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Abstract
We examine the origin of the Newton–Schrödinger equations (NSEs) that play
an important role in alternative quantum theories (AQT), macroscopic quantum
mechanics and gravity-induced decoherence. We show that NSEs for individual
particles do not follow from general relativity (GR) plus quantum field theory
(QFT). Contrary to what is commonly assumed, the NSEs are not the weak-field
(WF), non-relativistic (NR) limit of the semi-classical Einstein equation (SCE)
(this nomenclature is preferred over the ‘Moller–Rosenfeld equation’) based on
GR+QFT. The wave-function in the NSEs makes sense only as that for a mean
field describing a system of N particles as → ∞N , not that of a single or finite
many particles. From GR+QFT the gravitational self-interaction leads to mass
renormalization, not to a non-linear term in the evolution equations of some
AQTs. The WF-NR limit of the gravitational interaction in GR+QFT involves
no dynamics. To see the contrast, we give a derivation of the equation (i)
governing the many-body wave function from GR+QFT and (ii) for the non-
relativistic limit of quantum electrodynamics. They have the same structure,
being linear, and very different from NSEs. Adding to this our earlier con-
sideration that for gravitational decoherence the master equations based on GR
+QFT lead to decoherence in the energy basis and not in the position basis,
despite some AQTs desiring it for the ‘collapse of the wave function’, we
conclude that the origins and consequences of NSEs are very different, and
should be clearly demarcated from those of the SCE equation, the only legit-
imate representative of semiclassical gravity, based on GR+QFT.
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1. Introduction and summary

The Newton–Schrödinger equations (NSE) play a prominent role in alternative quantum
theories (AQT) [1–5], emergent quantum mechanics [6], macroscopic quantum mechanics
[7–10], gravitational decoherence [11, 12] (such as invoked in the Diosi–Penrose models) and
semiclassical gravity [15, 18–20]3. The class of theories built upon these equations, the latest
being an application of the many-particle NSE derived in [4, 5] to macroscopic quantum
mechanics (see [9, 21] and references therein), have also drawn increasing attention of
experimentalists who often use them as the conceptual framework and technical platform for
understanding the interaction of quantum matter with classical gravity and to compare their
prospective laboratory results (see [1] and references therein, also [22]) [23–26].

The NSE governing the wave function of a single particle ψ tr( , ) is of the form


ψ ψ ψ ψ∂

∂
= − +i

t m
m V

1
2

[ ] (1)N
2 2

where V r( )N is the (normalized) gravitational (Newtonian) potential given by

∫ ψ= − ′ ′ − ′V t G tr r r r r( , ) d ( , ) . (2)N
2

It satisfies the Poisson equation

 π μ=V G4 , (3)N
2

with the mass density

μ ψ= m tr( , ) (4)2

being the non-relativistic limit of energy density ε corresponding to the component T00 of the
stress-energy tensor.

The NSEs’ admittance of spatial localization of the wavefunction makes it attractive to
many AQTs who view the ‘collapse of the wave function’ in space for macroscopic objects as a
strong motivation for seeking departures from quantum mechanics. Since this brings about the
same qualitative result as gravitationally-induced decoherence—NSE is often attributed this
added laurel4. However, the mathematical foundation and physical soundness of the NSEs seem
shaky to us. In this paper we examine the structure of NSE in relation to general relativity (GR)
and quantum field theory (QFT), the two well-tested theories governing the dynamics of
classical spacetimes and quantum matter. The viability of NSEs is usually assumed courtesy of
their well-accepted progenitor theories. Since Newtonian gravity is the weak field (WF) limit of
GR, and quantum mechanics is the non-relativistic (NR) limit of QFT, it is easy to slip into
believing that NSE is a limiting case derivative of GR and QFT. However, when the weak-field
(Newton) and non-relativistic (Schrödinger) forms are taken on face value, subtle points are
ignored, leading to a class of theories that are very different from, in fact, contradicting, the

3 Semiclassical gravity entails the backreaction problem studied in [16] and [17].
4 In contrast, a master equation derived from GR and QFT predicts decoherence in the energy rather than the
position basis, with negligible magnitude [11].
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conjunction of GR and QFT. In this paper, we cross-examine these practices and expound the
assumptions which proponents of theories based on NSE often make for stated purposes, but
provide little justification.

To get a taste of this, we mention here two clear differences in the physical features and
consequences between (1) the NS equation based on Newtonʼs gravity and Schrödingerʼs
quantum mechanics, using single- or many-particle wave functions. (2) The WF-NR limit of
QFT in curved spacetime where gravity is described by general relativity and matter described
by quantum fields, interacting with gravity in the proper manner. After this we will describe the
two approaches we took which led us to these conclusions.

1.1. NS equation not from GR+QFT

A. In NSE, the gravitational self-energy defines nonlinear terms in Schrödingerʼs equation. In
comparison, in the class of AQTs proposed by Diosi [4], the gravitational self-energy defines a
stochastic term in the master equation. With GR and QFT, the gravitational self-energy only
contributes to mass renormalization in the weak field limit. The Newtonian interaction term
induces a divergent self-energy contribution to the single-particle Hamiltonian. It does not
induce any nonlinear term in the evolution of single-particle wave-functions.

B. The single-particle ‘wave function’ in the NSE χ r( ) appears as a result of making a
Hartree approximation for N particle states as → ∞N . Consider the ansatz
Ψ χ χ χ| 〉 = | 〉 ⊗ | 〉… ⊗ | 〉 for a N-particle system. At the limit → ∞N , the generation of
particle correlations in time is suppressed and one gets an equation which reduces to the NS
equation for χ [34, 35]. However, in the Hartree approximation, χ r( ) is not the wave-function
of a single particle, but a collective variable that describes a system of N particles under a mean
field approximation5.

