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Cloud properties and their vertical structure are important for meteorological 

studies due to their impact on both the Earth’s radiation budget and adiabatic heating. 

Examination of bulk cloud properties and vertical distribution simulated by the 

National Center for Environmental Prediction (NCEP) Global Forecast System 

(GFS) using various satellite products and ground-based measurements is a main 

objective of this study. Cloud variables evaluated include the occurrence and 

fraction of clouds in three layers, cloud optical depth, liquid water path, and ice 

water path. Cloud vertical structure data are retrieved from both active and passive 

sensors that are compared with GFS model results. In general, the GFS model 

captures the spatial patterns of hydrometeors reasonably well and follows the 

general features seen in satellite measurements, but large discrepancies exist in low-

level cloud properties. More boundary layer clouds over the interior continents were 

generated by the GFS model whereas satellite retrievals showed more low-level 

clouds over oceans. The GFS model simulations also missed low, shallow 



 

 

stratocumulus clouds along the west coast of North America, South America, and 

southwestern Africa and overestimated thick, large-scale clouds associated with the 

Asian summer monsoon. Although the frequencies of global multi-layer clouds from 

observations are similar to those from the model, latitudinal variations show large 

discrepancies in terms of structure and pattern. The modeled cloud optical depth for 

optically thin or intermediate clouds is less than that from passive sensor and is 

overestimated for optically thick clouds. The distributions of ice water path (IWP) 

agree better with satellite observations than do liquid water path (LWP) distributions.  

Mistreatment of such stratocumulus clouds in the GFS model leads to an 

overestimation of upward longwave flux, and an underestimation of upward 

shortwave flux at the top-of-atmosphere (TOA). With respect to input data bias in 

cloud fields, the GFS temperature is comparable with satellite retrievals and ground-

based measurements, but the GFS relative humidity shows a wet bias at 150 and 850 

hPa both from satellite retrievals and ground-based measurements. Discrepancies in 

cloud fields between observations and the model are attributed to differences in 

cloud water mixing ratio and mean relative humidity fields, which are major control 

variables determining the formation of clouds.  

To improve the simulation of cloud fields, application of other cloud 

parameterization scheme to the GFS model is performed. The new scheme generates 

a large quantity of marine stratocumulus clouds over the eastern tropical oceans as 

well as low cloud amounts in the other regions. High-level and middle-level clouds 

generated from the new scheme are more comparable with the satellite retrievals in 

terms of the spatial distributions and zonally averaged cloud fractions.  



 

 

An application of a simple linear relationship between de-correlation lengths 

(Lcf) and latitudes to the GFS model is conducted in order to see how successfully 

the equation explains the characteristics of cloud vertical structure on the changes in 

cloud fraction at different vertical levels. The method to solve for Lcf is a 

combination of Brent (1973) approach and a stochastic cloud generator using data 

collected from space-borne active sensors. Cloud fractions derived from a simple 

linear fit are compared to those computed from Lcf values based on observations. 

The pattern of zonal Lcf values from a simple linear fit is quite different from that of 

Lcf values based on observations. An offset pattern in subtropical regions is notable. 

The distribution of median Lcf values calculated from observed clouds do not show 

much dependence on latitude. This suggests that other physics, such as convection 

and cloud formation mechanism rather than simply latitude, should be considered 

when explaining how Lcf behaves. Such findings are expected to help improve the 

inherent problems of the GFS cloud parameterization scheme and to gain insight 

into the method used in determining cloud fraction. 
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Chapter 1: Introduction 
 
 
 
1.1. Background 

 
Cloud systems and their interactions with larger scale circulation, radiation, 

and aerosols are extremely important parts of weather and climate systems. Clouds 

are also one of the most crucial elements in the hydrology and energy cycles of the 

Earth, particularly via precipitation processes (Del Genio et al. 2005) and they play 

an important role in regulating the Earth’s radiative energy budget and temperature 

by reflecting incoming solar radiation and trapping outgoing longwave radiation in 

the atmosphere.  

However, in spite of their significance, accurate representation of clouds has 

not been achieved in predicting global weather and in estimating climate model 

capabilities over the past thirty years (Randall et al. 2007). Most significant sources 

of errors and uncertainties in weather forecast and climate models are come from the 

treatment of clouds due to the incomplete knowledge of the underlying physical 

processes (Stephens 2005) and considerable variations of cloud amounts in vertical 

and horizontal extent (Stowe et al. 1989; Rossow et al. 1989). In addition, the 

horizontal coverage of clouds and their vertical structure are closely linked together 

and these affect on atmospheric circulation and the water cycle (Stephens 1990). 

Representation of cloud processes is one of the central issues in improving global 

climate and regional weather forecasting models (Stephens 2005). 

Clouds are the most difficult parameter to describe their properties among all 

meteorological variables in any model environment. Firstly, they vary in both spatial 
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scales from micrometers to tens of thousands of kilometers and temporal scales from 

a few minutes to weeks. Secondly, they change in three different phases with 

complicated microphysical properties and have both radiative cooling and warming 

effects depending on their heights. Shortwave radiation has a cooling effect on 

surface by clouds which absorb a large quantity of incoming solar radiation. Clouds 

have both absorbing and emitting effects for longwave radiation and net effect is 

determined by environmental temperature and location (Klein and Hartmann 1993). 

Cloud vertical structure is thus important for the Earth’s radiative balance as well as 

for climate studies. Finally, they evolve and vanish rapidly and are strongly coupled 

with aerosol, water vapor, and atmospheric dynamics. 

Among the characteristics of clouds as mentioned above, description of 

subgrid-scale clouds is the most outstanding and urgent problem to solve in order to 

make remarkable progress in models for climate studies. Clouds in models are 

usually parameterized using large-scale atmospheric variables based on statistical or 

empirical relationships. A large number of different cloud parameterization schemes 

exist and a sensitivity test for them under different meteorological and 

environmental conditions has been an active research topic. However, although the 

sophistication of cloud parameterization schemes has increased the last three 

decades, there is still more work to be done (Randall et al. 2007). There are severe 

underestimates of low-level clouds over the eastern tropical oceans and 

overestimates of high clouds in several models (Ma et al. 1996). 

Most models predict condensed cloud water from different sources such as 

boundary layer processes, detrainment of convection, cloud advection, condensation 
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and from sinks like precipitation and evaporation. These parameterizations involve 

some assumptions strongly depending on both the state of the atmosphere and large-

scale atmospheric processes. Therefore, the most significant source of errors and 

uncertainties in simulating clouds in the various models stems from such cloud 

parameterizations (Houghton et al. 2001). 

Evaluation of cloud parameters simulated by numerical climate and weather 

forecasting models is essential in order to help gain further insights into any 

fundamental cloud processes to be resolved as well as an enhanced understanding of 

clouds and their effects on the climate system. This requires a good knowledge of 

cloud variables such as coverage, thickness, microphysics, which can be observed 

from both space and on the ground. Satellites can provide the only means of 

continuous observation of cloud properties on a global scale. In addition, cloud 

distributions and their spatial and temporal variations have been gained with long-

term meteorological satellite programs. 

  

 

 
1.2. Problems in the detection of clouds 

 
The International Satellite Cloud Climatology Project (ISCCP) started in 

operating in 1983 (Rossow and Schiffer 1999) has significantly contributed to the 

progress in satellite remote sensing. The ISCCP cloud properties are derived from 

measurements made by several sensors such as the Advanced Very High Resolution 

Radiometer (AVHRR) onboard the National Oceanic and Atmospheric 
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Administration (NOAA) polar orbiting satellites, the Geostationary Operational 

Environmental Satellites (GOES), the Japanese Geostationary Meteorological 

Satellites (GMS), and the European Meteorological Satellites (METEOSAT). These 

passive satellite sensors have various channels from visible to infrared, which can be 

used to derive bulk cloud quantities. 

The ISCCP data has been widely used in validating clouds simulated by 

general circulation models (GCMs) (Webb et al. 2001; Zhang et al. 2005). The 

evaluations reveal that most GCMs tend to produce less low-level clouds and much 

less mid-level clouds than the ISCCP product. However, one must consider both 

their reliabilities as a reference and their respective limitations when comparing 

model results with satellite retrievals. Total cloud fraction of the ISCCP product is 

reliable for semi-transparent clouds and multi-layered clouds, but cloud fractions at 

different vertical levels are not reliable (Chang and Li 2005a, 2005b). The 

conventional bi-spectral algorithm used in the ISCCP cloud product tends to identify 

multi-layered clouds as a single mid-level cloud which results in an overestimation 

of mid-level clouds and an underestimation of low-level clouds. This result can 

explain partially why most GCMs generate much less mid-level clouds than those of 

the ISCCP cloud product.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) has 36 

onboard calibrated channels ranging between 0.415 µm and 14.24 µm (Barnes et al. 

1998) and it allows a more reliable detection of clouds and retrieval of cloud 

properties (King et al. 2003). The MODIS cloud top properties retrieval is based on 

the combination of a CO2-slicing technique and an 11-mm brightness temperature 
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technique (Platnick et al. 2003). The CO2-slicing technique is known for its 

effectiveness in determining cloud-top pressures less than 700 hPa (e.g., p < 700 hPa) 

and the 11-mm brightness temperature technique is used for detections of low-level 

clouds. These techniques allow detections of both high and low clouds more 

accurately. However, since the MODIS standard algorithm assumes a single-layer 

cloud as does the ISCCP algorithm, large uncertainties can exist in detecting multi-

layered clouds, especially for a combination of thin cirrus over thick water clouds 

(Warren et al.  

1985). The MODIS standard cloud product only gives the top pressure of the highest 

clouds, but no information about the overlapped low clouds. As a result, passive 

sensors identify cirrus-over-water clouds as deep convective clouds in most cases 

(Chang and Li 2005a, 2005b). A poor knowledge about multi-layered clouds in 

observations has some limitations in validating the global climatology of high, 

middle, and low-level clouds generated by GCMs. Furthermore, mistreatment of 

such overlapped clouds can lead to significant errors in estimating heating rates and 

longwave radiation because deep convective clouds and overlapped clouds have 

different effects on longwave radiation.  

Chang and Li (2005a) developed an algorithm to overcome this major 

limitation by taking advantage of the multiple channels in identifying multi-layered 

clouds and retrieving the optical properties of individual cloud layers. Application of 

this algorithm showed a new global cloud distribution by adding 10 – 20 % more 

low clouds below high cirrus clouds in the tropical and mid-latitude storm track 

regions when compared to the other two operational products (i.e., the ISCCP 
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product and the MODIS standard product) (Chang and Li 2005b). 

The A-Train satellite constellation (Stephens et al. 2002) added active remote 

sensing instruments onboard the CloudSat and the Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observations (CALIPSO), which are new satellite platforms 

designed to determine cloud vertical structure and to measure cloud properties. 

These instruments can probe the profiles of clouds in a more direct manner than 

passive sensors. The CloudSat and CALIPSO satellites fly in constellation with the 

passive Aqua platform. Measurements from active and passive satellite instruments 

create a synergy effect for monitoring clouds in a three-dimensional fashion on a 

global scale. An unprecedented accuracy of thin cirrus clouds over tropical regions 

is achieved (Haladay and Stephens 2009) and a better representation of cloud 

diagnostics is provided (Mace et al. 2009; Chepfer et al. 2010). 

The CloudSat and CALIPSO data are used to validate cloud type, height, and 

amount fields derived from other passive sensors such as the Atmospheric Infrared 

Sounder (AIRS) (Kahn et al. 2008), the MODIS (Weisz et al. 2007; Holz et al. 2008), 

and the Multiangle Imaging SpectroRadiometer (MISR), the Ozone Monitoring 

Instrument (OMI) (Wu et al. 2009). Holz et al. (2008) compared the Cloud-Aerosol 

Lidar with Orthogonal Polarization (CALIOP) and the MODIS data for cloud 

detection and cloud-top height measurements. They found that thin cirrus cloud-top 

heights retrieved from CALIOP are higher in altitude than those retrieved from the 

MODIS by 2.6 ± 3.9 km. The largest discrepancies occur in the equatorial region for 

optically thin cirrus clouds with differences greater than 10 km. In addition, the 

agreement between the MODIS 1 km cloud mask and the CALIOP 1 km cloud mask 
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is 87 % and 85 % for cloudy and clear sky conditions, respectively.  

The importance of marine stratocumulus clouds in the subtropical and the 

mid-latitude regions is well known because they have a comparable impact on 

global climate (Klein and Hartmann, 1993). However, the limited capabilities for 

detecting and measuring such clouds based on passive satellite sensors make it 

difficult to assess the frequency, amount, and characteristics of low clouds on a 

global scale. A more detailed characteristic of low clouds can be determined using 

CloudSat data (Marchand et al. 2008) and microphysical structure changes and 

evolutions of stratocumulus clouds affected by drizzle are examined globally using 

CloudSat and CALIPSO data (Leon et al. 2008). 

 

 

 
1.3. Problems in the represention of clouds 

 
Climate changes simulated by GCMs substantially differ among different 

GCMs (Cess et al. 1990). Such differences among models in climate feedback 

processes mostly come from inadequate representations of cloud fields (Bony et al. 

2006). The general spatial patterns of clouds are well produced but the magnitudes 

and locations of clouds tend to differ more from observations. Although 

considerable efforts have been made, cloud microphysical and optical properties on 

a global scale still vary widely from model to model (Randall et al. 2003; Williams 

and Tselioudis 2007). Most numerical weather forecasting models and many GCMs 

have large variations in representing different cloud variables which are important 
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for both radiative transfer calculations and prediction of precipitation and they also 

do not simulate cloud vertical structure very well on a global scale (Bodas-Salcedo 

et al. 2008).  

Clouds generated by GCMs and their seasonal variations have long been 

compared with passive satellite retrievals. Weare et al. (1996) compared 24 model 

simulations against the ISCCP data and found that global means of modeled high 

clouds are about two to five times greater than satellite retrievals, whereas low-level 

clouds were underestimated drastically. The fractions of total, low-, mid- and high 

clouds from 10 GCMs are compared with 2 satellite products (the ISCCP and the 

Clouds and Earth’s Radiant Energy System (CERES) data) (Zhang et al. 2005). 

They indicated that while the total cloud amounts agree well, large discrepancies 

exist in cloud vertical structure among the models, and between two satellite 

products (see Figure 1.1). Furthermore, for cloud detections, the majority of models 

simulated more than twice as many optically thick clouds than seen from satellite 

observations and underestimated optically thin clouds.  
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Figure 1.1 Comparisons of cloud fraction for (a) high top clouds, (b) middle top 
clouds, and (c) low top clouds during winter season (DJF) from both satellite 
measurements and 10 models (from Zhang et al. 2005). 
 
 
 

Other studies primarily focused on specific regions. The mid-latitude cloud 

fields produced by the European Center for Medium-range Forecasting (ECMWF) 

model are evaluated against the ISCCP cloud product and the model overestimated 

cloud optical depth, but it underestimated cloud fraction (Tselioudis and Jakob 2002). 

Tropical cloud properties and responses to climate perturbations in the three 

different atmospheric GCMs are evaluated against the ISCCP cloud product in terms 

of cloud fractions and cloud-top height (Wyant et al. 2006). This study highlighted 

that there are still large uncertainties in both high and low cloud feedbacks simulated 

by models.  

In addition to GCMs, cloud properties simulated by regional climate models 

such as the Weather Research and Forecasting (WRF) model have also been 
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examined with passive satellite retrievals. Otkin and Greenwald (2008) evaluated the 

WRF model clouds using the MODIS product and found that the model was unable 

to properly simulate stratocumulus and cumulus clouds.  

 

 

 
1.4. Objectives and Outline of the thesis 

 
Diagnosis of the Global Forecast System (GFS) model (2007, 2008, and 

2011 versions) cloud properties and cloud parameterization scheme is a main focus 

of this dissertation. To help understand discrepancies and improve the model cloud 

performance, this study is divided into the three aspects with regard to cloud biases. 

The first part of a comprehensive study is to evaluate cloud properties such as cloud 

fraction (CF), cloud optical depth (COD), liquid water path (LWP), ice water path 

(IWP), and cloud effective radius (Re) for high, middle and low levels in the 

atmosphere by comparing with different types of satellite retrievals. A second part 

involves the impact of clouds on global net radiation and investigating the causes of 

the discrepancies in cloud fields by attempting to attribute them to both input data 

and to cloud parameterization schemes used. Finally, cloud overlapping issue is 

included to gain a better understanding of cloud vertical structure. A maximum-

random overlap assumption made in the GFS model is diagnosed and a test of 

exponential random overlap assumption is performed. Cloud vertical structure on a 

global scale and cloud sub-grid variability are still arguably the most outstanding 

problems to be resolved in order to figure out how much cloud overlapping 
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contribute to the differences in cloud variables. Therefore, this study is expanded to 

investigate cloud vertical distribution and internal structure of cloud layers as well as 

cloud horizontal distribution. 

This study makes extensive use of global satellite products from the A-Train 

sensors and local ground-based measurements from the Department of Energy’s 

Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) site 

in Oklahoma. The satellite products provide global information pertaining to the 

cloud distributions and reveal any regional biases associated with weather regimes. 

The ground-based measurements can be used to help understand any fundamental 

physics describing various key processes. The following cloud products are 

employed; data from the MODIS, AIRS, CloudSat, CALIPSO, the merged 

CloudSat-CALIPSO products, and the ground-based measurements operated at mid-

latitude.  

It is obvious that satellite remote sensing is crucial to help validate and 

reduce any systematic errors in generating clouds in weather forecasting and climate 

models. However, a use of ground-based measurements is also necessary to 

investigate cloud properties which cannot be resolved solely from satellite retrievals. 

Below are specific tasks in this study: 

1) Passive remote sensing data such as MODIS and AIRS measurements are 

used to evaluate cloud properties simulated by the GFS model on a global scale. The 

significantly advanced MODIS sensor provides a wealth of unprecedented 

information for monitoring clouds at high spatial resolution. The MODIS cloud 

products (MOD06/MYD06) contain cloud-top pressure, cloud-top temperature, 
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cloud phase, cloud optical depth, and effective particle radius at 1 km and 5 km. The 

sounding data having high spectral resolution from AIRS sensor provide important 

information about weather and climate processes. The AIRS sensor is designed to 

measure atmospheric water vapor and temperature profiles on a global scale. It 

accompanies two multichannel microwave instruments, the Advanced Microwave 

Sounding Unit (AMSU-A) and the Humidity Sounder for Brazil (HSB). The 

temperature and moisture profiles retrieved from a combination of infrared and 

microwave measurements show a certain degree of accuracy. 

2) Active remote sensing data from CloudSat and CALIPSO are used to 

diagnose the frequent occurrence of overlapped clouds and cloud overlapping 

assumptions. Measurements from CloudSat and CALIPSO provide more reliable 

and comprehensive information pertaining to the vertical structure of clouds. The 

lidar is sensitive to very thin cirrus clouds, while the radar is able to detect lower, 

more optically opaque cirrus and can penetrate through much of deep convective 

clouds. The combined lidar-radar product can detect the majority of multi-layered 

clouds thus they are used to examine the occurrence of cloud layers as simulated by 

the GFS model. The cloud amount at different cloud categories (i.e., high, middle, 

and low) in most models usually depends on how layers of clouds are overlapped. 

The GFS model uses a maximum-random overlap assumption for adjacent and non-

adjacent layers. Results from CloudSat/CALIPSO active sensors are utilized to 

identify the most suitable cloud overlapping scheme for the GFS model.  

