent Homology

Persistent homology is a tool for tracking changes in homology throughout

a filtration of topological spaces. The extremely useful things about persistent

homology are the existence of efficient algorithms to effectively compute homology

across the entire filtration with a single homology computation over a polynomial

93

ring, and the fact that it effectively tracks a generator for each feature from one

stage of the filtration to another.

Persistent homology was first introduced as a computational tool by Edels-

brunner et al. [30], and later algebraically reframed by Zomorodian and Carlsson

in [31], and expanded upon in [32]. Some good surveys are in [33–36].

The input to the persistence algorithm is a filtration of a topological space X.

X0 ⊆ X1 ⊆ · · · ⊆ XN = X (4.3)

These inclusions induce maps on homology. Given a generator [α] ∈ Hk(Xi) we

might want to ask if [α] has a preimage, [α̃] ∈ Hk(Xb), b < i, such that ii−b? [α̃] = [α]

· · · i?−→ Hk(Xb)
i?−→ Hk(Xb+1)

i?−→ · · · i?−→ Hk(Xi)

[α̃] 7→ i?[α̃] 7→ · · · 7→ [α]

or if after repeated applications of i?, [α] eventually maps to zero.

Hk(Xi)
i?−→ Hk(Xi+1)

i?−→ · · · i?−→ Hk(Xd−1)
i?−→ Hk(Xd)

[α] 7→ i?[α] 7→ · · · 7→ i? · · · i?[α] 7→ 0

If a generator [α] ∈ Hk(Xb) has no preimage in Hk(Xb−1) people typically say

[α] is “born at time b”, or “born at stage b of the filtration”. Similarly if [α] is born

at time b and id−b−1
? [α] 6= 0 but id−b? [α] = 0 ∈ Hk(Xd) we say that [α] “dies at time

d” or “dies at stage d of the filtration”. Looking at this algebraically, one might

94

worry that there is potential for convergence in the lineage of the generators as they

move up the filtration. I.e., there could be cases where [α] 6= [β] ∈ Hk(Xt), but

i?[α] = i?[β] in Hk(Xt+1). However it works out that both the algorithms and the

algebra avoid this complication by favoring the older generators. If [α] is born at

time b1 and [β] is born at time b2, b1 < b2, then if [α] and [β] become homologous

at stage d in the filtration, id−b1? [α] = id−b2? [β], then this would be the death time of

[β].

Therefore we can unambiguously characterize homological generators in a fil-

tration by their birth and death times. The persistence diagram of a filtration

consists of a multi-set of pairs {(bi, di)}i∈I. The individual birth/death pairs are

called persistence intervals. The canonical example of a filtered simplicial com-

plex (from [31]) is shown in figure 4.1, along with the two popular ways of plotting

the persistence diagram. In dimension 0 at time t = 0 there are two connected com-

ponents, A and B. At t = 1 A and B have joined the same component, so one of the

persistence intervals is (0, 1). It doesn’t matter which generator is retained because

they are indistinguishable. At t = 1 a new component, C also appears, and then is

connected to the rest of the complex at t = 2, giving another persistence interval

(1, 2). The remaining persistence interval is infinite in the sense that it survives to

the final stage of the filtration. In normal (not reduced homology) persistence there

will always be at least one infinite interval in dimension zero.

In dimension 1 the first non-trivial 1-cycle with generator [ABCD] appears at

time t = 2. At t = 3 a second 1-cycle is born. Note that at this stage there are two

choices for the generator for this second 1-cycle, either [ABC] or [ACD]. At time

95

1 2 3 4 50

1 2 3 4 50

β0

1 2 3 4 50

1

2

3

4

5

0

β0

1 2 3 4 50

1

2

3

4

5

0

β1

β1

d d d d d

a
b a b

c

a b

c

a b

c

a b

c

a b

c

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Figure 4.1: A classic example of a filtered simplicial complex and its persistent
homology plotted in two different types of persistence diagrams.

t = 4 the cycle ABC becomes bounding and the generator that was born at t = 3,

the younger generator, dies. The generator that was born at t = 2 dies at t = 5

when the cycle ACD is filled by a 2-simplex.

The first type of persistence diagram shown in figure 4.1 is sometimes called

a Betti barcode. Each non-empty persistence interval, (bi, di), in dimension k is

shown as a horizontal line running from b1 to di in the diagram for βk. Persistence

intervals that survive through the final step in the filtration are called infinite in-

tervals (di =∞) and are shown as lines running from their birth time to the end of

the diagram, with a small arrow indicating that they continue past the end of the

filtration. In this type of diagram longer intervals indicate more prominent topolog-

ical features.

96

f (x)

r1

f (x)

r2

f (x)

r3

f (x)
r4

f (x) r5

f (x)
r6

Figure 4.2: An example of a sublevel filtration of a manifold (an interval of R in
this case).

The second type of persistence diagram is more compact and generally used

in connection with sublevel filtrations of height functions. Each persistence interval

(bi, di) is plotted as a point in the Cartesian plane. Since bi < di all the points will

be above the diagonal, and points on the diagonal correspond to empty intervals. In

this type of diagram points further from the diagonal correspond to more prominent

topological features. This type of diagram does not represent infinite intervals, but

when studying sublevel filtrations of a space based on height functions, there is no

reason to have infinite intervals.

97

 x

f (x)

Figure 4.3: The correspondence between critical values of f(x) and points in the
persistence diagram of the sublevel filtration.

4.1.1 Applications of Persistent Homology

All of the meaning that can be extracted from a data set using persistent

homology depends on the method by which one derives a filtered topological space.

Very broadly speaking there are two popular ways to do this. The first is as a

sub-level filtration of a manifold based on a real-valued function, such as a Morse

height function or a probability density on the manifold. The second, and much

more common in actual applications, is by building a distance based filtration of a

simplicial complex constructed from a point cloud in a metric space.

When computing the persistence of a sublevel filtration of a manifold based on

a real-valued function, the final stage of the filtration is known and tractable, namely

it is the manifold, or a finite simplicial representation of the manifold. In some cases

the manifold is familiar, such as a subset of Euclidean space or a sphere. Consider

the example in figure 4.2. We have a continuous function f : R → R with finitely

many critical points. Then for any r ∈ R we can define Xr = {x ∈ R|f(x) ≤ r}.

Then Xr ⊆ Xr+ε and we have a filtration. In this case the underlying manifold is

a line segment, so the only interesting homology is H0. The values of r where the

induced inclusion H0(Xr)
i∗−→ H0(Xr+ε) is not the identity map are critical values,

98

and correspond to the birth and death times of the persistence intervals. The x-axis

in figure 4.2 is highlighted to show the parts included in the filtration for different

values of r.

Figure 4.3 shows a popular way of visualizing the correspondence between

critical values and points in the persistence diagram. In the figure we see that small

bumps in the function lead to points in the persistence diagram that are close to

the diagonal, such as the one highlighted in green.

This type of filtration can be used to study the topography of a surface, literally

or metaphorically [37] or density functions on higher dimensional manifolds. It has

also been used in image analysis, for example attempting to identify indications

of autism from cortical thickness measured from MRI scans [38]. Given certain

constraints on the function f , there are stability results relating perturbations in f

to changes in the persistence diagram [39,40]. Based partly on these stability results,

the sublevel filtration approach has also been generalized to dynamic functions, or a

homotopy of f . In that case, as f changes continuously, the points in the persistence

diagram sweep out a path, called a vine. The collection of all such paths for a given

homotopy is called a persistence vineyard [41, 42]. In the paper where they are

introduced, vineyards are used to analyze a time-varying two-dimensional surface

based on protein folding data.

The approach of constructing a filtered simplicial complex based on point

cloud data in a metric space seems more common in practice. In this approach we

start with a collection of data points X = {x1, . . . ,xn} with a distance function

d : X×X→ R, and build a filtered simplicial complex with the points of X as the

99

Figure 4.4: An example of a filtered Rips complex built on point cloud data

vertices. The Rips complex is the prototypical derivation. Others include the alpha

complex [30,43], and various types of witness complex [44,45]. All of these have the

property of forming simplices between nearby points.

Many data sets can be expected to have topological structure, but because

the data points themselves can lie in very high dimensional space, discovering that

structure is a challenge. Constructing something like the Rips complex on high

dimensional metric data and computing homology is simple enough, though. The

reason persistent homology is needed is that data can be incomplete, irregular, and

noisy. Constructing something like the Rips complex requires the choice of a Rips

radius, and choosing wrong can lead to nonsensical results.

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

Be
tti
0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

Be
tti
1

Figure 4.5: The persistence barcode for the filtration in figure 4.4. Several short-
lived features appear as the rips radius, r, increases. The generator corresponding
to the prominent circle in the data is finally recovered when r ≈ 0.25.

Figure 4.4 illustrates this. The figure shows a sequence of Rips complexes built

on a set of 100 data points that lie near a circle, but with uniformly random angular

placement and Gaussian noise added. For Rips radii that are too small, many points

are disconnected and the topology of the circle is not recovered. Also for many radii

small loops form amongst the points. These spurious loops could be detected by a

homology computation on a single Rips complex and lead to the false conclusion

that the data has the topological structure of several circles. Computing persistent

homology allows us to pick out the topological features that persist across many

scales of distance. The persistence barcode for this example is shown in figure 4.5.

One of the most famous examples of topological analysis of point cloud data

is in [46] where the structure of a Klein bottle is discovered in data points derived

from black and white digital photos. Section 5 gives details on an example from [47]

that uses persistent homology to recover spatial information from encounter traces.

Another uses persistent homology in natural language processing, attempting to

101

identify circular patterns in essays [48].

One technical obstacle to using persistent homology for point cloud analysis

is that the size of the simplicial complex grows extremely quickly once the filtration

reaches a certain point. For example, in the Rips complex on a set of N points, as the

Rips radius increases the complex will eventually become an N simplex, with
(
N
k

)
k-simplices. The witness complex is intended to mitigate this problem. It is similar

to the Rips complex, but built on a subset of the data points, and tends to recover

topological features at lower filtration values. Another approach to dealing with the

complexity of point cloud-derived simplicial complexes is to allow simplifications

of the complex while preserving topological features. The CHomP software has long

used this sort of optimization for static simplicial complexes [49, 50]. An algorithm

that excludes simplices that are likely to be topologically redundant from the Rips

filtration has also been proposed [51].

4.2 Structure and Computation of Persistent Homology

There are two commonly implemented algorithms for computing persistent

homology: the pairing-based algorithm originally introduced by Edelsbrunner et

al. [30], and the algorithm based on the persistence module correspondence intro-

duced in [31]. Mathematically they must be equivalent on some level, but they

have different implementations, see for instance the implementations of both in

JavaPlex [52]. Other algorithms with new optimizations have been developed and

implemented as well [53].

102

4.2.1 Persistence Computation Based On Pairing of Simplices

The original persistence algorithm, sometimes called pHcol, computes a pairing

between “positive” simplices whose appearance creates a topological feature, and

“negative” simplices, whose appearance destroys a topological feature. This pairing

yields the persistence intervals, and the process also produces generators for the

homology groups. In principle the algorithm can compute persistent homology over

any finite field, but is typically presented only over GF(2), which we will use here.

The matrix looks cleaner without minus signs.

The premise of the algorithm is to start with a boundary matrix with the

basis elements ordered by the filtration, and to perform the minimum reductions

necessary to deduce the pairing. Since the computation is done over a finite field,

torsion in the homology module is impossible, and it is not necessary to reduce

completely to the Smith normal form.

Consider the filtration of a 2-simplex below. There are three 0-simplices, three

1-simplices, and one 2-simplex. Each appears at a different stage of the filtration.

a

b

a

b

a

c b

a

c b

a

c b

a

c b

a

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

The filtration order of the simplices is a, b, ab, c, bc, ac, abc. We can write

a single boundary matrix, D, that contains all of the chain group information and

has its basis elements ordered by this filtration. The corresponding basis elements

are indicated at the head of the corresponding row or column.

103

D =



a b ab c bc ac abc

a 1 1
b 1 1
ab 1
c 1 1
bc 1
ac 1
abc



For a matrix, M , let lowM(j) be the row index (or corresponding basis element)

of the last non-zero entry in column j. A matrix is considered “reduced” when

lowM(j) 6= lowM(j′) for j 6= j′. The goal of the algorithm is to reduce D using only

column operations, with the added constraint that columns can only be added up

the filtration; that is, a column can only be added to a column to its right. These

column operations can be represented by right-multiplication by an upper-triangular

matrix, V , to give the reduced matrix.

R = DV (4.4)

In the example above we have lowD(bc) = lowD(ac), so we add column bc to column
ac to get

R1 = DV1 =



a b ab c bc ac+bc abc

a 1 1
b 1 1 1
ab 1
c 1
bc 1
ac 1
abc


This leaves us with lowR1(ab) = lowR1(ac + bc) so we add column ab to column

104

ac+ bc to get the final reduced matrix:

R = DV =



a b ab c bc ac+bc+ab abc

a 1
b 1 1
ab 1
c 1
bc 1
ac 1
abc


The upper-triangular matrix V in this case looks like:

V =



a b ab c bc ac abc

a 1
b 1
ab 1 1
c 1
bc 1 1
ac 1
abc 1



The pairing of positive and negative simplices is read off from the reduced

matrix as (σi, σj) where i = lowR(j). The generators for the homology classes can

be read off of the columns of V . For this example we have:

(σi, σj) interval generator

(b, ab) (2, 3) b

(c, bc) (4, 5) c

(ac, abc) (6, 7) ac+ bc+ ab

105

4.2.2 Persistence Modules

The notion of persistence modules and using them to compute persistent ho-

mology groups was introduced by Zomorodian and Carlsson in [31].

Definition 4.3. Let R be a commutative PID. A persistence module, M , is

an indexed collection of R-modules, M i, together with homomorphisms φi : M i →

M i+1

M = {M i, φi}

A persistence module is of finite type if the M i are finitely generated and there

exists N ∈ N such that φi : M i ∼= M i+1 for all i ≥ N .

The main theorem contained in [31] is that the category of R-persistence mod-

ules of finite type is equivalent to the category of finitely generated non-negatively

graded R[t] modules.

Theorem 4.4. Let M = {M i, φi} be a persistence module of finite type. Define

the functor Υ taking persistence modules of finite type to finitely generated non-

negatively graded R[t]-modules by

Υ(M) =
∞⊕
i=0

M i

106

with the action of t given by

t · (m0,m1,m2, . . .) = (0, φ0(m0), φ1(m1), φ2(m2), . . .)

Then Υ defines an equivalence of categories.

This means that as long as R = F is a field, all R-persistence modules will

have a tractable structure consisting of a free part and a torsion part:

(
n⊕
i=1

ΣaiF[t]

)
⊕

(
m⊕
j=1

Σbj (F[t]/(tnj))

)

where Σa is a shift upward in the grading by a degrees.