This shows what could go wrong if one stays at the restricted level of particle wave-
functions (rather than the more basic and accurate level of QFT) in exploring the interaction of
quantum matter with classical gravity. The one-particle, or the many-particle, NS equation [9] is
not a physical representation of how quantum matter is coupled to classical gravity or how it is
accommodated in curved spacetimes.

Point A above explains why nonlinearity does not arise in a proper QFT treatment. Point B
indicates that the interaction of quantum matter with classical gravity is only meaningful if the
matter degrees of freedom are fundamentally described in terms of quantum fields. A coupling
of gravity and matter through the single-particle wave functions in quantum mechanics is like
treating them implicitly as classical fields. This mars their probabilistic role in quantum theory.
Like all nonlinear modifications to Schrödingerʼs equation, it is not clear how to interpret such
wave-functions when considering probabilities in statistical ensembles. Subtle differences, such
as the one between a quantum mechanical versus a QFT treatment of quantum matter in the
presence of gravity, result in markedly varied consequences.

5 Note that it is long known [36] that the SCEs corresponds to the large-N limit of N component quantum fields
living in a curved spacetime. See also [37] for the next-to-leading order large N expansion giving rise to the
Einstein–Langevin equation in stochastic gravity theory.
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The above observations came from analysis we performed via two routes: (1) taking the
non-relativistic limit of the semiclassical Einstein equation (SCE), the central equation of
relativistic semiclassical gravity6, a fully covariant theory based on GR+QFT [27–30] with self-
consistent backreaction of quantum matter on the spacetime dynamics (for discussions of the
criterion and range of its validity, see [31, 32]). (2) Working out from first principles a model
with matter described by a scalar field interacting with weak gravity (see [11]), solve the
constraint, canonically quantize the system, then take the nonrelativistic limit. This procedure is
analogous to the derivation of the non-relativistic limit of quantum electrodynamics (QED). The
equations obtained in both cases have the same structure, ostensibly linear, and very different
from NSEs.

1.2. Non-relativistic weak field limit of SCE equation

The SCE7 is of the form

π Ψ Ψ= ˆμν μνG G T8 , (5)

where 〈 ˆ 〉μνT is the expectation value of the stress energy density operator μ̂νT with respect to a
given quantum state Ψ| 〉 of the field. One usually employs the Heisenberg picture in the
spacetime argument of the operator ˆ μν

T ; the state Ψ| 〉 is constant in time.
In the weak field limit, the spacetime metric has the form = − −s V t rd (1 2 )d d2 2 2. The

SCE becomes

 π ε= ˆV G4 , (6)2

where ε̂ = T̂00 is the energy density operator. The Newtonian potential is not a dynamical object
in GR, just like the electric potential is not dynamical in QED, but it is expressed in terms of
dynamical variables through first-class constraints.

Equation (6) can be solved to yield

∫ Ψ ε Ψ
= − ′

ˆ ′
− ′

V Gr r
r

r r
( ) d

( )
. (7)

The expectation value of the stress energy tensor has ultraviolet divergences and needs to be
regularized. Such regularization procedures were investigated in the mid-1970s with well
known results (see, e.g., [27]).

In the non-relativistic limit, ε̂ ′r( ) becomes μ̂ r( )reg , the regularized mass density operator
The evolution of the quantum field is described by an ‘effective Hamiltonian’

∫ ∫ψ ψ μ
Ψ μ Ψ

ˆ = − ˆ ˆ − ′ ˆ
ˆ ′

− ′
†H

m
Gr r r r r r

r

r r
1

2
d ( ) ( ) d d ( )

( )
. (8)2

reg

reg

where ψ ψˆ ˆ †r r( ), ( ) are respectively the non-relativistic field annihilation and creation operators
expressed in the position basis—for the precise definition, see equation (16).

6 There are four levels of semiclassical gravity (SCG) theories [15] and, to avoid confusion when discussing
issues, one needs to specify which level of SCG one refers to. Our suggestion is to use the two most developed
levels [20] which we refer to as ‘relativistic semiclassical gravity’ here.
7 We prefer calling it the SCE over the ‘Moller–Rosenfeld equation’ [33] because after all it is Einsteinʼs equation,
albeit with a quantum matter source.
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One could assume that the relevant field states Ψ| 〉 correspond to a single particle and
derive the NS equation for a single particle from Schrödingerʼs equation associated to the
Hamiltonian (8). But such a procedure violates the way quantum matter fields are supposed to
be coupled to gravity in equation (5). The SCE equation is meaningful as an approximation to a
more fundamental quantum theory of gravity only in the mean field limit, with the expectation
values of matter fields acting as source, and is viable only for states Ψ| 〉 for which the mean-field
approximation is valid. Single-particle (or even few-particle) states do not belong to this class.

The specific procedure leading one from SCE to a NS equation in the description above is
the treatment of ϕ| |m r( ) 2 as a mass density for a single particle described by the wave-function
ϕ r( ). The problem with this procedure is that the mass density is in fact an observable (rather
than a part of the wave-function), and it corresponds to an operator μ ψ ψˆ = ˆ ˆ†mr r r( ) ( ) ( )reg in the
QFT Hilbert space.