3)  The Department of Energy’s ARM Program has produced continuous 

and high quality field measurements in order to provide a long-term dataset for 
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evaluating and improving the parameterizations used in weather forecasting models. 

Such more reliable and more extensive observational dataset will help understand 

various atmospheric physical processes and find out the causes for any GFS model 

problems. Furthermore, this research investigates the most suitable set of 

meteorological conditions leading to cloud formation in the GFS model through 

comparisons with observational data.  

The PhD dissertation is organized as follows. Chapter 2 examines the 

distributions of cloud properties generated by the GFS model by comparing with 

satellite retrievals and includes discussions regarding the soundness of the GFS 

model cloud representations. Chapter 3 assesses the atmospheric meteorological 

variables used in the GFS cloud parameterization against both satellite retrievals and 

ground-based measurements. Also, suggestions are discussed concerning where the 

improvements can be made in the cloud parameterization scheme. Description of 

other cloud parameterization schemes and the results of the application to the GFS 

model are contained in Chapter 4. An evaluation of the cloud overlapping 

assumption used in the GFS model and a test of exponential random overlap 

assumption are performed in Chapter 5. Finally, Chapter 6 presents the main 

findings and a summary of this work and discusses some additional studies to 

perform for the usefulness of the GFS model. 
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Chapter 2: Diagnosis of the GFS Cloud Properties Using Multiple 
Satellite Products 

 

 

2.1. Introduction 

Climate sensitivity simulated by general circulation models (GCMs) differs 

considerably among different GCMs (Cess et al. 1990) and it strongly depends on 

radiative feedbacks associated with clouds (Bony et al. 2004). Weare et al. (1996) 

compared 24 model simulations of cloud amounts against the International Satellite 

Cloud Climatology Project (ISCCP) data. They found that global means of modeled 

high cloud amounts are about two to five times greater than that from satellite 

retrievals, whereas low-level cloud amounts were underestimated drastically. Zhang 

et al. (2005) compared the fraction of total, low-, mid- and high clouds from 10 

GCMs and 2 satellite products (ISCCP and the Clouds and Earth’s Radiant Energy 

System (CERES)). While the total cloud amounts agree well, large discrepancies 

exist in cloud vertical structure among the models, and between satellite products. 

For clouds, knowledge about the vertical structure of cloud layers is 

important because 42 % of all cloud observations are classified as multi-layered 

clouds from radiosonde data (Poore et al. 1995; Wang et al. 2000). Estimation of 

cloud layers from radiosonde is sound but also subject to numerous errors: detection 

algorithm, limited number of stations and, more seriously, the vast majority of the 

stations only report values at standard and representative levels. Using high vertical 

resolution (~50 m) radiosonde observations, a recent study by Zhang et al. (2011) 

showed that radiosonde-based estimates of cloud boundaries match very well with 
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ground-based estimates retrieved by cloud radar and lidar (Clothiaux et al. 2000). 

Unfortunately, only a handful of stations can provide such data. 

For GCM evaluations, space-borne passive sensors have been employed to 

detect global clouds by virtue of their global coverage and long records. However, 

differentiating clouds at different layers has been a challenging task for passive 

remote sensing such as from the Advanced Very High Resolution Radiometer 

(AVHRR) (Baum et al. 1995; Ou et al. 1996) and the High resolution Infrared 

Radiation Sounder (HIRS) (Jin et al. 1996). Due to the inherent limitation in 

information generated from only a few spectral bands, there usually exist large 

uncertainties in detecting multi-layered clouds. This problem is lessened with the 

advent of instruments measuring radiances from a large number of spectral channels, 

as demonstrated using the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Airborne Simulator (Baum and Spinhirne 2000).  

Taking advantage of MODIS channels, Chang and Li (2005a) developed an 

algorithm that can identify single and cirrus-over-water dual-layer clouds. Applying 

their algorithm to global MODIS data, they obtained global multi-layer cloud 

distributions (Chang and Li 2005b). Thanks to the addition of a second layer of low 

clouds, their estimate of total low clouds over the globe is larger than all previous 

estimates based on passive sensors, but matches closely with space-borne lidar-

based retrievals (see below). The ability of lidar to see through thin clouds aloft is 

reproduced by the algorithm of Chang and Li (2005a) using a combination of 

passive channels.  

Active remote sensing can provide a better alternative to examine cloud 
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vertical structure and their optical properties, as demonstrated by the CloudSat and 

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

sensors which are a part of the A-Train satellite constellation. The 94-GHz radar 

onboard the CloudSat can penetrate through most cloud layers (Stephens et al. 2002). 

From CloudSat-CALIPSO merged data, Mace et al. (2009) obtained the first global 

view of multi-layer clouds from active sensors. An unprecedented accuracy in 

estimating the amount of thin cirrus clouds over tropical regions was also achieved 

(Haladay and Stephens 2009). By simulating space-borne CloudSat radar signals, 

Bodas-Salcedo et al. (2008) evaluated clouds simulated by the U.K. Meteorological 

Office’s global forecasting model. 

Using datasets capable of detecting multi-layer clouds and their optical 

properties, we can evaluate cloud properties forecasted by the National Centers for 

Environmental Prediction (NCEP) Global Forecast System (GFS) model. Currently, 

many GCMs and weather forecasting models do not simulate cloud vertical structure 

very well on a global scale (Bodas-Salcedo et al. 2008). The general spatial patterns 

of clouds are well-produced but the magnitudes and locations tend to differ more 

from observations. To improve the prediction accuracy of weather forecast models, 

the cloud vertical distribution generated by models should be properly estimated. 

In this Chapter, we examine the prediction ability of the GFS model in 

generating clouds at different levels so that the representation of cloud processes 

might be objectively improved. Furthermore, the comparisons provide a general 

guidance for improving the capabilities of the GFS model in producing clouds by 

revealing model deficiencies in terms of both model output (clouds) and input 
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(temperature, humidity, etc.). This Chapter is focused on the comparison of clouds 

from the GFS model and multiple satellite observations, while Chapter 3 

investigates the causes of the discrepancies in cloud fields. 

Section 2.2 describes the various datasets used in this study and the 

methodology and Section 2.3 introduces a brief description of the GFS model. The 

geographical distributions of different cloud parameters, analysis of the results, and 

comparisons of model output with several satellite retrievals are presented in Section 

2.4. A summary is given in Section 2.5. 

 

 

2.2. Satellite retrievals 

2.2.1. MODIS data 

Data collected from the MODIS onboard the Terra (overpass time, 10:30 

local time) satellite platform is used to extract cloud properties. The MODIS 

instrument has 36 onboard calibrated channels/bands (0.415-14.24 µm) (Barnes et al. 

1998). Two sets of MODIS-based cloud products are employed here: the official 

operational product generated by NASA which is based on the algorithm developed 

originally by Platnick et al. (2003) with some subsequent revisions and a newly 

generated research product based upon the algorithm of Chang and Li (2005b). The 

two products are hereafter referred to as MODIS-EOS and MODIS-CL, respectively. 

Both datasets cover the period of January and July 2007. The MODIS provides daily 

data covering the globe, data used in this study are every day of a particular month. 

The MODIS Level 2B cloud product, MOD06 (version Collection 5.1), used 
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here includes the following variables at two spatial resolutions (1 km and 5 km): 

cloud-top pressure, cloud-top temperature, cloud phase, cloud water path, cloud 

fraction, effective particle radius, and cloud optical depth (COD). Among these 

variables, cloud water path, effective particle radius, and COD are derived at a 1-km 

resolution and averaged over 1ºx1º latitude-longitude grid boxes; monthly means are 

calculated for each grid box. All cloud variables based on satellite retrievals, except 

for COD, are classified as high, middle, or low according to cloud-top pressure. A 

mid-level cloud is identified when the cloud-top pressure falls between 350 and 642 

hPa which is the criterion used in identifying such clouds in the GFS model. For 

each cloud category, cloud fraction is calculated as the number of cloudy pixels in a 

grid box divided by the total number of pixels in that grid box. Like most passive 

cloud retrieval algorithms, the MODIS algorithm was based on the assumption of 

single-layer clouds in the retrieval of cloud properties. As such, the retrieved cloud 

top represents the top of the highest cloud regardless of the presence of any lower 

cloud layers. 

The algorithm of Chang and Li (2005a) (hereafter the C-L algorithm) 

alleviates the problem because it can detect and retrieve cloud parameters for single-

layer clouds and for thin-over-thick dual-layer clouds. Due to the frequent 

occurrence of such overlapped clouds, the C-L algorithm generates substantially 

more low clouds than the MODIS algorithm. The total amount of low clouds over 

oceans and over land retrieved from the C-L algorithm (MODIS product) is 34% 

(22%) and 28% (16%), respectively (Chang and Li 2005b). In addition to detecting 

more low clouds, the COD of the topmost layer and lower cloud in multi-layer 
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clouds are differentiated using the C-L algorithm. 

 

 

 

2.2.2. CloudSat-CALIPSO merged data 

The CloudSat and CALIPSO satellites were launched in April 2006, carrying 

a 94-GHz cloud profiling radar (CPR) (Im et al. 2006) and a two-wavelength 

polarization sensitive lidar (Winker et al. 2007). Three sensors, including the 

MODIS, are members of the A-Train afternoon constellation (Stephens et al. 2002), 

flying in tight orbital formation so that all instruments probe the atmosphere within a 

few seconds of each other, rendering synergistic, simultaneous and independent 

information pertaining to cloud vertical structure. The lidar is capable of resolving 

very thin cirrus layers below 15 km to thicker cirrus clouds between 12 and 13 km 

while the radar is able to detect lower, more optically opaque cirrus clouds and can 

penetrate through much of deep convective clouds. Merged lidar-radar data offers 

the best compromise between the strengths and weaknesses of the two instrument 

retrieval methods (Mace et al. 2009). This combined dataset is called CloudSat-

CALIPSO merged data (hereafter referred to as C-C satellites) which provides more 

detailed and more reliable cloud vertical structure information.  

This study uses the Level 2B Geoprof-lidar product (CloudSat CPR + 

CALIPSO Lidar Cloud mask) and the Level 2B TAU (cloud optical depth from 

CloudSat) product for every day in January and July 2007. Up to a maximum of five 

different cloud layers can be output from C-C satellites and each layer has its 
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individual cloud-top altitude and cloud-base altitude. These data are averaged over 

2º latitudinal bands for plotting purpose from which zonally-averaged cloud layers 

are computed. 

While the two active sensors provide the most direct and accurate 

measurement of cloud vertical structure, their horizontal coverage is much smaller 

than the wide swath (~2700 km) of the MODIS imaging sensor which provides 

nearly global wall-to-wall coverage, except for data gaps at low latitudes. Both 

CloudSat and CALIPSO view the Earth in the nadir direction with footprints of 1.4 

km and 1.1 km, respectively. It is therefore necessary to use products from both 

passive and active sensors to complement each other’s weaknesses/strengths. 

Because of the low spatial sampling rate, monthly mean values were computed for 

3ox6o lat/long grids for mapping in order to reduce the number of empty grids, as 

done in other studies using products of C-C satellites (Sassen and Wang 2008; Mace 

et al. 2009). We note that as a result of this averaging, C-C plotting results appear 

more smoothly than those plots generated from other products.  

 

 

2.3. GFS model description 

The GFS model is a global weather prediction model run by NOAA. The 

GFS model has 64 vertical sigma-pressure hybrid layers and a T382 (about 35 km) 

horizontal resolution. GFS model grid 003 data are used in this study with a 1ºx1º 

latitude-longitude resolution. Output fields for a one day forecast generated at 3-

hour intervals (i.e. at 03, 06, 09, 12, 15, 18, 21, 24 Z), starting from the control time 
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of 00Z, are used. In other words, the forecasting data used here are from 00Z to 24Z 

for each day. Cloud properties output in each grid box are used for comparison with 

satellite retrievals over the domain covering 60ºS-60ºN during January and July 

2007. At high latitudes, the presence of bright snow and/or ice-covered surfaces 

leads to low accuracy in retrievals from passive sensors (Li and Leighton 1991), so 

data from these regions are not considered in this study. The GFS model fields were 

interpolated to satellite overpass times in order to match satellite retrievals. The GFS 

model outputs include cloud cover, cloud-top pressure and height, and cloud-base 

pressure and height at high, middle and low levels of the atmosphere. High, middle, 

and low categories are defined with respect to cloud layer top pressure: less than 350 

hPa, between 350 hPa and 642 hPa, and greater than 642 hPa, respectively.  

 

 

2.3.1. GFS Cloud Fraction  

The cloud fraction in a given grid box of the GFS model is computed using 

the parameterization scheme of Xu and Randall (1996):  

 

C = max[R0.25(1 - exp{- min
0.25

2000 ( )
min[max([(1 ) *] ,0.0001),1.0]

c cq q
R q
´ -

- ´
}), 0.0],   (2.1) 

 

where R is the relative humidity, q* is the saturation specific humidity, qc is the 

cloud water mixing ratio, and qcmin is a minimum threshold value of qc. Depending 

on the ambient temperature, the saturation specific humidity is calculated with 
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respect to the liquid or ice phase. Clouds in the GFS model are assumed to be 

maximum-randomly overlapped (http://www.emc.ncep.noaa.gov/officenotes). 

 

 

2.3.2. GFS Cloud Optical Depth (COD), Effective Radius (Re), Liquid and Ice 

Water Path (LWP and IWP) 

The GFS model posts parameters for 21 vertically different layers. From the 

surface (1000 hPa) to the 900-hPa level, the vertical resolution is 25 hPa; less than 

900 hPa, there are 16 levels at a 50-hPa resolution. Cloud phase is determined by the 

mean temperature (Tc) of a cloud layer which is defined as the average of 

temperatures at the top and bottom of a cloud layer. If Tc is less than 258.16 K, the 

cloud layer is an ice cloud; otherwise, it is a water cloud. 

Two methods have been used to parameterize cloud properties in the GFS 

model. The first method makes use of a diagnostic cloud scheme, in which cloud 

properties are determined based on model-predicted temperature, pressure, and 

boundary layer circulation from Harshvardhan et al. (1989). The diagnostic scheme 

is now replaced with a prognostic scheme that uses cloud water condensate 

information instead (http://www.nws.noaa.gov/om/tpb/484.htm). 

For water clouds (i.e., Rew), a fixed value of 10 µm for Re is assumed over 

oceans and Re values over land depend on temperature. Over land, Re is defined as: 

 Rew = -0.25 x Tc + 73.29.                 (2.2) 

Its value ranges from 5 µm to a maximum of 8.7 µm for Tc of 258.16 K, 

below which cloud is treated as an ice cloud. 

http://www.emc.ncep.noaa.gov/officenotes
http://www.nws.noaa.gov/om/tpb/484.htm


 

２３ 

 

Liquid Water Path (LWP) is calculated using the following equation: 

    LWP = q x ρ x Δz,               (2.3) 

where q is the cloud water mixing ratio in units of kg/kg, ρ is the density in kg/m3 

(assumed to be constant), and Δz is the geopotential height thickness in units of m.  

LWP and Re information is used to calculate total column COD in the GFS 

model (Chou et al. 1998): 

τw = LWP(a1 + (a2 / Rew)),                 (2.4) 

where LWP is given in units of g/m2, and the coefficients a1 and a2 are given in Chou 

et al. (1998).  

For ice clouds, Re is calculated as empirical functions of ice water 

concentration and environmental temperature (Heymsfield and McFarquhar 1996): 

       Rei = (1250 / 9.917) IWC0.109             (Tc < 223.16 K),              

  Rei = (1250 / 9.337) IWC0.080   (223.16 K < Tc < 233.16 K),  (2.5) 

       Rei = (1250 / 9.208) IWC0.055   (233.16 K < Tc < 243.16 K),               

       Rei = (1250 / 9.387) IWC0.031   (243.16 K < Tc < 258.16 K),    

where IWC is calculated as: 

IWC = 1.371 x 10^(-14.0 + 0.04962 x Tc).            (2.6) 

Ice Water Path (IWP) calculations are made in a similar manner. The COD 

for an ice cloud, τi, is computed as: 

τi = IWP(a3 + (a4 / Rei)),                    (2.7) 

where IWP is the cloud ice water path in units of g/m2, and the coefficients a3 and a4 

are given in the GFS documentation. A total column COD in a particular grid box is 

obtained by summing water and ice CODs.  
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2.4. Results 

2.4.1. Comparison of the two MODIS cloud products 

Figure 2.1 shows comparisons of the joint histograms of cloud-top pressure 

and COD from MODIS-EOS, MODIS-CL, and the GFS model. The GFS results 

only show deep convective clouds at high levels and mostly underestimate optically 

thin low clouds. Also, a distinct bimodal distribution of cloud-top pressure as 

presented in two satellite products is not clearly seen in the model results. The 

MODIS-CL results reveal frequent occurrences of two dominant cloud types: 

optically thin cirrus clouds at high altitudes and optically thicker boundary layer 

clouds at lower levels. A general similar pattern is seen in the MODIS-EOS product, 

but more optically thick high clouds and less optically thick low clouds are evident. 

MODIS-CL retrievals have more optically thin high clouds and less optically thick 

high clouds when compared to MODIS-EOS products (see Fig 2.1) because the 

former can differentiate overlapped thin cirrus over thick water clouds. However, the 

total amount of high clouds in the MODIS-CL retrievals is the same as that retrieved 

from the MODIS-EOS algorithm (Chang and Li 2005b). The presence of overlapped 

cirrus over low clouds is the major cause for the differences which is further rooted 

to the assumption of single-layer cloud in the MODIS retrieval, leading to the 

general underestimation of low cloud amounts. In other words, many low clouds are 

missed, because they are beneath the upper cirrus clouds that were not separated 

from single-layer clouds. Cirrus-over-water dual-layer clouds are  
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Figure 2.1. Joint histograms of cloud top pressure and cloud optical depth derived 
from near-global retrievals by applying the C-L algorithm (top left panel), the 
MODIS-EOS products (top right panel), and the GFS model (bottom center panel) 
in July 2007. 
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Table 2.1. Comparison of cloud layer statistics from GLAS (Wylie et al. 2007) and 
the C-L algorithm (Chang and Li 2005b). 

 From GLAS From MODIS-CL 

Global Cloud Cover 70 % 71 % 

Single Layer Cloud 43 % 44 % 

Multiple Layer Cloud 27 % 27 % 

 

 

identified as deep convective clouds for most cases based on passive sensors. 

Mistreatment of such overlapped clouds can lead to significant errors in estimating 

heating rates and longwave radiation because deep convective clouds and 

overlapped clouds have different effects on longwave radiation.   

Thanks to the identification of both single and dual-layer clouds through 

exploitation of more MODIS channels, the C-L algorithm can identify such 

overlapped clouds except for those with uppermost cloud layers that are too thick 

(COD greater than ~ 4). It is worth noting that the overall cloud-layer statistics of 

the MODIS-CL agree well with those from a previous study using space-borne lidar 

measurements from the Geoscience Laser Altimeter System (GLAS) (Wylie et al. 

