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Peripheral nervous system (PNS) injuries affect many people worldwide and if not 

repaired can leave individuals with the burden of living with chronic pain or motor 

dysfunction.  My thesis focused on understanding the relationship nerves and neurons 

have with their environment during development and normal function in order to identify 

means by which the regenerative process might be manipulated and enhanced. The 

implementation of a two-armed study allowed me to investigate the interactions between 

Schwann cells (SCs), a vital neuronal support cell, and neurons, as well as, the role strain 

has in local protein synthesis. First, I detailed the changes in membrane stability within 



 

 

the two cell types. I was able to identify decreased velocity and correlative movement of 

neuronal membranes compared to SCs suggestive of a higher level of membrane stability. 

Both cell types saw a decreased trend in both velocity and correlative movement 

following development of contact with the other pointing to increased cellular membrane 

stability upon establishment of cellular contact. The next study looked into the 

development of ribosomal clusters within SC processes, which have been suggested to be 

a ribosomal source for axons following injury. I found that SCs develop ribosomal 

distributions early and use anterograde transport to maintain these populations. Upon the 

initiation of myelination, transport is depressed suggestive of a reduce role of ribosomes 

within the myelin fraction. The final portion of my work focused on neuronal adaptation 

to strain. I initially found that nerves are able to accommodate strains by straightening 

axons in a linear fashion. I further found moderate strain application to nerves 

upregulates the activation of both mTOR and S6, two molecules integral in enhancing 

protein synthesis. Additionally, increases in the cytoskeletal proteins β-actin and SMI31 

were observed in response to strain. Suppression of the mTOR pathway with rapamycin 

led to an elimination of the effect on SMI31 but not β-actin. Rapamycin also enabled a 

strain-dependent reduction in tubulin levels. The results of my thesis contextualize the 

results of a number of studies that have observed advantageous regenerative outcomes 

from the use of SCs and strain for PNS recovery. 
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Chapter 1: Introduction 

Section 1: The peripheral nervous system (PNS) 

The nervous system is composed of two major branches, the peripheral (PNS) and 

the central (CNS) (Figure 1-1). The CNS is composed of the brain and the spinal cord 

and generally tasked with integrating and processing signals it receives from the 

periphery. The PNS encompasses the remaining nerves which reside outside of the CNS.  

Normal, healthy function 

of the PNS is centrally 

important to the well-being and 

overall quality of life of all 

people. Tasked with both 

initiating movement through 

motor neurons and sensing 

one’s surroundings through 

sensory neurons, the PNS 

possesses a multitude of 

responsibilities. Any disruption to normal function, whether through traumatic injury or 

disease, can be crippling to an individual. 

Anatomically, the PNS is composed of both the autonomic and somatic nervous 

systems. The autonomic nervous system maintains necessary unconscious functioning 

including regulation of heart rate, breathing, and digestion. The somatic system, on the 

other hand, is responsible for voluntary muscle contractions and sensing a person’s 

surroundings. Both motor and sensory neurons possess cell bodies, or soma, located 

Figure 1-1: Nervous system [1] 

Diagram showing the two branches of the nervous 

system, central and peripheral (reprinted under Fair 

Use) 
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adjacent to the spinal column in collections called ganglia. Motor neurons emerge 

ventrally within the ventral roots while sensory neurons project dorsally within the dorsal 

roots. From these positions neurons project long axons to their innervation sites. The 

axons descend distally from the spinal column in thicker bundles of axons resembling 

cables called neurons. In this manner axons can extend to lengths of up to one meter in 

the extremities of humans. 

Section 2: Peripheral Nervous System Injury and Statistics 

Traumatic PNS injuries, the partial or complete severance of a nerve, frequently 

result from automobile accidents, violence, and military conflict [7,8]. Up to 1% of 

individuals by the age of 70 can expect to experience some type of traumatic peripheral 

nerve injury costing individuals and private businesses billions of dollars in care and lost 

wages [9]. In addition to financial cost, there is also a substantial cost to quality of life, 

including an inability to perform basic daily activities and considerable loss of 

independence resulting from disrupted motor function and chronic pain [8]. Patients 

presenting with a peripheral nerve injury will often receive surgical intervention 

following reduction of inflammation at the site of injury followed by physical therapy in 

an attempt to restore function. Nonetheless, over 30% of patients still report poor or no 

functional recovery following injury [10]. 

Section 3: Current Therapeutic Techniques 

Currently the prognosis of a particular injury directly relates to the size of the 

trauma. Best outcomes are expected if the surgeon is able to directly reattach the severed 

ends together. In many cases tissue may be lost or damaged to the point that it must be 

cleaned up prior to reattachment to permit regrowth of healthy tissue. The gap that exists 
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or develops during the surgical procedure explicitly correlates to the patient’s prognosis 

[11,12]. 

Due to the presence of a gap, axonal regrowth must be directed into the distal 

portion of the severed nerve. For larger gaps this is often accomplished by the use of 

nerve tissue, either from the patient (autograft), a donor (allograft), or another species 

(xenograft). Current allograft options have been successful at bridging gaps up to 50 mm 

in length [13]. For smaller gap sizes tissue engineered nerve guidance conduits have been 

moderately successful. Tissue engineered solutions offer many benefits above native 

tissue including the absence of donor site morbidity and the availability of materials. 

Nonetheless, they are only consistently used clinically to bridge gaps of less than 30 mm 

[14]. When the expected outcomes of these devices reach those of the autograft they will 

offer a viable alternative for doctors performing nerve repair procedures. 

Numerous efforts are being made to explore methods to enhance the effectiveness 

of tissue engineered conduits by attempting to accelerate the axonal elongation rate. 

Prolonged denervation of the target muscle leads to atrophy and negatively affects 

recovery prognosis [15].  Tissue engineers are examining a number of areas that affect 

axonal outgrowth including growth factors [16], physical guidance cues [17], material 

compatibility [18,19], introduction of support cells [20], and application of strain [21] 

among others as potential means of intervention.  

Section 4: Thesis scope 

In my thesis I investigated two means by which scientists believe recovery could 

be accelerated. First, I focused on the interplay between neurons and Schwann cells and 

the way by which Schwann cells may affect the recovery process (Chapters 2 and 3). This 

was followed by an investigation into the role strain plays on enhancing constructive 
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local signaling pathways and local protein synthesis (Chapters 4 and 5). In these two 

distinct arms of my dissertation work I was able to explore multiple modalities by which 

the regeneration process could be affected and accelerated. 

Section 5: Developmental and regenerative role of Schwann cells 

The PNS is composed of a number of different cell types. While neurons are the 

most notable cell type, their support cells, particularly Schwann cells, play an integral 

role in axonal health and viability. Schwann cells are most noted for enhancing neuronal 

conduction velocities through the process of myelination [22]. In addition to this major 

role, Schwann cells aid neurons through additional mechanisms including provision of 

physical guidance cues [23] and growth factors [24-26] to promote axonal elongation 

during development and regeneration. Additionally, recent evidence shows Schwann 

cells act as an additional source of axonal ribosomes for local protein synthesis during the 

regeneration process [27,28]. 

Subsection 1: Stabilization/axon guidance during development/following injury 

During development Schwann cells receive signals promoting migration along 

axons to position themselves for myelination [29-33]. During the regeneration process the 

roles reverse with Schwann cells forming a substrate promoting axonal extension and 

guides neuronal regrowth [23]. In both cases, physical interactions between the two cell 

types are able to provide specific cues to direct proper functional development or 

recovery. Many examples of contact driven effects between Schwann cells and neurons 

exist illustrating how the two cell types generally stabilize each other. Specifically, 

Schwann cells upregulate adhesion levels [34] following contact with neurons. On the 

other hand, contact between Schwann cells and neurons can lead to enhancement of 

neurofilament phosphorylation, indicative of a more stable cytoskeleton [35].   
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Interestingly, membrane addition and retrieval in neurons primarily occurs at the 

growth cone and cell body and “flows” along the axon [36-42]. In contrast, other 

migratory cells do not observe this membrane flow [43]. Additionally, in neurons, 

membrane addition is coupled to the cytoskeletal stability and regional tension within the 

membrane [44-47]. Such concepts of membrane flow and cytoskeletal stability have not 

been tested in developing Schwann cells, but would provide insight into the role of 

cytoskeletal stabilization on membrane stability during their dynamic development. 