The field state

∫ϕ ψ ϕ= ˆ † r r( ) ( ) 0 , (9)

where | 〉0 is the vacuum, describes a single particle. For this state, the expectation value
ϕ μ ϕ〈 | ˆ | 〉r( )reg indeed coincides with ϕ| |m r( ) 2. However, the substitution of an operator with its
mean value is a good approximation only if the system is presupposed to behave classically. In
the context of the SCE equation, such an approximation is meaningful only at the mean-field
description of a many-particle system. When considering a single particle, the mass-density
ought to be treated as an operator in the evolution equations.

This misstep leads one to the consequences A and B, described in the beginning of
section 1.1. Starting from GR and QFT, one sees no nonlinearity in the dynamical equations for
the matter field. One- or many-particle NSEs is not derivable from GR and QFT [10].

1.3. Perils of single particle wave function

In section 1.2, we described the procedure of starting from the SCE and identifying the step
which misleads one to the NSE for single or finitely many particles. We have also carried out an
explicit calculation following a procedure detailed in [11], namely, consider classical matter
interacting with weak gravity (perturbations off the Minkowski metric) solving the constraints,
quantizing, and then taking the non-relativistic limit.

The result is a Schrödingerʼs equation for the state Ψ| 〉 associated to the quantum field

Ψ Ψ∂
∂

= ˆi
t

H , (10)

where the QFT Hamiltonian is

∫ ∫ ∫ψ ψ
ψ ψ ψ ψ

ˆ = − ˆ ˆ − ′
ˆ ˆ ˆ ˆ ′

− ′
†

† †( ) ( )
H

m
Gr r r r r

r r

r r
1

2
d ( ) ( ) d d

( ) ( )
, (11)2

expressed in terms of the non-relativistic field operators ψ ψˆ ˆ †r r( ), ( ).
The electromagnetic analog of equation (11) with the Coulomb potential replacing the

gravitational potential is widely used in condensed matter physics.
Let us see what equation (11) looks like when projected down to single-particle states of

the form (9). The matrix elements of the operator (11) with respect to a pair of single-particle
states define the single-particle Hamiltonian:
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∫ ∫ϕ ϕ ϕ ϕ
ϕ ϕ δˆ = − − ′

′ − ′
− ′

*
*

H
m

Gr r r r r
r r r r

r r
1

2
d ( ) ( ) d d

( ) ( ) ( )
. (12)2 1 2

2
1

2 1

The second term on the right-hand-side of equation (12) is an infinite constant added to the
single-particle Hamiltonian, i.e., a divergent self-energy contribution. Equation (11) does not
induce any nonlinear term in the evolution equation.

In our opinion, the correct description of quantum matter interacting with classical gravity
is if the matter degrees of freedom are described in terms of quantum fields, not in terms of
single-particle wave functions whose dynamics NSEs purport to describe. One can obtain a
single- or N-particle description by projecting the end results of quantum matter fields
interacting with classical gravity onto the 1 or N particle sectors. We have explicitly provided
these equations in this paper, which are ostensibly different from the NSEs for single- or N-
particles obtained from using the single- or N-particle wave functions ab initio in the
Schrödinger equation. (On the issue of a quantum field description versus single quantum
particle description of quantum matter interacting with a classical gravitational field, see also
[13, 14].) We assert that the only valid theory for the interaction of quantum matter with
classical gravity based on the two well-known and well-tested theories GR+QFT in their
respective validity domains, is (relativistic) semiclassical gravity which offers a mean field
description, or stochastic gravity, with the inclusion of quantum matter fluctuations [15].

Our main conclusion is that NSEs do not follow from general relativity plus QFT. Thus, all
theories based on or making use of NSEs assume some unknown physics which need be
justified and verified. This may be the attitude taken by some proponents of AQTs, that their
theories are beyond existing physics. Our modest goal here is to provide an explicit theoretical
platform, built purely from GR and QFT, so that all proposers of AQTs can bring their favorite
theories to compare with, to explain and better justify their logical reasons for existence.

This paper is organized as follows: in section 2, we briefly describe the well-known
derivation of the non-relativistic limit in QFT, in order to make explicit the points referred to
above. We include the definition of the regularized mass-density operator. In section 3, we
sketch our model for gravity-matter coupling and show the derivations leading to the
Hamiltonian (11) above or the equivalent equation (25) below. Details are contained in
appendix A. We write down the Hamiltonian for one particle, two particle and the mean field.
From these expressions one can see explicitly the differences with the NSEs. In section 4,
following the same procedure, we work out the analogous problem in QED; the non-relativistic
limit of QED is a well-accepted theory used in condensed matter physics. We draw our
conclusions in section 5. An alternative derivation using a different procedure, that of first
taking the Newtonian limit, then quantizing the system and then solving the constraint, gives the
same result for the WF-NR limit as the fully relativistic treatment. An outline of this alternative
is given in appendix B.

2. Non-relativistic limit of QFT

In this section, we briefly present the derivation of the non-relativistic limit in a scalar QFT. We
also define the regularized mass-density operator.

Consider a scalar quantum field ϕ̂ r( ) and its conjugate momentum π̂ r( ) expressed in terms
of the creation and annihilation operators âk and ˆ †ak
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∫ϕ
π ω

ˆ = ˆ + ˆ· † − ·⎡⎣ ⎤⎦k
a ar( )

d

(2 ) 2
e e (13)i i

k
k

k r
k

k r
3

3

∫π
π

ω
ˆ = − ˆ + ˆ· † − ·⎡⎣ ⎤⎦k

a ar( ) i
d

(2 ) 2
e e . (14)i ik

k
k r

k
k r

3

3

For a free field, the Hamiltonian operator is

∫
π

ωˆ = ˆ ˆ†H
k

a a
d

(2 )
, (15)k k k

3

3

where ω = + mkk
2 2 .