2007). Coincidently, the frequency of multilayer clouds from both instruments is 27 % 

(see Table 2.1). 
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2.4.2. Multi-layer Cloud Occurrence Frequencies 

Clouds in different vertical layers dictate the adiabatic heating rates and 

radiation balance of the atmospheric column. Mistreatment of cloud layers as single-

layer cloud can lead to substantial errors in cloud amounts in different model layers, 

which could feedback to erroneous dynamics. Table 2.2 summarizes the global 

frequencies of occurrence of single-layer and multi-layer clouds from C-C satellites, 

MODIS-CL, and GFS model results. The frequency of single-layer, dual-layer, and 

multi-layer (three or more layers) clouds from C-C satellites in January (July) is 

67.50 % (67.89 %), 26.58 % (25.98 %), and 5.92 % (6.13 %), respectively. The 

frequency of single-layer and dual-layer clouds from the MODIS-CL for the two 

months is 84.41 % (82.86 %) and 15.59 % (17.14 %), respectively. Frequencies of 

single-layer, dual-layer and multi-layer clouds from the GFS model for the two 

months are 68.94 % (67.11 %), 27.12 % (28.40 %), and 3.94 % (4.49 %), 

respectively. Overall, the GFS model produced sound frequencies of single-layer 

and multi-layer clouds. The MODIS-CL results are consistent with those in January 

and July of 2001 obtained earlier by Chang and Li (2005b) for which the frequencies 

of cirrus overlapping lower clouds over ocean and land is 25 % (23 %) and 32 % 

(23 %) in January (July), respectively (Chang and Li 2005b). The differences in the 

frequencies of occurrence of dual-layer clouds from C-C satellites and the MODIS-

CL are attributed chiefly to the retrieval of the topmost cloud layer. Cirrus clouds 

with CODs greater than 1.5 are classified as a single layer of cloud in the C-L 

algorithm. This explains why the occurrence frequencies of single-layer clouds from 

the MODIS-CL are greater than those from the C-C satellites. The GFS model 
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results are comparable with C-C satellites results as far as the identification of multi-

layer cloud scenes is concerned. 

Figure 2.2 shows the latitudinal variations of the occurrence frequencies of 

zonal-mean single-layer and dual-layer cloud configurations obtained from C-C 

satellites and GFS model output. The patterns for single-layer cloud from 

observation and modeling are similar except for slight differences in their 

magnitudes. The C-C satellites show that dual-layer clouds occur most frequently 

over the inter-tropical convergence zone (ITCZ) and relatively less frequently at 

middle or high latitudes, relative to the GFS model results. Overall, from January 

(left plot in Figure 2.2) to July (right plot in Figure 2.2), the patterns shift with the 

movement of the Sun. The frequencies of occurrence of multi-layer clouds from the 

C-C satellites have an oscillation that peaks around 0º ~ 10ºN with a value near 40 % 

and reaches a minimum of 15 % at around 20ºN. The GFS model results show a 

maximum value of 35 % at around 45ºS and a minimum value of 20 % at about 10ºS 

and 20ºN in January. 

 Figure 2.3 presents the latitudinal variations of the occurrence frequency of 

cloud layer thickness from the C-C satellites and the GFS model. Both exhibit 

maxima in cloud layer thickness associated with deep convective clouds in the 

Tropics and mid-latitude continental clouds while minima occur over subtropical 

subsidence regions related to marine stratus and cumulus clouds. The GFS model 

generally overestimates cloud layer thickness, particularly for deep convective 

clouds in the tropical regions and mid-latitude storm track regions. The GFS model 

also tends to miss those very thin clouds (cloud layer thicknesses less than 2 km) 
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that are captured in the C-C satellites. Some possible causes for the different 

distributions of cloud layers may be either systematic biases in the prognostic cloud 

scheme used in the GFS model or incorrect input variables. Another possible cause 

of these discrepancies could be uncertainties in cloud overlapping. Investigation of 

potential model errors is a subject of Chapter 3.  

Table 2.2. Global occurrence frequencies of single-layer clouds, dual-layer clouds, 
and clouds with 3 or more layers from the C-C satellites, the MODIS-CL retrievals, 
and GFS model results in January and July 2007. 

Number of layers 
January July 

C-C C-L GFS C-C C-L GFS 

Single layer 67.50 % 84.41 % 68.94 % 67.89 % 82.86 % 67.11 % 

Dual layers 26.58 % 15.59 % 27.12 % 25.98 % 17.14 % 28.40 % 

Three or more layers 5.92 % - 3.94 % 6.13 % - 4.49 % 

 

 

Figure 2.2. Latitudinal variations of the frequencies of cloud occurrence from the C-
C satellites and the GFS model for single and dual-layer clouds in January (left plot) 
and July (right plot) of 2007. The blue solid (dashed) lines and red solid (dashed) 
lines represent single-layer and dual-layer clouds from the C-C satellites (the GFS), 
respectively. 
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Figure 2.3. The latitudinal and vertical distributions of the frequency of occurrence 
(denoted by the different colors) of cloud layer thickness from the C-C satellites (left 
plots) and the GFS model (right plots), averaged over 2º latitudinal bands for 
January (top panels), and July (bottom panels) 2007. 
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2.4.3. Cloud Fraction 

Several typical cloud types are present in the lowest part of the atmosphere, 

such as stratus, shallow cumulus, and stratocumulus (Kuettner 1971; Agee 1984). At 

high levels, clouds are more associated with synoptic weather systems, like mid-

latitude fronts, cyclones, tropical storms, and anvils (Starr and Cox 1985; Sheu et al. 

1997). In the middle of the atmosphere (~500-600 hPa), minimal cloud amounts 

were found in the tropical region from the TOGA COARE (Zuidema 1998) and from 

the global satellite remote sensing product of Chang and Li (2005b), as well as from 

the analysis of ARM ground-based measurements (Xi et al. 2010).  

Figures 2.4, 2.5 show the distributions of high, middle, and low-level cloud 

fractions from the C-C satellites, MODIS-CL, and the GFS model in January and 

July 2007. In general, the GFS model generates more clouds at all levels than does 

the C-L algorithm during the two months, except for low-level clouds (see Table 2.3). 

Middle-level cloud fractions from the GFS model are most comparable with the two 

satellite retrievals, as shown in Figures 2.4 and 2.5, but large discrepancies exist in 

low-level clouds. In particular, more boundary layer clouds are generated by the 

GFS model over the interior continents at high latitudes whereas satellite retrievals 

show more marine stratus clouds over oceans. GFS model simulations also miss 

low-level shallow stratus clouds along the west coast of North America, South 

America, and southwestern Africa and overestimate thick, large-scale clouds 

associated with the Asian summer monsoon. 
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Figure 2.4. Geographic distributions of monthly mean cloud fractions from the C-C 
satellites (left panels), the MODIS-CL (middle panels), and the GFS model (right 
panels) in January 2007. Top, middle, and bottom plots denote high, middle, and low 
clouds, respectively. 
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Figure 2.5. Same as Figure 2.4 except for July 2007. 
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The global mean mid-level cloud fraction simulated by the GFS model in 

January was 22.79 %, which is 6 % more than the magnitude of that retrieved by the 

C-L algorithm (17.05 %). In comparison, the global mean value of mid-level clouds 

from ISCCP is 18.0 %, which includes the inevitable misclassification of overlapped 

cirrus over low water clouds as single-layer mid-level clouds (Jin et al. 1996). It 

should be emphasized that mid-level clouds in the ISCCP are defined between 440 

hPa and 680 hPa while those in the GFS are between 350 hPa and 642 hPa. The 

mid-level cloud fraction retrieved from the C-L algorithm using ISCCP criterion is 

about 9-10 %. We can thus affirm that the GFS overestimates mid-level clouds. The 

global mean cloud fraction of low-level clouds from the GFS model was 39.24 %, 

which is similar to that from the C-L algorithm in January (38.98 %) although the 

spatial patterns differ (see Table 2.3). 

To examine the global distribution patterns of clouds, three separate 

geographical regions are defined in order to identify areas of the largest differences 

in cloud fraction: tropical (20ºS ~ 20ºN), mid-latitude (20ºN ~ 40ºN, 20ºS ~ 40ºS), 

and high latitude (40ºN ~ 60ºN, 40ºS ~ 60ºS). Differences were calculated by 

subtracting GFS results from C-L algorithm retrievals; the numbers in Table 2.4 are 

zonally-averaged cloud fractions over 2º latitudinal bins. The GFS model cloud 

fractions at high latitudes for all levels are greater than those from satellite retrievals. 

In particular, the GFS model simulates too much boundary layer clouds at high 

latitudes. At mid-latitudes (the Tropics), the GFS-forecasted high cloud fractions in 

January are greater than those retrieved from satellite by 10.87 % (14.10 %) and 

2.01 % (7.25 %) for mid-level clouds, but low cloud fractions are less by 9.40 % 
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(7.91 %).  

Figure 2.6 illustrates the latitudinal variations of zonal-mean cloud fractions 

corresponding to the three cloud vertical categories (i.e., high, middle, and low). 

Two features stand out. First, GFS model results vary in the same manner as satellite 

retrievals in terms of spatial features and locations except for low-level clouds. 

Second, modeled zonally-averaged high and mid-level cloud amounts are generally 

overestimated over nearly all latitudinal bands. Variations of high-level clouds from 

both the C-L algorithm and the GFS model show the jump in cloud amount in the 

Tropics from January to July due to deep convective clouds and the decrease in 

high-level cloud amount in subtropical regions in the Southern Hemisphere. For 

mid-level clouds, the GFS model captures the July reduction in cloud amount in the 

mid-latitudes but overestimates cloud amounts at high latitudes. Low cloud fractions 

generated by the GFS model diverge remarkably from satellite retrievals. Note that 

the C-L algorithm results in July show a sharp decrease in cloud fractions at around 

55ºS. This is because the C-L algorithm uses solar zenith angle (SZA) information 

for detecting clouds. When the SZA is larger than a specific threshold value (e.g., 

80º), no retrievals are made. Simulations of cloud from the GFS model do not 

explicitly involve sunlight information, so clouds can be seen over that particular 

region. 
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Table 2.3. Global monthly mean high-, mid-, and low-level cloud fractions obtained 
from the C-L algorithm and the GFS model during January and July 2007. 

 
C-L algorithm GFS 

    January July January July 

High 16.45 % 16.36 % 30.61 % 32.90 % 

Mid 17.05 % 13.61 % 22.79 % 19.46 % 

Low 38.98 % 37.11 % 39.24 % 31.15 % 

 

 

 

Table 2.4. Zonally-averaged cloud fraction (and differences) from the MODIS-CL 
and the GFS model in January and July 2007. Differences are calculated as C-L 
algorithm results minus GFS model results. 

 

January July 

40 º ~ 60 º 

-40 º ~ -60 º 

20 º ~ 40 º 

-20 º ~ -40 º 
-20 º ~ 20 º 

40 º ~ 60 º 

-40 º ~ -60 º 

20 º ~ 40 º 

-20 º ~ -40 º 
-20 º ~ 20 º 

High 12.52/30.36 13.96/24.83 23.84/37.95 13.82/34.30 14.16/24.58 21.46/40.60 

Diff -17.83 -10.87 -14.10 -20.48 -10.42 -19.14 

Mid 27.37/35.84 13.28/15.30 10.20/17.45 20.82/32.49 11.17/14.78 8.72/10.92 

Diff -8.47 -2.01 -7.25 -11.67 -3.62 -2.20 

Low 43.31/61.52 38.12/28.72 35.24/27.33 39.94/51.23 37.19/21.99 34.04/20.14 

Diff -18.21 9.40 7.91 -11.28 15.20 13.90 
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Figure 2.6. Latitudinal variations of cloud fraction for high clouds (top plots), 
middle clouds (middle plots), and low clouds (bottom plots) in January (left) and 
July (right) 2007. Solid lines and dashed lines represent results from the C-L 
algorithm and the GFS model, respectively.  
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2.4.4. Liquid Water Path and Ice Water Path 

Cloud LWP/IWPs are estimated from both MODIS measurements and the 

GFS model during the daytime. The modeled LWP is based on the cloud water 

mixing ratio at each level and the observed LWP is retrieved from the C-L algorithm 

using the MODIS data. The MODIS-CL LWP/IWPs are calculated using cloud 

optical depth and a fixed effective radius of 10 µm (30 µm) for water (ice) clouds and 

they are more reliable than those from the MODIS-EOS products because the C-L 

algorithm retrievals include overlapped low clouds beneath high clouds. The LWP 

retrieved by the MODIS is more reliable than that from the AVHRR because 

retrievals are made using information from more wavelengths (1.6, 2.1, and 3.7 µm 

as opposed to 3.7 µm only) which contains certain information about the vertical 

distribution of cloud particle size (Chang and Li 2002; Chang and Li 2003), from 

which LWP can be better estimated (Chen et al. 2007).  

The spatial distributions of modeled and satellite-retrieved LWPs for January 

and July 2007 are shown in Figures 2.7 and 2.8. The LWP of high-level clouds 

simulated from the GFS is substantially smaller than that retrieved from satellite 

measurements in both January and July. Mid-level GFS and MODIS-CL LWPs in 

January showed quite different distribution patterns. The GFS-modeled LWP was 

more generated over South America, the southern parts of Africa, and the ITCZ, but it 

was mostly missed over the eastern coastal area of North America and the East Asia 

region (100º - 180ºE, 20º - 40ºN) relative to the satellite retrievals. The low-level 

LWP from MODIS-CL retrievals was significantly greater than that simulated by the 

GFS model, particularly over ocean areas and at high latitudes in both hemispheres.  
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Figure 2.7. LWP from the GFS-model (left plots) and MODIS-CL (right plots) LWP 
in January 2007. Upper, middle, and bottom sets of figures represent high, mid, and 
low level LWPs, respectively. Units are in g/m2. 
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Figure 2.8. Same as Figure 2.7 except for July 2007. 
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These features are also evident in July. High and mid-level distributions of 

monthly mean LWP in July are similar (except for magnitude), but large 

discrepancies in low-level LWPs are evident over oceans and particularly at high 

latitudes in the both hemispheres. 

Figures 2.9 and 2.10 show near-global distributions of monthly mean IWP 

obtained from both MODIS-CL retrievals and the GFS model in January and July 

2007. In general, the GFS model produces more IWPs in the Tropics but agrees in 

spatial distribution with the satellite product. GFS simulations of high-level IWP are 

smaller than MODIS-CL IWP retrievals over the North Atlantic Ocean, the 

northeastern Pacific Ocean, and the East Asia region during January and over the 

Southern Ocean during July. The spatial distributions of mid- and low-level IWP 

from both model and satellite are generally comparable, although the mid-level IWP 

generated by the GFS is somewhat underestimated beyond 40ºN during January. 

Except in high-latitude regions, very little low-level IWP is seen from both model 

and observation.  

On a global scale, underestimation of the modeled low-level LWP over 

oceans leads to significant errors in the low cloud fraction. Cloud fraction and 

LWP/IWP generated by the GFS model strongly depend on the cloud water mixing 

ratio variable. The cloud water mixing ratio is the sole predictor of LWP/IWP and 

the primary predictor of cloud fraction. Underestimation of low-level LWP and 

cloud fraction means that the GFS model has difficulty in simulating cloud water 

mixing ratio in the lower atmosphere. We will show possible causes for the 

discrepancies in terms of input variables and parameterization scheme used in the 



 

４２ 

 

GFS model in Chapter 3. 
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Figure 2.9. IWP from the GFS model (left plots) and MODIS-CL (right plots) in 
January 2007. Upper, middle, and bottom sets of figures represent high-, mid-, and 
low-level IWPs, respectively. Units are in g/m2. 
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Figure 2.10. Same as Figure 2.9 except for July 2007. 
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2.4.5. Cloud Optical Depth  

Global distributions of COD obtained from different sources are shown in 

Figures 2.11 and 2.12. The upper plots in Figure 2.11 represent retrievals from the 

same instrument but using different algorithms (the C-L algorithm on the left and the 

MODIS algorithm on the right); patterns are similar between two retrievals but 

magnitude of COD from the MODIS-CL is larger than that from MODIS-EOS 

retrievals on a global scale. This is a result of the recovery of low clouds with 

overlapped high clouds. Note that the C-L algorithm can only detect dual-layer clouds 

if the top clouds are optically thin (optical depth ~4), beyond which it cannot retrieve 

the second cloud layer. The two MODIS-based CODs are generally prevalent in mid-

latitude storm-track regions during January. The GFS model can simulate the general 

pattern of observed CODs but the magnitudes are too small over those regions. 

Overestimation of CODs is seen over South America, the southern portion of Africa; 

CODs are underestimated over the mid-latitude storm-track regions.  

Regarding CloudSat, Kahn et al. (2008) reported that thin cirrus cloud 

retrievals from the radar-only scheme had some differences with retrievals from the 

combined radar-lidar scheme. Optically thin clouds are undetected when using the 

radar-only cloud scheme because of the existence of small ice particles. Also, low 

clouds below 1 km are difficult to detect with the radar-only scheme due to ground 

clutter issues. This shows that CloudSat is not as sensitive to thin cirrus and 

boundary layer clouds. So CloudSat retrievals of COD are underestimated over most 

areas of the globe. The lidar is more sensitive than the radar to small hydrometeors, 

such as small ice crystals and water droplets, but is not capable of detecting clouds 
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at lower levels of the atmosphere because it cannot penetrate through clouds all the 

way to the surface. Lidar COD retrievals range from 0 to 5 only and the C-C 

satellites does not provide COD retrievals. Therefore, more reliable active sensor 

datasets such as the C-C satellites retrievals are required in the future so that more 

accurate verification of COD retrievals can be performed.  

Figure 2.12 shows the latitudinal variations of monthly mean COD 

distributions from MODIS-EOS, the MODIS-CL, CloudSat, and the GFS during 

January (left plot) and July (right plot). Averages were taken over 2o latitudinal bins. 

The C-L algorithm results are more than results from the MODIS algorithm in most 

areas for the two months. The GFS model significantly underestimates COD beyond 

20ºS and 10ºN in January. Within this region, COD retrievals from the GFS model 

are around 2-3 times less than retrievals from the MODIS. Two peaks in both of the 

MODIS products are seen near 50ºS and 10ºN in July, corresponding to clouds from 

storm tracks in the Southern Hemisphere and convective clouds in the ITCZ. 

Zonally-averaged CODs generated by the GFS model in July are less than satellite 

retrievals of COD in the entire Southern Hemisphere. Zonally-averaged CODs from  

CloudSat retrievals are generally much smaller than the other satellite-based 

retrievals/model results during January and July. In brief, the GFS model 

overestimated COD for optically thick clouds, such as deep convective clouds, and 

underestimated COD for optically thin or intermediate clouds over the storm track 

regions of the world. 

Systematic forecast errors exist in radiation fields due to poorly simulated 

cloud properties in the boundary layer. A previous study using a single column 
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model implemented the GFS physical processes reported that modeled downwelling 

shortwave fluxes were significantly overestimated while sensible heat fluxes were 

underestimated at the surface (Yang et al. 2006). Thus, it is necessary to quantify 

cloud parameters such as effective droplet radius and cloud optical depth in order to 

determine radiative quantities. These parameters potentially impact 

longwave/shortwave cloud forcing and diabatic heating through scattering and 

absorption processes. An evaluation of radiation and moisture budgets generated by 

the GFS will be addressed in Chapter 3. 
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Figure 2.11. Total COD from (clockwise, starting from the upper left plot) the 
MODIS-CL, MODIS-EOS, CloudSat, and the GFS model during January 2007.  
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Figure 2.12. Latitudinal variations of COD in January (left plot) and July (right plot) 
2007. The solid red lines, dash-dotted blue lines, dashed green lines, and dotted 
orange lines represent results from MODIS-CL, the MODIS-EOS, CloudSat, and the 
GFS model, respectively. 
 