To gain such insight, I performed a comparative assessment of the influence 

contact has on the membrane stability of both Schwann cells and neurons in Chapter 2.  I 

found that neurons possess more stable membranes compared to Schwann cells, as 

evidenced by reductions in both membrane velocities and membrane continuity. These 

parameters exhibited a decreasing trend upon the establishment of contact with each other 

suggesting a role for contact in stabilizing the two cell types. The work resulted in a first-

author publication in Cellular and Molecular Bioengineering (reprinted with permission 

from Springer) [2]. 

Subsection 2: Myelination, material transfer, growth factor influences, ribosomal 

transfer 

Recent evidence has shown another way Schwann cells aid neurons is by 

transferring ribosomes to neurons following injury [27,28]. These studies fail to identify 

mechanistically how this occurs but hypothesize that the transfer events may occur at 

Schmidt-Lanterman incisures (Figure 1-2) [27]. In order for this to occur, ribosomes must 

localize to Schwann cell projections during development and to the myelin following 

compaction. A niche of literature has identified roles for projection and myelin based 

ribosomes mainly focusing on the role of these structures to provide myelin basic protein 
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(MBP) during compaction [48-52]. Within these studies it is noted that ribosomes 

localize around, but not within, Schmidt-Lanterman incisures [48]. Missing from the 

current literature is a full understanding of how ribosomes are distributed within the 

Schwann cell and how they achieve this distribution over time.  

My exploration of ribosomal distributions and the rates of ribosomal transport 

over early developmental time points following induction of myelination are discussed at 

length in Chapter 3. The goal for this study was to identify how ribosome trafficking and 

distributions change throughout development. Specifically, I looked to identify whether 

ribosomal populations remained within the early myelinating projections and whether 

these distributions were found to co-localize to particular cytoskeletal elements. I also 

wanted to determine if these ribosomal populations were maintained through anterograde 

trafficking to support the idea that populations are maintained and residing in the myelin 

fraction in the event Schwann cells are signaled to transfer ribosomes to the neurons they 

myelinate. I found that distributions are established along the Schwann established and 

maintained from early time points in culture. The net amount of ribosomal trafficking 

decreased as a result of myelination induction suggesting a decreased role for local 

synthesis within the myelin compartment. This work resulted in the submission of a first-

author manuscript. 

Section 6: Role of Strain 

Another means being investigated for enhancement of PNS regeneration is the 

effect of strain application on neuronal outgrowth. Current surgical best practice is to 

leave nerves in a tensionless environment following nerve repair. However, evidence is 

building both in vitro and in vivo that application of strain can be beneficial for axonal 

outgrowth, accelerating the rate of axonal elongation. 
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Figure 1-2: Myelinating Schwann cell [53] 

Myelinating Schwann cells possess a number of distinct regions important in maintaining 

proper function. Schmidt-Lanterman incisures (SLI) are regions of direct membrane-

membrane contact between Schwann cells and neurons. (Reprinted with permission from 

Nature Publishing Group) 

 

Subsection 1: Neuronal architecture 

Nerves in vivo are subject to fairly large deformations with minimal damage [54]. 

Studies have shown that deformations exceeding the physiological range negatively 

affect neuronal function as noted by conduction velocity and magnitude deficits [55,56]. 

This damage can be fully reversible for low level strains but is only minimally reversible 

for larger strains [55,56]. Nerves are able to accommodate physiological deformation due 

to a unique packing structure that imparts a native waviness on the axons within the nerve 

bundle [57]. In this way, the nerves are able to undergo large strains while being 

subjected to very low levels of stress [55]. As the nerve is strained the axons unravel 

imparting minimal strain on the axons themselves [58]. The microscopic packing 
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structure contributes to the macroscopic observation of bands of Fontana (Figure 1-3) 

[58]. These bands are apparent to the naked eye and respond to strain by elongating [3]. 

Due to the repeating nature of the bands, I looked to correlate the frequency of the bands 

with imposed strain using a Fourier analysis based method in Chapter 4 [3]. Development 

of this method would provide further evidence that the effect results from deformation of 

underlying physical structures, as elongating the physical specimen would decrease the 

observed frequency. Implementation of this technique could provide surgeons with an 

effective tool in the operating room for estimating accidental and intentional strains 

applied to nerves during surgery. In Chapter 4, I discuss how this technique found 

correlations between applied strain and banding frequency, as well as, agreement 

between the strain at which damage occurs (>20%) and the point when the bands 

ultimately are no longer visible. This work resulted in a first-author publication in Muscle 

& Nerve (permission requested for republication from John Wiley and Sons, Inc.) [3]. 

 

Figure 1-3: Bands of Fontana [3] 

 

Subsection 2: Local protein synthesis 

This geometry of neurons is a major confounding factor of axonal regeneration. 

The localization of neuronal cell bodies up to one meter away from the injury site in the 

most distal cases leads to a temporal delay in response to an injury stimulus. This delay 

affects both transcriptional and translational regulation at the cell body. The manufacture 

and shipment of proteins from the cell body to the injury site would, in the case of slow 

axonal transport (around 1 mm/day) [59,60], likely take months. In order to regenerate in 
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a timelier manner, the axon has the ability to locally produce proteins within the axonal 

compartment [61,62], as well as, the ability to respond to cues from the local cellular 

environment [63].  

In the past twenty years, the observation of protein synthetic machinery including 

ribosomes, golgi, and ER components present in the axon has provided evidence for local 

synthesis of proteins [62,64]. The observation of specific mRNAs localized to the axonal 

compartment has offered further insight into the roles of local synthesis (Figure 1-4) 

[62,65]. Of these mRNAs, a number are cytoskeletal in nature including β-actin, all 

neurofilaments, and tubulin [66-68]. Additionally, evidence shows that axonal extension 

and regeneration is dependent on the ability of a neuron to produce proteins within the 

axon [69]. Other studies have shown that restoration of this process can lead to recovery 

of the axons ability to regenerate [70]. A combined look at this evidence provides support 

for the integral nature and therapeutic potential of this pathway with regards to neuronal 

regeneration. 

 

Figure 1-4 - Axonal protein synthesis 

Neurons possess ribosomes in both the cell body and the axonal compartment. Both pools 

of ribosomes are integral in maintaining the well-being of the cell. 

 

Subsection 3: Strain and axonal elongation 
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Since nerves are generally considered to be non-load bearing, the influence of 

mechanical strains on their growth potential was initially ignored. This generalization 

fails to consider the fact that neurons innervate muscles early in development and must 

grow over the life of an individual. Additionally, the positive outcomes seen in limb 

lengthening surgeries provide evidence for neuronal adaptability to applied strains [71]. 

In load bearing tissues including muscle, bone, and cartilage there is a wealth of evidence 

showing the influence of mechanical loading in affecting tissue adaptations (reviewed in 

[72-74]). This work shows, in most cases, physiological loading conditions can positively 

influence the development of these tissues. The subset of literature focusing on neuronal 

tissues appears to be closing in on a similar trend. In vitro evidence has shown that strain 

application can accelerate the process of axonal elongation up to eight-fold when applied 

at initially low strain rates are slowly increased [75-77]. More complex experiments are 

being completed in vivo. While the verdict is still out at this point, they do not seem to be 

negatively affecting neuronal regeneration [21,78]. This initial work has opened a 

number of questions related to the process of neuronal adaptation to strain, most notably 

the mechanism which allows for accelerated elongation.  