Clearly the persistent homology groups, over a field F, for a filtration constitute

an F-persistence module with the φi being the induced inclusion maps. In fact the

filtered chain complex C•(X0) ⊆ C•(X1) ⊆ · · · ⊆ C•(Xn) is a persistence module,

and we can use the structure of the graded polynomial ring to compute its homology

as a persistence module.

4.2.3 Persistence Computation Based On Persistence Modules

Suppose we have a filtered simplicial complex X0 ⊆ X1 ⊆ · · · ⊆ Xn = X.

In the persistence module-based algorithm each simplex in X has a corresponding

degree (as an element of the F[t]-module) equal to the stage it first appears in the

filtration. For example if σ ∈ X0 then deg (σ) = 0. On the other hand deg (t2σ) = 2,

as t2σ corresponds to σ ∈ X2.

107

We can write the boundary operators for C•(X) in a way that captures all the

filtration information. This gives us a chain complex over F[t]. Theorem 4.4 says

that computing the homology of this chain complex over F[t] effectively computes

the persistent homology. Infinite persistence intervals correspond to free generators,

and finite intervals correspond to torsion terms.

However, working over a field, certain simplifications to the reduction are

possible. It isn’t necessary to reduce the matrices to Smith Normal Form. We will

describe the simplified algorithm by going through the same example as is used

in [31]. The point of going through it here is to clarify the process, explain the

relationship with the pairing algorithm, and to have a point of reference to refer to

when explaining modifications to it.

d d d d d

a
b a b

c

a b

c

a b

c

a b

c

a b

c

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

For reference, the table below lists the degree of each of the simplices, according

to the correspondence between the filtration and the F[t] module.

a b c d ab bc cd ad ac abc acd

0 0 1 1 1 1 2 2 3 4 5

Consider the boundary operator ∂1 : C1 → C0 operating on the basis element

ad. Over the integers, and disregarding the filtration, we would have ∂1(ad) = d−a.

However in our F[t]-module, ad has degree 2, so ∂1(ad) must have degree 2. But a

has degree 0 and d has degree 1, so we get ∂1(ad) = t ·d−t2 ·a which is homogeneous

108

of degree 2. When we write the boundary operator ∂k as a matrix Mk relative to

the standard basis, the entries will be elements of F[t] satisfying

deg σi + degMk(i, j) = deg τj (4.5)

where σi and τj are basis elements of Ck−1 and Ck, respectively.

To compute H1, we start by writing the boundary operators for the complex

in terms of the standard basis for C0, C1, and C2.

M1 =


ab bc cd ad ac

d t t
c 1 −t t2

b t −t
a −t −t2 −t3

 M2 =



abc acd

ab t3

bc t3

cd t3

ad −t3
ac −t t2

 (4.6)

Note that the basis elements in the rows of M1 have been sorted in reverse

filtration order; the opposite of how they were arranged in the pHcol algorithm. This

ensures that the degree of the entries is strictly non-decreasing down the column.

Therefore we only need to reduce the matrix Mk to column echelon form, and not

completely to Smith Normal Form, to obtain the pivot entries. Once it is in column-

echelon form, because of the increasing degree down each column, the entries below

the pivots could be eliminated by row operations without changing the pivots. So the

reason for arranging the matrix in this way is to more clearly relate the algorithm to

underlying algebra and the Smith Normal Form. The process could equivalently be

performed with the rows in opposite order, taking the bottom-most non-zero entry

109

as the pivot, as the pHcol algorithm does.

The first step in the algorithm is to reduce M1 to column-echelon form using

elementary column operations. It is helpful to see what happens in the steps of

the reduction. The important point is that if we have a product of two matrices

X Y , we can perform an elementary column operation on X and a corresponding

row operation on Y without changing the product. The column operations can

be achieved by right-multiplication by a matrix P , and the row operations by left-

multiplication by P−1, so that

X Y = (X P)(P−1 Y) (4.7)

For a column operation

X(·, i)→ X(·, i) + qX(·, j) (4.8)

the corresponding row operation will be

Y (j, ·)→ Y (j, ·)− qY (i, ·) (4.9)

We start by re-ordering the C1 basis elements and proceed with the reduction.

110

M1M2 =


cd bc ab ad ac

d t 0 0 t 0
c −t 1 0 0 t2

b 0 −t t 0 0
a 0 0 −t −t2 −t3




abc acd

cd 0 t3

bc t3 0
ab t3 0
ad 0 −t3
ac −t t2



=


cd bc ab ad−cd ac−t2·bc

d t 0 0 0 0
c −t 1 0 t 0
b 0 −t t 0 t3

a 0 0 −t −t2 −t3




abc acd

cd+ad 0 0
bc+t2·ac 0 t4

ab t3 0
ad 0 −t3
ac −t t2



=


cd bc ab ad−cd−t·bc ac−t2·bc−t2·ab

d t 0 0 0 0
c −t 1 0 0 0
b 0 −t t t2 0
a 0 0 −t −t2 0




abc acd

cd+ad 0 0
bc+t2·ac+t·ad 0 0
ab+t2·ac 0 −t3

ad 0 −t3
ac −t t2



=


cd bc ab ad−cd−t·bc−t·ab ac−t2·bc−t2·ab

d t 0 0 0 0
c −t 1 0 0 0
b 0 −t t 0 0
a 0 0 −t 0 0




abc acd

cd+ad 0 0
bc+t2·ac+t·ad 0 0
ab+t2·ac+t·ad 0 0

ad 0 −t3
ac −t t2


So we are left with:

M̃1 =


cd bc ab ad−cd−t·bc−t·ab ac−t2·bc−t2·ab

d t 0 0 0 0
c −t 1 0 0 0
b 0 −t t 0 0
a 0 0 −t 0 0

 M̂2 =



abc acd

cd+ad 0 0
bc+t2·ac+t·ad 0 0
ab+t2·ac+t·ad 0 0

ad 0 −t3
ac −t t2



What we can read from M̃1 is that Z1 = 〈ad−t ·ab−t ·bc−cd, ac−t2 ·ab−t ·bc〉

is a basis for cycles of C1. Also the top non-zero entries in the first three columns

would become the diagonal entries of the Smith Normal Form.

111

Understanding the relationship with M2 and obtaining B1 is a little more

elusive. Note that in our example, applying the row operations to M2 caused all

the rows corresponding to pivot columns in M̃1 to be zeroed out. This must always

happen based on the fact that M̃1 M̂2 = M1M2 = 0. Therefore the rows of M̂2

that correspond to pivot columns of M̃1 do not contribute to the 1-boundaries, B1.

Furthermore the rows of M2 corresponding to zero columns of M̃1 are not modified.

This must also always be the case, since they are not pivot columns, there is not

reason to add them to another column during the reduction.

Therefore there is no need to carry out any row operations on M2. We can

simply discard the rows corresponding to the pivot columns of M̃1 and label the

remaining rows with the corresponding basis element computed in the reduction of

M1. In the case above we get:

[abc acd

ad−cd−t·bc−t·ab 0 −t3
ac−t2·bc−t2·ab −t t2

]
Swapping the columns puts it in column echelon form.

M̌2 =

[abc acd

ad−cd−t·bc−t·ab −t3 0
ac−t2·bc−t2·ab t2 −t

]

Sorting the rows by reverse filtration value and reducing to column echelon

form we obtain:

112

M̃2 =

[abc acd+t·abd

ac−t2·bc−t2·ab −t 0
ad−cd−t·bc−t·ab 0 t3

]

The first row basis element has degree 3, and its pivot has degree 1. This

contributes a term Σ3F[t]/(t). This is a persistence interval (3, 4). The second row

basis element has degree 2 and its pivot has degree 3. This contributes a term

Σ2F[t]/(t3). This is a persistence interval (2, 5).

4.3 Discounting Holes in S

Recall that we are interested in identifying coverage holes in RC(U) that do

not persist under the inclusion into R. These are holes that could be fixed by adding

or rearranging vectors in the inventories of the points. Algebraically we are looking

at:

ker
(
i? : H1(RC(U)) −→ H1(R)

)
(4.10)

If we treat RC(U) ⊆ R as a two-stage filtration, then this kernel corresponds

exactly with the non-infinite 1-dimensional persistence intervals.

Let us consider how this looks in the pairing-based persistence algorithm. Since

we are only considering H1, assume we are dealing only with the 2-skeleta of the

complexes. In a two-stage filtration we essentially have two sets of simplices: RC(U)

and R \RC(U). For convenience call them Σ = {σ1, . . . , σn} and T = {τ1, . . . , τm},

113

respectively (note T is not generally a simplicial complex). We order the basis

elements by the filtration, but since all of the simplices fall into one of the two sages,

and because the ordering of simplices within a stage of the filtration is arbitrary, we

can divide the matrix D into blocks.

D =



σ1 ··· σn τ1 ··· τm

σ1

... D1,1 D1,2

σn

τ1

... 0 D2,2

τm


(4.11)

Then this reduces to

R = DV =



σ1 ··· σn τ1 ··· τm

σ1

... R1,1 R1,2

σn

τ1

... 0 R2,2

τm


(4.12)

Recall that a simplex is negative if its corresponding column in the reduced

matrix is non-zero, and positive if its column is zero. For a positive simplex σi it

is unpaired if there is no column σj such that lowR(j) = i, and paired (with finite

death time) if there is a column σj with lowR(j) = i. For the purpose of discounting

holes in S we only care about positive simplices in Σ, i.e. columns that are zero in

R1,1. Furthermore we only care about positive simplices in Σ that are paired with

114

a simplex in T, i.e. rows that have lowR(τj) = σi for some column τj in R1,2.

The reduction necessary to check the first condition can be optimized over

the normal persistence algorithm. It will be clearer to break D up into dimension-

specific boundary operators.

Let Σk = {σk1 , . . . , σknk
} be the k-simplices in Σ, and Tk = {τ k1 , . . . , τ kmk

} be

the k-simplices in T. Then we can write

Dk =



σk
1 ··· σk

nk
τk1 ··· τkmk

σk−1
1

... D1,1
k D1,2

k

σk−1
nk−1

τk−1
1

... 0 D2,2
k

τk−1
mk−1


(4.13)

Then the matrices D1 and D2 contain all the information we need to compute

the H1 persistence. Since we are only interested in finding positive 1-simplices it is

only necessary to reduce D1,1
1 . We can ignore the rest of the 1-simplices that appear

only in T1. To see this, recall that to respect the filtration during reduction, we may

only add a column to a column to its right. Therefore the columns in D1,2
1 cannot

affect the reduction of the columns of D1,1
1 .

Once we identify the positive 1-simplices in Σ1, we want to check if they are

paired with a 2-simplex in T2. Unfortunately we cannot optimize the reduction of

R2 at all. In order to determine lowR for all of the τ 2
j columns the lower block D2,2

k

must get reduced. In order to reduce the upper right block D1,2
2 properly, the upper

left block D1,1
2 must be reduced.

115

Thus, the limited scale of this filtration and our limited interest in certain

types of persistence intervals allows us to optimize the computation somewhat, but

the overall worst-case complexity will stay the same because the reduction of D2

cannot be broken down into blocks.

As an example, consider two-stage the filtration shown below. This is just an

example. There is no data arrangement that would give this as a coverage complex.

a⊆a

a

d
b

c

a

d
b

c

Then the dimension 1 and 2 boundary matrices would look like:

D1 =


ab bc cd ad bd

a −1 −1
b 1 −1 −1
c 1 −1
d 1 1 1

 D2 =



abd bcd

ab 1
bc 1
cd 1
ad −1
bd 1 −1


The reduced matrices would be:

R1 =


ab bc cd ad−cd−bc−ab bd−cd−bc

a −1
b 1 −1
c 1 −1
d 1

 R2 =



abd bcd+abd

ab 1 1
bc 1
cd 1
ad −1 −1
bd 1



Looking at R1 we see that the reduced column corresponding to ad is zero,

and therefore ad is a positive simplex in the first stage of the filtration. Discovering

116

this did not require reducing the right part of the boundary matrix (though we have

reduced it in the equation above). Looking at R2 we see that ad = lowR2(bcd), so

ad is paired with bcd which appears in the second stage of the filtration. Therefore

the cycle [ad − cd − bc − ad] is in the kernel of the induced inclusion map on H1,

and would be considered a problematic 1-cycle.

4.3.1 Allowing changes to RC(U)

Another natural algorithmic question to ask is “How much of this computation

can be reused if we change RC(U)?” The idea is, if we are expanding the data

arrangement to try to patch holes we want to check if we are successful. If we are

removing vectors from nodes’ inventories in order to save storage space we want to

check that we have not created new holes. On the other hand we may have a fixed

data arrangement and we are traversing the lattice of linear subspaces of U ⊆ V to

try to isolate imperfections in the coverage. The complex at the top of the filtration

is fixed in our case, so changingRC(U) simply amounts to moving simplices between

Σ and T (using the terminology of the last section). This is the same situation as

in persistence vineyards [41,42].

Persistence vineyards are interesting and useful partly because there is an

efficient linear-time algorithm which can update the reduced matrix as the filtration

changes. It is conceivable that we could use the same algorithm to update our

pairing when a simplex appears or disappears from RCU . One difference is in the

interpretation of the output. Because of the sublevel filtration setting vineyards

117

are developed in, stability results ensure that the points in the persistence diagram

sweep out continuous paths in the vineyard. This interpretation makes no sense in

our context. For us the persistence diagram is either empty or not, and there is no

continuity between diagrams as we change the filtration. However it is desirable to

track equivalent generators as the filtration changes.

Another obstacle is that algorithm used to repair the R = DV decomposition

only deals with the exchange of adjacent elements in the filtration. That is, it can

only transpose adjacent rows and columns. Moving a simplex from Σ to T or from T

to Σ will generally not involve the simplices at the boundary, σn and τ1. In our case

any simplex could switch from one stage of the filtration to the other. Repairing

the reduced matrices after a row/column exchange could trigger a new cascade of

reduction steps, which would not be linear time. Optimizations along the lines of

vineyards could be used, but not directly. Investigating this sort of optimization

could be future work.

118

Chapter 5: Using Persistent Homology To Recover Spatial Informa-

tion From Encounter Traces

This section is a detour from the study of coverage complexes to give an

example of how persistent homology can be used to extract unexpected structure

from the encounter data of mobile wireless networks [47].

The performance of wireless networks with mobile nodes is influenced by the

mobility patterns of the nodes. In Mobile Ad-Hoc Networks (MANETs) which

assume the existence of end-to-end paths and use synchronous protocols, the mo-

bility of the nodes will affect the feasibility of certain routing algorithms. In Delay-

Tolerant Networks (DTNs) where nodes are only intermittently connected, the mo-

bility of the nodes is the medium used to move data around the network. In such

networks understanding the nodes’ mobility is crucial to being able to analyze net-

work performance and design routing algorithms.