 
 
 
 
 
 
2.4.6. The top & base height and its thickness of the lowest cloud layer 

Cloud fractions generated from the GFS model are comparable with the two 

satellite retrievals for high and middle clouds, but huge discrepancies in the low-

level cloud amounts are most remarkable (see Figs. 2.4-5). Thus, this section puts 

more focus on properties of the lowest cloud (hereafter referred to as LC) layer. 

Figure 2.13 displays comparisons of zonal-mean top and base height occurrence 
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frequencies of the LC layer from both the C-C satellites and the GFS model during 

July 2007. The model does a good job for capturing the general feature seen from 

the satellite retrievals except for slight differences in its altitude. The results 

obtained from the C-C satellites show that top heights of the LC occur frequently at 

1-2 km in the Southern Hemisphere and base heights of the LC have the most 

frequent occurrence at 0-1 km. Overall, the GFS model produces somewhat higher 

top and base heights of the LC relative to the C-C satellites. The most frequent 

occurrences of top and base heights of the LC in the GFS model results occur at 3-6 

km and at 0-2 km, respectively.  

Figure 2.14 shows the latitudinal variations of the occurrence frequencies of 

the LC thicknesses obtained from the C-C satellites and the GFS model output. A 

thickness of the LC in this study is defined as the top height of the LC minus the 

base height of the LC. The GFS model results show a cosine function-like shape 

having an axis at 10º N. This pattern is much broader and thicker than those 

retrieved by the C-C satellites.  

Figure 2.15 compares top height occurrence frequencies of the LC 

corresponding to the base height of the LC derived from the C-C satellites (right 

panel) and the GFS results (left panel). It is obvious that the thicknesses of the LC 

from the GFS model are much thicker than those from the C-C satellites 

approximately 4 km if we add a reference line to the axes. This outcome is 

consistent with the above results. Underestimation of stratocumulus clouds in the 

GFS model may be attributed to the discrepancies in these comparisons. 
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Figure 2.13. Latitudinal variations of zonal-mean occurrence frequency of the LC; 
for top height from the GFS (top left), the C-C satellites (top right) and for base 
height from the GFS (bottom left), the C-C satellites (bottom right) in July 2007.  
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Figure 2.14. Latitudinal variations of the occurrence frequencies of the LC thickness 
from the GFS (left) and the C-C satellites (right) in July 2007. 
 
 
 

  

Figure 2.15. Top height occurrence frequencies of the LC corresponding to the base 
height of the LC from the GFS model (left), the C-C satellites (right) in July 2007. 
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2.5. Summary 

Clouds and their interactions with large-scale atmospheric circulation are 

crucial parts of weather and climate systems. So far, we have a poor understanding 

of how well clouds are simulated by weather forecast and climate models due to 

limited reliable observations, especially concerning the vertical distribution of 

clouds. However, the advent of advanced remote sensing techniques in the recent 

decade allows us to assess and improve cloud fields in terms of both horizontal and 

vertical variations.  

In this Chapter, we employed multiple global satellite products from the A-

Train constellation to evaluate clouds generated by the NCEP GFS model. Cloud 

properties simulated by the GFS model are compared with satellite retrievals from 

CloudSat, CloudSat-CALIPSO merged data, MODIS-EOS and a new MODIS-based 

research product developed by Chang and Li (2005a, b). Extensive cloud variables 

are assessed including the frequencies of cloud layers occurrence, cloud fraction and 

thickness, cloud optical depth, liquid water path, and ice water path. In particular, an 

evaluation of the GFS cloud vertical structure on a global scale is the main focus of 

this chapter.  

 The GFS model captures well the spatial distributions of hydrometeors, 

which bear a reasonable resemblance to those seen from satellite retrievals, although 

large differences exist in the magnitudes. The GFS model generates more high-level 

and mid-level clouds, but less low-level clouds than do satellite retrievals. More 

boundary layer clouds over the interior of continents at high latitudes were generated 
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by the GFS model whereas satellite retrievals showed more low clouds over oceans. 

In other words, the GFS model tends to miss low-level marine stratocumulus clouds 

and overestimate interior continental low-level clouds. GFS-modeled CODs are less 

than those from MODIS retrievals in high-latitude regions of both hemispheres and 

are overestimated over South America and the southern African region during 

January 2007. The GFS model overproduces optically thick clouds in deep 

convective cloud regimes and the southeastern Asian summer monsoon region 

during July. CODs for optically thin or intermediate clouds are underestimated. 

GFS-modeled IWP distributions agree better with satellite retrievals than do LWP 

distributions.  

These comparisons provide useful guidance toward diagnosing the source of 

possible errors, especially with regard to systematic biases that help identify major 

flaws in either cloud parameterization schemes or input variables, or both. More 

thorough and rigorous investigations into the causes of discrepancies are shown in 

Chapter 3 by means of model radiation fields, analysis of various input variables 

used in cloud parameterization schemes, and further validation of these variables. 

More independent satellite products such as atmospheric profiles of temperature and 

moisture from microwave radiometers and ground-based measurements will also be 

employed to help understand the discrepancies. 
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Chapter 3: Causes of the Discrepancies in Cloud Fields 
 
 
3.1. Introduction 
 

Clouds play an important role in regulating the Earth’s radiative energy 

budget and temperature and they are also one of the most critical factors in the 

hydrology cycle of the Earth (Del Genio et al. 2005). Despite their significance, an 

accurate representation of clouds in global climate and weather models has not yet 

been achieved due to the incomplete knowledge of the underlying physical processes 

(Stephens 2005) and the considerable variations in cloud amount in both vertical and 

horizontal directions (Stowe et al. 1989; Rossow et al. 1989). Cloud representations 

in models are the critical source of uncertainty in projections of future climate 

change (Wielicki et al. 1995; Houghton et al. 2001). A more accurate representation 

of cloud behavior is required in order to generate realistic simulations of the Earth’s 

climate change. As more observational data have become available, the impact of 

clouds on weather and climate can be better assessed and various cloud 

parameterization schemes can be tested. Among the diverse set of ground-based and 

space-borne instruments, satellites are the only platforms that can provide 

continuous observations of cloud properties on global scales. 

Many general circulation models (GCMs) have difficulty in representing low 

cloud distributions, especially over the eastern tropical oceans (Ma et al. 1996; 

Hannay et al. 2009). This is also seen in a fully coupled climate system model (Dai 

and Trenberth 2004; Mechoso et al. 1995) and regional climate models (Xie et al. 

2007). Such findings require substantial improvements in simulating low cloud 
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amount. Otkin and Greenwald (2008) evaluated cloud properties simulated by the 

Weather Research and Forecasting (WRF) model using the Moderate Resolution 

Imaging Spectroradiometer (MODIS) cloud product and found that the model was 

unable to properly simulate stratocumulus and cumulus clouds. This inability of 

climate models to simulate marine stratocumulus cloud decks is one of the most 

significant sources of errors and uncertainties in the tropical cloud feedback (Bony 

and Dufresre 2005; Randall et al. 2007). Similarly, a long-existing problem in the 

global forecast system (GFS) model is an underestimation of such stratocumulus 

clouds over the subtropical eastern oceans (Sun et al. 2010). Marine stratocumulus 

and low clouds over the oceans are known to have a radiative cooling effect on the 

global energy budget by reflecting incoming solar irradiances (Hartmann et al. 1992). 

Additionally, these clouds can impact the cloud microphysical structure and diurnal 

cycle by causing light precipitation (Nicholls 1987). Under-prediction of such clouds 

results in positive sea surface temperature biases over the coast of Peru in ocean-

atmosphere coupled models (de Szoeke et al. 2006). 

Many satellite products based on retrievals from passive sensors have 

suffered from certain fundamental limitations in detecting and measuring low clouds 

due to the presence of overlying high clouds (Chang and Li 2005a, 2005b). 

Observations from ships (Warren et al. 1985), airborne lidar measurements (Platt et 

al. 1994; Clothiaux et al. 2000), and a surface-based radar (Mace and Benson-Troth 

2002) reported the frequent occurrence of multi-layer clouds.  

Thanks to space-borne active sensors (Stephens et al. 2002; Mace et al. 2009) 

and an advanced cloud retrieval algorithm (Chang and Li 2005a, hereafter referred 
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to as the C-L algorithm), a great deal of more accurate knowledge about low cloud 

distributions and their temporal and spatial variations has been gained. Application 

of the C-L algorithm using MODIS data led to a new global-scale low cloud 

distribution with daily coverage. The C-L algorithm can detect the presence of low 

clouds below high clouds and retrieve their optical properties.  

In this Chapter, investigating the causes of the discrepancies in cloud fields is 

mainly discussed. It is attempted to 1) diagnose the status of the GFS model in 

simulating marine stratocumulus cloud fractions over the eastern tropical oceans; 2) 

analyze input data globally and regionally; 3) explore and test another cloud 

parameterization scheme. Cloud fractions are obtained by applying the C-L 

algorithm and are retrieved from space-borne active sensors in order to validate low 

clouds generated by the GFS model. Simulated temperature and relative humidity 

(RH) profiles are examined against retrievals from the Atmospheric InfraRed 

Sounder (AIRS) sensor and ground-based measurements. The evaluation of 

atmospheric environmental variables makes it possible to ascertain whether 

discrepancies in low cloud distributions between the model and observations come 

from misrepresented input parameters or from deficiencies in the model cloud 

parameterization scheme. Another cloud parameterization scheme based on a 

diagnostic approach is applied to the GFS model and resulting cloud fields are also 

compared to those generated by the original version of the GFS model. This is done 

to test the soundness of the original GFS cloud parameterization and to improve the 

representation of cloud processes through application of more concrete relationships 

between input variables. 
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The study in Chapter 3 is organized as follows. Section 3.2 describes the 

dataset used in this research. The comparison of GFS-generated vertical profiles of 

temperature and relative humidity fields with observations is presented in section 3.3. 

Section 3.4 shows results from the application of another cloud parameterization 

scheme to the GFS model. Finally, section 3.5 presents the main findings and a 

summary of this work. 

 
 
3.2. Data and Methodology 
 

In terms of observational data, atmospheric environmental variables are 

obtained from both the AIRS sensor onboard the Aqua satellite and a ground-based 

instrument. Cloud fraction is retrieved from the C-L algorithm using MODIS data also 

acquired from MODIS of the Terra/Aqua satellite platforms and is obtained from 

space-borne active sensors. These datasets provide an invaluable opportunity for 

monitoring clouds, changes in atmospheric temperature on a global scale and for 

assessing the accuracy of weather forecast models. All data used in this study are for 

every day for July 2008. For section 3.4, data for January and July 2007 are used to 

compare those with the results from section 2.3.3. 

 

 

 
3.2.1. AIRS Atmospheric Variables 
 

The AIRS sensor launched in May 2002 is the first high spectrally-resolving 

infrared sounder with near-global coverage on a daily basis (Aumann et al. 2003). It 
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flies on the Aqua satellite in a Sun-synchronous orbit 705.3km above the Earth’s 

surface, descending at 01:30 local time and ascending at 13:30 local time. The AIRS 

measures outgoing radiances using 2378 infrared channels ranging from 15.38 µm to 

3.74 µm. Its spatial resolution is 13.5 km at nadir and the sensor is accompanied by 

two microwave sounders: the Advanced Microwave Sounding Unit-A (AMSU-A) 

and the Humidity Sounder for Brazil (HSB). These microwave instruments are used 

to correct for cloud contamination in AIRS footprints. However, the HSB sensor 

suddenly stopped working right after launch due to an electrical failure. Here, 

calibrated AMSU-A brightness temperatures (Pagano et al. 2003) are utilized to 

derive atmospheric environmental profiles and cloud liquid water for microwave 

retrievals (Rosenkranz 2003; Susskind et al. 2003).  

The AIRS sensor is dedicated to providing highly accurate and spectrally-

resolved radiances to the operational numerical weather forecasting and climate 

research communities. It can measure temperature, water vapor, ozone profiles, and 

the presence of additional minor gases such as CH4, CO, as well as other 

atmospheric properties (Chahine et al. 2006). Based on previous studies (Tobin et al. 

2006; Walden et al. 2006), AIRS Level 2 data have an accuracy of ~1K root mean 

square (RMS) error in 1-km layers for temperature and ~ 20% RMS error for water 

vapor concentrations in 2-km layers as compared to radiosonde data. Others have 

demonstrated the invaluable contribution of AIRS data toward understanding 

maritime tropical Atlantic conditions (Nalli et al. 2006), describing a wide range of 

atmospheric phenomena (Divakarla et al. 2006), and assessing reanalysis data from 

the European Center for Medium-range Forecasting (ECMWF) (Susskind et al. 
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2006). 

There are three different AIRS products: retrieval products using AIRS 

infrared (IR) data only (AIRS2STD), a combination of AMSU-A and HSB data 

(AIRH2STD), and a combination of AIRS IR and AMSU-A data without HSB data 

(AIRX2STD). This study uses AIRS Level 2 version 5 standard daily products (e.g., 

AIRX2STD) that include AMSU-A retrievals because IR-only AIRS retrieval 

uncertainties increase rapidly when cloud fractions exceed 80 % (Tobin et al. 2006). 

 
 
 
 
3.2.2. MODIS Cloud Products 
 

MODIS is the principal instrument onboard the polar-orbiting Terra and 

Aqua satellites and has 36 calibrated spectral channels ranging from 0.415 µm to 

14.24 µm (Barnes et al. 1998). This sensor detects clouds and allows making reliable 

retrievals of cloud properties (King et al. 2003; Ackerman et al. 1998; Menzel et al. 

2002), such as cloud particle thermodynamic phase, cloud optical depth, cloud top 

pressure and temperature, and effective particle radius, using the MODIS CO2 

slicing method (Platnick et al. 2003). 

The International Satellite Cloud Climatology Project (ISCCP) (Rossow and 

Schiffer 1999) dataset has been widely used to evaluate GCMs in generating clouds 

(Webb et al. 2001; Zhang et al. 2005). Evaluations reveal that GCMs tend to produce 

less low-level clouds and much less mid-level clouds than the ISCCP product. 

However, these findings are attributed to mistreating overlapped cirrus and low 

clouds as single-layer middle clouds in the ISCCP product (Chang and Li 2005b). 
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Therefore, use of ISCCP data as a reference is not reliable for the assessment of 

simulated cloud amounts at different vertical levels. 

Taking advantage of the multiple channels of the MODIS allows for the 

detection of both single and multi-layered clouds. However, there is a lack of cloud 

profile observations originating from some limitations in passive sensors and 

inadequate satellite retrieval methods. To overcome this major limitation in the use 

of MODIS data, Chang and Li (2005a) developed a new retrieval algorithm, which 

showed more low clouds in the Tropics (up to 10% more) and in the mid-to-high 

latitudes (up to 20% more around 55oS) in comparison with MODIS algorithm 

products (Chang and Li 2005b). This study using the C-L algorithm will compare 

low-level cloud fractions generated by the GFS model with output retrieved from 

both the active remote sensing and MODIS algorithms over the eastern tropical 

oceans in July 2008. MODIS data from the Aqua satellite (version Collection 5.1), 

and excluding data collected when the solar zenith angle is greater than 80°, is 

processed in this study. 

 

 
3.2.3. ARM Measurements at SGP site 
 

The Atmospheric Radiation Measurement (ARM) program’s ground-based 

products are used to assess the existence of systematic errors in the temperature and 

relative humidity fields used in the GFS model’s cloud diagnostic scheme. The 

Southern Great Plains (SGP) site in north-central Oklahoma is the first field 

measurement site established by the Department of Energy's ARM program. The site 
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is well-equipped with a large set of instruments useful for weather and climate 

research. Data from the site are widely employed to improve the prediction accuracy 

of weather forecast models and parameterization schemes (Lazarus et al. 1999; Xi et 

al. 2010) and to estimate cloud optical and macrophysical properties at different 

levels (Wang and Sassen 2004; Dupont et al. 2011).  

Atmospheric Emitted Radiance Interferometer (AERI) observations of 

temperature and water vapor profiles are used in this study. AERI measurements 

provide atmospheric temperature and water vapor profiles with a high temporal 

resolution (about every 8 minutes). GFS model outputs at a specific grid point and 

spatially matched satellite retrievals are compared with AERI data. 

 
 
 
3.2.4. CERES TOA Fluxes 
 

The Clouds and the Earth's Radiant Energy System (CERES) instrument 

provides highly accurate radiative fluxes with coincident cloud and aerosol 

properties on a global scale (Wielicki et al. 1995; Loeb et al. 2007). This sensor is 

onboard both Terra and Aqua satellites; only CERES data from the Aqua satellite is 

analyzed here. This study uses the Single Scanner Footprint (SSF) product which 

contains longwave/shortwave fluxes at the top-of-the-atmosphere (TOA) and at the 

surface for clear and all-sky conditions on a daily basis. Outgoing longwave, 

shortwave, and net fluxes at the TOA are compared with the GFS model output. 
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3.2.5. CloudSat and CALIPSO merged data 

Data collected by CloudSat and Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observation (CALIPSO) satellites during July 2008 are 

examined to compare low cloud fraction with both cloud retrievals based on passive 

sensors and cloud results simulated by the GFS model over the eastern tropical 

oceans. The CloudSat and CALIPSO satellites were launched in April 2006, 

carrying a 94-GHz cloud profiling radar (CPR) and dual-wavelength lidar in order to 

provide more accurate cloud vertical structure. This study uses the merged products 

(i.e., CloudSat CPR + CALIPSO lidar cloud mask, hereafter referred to as the C-C 

satellites) to obtain low cloud fraction. The combined dataset provides more reliable 

cloud information pertaining to multi-layered clouds such as optically thin high 

clouds over lower thick clouds (Mace et al. 2009). 

 

 

3.2.6. GFS Cloud Parameterization Scheme 

The GFS model is the operational medium-range global forecast model run 

by the National Centers for Environmental Prediction (NCEP). This version uses a 

T382 spectral triangular truncation with a horizontal resolution of 35 km and 64 

vertical layers. This study uses forecasting data generated every 3 hours from 00Z to 

24Z on each day. Cloud fraction is calculated based on a prognostic cloud scheme 

which involves the combination of model-predicted temperature, relative humidity, 

and three-dimensional cloud water mixing ratios. Cloud fraction in a given grid box 

in the GFS cloud scheme is computed using the approach of Xu and Randall (1996). 
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Unlike other cloud parameterizations including probability distribution functions 

(PDFs), the Xu and Randall methodology depends only on the relative humidity, the 

saturation specific humidity, and the cloud mixing ratio. Some detailed explanations 

with regard to an equation for cloud fraction are already provided in the previous 

section (see section 2.3.1). In this Chapter, GFS data cover the period of January and 

July 2007 and for July 2008. 

 

 

 
3.3. Results 
 
3.3.1. Global Radiation Budget at the TOA 
 

Clouds are important in determining the radiative heating and cooling of 

atmospheric system on a global scale. Figure 3.1 compares global distributions of 

low-level cloud fraction from the C-L algorithm based on MODIS data and the GFS 

model. The simulated low clouds agree with the satellite retrievals in terms of the 

location of cloud layers. While the distribution of low clouds observed by satellite 

shows extensive marine stratocumulus clouds over the eastern tropical Pacific and 

Atlantic, such clouds are not well simulated in the GFS model. These results are 

consistent with previous studies which reported an underestimation of marine 

stratocumulus clouds over those regions in coupled GCMs (Giese and Carton 1994; 

Stockdale et al. 1994).  