Subsection 4: Strain-mediated signaling 

While it is unclear how neurons adapt to strain application, the activated signaling 

pathways in other systems are very well-documented. In muscles it has been determined 

that mTOR activation during cyclic loading is responsible for observed increases in 

protein synthesis and hypertrophy [79,80] (pathway in Figure 1-5). The well-established 

role for mTOR signaling in axonal elongation and axonal protein synthesis makes this 

pathway particularly attractive for implication in the beneficial response of neurons to 

strain application. Axonal protein synthesis is required for axonal extension and 
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regeneration. Evidence also suggests that not only is mTOR activity necessary for axonal 

outgrowth [81,82] but enhancement of the mTOR signal via pTEN inhibition can 

enhance the outgrowth capacity [70]. A number of axonally synthesized proteins could be 

beneficial for axonal growth including the cytoskeletal proteins β-actin, neurofilament-H, 

and tubulin [66-68] Enrichment of the pools of these essential structural proteins could be 

responsible for the observed increase in axonal elongation rates. In Chapter 5 I 

investigated the role of mTOR signaling in response to locally applied strains in vivo and 

the affect this had on local cytoskeletal protein levels.  This work builds upon the in vitro 

studies detailing I found that both mTOR and downstream S6 activation levels increase in 

whole nerve following the application of strain. Additionally, increased levels of β-actin 

and phosphorylated neurofilament-H (SMI31) were observed. In the presence of 

rapamycin, an inhibitor of mTOR activity, I found differential regulation of cytoskeletal 

elements in response to strain including a muting of the SMI31 response, as well as, a 

decrease in the levels of tubulin. While my work pertains to a protein synthetic 

requirement for axonal elongation, it is important to note that additional contributions in 

the form of lipid and energetic requirements must be considered to place this work in the 

context of whole cell growth and survival. This work is currently in preparation for 

submission of a first-author manuscript to a peer-reviewed journal. 

Section 7: Intersection of research aims 

The two-armed approach to my dissertation work has allowed me to explore 

diverse aspects of the nervous system each of which could prove critical to the 

regeneration process. While Chapters 2 and 3 focus on Schwann cell and neuron 

interactions in the context of development and potential regenerative application, 

Chapters 4 and 5 looked into the ability of nerves and neurons to positively respond to 



12 

 

strain. Nonetheless, the information obtained from each of these subsets provides initial 

evidence to tailor future research towards integrating approaches for optimal regeneration 

following peripheral nervous system injuries. Direct implications of both may be seen in 

the enhancement of axonal protein synthesis, a major requirement of the neuronal 

recovery process. On a broader scale, development of more effective regeneration 

strategies will allow individuals currently destined to live with chronic pain and reduced 

motor function to live lives not affected by these complications while reducing the 

financial burden on society as a whole. These advancements will reduce the burden on 

the individual in performing activities of daily living enabling easier living and a more 

positive outlook. My work comprises a small segment of the wealth of research that has 

been done and must continue in order to reach the point where surgeons can offer 

universal restoration of function to all individuals suffering from PNS injuries and 

diseases. 

 

Figure 1-5: mTOR 

signaling pathway [83] 

Diagram outlining 

important elements in the 

mTOR driven protein 

synthesis pathway 

(Reprinted with 

permission from Nature 

Publishing Group) 
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Chapter 2: Variability in membrane continuity between Schwann 

cells and neurons [2] 

Section 1: Introduction 

Sensory neurons of the dorsal root ganglia (DRG) and Schwann cells (SCs), two 

distinct cell types of the peripheral nervous system (PNS), cooperate to provide 

functional signaling between the spinal cord of the central nervous system (CNS) and the 

distal reaches of the human body. The health, well-being, and proper performance of the 

two cell types integrally depend on those of the other. Both neurons and SCs possess a 

distinctive bipolar morphology that results in a high surface area to volume ratio. 

Maintenance of this morphology requires careful regulation of the expansion and 

contraction of the cellular plasma membrane as well as its interactions with structural 

elements in adhesion complexes and the intracellular cytoskeleton. Such regulation is 

particularly critical during cell movement or the extension and retraction of cellular 

projections.  

There are multiple common principles underlying the motility of neurons and 

SCs. In the context of neuronal outgrowth, several studies have demonstrated the 

essential role of the cytoskeleton in growth cone motility, axonal guidance, and axonal 

transport [84-86]. More recently, studies have also focused on the regulation of the 

biomechanical properties of the axonal shaft during its outgrowth. This may occur 

through the generation of tensile forces along the axon and at the growth cone [87-89] as 

well as reorganization of the cytoskeleton and adhesion complexes in response to stresses 

and mechanotransductive signals [90-92]. Mechanisms guiding the addition of cellular 

membrane have also been examined in neurons, particularly during axonal outgrowth. 
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The growth cone is the most frequent site of membrane addition and retrieval, though a 

significant component may be added along the axon or flow anterogradely from cell 

bodies [36-42]. Membrane addition and retrieval are tightly coupled to the stability of 

actin and microtubule components of the cytoskeleton [44,45] as well as adhesion and 

regional tension within of the cell membrane [41,46,47]. This contrasts greatly with 

migratory cell types like keratocytes which do not witness any lipid flow [43]. Key 

influences on lipid flow as well as its quantification are therefore likely to include the 

nature of membrane connectivity to the cytoskeleton as well as regional differences in 

membrane composition. 

Fewer studies have investigated force generation, cytoskeletal stability, and 

membrane dynamics in the projections of SCs, despite the importance of these processes 

during their migratory phase prior to myelination [93]. Studies of SC movement along 

fibrous scaffolds suggest that they, like neurons, follow mechanical guidance cues and 

can generate traction forces sufficient to break attachments at the trailing end [94-97]. 

Magnitudes and orientations of these forces have not been examined in SCs, though they 

may be analogous to other migratory cell types such as fibroblasts [98]. As for neurons, 

there is evidence that their microtubule stability plays a role in the plasma membrane 

expansion in SCs [99]. In addition, it has been shown that dynamics of cellular adhesion 

and actin networks play critical roles in SC spreading and migration [34,100]. 

Despite these conceptual similarities between neurons and SCs, we hypothesize 

that regional differences in the continuity of the plasma membrane may contribute to 

differences in physiological function required for the two cell types to operate in a 

mutualistic fashion. This study investigated differences in the mobility of the plasma 
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membrane in neurons and SCs, and compared the degree to which and length scale over 

which the cellular membranes of neurons and SCs behave as a mechanical continuum. In 

combination with high-resolution fluorescence imaging, we applied two different 

methods for correlation analysis previously used in other contexts [86,101,102] to 

quantify the continuity of the cellular membrane at various length scales during neuronal 

and SC motility. The establishment of neuronal contact was investigated as an additional 

factor influencing continuity; for neurons, such contact indicates a major step in maturity 

prior to axonal fasciculation, and for SCs, neuronal contact is required both for 

elongation along an axon and myelination [34,103-107] We propose that cells with more 

mobile tendencies, like SC migration, may have membranes that act more like a 

continuum, enabling more efficient mechanical communication. 

Section 2: Materials and Methods 

Subsection 1: Cell culture 

Day 1-5 Sprague-Dawley rats were euthanized using CO2 followed by 

decapitation. All animal protocols were approved and carried out in accordance with 

IACUC at the University of Maryland, College Park and University of California, San 

Diego. DRGs were dissected and placed on ice in 400 µl of DRG media (F-12 media, 

10% FBS, 1% L-glutamate, and 1% Penicillin/Streptomycin). The samples were 

supplemented with 20 µg/ml of collagenase type IA (Sigma-Aldrich) and incubated at 

37°C for 20 minutes (adapted from Oh et al.) [101,108]. The samples were then 

centrifuged at 76xg for 5 minutes and the media was removed. The DRGs were 

resuspended and dissociated in fresh DRG media.  

Schwann cells were harvested from DRGs (with neurons) or sciatic nerves (no 

neurons). For the latter, cells were digested; first, in 3.33 mg/mL collagenase in L-15 for 
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45 minutes followed by digestion in 3 mL of 0.25% trypsin-EDTA and 1 mL of 1.2 

mg/mL DNase I in L-15. The cells were suspended and cultured in Schwann cell media 

(DMEM containing 10% FBS, 1% Pennicillin/Streptomycin, .02 g/mL, and .1 mg/mL 

Pituitary Extract) (Adapted through correspondence with Megan Wright from original 

protocol of Porter et al.) [109]. Cells were dispersed on 35 mm glass-bottom culture 

dishes coated in 8 µg/ml laminin (Sigma-Aldrich) for future viewing at a density of ~4 

DRGs per plate and supplemented with 2 ml of DRG media. The cells were cultured 

overnight at 37°C prior to experimentation. 