In the non-relativistic approximation, we define the fields

∫ ∫ψ
π

ψ
π

ˆ = ˆ ˆ = ˆ· † † − ·k
a

k
ar r( )

d

(2 )
e , ( )

d

(2 )
e , (16)k

k r
k

k r
3

3
i

3

3
i

and we approximate

ϕ ψ ψ π ψ ψˆ = ˆ + ˆ ˆ = − ˆ − ˆ† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
m

m
r r r r r r( )

1

2
( ) ( ) , ( ) i

2
( ) ( ) . (17)

The Hamiltonian then becomes

∫ ∫ψ ψ ψ ψˆ = ˆ ˆ − ˆ ˆ† †H m
m

r r r r r rd ( ) ( )
1

2
d ( ) ( ). (18)2

We will denote the second term in equation (18) as Ĥ0 because it corresponds to the
Hamiltonian for N non-relativistic particles. The particle-number operator N̂ is

∫ ψ ψˆ = ˆ ˆ†N r r rd ( ) ( ). (19)

This suggests that ψ ψˆ ˆ†m r r( ) ( ) can be identified as the mass-density operator. However,
the expression ψ ψˆ ˆ† r r( ) ( ) does not correspond to a well-defined self-adjoint operator.

We define a regularized mass density operator

∫μ ς ψ ψˆ = ′ ′ − ˆ ′ ˆ ′σ
†mr r r r r r( ) d ( ) ( ) ( ), (20)reg

using a smearing function ςσ r( ) that satisfies the conditions

(i) ς ⩾σ r( ) 0.

(ii) ς δ=σ σ→ r rlim ( ) ( )0
3 .

(iii) ∫ ς =σx rd ( ) 13 .A convenient choice for ςσ is the Gaussian function

ς πσ=σ σ
− −( )r( ) 2 e . (21)

r
2 3 2

2

2

2

3. Matter field interacting with gravity in the weak-field non-relativistic limit

In what follows, we show an explicit derivation of (11) following the procedures used in [11].
We will not dwell on the open quantum system aspects therein, whereby a master equation for
gravitational decoherence is derived.
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3.1. Derivation of the field Hamiltonian

Consider a classical scalar field ϕ of mass m describing the matter degrees of freedom and its
interaction with a gravitational field. The action for this system is

 ∫ ∫ϕ
κ

ϕ ϕ ϕ= − + − − −μν
μ ν⎜ ⎟⎛

⎝
⎞
⎠S g x g R x g g m[ , ]

1
d d

1
2

1
2

, (22)4 4 2 2

where μ is the covariant derivative defined on a background spacetime with Lorentzian metric

μνg , R is the spacetimeʼs Ricci scalar, g is the determinant of the metric and κ π= G8 ; G is
Newtonʼs gravitational constant.

In appendix A, we summarize the 3 + 1 treatment of the action (22) in the weak gravity
limit. We consider linearized perturbations of the metric around the Minkowski spacetime, we
implement the Legendre transform to pass on to the Hamiltonian description, then we perform
the constraint analysis.

The end result is the Hamiltonian

t∫ ∫
∫

π ϕ ϕ κ γ

κ
π

ϵ ϵ

= + + + − ¯

− ′ ′
− ′

+ ′

( )H m H

H

r r

r r
r r
r r

1
2

d ( )
2

d

8
d d

( ) ( )
(23)

TT
ij

ij
2 2 2 2

int

where π is the conjugate momentum to the scalar field ϕ, γ̄ ij are the transverse-traceless metric
perturbations, HTT is the self-Hamiltonian for the transverse-traceless perturbations, t ij is the
spatial components of the fieldʼs stress-energy tensor, ϵ is the energy density

ϵ π ϕ ϕ= + +( )mr( )
1
2

( ) , (24)2 2 2 2

and ′Hint refers to other interaction terms that are negligible in the non-relativistic limit.
The Hamiltonian (23) follows from solving the constraints of linearized general relativity,

equations (A.7) and (A.9), at the classical level. The term involving the energy density ϵ is the
only one that survives in the non-relativistic limit, because it contains the mass density μ r( ),
which is the only source of the gravitational field in the Newtonian regime.

We then proceed to canonically quantize the system. In particular, we substitute the
classical fields ϕ πx x( ), ( ) with the quantum operators (13–14), and similarly for the 3-metric ĥij

and its conjugate momentum Π̂ ij
. Having quantized the fields ϕ̂ and π̂ , a regularized expression

for the energy density ϵ r( ) is straightforwardly defined as the quantum version of equation (24).
The resulting field theory is well defined at the tree level.

This procedure follows the prescription of reduced state space quantization. An alternative
procedure is to quantize the system prior to the imposition of the constraints; this is the essence
of Dirac quantization. In general, the two procedures produce different results. But it turns out
that they lead to the same result in the non-relativistic limit, mainly because the scalar constraint
of general relativity, equation (A.7), becomes very simple. The alternative derivation is
sketched in appendix B. Either procedure is standard for the quantization of constrained
systems. The one we present in this section corresponds to the standard derivation of the non-
relativistic limit of QED in atomic and many-body systems as we will see in the next section.

In [11], we quantized both the scalar field ϕ and the gravitational perturbations γ̄ij in
equation (23), we derived a master equation for the quantized matter field ϕ̂ and then took the
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non-relativistic particle limit. The emphasis there was on possible decoherence effects due to
gravitational perturbations—see also [38] and [12].

Here, we explore a different regime and we ignore the effect of the gravitational
perturbations. Thus, we need not consider the HTT term and the term coupling the perturbations
to the spatial components of the stress-energy tensor in equation (23).