A comparison for global distributions of monthly mean upward shortwave 

(SW), longwave (LW), and net radiation at the TOA is shown in Figure 3.2. Net 
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radiation at the TOA is defined as the net balance between solar radiation and 

terrestrial radiation. Note that incoming terrestrial radiation at the TOA is assumed 

to be zero for both datasets. The basic pattern for both upward SW and LW radiation 

at the TOA is very similar between observation and model on a global scale, but 

disagreements exist over the eastern Pacific and Atlantic regions. The GFS model 

simulates less upward SW radiation and more outgoing LW radiation than that 

measured by CERES due to the underestimation of marine stratocumulus clouds. 

This is evident when we see the SW, LW, and net radiation differences between 

CERES and GFS in Figure 3.3. Positive biases in the SW radiation differences are 

dominant over oceans, especially in marine stratocumulus cloud decks. The net 

radiation differences show a positive bias tendency in the Southern Hemisphere, but 

a negative bias tendency in the Northern Hemisphere. Table 3.1 summarizes global 

monthly mean upward SW, LW, and net radiation under all-sky conditions from both 

CERES and GFS model. The mean value of SW, LW, and net radiation for CERES 

(GFS) for July 2008 is 90.91 W/m2 (81.13 W/m2), 247.62 W/m2 (252.53 W/m2), and 

-2.21 W/m2 (13.35 W/m2), respectively. 

 



 

６６ 

 

 

Figure 3.1. Low cloud fraction from the C-L algorithm (left plot) and the GFS 
model (right plot) during July 2008. 
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 Figure 3.2. Global distributions of the outgoing SW radiation (top plots), LW 
radiation (middle plots), and net radiation (bottom plots) at the TOA from the 
CERES (left) and GFS (right) during July 2008. 
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Figure 3.3. Global distributions of the differences between the CERES and the GFS 
for outgoing SW radiation (top left plot), LW radiation (top right plot), and net 
radiation (bottom center plot) at the TOA during July 2008. 
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Table 3.1. Global monthly mean SW, LW, and net fluxes at the TOA obtained from 
the CERES and the GFS model during July 2008. 

 CERES GFS 

SW Flux 90.91 W/m2 81.13 W/m2 

LW Flux 247.62 W/m2 252.53 W/m2 

Net Flux -2.21 W/m2 13.35 W/m2 

 

 

Net radiations at the TOA from CERES and the GFS model have opposite signs, 

emphasizing the impact of marine stratocumulus clouds on the global net radiation. 

It is broadly recognized that marine stratocumulus clouds play a key role in 

regulating sea surface temperature over the eastern tropical regions by interacting 

with both SW and LW radiations (Philander et al. 1996; Ma et al. 1996). Such clouds 

scatter incident radiation for wavelength shorter than 0.9㎛ with a reflectivity of 

0.66 and absorb radiation for wavelength longer than 0.9㎛ with an absorptivity of 

0.3 (Katayama 1972). 

To investigate the causes of the discrepancies in marine stratocumulus cloud 

decks between the GFS model and observations, four areas along the west coast of 

America and Africa are selected. Figure 3.4 shows the four marine stratocumulus 

cloud regions investigated in this study. These domains are located in the subtropics 

and are characterized by a strong limited mixing between boundary layer and free 

atmosphere. The geographic boundaries of each region are a bit arbitrary and 

different from those analyzed by Klein and Hartmann (1993). The individual regions 

are defined as: Californian (10° - 40°N, 160° - 110°W), Peruvian (0° - 30°S, 110° - 

75°W), Namibian (0° - 30°S, 30°W - 10°E), and Canarian (10° - 40°N, 60° - 20°W). 
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Regional mean radiation fields are summarized in Table 3.2. Simulated SW (LW) 

fluxes at the TOA are all less than (greater than) those observed from space with 

differences ranging from 10.67 W/m2 to 24.77 W/m2 (3.92 W/m2 to 9.82 W/m2) due 

to the underestimation of marine stratocumulus clouds. 

 

 

 

Figure 3.4. Four geophysical locations of marine stratus clouds occurrence regions: 
Californian (10° - 40°N, 160° - 110°W), Peruvian (0° - 30°S, 110° - 75°W), 
Namibian (0° - 30°S, 30°W - 10°E), and Canarian (10° - 40°N, 60° - 20°W). 
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Table 3.2. Regional mean SW and LW fluxes under all-sky conditions at the TOA 
from the CERES and the GFS over the selected regions in July 2008.  

 CERES GFS 

 SW LW SW LW 

Californian 99.15 W/m2 273.22 W/m2 74.38 W/m2 280.04 W/m2 

Peruvian 79.08 W/m2 274.99 W/m2 56.94 W/m2 284.81 W/m2 

Namibian 62.02 W/m2 278.46 W/m2 51.07 W/m2 286.04 W/m2 

Canarian 74.46 W/m2 272.47 W/m2 63.79 W/m2 276.39 W/m2 

 

 

 
3.3.2. Global Analysis of the modeled temperature and relative humidity 
 

As mentioned earlier, the GFS modeled clouds agreed well with observations 

in some regions while they were poorly simulated in other places. Discrepancies in 

cloud vertical structure/amounts between observations and the GFS model can be 

attributed to differences in relative humidity, temperature, and cloud mixing ratio 

fields, which are major three control variables determining the formation of clouds 

in the model environment (see eq. 2.3.1). Thus, it is needed to examine ambient 

atmospheric temperature and relative humidity (RH) profiles under clear/cloudy 

conditions in order to find out some clues or suggestions on the improvement of 

cloud simulations. If meteorological variables in the model are close to the observed 

ones, we can consider that the disagreements in cloud comparisons between the 

model and observations stem from the errors in the cloud parameterization scheme. 

Otherwise, a large discrepancy in cloud fields can be attributed mainly to the 

simulated atmospheric profiles which consequently produce different cloud 

distributions against observations.  
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Figure 3.5 illustrates global temperature RMS differences under clear and 

cloudy conditions for ‘‘land’’ and ‘‘ocean’’ categories. The AIRS temperature 

measurements from microwave (MW) only retrievals are regarded as a truth since 

they are in good agreement with the radiosondes (Divakarla et al. 2006). The 

clear/cloudy conditions are defined as the agreement of cloud fractions from both 

AIRS and GFS model. The GFS forecasted temperature RMS difference against the 

AIRS retrievals is less than 2.5 K for clear conditions over oceans whereas it shows 

somewhat worse RMS difference at p < 600 hPa under cloudy conditions. The 

temperature RMS difference over land is similar to that of ocean category at p < 600 

hPa, but it becomes larger approaching the surface. One thing is noted that the 

temperature RMS differences under clear conditions over both oceans and land are 

smaller than the RMS differences computed under cloudy conditions, while the 

results at p > 600 hPa are opposite. Two plausible causes can be pointed out. Firstly, 

the GFS model has systematically difficulty in simulating temperature profiles in the 

lower troposphere. Another cause is associated with cloud contamination in AIRS 

retrievals. Here, we used the temperature measurements from MW only retrievals, 

but the accuracy of the temperature profile retrievals for AIRS usually decreases 

under overcast cloud scenes (Tobin et al. 2006).  
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Figure 3.5. The temperature RMS difference for “land” and “ocean” categories: 
clear conditions over oceans, solid blue; cloudy conditions over oceans, dashed blue; 
clear conditions over land, solid green; cloudy conditions over land, dashed green, 
respectively. 
 
 
 

Figures 3.6-8 describe comparisons of the monthly mean RH between 

satellite observations and the GFS model results during July 2008. All AIRS data are 

gridded into a 1º x 1º latitude/longitude projection, selecting only for the ascending 

orbits. In order to better describe RH field, RH products are analyzed into two parts; 

output RH with respect to liquid and with respect to ice phase, respectively. The 

GFS model defines a separation temperature at T > 273.15 K with respect to liquid 

phase and at T < 253.15 K for ice phase. Temperature for a blending phase is 

determined using a linear combination of the two. The AIRS data with AMSU-A 

retrievals have a separation temperature as 273.15 K (Rosenkranz 2006).  

The GFS RH output with respect to ice at 150 hPa is substantially larger than 
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that retrieved from satellite. The GFS RH at 500 hPa is underestimated over the 

middle parts of Africa and America as well as Asia regions, but overestimated in the 

southern ocean as seen in Figure 3.6. Such underestimation of RH in the GFS model 

over those regions is found in Figure 3.7. The GFS model simulates RH output with 

respect to liquid phase at 500 hPa while satellite observations indicate those ones as 

ice phase. The combined GFS RH results (e.g., liquid and ice phase) at 150 hPa in 

Figure 3.8 are significantly greater than those from satellite retrievals and they are 

slightly overestimated at 1000 hPa, particularly over oceans in both hemispheres. 

These findings support some parts of a previous study, which notes that several 

models tend to generate too much moisture in the upper troposphere over the 

tropical and extra-tropical regions relative to the AIRS observations by 25 %-100 % 

(Pierce et al. 2006). The discrepancies between observation and model might be 

come from some possibilities; firstly, there can be a contamination from undetected 

low clouds resulting in drier conditions at p > 800 hPa in the AIRS observations. 

Secondly, the GFS model is systematically likely to overestimate RH values in the 

upper troposphere with respect to ice phase as well as slightly in the lower 

troposphere. The patterns of the RH distribution are well correlated with high–level 

cloud fractions, but not correlated with low-level clouds, suggesting a weak 

contribution of RH variable in low-level cloud formations. This cannot fully explain 

why the biased cloud fractions occur over the eastern tropical oceans in the GFS 

model.  
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Figure 3.6. Comparisons of relative humidity with respect to ice for the AIRS 
retrievals (right panels) and the GFS model (left panels) at 150 hPa (upper), 500 hPa 
(middle), and 1000 hPa (bottom) during July 2008. 
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Figure 3.7. Same as in Figure 3.6 except for relative humidity with respect to 
liquid. 
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Figure 3.8. Comparisons of relative humidity field for the AIRS retrievals (right 
panels) and the GFS model (left panels) at 150 hPa (upper), 500 hPa (middle), and 
1000 hPa (bottom) during July 2008. 
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3.3.3. Regional Analysis of the GFS cloud fraction, temperature, and relative 
humidity fields 
 

This subsection aims to analyze whether the discrepancies in low cloud fields 

come from incorrect input variables or parameterization schemes used in the model. 

First, input variables used in cloud parameterization scheme are examined for a global 

scale by comparing satellite retrievals. Similar evaluation is conducted over the 

selected regions as mentioned in the previous section by adding ground-based 

measurements. Figure 3.9 presents a comparison of zonal mean low cloud fractions 

derived from both satellite retrievals and the GFS model over each region. Note that 

two satellite results are generated from the application of different algorithms to the 

same MODIS data. The low cloud fraction derived from the C-L algorithm is much 

greater than that retrieved from the MODIS algorithm in all regions as a result of the 

recovery of a large quantity of low clouds beneath high clouds. This comparison 

illustrates how the same satellite data might result in considerable discrepancies in 

low-level cloud detection depending on which algorithm was used in cloud retrievals. 

Another satellite result in Fig. 3.9 is retrieved from the C-C satellites. It mostly lies 

between the results of the C-L algorithm and the MODIS products but it is more 

similar with the retrievals of the C-L algorithm. The low cloud fraction simulated by 

the GFS model is substantially smaller than three satellite retrievals over all regions. 

These results are consistent with those from a previous study, which reported that the 

Xu and Randall cloud parameterization scheme underestimated cloud fractions when 

compared to observations from the Atlantic Stratocumulus Transition Experiment 

(ASTEX) (Lazarus et al. 1999). 
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The GFS model temperature and RH profiles over the selected four regions are 

compared with AIRS retrievals at different vertical levels. Figure 3.10 displays the 

zonally averaged temperature profiles from both AIRS observations (using the AIRS 

MW only algorithm) and the GFS model. Except at 1000 hPa and 925 hPa in the 

Californian region, the agreement is remarkable. Figure 3.11 shows the latitudinal 

variations of zonal-mean RH corresponding to four vertical levels in the atmosphere. 

The agreement between profiles from the GFS model and observations is generally 

worse than that for temperature. The GFS model overestimates RH values (especially 

at 850 hPa) in most cases with differences up to 100 % of the satellite estimates in the 

four regions. This suggests that the vertical mixing of heat and moisture in the GFS 

model does not describe the realistic moisture accumulation in cloud layers, especially 

in marine stratocumulus cloud decks. Although the RH values simulated by the GFS 

model are mostly larger than the satellite retrievals, simulated cloud fractions are 

severely underestimated over the four regions. Other possible causes of this bias might 

reside in the choice of coefficients in the Eq. 2.1 or in an unrealistic simulation of 

vertical diffusion in marine stratocumulus cloud regimes.  
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Figure 3.9. Comparisons of the zonal-mean low cloud fractions derived from sa
tellite observations and the GFS model for (clockwise, starting from the upper left 
plot) Californian, Canarian, Namibian, and Peruvian regions during July 2008. The 
blue square symbols, the green diamond symbols, the purple triangle symbols, and 
the red plus symbols represent the CL algorithm, the MODIS algorithm, the C-C 
data, and the GFS simulations, respectively. 
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Figure 3.10. Comparisons of zonal-mean temperature profiles derived from AIRS 
observations (asterisk symbols) and the GFS model (diamond symbols) for the four 
regions during July 2008. The blue, green, purple, and red colors represent results at 
700 hPa, 850 hPa, 925 hPa, and 1000 hPa, respectively.  
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Figure 3.11. Same as Figure 3.10 except for relative humidity profiles. 
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3.3.4. Comparison of temperature and relative humidity profiles with ground-based 
measurements 
 
 

Satellite measurements provide useful atmospheric information on a global 

scale and are generally more reliable than model simulations, but they also have 

shortcomings such as retrieval uncertainties and limitations. Therefore, a comparison 

with ground-based measurements is also needed. Since there are temporal and 

spatial differences between satellite measurements and surface-based observations, a 

careful approach is required. We only deal with a small area (i.e., a 1°x1° grid box) 

centered on the SGP site and determine the specific time scales that can be 

represented by the satellite overpass time. Figure 3.12 shows RH and temperature 

biases of the model and the satellite retrievals at the SGP site. The AERI 

measurement is taken as a reference and differences are calculated as the AERI data 

minus individual products. In general, the satellite-derived RH values have a better 

agreement with the ground-based measurements than those of the GFS model. The 

AIRS measurements have a RH bias within 10 % at all vertical levels, while the 

GFS-generated RH has a significant negative bias both in the upper and lower 

troposphere. This reinforces the finding of a wet bias in the modeled RH field, as 

noted in a comparison with satellite data (cf. Section 3.3.2-3). With respect to 

temperature, both AIRS and GFS profiles have a positive bias in the upper 

troposphere and smaller biases in the middle troposphere. However, these biases 

grow large and negative closer to the surface in a similar way (see Figure 3.12). 
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Figure 3.12. Relative humidity (left panel) and temperature (right panel) biases 
during July 2008: AERI versus AIRS, blue line; AERI versus GFS, red line. 
 

 

Although the GFS model output has a relatively coarse spatial resolution compared 

with satellite observations, it shows a reasonable agreement with ground-based 

measurements. This may be due to the use of global radiosondes information in the 

model analysis data (Divakarla et al. 2006). 

Left plot in Figure 3.13 shows comparisons of three different cloud fraction 

products: the GFS original output, the GFS cloud product with AERI measurements 

as input, and combined millimeter wavelength cloud radar (MMCR)-micropulse 

lidar (MPL) observations. The MMCR generates continuous cloud profiles from 

radar reflectivity and the MPL is sensitive to optically thin clouds so combined 

radar-lidar measurements are a suitable tool to estimate cloud fraction (Xi et al. 
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2010). The GFS model largely underestimates low cloud fraction against the result 

of the combined measurements at the SGP site and this finding is consistent with a 

previous study (Yang et al. 2006). The GFS cloud product using AERI temperature 

and RH measurements is generated to examine the soundness of the 2008 version of 

the GFS model cloud parameterization scheme. Cloud fractions generated by the 

GFS model using AERI measurements as input are smaller than those generated by 

the original GFS model because observed RH values are generally less than 

simulated RH values. The results from both did not show an improvement on 

formulating more realistic low clouds. It is worth noting that condensed water vapor 

was not adequately generated near the surface even though the GFS model slightly 

overestimated the absolute amount of water vapor in the lower troposphere (see right 

plot in Figure 3.13). This means that the cloud mixing ratio as a primary predictor of 

cloudiness is not well represented near the surface in the 2008 version of the GFS 

model cloud parameterization scheme. Such problem is attributed to the shallow 

convection scheme which uses an unrealistic turbulent diffusion and to planetary 

boundary layer scheme which is optimized to dry boundary layers. Especially, the 

shallow convective scheme makes cloud condensate water vapor to be destroyed by 

increasing vertical diffusion in the cloud layers. The combined effects of the 

improper schemes on cloud simulations result in a systematic underestimation of 

low clouds (Han and Pan 2011). Therefore, the parameterization scheme rather than 

GFS input variables seems to primarily contribute to discrepancies found in cloud 

fields. Consideration of other processes is required in order to fully describe and 

understand physical processes taking place in modeled cloud systems. 
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Figure 3.13. Left panel: Comparison of cloud fractions at the SGP site from three 
different products-the GFS original output (green line), the GFS cloud product using 
AERI measurements as input (blue line), and the combined radar-lidar product 
(purple line). Right panel: Comparison of specific humidity from AERI (blue line) 
and the GFS model (green line) at the SGP site. 
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3.4. Application of Other Cloud Parameterization Scheme to the GFS model 
 
 
3.4.1. Introduction 
 
 

In previous Chapters 2-3.3, we address the problem of representing cloud 

fields in the GFS model. Model-generated cloud fields are diagnostically 

represented by connecting with atmospheric properties such as relative humidity and 

cloud water mixing ratio. This diagnostic cloud scheme is simple and successful in 

reproducing the gross features of global cloudiness but it has a limitation to generate 

stratocumulus clouds, in particular, over the eastern Pacific and Atlantic Oceans. 

The cloud water mixing ratio of the GFS model is a primary predictor of 

cloud fraction. Such variable is determined by three-dimensional advection, 

convective processes through cloud-top detrainment, grid-scale condensation, the 

rate of conversion of cloud mixing ratio to precipitation, the evaporation rate of 

cloud condensate, and the horizontal and vertical diffusion. Thus, the cloud 

parameterization scheme of the GFS model strongly depends on how well other 

parts of the model can simulate cloud water mixing ratios. However, this variable is 

not adequately represented in the lower atmosphere, particularly in regions where 

marine stratocumulus clouds are common. This finding indicates that significant 

changes to the convection and vertical diffusion schemes in the GFS cloud scheme 

are necessary in order to simulate more realistic cloudiness in low-level clouds. 