For cultures of isolated neurons, following resuspension in DRG media, the cells 

were again centrifuged at 76xg for 5 minutes. Media was removed and the cells were 

resuspended in 100 µl Basic Rat Nucleofector solution (Amaxa). Cells were 

electroporated using Amaxa Nucleofector technology and program G-013 to minimize 

contaminating fibroblasts and SCs. Cells were placed in RPMI and incubated for 15 

minutes prior to plating to facilitate recovery. Post-recovery, cells were placed on glass-

bottom dishes and confined to a region ~10 mm in diameter at a density of ~4 DRGs per 

plate and supplemented with 500 µl of DRG media containing 10 µg/ml NGF 7-S 

(Sigma-Aldrich) and 2% B-27 (Sigma-Aldrich). The cells were cultured overnight at 

37°C prior to experimentation. 

Subsection 2: Experimental Groups 

Four experimental groups were identified based upon cell type and contact state. 

These groups were contacting neurons (NC), non-contacting neurons (NNC), contacting 

Schwann cells (SCC), and non-contacting Schwann cells (SCNC). Contact was defined 

based on the contact of the distal tip of a neuronal growth cone or a Schwann cell 

projection with a neuron. Cell types were identified by morphology following initial 
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identification by immunostaining for S100 (Figure 2-1B) to identify SCs and the 

neurofilament SMI-31 (Figure 2-1D) to identify neurons. 

 

Figure 2-1: Identification of cell types and verification of imaging methods 

Identification of Schwann cell imaged under DIC (A) confirmed by S100 

immunostaining (B) and DRG imaged under DIC (C) confirmed by SMI31 

immunostaining (D). Both Schwann cells (E,F,G) and DRGs (H,I,J) identified under DIC 

(E,H) were examined for internalization of wheat-germ agglutinin (F,I) identified by 

incubation with fluorescent dextran (G,J) with minimal internalization occurring at the 

cell body (note arrow). Scale bar, 10 m 
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Subsection 3: Labeling of plasma membrane surface 

Wheat germ agglutinin was used as a label for plasma membrane, as it has 

multiple binding sites for extracellular membrane bound sugars such as sialic acid and N-

acetylglucosaminyl [110]. Wheat germ agglutinin conjugated to Oregon Green 488 

(Invitrogen) was added to cultures at a concentration of 1.67 µg/ml, a concentration four-

fold lower than that recommendation by the reagent literature. The cultures were then 

placed at 2°C for 10 minutes to allow binding and limit initial endocytosis. Imaging was 

performed immediately afterwards; as a positive control for endocytosis, cultures were 

examined after 4 hours (Supplemental Figure 2-1C). Minimization of endocytosis during 

refrigeration was confirmed through co-labeling with dextran conjugated to Alexa Fluor 

594 (Invitrogen) added prior to refrigeration at a concentration of 5 mg/ml (Figures 2-1G 

and 2-1J). Minimal dextran internalization was observed at the cell body and growth cone 

and virtually absent along the projection/axon providing evidence that the majority, 

although perhaps not all, of the observed particles externally labeled the membrane. 

Following refrigeration, the plates were washed three times with cold PBS, media was 

replaced with cold DRG media and the cultures were imaged. An additional control was 

performed, imaging the WGA using confocal techniques (Supplemental Figure 2-1E). 

Subsection 4: Imaging 

Using an inverted TE-2000E microscope (Nikon) with a Lumen PRO2000 

illumination system (Prior Scientific), CoolSNAP HQ2 (Photometrics), and Chroma 

filters (Bellows Falls,VT. EPI: 490 nm (FITC), 595 (Texas Red); Emission 525 nm 

(FITC), 620 nm (Texas Red)), both fluorescent (492 nm, 594 nm) and DIC images were 

gathered every 20 seconds for a period of 20 minutes to allow characterization of 

membrane mobility over time. This relatively infrequent imaging rate of fluorescence 
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combined with the low concentration of WGA dye reduced the likelihood of photoxicity, 

which otherwise manifest itself through axonal beading (Supplemental Figure 2-1B) or 

axonal retraction. Failure to see axonal elongation likely resulted from refrigeration prior 

to imaging slowing the rate of cellular processes.  It should be noted that an elongation 

rate of ~30 μm/hr is seen following a four hour recovery at 37°C suggesting no 

permanent damage has been inflicted by refrigeration. An optimal environment was 

maintained at 37°C with ~4% CO2 through a custom environmental chamber mounted 

around the microscope stage (Precision Plastics). For still fluorescent images of 

immunostains, this imaging system was also used without environmental considerations.  

For direct examination of endocytosis, confocal microscopy was used. Cells were imaged 

using a Leica SP5 system. Standard lasers and filters were used. An argon laser enabled 

excitation at 488nm and emission was captured between 500-550 nm.  

Subsection 5: Image Processing 

The image sequences gathered from each sample were analyzed using custom 

MATLAB programs (Mathworks Inc.). In each image, the cellular projection was traced.  

A region of 9 pixels surrounding the trace (trace ± 4 pixels) was cropped and organized in 

order beginning with the first time point at the top and following with the second below 

it, etc. This organization represents time in y-direction and position along the cell in the 

x-direction much like a traditional kymograph and as such we will refer to our analysis 

technique as a kymograph as well (Figures 2-2C and 2-2F). The paths of particles that 

appear in the kymographs were then traced and analyzed using both MATLAB and Excel 

(Microsoft). 
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Figure 2-2: Methods of experimental analysis 

Time lapsed images of the Schwann cells (A) and neurons (D) were taken under DIC and 

fluorescence to identify localization of fluorescent wheat-germ agglutinin (B, Schwann 

cells; E, neurons). Traces of the cellular projections at each time point were composed 

into a kymograph (C, Schwann cells; F, neurons) with tracks of wheat-germ densities 

being identified. Correlation of these tracks was identified using two methods of analysis: 

cross-correlation (G) and regression (H). Vertical arrows throughout figure represent 

process flow for imaging and analysis. Scale bars 20 μm. 
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Subsection 6: Analysis 

Analysis was performed using MATLAB and all programs are available upon 

request. For analysis of correlation, particles were correlated by plotting the x-value 

corresponding to the position of one particle at a given time against the x-value 

corresponding to another particle at the same time [86,101]. This was done for all time 

points. It is important to note that this differs from conventional analysis of correlation 

and provides different measurements than traditional correlation length due to temporal 

and spatial resolutions and scope of our imaging techniques [111]. Traditional techniques 

are typically applied to individual lipid diffusion characteristics. The plot was fit using a 

linear regression and correlation was determined based upon the R
2
 value of the fit. A 

high R
2
 value represents two particles that move consistently in the same direction, 

although the magnitude of these displacements may not necessarily be the same (Figure 

2-2H). An R
2
 value of 0.9 or above was considered to represent strong correlation 

although the data appeared to be continuous and independent of the cut-off selection. 

Comparisons were made amongst all tracks in each video if the two tracks co-existed for 

over 1 minute. Lesser times were ignored due to inflated correlation among small data 

sets.  

A second method, performed in MATLAB, utilized cross correlation analysis 

amongst tracks within a video and sequential frame shifts of the data to identify 

correlation regardless of slight temporal shifts in movement propagation. The sequences 

were normalized such that the autocorrelations at zero were equal to 1. The maximum 

correlation was then identified for each correlogram and a maximum value greater than 

0.9 was used as a threshold for strong correlation between particles (Figure 2-2G). The 
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percentage of correlated particles in each sample (by either regression or cross 

correlation) was compared across cell type and across contact state.  

To elucidate the role of regional velocity in the continuity of the membrane, the 

average velocity of all particles within a given sample was calculated by averaging the 

mean velocity of individual particles in the given sample. Also identified was the 

percentage of stationary tracks, defined based on a displacement less than that of a 

particle moving constantly at a velocity of 0.6 m/min for the entirety of the movie.  

Statistical analysis was performed in Microsoft Excel (Microsoft) and SAS (SAS Institute 

Inc.). Means were compared using 1-way or 2-way ANOVA followed by Tukey’s post 

hoc tests, and distributions were compared using Kolmogorov-Smirnov tests. 