Unfortunately node mobility is fantastically complicated. Researchers have

focused instead on the encounter patterns that the nodes’ mobility produces. To this

end there have been several experiments which tag people or animals with wireless

motes that record which other motes they come into contact with and when. These

experiments produce encounter traces; a series of data points, each consisting of

119

the encounter time and the IDs of the two nodes involved. Other data sets have

also been repurposed for this type of analysis.

Some statistics that have been computed from encounter traces include dis-

tributions of node inter-contact times, distributions of node degree, and global en-

counter rates. These statistics focus on isolated local phenomena between individual

pairs of nodes. Persistent homology allows us to tie many encounters together and

extract more global structure from the encounter pattern. For example, in experi-

ments where the nodes are restricted to a 1-dimensional space (a graph), the tools of

persistent homology can sometimes recover the 1-dimensional topology of the space

and detect certain changes in the dimensions of the space. We demonstrate that

the same sort of technique can be used to deduce topological information when the

nodes are moving in 2-dimensional space.

Efforts to gather mobile node encounter traces became popular in the mid

2000’s as researchers realized the need to evaluate MANET and DTN routing al-

gorithms against realistic patterns of node mobility. Experiments involving social

tim
e

e1

e2

e3

t1

t2

t3

A CB A CB

Figure 5.1: The topology of the space affects the type of encounter patterns that
are possible. If the space is like a line, node A cannot encounter node C without
one of them encountering node B. If the space is like a loop, node A and C can
encounter each other without encountering node B.

120

associations go back to at least Milgram’s famous small-world experiment [54], but

mobile wireless networks such as MANETs and DTNs require actual node proximity

to transfer information, so the encounter patterns produced by people and animals

have become a salient topic for engineers to study.

Encounter trace experiments include the famous Haggle project experiments

[55]. Wireless LAN traces such the MIT trace [56], the UCSD trace [57], and the

Dartmouth trace [58] are also commonly repurposed for use as encounter traces

[59]. The initial Haggle project analysis focused on the distribution of node inter-

encounter times. That is, given an encounter between a particular pair of nodes,

how long before they come into contact again? The initial conclusion was that the

distribution of inter-encounter times follows a power-law. This was an important

discovery because most simulators produce, and most mathematical models assume,

an exponential inter-encounter time distribution. Since then it has been observed

that the experimental inter-encounter time distributions appear to undergo a tran-

sition from power-law to exponential on a timescale of about one half day [60], and

the reasons behind the observed exponentially distributed inter-encounter times in

simulations using random walk mobility have been thoroughly examined [61]. Other

analyses have involved the uncensoring of trace data [62], and node degree distribu-

tion.

Several other researchers have analyzed such data in a social context, attempt-

ing to identify relationships and communities. For example the MIT Reality Mining

Project analyzes encounter data in conjunction with information volunteered by test

subjects to build models which recognize various social relationships between node

121

carriers [63]. In addition to developing and analyzing distributed community detec-

tion algorithms, [64] have demonstrated some vibrant tools for visualizing encounter

traces.

We are not aware of any studies that attempt to recover spatial information

from encounter traces. In wireless LAN traces the locations of the access points

are fixed and are usually known to the researchers. Knowing that certain nodes are

stationary and that encounters can only occur near the stationary nodes makes the

topology reconstruction problem (but not the geographic reconstruction problem)

trivial. In [65] the researchers do attempt to make deductions about the shapes of

routes and the presence of popular paths between certain access points.

5.1 The Encounter Complex Metric

A crucial step in any application of persistent homology is to derive a filtered

simplicial complex from the raw data that captures the desired structure. In this

example we build a weighted graph on the set of encounters, and define a metric

on that graph. This will be different from the euclidean metric associated with the

physical space of the experiment.

122

We assume that we are given an encounter trace containing N data points of

the form:

e1 = (t1, nodeA1, nodeB1)

e2 = (t2, nodeA2, nodeB2)

...

eN = (tN , nodeAN , nodeBN)

Here ei represents the ith encounter, consisting of ti, the time the encounter took

place, and nodeAi and nodeBi, the two nodes involved in the encounter. We do not

assume that any particular nodes are, or are not, stationary. We do not assume

that the nodes all have the same speed, or that the speed of any particular node is

constant, but we do assume that there is some maximum velocity vmax.

We will construct a weighted graph, G, in which the vertices correspond to the

encounters {ei}i=1..N . Suppose two encounters, ei and ej, have a node in common.

These encounters occurred at two particular points in space, xi and xj, respectively.

We do not know xi or xj, but we can make the deduction:

|ti − tj| < T =⇒ |xi − xj| < T · vmax (5.1)

Therefore, if two encounters, ei and ej have a node in common, we connect them

with an edge with weight |ti − tj|.

123

This allows us to define a metric on the set of encounters

d(ei, ej) =


dG(ei, ej) if ei and ej are connected in G

∞ otherwise

(5.2)

where dG(ei, ej) is the minimum distance between the vertices ei and ej in the

weighted graph G. We call the Rips complex built on the vertices of G with metric

d(·, ·) an encounter complex.

Note that the reverse implication of (5.1) is not valid, even if the speed of the

nodes is identical and constant. That is why a simplicial complex built based on

this metric will be different from a Rips complex based on Euclidean distances, and

why one might not expect persistent homology methods to work very well.

Because of this, it is better to think of the space we are studying as the

physical space crossed with time. This idea is visualized in Figure 5.1. For example,

if the nodes are moving in a space X ⊆ Rn, then each encounter takes place at a

point in the space X × R+ ⊆ Rn+1. More concretely, if the nodes live on a circle

X = S1 ⊂ R2 with coordinates (x, y), then the space whose topology we hope to

reconstruct is a cylinder with coordinates (x, y, t). R+ is contractible; in fact X is a

strong deformation retract of X × R+. Therefore X × R+ has the same homotopy

type as X and the Betti numbers of the product space we are reconstructing will be

the same as the Betti numbers of X.

A variation on our construction is to use the metric derived from the minimum

number of hops through the encounter graph, instead of the metric derived from the

124

encounter complex. This is equivalent to restricting the connections in the encounter

complex to only the two preceding and two succeeding encounters and setting all

edge weights to 1.0. This technique seems to give more stable results for static one-

dimensional spaces. However it fails badly with the two-dimensional experiments,

and will be invariant under scaling of the size of the space and speed of the nodes.

Therefore we focus only on the metric induced by the full encounter complex.

5.2 Building a Witness Complex

We now have a set of data points {ei}i=1..N with a metric on them. There are

a variety of ways to build a filtered simplicial complex from these data, but building

the witness complex in the manner of de Silva and Carlsson [45] seems to give the

best results. They compare several variations, so let us outline the particular method

we used.

The first step to building a witness complex is to reduce the number of vertices

by identifying a subset of the data points as landmarks. As in [45] we choose these

landmarks using the maxmin algorithm.

• Choose the first landmark randomly

• Choose the next landmark from the remaining data points so as to maximize

the minimum distance to all previously chosen landmarks. - Repeat.

The witness complex will be a simplicial complex whose 0-simplices are the set of

landmarks.

125

The concept of the witness complex is based on the Delaunay triangula-

tion. Given discrete set of points A ⊂ Rn in general position, the k-simplex

σ = [ai0 ai1 · · · aik] is part of the Delaunay triangulation of A iff there is a

point x ∈ Rn such that x has {ai0 , ai1 , ...aik} among its nearest neighbors in A

and |x − ai0| = |x − ai1| = . . . = |x − aik |. de Silva calls such a point a strong

witness for the simplex σ [44]. Given a finite data set, such as our set of encounters,

the probability of finding strong witnesses is effectively zero. A weak witnesses

for [aj0 aj1 · · · ajk′] is a point, x, which merely has {aj0 , aj1 , ...ajk′} among its near-

est neighbors. de Silva showed that it suffices to find a weak witness for every

subsimplex [aj0 aj1 · · · ajk′] < [ai0 ai1 · · · aik] [44].

Let E = {ei}i=1..N be the set of encounter data and let L ⊂ E be the set of

landmarks. For each ei ∈ E, let mi be the distance to the second closest landmark

to ei. Then for all pairs of 0-simplices (landmarks) a, b ∈ L, we add the 1-simplex

[a b] iff there exists an ei ∈ E such that

max(d(ei, a), d(ei, b)) ≤ mi + T (5.3)

for some threshold T ≥ 0. Repeating this for increasing values of T gives a filtered

simplicial 1-complex.

This procedure can be generalized to build witness complexes with higher

dimensional simplices, but we only use it to build a 1-skeleton and then fill in

all possible higher dimensional simplices up to the dimension of interest. This is

commonly called the “lazy” witness complex.

126

5.3 Graph-Based Experiments

Our first experiments are simulations of nodes doing random walks on a graph.

When a node arrives at a vertex it chooses its next destination randomly from among

the adjacent vertices, and its velocity uniformly from the range [vmin, vmax]. The node

departs immediately for its next destination. Encounters are recorded the moment

two nodes pass each other on an edge or at a vertex. In our simulations all edges

have the same length, but longer arcs can be created by attaching several edges in

series. We built a simple event-driven simulator to generate these data.

As a practical matter our simulator also outputs the coordinates of each en-

counter as well as the time of the encounter and the IDs of the nodes involved.

The physical coordinates are not used in the computation, but are indispensable for

visualizing and validating the results. All figures showing simplicial complexes were

plotted using the real coordinates, though the coordinates were not used to build

the simplicial complex.

In all experiments in this section edges have length 1.0km, and the speed

distribution is uniform with vmin = 0.3km/min, vmax = 1.0km/min. The units are

completely arbitrary. For each experiment we took 1000 consecutive encounters

from the middle of a longer encounter trace, built an encounter complex, and from

that a filtered witness complex. We found that using maxmin to select 20% of the

data points as landmarks gave good results, in agreement with [45].

127

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

Be
tti
0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

Be
tti
1

Figure 5.2: The witness complex and persistence barcode for an experiment in
the two-loop graph space. The x and y coordinates in the witness complex plot
correspond to the physical location of the encounters and are used to visualize
the results, but are not used in the computation. The z-axis corresponds to the
encounter time.

We compare three types of graph-based experiments.

• A linear graph

• A single loop

• A multi-loop

In the linear graph experiment 50 nodes followed discrete random walks on a

graph consisting of 10 vertices connected by edges in a linear chain. Topologically

this graph has one connected component and no higher-dimensional topological

features, so β0 = 1, and βk = 0 for k > 0. Since the fully contractible topology is

always results from setting the witness complex threshold high enough, it is difficult

to quantify how well the method is working for this type of graph.

In the single loop experiment 50 nodes followed discrete random walks on a

graph consisting of 10 vertices arranged on a circle and connected with edges to

form a single loop. This graph also has one connected component, so β0 = 1, but it

128

has a single non-trivial 1-cycle so β1 = 1. Building a filtered witness complex and

computing the persistent homology we recover the correct Betti numbers 100% of

the time, though the results are not always as stable as we would like.

In the multi-loop experiments we find that adding 50 nodes per extra loop

tends to generate enough encounters to reconstruct the spatial topology. The node

mobility is the same as before. For the line, and one and two-loop experiments

we chose 1000 consecutive data points to process. In the three-loop experiments

the space was large enough that we had to use 1500 encounters to reliably cover

the space. Each loop has 10 vertices arranged around a circle and one vertex is

shared between adjacent loops. The correct Betti numbers are β0 = 1 since there is

one connected component, and β1 = l, where l is the number of loops. The same

technique as before correctly recovers this information for all two and three loop

examples we tried.

Looking at a persistence diagram is a fairly qualitative method for evaluating

our results. In [45] de Silva and Carlsson present and use some more objective

performance metrics, and we replicate those as best we can. In some cases the

large data sizes we need to use makes computation of exactly the same statistics

intractable.

Let R ∈ R+ be the parameter enumerating the filtration. Define R0, R1 to

be such that the correct Betti numbers are achieved for R ∈ [R0, R1), and the

correct Betti numbers are not achieved for R < R0 or R ≥ R1. This is called the

success interval. An experiment is considered a success if the success interval is

non-empty. Define K0 to be the point in the filtration where the Betti profile changes

129

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

Be
tti
0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

Be
tti
1

Figure 5.3: The persistence barcodes for an experiment in a three-loop space. The
three persistent 1-cycles are quite prominent, but the intervals only overlap briefly,
leading to a small “success interval”.

permanently to β0 = 1, β1 = 0. This is slightly simplified from the criterion used

in [45]. Finally, define K1 to be the point in the filtration where the witness complex

becomes a single simplex on the landmark vertices (i.e. a complete graph).

The relative dominance is defined to be (R1−R0)/K0. This quantity mea-

sures the size of the success interval relative to the region over which the complex is

homologically non-trivial. The absolute dominance is defined to be (R1−R0)/K1.

This quantity measures the size of the success interval relative to the scale of the

most distant data points. Both quantities will be between 0 (success interval is

empty) and 1. Larger values indicate better performance.

Results for the one, two, and three loop experiments are given in the table.

130

Number of loops 1 2 3

med. rel. dominance 0.4208 0.4946 0.4045

med. abs. dominance 0.1096 0.1251 0.0683

med. num. cells 203384 182304 357836

The median relative dominance results are fairly consistent as we vary the

number of loops in the graph. Since each of the loops is the same size and has the

same probability of being the site of an encounter this is what we should expect.

The relative dominance measures to what extent the correct homology stands out

from the noise in the persistence diagram. Our results are about half that reported

for the sphere experiments in [45]. This means that our topological features stand

out quite a bit less, despite the fact that we are studying a simpler structure and

using much more data. This highlights how difficult things become when the metric

on the data is only probabilistically related to the metric in the underlying physical

space.

The absolute and relative dominance are reasonable statistics to evaluate our

results, but there are some situations where they are overly pessimistic. Consider

for example Figure 5.3. This is a persistence barcode from a three-loop experiment.

Most people would visually pick out the three long-lived features in the Betti1 plot

and conclude that there are three fairly persistent 1-cycles in the space. But because

the persistence intervals only overlap briefly the success interval is small and the

relative and absolute dominance appear very poor. It seems that sometimes there

is no substitute for manually examining the results.

131

5.3.1 A Note on Higher Degree Vertices

In a graph, an essential vertex is a vertex of degree three or more. In the

first two examples, the graph the nodes traveled on had no essential vertices. In such

a graph there is no way for the nodes to change their relative arrangement without

encountering each other. On a multi-loop, such as a figure-eight, there are vertices

of degree four, making it possible for the nodes to effectively pass each other without

ever having an encounter. In fact, Abrams has shown that in a connected graph

with an essential vertex there is always a way to move the nodes from any physical

arrangement to any other physical arrangement without any encounters [66]. It is

reasonable to worry that essential vertices will cause holes in the simplicial complex

which the filtration cannot fill. Though it is theoretically possible, the random

mobility of the nodes makes problems like this extremely unlikely.