This section introduces two diagnostic cloud parameterization schemes: a 

cloud prediction scheme for the ECMWF model (Slingo 1987) and a modification of 

Slingo (1987) (Gordon 1992). Gordon (1992) implemented the modified version of 
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Slingo (1987) into the Geophysical Fluid Dynamics Laboratory (GFDL)-EP (where 

EP denotes experimental prediction) spectral atmospheric general circulation model 

(AGCM). The method used in the GFDL-EP AGCM closely resembles the study of 

Slingo (1987) but it is evolved from that one by modifying the power law 

relationship between relative humidity and threshold relative humidity and by 

modifying the parameterization of marine stratocumulus clouds. The scheme 

implemented by Gordon (1992) was an earlier version of the GFDL AGCM and a 

variant of the cloud scheme of Tiedtke (1993) was incorporated for predicting cloud 

liquid water and fraction. Currently, the GFDL AGCM operates the new cloud 

scheme which includes an addition of the air mass-based droplet number 

concentration as a third prognostic variable as well as the treatment of the prognostic 

variables such as cloud liquid water and fraction (Ming et al. 2005; Ming et al. 

2007). 

The Gordon (1992) scheme consists of three components, i.e., (i) the 

diagnostic cloud fraction; (ii) the treatment of cloud optical depth; and (iii) 

anchoring of the cloud radiative properties to the cloud optical depth. It has its roots 

in an empirical scheme of Slingo (1987), but some details of the two schemes are 

different. Relative humidity in both schemes is still a primary predictor but auxiliary 

predictors such as vertical motion, lapse rate, static stability, and convective activity 

are added. Major differences are briefly summarized between Gordon (1992) and 

Slingo (1987) as follows: 1) in the Gordon, high, middle, and low cloud fraction 

vary linearly instead of quadratically; 2) a value of threshold relative humidity is 

reduced from 0.8 to 0.7; 3) shallow convective cloud amount is computed separately.  
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An approach conducted in this section is based on the method used in the 

GFDL-EP model and is hereafter referred to as the SG scheme. The SG scheme does 

not exactly follow either Slingo (1987) or Gordon (1992), rather this employs some 

of cloud respects from both. Most of the equations for computing cloud fraction in 

the SG scheme are based upon the empirical equations of Slingo (1987) and Gordon 

(1992).  

The SG scheme is similar to the GFS cloud parameterization scheme in that 

cloudiness is determined by an empirical formulation, but a link with convective 

activity is also included. The areal cloud fraction in the SG scheme depends more on 

thermodynamical and dynamical model variables. This part carries out an 

application of the SG cloud scheme to the GFS model and figures out whether the 

SG scheme can overcome the shortcomings of the current cloud parameterization 

scheme used in the GFS model.  

 

 

 

3.4.2. Description of the SG Cloud Parameterization Scheme 
 

The height criterion of high, middle, and low clouds can vary with latitudes 

and seasons in reality but we use a fixed boundary of high clouds with having 

pressure (p) less than 350 hPa. Relative humidity is the sole predictor of cloud 

fraction for high and middle clouds and the primary predictor for low clouds. The 

optimal relative humidity-cloud fraction relationship and a default value of relative 



 

９０ 

 

humidity are sensitive to the cumulus parameterization scheme (Gordon 1992). A 

value of relative humidity threshold (hereafter referred to as RHc) and a linear 

relationship worked well as 70 % in Gordon (1992). In contrast, a quadratic 

relationship and the value of 80 % are better suited to the relaxed Arakawa-Schubert 

(RAS) cumulus parameterization employed in the GFDL-EP model because RAS 

generates a moister troposphere than that produced by Gordon (1992). Therefore, the 

default coefficients for RHc in the SG scheme are 80 % and 84 % for p < 750 hPa 

and p ≥ 750 hPa, respectively. 

The high cloud fraction, Nh, is given by 

 

Nh = 2 2
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Anvil and super anvil cirrus clouds are treated the same as other high clouds in 

terms of cloud fraction in the SG scheme. This approach was also used in the cloud 

scheme of Gordon (1992), which recognizes anvil and super anvil cirrus clouds as 

special categories of high clouds only in terms of cloud optical properties. 

 Similarly, the middle cloud fraction, Nm, is given by 
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where RHe is defined as RH*(1.0 – Ncnv) and Ncnv is the convective cloud fraction 

which is provided by the GFS model. RHe is scaled after adjusting for the 

convective cloud amount. 

Unlike other cloud parameterizations including probability distribution 

functions (PDFs), the cloud fraction calculation of Xu and Randall (1996) depends 

only on the relative humidity, the saturation specific humidity, and the cloud mixing 

ratios. Note that cloud fraction of the Xu and Randall (1996) is determined by one 

equation whereas the SG cloud scheme has different equations in calculating cloud 

fraction for different types of low clouds. Low clouds in the SG scheme are broken 

down into three types: synoptic subclass of low stratiform clouds, marine 

stratocumulus clouds, and shallow convective clouds. Cloud fraction for synoptic 

subclass of low stratiform clouds is expressed as a product of two linear functions: 

 

Nsl = A(RHe) * B(ω),                            (3.3) 

 

where the A and B functions depend only on the environmental relative humidity 

(RHe) and pressure vertical velocity (ω), respectively. Specifically,  

    

A(RHe) = 2 2
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As mentioned earlier, the default coefficients for RHc are 0.80, 0.84 for p < 750 hPa 
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and p ≥ 750 hPa, where p is the pressure. The other linear function is expressed as 

 

B(ω) = 0 1 0

1
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where ω1 = 0 and ω0 = 3.6 hPa/h (Slingo 1987). Synoptic subclass of low stratiform 

clouds are generated by strong vertical ascent in the atmosphere and are dissipated 

when there is strong vertical descent. 

The parameterization of marine stratocumulus and stratus clouds in the SG 

scheme resembles the formulation of Gordon (1992) and Slingo (1987). This scheme 

showed an improved performance associated with simulations of subtropical marine 

stratocumulus clouds. Note that RH in Eq. (3.6) is the relative humidity at the base 

of the highest contiguous inversion layer. Existence of a low-level inversion is 

ignored in the GFS model, however, consideration of the low level inversion 

contributes to enhance generation of stratocumulus clouds in the Southeast Pacific 

region by eliminating background diffusion (Sun et al. 2010). Similarly, the marine 

stratocumulus cloud parameterization is a product of two functions: 

 

Nmcl = S
p
qæ ö¶

-ç ÷¶è ø
 * B(RH),                    (3.6) 

 

where θ is the potential temperature and ∂θ/∂p is the lapse rate (K/hPa). The first 
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term in the product on the right-hand side of the equation is defined as 
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where α is 20 hPa/K and β is -1.0. The stratification criteria for marine 

stratocumulus clouds in the SG scheme is less stringent than that in the study of 

Gordon (1992), where α is 6.67 hPa/K and β is -0.667. The second term in the 

product on the right-hand side of Eq. (3.6) is expressed as 
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where the default values for RHmin and RHmax are 0.60 and 0.80, respectively 

(Gordon 1992). 

For shallow convective clouds, Nshl, the following equation is applied.  

 

Nshl = 0.2*Amax(RHe).                         (3.9) 

 

The A function is from Eq. (3.3) and Amax(RHe) is the maximum value of RHe.  
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 In summary, the low cloud fraction is determined by applying the maximum 

overlapping assumption, 

 

   Nlow = Max[Nsl, Nmcl, Nshl].                  (3.10) 

 

It is worth pointing out that all GFS results are generated using the GFS model's 

original atmospheric fields rather than running the GFS model with the SG cloud 

scheme. 

 

 
 
 
3.4.3. Results 
 
3.4.3.1. Application of the SG scheme to the GFS model 

 

 Figures 3.14-15 show how the three cloud fraction products (the product 

generated from the C-L algorithm, the original GFS cloud fraction product, and the 

product generated from the application of the SG cloud parameterization scheme to 

the GFS model) compare. In general, the newly generated GFS cloud fractions at 

different vertical levels are much more comparable with those retrieved by the C-L 

algorithm. In particular, a comparison of the low cloud fraction is remarkable. For 

high clouds during January 2007, the original GFS cloud product shows a severe 

overestimation of high cloud fraction over the eastern Pacific, South America, South 

Africa, and large-scale clouds associated with convection over the Tropics. However, 
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the high cloud fraction calculated from the SG scheme is quite similar with the 

magnitude of that retrieved by the C-L algorithm. Such results are also seen in 

middle-level clouds. The newly generated GFS cloud products have less cloud 

amounts when compared to the original GFS products for both high and middle 

clouds. The most significant improvement in cloud fraction fields occurs in low-

level clouds. The original GFS cloud simulations tend to miss marine stratocumulus 

cloud regimes over the subtropical oceans, especially along the west coast of North 

America, South America, and southern Africa (see Section 2.4.3). Misrepresentation 

of such marine stratocumulus clouds made large discrepancies with observations in 

low-level clouds. A systematic underestimation of stratocumulus clouds is one of the 

long existing problems in the GFS model. Now, the SG scheme generates such 

clouds well and produces the reasonable magnitudes of cloud fraction. The global 

distribution patterns of clouds in the new GFS cloud products show a better 

agreement and the magnitudes of cloud fraction at all levels are matched well with 

satellite retrievals. These results are also found during July. 

 It is worthy to note that cloud fractions using the SG scheme are calculated 

based on a coarser resolution than those simulated by the original GFS scheme. In 

other words, cloud fractions from the original GFS scheme are obtained from 64 

vertical layers whereas the new GFS cloud products are calculated from 21 vertical 

levels. Also, two products have a different cloud overlapping assumption. A 

maximum-random overlap is assumed in the original GFS scheme, but a maximum 

overlap assumption is used in the SG scheme.  
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Figure 3.14. Geographic distributions of monthly mean cloud fractions from the C-
L algorithm (left panels), the original GFS product (middle panels), and the results 
using the SG scheme (right panels) in January 2007. Top, middle, and bottom plots 
denote high, middle, and low clouds, respectively. 
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 Figure 3.15. Same as Figure 3.14 except for July 2007. 



 

９８ 

 

 
 Figure 3.16 compares three cloud fraction products at different vertical 

levels during January and July 2007. The products include the satellite retrievals 

based on the C-L algorithm (CL), the original GFS cloud products (GFS), and the 

product generated from the application of the SG cloud scheme to the GFS model 

(GFS_new). To better examine the global distribution patterns of clouds, all clouds 

are separated into ocean and land category. The CL, GFS, and GFS_new results are 

represented for blue, orange, and red color bars, respectively. Top (bottom) panels 

display a monthly mean cloud fraction from three different products during January 

(July) 2007.  

Clearly, high cloud fractions of the original GFS products are significantly 

overestimated over both ocean and land while the GFS_new products have about 8% 

less than the original values. However, the two modeled high cloud fractions are still 

more than the observation. The global mean value of middle-level cloud fraction 

from the CL lies between the GFS and the GFS_new results over both ocean and 

land. The GFS model simulates too much middle-level cloud fractions, but the SG 

scheme produces less them. Low cloud fractions from the GFS_new are generated 

more than the GFS as a result of the recovery of a large quantity of marine 

stratocumulus clouds. Note that the low cloud fractions from the GFS_new are 

overestimated over both ocean and land during January, but they are comparable 

with the CL results during July. Possible causes may stem from a set of α or β values 

determining a transition point in Eq. 3.7 or from inaccurate pressure vertical velocity 

information. Presumably, it implies that the same value cannot be used for both 
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January and July. Further studies are needed to verify the reasons why low cloud 

fractions from the GFS_new during January are more generated than during July. 

At the moment, based on the results outlined above only, one cannot say that 

where major flaws exist in cloud simulations of the GFS model from either cloud 

parameterization scheme or cloud overlapping assumption. However, it is learned 

that the SG cloud scheme can help form stratocumulus clouds which are destroyed 

by the original GFS cloud scheme. Consistent with the improvement in such 

stratocumulus clouds over the eastern tropical oceans, the global cloud fraction 

distributions at different vertical levels and reasonable magnitudes of cloud fraction 

are also improved with the SG cloud scheme. 
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Figure 3.16. Comparisons of monthly mean cloud fraction from three different 
products: the C-L algorithm (CL), the original GFS cloud products (GFS), and the 
SG cloud products applied to the GFS model (GFS_new) over both ocean and land. 
The blue, orange, and red colors represent for the CL, the GFS, and the GFS_new 
results. Top (bottom) panels show the results during January (July) 2007. 
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3.4.3.2. Regional Analysis of the GFS cloud fraction calculated from the SG scheme 
 
 

Figure 3.17 shows latitudinal variations of zonal-mean low cloud fraction 

from the three different products over the selected four regions as defined in the 

previous section. The global mean low cloud fraction during July 2008 increased 

from 31.57 % (the original GFS output) to 40.82 % (the GFS_new output). This 

amount is more comparable with the observed cloud fraction of 38.59 %. Note that 

the GFS_new products reveal more abundant low clouds than those produced by the 

original GFS scheme. More marine stratocumulus clouds are now generated in all 

four regions and variations in zonal-mean low cloud amounts agree well with 

patterns seen in satellite observations. Agreement is particularly remarkable for the 

Californian and Namibian regions. 

These findings support that the SG cloud scheme can produce more reasonable 

cloud fractions associated with marine stratocumulus clouds for a global scale as well 

as mitigating the overestimated high and middle-level cloud fractions generated by the 

original GFS scheme.  
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Figure 3.17. Latitudinal variations of zonal-mean low cloud fraction from three 
different cloud products for (clockwise, starting from the upper left plot) Californian, 
Canarian, Namibian, and Peruvian regions during July 2008. The blue square 
symbols, the green diamond symbols, and the red plus symbols represent results 
from the CL algorithm, the GFS model using the SG scheme, and the original GFS 
scheme, respectively. 
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3.4.3.3. Accuracy and Heidke Skill Score  
 
 

To provide a suitable measure of performance, two of the common scores 

such as accuracy and Heidke Skill Score (HSS) are calculated. An accuracy is used 

to know what fraction of the forecasts are in the correct category and has a range of 

0 to 1. This can be expressed as below 

 

Accuracy =
1

1 ( , )
K

i
n Fi Oi

N =
å ,             (3.11) 

 

where N is the total number and n(Fi,Oi) is the number of occurrences within the 

same category from both observations and forecasts.  

The HSS is one of the generalized skill score and measures the fractional 

improvement of the forecast over the standard forecast. The ‘standard forecast’ 

usually means the number of forecasts in a random situation (Marzban 1998). A 

range of HSS is from -∞ to 1. A zero value indicates no skill and a perfect forecast 

of HSS is 1. The HSS is a popular score because it is simple and relatively easy to 

compute. 
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where N(Fi) is the number of forecasts in a specific category and N(Oi) is the 

number of observations for that. The numbers of occurrence in multi-category for 

high, middle, and low clouds are given in Tables 3.3-8. For July, domain covering 

55ºS - 60ºN is only considered for HSS and accuracy calculations since no satellite 

retrievals are made beyond 55ºS. It is learned from Table 3.9 that the GFS_new 

cloud fractions show more improved accuracy and HSS values in all categories for 

both January and July. 

 

Table 3.3. Monthly mean high cloud fractions from the original GFS/the GFS with 
the SG scheme during January 2007. 

 
Observation 

 
CFR (%) 0-20 20-40 40-60 60-80 80-100 Total 

  Forecast 

0-20 13600/18580 220/1245 0/16 0/0 0/0 13820/19841 

20-40 13278/10343 3836/7086 92/1078 0/113 0/1 17206/18621 

40-60 2477/592 4223/1002 636/1301 21/820 0/7 7357/3722 

60-80 169/17 810/63 1362/83 534/44 1/0 2876/207 

80-100 53/0 310/3 400/12 427/5 7/0 1197/20 

Total 29577/29532 9399/9399 2490/2490 982/982 8/8 42456/42411 

 

Table 3.4. As in Table 3.3, but for middle cloud fractions. 

 
Observation 

 
CFR (%) 0-20 20-40 40-60 60-80 80-100 Total 

  Forecast 

0-20 18028/23004 916/4187 183/240 60/84 6/14 19193/27529 

20-40 7181/2119 7618/7871 457/781 63/50 18/10 15337/10831 

40-60 980/102 4288/1218 891/693 23/16 6/6 6188/2035 

60-80 42/1 486/30 238/68 17/14 0/0 783/113 

80-100 3/0 16/0 29/0 2/0 0/0 50/0 

Total 26234/25226 13324/13306 1798/1782 165/164 30/30 41551/40508 

 



 

１０５ 

 

Table 3.5. As in Table 3.3, but for low cloud fractions. 

 
Observation 

 
CFR (%) 0-20 20-40 40-60 60-80 80-100 Total 

  Forecast 

0-20 3110/2317 5275/1202 1848/279 271/18 30/0 10534/3816 

20-40 711/1127 6451/5431 4668/2648 796/322 62/5 12688/9533 

40-60 280/512 2200/6630 4987/9032 1191/1281 15/28 8673/17483 

60-80 475/302 1293/1448 5259/5558 1002/1634 11/23 8040/8965 

80-100 298/670 532/1030 1253/497 335/340 27/89 2445/2626 

Total 4874/4928 15751/15741 18015/18014 3595/3595 145/145 42380/42423 

 

 

Table 3.6. Monthly mean high cloud fractions from the original GFS/the GFS with 
the SG scheme during July 2007. 

 
Observation 

 
CFR (%) 0-20 20-40 40-60 60-80 80-100 Total 

  Forecast 

0-20 11403/13831 71/482 1/37 0/0 0/0 11475/14320 

20-40 10786/10057 2456/6151 22/591 0/44 0/0 13264/16843 

40-60 2632/903 4922/2475 736/1831 34/637 0/13 8324/5859 

60-80 299/23 1589/149 1538/314 394/251 3/12 3823/749 

80-100 43/0 219/0 446/0 504/0 22/0 1234/0 

Total 25163/24814 9257/9257 2743/2743 932/932 25/25 38120/37771 

 

 

Table 3.7. As in Table 3.6, but for middle cloud fractions. 

 
Observation 

 
CFR (%) 0-20 20-40 40-60 60-80 80-100 Total 

  Forecast 

0-20 20659/23947 850/4509 22/112 0/1 0/0 21531/28569 

20-40 6376/1665 5830/4289 120/342 1/8 0/0 12327/6304 

40-60 748/15 2184/185 330/75 9/1 0/0 3271/276 

60-80 13/0 142/8 58/7 0/0 0/0 213/15 

80-100 0/0 9/0 6/0 0/0 0/0 15/0 

Total 27796/25627 9015/8991 536/536 10/10 0/0 37357/35164 
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Table 3.8. As in Table 3.6, but for low cloud fractions. 

 
Observation 

 
CFR (%) 0-20 20-40 40-60 60-80 80-100 Total 

  Forecast 

0-20 5650/3223 7235/1442 2094/272 987/38 187/13 16153/4988 

20-40 480/2019 4454/6782 4642/4550 1624/532 156/12 11356/13895 

40-60 48/1044 1093/4469 3853/6091 2060/2204 211/47 7265/13855 

60-80 29/50 244/373 1530/1205 963/2128 127/424 2893/4180 

80-100 20/5 44/25 197/220 107/874 6/216 374/1340 

Total 6227/6341 13070/13091 12316/12338 5741/5776 1687/712 38041/38258 

 

 

 
Table 3.9. HSS score and accuracy from the original GFS cloud fractions and the 
GFS_new cloud fractions for high, middle, and low clouds during two months. 

  January July 

  GFS GFS_new GFS GFS_new 

High 
Accuracy 0.44 0.64 0.39 0.58 

HSS 0.16 0.36 0.13 0.34 

Middle 
Accuracy 0.64 0.78 0.72 0.81 

HSS 0.38 0.55 0.42 0.46 

Low 
Accuracy 0.37 0.44 0.39 0.48 

HSS 0.16 0.21 0.19 0.28 
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3.5. Summary 
 

Understanding low cloud properties and their spatial-temporal variations is 

crucial for studying global climate change. One of the key issues for the impact of 

low clouds on the Earth’s radiation budget is how to represent their sensitivity to the 

radiation field and quantify their effect on the cloud feedback in GCMs. 