We take the non-relativistic limit as in equation (18) for the free field terms in
equation (23). Classically, the energy density ϵ r( ) coincides with the mass density μ r( ) in the
non-relativistic limit. In the quantum description, the regularized operator ϵ̂ r( ) for the energy
density, i.e., the quantized version of equation (24), is substituted by the regularized mass
density operator μ̂ r( )reg , equation (20).

The result is the Hamiltonian operator

∫ ∫ψ ψ
μ μ

ˆ = ˆ − ˆ ˆ − ′
ˆ ˆ ′

− ′
†H mN

m
Gr r r r r

r r

r r
1

2
d ( ) ( ) d d

( ) ( )
. (25)2 reg reg

Equation (25) is the main results in this approach. Restricting the Hamiltonian to the N-particle
subspace, we obtain the effective gravitational dynamics of N particles.

3.2. One-, two-particle states and mean field limit

One particle. We first consider a single particle state

∫ϕ ψ ϕ= ˆ †r r rd ( ) ( ) 0 , (26)

where ϕ r( ) is the single-particle wave-function.
The matrix elements of the operator (25) on the single-particle states are

∫ ∫ϕ ϕ ϕ ϕ δ ϕ ϕˆ = − + σ* *
H

m
mr r r r r r

2
d ( ) ( ) d ( ) ( ), (27)2 1

2

2
2

1 2 1

where

δ
πσ

= −σm
Gm

. (28)
2

2

Hence, the Hamiltonian operator in the one-particle subspace is

ˆ = ˆ +
ˆ

H m
p

m
1

2
, (29)ren

2

where δ σm has been absorbed into mass renormalization δ= + σm m mren .
Thus, the Newtonian interaction term at the field level induces a divergent self-energy

contribution to the single-particle Hamiltonian. It does not induce nonlinear term with respect to
the particle wave functions. In particular, the NS equation is not the evolution equation for the
single-particle wave function.

Two particles. Next, we consider a 2-particle state

∫ϕ ϕ ϕ ϕ ψ ψ= ˆ ˆ† †r r r r r r,
1

2
d d ( ) ( ) ( ) ( ) 0 . (30)1 2 1 2 1 1 2 2 1 2
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Let us denote by ĤI the interaction term in the Hamiltonian (25), that is,

∫
μ μ

ˆ = − ′
ˆ ˆ ′

− ′
H G r r

r r

r r
d d

( ) ( )
. (31)I

3 3 reg reg

The corresponding matrix elements of the Hamiltonian (25) are

∫
χ χ ϕ ϕ δ χ χ ϕ ϕ

χ ϕ χ ϕ χ ϕ χ ϕ

ˆ =

− ′ − ′ ¯ ¯ ′ + ¯ ¯ ′

σ

σ
⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )

H m

Gm Fr r r r r r r r

, , 2 , ,

d d ( ) ( ) ( ) ( ) , (32)

I1 2 1 2 1 2 1 2

2
1 1 2 2 1 2 2 1

where

σ
=σ ⎜ ⎟

⎛
⎝

⎞
⎠F r

r

r
( )

1
Erf

2
, (33)

is a regularized version of the Newtonian potential. We note that as σ → 0, →σF r r( ) 1 .
Thus, the Hamiltonian on the 2-particle subspace is

ˆ = ˆ +
ˆ

+
ˆ

−
ˆ − ˆ

H m
m m

Gmp p

r r
2 1

2 2
, (34)ren

1
2

2
2 2

1 2

where the self-interaction term δ σm2 has been consistently absorbed in the mass
renormalization. Again, no NS equation appears.

The mean-field limit. In the N-particle subspace, the Hamiltonian becomes (modulo the
renormalized mass term)

∑ ∑∑ˆ =
ˆ

−
ˆ − ˆ= ≠

H
m

Gmp

r r2
. (35)

i

n
i

i j j i j1

2 2

We consider N-particle states of the form

Ψ χ χ χ χ= ⊗ … ⊗ = ⊗ =: (36)i
N

1

where χ r( ) is a single-particle wave-function. Then, the following theorem applies [39, 40]

χ χ⊗ = ⊗
→∞

− ˆ
= = tlim e ( ) (37)

N

Ht
i
N

i
Ni

1 1

where χ tr( , ) satisfies the NSE. However, in this approximation, χ tr( , ) is not the wave-
function of a single particle, but a collective variable that describes a system of N particles.

4. The electromagnetic analogue: non-relativistic limit of QED

In this section we consider the analogue electromagnetic (EM) system, namely, scalar QED,
which describes the interaction between a charged particle represented here by a complex scalar
field ϕ and an electromagnetic field with vector potential μA . Of course, there exist basic
differences between gravity and EM, such as the nonlinearity of the former but the linearity of
the latter, or the different symmetries characterizing each theory. However, in the non-
relativistic limit, Coulomb and Newton forces share similarities in the properties we are focused
on here.
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The classical Lagrangian density is

 ϕ ϕ ϕ= * − −μ
μ

μν
μν( )D D m F F

1
2

1
4

, (38)2 2

where = ∂ − ∂μν μ ν ν μF A A and = ∂ −μ μ μD ieA .
We define the conjugate momenta π of the scalar field, and the EM vector potential

=A A a, ( 1, 2, 3)a0 respectively as:

  π
ϕ

ϕ= ∂
∂ ˙ = ˙* = ∂

∂ ˙ = = ∂
∂ ˙ =p

A
E

A
F0 . (39)a

a
a

0

0
0

The Hamiltonian is

∫ π ϕ ϕ ϕ

ϱ ϕ

= + ∂ *∂ + + − − ∂ ∂

− ∂ − ˆ + +

⎡
⎣⎢

⎤⎦
( )