5.3.2 Dynamic Graphs

We have found that persistent homology can detect certain types of changes

in a space. For a first simple example we look at a single loop that starts out small,

enlarges to a certain extent, then shrinks down again. Assuming the time for a node

to circumnavigate the shrunken loop is comparable to the times between encounters

on the expanded loop, the shrunken loop will appear contractible. The persistent

homology of the encounter complex should approximate that of a sphere. That is,

β0 = 1, β1 = 0, and β2 = 1.

132

Figure 5.4: The witness complex obtained from for the expanding/contracting loop
experiment. We were able to recover the homology of a sphere, demonstrating that
persistent homology can detect certain types of changes in the physical space.

We performed this experiment using the same simulator as before. The graph

that the nodes traveled on was a single loop with 8 vertices arranged in a circle. At

time tstart the graph was scaled down by a factor of 10 relative to the regular size,

while the node velocities were the same as usual. Then the graph was scaled up at a

constant rate, reaching normal size (edge length 1) at time tmid. Finally the graph

was scaled back down to the initial size at the opposite rate that it was expanded

ending at tend.

The persistent homology algorithm does recover the correct Betti numbers.

Figure 5.4 shows the witness complex recovered from this experiment. Since we

were attempting to recover 2nd homology information it was necessary to fill in

3-simplices in the witness complex. The number of simplices in a complex tends

133

to increase rapidly with dimension, and that was the case here. We had 56 0-cells,

1074 1-cells, 11703 2-cells and 86568 3-cells.

Though our experiment changed the size of the space, one could equivalently

change the speed of the nodes. Since changing speeds seems more realistic than

changing the physical space in most situations, perhaps we should point out that

persistent homology would detect that phenomenon in exactly the same way. We

use the changing space example here because it is easier to understand visually.

5.4 Two-Dimensional Experiments

The dynamic graph experiment was rather contrived, and restricting the nodes

to a one dimensional space like a graph is somewhat unrealistic. It is important

to see if we can recover topological information from a more general space. This

experiment will show that it is possible to recover topological information and detect

certain spatial or behavioral changes from an encounter trace generated by nodes

moving randomly in a two dimensional grid.

5.4.1 Detecting Changes in a 2D Space

We performed an experiment in which 50 nodes performed discrete random

walks on a 2-dimensional grid with reflecting walls. After 5000 simulation steps the

nodes’ mobility model is changed so that they are repelled by the center of the grid.

This causes them to congregate near the boundary. Then, after another 5000 steps

the repulsive force is removed and the nodes randomly fill up the grid again.

134

Figure 5.5: The witness complex obtained for the repulsion phase of the 2D random
walk experiment. The number of simplices made it intractable to compute the
homology of the entire data set at once.

One would expect the encounter complex during the random walk phase of the

experiment to have no real topological features. On the other hand, the encounters

during the middle phase of the experiment, when the nodes are repelled by the

center of the grid, should have the homology of a loop. Amazingly we were able

to recover exactly these features for both phases. Combining all three phases into

one computation should yield non-trivial 2nd homology for the same reasons as

the expanding/contracting loop experiment. Unfortunately the number of simplices

involved made the combined computation intractable to do with the MATLAB

modules.

5.4.2 2D Grid With Boundaries vs. a Torus

Network simulations are commonly done in finite simulated spaces with syn-

thetic mobility models. The same is commonly assumed in mathematical models of

wireless networks. One way to avoid the complications and non-uniformity caused

135

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

Be
tti
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

Be
tti
1

0 0.5 1 1.5 2 2.5 3
0

1

2

3

Be
tti
0

0 0.5 1 1.5 2 2.5 3
0

10

20

30

Be
tti
1

Figure 5.6: The persistence barcodes for the torus (left) and bounded rectangle
(right) experiments. The torus experiment shows two prominent 1-cycles, in agree-
ment with the expected topology of a toroidal space. In the bounded rectangle
results no 1-cycles particularly stand out from the noise.

by the edges of the finite space is to assume that opposite edges wrap around,

thereby eliminating the boundary of the space. Topologically a rectangular area

with opposite edges identified is a torus, homeomorphic to S1 × S1.

It is not surprising that the encounter patterns of nodes on a torus would

somehow be different from the encounter patterns of nodes in a bounded domain,

but it is difficult to say precisely how they differ. We have found that the encounter

patterns in these two types of spaces are different in a way that can be detected by

the persistent homology of the encounter complex. Specifically, we can differentiate

the two experimentally by their first persistent Betti numbers. For the torus we

have β1 = 2 but for a bounded rectangular region we have β1 = 0. Presumably we

could use the second persistent Betti numbers also, but we have found that filling

in 3-simplices is too computationally intensive. In the toroidal case the object we

are reconstructing is S1× S1×R+, which cannot be visualized in the same manner

as the previous spaces.

136

In this experiment we used the same discrete-time grid-based simulator as

above. We let 1000 nodes do discrete random walks on a 50 × 50 grid for 500

simulation steps. Two nodes registered an encounter if they coincided on the same

grid cell at the same time. In the torus experiment a node could walk off the edge

of the grid and appear on the opposite edge. In the bounded rectangle experiment

nodes were not allowed to go past the edge of the grid.

Since we used such a large number of nodes it was necessary to include a large

number of encounters in the persistence computation to keep from having several

disconnected components. In these experiments we used 5000 encounter data points.

The torus experiment took longer to compute since it had more connections than

the bounded rectangle.

Number of k-simplices k = 0 k = 1 k = 2

bounded rectangle 320 11766 196682

torus 303 15232 297375

We chose the landmarks for these experiments according to the same process

as before, but instead of choosing 20% of the data points as landmarks, we chose

landmarks until we could not choose another one without it being within distance

10.0 of a previously chosen landmark. Setting a threshold like that requires some

familiarity with the scale of the data, but seems to produce more efficient results.

137

5.5 Experiments With Real Encounter Data

The Haggle Project encounter data includes data from three experiments. We

applied the same methods used in the previous sections to analyze the data from

the Cambridge Computer Lab experiment.

According to the documentation, the experiment was conducted over seven

days in January 2005 at the University of Cambridge Computer Lab. Nineteen

iMotes were carried by graduate students from the System Research Group. Only

twelve of the mobile motes yielded usable data, and an additional 210 external

Bluetooth devices appeared in the traces. For our analysis we filtered out encounters

with external devices and sorted the data by encounter time. We trusted that the

iMote clocks were sufficiently well synchronized that this sorting made sense.

Plotting a histogram of encounter frequencies one can identify the separate

days in the experiment. We extracted three data sets corresponding to the three

busiest days, and excluded the off-hours during which very few encounters took

place. Since the experimenters included the duration of an encounter, we added a

filler encounter data point every 500 seconds during long encounters. Since we did

not know much about the scale of the data we used the reliable method of selecting

20% of the data points as landmarks.

We computed persistent Betti numbers for dimensions 0 and 1 for each day’s

data individually. The persistence diagrams for the three days are shown in figure

5.7. We observed a single fairly persistent 1-cycle on the scale of 50-65 minutes in

the results for each day. The cycle was particularly prominent on day 1, but similar

138

features appear in days 2 and 3. Comparing the persistence diagrams for β0 and β1

for days 2 and 3, it appears that two disconnected components merge to form the

prominent 1-cycle.

In this case we doubt that the observed features are due to the space the

experiment was conducted in, though we cannot rule it out either. Based on our

simulation experiments, we expect it would require many more mobile nodes to

reliably identify a spatial cycle. The most likely explanation we have for these results

is some sort of scheduling. For example a group of mote carriers may encounter

another group at a meeting or class, then another encounter may take place at

lunch. Unfortunately not enough is known about the particular experiment to draw a

definitive conclusion. We believe it would be worth performing a similar experiment

which records more details, and is perhaps more tightly controlled in order to see

how different behaviors effect the persistent homology results.

These results show that topological analysis methods, such as persistent ho-

mology, can find structure in real encounter data that may not have been accessible

via traditional statistical methods.

139

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

Be
tti
0

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

Be
tti
1

(a) Day 1

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

Be
tti
0

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

Be
tti
1

(b) Day 2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

Be
tti
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

Be
tti
1

(c) Day 3

Figure 5.7: The persistence barcodes based on the filtered encounter traces from
three days of the Haggle Cambridge Computer Lab experiment. In each day’s
data we observe a fairly persistent 1-cycle on the scale of 50-65 minutes. We cannot
conclusively explain these results, but they do demonstrate how persistent homology
can reveal topological structure in real encounter trace data.

140

Chapter 6: Patching False Holes in the Coverage Complex

Theorem 3.15 and corollary 3.16 already gave us a reasonable criterion for

testing network coded information coverage. We know that because of the geomet-

ric defects of the Rips complex that this criterion cannot be bi-directional; if the

criterion holds it guarantees coverage, but it can fail even when coverage is com-

plete. In the case of coverage complexes, we can actually have false negatives for

other reasons. Here we will give some examples, and attempt to refine the coverage

criteria to discount these false holes.

One first defect we note, RC is not a Rips complex. It is not even a flag

complex, as the example below demonstrates. This example shows RC(V) for a

six-point data arrangement over V = GF(2)2. Each of the three outer 2-simplices

has access to a full basis for V , but the inner 2-simplex only has three copies of
(

0
1

)
.

Therefore the central 2-simplex is part of RC(
(

0
1

)
) but not in RC(V), even though

its 1-skeleton is.

141

0
1

0
1

0
1

1
0

1
0

1
0

6.1 Bubble Boxes and the Mayer-Vietoris Sequence

Consider the eight-point data arrangement over V = GF(2)2 on the points

shown below with their Rips 1-skeleton. Points A,B,C,D are placed at the corners

of a square of side length r. Points W,X, Y, Z are placed at the corners of a slightly

smaller concentric square of side length r′ with 1 > r′

r
> (
√

2 − 1). This ensures

that

r − r′√
2

+ r′
√

2 =
r + r′√

2
> r (6.1)

or essentially that the distance from a corner of the outer box to the opposite corner

of the inner box is more than r. As a result, the diagonal edges [A Y], [B Z], [C W], [D X]

are not in the Rips complex Rr(X). As for the data arrangement, only the points

on the outer square have inventories. The points at opposite corners A,C hold
(

1
0

)
and points B,D hold

(
0
1

)
.

142

1

0

C

A B

D

W X

Z Y

0

1

0

1

1

0

r

The resulting Rips complex is the flag complex on this 1-skeleton. The coverage

complex is more involved. The 3-simplices [A B W X], [B C X Y], [C D Y Z], and

[D A Z W] all contain a full basis for V , and hence are in RC(V). On the other

hand, the 3-simplices [A W X Z] and [C Y Z X] are maximal but only have a

single basis vector. Therefore they are in RC(
(

1
0

)
) but not in RC(

(
0
1

)
). Likewise,

the 3-simplices [B X Y W] and [D Z W Y] are in RC(
(

0
1

)
) but not RC(

(
1
0

)
). As

RC(V) = RC(〈
(

1
0

)
,
(

0
1

)
〉) = RC(

(
1
0

)
) ∩ RC(

(
0
1

)
), none of the simplices covering the

inner square is in RC(V).

RC(
(

0
0

)
) = R RC(

(
1
0

)
) RC(

(
0
1

)
) RC(V) = RC(

(
1
1

)
)

143

The dilemma here is that the criteria in theorem 3.15 and corollary 3.16 only

test RC(V), and therefore detect a large hole in the information coverage. However

the interior of the small square actually is covered; each point in the shadow is

in range of points holding a full basis. They just aren’t the same points across

the entire area. More specifically, each point in the shadow S = p(R) is covered

by vector ~v1 =
(

1
0

)
, and is also covered by vector ~v2 =

(
0
1

)
(by cor 3.16). Since

〈~v1, ~v2〉 = V a more robust coverage criterion would take this into account.

In the following discussion let X be a finite planar data arrangement over

V = FD, and let U ⊆ V be a linear subspace. Let r > 0 be some finite radius, and

let R = Rr(X) be the corresponding Rips complex and S = p(R) the Rips shadow.

Lemma 6.1. Suppose there are subspaces W1, . . . ,Wk ⊆ V such that U ⊆ 〈W1, . . . ,Wk〉

and S is covered by Wi for i = 1, . . . , k. Then S is covered by U .

Proof. We have assumed that S is covered by each of the Wi. Therefore for any

point x ∈ S there are vectors ~vi1, . . . , ~v
i
ni
∈ Mr(x) such that Wi ⊆ 〈~vi1, . . . , ~vini

〉 for

each Wi. Therefore

U ⊆ 〈W1, . . . ,Wk〉

⊆ 〈~v1
1, . . . , ~v

1
n1
, . . . , ~vk1 , . . . , ~v

k
nk
〉

⊆ 〈Mr(x)〉

144

This offers a refinement of our coverage criterion. Instead of simply testing

RC(V), now it suffices to find a basis {~v1, . . . , ~vD} for V such that the RC(~vi) all

satisfy one of the coverage criteria. But as we can see in the example above, not

just any basis will work for this test. For example {
(

1
0

)
,
(

1
1

)
} is a basis for V , but

does not guarantee coverage, since RC(
(

1
1

)
) has a defect.

This structure of the coverage complexes of the bubble box can be investigated

from the perspective of their Mayer-Vietoris Sequence.

· · · → H2(RC(~v1))⊕H2(RC(~v2))→ H2(RC(~v1) ∪RC(~v2))

δ∗−→ H1(RC(~v1) ∩RC(~v2))→ H1(RC(~v1))⊕H1(RC(~v2))→ · · ·

In this case RC(~v1) and RC(~v2) intersect on the four 3-simplices around the

edge of the square. Each coverage complex also contains two 2-simplices covering

the center of the box, but not the same 2-simplices. The Rips complex R actually

contains the central 3-simplex [W X Y Z], but neither of the coverage complexes

do. Therefore RC(~v1) ∪ RC(~v2) contains all the faces of [W X Y Z], but not

the 3-simplex itself, giving a generator in H2(RC(~v1) ∪ RC(~v2)). This generator

maps to the generator of the non-trivial 1-cycle in H1(RC(~v1) ∩ RC(~v2)). This is

expected, since both RC(~v1) and RC(~v2) are actually contractible, H2(RC(~v1)) =

H2(RC(~v2)) = 0 and H1(RC(~v1)) = H1(RC(~v2)) = 0. Therefore, using the fact that

145

RC(~v1) ∩RC(~v2) = RC(V), the sequence becomes

0→ H2(RC(~v1) ∪RC(~v2))
∂∗−→ H1(RC(V))→ 0

meaning that H2(RC(~v1) ∪ RC(~v2)) ∼= H1(RC(~v1) ∩ RC(~v2)) via the connecting

homomorphism.