Subsection 7: Immunostaining 

Samples were fixed in 4% paraformalin for 10 minutes. Following fixation, 

samples were washed three times with PBS followed by permeabilization with 0.2 % 

Triton-X 100 in PBS for 5 minutes. Again samples were washed three times with PBS 

and placed in blocking solution consisting of 10 % FBS in PBS for 25 minutes at room 

temperature. Post-blocking, the samples were washed three times with PBS. Primary 

monoclonal antibodies targeting talin (Sigma-Aldrich T3287), S100 (Sigma-Aldrich 

S2532) and SMI-31 (abcam ab24573) were diluted in blocking solution (1:750, 1:200, 

and 1:1000, respectively) and samples were incubated in the primary antibody for one 

and a half hours at room temperature. Following primary incubation, the samples were 

washed three times with PBS and placed for 2 hours in either Alexa Fluor 488-goat anti-

mouse (Invitrogen A-11001) or Alexa Fluor 594-goat anti-mouse (Invitrogen A-11032) 

that had been diluted (1:200) in blocking buffer. The sample was washed three times with 

PBS, left in PBS and imaged. ImageJ (NIH) was used to determine fluorescence levels 
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for analysis performed Excel (Microsoft). A threshold level of 440 LUTs was chosen 

after identifying highly fluorescent patches on cells to have these mean values. 

Section 3: Results 

Subsection 1: Identification of Neurons and Schwann cells and labeling of plasma 

membrane 

Schwann cells (Figures 2-1A and 2-1B) were initially identified by antibody 

labeling against S-100 as has been used previously [112]. Additionally, neurons (Figures 

2-1C and 2-1D) were identified by antibody labeling against SMI-31, for identification of 

phosphorylated axonal neurofilaments. Subsequent live-cell imaging experiments relied 

on identification of SCs by their thicker projections (~3-4 m) relative to neurons, bipolar 

morphology, and elliptical cell body (Figures 2-1A, 2-1C, 2-1E, and 2-1H). Neurons 

were identified based on observation of thin projections (~1 m) and more rounded cell 

bodies. 

Plasma membrane was labeled with wheat-germ agglutinin conjugated to Oregon 

Green 488. Fluorescent densities were observed along the projections of both cell types 

and allowed characterization of membrane dynamics in real time (Figures 2-1F and 2-1I). 

Neurons appeared healthy as evidenced by growth cone ruffling (Supplemental Figure 2-

1A). In the rare case photodamage was witnessed by axonal blebbing, these samples were 

ignored (Supplemental Figure 2-1B). Due to incubation at 2C endocytosis was 

minimized as evidenced by minimal uptake of fluorescently labeled dextran (Figures 2-

1G and 2-1J). In SCs, slight uptake was observed at the cell body and lamellipodia. 

Additionally, fast rates of transport, indicative of WGA uptake and vesicular transport, 

were not observed following incubation at 2C compared to a 4 hr incubation period at 

37C (Supplemental Figure 2-1C). Confocal imaging also revealed restriction of WGA to 
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the cellular surface and its absence within the cytoplasm of the cell (Supplemental Figure 

2-1D). 

Subsection 2: Membrane correlation and velocity in SCs and neurons 

We generated kymographs (Figures 2-2A-F) to track the movement of particles 

throughout the duration of each experiment. We used two methods to identify the degree 

of correlation of particles with each other in each cell type (Figures 2-2G and 2-2H). 

Using cross-correlation analysis of all particles along a neuronal projection (Figure 2-

2G), the percentage of correlated pairs with a maximum correlation value of over 0.9 was 

found to be 24.51%. This percentage rose significantly (p<0.0145, t-test) to 42.37% in 

SCs (Figure 2-3A). Similarly, the percentage of correlated pairs based on regression 

analysis (Figure 2-2H) and a minimum R
2
 of 0.9 in all neurons was 7.07%. This 

percentage rose, though not significantly (p<0.0757, t-test) to 14.87% in all SCs (Figure 

2-3B).  

The length scale at which correlation occurs also depended upon cell type, and 

varied slightly depending on the method used to classify correlation. Using cross-

correlation analysis, the median distance between correlated particles was found to be 

39.05 m for neurons and 35.86 m for SCs (Figure 2-3C). This reduction in length scale 

in the correlated particles of SCs was not significantly different (p=0.0814, Kolmogorov-

Smirnov). Similar analysis was performed using regression analysis; the median distance 

was 46.27 m for neurons and 16.70 m for SCs (Figure 2-3D). Distributions here were 

significantly different (p<0.0001, Kolmogorov-Smirnov). The results are suggestive of  
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Figure 2-3: Membrane correlation and velocity by cell type 

Percentage of correlated WGA pairs by cross-correlation (A) and regression analysis (B) 

*p < 0.015 (v. neurons, t-test). Values represent means  SEM (n = 15). Cumulative 

histogram of the distance between correlated particles within given pairs for both cross-

correlation (C) and regression analysis (D) *p < 0.0001 (v. neurons, Kolmogorov-

Smirnov test). Average velocities of WGA particles (E) *p < 0.05 (v. neurons, t-test). 

Values represent means  SEM (n = 15). Cumulative histogram of individual positive (F) 

and negative (G) velocities *p < 0.0001 (v. neurons, Kolmogorov-Smirnov test).  
 

longer-range correlation throughout neuronal membranes and continuity over a shorter 

length scale in SCs. These metrics should not be confused with traditional correlation 

lengths of lipids; rather they simply refer to the distances between particles observed to 

possess correlated movement patterns. Both cross-correlation and regression analysis 

presented consistent trends in correlation in these initial comparisons; subsequent 

analysis was performed utilizing only cross-correlation analysis. 

The velocity of particles on the membrane, corresponding to regions of the 

membrane, was identified to test whether physical mobility may affect or be affected by 

membrane correlation. The average velocity of neuronal membrane particles was found 

to be 0.052 m/min with those of SCs averaging -0.165 m/min (Figure 2-3E). 

Significance was identified for the two experimental populations (p = 0.0469, t-test). The 

average positive velocities also differed significantly (0.351 m/min, neurons; 0.662 

m/min, Schwann cells; p = 0.0062, t-test), as did the average negative velocities (-0.319 

m/min, neurons; 0.843 m/min, Schwann cells; p = 0.003, t-test). It is of note that the 

movement witnessed in Schwann cells was observed throughout the projection. Neuronal 

particles from the study possessed a reduced average positive velocity compared to those 

incubated at 37°C for 4 hours (Supplemental Figure 2-1D), characterized by the 

rightward shift in the graph and increase in half-max value (0.283 m/min, no incubation; 
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0.459 m/min, 4-hour incubation; p<0.0001, K-S). The particles observed after 4 hours 

thus likely contain an additional sub-population of mobile, presumably internalized 

particles in addition to less mobile particles seen under both incubation conditions.  

Subsection 3: Membrane correlation and velocity in SCs and neurons by contact 

state 

To test whether differences in membrane correlation between SCs and neurons 

were influenced by their contact with another neuron, we utilized cross-correlation 

analysis on subsets of neurons and Schwann cells subdivided by their contact state. 

Neurons contacting another neuron (NC) presented 21.3% correlated pairs, versus 27.3% 

correlated pairs in neurons not contacting another neuron (NNC; Figure 2-4A). In SCs the 

numbers were 40.2% and 44.3% for those in contacting and non-contacting states, 

respectively. We then tested whether pooling data along the entire length of the axon 

masked any such effects at the leading edges of the cell (i.e., growth cone or 

lamellipodium); however, analysis of correlation at the edge (< 30 m) also failed to 

identify differences between the edge and the whole cell (Figure 2-4B). 

Identification of particle velocities in the experimental groups by contact state 

provided average positive particle velocities in NCs of 0.301 µm/min and in NNCs of 

0.394 µm/min (Figure 2-4C). In SCs, velocities were found to be 0.582 µm/s and 0.732 

µm/s contacting and non-contacting states, respectively. Neuronal velocities were 

significantly different from their SC counterparts (p< 0.05, Tukey’s t-test); however, 

despite a strong trend towards increased velocity in non-contacting SCs compared to 

contacting SCs, no significant differences were found within a cell type (Tukey’s t-test). 

Again, characterization of the velocity at the edge (< 30 m) failed to identify an edge 
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effect when compared to the whole cell (Figure 2-4D). Distributions of particle velocities 

were also investigated (Supplemental Figure 2-2).  
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Figure 2-4: Membrane correlation and velocity by contact type 

Percentage of correlated WGA pairs by cross-correlation along the entire projection (A) 

and within 30 μm of the edge (B). Values represent means ± SEM (n = 7-8). Average 

positive velocity of WGA particles along the entire projection (C) and within 30 μm of 

the edge (D) *p < 0.05 (v. Schwann cells without contact, ANOVA with Tukey’s post-

hoc test). Values represent means ± SEM (n = 7-8). ). Average negative velocity of WGA 

particles along the entire projection (E) and within 30 μm of the edge (F) *p < 0.005 (v. 