Meteorological satellites make it possible to evaluate cloud parameterization 

schemes and validate model-simulated products by providing a wealth of 

information regarding the global distribution of cloud properties and atmospheric 

variables. 

This Chapter examined low cloud fractions, the impact of clouds on the 

radiation field, meteorological variables, and the cloud parameterization scheme of 

the GFS model in comparison with satellite measurements and ground-based 

observations in July of 2008. The GFS model generated a reasonable distribution of 

low clouds but huge discrepancies in low cloud amounts are found over the eastern 

tropical oceans. The MODIS standard product (MYD06) and a new MODIS-based 

product retrieved by the CL algorithm show more marine stratus clouds than the 

GFS model simulations. An underestimation of such marine stratus clouds leads to 

more outgoing longwave radiation and less shortwave radiation at the TOA over 

those regions. To diagnose the causes of the bias in simulated cloud fractions, some 

key variables used in the cloud parameterization scheme are compared with satellite 

observations and in-situ measurements over the selected marine stratus cloud 

regimes. The GFS temperature field agrees well with AIRS observations at different 
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vertical levels, while the difference becomes somewhat larger close to the surface. 

The evaluation for GFS RH field is worse than that for temperature and the GFS RH 

simulations both in the lower and upper troposphere tend to be overestimated than 

satellite observations in all the regions.  

The GFS cloud fractions and input variables are also examined by comparing 

ground-based measurements with a high temporal resolution. The simulated RH 

values have a wet bias in the lower atmosphere, but its temperature field shows a 

reasonable resemblance to the measurements in the entire vertical levels. These 

results imply that the deficiency in simulating condensed water vapor amount rather 

than temperature variable is a potential contributor to the discrepancies of low cloud 

fractions. The 2008 version of the GFS model in generating low clouds cannot 

match cloud fractions retrieved from satellites. Such findings are expected to help 

improve the inherent problems of the GFS cloud parameterization scheme, 

suggesting insights into the method in determining low cloud fractions. 

To improve simulations of low-level clouds, an experiment is performed by 

using the GFS model’s original atmospheric fields with the SG (based on Slingo 

(1987) and Gordon (1992)) cloud parameterization scheme. Application of the SG 

scheme to the GFS model generated a large quantity of marine stratocumulus clouds 

over the eastern tropical oceans, as well as low cloud amounts over other regions 

around the world. Latitudinal variations in zonal mean low cloud amounts agree 

well with the patterns seen in satellite observations. Such results are expected to help 

improve the inherent problems of the GFS cloud parameterization scheme and to 

gain insights into the method in determining low cloud fractions. 
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Chapter 4 : A test of the exponential random overlap scheme 
 
 
4.1. Introduction 

 

Cloud vertical structure plays a critically important role in the radiative 

energy budget (Morcrette and Fouquart 1986; Tian and Curry 1989; Rossow and 

Zhang 1995; Barker et al. 1999; Collins 2001) and has an impact on the vertical 

heating rate in general circulation models (GCMs) (Wang and Rossow 1998; Chen 

et al. 2000). For a given set of cloud amounts in model layers, the cloud fraction of 

the entire atmospheric column may differ substantially depending on cloud overlap 

assumption used in simulations (Morcrette and Jakob 2000; Collins 2001). GCMs 

generally parameterize cloud fraction in a given model grid since the horizontal 

resolution of GCMs is much coarser than the scale of clouds. Large uncertainties 

may be incurred in the calculations of radiaitve fluxes because of discrepancies in 

cloud fraction are determined independently at every vertical level in GCMs. Thus, 

climate changes simulated by GCMs are quite sensitive to the treatment of the cloud 

overlap assumption (Liang and Wang 1997; Liang and Wu 2005). Validation of 

several cloud overlap assumptions requires a good knowledge of cloud vertical 

structure as obtained from space using passive (Chang and Li 2005) and active 

(Dessler et al. 2006; Barker 2008; Mace et al. 2009) sensors, as well as ground 

(Clothiaux et al. 2000; Oreopoulos and Norris 2011) measurements. 

In general, there are four different cloud overlap assumptions: maximum, 

random, maximum-random, and minimum overlap. Figure 4.1 (from Hogan and 
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Illingworth 2000) illustrates three different cloud overlap assumptions widely used in 

GCMs. Each overlap assumption can be described as follows. Maximum overlap 

describes the situation where cloud layers are overlapped as much as possible; 

whereas the opposite is the case for the minimum overlap. A random overlap 

assumes that horizontal cloud distributions from different vertical levels are 

independent.  

A previous study showed the important effects of these different assumptions 

on global mean cloud fractions using the European Centre for Medium-Range 

Weather Forecasts (ECMWF) model (Morcrette and Jakob 2000). They found that 

the global mean cloud fraction is 71.4% when a random overlap is used. However, it 

would be 60.9% in the case of maximum overlap. Barker et al. (1999) reported large 

impacts of these assumptions on calculation of solar flux with instantaneous bias 

errors on the order of several hundred W/m2. 
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Figure 4.1. A schematic illustrating the three overlap assumptions that are 
commonly made in GCMs. The dotted vertical lines denote total cloud fraction 
(from Hogan and Illingworth 2000). 
 
 
 
 

Numerous operational weather and climate models employ the maximum-

random overlap (MRO) assumption (Barker et al. 2003). The MRO assumes that 

vertically continuous cloud layers are maximally overlapped while cloud layers 

separated by a clear layer are randomly overlapped (Geleyn and Hollingsworth 

1979). A study by Tian and Curry (1989) quantitatively evaluated the MRO method 

with the 15-level U.S Air Force 3D Nephanalysis over the North Atlantic Ocean. 

They showed that the MRO assumption is reasonable in describing realistic 

characteristics of cloud vertical structure.  

However, the MRO assumption has some limitations in explaining cloud 

overlap well because actual cloud overlap in the atmosphere is much more complex. 
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Hogan and Illingworth (2000) evaluated the MRO assumption against the time series 

of vertically-pointing millimeter-wave cloud radar profiles for three winter months at 

Chilbolton in the United Kingdom and found that clouds were overlapped randomly 

for cloud layers separated by at least one layer of clear air, but for vertically 

contiguous cloud layers, clouds were overlapped maximally only when the cloud 

layers were close to each other. In other words, the degree of correlation between cloud 

layers is determined by the vertical separation of the layers. 

Hogan and Illingworth (2000) and Bergman and Rasch (2002) suggested that 

the MRO assumption include an overlap parameter, which is a weighted factor 

depending on the de-correlation length for overlapping clouds and layer altitudes. In 

this overlap assumption, the cloud overlap lies somewhere between maximum and 

random. It is called an ‘exponential random overlap’ (hereafter referred to as ERO). 

A vertically-projected cloud fraction of two layers (Ctrue) is defined as a linear 

combination of maximum and random overlap. Given 

 

Cmax = Max(C1,C2),                                     (4.1) 

Cran = C1 + C2 – C1*C2,                                (4.2) 

Cmin = Min(1, C1 + C2),                                 (4.3) 

 

, where C1 and C2 are cloud fractions in two layers at different altitudes, 

 

Ctrue = αCmax + (1 – α)Cran.                               (4.4) 
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The value of α determines the degree of correlation between cloud layers. When α is 

zero, the overlap is random and when α is 1, a maximum overlap is implied. The 

value of α is defined as  

exp( )z
Lcf

a -D
=                                     (4.5) 

and has a value between zero and one. 

The overlap parameter is described in terms of a de-correlation length (Lcf) 

and the separation distance between the two layers (Δz). The value of Lcf is related 

to the vertical resolution and horizontal domain size and varies with season and 

latitude.  

A number of studies have suggested values for the weighting factor 

(Bergman and Rasch 2002; Mace and Benson-Troth 2002; Oreopoulos and 

Khairoutdinov 2003; Pincus et al. 2005; Liang and Wu 2005; Naud et al. 2008; 

Barker 2008). Mace and Benson-Troth (2002) used millimeter radar data collected 

over multiple years from the four Atmospheric Radiation Measurement (ARM) 

Climate Research Facility (ACRF) sites and found that the value of Lcf varies with 

location and season. An increase in convective activities leads to more maximally- 

overlapped clouds with larger Lcf values. Cloud overlap results using the ERO 

assumption in cloud-resolving models also agreed well with observations 

(Oreopoulos and Khairoutdinov 2003). 

Other studies have made considerable attempts at developing an improved 

parameterization of cloud overlap within models. Using a combination of cloud-

resolving model simulations and ARM measurements with a mosaic approach, 
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Liang and Wu (2005) demonstrated that this approach can explain the characteristics 

of cloud overlap associated with different cloud regimes (i.e., convective, anvil, and 

stratiform clouds) and provided useful results to improve parameterizations for sub-

grid cloud-radiation interactions. Pincus et al. (2005) used a month-long cloud-

resolving model simulation and also found that overlap assumptions can be strongly 

affected by the presence of convection and wind shear. They showed that convective 

clouds are associated with large values of Lcf, while wind shear decreases the 

magnitude of Lcf.  

Similarly, Naud et al. (2008) pointed out that atmospheric dynamics has a 

large impact on how cloud layers are overlapped, based upon the use of active 

remote sensing cloud layer (ARSCL) data in combination with reanalysis data from 

the National Centers for Environmental Prediction (NCEP). Vertical velocities 

derived from convective activities play a role in preserving maximum overlap for 

cloud layers with long separation distances. 

It has been difficult to implement such findings into global models because 

the studies mentioned above only focused on a limited number of ground stations. 

Because the value of Lcf varies with location, season, and the background 

atmospheric environment, the most important task involves determining the 

optimum value of Lcf around the world. Thanks to space-borne cloud profiles 

observed from active sensors on the CloudSat and CALIPSO platforms, a closer 

view of clouds in the atmosphere on a global scale can be made. Barker (2008) 

performed a global study of cloud overlap properties using merged CloudSat and 

CALIPSO data. He found that cloud overlap is characterized by a vertically constant 
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value of Lcf and that the global median value of Lcf is about 2 km. Recently, Shonk 

et al. (2010) proposed a simple linear relationship between de-correlation lengths 

and latitudes based on the studies of Hogan and Illingworth (2000) and Mace and 

Benson-Troth (2002) (see Figure 4.2). They also compared such a linear fit with a 

series of Lcf values retrieved from CloudSat and CALIPSO. The linear fit is 

expressed as a relationship between Lcf in kilometers and the absolute latitude, Φ, in 

degrees (see equation 4.6). The Lcf values calculated from a smooth version of this 

simple equation were recently implemented into the ECMWF model. 

 

2.899 0.02759*Lcf f= -                           (4.6) 

 

Figure 4.2. A simple linear fit of Lcf as a function of latitude based on the studies of 
Hogan and Illingworth (2000) and Mace and Benson-Troth (2002). The fitted line is 
shown as black solid, and the dashed line shows a series of de-correlation heights 
calculated using data from CloudSat and CALIPSO (from Shonk et al. 2010). 
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The primary purpose of this section is to test an application of this equation 

to the GFS model and to see how successfully this simple equation explains the 

characteristics of cloud vertical structure on the changes in cloud fraction at different 

vertical levels. 

 

 

4.2. Data and methodology 

 Data collected from the 94-GHz cloud-profiling radar (CPR) onboard the 

CloudSat satellite and the dual-wavelength lidar onboard the CALIPSO satellite are 

used to illustrate global cloud overlap during July 2007. There are 37,081 profiles 

per orbit and the footprint is 1.4 km wide, 1.1 km along-track, and 0.24 km in the 

vertical. Here, some oversampling is encountered because the radar footprint is 

taken as 1-km along-track. The lowest 1 to 3 bins from the surface are not 

considered because the data near the surface may be contaminated by ground clutter. 

CPR cloud mask and radar reflectivity variables from the 2B-GEOPROF product 

and the cloud fraction field from the 2B-GEOPROF-LIDAR product are utilized in 

this study. Large CPR cloud mask field values indicate the likelihood of cloud, as 

summarized in Table 4.1. 
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Table 4.1. Description of CPR cloud mask values. 
Value Definition 

-9 Missing data 

5 Signal detected but likely ground clutter 

6-10 Very weak signal echo 

20 Weak detection found using along-track integration 

30-40 Good to strong echo 

 

 

For this study, values greater than 20 in the CPR cloud mask field are selected to 

reduce the probability of false detections. CPR radar reflectivities greater than -30 

dBZ are considered because CloudSat’s minimum detectable signal is -30 dBZ 

(Stephens et al. 2002). The data screening for cloud detection consists of a sequence 

of tests for three conditions. This approach is very similar to that described by 

Barker (2008). The tests are 

 

_ _ 20
_ 30

CPR cloud mask
radar reflectivity dBZ

³
³ -

  

Or 

          

_ _ 20 _ _ _ 99%
_ 30

CPR cloud mask and cloud fraction
radar reflectivity

< ³
³ -     .   

(4.7), 

 

If either set of criteria are satisfied, the bins are considered as cloudy.  
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 A stochastic sub-grid scale cloudy column generator developed by Räisänen 

et al. (2004) was designed to enable GCMs to use the Monte Carlo Independent 

Column Approximation (McICA) (Pincus et al. 2003). The generator produces sub-

grid-scale columns and generates synthetic cloud fields by utilizing profiles of cloud 

fraction derived from the corresponding observed ones. Here, it is used to compute a 

domain’s cloud fractions corresponding to observation using 50,000 sub-columns. 

This tool is used for performing radiative transfer calculations in inhomogeneous 

clouds (Barker and Räisänen 2005). Here, the method to solve for Lcf is that 

described in Brent (1973), which is an effective tool when all values of the function 

are known and the roots are one-dimensional. The calculated Lcf values have a top 

limit of 20 km and a bottom limit of 0.05 km. All applications of the generator have 

a cross-section in length of 500 km because this length can provide adequate 

sampling for typical GCM grid size (Astin and Di Girolamo 1999). This method is a 

fast and efficient way to find Lcf values. The number of iterations for convergence is 

typically 4 to 8 then Lcf values are finally returned as total cloud fractions after 

stochastic fluctuations. Output files per each sample include one Lcf, the observed 

layer cloud fraction, the downward cumulative cloud fraction based on observations, 

the generated layer cloud fraction, and the generated accumulated cloud fraction. 
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Figure 4.3. Blue triangles show CloudSat and CALIPSO day-time orbits. This study 
selects only day-time orbits during July 2007. Red circles represent each sample size 
of 500-km cross-sectional length. 
 
 

 

4.3. Results 

4.3.1. Characteristics of global cloud overlap 

 Figure 4.4 shows zonal mean and median values of Lcf for 500-km cross-

sectional lengths. Mean Lcf can be influenced by a small number of large values, so 

median values of Lcf are also plotted. Superimposed on this figure is the simple 

linear function suggested by Shonk et al. (2010). Two features are seen. First, mean 

and median values of Lcf display almost identical patterns with respect to latitude of 

10°N intervals and the mean values of Lcf are always greater than median values of 

Lcf with approximately 1-km differences except for around 60°S. Second, the 

simple linear fit has a maximum value of Lcf at 0°N which then monotonically 
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decreases toward high latitudes in both hemispheres. However, a series of Lcf 

calculated using the Brent (1973) method have a maximum value of Lcf at 10°N 

presumably due to the ITCZ; this is related to the movement of the Sun during 

summertime. These values decrease between 0° and 20°N but gradually increase 

toward high latitudes, showing a more maximally overlapped situation than that 

suggested by the simple linear fit. Such an offset pattern in subtropical regions is 

remarkable. The inclusion of precipitation in Lcf calculations may explain such a 

difference. Barker (2008) found that precipitation can cause an increase in Lcf by 

about 0.5 km. Lcf values derived from surface sites in previous studies did not 

include precipitation; in this study, we did not eliminate cases where precipitation 

was present.  

 

 

Figure 4.4. Effective Lcf values as a function of latitude for July 2007. The black 
solid line is a simple linear fit suggested by Shonk et al. (2010) and the red and blue 
dots show mean and median values of Lcf, respectively. 
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 Figure 4.5 illustrates how median values of Lcf change as a function of total 

cloud fraction during July 2007. The smallest median values of Lcf seem to be 

associated with small total cloud fractions (~0.1), while the largest median values of 

Lcf tend to occur when the total cloud fraction is between 0.6-0.8. As total cloud 

fraction becomes larger, median values of Lcf similarly increase but then decrease 

before converging at 1.2 km-1.9 km.  

Data used in this study are grouped into six zonal bands. Presumably, 

tropical regions have large Lcf values because deep convective clouds well- 

organized in vertically continuous layers are dominant over those regions. However, 

Figure 4.5 shows that median values of Lcf for extra-tropical areas are greater than 

those for tropical regions. We attribute this to the effect of multi-layered clouds. C-C 

satellites show that dual-layer clouds occur more frequently over the ITCZ, and 

relatively less frequently at middle or high latitudes (see Figure 2.2). Thin high 

clouds and low-level clouds are usually decoupled, which can result in smaller 

median values of Lcf in the Tropics. 
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Figure 4.5. Median values of Lcf as a function of total cloud fraction for six zonal 
bands during July 2007.  
 
 
  

Characteristics of the calculated median Lcf based on observed clouds vary 

widely depending on location, as shown in Figure 4.6. It does not appear to depend 

greatly on latitude. This finding is quite different from that suggested by Shonk et al. 

(2010). Their simple linear fit based on data from five sites does not take into 

account the presence of convection or atmospheric conditions. Figure 4.6 suggests 

that vertical motion such as convection and atmospheric state rather than latitude 

should be addressed to explain the variation in Lcf. However, it is not easy to 

differentiate between specific cloud types in observations. CloudSat provides cloud 

profiles consisting of 125 vertical bins, however, several different cloud types are 
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mixed within each profile. Our method determines only one value of Lcf for each 

500-km cross-sectional sample and various cloud types can exist vertically and 

horizontally within each sample. In contrast, most models directly generate cloud 

fractions associated with different cloud regimes. This means that the cloud overlap 

in models can be applied separately to each cloud category. Further studies are 

required to elucidate the characteristics of Lcf and to develop applications for both 

satellite observational and modeling communities.  

 

 
 
Figure 4.6. Geographic distributions of mean (left) and median (right) values of Lcf 
using a stochastic cloud generator from C-C data collected during July 2007.  
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4.3.2. Cloud fraction comparisons 

 
  Figure 4.7 shows the comparison of cloud fractions derived from different 

sources of Lcf. Overall, cloud fractions derived from a simple linear fit are slightly 

overestimated than those computed from Lcf values based on observations. Although 

the values of Lcf are quite different, cloud fractions derived from the two are 

remarkably correlated (R2=0.98). Mean differences are calculated as cloud fractions 

derived from Lcf values based on observations minus those from a simple linear fit. 

For the high cloud category, cirrus and convective clouds are more pronounced in 

the upper part of the troposphere. Levels in the high zone are mostly occupied by 

clouds, which results in an increase in correlation length scale. So, when the high 

cloud fraction is computed from a grid box, estimates of Lcf do not have much 

effect on cloud fractions. However, this effect in the lower atmosphere is less 

sensitive to the strength of convection (Pincus et al. 2005). This is evident when two 

kinds of Lcf are separately applied to low-level cloud layers; points are then broadly 

scattered.  
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Figure 4.7. Comparison of cloud fractions derived from a simple linear fit against 
those with Lcf based on observations for high clouds (upper left), middle clouds 
(upper right), and low clouds (bottom center) during July 2007. 
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As mentioned earlier, a goal of this study is to diagnose cloud properties 

simulated by the GFS model and to suggest where improvements can be made. 