In this case we see that elements of H1(RC(V)) that come from H2(RC(~v1) ∪

RC(~v2)) via the connecting homomorphism don’t actually correspond to holes in

coverage. This suggests a coverage criterion along the lines of:

H1(RC(V))/∂∗(H2(RC(~v1) ∪RC(~v2))) = 0⇒ coverage (6.2)

The following lemma is written for the case where S has no internal boundaries.

Lemma 6.2. Let W1,W2 ⊆ U ⊆ V be linear subspaces such that U ⊆ 〈W1,W2〉,

and suppose F ⊆ RC(U) is a fence subcomplex for S with p(F) ' S1.

If δ∗ : H2(RC(W1) ∪ RC(W2)) → H1(RC(U)) is surjective, then S is covered

by U .

Proof. We assumed F ⊆ RC(U), so by the poset reversal property of RC , F ⊆

RC(W1) and F ⊆ RC(W2). Therefore the 1-cycle γ that gives the generator [γ] ∈

H1(F) also belongs to a class [γ] ∈ H1(RC(W1)) and [γ] ∈ H1(RC(W2)).

Consider the relevant part of the Mayer-Vietoris sequence.

146

H2(RC(W1) ∪RC(W2))
δ∗ // H1(RC(U))

(i∗,j∗) // H1(RC(W1))⊕H1(RC(W2))

[γ] � // i∗[γ]⊕ j∗[γ]

If δ∗ is surjective, the inclusion (i∗, j∗) into the direct sum must be the zero

map. Since the element ([γ], [γ]) is in the image of the inclusion it must be zero.

Thus both RC(W1)) and RC(W1)) contain [γ] = 0. Therefore by corollary 3.18 S is

covered by both W1 and W2 and by lemma 6.1 S is covered by U .

This application of the Mayer-Vietoris sequence is interesting for the purpose

of investigating the structure of the coverage complex, but it does not seem to help

with coverage testing. It seems unlikely one would start with knowledge about

the surjectivity of the Mayer-Vietoris connecting homomorphism in order to draw

conclusions about whether or not other coverage complexes have a contractible fence

subcomplex. It is possible this type of result could be useful for narrowing down

the nature of a coverage defect, but we do not have anything presentable on that

problem yet.

6.2 Local Bases and Local Coverage

Consider the data arrangement over V = GF(2)2 shown in figure 6.1. The

simplicial complex contains three bubble boxes, each covered by one of the three

possible bases for V . Therefore for any ~v ∈ V , the interior of one of the boxes will

be missing from RC(~v) as shown in figure 6.2.

147

1
0

1
0

0
1

0
1

1
0

1
0

1
1

1
1

1
1

1
1

0
1

0
1

Figure 6.1: A data arrangement containing three bubble boxes, each with a different
basis. The Rips shadow is completely covered by V = GF(2)2, but for any ~v ∈ V ,
RC(~v) will have a hole somewhere.

One way to recognize coverage in situations like this is to look at the coverage

complex more locally. In this example we would like to verify coverage for each

bubble box individually. Ideally we would break up S into subsets S1, . . . ,Sn such

that
⋃n
i=1 Si = S and each Si is covered by U . We are challenged by the fact that it

is not obvious how to select a portion of a Rips complex that corresponds to a such

a sub-shadow Si ⊆ S. In fact, even selecting a 1-cycle in the Rips complex such

that its shadow is simple is problematic.

Using the coverage criteria in chapter 3 it was important that the outer bound-

ary of the shadow, ∂+S, be a simple curve. In chapter 4 we loosened this assumption,

but still relied on the fact that if ∂+S contains more than one cycle, that the inter-

section point must be a Rips vertex. For arbitrary 1-cycles in RC(U), the shadow of

a cycle may cross transversally in the interior of two edges. If we try to break up S

into sub-domains whose boundaries are the shadows of such cycles, the correspon-

148

RC(
(

1
0

)
) RC(

(
0
1

)
) RC(

(
1
1

)
) RC(V)

Figure 6.2: Even though it is completely covered by V , for each possible vector in
V , the interior of one of the boxes is missing from the coverage complex. RC(V),
therefore, has three holes.

dence between the cycle in the Rips complex and the boundary of the sub-domain

becomes much more complicated. Our solution has to be slightly more indirect.

The folowing is almost the same as Corollary 4.1 in [21], but different in that

we use an arbitrary subcomplex of the Rips complex, and they consider the Rips

complex on a subset of the points.

Lemma 6.3. Let Σ ⊆ R be a subcomplex and F = F+tF− ⊆ Σ a fence subcomplex.

For any 2-chain α ∈ C2(Σ) satisfying theorem 3.19 let Σα be the closure of the

collection of 2-simplices with non-zero coefficients in α. Then p(Σα) = S.

Proof. Suppose there is a point x ∈ S \ p(Σα). Then we can factor the projection

map in the commutative diagram:

H2(Σα,F)
δ∗ //

p∗

��

p∗vv

H1(F ,F−)

p∗,∼=

��

H2(R2 − x, ∂S)
i∗

((
H2(R2, ∂S)

δ∗ // H1(∂S, ∂−S)

(6.3)

149

Then we can repeat the argument in the proof of theorem 3.19 to obtain a contra-

diction.

Lemma 6.4. Assume we have a subcomplex Σ ⊆ R, a fence subcomplex F =

F+ t F− ⊆ Σ with F+ ∼= S1 and [γ] ∈ H1(F+) satisfying corollary 3.20, and a

collection of 1-dimensional subcomplexes F1, . . . ,Fn ⊆ Σ such that:

• Fi ∼= S1

• ∃γi ∈ C1(Fi) ∀i such that ∂γi = 0 and
∑
γi = γ

For any α ∈ C2(Σ) let Σα be the closure of the collection of 2-simplices with non-zero

coefficients in α. Define:

Si =
⋂

α∈C2(Σ)
∂α=γi

p(Σα) (6.4)

If ∀ i Si 6= ∅ then
⋃
Si = S.

Proof. By our assumption that ∀ i Si 6= ∅, there is at least one choice of 2-chains

{αi}i=1...n, αi ∈ C2(Σ), such that ∂αi = γi.

Since there are only finitely many simplices in Σ, and because the 2-chains

αi can be chosen completely independently, if there is a point x ∈ S \
⋃
Si then

there must be some particular choice of 2-chains {αi}i=1...n, αi ∈ C2(Σ), such that

∂αi = γi such that x /∈
⋃
p(Σαi

).

But for any such choice of 2-chains, ∂ (
∑
αi) =

∑
(∂αi) = γ which is non-zero

on F+. Let α =
∑
αi. Then by lemma 6.3 S ⊆ p(Σα).

So there can be no x ∈ S \
⋃
Si, and we conclude

⋃
Si = S.

150

This means that we can show that the shadow S is covered by U by showing

that each Si is covered by U .

Theorem 6.5. Let X be a finite planar data arrangement over V with Rips complex

R and Rips shadow S, and suppose for U ⊆ V there is a fence subcomplex F ⊆

RC(U) with F+ ' S1 and generator [γ] ∈ H1(F+).

Assume we have 1-dimensional subcomplexes F1, . . . ,Fn ⊆ RC(U) such that:

• Fi ∼= S1

• ∃γi ∈ C1(Fi) ∀i such that ∂γi = 0 and
∑
γi = γ

• for each Fi there exists a basis Bi = {~bi1, . . . ,~bimi
} such that U ⊆ 〈Bi〉 and

[γi] = 0 in H1(RC(~bij)) ∀j = 1 . . .mi.

Then S is covered by U .

Proof. For any 2-chain α ∈ C2(R) let Σα be the closure of the collection of 2-

simplices with non-zero coefficients in α. For each γi define

Si =
⋂

α∈C2(R)
∂α=γi

p(Σα)

We assumed that [γi] = 0 in H1(RC(~bij)) for some ~bij ∈ V , so therefore [γi] = 0 in

H1(R). Therefore the Si are non-empty, and by lemma 6.4 S =
⋃
Si. That means

every point x ∈ S, is in Si for some i.

Suppose x ∈ Si. By our assumption there is a basis Bi = {~bi1, . . . ,~bimi
}

spanning U with [γi] = 0 in H1(RC(~bij)) ∀j = 1 . . .mi. So for each j there is a

151

2-chain αi,j ∈ C2(RC(~bij)) such that ∂αi,j = γi. By construction Si ⊆ p(Σαi,j
), so by

lemma 3.11 Si is covered by ~bij. This is true for each ~bij ∈ Bi (possibly with different

αi,j), so we conclude that Si, and therefore x, is covered by U .

This allows us to test for coverage when different regions of the complex require

different bases to successfully test for coverage. Note that the way it is stated here,

we need Fi ⊆ RC(U) for every Fi. It may be true under weaker assumptions that

allow different Fi,j for each ~vi,j, but it probably doesn’t matter. We can’t come up

with an example where you would need different dividing cycles for the different

vectors in the basis.

6.3 Bubble Baubles and Multi-Fold Intersections

The local coverage criterion of theorem 6.5 is geometrically intuitive, but it

doesn’t give any help on how to choose the cycles α1, . . . , αn ∈ C1(RC(U)) or the

bases for U that cover the respective regions. It would be illuminating to have a more

general algebraic statement for when a hole is a false hole similar to the relationship

we saw for two-fold covers using the Mayer-Vietoris sequence in lemma 6.2.

The Mayer-Vietoris sequence applies when we can break the vector space U

into two subspaces U = 〈W1,W2〉 with SC(W1) = SC(W2) = S. This was true for

the bubble boxes which required at most two sheets to cover their central hole, but

more interesting constructions are possible. We will call these “Bubble Baubles”

because their symmetry and cross-connections make them look like gems.

152

6.3.1 The Mayer-Vietoris Spectral Sequence

The Mayer-Vietoris Spectral sequence is the spectral sequence {Es
p,q} of the

double complex of a cover of a topological space in which the columns are the chain

complexes of (p + 1)-fold intersections of the components of the cover. Let X be

a topological space and U1, . . . ,Uk ⊆ X a set of subspaces such that
⋃
i Ui = X.

Define the elements of the double complex as

E0
p,q = q-chains in (p+ 1)-fold intersections. (6.5)

There is inconsistency in the indexing in (for instance) [67]. Here we’ll take 0-fold

intersections to be X itself, 1-fold intersections to be the elements U1, . . . ,Uk of the

cover, the 2-fold intersections to be intersections of two elements of the cover Ui∩Uj,

and so on.

The vertical differential maps d0 : E0
p,q −→ E0

p,q−1 on the columns are the usual

boundary maps defined component-wise on the summands of E0
p,q. The horizontal

differential maps d1 : E0
p,q −→ E0

p−1,q are inclusion maps multiplied by a sign factor

derived from the sign of the boundary map on the nerve of the intersection. This is a

simple thing but it deserves some exposition. Given a k-element cover as described

we can define a (k − 1)-simplex on the elements U = {Ui} of the cover, ∆U =

[U1 U2 · · · Uk]. Then we associate the 0-simplices with the elements of the cover

itself. The 1-simplices are naturally associated with the 2-fold intersections, so

[Ui Uj] is associated with Ui ∩Uj, and so on. The full simplex ∆U is associated with

153

U1 ∩ · · · ∩ Uk. Then we can apply the simplicial boundary map to the faces of ∆U .

∂[Ui0 · · · Uim] =
m∑
j=0

(−1)j[Ui0 · · · Ûij · · · Uim]

For example, if X = A∪B∪C then ∆U = [A B C] and, for example, ∂[A B] = B−A

Looking back to the d1 map we would have

E0
1,q = C1(B ∩ C)⊕ C1(A ∩ C)⊕ C1(A ∩B)

E0
0,q = C1(A)⊕ C1(B)⊕ C1(C)

An element of E0
1,q would look like (α, β, γ). Then

d1 : (α, 0, 0) 7→ (0,−α, α)

d1 : (0, β, 0) 7→ (−β, 0, β)

d1 : (0, 0, γ) 7→ (−γ, γ, 0)

d1 : (α, β, γ) 7→ (−β − γ,−α + γ, α + β)

The feature that makes this a double complex is that the two differentials are

anti-commutative, d1d0 = −d0d1. This means that the total complex, the direct

sums along the diagonals of E0
·,·, Totn =

⊕
p+q=nE

0
p,q, is a chain complex with

differentials (d0 + d1).

(d0 + d1) :
⊕
p+q=n

E0
p,q −→

⊕
p+q=n−1

E0
p,q (6.6)

154

We quickly check that this is a boundary map (d0 + d1) ◦ (d0 + d1) = d0d0 + d0d1 +

d1d0 + d1d1 = 0 + d0d1 − d0d1 + 0 = 0.

Then the E0 page of the spectral sequence looks like

...

��

...

��

...

��
E0

0,2

d0

��

E0
1,2

d1oo

d0

��

E0
2,2

d1oo

d0

��

· · ·oo

E0
0,1

d0

��

E0
1,1

d1oo

d0

��

E0
2,1

d1oo

d0

��

· · ·oo

E0
0,0 E0

1,0
d1oo E0

2,0
d1oo · · ·oo

(6.7)

The useful thing about this spectral sequence is that the homology of the

total complex is given by taking the direct sum along the total degree k diagonals

Hk(Tot) =
⊕

p+q=k E
∞
p,q, and this is isomorphic to the homology of X = U1∪· · ·∪Uk.

If the covering U = {Ui} is chosen so that all of the higher-degree, and most of

the lower degree, intersections are empty, then this spectral sequence can make it

possible to compute the homology of complicated objects from simple pieces.

The Ui in our case are the coverage complexes of subspaces of V or individual

vectors, RC(~v). For the purpose of recognizing false holes in RC(V), however,

we aren’t really interested in computing the homology of the union of all RC(~v).

Furthermore the elements of the cover are what they are, and are not chosen to

intersect nicely in a way that simplifies the double complex. Finally, for a particular

basis {~v1, . . . , ~vD} we only have D components to the cover, but in general there

are 2D − 1 non-zero vectors in V , and to ensure we detect all false holes it could be

155

necessary to take all of them, giving intractably many non-empty intersections.

So at first it doesn’t seem as if the Mayer-Vietoris spectral sequence will be

useful computationally, but it is still gives us a compact algebraic structure for

studying the false holes in RC(V).