( )

H x m E E A A A

A E J A e A A

d
1
2

1
2

. (40)

a
a a

a a
a a

b
b

a
a a

a a
a

3 2 2 2 2

0
2 2

where

ϱ ϕ π ϕ π ϕ ϕ ϕ ϕ= * * − * * = ∂ * − *∂( ) ( )ie J ie (41)a a a

are the charge density and the electric current respectively.
The system is characterized by the first class constraint (Gauss’ law)

ϱ∂ − =E 0. (42)a
a

The longitudinal components of Aa are pure gauge (and can be taken for convenience to
vanish) and the longitudinal components of Ea are fixed by Gauss law. Thus, the true degrees of
freedom correspond to the transverse components ET a of the electric field, the transverse
components AT a of the magnetic potential and the complex fields ϕ and π corresponding to
charged particles. The Hamiltonian expressed in terms of the true degrees of freedom is



∫ ∫π ϕ ϕ ϕ ϱ ϱ
π

ϕ

= + ∂ *∂ + + ′ ′
− ′

+ − +

⎡
⎣⎢

⎤
⎦⎥

H x m

E E A A A A

r r
r r
r r

d d d
( ) ( )

4

1
2

1
2

e . (43)

a
a

a
T aT

a
T aT

a
T aT

3 2 2 2

2 2 2

Quantization proceeds in the standard way by expressing the field operators in terms of
creation and annihilation operators âk and ˆ †ak for charged particles and b̂k and ˆ †

bk for anti-
particles.

∫ϕ
π ω

ˆ = ˆ + ˆ· † − ·⎡
⎣⎢

⎤
⎦⎥

k
a br( )

d

(2 ) 2
e e (44)

k
k

k r
k

k r
3

3
i i

∫π
π

ω
ˆ = − ˆ + ˆ· † − ·⎡⎣ ⎤⎦i

k
b ar( )

d

(2 ) 2
e e . (45)k

k
k r

k
k r

3

3
i i

We now consider the non-relativistic limit for particles (rather than antiparticles). The
fields ψ̂ and ψ̂ † are defined as in equation (16), and the regularized charge density ϱ̂ r( )reg is
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∫ϱ ς ψ ψˆ = ′ − ′ ˆ ′ ˆ ′σ
†er r r r r r( ) d ( ) ( ) ( ), (46)reg

where ςσ r( ) is the Gaussian function (21).
The field Hamiltonian becomes

∫ ∫ψ ψ
ϱ ϱ

π
ˆ = − ˆ ˆ + ′

ˆ ˆ ′
− ′

σ σ†H
m

r r r r r
r r

r r
1

2
d ( ) ( ) d d

( ) ( )

4
. (47)2

We then compute the Hamiltonian in the N-particle subspace

∑ ∑
π

ˆ = ˆ +
ˆ

+
ˆ − ˆ= ≠

H Nm
m

ep

r r
1

2 4
, (48)N

i

N
i

i j i j
ren

1

2 2

where the renormalized mass δ= +m m mren QED includes a divergent term

δ
π σ

=m
e

4
. (49)QED

2

3 2

For N particles, at the limit → ∞N , the mean field theory approximation holds. We
consider N-particle states of the form

Ψ χ χ χ χ= ⊗ … ⊗ = ⊗ =: (50)i
N

1

where χ is a single-particle wave-function. Then

χ χ⊗ = ⊗
→∞

− ˆ
= = tlim e ( ) (51)

N

Ht
i
N

i
Ni

1 1

χ t( ), a collective variable of the whole system under the mean field approximation, satisfies the
Schrödinger–Coulomb equation.

 ∫χ χ χ χ
π

∂
∂

= − + ′ ′
− ′

i
t

t
m

t e t
t

r r r r
r
r r

( , )
1

2
( , ) d ( , )

( , )

4
(52)2 2

2

which is essentially the time-dependent version of Hartreeʼs equation.
The QED case exemplifies our calculation for gravity. First, there is no N-particle

Schrödinger–Coulomb equation at the non-relativistic limit of QED. If the reasoning leading to
the N-particle NS equations were applied to QED, we would obtain an equation of the form



∫

∑ψ ψ

ρ ψ

∂
∂

… = − …

+ ′
− ′

′ …

i
t m

e

r r r r

X
r X

X r r

( , , )
1

2
( , , )

d ( ) ( , , ), (53)

N

i
i N

i
N

1
2

1

2

1 1

where

∫∑ρ ψ δ= … … −( )X r r r r X r( ) d d ( , , ) (54)
j

N N j1 1 1
2

is the ‘charge density’ of the N particles. This equation cannot account even for the most
elementary results of quantum theory—its analogue for one proton and one electron could not
even predict the hydrogen-atom spectrum.

12

New J. Phys. 16 (2014) 085007 C Anastopoulos and B L Hu



In contrast the standard evolution for the N-particle wave function ψ …x x( , , )n1

∑ ∑ψ
π

ψ∂
∂

= − +
ˆ − ˆ≠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i

t m

e

r r

1
2 4

, (55)
i

i
i j i j

2
2

follows directly from equation (48), modulo the mass term.
Second, a ‘semiclassical QED’ approximation, corresponding to the equation ∂ = 〈ˆ 〉ν

νμ μ
F j

is only meaningful at the level of the mean field theory with large number of particles.
Equation (52), viewed as a mean-field equation, applies in this regime.