Schwann cells without contact, ANOVA with Tukey’s post-hoc test). Values represent 

means ± SEM (n = 7-8). Percentage of particles deemed stationary with velocity less than 

0.01 μm/s *p < 0.05 compared to contacting neurons, +p < 0.05 compared to non-

contacting neurons, (ANOVA with Tukey’s post-hoc test). Values represent means ± 

SEM (n = 7-8). 
 

There was observable contact state dependence witnessed in the average positive 

or negative velocities both along the entire cell or localized to the edge (Figures 2-4C-F). 

The percentage of stationary particles (those below 0.6 µm/min) was identified as an 

indicator of relative membrane immobility. In the case of neurons, NCs possessed 

91.51% stationary particles while NNCs had 88.96% stationary particles (Figure 2-4G). 

Particles of SCs were more mobile with only 46.33% and 36.27% of particles in SCCs 

and SCNCs identified as stationary. Using a two-way ANOVA, a strong cell type 

dependence was identified (p <0.00005, ANOVA) 

Subsection 4: Levels of the adhesion molecule talin in contacting versus non-

contacting cells 

The levels of the adhesion molecule talin were quantified by the intensity of 

immunostaining as an indirect measure of adherence (Figure 2-5B). NCs had the highest 

percentage of staining along their projections at 31.68%. NNCs were stained along 

28.79% with SCCs stained along 26.39% and SCNCs stained along 11.15%. Neurons 

overall demonstrate a trend towards more stable adhesions in the form of talin compared 

to SCs, though the development of contact in SCs also trends towards an increase in talin 
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densities. No significance was identified between any of the groups using both a two-way 

ANOVA and Tukey’s post hoc test, likely due to the low sample number.  

 

Figure 2-5: Talin immunostaining 

Immunostaining for talin levels (A) in neurons with contact (NC), neurons without 

contact (NNC), Schwann cells with contact (SCC), and Schwann cells without contact 

(SCNC). Quantification of immunostaining levels by thresholding (B) revealed no 

significance (ANOVA, p > 0.05). Scale bar, 10 m. 
 

Section 4: Discussion 

Using fluorescent WGA as a membrane label provides the unique ability to track 

regional membrane movement during the growth and migration of cells. Previously, 

membrane correlation has generally been studied on a much smaller scale, identifying 

extremely localized diffusion of individual particles in membrane patches and lipid rafts 

[113,114]. Applying time-lapse fluorescence microscopy to cells fluorescently labeled 

with WGA as a marker for the movement of membrane patches allows identification of 

membrane correlation and continuity on a larger scale. Earlier work has focused on the 

localization of membrane insertion and membrane flow [41-43]. Our study focuses on 

more stable regions of the membrane to identify the dynamics of whole cell mechanics 

during normal growth and function. 
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Subsection 1: Quantitative analysis of continuity in the membrane 

Multiple methods of analysis were used to identify correlation between particle 

pairs. Regression analysis was employed following the precedent of previous literature 

[86,101]; however, this method relies implicitly on a dependence of one particle on the 

other. In this study, because neither particle within a pair is explicitly dependent on the 

other, analysis using cross-correlation may provide a more appropriate characterization of 

the relationship. It was shown that independent of methodology, levels of correlation 

displayed similar trends (Figures 2-3A and 2-3B).  

Quantitative characterization and analysis of particle mobility allows for a more 

rigorous investigation due to the level of detail and number of identifiable parameters 

such as relative positions and velocities. Comparisons between these variables can be 

easily obtained to explore previously unidentified relationships and describe the 

mechanical connectivity. Additionally, quantitative analysis allows for efficient, unbiased 

processing of data to provide impartial results. In future studies, one might be able to 

comb through large sets of data and quickly determine localization of membrane 

expansion and contraction. 

Subsection 2: Influence of cell type on membrane correlation 

One particular finding of interest is that although both cell types possess strong 

bipolar morphologies, a cell type influence exists in the correlation of membrane patches 

when comparing SCs and neurons (Figure 2-3A and 3B). A major contributor to this 

difference is likely the mobility and cytoskeletal architecture of each cell type. While 

neurons of the CNS have been known to migrate along glia during development [115], 

this behavior opposes what is known to occur in the PNS, especially in DRGs where 

neurons secure their cell bodies and proceed to extend axons [116]. Once migrating SCs 
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become committed to a myelinating phenotype, their cytoskeletal composition changes 

and they lose their ability to migrate [93]. Additionally, non-myelinating SCs are known 

to respond to signals, such as NGF, during development and injury to migrate along 

axons in the PNS [93,117]. This migratory phenotype is consistent with the higher level 

of regional mobility in SC membranes compared to those of neurons (Figure 2-3E). It is 

therefore likely that the increased velocity is responsible for a portion of the correlation 

increase witnessed in SCs compared to neurons.  

In the case of SCs, there is obvious, movement along the entirety of the cell. 

While migrating, typically, the distal edge of the cell extends and the cell body follows 

with some regularity. Not only does this extension happen at a larger rate than that of 

axonal growth cones, the propagation of this movement is generally limited to a much 

smaller portion of the cell in neurons compared to SCs. Due to the mechanics of the 

movement, it is likely that higher levels of membrane correlation allows the SC 

membrane to mechanically compensate with the dynamic movement. It is of note that 

correlation of low velocity particles may be underestimated due to the inability to 

distinguish the relationship of truly stationary particles leading to their determination to 

be uncorrelated. 

Regional continuity in the movement of plasma membrane is likely to be 

influenced by the underlying cytoskeletal framework of the two cell types; however, the 

length scale over which such correlation occurs may be different from that in the 

cytoskeleton. Neuronal membranes were shown to possess a larger length-scale over 

which correlation occurs (Figure 2-3D); this length-scale is considerably larger than that 

previously reported for cytoskeletal continuity (<20μm; Chetta et al., 2010, Figure 6E 
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[101]) in a similar experimental model system. Microtubules of neurons average around 

100 µm whereas the microtubule networks of migratory SCs are much less mature with 

length scales around 20 µm [93,118]. The variation in correlation length-scale may be 

directly attributable to immaturity in the cellular cytoskeleton and dynamics therewith. 

Subsection 3: Influence of contacting state on membrane correlation 

While the establishment of contact was shown to limit the mobility of the 

membrane (Figures 2-4C and 2-4E), our data fails to identify a role for contact in 

affecting the correlation of the membrane in either cell type (Figure 2-4A). In neurons, 

although cell-adhesion densities increase upon contact, thereby limiting growth cone 

motility and initiating synapse formation, this does not appear to limit the overall 

continuity of the cellular membrane (Figure 2-4A) [119]. In SCs too, focal adhesions 

have been hypothesized to increase following the establishment of contact [34]. 

However, such contact in vitro has been established to be insufficient to induce 

myelination [104]. Furthermore, the induction of myelination, not simply the 

establishment of contact, is required for wide-scale cytoskeletal reorganization of all 

cytoskeletal classes [104,120]. It is therefore likely that much of the observed correlation 

at our intermediate resolutions (microns) is reliant, directly or indirectly, on cytoskeletal 

stability and organization in addition to the movement of the cell. To more specifically 

identify the influence of contact state, the specific changes in both movement and 

correlation were identified at the edge (Figures 2-4B, 2-4D, and 2-4F). The variation in 

the data between the edge and the overall cell is so small that this should serve to support 

the fact that contact establishment has no observable effect. 

As an initial step in understanding mechanisms underlying changes in mobility 

with contact, we analyzed the presence of talin, a cytoskeletal protein concentrated at 
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focal cell-substrate adhesions. While the average levels of talin along projections or in the 

vicinity of the cell terminal did not present significant differences across cell types, there 

was an identifiably lower amount of talin staining in SCs that had not established contact 

with other cells (Figure 2-5B). In SCs, though not neurons, talin levels are inversely 

proportional to the level of membrane correlation. This may also be a consequence of 

reduced adhesion in more mobile cells, though this hypothesis remains to be tested. It is 

possible that the establishment of focal adhesions compartmentalizes the membrane to a 

degree, limiting membrane correlation and continuity. Further investigation into the role 

of both cell-cell and cell-substrate adhesion, both of which change dramatically during 

myelination, fasciculation, and synapse formation [92,103,112], would be required to 

make a definitive statement on the role of adhesion on membrane correlation.  