Testing the ERO assumption can be a tool used to generate more realistic cloud 

distributions. Figure 4.8 compares cloud fractions at different vertical levels from 

both the original GFS cloud product and through use of Lcf based on observations. 

High-level cloud fractions from the original GFS model are overestimated compared 

to observations, but those using Lcf mitigate such discrepancies. Middle-level cloud 

fractions are similar in terms of location and magnitude. For low-level clouds, the 

most significant deficiency is that the GFS model misses marine stratocumulus 

clouds over eastern tropical oceans and generates more boundary layer clouds over 

interior continents at high latitudes; this is not changed when using different overlap 

schemes. Using Lcf in computing cloud fractions makes cloud fractions smaller. We 

attribute this to different vertical resolutions. The original GFS model simulates 

cloud fractions at 64 vertical levels and outputs high, middle, and low-level cloud 

fractions after applying the MRO assumption. The ERO experiment is performed 

with model standard outputs at 21 vertical levels rather than implementing the ERO 

assumption into the GFS model. However, note that cloud fractions calculated from 

the SG cloud scheme showed quite better results and are well comparable with 

observational results despite a use of the same GFS model outputs used in the ERO 

analysis. Therefore, at this point, we conclude that discrepancies found in cloud 

fields arise mainly from an improper cloud parameterization scheme used in the 

GFS model.  
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Figure 4.8. Comparison of cloud fractions derived from the original GFS model 
(right) and those with Lcf based on observations (left) for high clouds (upper panels), 
middle clouds (middle panels), and low clouds (bottom panels) during July 2007. 
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4.4. Summary 

 A consideration of cloud overlap assumptions in GCMs is critical and 

essential because cloud-scale dynamics are not fully resolved by models. Overlap 

assumptions determine column-integrated cloud fractions within a grid box, which 

provide the information needed to compute radiative fluxes and heating rates. 

Among typical cloud overlap assumptions, MRO assumption is widely employed by 

many weather forecasting and climate models. However, the MRO assumption has 

some limitations in describing a realistic cloud vertical structure well as pointed out 

by previous studies.  

 Hogan and Illingworth (2000) found that vertically continuous cloud layers 

are not generally maximally overlapped. Rather, cloud overlap tends to change from 

maximal overlap to random overlap as the vertical separation between cloud layers 

increases. This can be expressed as a linear combination of maximum and random 

overlap with an overlap parameter depending on vertical separation. One may use a 

fixed Lcf between every pair of cloud layers. However, radar observations at 

different locations around the world and cloud-resolving models with a ‘‘super-

parameterization’’ (Räisänen et al. 2004) show that Lcf values vary with location, 

season, state of the atmosphere and in particular, cloud regime. This finding implies 

that cloud overlap needs to be parameterized because a unique overlap assumption 

does not work well.  

Recently, a simple linear fit between Lcf and latitude derived from two 

previous studies was suggested by Shonk et al. (2010). This study tested a simple 

linear fit to the GFS model and evaluated the soundness of the relationship through 
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comparisons with Lcf values based on observations. Results show that the pattern of 

zonal Lcf values from a simple linear fit is quite different from that of Lcf values 

using the Brent (1973) method. The former has a maximum value of Lcf at 0°N then 

monotonically decreases toward high latitudes in both hemispheres while the latter 

decreases between 0° and 20°N but then gradually increases toward high latitudes, 

depicting a more maximally overlapped scenario. Such an offset pattern in 

subtropical regions is notable. 

For median Lcf values as a function of total cloud fraction, as total cloud 

fraction becomes larger, median values of Lcf similarly increase then decrease to 1.2 

km - 1.9 km. Median values of Lcf are most sensitive in mid-range of cloud fraction 

than in near-clear or overcast conditions. Unlike a simple linear fit suggested by 

Shonk et al. (2010), the distribution of median Lcf values calculated from observed 

clouds do not show much dependence on latitude. This suggests that other physics, 

such as convection and cloud formation mechanism rather than simply latitude, 

should be considered when explaining how Lcf behaves. Although Lcf values may 

differ between the two approaches, cloud fractions derived from these values agree 

remarkably well. High cloud fractions are not as sensitive to Lcf, but low cloud 

fractions are. This can be attributed to the effect of convection on de-correlation 

length scales. Convection is associated with greater vertical coherence and this 

generates larger Lcf values; this effect is weaker in the lower atmosphere. 

Results shown here can help understand Lcf characteristics and its 

dependence on location and total cloud fraction. More consideration of the physical 

basis of clouds and of different cloud regimes should be taken into account when 
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addressing realistic cloud distributions within a model grid box. In addition, an 

accurate grid-mean cloud state profile such as cloud liquid, ice water and cloud 

fraction is required in order to represent an improved parameterization of the scale 

length in the context of a large-scale model. 
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Chapter 5 : Summary and Future Work 
 
 
5.1. Summary of the thesis 
 

Clouds are one of the most critical regulators in weather and climate systems. 

Their importance in controlling the Earth’s radiative energy and global temperature 

has been recognized for a long time. However, the knowledge of clouds and cloud 

processes has not been fully understood because clouds interact with other 

atmospheric components in many ways. Clouds in weather forecasting and climate 

models are represented through cloud parameterization scheme and such processes 

result in large sources of uncertainty due to insufficient understanding of the vertical 

structure of clouds and cloud horizontal inhomogeneity. Numerous studies have 

made considerable efforts to improve the representation of clouds and to make 

progress on this issue. More reliable cloud observation and representation of clouds 

is still one of the active research issues to be resolved in both observation and model 

communities. 

 In this study, an evaluation of NCEP GFS cloud properties using a number 

of space-borne observational datasets is a main objective. The various cloud 

parameters and meteorological variables simulated by the GFS model are compared 

with a large array of cloud variables retrieved independently from different sensors. 

Synthetic analyses with regard to cloud products and the soundness of the cloud 

parameterization scheme were presented to eventually improve the performance of 

the GFS model. The frequencies of clouds in multi-layers, cloud fraction and 

thickness, cloud optical depth (COD), liquid water path (LWP), ice water path 



 

１３２ 

 

(IWP), and cloud-top and base heights of the lowest cloud layers are retrieved from 

a suite of satellite sensors aboard the A-Train sensors, including cloud products from 

Moderate Resolution Imaging Spectroradiometer (MODIS), CloudSat, and 

CloudSat-the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

(CALIPSO), and the atmospheric profiles of temperature and relative humidity (RH) 

from the Atmospheric InfraRed Sounder (AIRS), longwave/shortwave fluxes at the 

top-of-the-atmosphere (TOA) from the Clouds and Earth’s Radiant Energy System 

(CERES). In addition, ground-based measurements are also employed at the 

Southern Great Plains (SGP) site operated by the Atmospheric Radiation 

Measurement (ARM) program including the temperature and water vapor profiles 

from the Atmospheric Emitted Radiance Interferometer (AERI), cloud products 

from the combined millimeter wavelength cloud radar (MMCR)-micropulse lidar 

(MPL) observations. Two global cloud products are derived from the same MODIS 

data but using different algorithms in this study: 1) the MODIS standard/official 

algorithm, 2) the algorithm of Chang and Li (2005a). The latter algorithm can 

identify and retrieve individual cloud quantities for overlapped thin cirrus clouds 

over thick water clouds. As a result, 10 – 20 % more low clouds underneath high 

clouds in the tropical and mid-latitude storm track regions are identified when 

compared to the MODIS algorithm products (Chang and Li 2005b). The estimate of 

total low clouds retrieved from the C-L algorithm over the globe matches closely 

with space-borne lidar-based retrievals. 

The GFS model captures well the spatial distributions of hydrometeors, 

which bear a reasonable distribution to those seen from satellite retrievals, although 
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large differences exist in magnitude in different layers. The GFS model tends to 

simulate more high, middle-level clouds, and interior continental low-level clouds 

but less low-level marine stratocumulus clouds, leading to an overall severe 

overestimation of high and mid-level clouds and an underestimation of low clouds. 

This results in large discrepancies in the global distributions of low clouds. Optically 

thick clouds in deep convective cloud regimes are overproduced whereas optically 

thin or intermediate clouds are underestimated by the GFS model. This finding 

shows a rather uniform distribution of clouds throughout the atmosphere and is 

clearly different from the distinct bi-modal distributions of cloud tops generated by 

the algorithm of Chang and Li. GFS-modeled LWP distributions are similar with 

satellite retrievals but the magnitudes are less. IWP distributions generated by the 

GFS model have a better agreement with observations.  

To understand the causes for the large discrepancies in low cloud 

distributions between the model and observations, both input parameters and the 

model cloud parameterization scheme are investigated using satellite retrievals of 

temperature and humidity profiles. They are found to partially account for the poor 

simulation of low-level clouds. In addition, to investigate the causes of the 

discrepancies in marine stratocumulus cloud decks, four areas along the west coast 

of America and Africa are selected. Regional analyses reinforce the findings that the 

GFS model substantially underestimates the amount of stratocumulus clouds in all 

regions and this result causes less upward shortwave radiation and more outgoing 

longwave radiation than that measured by CERES at the TOA. As a result, net 

radiation at the TOA from CERES and the model has opposite signs, emphasizing 
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the impact of clouds on global net radiation. 

The GFS temperature field mostly agrees well with AIRS observations and 

AERI measurements at different vertical levels but their differences become 

somewhat larger close to the surface. GFS RH simulations in the lower and upper 

troposphere tend to be overestimated against the AIRS retrievals and AERI 

measurements for both global scales and the selected four regions. The comparison 

reveals that condensed water vapor is not adequately generated near the surface even 

though the GFS model slightly overestimates the absolute amount of water vapor in 

the lower troposphere. Such problem is also found in a previous study and is 

attributed to the shallow convection scheme, which makes cloud condensate water 

vapor to be destroyed by increasing vertical diffusion in the cloud layers (Han and 

Pan 2011). 

Therefore, it does not help resolve considerable discrepancies in low cloud 

amounts if cloud water mixing ratios are used as a primary predictor of cloudiness in 

the GFS cloud scheme. A diagnostic cloud parameterization scheme based on Slingo 

(1987) and Gordon (1992) (i.e., the SG scheme) is applied to the GFS model. This 

scheme is similar to the GFS cloud parameterization scheme in that cloudiness is 

determined by an empirical formulation, but a link with convective activity is also 

included. The areal cloud fraction in the scheme depends more on thermodynamical 

and dynamical variables.  

The results of cloud fractions calculated from the SG scheme show 

considerable improvements showing much less high and middle-level clouds and 

more low clouds than the original GFS cloud products. The SG cloud scheme 
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generates a large quantity of marine stratocumulus clouds over the eastern tropical 

oceans, as well as low cloud amounts over other regions around the world. 

With respect to cloud biases, an evaluation of the cloud overlapping 

assumption used in the GFS model and a test of exponential random overlap 

assumption are performed. Many weather forecasting and climate models employ a 

maximum-random overlap (MRO) assumption. However, the MRO assumption has 

some limitations in describing a realistic cloud vertical structure well. Hogan and 

Illingworth (2000) proposed an exponential random overlap (ERO) assumption in 

which cloud overlap tends to change from maximal overlap to random overlap as 

vertical separations are increased. The ERO assumption uses an overlap parameter, 

which is described by a decorrelation length (Lcf) and the separation distance of the 

two layers. The value of Lcf is related to the vertical resolution and horizontal 

domain size and varies with seasons and latitudes. Recently, a simple linear 

relationship between decorrelation lengths and the absolute latitudes is suggested by 

Shonk et al. (2010). Data collected from CloudSat and CALIPSO satellites are 

utilized to illustrate a global feature of cloud overlap using a stochastic cloud 

generator and Brent’s method (Brent 1973). 

The results show that the patterns of Lcf values from a simple linear fit are 

quite different from those retrieved from observations. Lcf values do not depend 

much on latitudes. This suggests that other physics such as convection and cloud 

formation mechanism rather than a latitudinal relationship should be considered to 

explain the characteristic of Lcf. 

In conclusion, the inter-comparisons presented in this study reveal 
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considerable discrepancies in cloud fields which are related to misrepresentation of 

cloud water mixing ratios in the lower troposphere and overestimation of RH 

simulations as cloud input data. These shortcomings of the GFS model in simulating 

clouds can be fairly overcome by applying the SG cloud scheme. Such fundamental 

challenges emphasize the urgency of making more modifications in the simulation 

of cloud processes. 

 

 
 
5.2. Suggestions for Future Work 
 

 In the previous sections, we discussed the evaluation of cloud properties 

simulated by the 2007 and 2008 operational version of the GFS model. A new 

physics package related to convection and shallow convection schemes is 

incorporated into the GFS model since July 2010. Based on advanced physical 

parameterizations of the shallow convective scheme, an overall improvement is 

found in the forecasts of vector wind, hurricane tracks, continental US precipitation, 

and more simulations of stratocumulus clouds over the eastern Pacific and Atlantic 

oceans. The new shallow convection scheme can represent the physical processes of 

shallow convection by using a bulk mass-flux parameterization and removing 

unrealistic diffusion of heat and moisture (Han and Pan 2011). 

 Modifications of the GFS cloud fraction in the updated GFS version are as 

follows: 1) the criterion for high clouds is changed from 350 hPa to 400 hPa; 2) low 

clouds are defined when pressure is greater than 650 hPa; 3) cloud fraction is 
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calculated from Xu and Randall (1996), but empirical coefficients of 0.25, 2000, and 

0.25 are replaced with the values of 0.25, 100, and 0.49, respectively. The revision 

of the shallow convective and boundary layer parameterization schemes 

accompanies considerable changes in other parts of the model such as vertical 

diffusion, relative humidity, and cloud water mixing ratios. 

 Figure 5.1 compares the geographical distributions of cloud fraction in three 

layers among three products during January. The results from the C-L retrievals, the 

old GFS version, and the updated GFS version represent left, middle, and right 

panels, respectively. Note that a remarkable difference between the updated and old 

GFS versions is seen in marine stratocumulus clouds in the lower atmospheric layers. 

The updated GFS version shows much better improvements in simulating clouds 

over the eastern tropical oceans than the old GFS cloud products. However, results 

of the updated GFS version are significantly different from the C-L retrievals in the 

upper troposphere. This is especially the case in the Tropics and mid-latitude storm 

track regions where high clouds are abundant. For middle-level clouds, the updated 

GFS version generates reasonable cloud fractions. Table 5.1 presents a comparison 

of the global mean cloud fractions derived from the three products. The near-global 

(60ºS - 60ºN) averaging of high (< 400 hPa), middle (400-650 hPa), and low (> 650 

hPa) cloud fractions from the C-L retrievals during January 2011 are 19.71 %, 

14.06 %, and 41.50 %, respectively. The corresponding cloud fractions are 30.61 %, 

22.79 %, and 39.24 % from the old GFS version during January 2007 and 35.99 %, 

14.41 %, and 28.77 % from the updated GFS version during January 2011, 

respectively. Note that middle and low-level cloud fractions of the updated GFS 
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version are somewhat less whereas high-level cloud fraction of that is more about 5 % 

when compared to those from the old GFS version (see Table 5.1). 

 

Table 5.1. Global monthly mean high-, mid-, and low-level cloud fractions obtained 
from the C-L algorithm during January 2011, the old GFS version during January 
2007, the updated GFS version during January 2011. 
 

 C-L GFS_old GFS_new 

High 19.71 % 30.61 % 35.99 % 

Middle 14.06 % 22.79 % 14.41 % 

Low 41.50 % 39.24 % 28.77 % 

 

 

For high clouds in the SG scheme, cloud fraction only depends on RH values 

and the RH threshold of cloudiness is 80 %. Based on preliminary results, 

frequencies with larger than the RH threshold in the updated GFS version are greater 

than those of the old GFS version (not shown). This leads to an increase in high 

cloud fraction. For marine stratocumulus clouds, vertical velocity and lapse rate are 

the main factors in determining cloud fraction. Similarly, values of the vertical 

velocity and lapse rate with larger than the threshold are more frequent in the 

updated GFS version for low-level clouds. The modified shallow convective scheme 

affects other dynamics and atmospheric state. This may thus be incurred in changes 

of input data used in the SG scheme, resulting in the change of the cloud 

distributions throughout the atmosphere. Further studies for the cloud 

parameterization of the GFS model are necessary in order to fully describe and 

understand physical processes taking place in modeled cloud systems.  
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Figure 5.1. Geographic distributions of monthly mean cloud fractions from the C-L 
algorithm (left panels) during January 2011, the old GFS products (middle panels) 
during January 2007, and the updated GFS products (right panels) during January 
2011. Top, middle, and bottom plots denote high, middle, and low clouds, 
respectively. 
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Glossary of acronyms 

ACRF: Climate Research Facility 

AERI: Atmospheric Emitted Radiance Interferometer 

AGCM: Atmospheric General Circulation Model 

AIRS: Atmospheric Infrared Sounder 

AMSU-A: Advanced Microwave Sounding Unit 

ARM: Atmospheric Radiation Measurement 

ARSCL: Active Remote Sensing Cloud Layer 

ASTEX: Atlantic Stratocumulus Transition Experiment 

AVHRR: Advanced Very High Resolution Radiometer  

CALIOP: Cloud-Aerosol Lidar with Orthogonal Polarization 

CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CERES: Clouds and Earth’s Radiant Energy System 

CF: Cloud Fraction 

COD : Cloud Optical Depth 

CPR: Cloud Profiling Radar 

ECMWF: European Center for Medium-range Forecasting 

ERO: Exponential Random Overlap 

GCM: General Circulation Model 

GFDL: Geophysical Fluid Dynamics Laboratory 

GFS: Global Forecast System 

GLAS: Geoscience Laser Altimeter System 

GMS: Geostationary Meteorological Satellites 
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GOES: Geostationary Operational Environmental Satellites  

HIRS: High resolution Infrared Radiation Sounder 

HSB: Humidity Sounder for Brazil 

HSS: Heidke Skill Score 

IR: Infrared 

ISCCP: International Satellite Cloud Climatology Project 

ITCZ: inter-tropical convergence zone 

IWP: Ice Water Path 

Lcf: de-correlation length 

LW: longwave 

LWP: Liquid Water Path 

McICA: Monte Carlo Independent Column Approximation 

METEOSAT: European Meteorological Satellites 

MISR: Multiangle Imaging SpectroRadiometer 

MMCR: millimeter wavelength cloud radar 

MODIS: Moderate Resolution Imaging Spectroradiometer 

MPL: micropulse lidar 

MRO: Maximum-Random Overlap 

MW: Microwave 

NCEP: National Center for Environmental Prediction 

NOAA: National Oceanic and Atmospheric Administration 

OMI: Ozone Monitoring Instrument 

PDF: Probability Distribution Functions 
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RAS: Relaxed Arakawa-Schubert 

Re : Effective Radius 

RH: Relative Humidity 

RHe: environmental relative humidity 

RMS: Root Mean Square 

SGP: Southern Great Plains 

SSF: Single Scanner Footprint 

SW: shortwave  

SZA: Solar Zenith Angle 

TOA: top-of-atmosphere 

WRF: Weather Research and Forecasting 
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