6.3.2 (4n)-vertex Bubble Baubles

In this discussion fix the Rips radius as r = 1. Let n ∈ N and consider a

set of 4n points, X1, . . . , X4n, placed at equal intervals around a circle of radius

R = 1/
√

2− ε, ε << 1, and another 4n points, Y1, . . . , Y4n placed at the same angles

around a smaller concentric circle of radius R′ = 1
2
− ε. The vertices on the outer

circle are given inventories of one vector each from the vector space V = GF(2)2n.

We choose a basis ~v1, . . . , ~v2n for V and place ~vi in the inventory of antipodal points,

Xi and Xn+i, on the larger 4n-gon. This is pictured for 4n = 8 and the standard

basis in figure 6.3.

In this arrangement the antipodal vertices in the smaller 4n-gon are linked by

Rips edges, but the antipodal vertices of the larger 4n-gon are not. Also each vertex

on the outer circle is within distance 1 of all of the vertices (on both smaller and

larger 4n-gons) on its same side, including the vertices at 90◦ to it around the circle.

Therefore each vertex Xi on the outer 4n-gon forms a Rips (2n)-simplex with all of

the smaller-circle vertices on its side of the circle (including the mid-line), but none

of those on the other side of the circle. This (2n)-simplex is contained in RC(~vi), as

is its mirror image on the other side of the circle, containing Xi+n. But just as with

156

A

BH

CG

F

E

D

Y

W

U

X

T

S

Z

V

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

1

0

0
1

0

0

0

r

Figure 6.3: A data arrangement for a bubble octagon over V = GF(2)4. The green
dashed edges illustrate a maximal 6-simplex in the Rips complex that is excluded
from coverage complexes spanning anything more than ~v = (0, 0, 1, 0).

the bubble boxes in section 6.1 they are covered by different copies of ~vi. These two

simplices cover the interior of the smaller 4n-gon. That is, if α ∈ C1(RC(~vi)) is the

1-cycle corresponding to the inner 4n-gon, then there is a 2-chain γ ∈ C2(RC(~vi))

with ∂γ = α. Also Xi is within distance 1 of the two outer-circle vertices at 90◦

to it, so all of the 3-simplices on adjacent pairs of vertices on the inner and outer

polygons are contained in RC(~vi) as well. So p(RC(~vi)) contains the boundary of

the Rips shadow ∂S and H1(RC(~vi)) = 0, so S is covered by ~vi.

This is true for each ~vi. In fact the ring of 4-simplices connecting the inner

4n-gon to the outer 4n-gon is contained in RC(V). However the pair of 2n-simplices

covering the interior of the smaller polygon is different for each ~vi. For example the

Rips edge connecting the two inner-circle vertices at 90◦ to Xi is included in RC(~vi),

157

but not in RC(~vj) for any j 6= i. Just as with the bubble box (the case for n = 1),

we have H1(RC(~vi) ∩ RC(~vj)) 6= 0 for any i 6= j. Essentially the Rips shadow S is

covered by a different sheet for each basis vector, and those sheets intersect in the

collar between the two polygons, but not inside the inner polygon.

We can study this as many instances of the Mayer-Vietoris sequence for a

two-fold intersection. But we are actually dealing with a 2n-fold intersection in

RC(V), so it should be enlightening to study the spectral sequence that generalizes

the Mayer-Vietoris sequence and how it can distinguish false holes from real holes

in the code coverage. Though the construction of the complexes in the next section

is slightly more complicated, we will do a spectral sequence computation there,

because the bubble 6-gon will have fewer summands.

6.3.3 (4n+ 2)-vertex Bubble Baubles

In the case of (4n+ 2)-gons the bubble bauble is a little messier because there

is no vertex on the (4n + 2)-gon exactly at 90◦ to any other one. We can achieve

the same effect by rotating the outer polygon that carries the information vectors

by 2π/(2n + 2) relative to the smaller polygon. However if we look at this type

of 4n + 2 bubble bauble in isolation the outer boundary of the Rips shadow will

always be uncovered in RC(V). These problematic edges are the dashed gray ones

in figure 6.4. In this example the thin 2-simplex [F U A] is not entirely in range of

E or B, and therefore is not included in RC(~v) where ~v = (0, 1, 0).

It is still possible to have an data arrangement containing a (4n + 2) bubble

158

A

B

F

E

D C

1

0

0

0

1

0

0

0

1

r

U

V

W

X

Z

Y

1

0

0

0

1

0

0

0

1

Figure 6.4: A data arrangement for a bubble hexagon over V = GF(2)3. The solid
Rips edges are covered by V . The green dashed edges illustrate a maximal 5-simplex
in the Rips complex that is excluded from coverage complexes spanning anything
more than ~v = (0, 1, 0).

bauble that satisfies the hypothesis that a fence subcomplex be contained in RC(V);

it just requires the data arrangement to have more vertices holding data outside the

larger polygon. In this discussion we will ignore the issue with the outer boundary

being covered because we are interested in the properties of the hole in the center

of RC(V).

RC(~v1) RC(~v2) RC(~v3) RC(V)

A

B

F

E

D C

U

V

W

X

Z

Y

α1

A

B

F

E

D C

U

V

W

X

Z

Y

α2

A

B

F

E

D C

U

V

W

X

Z

Y

α3

A

B

F

E

D C

γ
U

V

W

X

Z

Y

Figure 6.5: The inner hexagon in the bubble hexagon is covered by several partially
disjoint 3-simplices. The faces of these 3-simplices give a collection of 2-chains that
have the 1-cycle γ as a boundary.

159

To see how this relates to the spectral sequence let A = RC(~v1), B = RC(~v2),

and C = RC(~v3). Note that A ∪ B ∪ C 6= R, but we aren’t really interested in the

homology of either of them. In this case each of A ∩ B, B ∩ C, and A ∩ C has a

non-trivial 1-cycle homologous to γ.

The E0 page of the sequence consists of chain groups.

...

��

...

��

...

��
C2(A)⊕ C2(B)⊕ C2(C)

d0

��

C2(B ∩ C)⊕ C2(A ∩ C)⊕ C2(A ∩B)
d1
oo

d0

��

C2(A ∩B ∩ C)
d1
oo

d0

��

· · ·oo

C1(A)⊕ C1(B)⊕ C1(C)

d0

��

C1(B ∩ C)⊕ C1(A ∩ C)⊕ C1(A ∩B)
d1
oo

d0

��

C1(A ∩B ∩ C)
d1
oo

d0

��

· · ·oo

C0(A)⊕ C0(B)⊕ C0(C) C0(B ∩ C)⊕ C0(A ∩ C)⊕ C0(A ∩B)
d1
oo C0(A ∩B ∩ C)

d1
oo · · ·oo

Let us write this in a simplified way and only include the generators that will

be homologically interesting.

...

��

...

��

...

��
〈α1〉 ⊕ 〈α2〉 ⊕ 〈α3〉

d0

��

0d1oo

d0

��

0d1oo

d0

��

· · ·oo

〈γ〉 ⊕ 〈γ〉 ⊕ 〈γ〉

d0

��

〈γ〉 ⊕ 〈γ〉 ⊕ 〈γ〉d1oo

d0

��

〈γ〉d1oo

d0

��

· · ·oo

〈x〉 ⊕ 〈x〉 ⊕ 〈x〉 〈x〉 ⊕ 〈x〉 ⊕ 〈x〉d1oo 〈x〉d1oo · · ·oo

Computing homology with the vertical maps first amounts to just computing

homology component-wise on the direct sums.

160

0 0d1oo 0d1oo · · ·oo

0 〈γ〉 ⊕ 〈γ〉 ⊕ 〈γ〉d1oo 〈γ〉d1oo · · ·oo

〈x〉 ⊕ 〈x〉 ⊕ 〈x〉 〈x〉 ⊕ 〈x〉 ⊕ 〈x〉d1oo 〈x〉d1oo · · ·oo

Now we focus on the computation of E2
1,1. The kernel of d1 : E1

1,1 → E1
0,1 is all

of E1
1,1, since E1

0,1 = 0. The image of d1 : E1
2,1 → E1

1,1 is a 1-dimensional subspace

generated by (γ,−γ, γ).

d1 : E1
2,1 −→ E1

1,1

γ 7→ (γ,−γ, γ)

So E2
1,1 = 〈γ〉 ⊕ 〈γ〉 ⊕ 〈γ〉

/
〈(γ,−γ, γ)〉. It works out that E2

1,0 = 0, and the

sequence collapses after E2. So E2
1,1 has rank 2 and is the only non-zero term of

total degree 2. This means that A∪B ∪C has two nontrivial 2-cycles, as expected.

Let us consider the kernel of d1 : E1
1,1 → E1

0,1 again for a moment. There are

essentially two ways an element of E1
1,1 can get into the kernel of this map: either it

is already in the kernel of the d1 map (i.e. it would have been in ker(E0
0,1

d1←− E0
1,1)),

or it maps to something in E0
0,1 that is in the image of d0 : E0

0,2 → E0
0,1. The latter

correspond to false holes in RC(V).

161

A = RC(
(

1
0

)
) B = RC(

(
0
1

)
) C = RC(

(
1
1

)
) A ∩B ∩ C = RC(V)

α1,2

α2,2

γ3

α3,1

α1,1

γ2

γ1

α2,2

α3,2

γ1

γ3

γ2

Figure 6.6: The triple bubble box with its key 1-chains and 2-chains highlighted.

6.3.4 The Spectral Sequence for the Triple Bubble Box

Just like the bubble 6-gon, the triple bubble box requires three sheets to verify

coverage. But instead of having a single 1-cycle holding together three 2-chains to

form two 2-cycles, the triple bubble box has three 1-cycles each holding together

two sheets, forming three disjoint 2-cycles.

Let us use the same labels for the subcomplexes as in section 6.3.3. Let

A = RC(
(

1
0

)
), B = RC(

(
0
1

)
), C = RC(

(
1
1

)
). In this case V is rank 2, so any two-

fold intersection of these subcomplexes gives RC(V). The E0 page of the spectral

sequence then looks like:

...

��

...

��

...

��
〈α1,2, α2,2〉 ⊕ 〈α1,1, α3,1〉 ⊕ 〈α2,2, α3,2〉

d0

��

0
d1

oo

d0

��

0
d1

oo

d0

��
〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉

d0

��

〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉
d1
oo

d0

��

〈γ1, γ2, γ3〉
d1
oo

d0

��
〈x〉 ⊕ 〈x〉 ⊕ 〈x〉 〈x〉 ⊕ 〈x〉 ⊕ 〈x〉d1

oo 〈x〉d1
oo

162

Computing homology with vertical maps first we obtain the E1 page:

0 0
d1

oo 0
d1

oo

〈γ3〉 ⊕ 〈γ2〉 ⊕ 〈γ1〉 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉
d1
oo 〈γ1, γ2, γ3〉

d1
oo

〈x〉 ⊕ 〈x〉 ⊕ 〈x〉 〈x〉 ⊕ 〈x〉 ⊕ 〈x〉d1
oo 〈x〉d1

oo

In doing the computations on the E1 page we have to pay careful attention to

which intersections the generators lie in, and keep track of the “orientation” of the

intersections. Let us compute the action of the d1 map below on each of the basis

elements.

B ∩ C A ∩ C A ∩B A ∩B ∩ C
E1

1,1 = 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉 E1
2,1 = 〈γ1, γ2, γ3〉oo

(γ1 , −γ1 , γ1) γ1
�oo

(γ2 , −γ2 , γ2) γ2
�oo

(γ3 , −γ3 , γ3) γ3
�oo

We see that the map is injective, ker = 0, and so E2
2,1 = 0. This also gives us a

basis for the image of d1 is E1
1,1. Now we look at the next step of the d1 map in the

E1
∗,1 row. The first three elements are the in the image d1E1

2,1, and so necessarily in

the kernel. The next three elements are the other three generators for the kernel.

Therefore the middle three elements of E1
1,1 are a basis for E2

1,1. The final three

elements map to non-zero values, giving a basis for the image in E1
0,1. We see that

this map is surjective, so E2
0,1 = 0.

163

A B C B ∩ C A ∩ C A ∩B
E1

0,1 = 〈γ3〉 ⊕ 〈γ2〉 ⊕ 〈γ1〉 E1
1,1 =oo 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉 ⊕ 〈γ1, γ2, γ3〉

(−γ3 + γ3 , 0 , 0) (0�oo , −γ3 , γ3)

(0 , γ2 − γ2 , 0) (γ2
�oo , 0 , γ2)

(0 , 0 , γ1 − γ1) (γ1
�oo , −γ1 , 0)

(0 , 0 , 0) (γ3
�oo , 0 , 0)

(0 , 0 , 0) (0�oo , γ2 , 0)

(0 , 0 , 0) (0�oo , 0 , γ1)

(γ3 , 0 , 0) (0
�oo , 0 , γ3)

(0 , γ2 , 0) (γ2
�oo , 0 , 0)

(0 , 0 , γ1) (0�oo , −γ1 , 0)

The sequence collapses on the E2 page, leaving just three cycles of total degree 2.

0 0 0

0 〈(γ2, 0, 0), (0,−γ1, 0), (0, 0, γ3)〉 0

〈x〉 0 0

6.4 The Wormhole Complex

The wormhole complex is an example of a coverage complex which is considered

by all of our coverage criteria to have a hole, even though the shadow is completely

covered. It can be constructed using a data arrangement over a 1-dimensional vector

space, so using local bases or multiple sheets will not fix it. This example exists for

both RC and RC1.

164

(a)

(b)

Figure 6.7: The essential structure of the wormhole complex. In the final coverage
complex the yellow edges of the blue triangles will be “loose” (not a face of any
other 2-simplex), making it possible for the pinkish worm to wiggle under them one
at a time.

The essence of the wormhole complex is depicted by the three triangles in

figure 6.7a. Vertices and edges have been left out to make it possible to highlight

the key features. All three triangles will be Rips simplices, but the yellow dashed

edges will be “loose” in RC(V) in the sense that they will only be a face of one

of the blue 2-simplices and nothing else. That means that, topologically speaking,

something could slip under it. Figure 6.7b is an attempt to show how a worm might

wiggle under the loose edges of the blue triangles, making its way from the top of

the stack to the bottom.

The full construction of a wormhole complex is shown in figure 6.8. The data

arrangement is built over a 1-dimensional vector space, V = GF(2)1. Let r be

the Rips radius we will use. We start by placing three pairs of green points at

approximately 0◦, 120◦, and 240◦ around an inner circle of radius r0 = r
2
. Each of

these pairs is perturbed by ±10◦ in either direction, as seen in the figures. None of

165

1

1

1

1

1

1

Figure 6.8: The full wormhole complex.

these inner points has any inventory.