Subsection 4: Differences in membrane velocity amongst cell types 

The major focus of this work was to test the regional correlation of movement 

rather than examine the mobility of freely diffusing lipids within the plasma membrane. 

However, it is instructive to place our results in the context of related studies both in 

neurons and non-neuronal cells. At first glance, our results appear very different from 

membrane addition and flow rates observed in previous experimental systems, to the 

point of being nearly an order of magnitude smaller [41,42]. However, a closer 

examination of differences in methodology and the experimental model provide some 

insight into these differences, and, in fact, suggest some conceptual consistency.   

A strong possibility exists that the brightly fluorescent regions we observed 

correspond with the approximately 30% of stable particles noted by Dai and Sheetz, 

which were posited to be attached to the cytoskeleton, but not considered in their analysis 

[41]. Such stable particles were also noted in other similar studies using larger beads 
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[36,37]. Furthermore, they identified retrograde flow of membrane in embryonic chick 

DRGs due to relative differences in tethering forces at both proximal and distal regions of 

the axon [41]. In contrast, the consistency in talin staining along the projections of 

postnatal rat DRG and SC in our cultures points to the likelihood of a more consistent or 

less predictable tension. This could provide additional rationale for the lack of observed 

membrane flow in our experimental system, and are consistent with the low average 

velocities but the relatively higher directional velocities that we observed. These 

observations are also consistent with observations in other classes of migratory cells that 

are known to not possess directed membrane flow [43]. A direct comparison of different 

cell types using identical experimental methodology may address some of these 

hypotheses. 

A key factor that could influence the interpretation of our data is the possibility 

that WGA is being internalized. Four observations suggest that this is highly unlikely. 

First, internalization was blocked methodologically by incubation of WGA during 

refrigeration. Second, immediately following this block, dextran co-incubated with WGA 

was internalized at the growth cone and cell body, but not along the axon. Third, rates at 

which these internalized dextran particles moved were not sufficient to deposit them 

along axons, following internalization at the growth cone, within the time frame of our 

movement analysis. Finally, we compared WGA particle movement in time-lapse movies 

captured immediately after blocking internalization versus those captured 4 hours later, 

during which time internalization may have occurred (Supplemental Figure 2-2D). Our 

data suggest that at the later time point, internalized WGA moves at a faster velocity and 

with more frequent changes of direction than at the earlier time point. This more mobile 
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sub-population of particles reflects similar movement to that of Rab5 during early phases 

of endocytosis [51].  

Section 5: Conclusions 

The methods presented here provide a unique look into large-scale membrane 

mobility. Quantitative analysis allows for unbiased conclusions about the membrane 

dynamics. The cellular membrane of SCs displays a markedly higher level of correlation 

amongst membrane patches compared to neurons. This relationship appears to correlate 

with increases in velocity and is inversely proportional to the presence of adhesive 

markers. These findings support an intuitive model where two mechanisms could work 

antagonistically to influence the level of membrane correlation and relative continuity. 

First, a higher velocity movement of the cell leads to increased membrane correlation due 

to directional forces generated by the cell to develop motion. Conversely, focal adhesion 

development and associated cytoskeletal stability would serve to resist these forces 

generated to develop motion.  

It would be interesting in future studies to further investigate the role of 

cytoskeletal filaments and their associated proteins with respect to membrane continuity, 

as well as compare the response of neurons and Schwann cells to the direct application of 

a load. Exploration of changes in SC membranes following myelination would also be an 

appealing extension due to the large-scale cytoskeletal changes known to occur during 

myelination [93]. 
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Section 6: Supplemental Figures 

 

Figure 2-1 (Supplemental): Control experiments 

Growth cone ruffling was observed in non-contacting neurons (A) as an indication of 

overall neuronal health, scale bar 10 m. Axonal blebbing (B) was observed in a limited 

number of neurons. These neurons were excluded from the study, scale bar 10 m. High 

velocity membrane movement was observed in axons that were given 4 hours to recover 

following WGA application (C), scale bar 20 m. To exclude internalized membrane, the 

4-hour incubation was removed from the protocol.  Cumulative histogram of individual 

positive particle velocities on neurons (D) *p < 0.0001 (v. no incubation, Kolmogorov-

Smirnov test). Confocal imaging of fluoresce revealed the absence of internalized WGA 

following initial incubation (E), scale bar 20 m. 
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Figure 2-2 (Supplemental): Particle velocity histograms by cell type and contact 

state 

Additional histograms of positive (A) and negative (C) particle velocities (analogous to 

Figures 3F and 3G). Focused characterization of the velocities of particles in regions 

within 30 m of the edge (B and D) yielded little difference. Significant differences 

(p<0.05, Kolmogorov-Smirnov) are as follow: (A) NC vs. SCC, NC vs. SCNC, NNC vs. 

SCC, NNC vs. SCNC; (B) NC vs. SCNC, NNC vs. SCC, NNC vs. SCNC, SCC vs. 

SCNC; (C) NC vs. SCC, NC vs. SCNC, NNC vs. SCC, NNC vs. SCNC, SCC vs. SCNC; 

(D) NC vs. SCC, NC vs. SCNC, NNC vs. SCC, NNC vs. SCNC. 
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Chapter 3: Ribosomal trafficking in Schwann cells depends on 

early myelination cues 

Section 1: Introduction 

Schwann cells (SCs), a major cell type of the peripheral nervous system, are 

tasked with supporting neurons in numerous ways, from enhancing electrical conduction 

[121] to providing trophic factors for axonal growth and regeneration [23,122]. In this 

capacity, they possess a distinctive bipolar architecture; internode distances of up to 500 

μm require distances between the Schwann cell body and distal processes to reach over 

200 μm [123]. As in neurons, another polarized cell of unusual geometry [124], 

myelinating and unmyelinating SCs appear to synthesize particular proteins at the site of 

demand within projections, rather than in the cell body [48].  

In contrast to ER-bound ribosomes, which are mainly tasked with the production 

of membrane-associated or secreted proteins [125-127], cytosolic protein synthesis 

occurs on free ribosomes and is typically responsible for producing many proteins 

locally, including intracellular signaling molecules, transcription factors, and cytoskeletal 

elements [128]. Evidence of local protein synthesis in myelinating cells remains mostly 

indirect, based on the presence of mRNA in isolated polysomes and granules within both 

unmyelinating and myelinating glial cells [129]. Additionally, myelin basic protein 

(MBP) mRNA has been observed to be distributed throughout SC and oligodendrocyte 

projections [48-51], and radiolabeled MBP (2 min) appears early compared to the cell 

body-synthesized protein PLP (30 minutes) in the myelin fraction of oligodendrocytes, 

providing additional evidence for translation of MBP within the myelin fraction [52].  
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Lacking from our current understanding is how these free ribosomal populations 

are distributed in Schwann cells during development and how ribosomal distribution is 

influenced by Schwann cell interactions with neurons. Developing a better understanding 

of these mechanisms may provide better insight into protein synthetic dynamics as well 

as the stability of observed ribosomal structures, in preparation for translation of 

Schwann cell proteins as well as, intriguingly, those potentially transmitted to neurons 

[27,28]. We used quantitative biological and theoretical approaches to probe the 

hypothesis that the induction of myelination would increase trafficking of ribosomes, to 

account for the required increase in production of myelin associated proteins.  Expression 

of fluorescently labeled ribosomal subunits in primary Schwann cells allowed us to track 

ribosomal transport in real time, and quantify changes in patterns of ribosomal 

localization and transport during both their initial interactions with neurons in culture and 

in early phases of myelination. Multiple regression analysis and the development of a 

data-driven rate kinetic model enabled us to develop further insight into these changes. 

Our data suggest that stable ribosome-enriched foci appear early during Schwann cell 

projection extension and are maintained during early stages of myelination. However, 

transport of new ribosomes into projections slows upon induction of myelination, 

primarily due to increased conversion of anterograde (outward) moving particles to a 

stationary pool. 