5. Conclusion

We have given a summary of the main findings in the introduction. Here we list the key points
as conclusion:

(i) Coupling of classical gravity with quantum matter. The only viable theory for the
description of matter degrees of freedom is in terms of relativistic quantum fields. The
coupling of classical gravity with quantum matter is meaningful only under a mean field
approximation for a large number of particles. The SCE operates under this condition.
When fluctuations of quantum fields are included as source, the upgraded Einstein–
Langevin equation describes the dynamics of the induced metric fluctuations. When
passing to the non-relativistic limit one ought to describe quantum matter in terms of the
non-relativistic fields ψ ψˆ ˆ †x x( ), ( ) that correspond to annihilation and creation operators of
particles respectively. Gravity couples to the mass-density which is an operator for a
quantum system; assuming it be a c-number quantity leads one astray.

(ii) Perils of single-particle wave function. The NSE for the wave function of a single particle
does not follow from general relativity and QFT. Similarly, there is no N-particle NSE in
gravity. When treating a system of N particles with large N, one can use an equation like
the single-particle NS equation, but the wave function ψ is a collective variable of the
whole system of N particles under the mean-field approximation, not referring to a single
particle.

(iii) No place for nonlinearity. There are severe obstacles to any nonlinear Schrödinger
equation for wave functions that define probabilities according to Bornʼs rule. This is not a
specific problem of the NSE. Any theory involving a nonlinear modification of
Schrödingerʼs equation ought to explain how the probabilistic descriptions of quantum
mechanics come about, since the most general transformation that preserves the
probabilistic structure or quantum states is linear (at the level of density matrices) [41].
Nonlinear Schrödinger-type equations such as the Hartree–Fock or the Gross–Pitaevski
equations involve wave functions Ψ that are collective variables for a many-body system,
not single-particle quantum states. Theories based on NSEs entail unknown and hitherto
ill-justified physics.
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Appendix A. Derivation of the Hamiltonian for matter–gravity interaction at the weak field
limit

Here, we present the derivation of the Hamiltonian (23) from the action (22) in the linearized-
gravity approximation.

A.1. The action

We assume for the spacetime manifold a spacelike foliation in the form Σ×R with time νt R
and spatial coordinates xi on a spacelike surface Σ. We denote the Riemannian metric on Σ as hij
and the corresponding Ricci scalar as R3 . With this we perform a +3 1 decomposition of the
action (22) resulting in:

  

∫ϕ
κ

ϕ ϕ ϕ ϕ ϕ

= − +

+ ˙ − − − ˙

+
⎡⎣ ⎤⎦ ⎡⎣

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

S h N N t xN h K K K R

N
h

N N

N N
N

, , ,
1

d d

1

2

1
2

1
, (A.1)

ij
i

ij
ij

ij
i j

i j
i

i

3 1
3 2 (3)

2

2

2 2

where N is the lapse function, Ni the shift vector, and

 = ˙ − −( )K
N

h N N
1

2
(A.2)ij ij i j j i

is the extrinsic curvature on Σ. The dot denotes taking the Lie derivatives with respect to the
vector field ∂ ∂t.

We consider perturbations around the Minkowski spacetime ( δ= = =N N h1, 0,i
ij ij)

that are first-order with respect to κ. That is, we write

δ κγ κ κ= + = + =h N n N n, 1 , , (A.3)ij ij ij
i i

and we keep in equation (A.1) only terms up to first order in κ. We obtain

∫

∫

∫

γ ϕ ϕ ϕ ϕ ϕ

κ γ γ γ

γ γ γ

κ γ ϕ ϕ ϕ γ ϕ ϕ γ ϕ ϕ ϕ

= ˙ − ∂ ∂ −

+ ˙ − ∂ ˙ − ∂ − ˙ − ∂

− ∂ + ∂ ∂ − ∂

+ − ˙ − ˙∂ + ∂ ∂ − + ∂ ∂ +

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎡⎣ ⎤⎦ ⎤⎦
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )( )
( )

( )

( )

S n n t x m

t x n n n

V n

t x n n n m

, , , d d
1
2

1
2

1
2

d d
1
4

2 2
1
4

2

( )

2
d d

1
2

2
1
2

. (A.4)

lin ij
i i

i

ij i j
ij i j

i
i

i j

i
i

ij
i j

i
i

3 2 2 2

3
( )

( ) 2

2 2

3 2 2 2

The indices in equation (A.4) are raised and lowered with the background 3-metric δij. We have
defined γ δ γ= ij

ij. The ‘potential’ γ∂V [ ( ) ]2 corresponds to the second order terms in the
expansion of h R

3
with respect to γ; it will not be given, as it is not needed in the paper.

The first term in equation (A.4) is the action for a free scalar field on Minkowski
spacetime, the second term describes the self-dynamics of the perturbations and the third term
describes the matter-gravity coupling.
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A.2. The Hamiltonian

To obtain the Hamiltonian we perform the Legendre transform of the Lagrangian density lin

associated to the action equation (A.4). The conjugate momenta Πij and π of γij and ϕ
respectively are





Π
γ

κ γ γδ δ

π
ϕ

ϕ κ γ ϕ ϕ

=
∂
∂˙

= ˙ − ˙ + ∂ + ∂ − ∂

=
∂
∂ ˙ = ˙ + − ˙ − ∂⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

( )n n n

n n

:
2

2 ,

:
1
2

. (A.5)

ij lin

ij
ij

ij i j j i
k

k ij

lin i
i

The conjugate momenta Π = ∂ ∂ṅn lin and Π = ∂ ∂ ˙→ n
n
i

lin i vanish identically. Thus, the
equations Π = 0n and Π =→ 0

n
i define primary constraints.