Next we place three magenta points at angles of exactly 0◦, 120◦, and 240◦

around an outer circle of radius r1 =
√
r2 − 3

4
r2

0− 1
2
r0 + ε. These points will support

the blue triangles, and are each given an inventory of (1) (the only non-zero vector

we have). The points are positioned to ensure that they are in range of the four

closest green points on the inner circle, but out of range of the farthest two inner

green points.

Finally we place three black points at angles of exactly 60◦, 180◦, and 200◦

around an outermost circle of radius r2 =
√
r2 − 3

4
r2

1 + 1
2
r1 − ε. This ensures that

the black points are in range of the neighboring magenta points and the closest two

inner green points, but just out of range of the two endpoints of the dashed yellow

edge. Each of these is also given an inventory of (1).

Building a data arrangement with only the green and magenta points actually

produces a wormhole. However the resulting Rips and coverage complexes do not

166

contain a fence subcomplex. We can see this in figure 6.7; the shadows of boundary

edges intersect in their interiors, and so there are shadow vertices that do not cor-

respond to Rips vertices on ∂S. By including the black points we produce a convex

outer boundary, and thereby a fence subcomplex. The special achievement here is

to produce that outer boundary without tying off any of the loose edges in RC(V).

This example appears to ruin all hope that we can have a universal solution

to the problem of false holes. At least the local basis and multiple-sheeted approach

will not work. There is a fence subcomplex in RC(V), but there is no subspace of V

which will make the fence contractible. On the other hand this example is incredibly

narrow. Even small changes to the position of the points or the data arrangement

will destroy the wormhole. This is an odd thing about the data coverage problem; for

any reasonable arrangement of points and data, Chambers’s isomorphism appears

to hold. However carefully-constructed counterexamples such as this show that it

cannot be proved in general.

167

Chapter 7: Examples, Software, and Future Work

This chapter provides a description of software we have written to compute and

experiment with coverage complexes, and some examples produced. This includes

examples from the previous chapters. We will also summarize some ongoing work

that was not pertinent or not complete enough to make it into this thesis.

7.1 The CoverageSim Java Package

CoverageSim is a collection of Java classes and JNI wrappers we built to

test and experiment with coverage complexes. It includes facilities to build a data

arrangement, compute its Rips and coverage complexes, compute the persistent

homology groups of the complexes and use the results to discount Rips complex

holes, and visualize the combined complexes and their homology generators. It also

contains a variety of experimental algorithms for manipulating and optimizing data

arrangements.

CoverageSim uses the M4RI library for optimized linear algebra computation

over finite fields [68]. M4RI is written in C and compiles to a native library, so we

have built a Java Native Interface (JNI) wrapper for many of its functions. The

wrapper provides a Mzed class which represents an m4ri mzd t matrix object. It

168

exposes the necessary allocator and accessor functions as well as functions to add,

multiply, echelonize, and compute ranks, kernels, and basis intersections.

The package also uses the JavaPlex package for persistent homology compu-

tations [52]. JavaPlex is an open source computational topology tool developed

mainly at Stanford. It allows one to automate the construction of many types of

filtered complexes from metric data, and includes many types of persistence algo-

rithms, including Zigzag Persistence, over any finite field.

We also built on Stanford’s plex-viewer Java package. plex-viewer gives an

interface for 3D rendering of certain JavaPlex objects. The package uses the JOGL

interface to OpenGL. We modified the package and its dependencies to support a

more recent version of JOGL, and incorporated GLUT objects. Then we added

a drawCoverageComplex() method and some support classes to support sensible

display of a coverage complex superimposed on a Rips complex with different types

of generators highlighted.

CoverageSim implements the following classes:

DPoint represents a point in a data arrangement. The point has a location and

a vector inventory represented as a Vector<Mzed>. It also maintains a

HashSet<DPoint> containing its neighbors and a HashSet<DSimplex>

containing its Rips cofaces.

DSimplex represents a Rips simplex. It contains a HashSet<DPoint> containing

its member points/vertices, a HashSet<DPoint> containing the neigh-

bors common to all points in the simplex, and a third HashSet<DPoint>

169

containing “exclusive neighbors”, the neighbors common to all points

of the simplex, excluding the points of the simplex itself. It also main-

tains two Mzed objects: one containing a reduced basis for the space

spanned by the simplex, and one containing a reduced basis for the

space spanned by the exclusive neighbors.

DComplex represents a simplicial complex. It is essentially a HashSet<DSimplex>.

Its main feature is that it implements the vsCover() method. This

is a sort-of dual to the RC(·) operation. The method operates on a

simplicial complex Σ (assumed to be a subcomplex of a Rips complex,

but it does not really matter), and produces the largest vector space

U ⊆ V such that Σ ⊆ RC(U). The point of this computation is to take

a Rips subcomplex that would cover a hole in RC(V) and compute

what portion of the vector space is already covering the hole.

CoverageExperiment

is the base class for all of the examples discussed here. The class main-

tains several JavaPlex streams representing the different simplicial

complexes involved. It also includes all the methods to build the Rips

and coverage complexes and manages the interface to plex-viewer.

CoverageSim is used by creating a new subclass of CoverageExperiment con-

taining a main() method and a constructor that builds the data arrangement.

Once the data arrangement is created one can call the inherited methods from

CoverageExperiment to compute and manipulate the associated complexes.

170

The following sections contain some examples built with CoverageSim. In the

visualizations red points, brown lines, and green fills are coverage complex vertices,

edges, and simplices. Black points, black lines, and blue fills are Rips vertices, edges,

and simplices that are not in the coverage complex. Red edges are first homology

generators in the coverage complex. The display of each of these components can

be interactively toggled in the software.

Coverage Complex

Rips Complex

1-cycle in Coverage
Complex

171

Figure 7.1: The non-lifting example computed by CoverageSim.

7.1.1 The Non-Lifting

This coverage complex in figure 7.1 shows the simplest example of a shadow

cycle that cannot be lifted to a homotopic cycle in RC(V). The black lines and blue

triangles show the Rips 1 and 2-simplices, and the red lines highlight a 1-cycle in

H1(RC(V)). In fact the four 1-simplices highlighted in red are the entire coverage

complex.

In this data arrangement there are eight points, and V = GF(2)2. The four

inner points have no inventory, and the outer points are given one vector each.

Clockwise starting from the top vertex they are:
(

1
0

)
,
(

1
0

)
,
(

0
1

)
,
(

0
1

)
. This means that

each outer point is redundant with one of its neighbors, so two edges of the inner

square, the ones between redundant outer vertices, are left out of RC(V).

Note that this example does not satisfy the fence subcomplex requirement.

More points and inventory vectors could be added so that is does, though.

172

(a) RC(~v3) (b) RC(~v2) (c) RC(~v1)

Figure 7.2: The triple bubble box and generators computed by CoverageSim.

7.1.2 The Bubble Box

Figure 7.2 shows RC(~vi) computed by CoverageSim for each of the non-zero

vectors in V . Note that the homology generator found in fig 7.2c is not even close

to the shortest cycle around the hole in the coverage complex. Bubble boxes can be

used to tile the plane. It turns out that if four bubble boxes are properly arranged, a

fifth bubble box will spring up in the space between them, covered by the inventory

vectors held by the surrounding points. The interstitial bubble boxes are rotated

slightly relative to the main grid. Figure 7.3 shows a 5×5 tiled grid of bubble boxes.

Figure 7.3: A grid of bubble boxes.

173

(a) With Rips
complex.

(b) Without Rips
complex.

(c) Rotated
slightly.

Figure 7.4: A layered loop computed by CoverageSim.

7.1.3 The Layered Loop and Layered Simplex

The layered loop and layered simplex were discussed in section 3.4. Figure 7.4

shows the layered loop example computed by CoverageSim. The points are all

planar, but two of the points have been elevated in the visualization so we can see

the space under the 1-simplex.

Figure 7.5 shows the layered simplex computed by CoverageSim. The three

vertices of the 2-simplex have been similarly elevated for the visualization. The two

non-trivial 1-cycles in RC(V) are highlighted in red.

(a) With Rips
complex.

(b) Without Rips
complex.

(c) With the lay-
ered simplex ele-
vated.

Figure 7.5: A layered simplex computed by CoverageSim.

174

(a) Rips complex, R (b) RC(V) (c) RC(~v1)

Figure 7.6: An example of resolving all resolvable vertices computed by
CoverageSim.

7.1.4 Resolved Hex Points and Resolved Quad Points

This is a verification of our theoretical results about resolvability, and an

experimental exercise in optimizing the vector space needed to achieve the resolution.

These data arrangements have hexagonally packed and quadratically packed points

spaced so that no point falls in the interior of any 2-simplex shadow. Each vertex,

except the vertices on the edges of the grid, is then equal to the intersection of several

maximal simplexes, and therefore should be resolvable. On the other hand the

dimension of the vector space needed for the universal data arrangement increases

linearly with the number of maximal simplices. These examples establish a pattern

that uses a single fixed vector space regardless of the size of the grid. The QuadPoints

example uses a vector space of dimension 18, and the HexPoints example uses a

vector space of dimension 14. Subfigure 7.6c shows the coverage complex computed

for ~v1, one of the 18 basis vectors used to resolve the points. The resulting pattern

effectively reveals how the vectors are distributed in order to resolve the points.

175

Figure 7.7: The wormhole complex computed by CoverageSim.

7.1.5 The Wormhole Complex

This example was thoroughly discussed in section 6.4. We see that even

though the Rips shadow appears to be completely covered by the coverage com-

plex, CoverageSim discovers the non-trivial 1-cycle in RC(V).

7.1.6 The Coverage Grid and Fenced Coverage Square

Here we finally look at data arrangements that aren’t contrived examples

meant to demonstrate interesting mathematical structure. The Coverage Grid

is a regular arrangement of points with randomly chosen inventory vectors. The

points along the outside of the grid are always given a full basis for V . The Cover-

age Grid program takes the following arguments:

Grid Width
The number of point to place in each row of the grid

Grid Height
The number of points to place in each column of the grid.

176

(a) (D,P, I) = (10, 0.1, 4) (b) (D,P, I) = (10, 0.1, 3)

Figure 7.8: Some examples of Coverage Grids computed by CoverageSim.

Grid Spacing
The spacing between rows and columns.

D = Dimension of V
The dimension of the vector space.

P = Exclusion Probability
The probability than any given (non-fence) point is left out of the data
arrangement.

I = Inventory Size
The number of random inventory vectors to be given to each (non-
fence) point.

Figure 7.8 shows some small coverage grids for small vector spaces. Because in

these examples we want to distinguish between 1-cycles that are in the Rips complex

and 1-cycles that are only in the coverage complex, we highlight the former in pink.

The red cycles still correspond to 1-cycles that are non-zero in H1(RC(V)), but

become bounding upon inclusion into H1(R).

We notice that these coverage complexes have a fence subcomplex covering the

outer boundary, but that the inner fence subcomplex requirement is not satisfied.

Therefore it is possible that if [γ] ∈ H1(RC(V)) is a 1-cycle that does not become

bounding upon inclusion into H1(R), the hole in RC(V) may be larger than the

underlying hole in R; without a full fence subcomplex the homological criterion

177

cannot distinguish the size of the holes. We observe exactly that happening in the

examples in the figure.

The Fenced Coverage Square is a similar example, except the points inside

the outer fence are placed randomly instead of on a grid. The placement is based

on a uniform random distribution, but biased so that the points repel each other.

The details are not important here. The arguments passed to the Fenced Coverage

Square are almost the same as before:

Grid Width
The number of points wide the outer fence will be.

Grid Height
The number of points tall the outer fence will be.

Grid Spacing
The spacing between points on the fence.

D = Dimension of V
The dimension of the vector space.

N = Number of Points
The number of points to place in the interior of the fence.

I = Inventory Size
The number of random inventory vectors to be given to each (non-
fence) point.

Figure 7.9 shows some example of Fenced Coverage Squares. Fig 7.9a has

parameters similar to those we used for the coverage grids. We see that the program

detects two holes that are already present in the Rips complex, and several more

holes that are only in the coverage complex. What appears to be just one larger

coverage hole on the left side gets divided up into several cycles because it is crossed

by several edges that are in RC(V).

178

(a) (D,N, I) = (10, 100, 3) (b) (D,N, I) = (1000, 90, 30) (c) (D,N, I) = (1000, 90, 270)

Figure 7.9: Some examples of Fenced Coverage Squares computed by CoverageSim.
D = dimension of V . N = number of points. I = inventory size of non-fence points.

Figures 7.9b-7.9c show examples with much larger vector spaces. The middle

figure has three Rips holes, but registers no coverage defects, even though most of

the complex is not covered. Again, this is because we have no fence subcomplex

covering the inner shadow boundaries. As a practical issue, we can still perform

reasonable coverage testing by checking first that all points in the Rips complex are

covered. By lemma 3.31 we know that must be true in the case of full coverage.

This would practically bound how much larger a coverage hole could be than an

underlying Rips hole.

The final figure is also for a 1000-dimensional vector space. In this case we

place 270 vectors in the inventory of each point, and the space is nearly covered.

There are still three Rips holes and three coverage holes, and the program success-

fully distinguishes them.

179

7.2 Ongoing and Future Work

Here we summarize some extensions to this work that we are investigating or

would like to investigate.

7.2.1 Traversing the RC
r (X , U) Lattice With Zig-Zag Persistence

Traditional persistent homology requires a filtration. That is, a strictly in-

creasing sequence of topological spaces. Naturally one would like to track homology

classes if parts of the space are removed as well. Zigzag persistence was introduced

by Carlsson and de Silva in [69]. It shows that there is an analogue to persistence

intervals for linear sequences of modules with maps in either direction.

A zig-zag module, V, is a sequence of vector spaces with maps between

them.

V1
p1←→ V2

p2←→ · · · pn−1←−→ Vn

Carlsson and de Silva show that V can be decomposed into a sum of indecomposable

“interval modules”. These are analogous to persistence intervals that track the ho-

mology classes across changes in the space. Furthermore there are quick algorithms

to compute these invariants.

Zigzag persistence has been implemented in JavaPlex and Dionysus [52, 70].

The algorithms allow for “on-line” computation as a space changes. That is, the

state of the computation can be held in memory and updated as simplices are added

180

and removed from a complex. Obviously if we are experimenting with algorithms

that change a data arrangement, and thereby RC(U), tracking the effects with

these algorithms is much better than separate homology computations after each

change. One major complication is the prospect of preserving the 2-step filtration

we used to discount holes already in the Rips complex. Aside from that, the lattice

of persistence complexes is not an arbitrary collection of simplicial complexes. It

would be great to find structure that could be exploited to make homology tracking

by zigzags more efficient.

7.2.2 Filtering RC
r (X , U) by Rips Radius

One of our motivations for studying these data arrangements was to put some

lower or upper bounds on the work required to gather a full basis for V . What

we have now is just several criteria that, for a given fixed Rips radius, allow us to

test whether the original data bundle is recoverable from nodes within that radius.