The Hamiltonian ∫ Π γ πϕ= ˙ + ˙ −H xd ( )ij
ij lin

3 is

p

∫
Π Π Π

κ
κ γ ϵ ϕ π

κ γϵ ϕ π γ ϕ ϕ γ ϕ ϕ ϕ

γ γ ϵ ϕ π Π κ π ϕ

=
−

+ ∂ +

+ + ∂ ∂ − ∂ ∂ +

+ ∂ − ∂ ∂ + + − ∂ +

⎡

⎣

⎢
⎢
⎢

⎛

⎝

⎜
⎜
⎜

⎡⎣ ⎤⎦
⎞

⎠

⎟
⎟
⎟

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎤⎦

( )

H x V

m

n n

d

1
2 ( ) ( , )

2
( , )

( , ) 2 ( , ) , (A.6)

ij
ij

ij
i j k

k

i j
ij

i j
ji i

3

2

2

2 2

2

where Π Π δ= ij
ij, ϵ ϕ π( , ) is the energy density of the scalar field, equation (24), and

p ϕ π π ϕ= ∂( , )i i is the momentum density.

A.3. Constraints, symmetries and gauge-fixing

Equation (A.6) reveals the presence of secondary, first-class constraints that arise from the usual
scalar and vector constraints of general relativity after linearization. The scalar constraint

 γ γ ϵ= ∂ − ∂ ∂ + = 0 (A.7)i j
ij2

generates the gauge transformations

δγ δΠ λδ λ δϕ λ
δ
δπ

δπ λ
δ
δπ

= = −∂ + ∂ ∂ = = −
H H

0, , , , (A.8)ij
ij ij i j2 0 0

where ∫ ϵ=H xd0
3 is the field Hamiltonian at Minkowski spacetime, and λ is a scalar function

on Σ. The vector constraint

p Π κ= − ∂ + =: 2 0 (A.9)i
j

ji i

generates the gauge transformations

δγ λ λ δΠ δϕ κλ ϕ δπ κ λ π= ∂ + ∂ = = ∂ = ∂ ( ), 0, , (A.10)ij i j j i
ij i

i i
i

where λi is a vector-valued function on Σ.
The gauge transformations equations (A.8–A.10) correspond to temporal and spatial

reparameterizations of the free fields [11]. The longitudinal part of the metric perturbation γL
ij

and the transverse trace ΠT of the gravitational conjugate momentum are pure gauge, reflecting
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the freedom of space and time reparameterization in the evolution of the matter degrees of
freedom.

Next, we impose a gauge condition that preserves the Lorentz frame introduced by the
foliation. We assume that γ = 0L

ij and Π = 0T . In this gauge, the scalar constraint becomes the
Poisson equation γ ϵ∂ = −2 , which we solve for γ to obtain

∫γ ϵ
π

= ′ ′
− ′

r r
r

r r
( ) d

( )
4

. (A.11)

We also solve the vector constraint, in order to determine the longitudinal part of Πij. We find

∫Π
π

ν ν= +− · ⎡⎣ ⎤⎦i
k

k kr k k( )
d

(2 )
e ( ) ( ) , (A.12)L ij i

i j j i
k r

3

3

where pν δ= − ˜κ ( )k k( ) ( )i ij
k k

k
j

2 2

i j

2
; p̃ k( )i denotes the Fourier transform of the momentum

density pi.
Thus the true physical degrees of freedom in the system correspond to the transverse

traceless components γ̄ij, Π̄ ij of the metric perturbations and conjugate momenta, and to the
matter variables ϕ and π. The Hamiltonian (A.6) then takes the form (23).

Appendix B. Alternative derivation of the Hamiltonian (25)

Here, we sketch the derivation of the Hamiltonian (25) using a prescription of Dirac
quantization, i.e., first quantizing and then solving the constraints. The derivation od the
Hamiltonian (25) in the main text followed the reduced state space quantization, i.e., first
solving the constraints and then quantizing. The two methods are equivalent in the non-
relativistic limit, thanks to the simple form of the gravitational constraints take in this regime.

We start from a classical relativistic field interacting with gravity in the Newtonian
approximation. The classical Hamiltonian for the scalar field is

∫ π ϕ ϕ= − + +⎡⎣ ⎤⎦( )H x V m
1
2

d 1 ( ) , (B.1)N
3 2 2 2 2

where VN is the Newtonian potential that satisfies Poissonʼs equation

 π μ=V Gr r( ) 4 ( ), (B.2)N
2

where μ is the mass density.
The Hamiltonian (B.1) leads to the Klein–Gordon equation

ϕ ϕ ϕ¨ −
˙

−
˙ − − + =( )( )

V

V
V m

1
1 0, (B.3)N

N
N

2 2 2

or, to leading order in VN

ϕ ϕ ϕ¨ − ˙ ˙ − − + =( )( )V V m1 2 0. (B.4)N N
2 2

We quantize the system of equations by promoting the classical fields ϕ πx x( ), ( ) to quantum
operators (13–14) in the Hamiltonian. Then we pass to the Newtonian/non-relativistic limit as
described by equations (17, 18). The Hamiltonian becomes
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∫ μˆ ≃ ˆ − σ̂H H Vr r rd ( ) ( ). (B.5)N0

Equation (B.2) implies that the potential VN is a function of the mass-density operator
μ ψ ψˆ = ˆ ˆσ

†mr r r( ) ( ) ( ), through the equation

∫ μˆ = − ′
ˆ ′
− ′

σV Gx r
r

r r
( ) d

( )
. (B.6)N

Thus V̂N is also an operator.
Substituting V̂N into the equation for the Hamiltonian, we obtain equation (25) modulo

normal ordering.
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