Ideally we would like to filter the coverage complex based on the Rips radius, r and

look at the persistence intervals. For any fixed U ⊆ V this is a standard persistence

computation. But in the bigger picture we have a lattice of persistence modules.

This is a multi-dimensional persistence problem. Multi-dimensional persis-

tence is an analogue of persistence for multi-filtrations [71]. It has been studied by

multiple people and even in special cases found to be difficult. However trying to

find structure amongst this lattice of persistence modules seems very compelling.

181

7.2.3 Alternative Coverage Complexes

There are at least two different analogues to the coverage complex that we have

investigated. The Knowledge Complex, RK
r (X , U), is based on ideas from [13],

and captures linear span in a way that is more sensitive to the unintuitive behavior of

finite vector spaces. The Nullspace Complex, RN
r (X , U), is an attempt to build

a simplicial complex capturing the lack of coverage in an area. We believe such

a structure could be useful for maintaining code distribution in a CDMA wireless

network. Both of these structures have properties similar, but not identical to, the

coverage complex.

7.2.4 Optimizing Data Arrangements

For a given data arrangement, suppose we apply our coverage criteria and

conclude that SC(V) = S. It is entirely likely that vectors could be removed from

some of the points in the arrangement while still preserving the coverage. For a given

arrangement of points we would like to derive lower and upper bounds on the total

number of vectors needed to cover the Rips shadow, and algorithms to heuristically

optimize the data arrangement. We have some initial work on this topic, but not

enough to include here.

182

Bibliography

[1] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information
flow. Information Theory, IEEE Transactions on, 46(4):1204–1216, Jul 2000.

[2] R. W. Yeung and Z. Zhang. Distributed source coding for satellite communi-
cations. IEEE Transactions on Information Theory, IT(45):1111–1120, 1999.

[3] Muriel Medard, Michelle Effros, David Karger, and Tracey Ho. On coding for
non-multicast networks. In Proc. 41st Annual Allerton Conference On Com-
munication, Control AND Computing, 2003.

[4] Randall Dougherty, Christopher F. Freiling, and Kenneth Zeger. Networks,
matroids, and non-Shannon information inequalities. IEEE Transactions on
Information Theory, 53(6):1949–1969, 2007.

[5] Randall Dougherty, Christopher F. Freiling, and Kenneth Zeger. Network cod-
ing and matroid theory. Proceedings of the IEEE, 99(3):388–405, 2011.

[6] Robert Ghrist and Yasukai Hiroka. Applications of sheaf cohomology and ex-
act sequences on network codings. In International Symposium on Nonlinear
Theory and its Applications, 2011.

[7] Salim Y. El Rouayheb, Alexander Sprintson, and Costas N. Georghiades. On
the index coding problem and its relation to network coding and matroid theory.
IEEE Transactions on Information Theory, 56(7):3187–3195, 2010.

[8] Yong Wang, Sushant Jain, Margaret Martonosi, and Kevin Fall. Erasure coding
based routing in opportunistic networks. In ACM SIGCOMM Workshop on
Delay Tolerant Networking, 2005.

[9] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall. Using redun-
dancy to cope with failures in a delay tolerant network. Proc. SIGCOMM,
2005.

183

[10] Yunfeng Lin, Baochun Li, and Ben Liang. Stochastic analysis of network coding
in epidemic routing. IEEE J.Sel. A. Commun., 26(5):794–808, June 2008.

[11] Christos Gkantsidis and Pablo Rodriguez. Network coding for large scale con-
tent distribution. In IEEE INFOCOM, page 12, March 2005.

[12] Agoston Petz, Brenton Walker, Chien-Liang Fok, Calvin Ardi, and Christine
Julien. Network coded routing in delay tolerant networks: An experience re-
port. In Proceedings of the 3rd Extreme Conference on Communication (Ex-
tremeCom), 2011.

[13] Bernhard Haeupler. Analyzing network coding gossip made easy. In Proceedings
of the 43rd annual ACM symposium on Theory of computing, STOC ’11, pages
293–302, New York, NY, USA, 2011. ACM.

[14] Brenton Walker, Calvin Ardi, Agoston Petz, Jung Ryu, and Christine Julien.
Experiments on the spatial distribution of network code diversity in segmented
dtns. In Proceedings of the ACM MobiCom Workshop on Challenged Networks
(CHANTS), 2011.

[15] Vin DeSilva, Robert Ghrist, and Abubakr Muhammad. Blind swarms for cov-
erage in 2-d. In Sebastian Thrun, Gaurav S. Sukhatme, and Stefan Schaal,
editors, Robotics: Science and Systems, pages 335–342. The MIT Press, 2005.

[16] Vin DeSilva and Robert Ghrist. Coverage in sensor networks via persistent
homology. Alg. & Geom. Topology, 7:339–358, 2007.

[17] Vin DeSilva and Robert Ghrist. Homological sensor networks. Notices of the
American Mathematical Society, 54:2007, 2007.

[18] Robert Ghrist and Abubakr Muhammad. Coverage and hole-detection in sensor
networks via homology. In Proceedings of the 4th international symposium on
Information processing in sensor networks, IPSN ’05, Piscataway, NJ, USA,
2005. IEEE Press.

[19] E. W. Chambers. Computing Interesting Topological Features. PhD thesis,
University of Illinois at Urbana-Champaign, 2008.

[20] Erin W. Chambers, Vin de Silva, Jeff Erickson, and Robert Ghrist. Vietoris-
Rips complexes of planar point sets. Discrete & Computational Geometry,
44(1):75–90, 2010.

[21] V. DeSilva and R. Ghrist. Coordinate-free coverage in sensor networks with
controlled boundaries via homology. I. J. Robotic Res., 25(12):1205–1222, 2006.

[22] Yue Wang, Jie Gao, and Joseph S. B. Mitchell. Boundary recognition in sen-
sor networks by topological methods. In Mario Gerla, Chiara Petrioli, and
Ramachandran Ramjee, editors, MOBICOM, pages 122–133. ACM, 2006.

184

[23] Dezun Dong, Yunhao Liu, and Xiangke Liao. Fine-grained boundary recogni-
tion in wireless ad hoc and sensor networks by topological methods. In Proceed-
ings of the tenth ACM international symposium on Mobile ad hoc networking
and computing, MobiHoc ’09, pages 135–144, New York, NY, USA, 2009. ACM.

[24] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Math. Z.,
27:544–548, 1928.

[25] J. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,
3:23–28, 1965. 10.1007/BF02760024.

[26] Rajarshi Gupta, Jean Walrand, and Olivier Goldschmidt. Maximal cliques in
unit disk graphs: Polynomial approximation. In PROCEEDINGS INOC 2005,
2005.

[27] R. P. Dilworth. A Decomposition Theorem for Partially Ordered Sets. The
Annals of Mathematics, 51(1):161–166, 1950.

[28] Micha A. Perles. A proof of Dilworth’s decomposition theorem for partially
ordered sets. Israel Journal of Mathematics, 1(2):105–107, 1963.

[29] Erin W. Chambers, Jeff Erickson, and Pratik Worah. Testing contractibility in
planar Rips complexes. In Proceedings of the Twenty-fourth Annual Symposium
on Computational Geometry, SCG ’08, pages 251–259, New York, NY, USA,
2008. ACM.

[30] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and
simplification. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, FOCS ’00, pages 454–, Washington, DC, USA, 2000. IEEE
Computer Society.

[31] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Dis-
crete Comput. Geom., 33(2):249–274, February 2005.

[32] A.J. Zomorodian. Topology for Computing. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, 2005.

[33] H. Edelsbrunner and J. Harer. Persistent homology – a survey. In Surveys on
discrete and computational geometry, volume 453 of Contemporary Mathemat-
ics, pages 257–282. Amer Mathematical Society, 2008.

[34] Gunnar Carlsson. Topology and Data. Bulletin (New Series) Of The American
Mathematical Society, 46(2):255–308, 2009.

[35] Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the
American Mathematical Society, 45:61–75, 2008.

[36] Shmuel Weinberger. What is. . . persistent homology? Notices Am. Math. Soc.,
58(1):36–39, 2011.

185

[37] Herbert Edelsbrunner and Michael Kerber. Alexander duality for functions:
the persistent behavior of land and water and shore. CoRR, arxiv:1109.5052,
2011.

[38] Moo K. Chung, Peter Bubenik, Peter T. Kim, Kim M. Dalton, and Richard J.
Davidson. Persistence diagrams of cortical surface data. In Information Pro-
cessing in Medical Imaging, LNCS, 2009.

[39] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of per-
sistence diagrams. Discrete Comput. Geom., 37(1):103–120, January 2007.

[40] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and
Steve Y. Oudot. Proximity of persistence modules and their diagrams. In Pro-
ceedings of the Twenty-fifth Annual Symposium on Computational Geometry,
SCG ’09, pages 237–246, New York, NY, USA, 2009. ACM.

[41] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and
vineyards by updating persistence in linear time. In Proceedings of the Twenty-
second Annual Symposium on Computational Geometry, SCG ’06, pages 119–
126, New York, NY, USA, 2006. ACM.

[42] Dmitriy Morozov. Homological Illusions of Persistence and Stability. PhD
thesis, Duke University, August 2008.

[43] Vin de Silva. Plex: Simplicial complexes in MATLAB. Software available at
http://comptop.stanford.edu/programs/.

[44] Vin de Silva. A Weak Characterisation of the Delaunay Triangulation. Geome-
triae Dedicata, 135(1):39–64, 2008.

[45] Vin de Silva and Gunnar Carlsson. Topological estimation using witness com-
plexes. In Sympos. Point-Based Graphics, pages 157–166, 2004.

[46] Gunnar Carlsson, Tigran Ishkhanov, Vin Silva, and Afra Zomorodian. On the
local behavior of spaces of natural images. Int. J. Comput. Vision, 76(1):1–12,
January 2008.

[47] Brenton Walker. Using persistent homology to recover spatial information from
encounter traces. In Proceedings of the 9th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, MobiHoc ’08, pages 371–380, New
York, NY, USA, 2008. ACM.

[48] Xiaojin Zhu. Persistent homology: An introduction and a new text repre-
sentation for natural language processing. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, IJCAI’13, pages 1953–
1959. AAAI Press, 2013.

186

[49] Konstantin Mischaikow, Hiroshi Kokubu, Marian Mrozek, Pawe Pilarczyk,
Tomas Gedeon, Jean-Philippe Lessard, and Marcio Gameiro. Chomp computa-
tional homology project. Software available at http://chomp.rutgers.edu/.

[50] T. Kaczynski, M. Mrozek, and M. Slusarek. Homology computation by re-
duction of chain complexes. Computers & Mathematics with Applications,
35(4):59–70, February 1998.

[51] Donald R. Sheehy. Linear-size approximations to the Vietoris-Rips filtration.
Discrete & Computational Geometry, 49(4):778–796, 2013.

[52] Andrew Tausz, Mikael Vejdemo-Johansson, and Henry Adams. Javaplex: A
research software package for persistent (co)homology. Software available at
http://javaplex.github.io/javaplex/, 2011.

[53] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Phat persistent homol-
ogy algorithm toolbox. Software available at http://phat.googlecode.com/,
2014.

[54] S. Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

[55] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and
Christophe Diot. Pocket switched networks and human mobility in conference
environments. In WDTN ’05: Proceeding of the 2005 ACM SIGCOMM work-
shop on Delay-tolerant networking, pages 244–251, New York, NY, USA, 2005.
ACM Press.

[56] Magdalena Balazinska and Paul Castro. Characterizing Mobility and Network
Usage in a Corporate Wireless Local-Area Network. In 1st International Con-
ference on Mobile Systems, Applications, and Services (MobiSys), San Fran-
cisco, CA, May 2003.

[57] Marvin Mcnett and Geoffrey M. Voelker. Access and mobility of wireless pda
users. SIGMOBILE Mob. Comput. Commun. Rev., 9(2):40–55, April 2005.

[58] Tristan Henderson, David Kotz, and Ilya Abyzov. The changing usage of a
mature campus-wide wireless network. In MobiCom ’04: Proceedings of the 10th
annual international conference on Mobile computing and networking, pages
187–201, New York, NY, USA, 2004. ACM.

[59] Wei-Jen Hsu and Ahmed Helmy. On nodal encounter patterns in wireless lan
traces. In Proceedings of the Second Workshop on Wireless Network Measure-
ments (WiNMee 2006), 2006.

[60] Thomas Karagiannis, Jean-Yves Le Boudec, and Milan Vojnovic. Power law
and exponential decay of inter contact times between mobile devices. In Mo-
biCom ’07: Proceedings of the 13th annual ACM international conference on
Mobile computing and networking, pages 183–194, New York, NY, USA, 2007.
ACM.

187

[61] Han Cai and Do Young Eun. Crossing over the bounded domain: from exponen-
tial to power-law inter-meeting time in manet. In MobiCom ’07: Proceedings
of the 13th annual ACM international conference on Mobile computing and
networking, pages 159–170, New York, NY, USA, 2007. ACM.

[62] Ling-Jyh Chen, Yung-Chih Chen, Tony Sun, Paruvelli Sreedevi, Kuan-Ta Chen,
Chen-Hung Yu, and Hao-Hua Chu. Finding self-similarities in opportunistic
people networks. In INFOCOM, pages 2286–2290, 2007.

[63] Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing complex so-
cial systems. Personal and Ubiquitous Computing, V10(4):255–268, May 2006.

[64] Eiko Yoneki, Pan Hui, and Jon Crowcroft. Visualizing community detection in
opportunistic networks. In CHANTS ’07: Proceedings of the second workshop
on Challenged networks CHANTS, pages 93–96, New York, NY, USA, 2007.
ACM.

[65] Minkyong Kim, David Kotz, and Songkuk Kim. Extracting a mobility model
from real user traces. In IEEE INFOCOM06, Barcelona, Spain, 2006.

[66] Aaron Abrams. Configuration Spaces and Braid Groups of Graphs. PhD thesis,
UC Berkeley, 2000.

[67] David Lipsky, Primoz Skraba, and Mikael Vejdemo-Johansson. A spectral se-
quence for parallelized persistence. CoRR, arxiv:1112.1245, 2011.

[68] Martin Albrecht and Gregory Bard. The M4RI Library – Version 20130416.
Software available at http://m4ri.sagemath.org, 2013.

[69] Gunnar E. Carlsson and Vin de Silva. Zigzag persistence. CoRR,
arxiv:0812.0197, 2008.

[70] Dmitriy Morozov. Dionysus library for computing persistent homology. Soft-
ware available at http://www.mrzv.org/software/dionysus/, 2012.

[71] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional per-
sistence. Discrete Comput. Geom., 42(1):71–93, May 2009.

188