Section 2: Materials and methods 

Subsection 1: Animal usage and euthanasia 

Animal usage was in accordance with protocols approved by the UCSD 

Institutional Animal Care and Use Committee (IACUC). Pregnant female rats were 

euthanized by asphyxiation with CO2 followed by confirmation via secondary means 
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(removal of major organs). P2 neonates were incapacitated with CO2 followed by 

euthanization via decapitation. 

Subsection 2: DRG collection and culture 

DRG culture methods were adapted from previously published methods [130]. 

Dorsal root ganglia (DRGs) were removed from E15 Sprague-Dawley rats in HBSS.  

DRGs were dissociated in trypsin for 30 minutes at 37°C.  Following trypsinization, 

samples were washed 3x in fresh pre-warmed media. DRGs (~30,000 per plate) were 

plated on laminin-coated glass coverslips placed within 24-well plates supplemented with 

500 μl of prewarmed DRG media consisting of MEM with 10% FBS, 2% B27, 1 ng/ml 

NGF, and 1 % Penicillin/Streptomycin.  One day post plating, culture media was 

supplemented with 1 ug/ml FdU to eliminate contaminating fibroblasts and Schwann 

cells.  Media was alternated every 2-3 days between FdU application and fresh media for 

a period of two weeks to obtain a mostly purified neuronal culture (Figure 3-1A). 

Subsection 3: Schwann cell isolation 

Schwann cells were isolated and cultured per previously published methods [130]. 

Primary Schwann cells were obtained from the sciatic nerves of ~10 P2 Sprague-Dawley 

rat pups (20 nerves). Nerves were dissected into 14 ml of L15 media then spun down at 

3000 rpm for 2 min.  Media was aspirated off and nerves were resuspended in 2 ml L-15 

and 1 ml 10 mg/ml collagenase type P and incubated at 37°C for 45 min, mixing every 10 

min.  Tissue was spun down for 2 min at 1000xg, media aspirated off and pre-warmed 

digestion solution added (3 ml 0.25% trypsin and 1 ml DNase [1.2 mg/ml]) Sample was 

incubated for 15 minutes at 37°C.  Following incubation, the reaction was halted by 

supplementing sample with 5 mL DMEM and 10% FBS.  Sample was centrifuged for 2  
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Figure 3-1: Experimental Design 

(A) Cell culture timeline. All experimental days reference days since Schwann cell 

addition to neuronal culture; Confirmation of myelination protocols and cell culture 

techniques was observed through immunolabeling: (B) DIC image of Day 14AA culture 

indicates several clusters of Schwann cells and neurons (stars) as well as fascicles of 

myelinated DRG axons (arrows); (C) MBP immunostain of Day 14AA culture shows low 

levels of MBP expression, indicative of early myelination; (D) DIC image of cultured 

Schwann cells at Day 1 (E) S100 immunostain identifies cultured Schwann cells; (F) DIC 

image of a single Schwann cell (star) abutting  neuronal processes; (G) SMI-31 

(phosphorylated neurofilament) immunostain identifies location of neuronal processes 

relative to Schwann cell body (star); Scale bar B/C: 200 µm, D/E/F/G: 50 µm  
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minutes at 1000xg followed by two washes with 10 ml of ice cold L15 media followed by 

1000xg centrifugations.  Samples were supplemented with 5 ml of media and triturated.  

Cells were spun down at 1000xg and media removed for transfection.  

Subsection 4: Transfection 

Nucleofection was performed according to manufacturer’s instructions (4D-

Nucleofector
TM

 System, Lonza AG, Switzerland) using P3 primary cell solution and 

program setting DC-100 to transfect. Either 3 μg of L4-GFP plasmid (a generous gift of 

Tim Krüger [131] or control GFP plasmid (Lonza AG, Switzerland) were used.  

Expression persisted for up to two weeks in culture. However, the percentage of cells 

expressing the plasmid decreased over time, as has been previously reported [132]. Thus, 

our experimental time course was conservatively chosen to span early phases of 

myelination, and includes cells from one day post transfection (Day 1) to cells one week 

post transfection (Day 7) (Figure 3-1A). 

Subsection 5: Induction of myelination 

Myelination was induced with ascorbic acid per published protocols [133]. On the 

fourth day of co-culture with neurons, Schwann cell media was supplemented with 50 

μg/ml ascorbic acid to initiate the process of myelination. Cells treated with ascorbic acid 

and observed were designated (Day 7AA) in contrast with untreated cells (Day 7 No 

AA). Myelination was confirmed using immunocytochemistry at day 14 (Figure 3-1C).  

Subsection 6: Immunocytochemistry 

Immunocytochemistry was performed at various developmental time points, using 

published protocols [2]. Samples were labeled with one or a combination of the following 

primary antibodies: mouse anti-S100 (Sigma-Aldrich S2532), mouse anti-SMI31 (abcam 
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ab24573), mouse anti-MBP, human anti-Ribo-P (Immunovision HPO-0100), mouse anti-

RPL4 (Sigma-Aldrich WH0006124M1), mouse anti-tubulin (Sigma-Aldrich T9026). 

Appropriate species specific fluorescently-labeled secondary antibodies were used to 

visualize primary antibody localization.  Secondary antibodies used included: Alexa 

Fluor 488-goat anti-mouse (Invitrogen A-11001), Alexa Fluor 594-goat anti-mouse 

(Invitrogen A-11032), Alexa Fluor 594-goat anti-rabbit (Invitrogen A-11037), and Alexa 

Fluor 594-goat anti-human (Jackson Immunoresearch 109-585-003). Desired samples 

were incubated for 30 minutes prior to mounting in Alexa Fluor 594-phalloidin 

(Invitrogen A-12381) to visualize actin. 

Analysis for co-localization was performed using ImageJ plugin JACoP.[134] 

Images were analyzed for overlapping expression using the Manders coefficient, which 

incorporates both position and fluorescence intensity into assessment of co-localization 

[135]. 

Subsection 7: Imaging 

Cells were imaged using a Leica SP5 system within an environmental chamber 

(Tokai Hit, Japan) that, for live-imaging experiments, enabled maintenance of the 

environment at 37°C and 5% CO2. Standard lasers and filters were used. An argon laser 

enabled excitation at 488nm with HeNe lasers for 594nm. Emission was captured 

between 500-550 nm (GFP, Alexa-Fluor 488) and 600-650 (Alexa-Fluor 594). Laser 

power and gains were adjusted to provide best images for each sample. 

Time course images of transfected cells were captured at 5 second intervals for a 

period of 5 minutes.  The capture rate and imaging period were chosen based upon 

several factors including anticipated transport rates, desired resolution, and minimization 

of photobleaching and phototoxicity.   
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Subsection 8: Image processing and analysis 

Custom Matlab (Mathworks, Inc.) programs were modified from previous studies 

[2,136]. to convert time course images into a kymograph. Kymographs allow for 

visualization of changes in an intensity profile of a 1-dimensional trace over time with the 

time variable displayed along the y-axis and cellular position along the x-axis.  

Kymograph traces in our analysis were made along the long axis of the SC projection 

allowing visualization of transport throughout the projection with a thickness of 9 pixels. 

Application of a standard deviation filter in MATLAB to processed kymographs enabled 

background and noise suppression with signal enhancement, by replacing a given pixel 

with the standard deviation of its surrounding 3x3 pixel neighborhood. At this point, the 

individual traces were reduced to a central 3-pixel thickness encompassing the centerline 

of the projection. Kymographs were analyzed for both ribosomal distributions along the 

projection as well as transport characteristics of mobile ribosomal populations.  

For characterization of ribosomal distributions, kymographs were averaged along 

the y-axis providing an average projection profile for the five minute imaging duration. 

The profile was manually segmented to separate the cell body from the projection for 

characterization. Stable populations of ribosomes were noted within the projections 

through identification of peaks in the average intensity above background fluorescence 

levels (>3x). Peaks within 5 pixels (~2.5 μm) were counted as a single peak to minimize 

double counting due to inherent noise from averaging. Average fluorescence levels were 

identified for both the cell body and projection regions.  Peak distance values were 

determined from identified peak locations and specified projection start. 

Transport parameters were computed based upon manual identification of mobile 

ribosomal particles with a continuous trajectory from frame to frame and an intensity of 
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at least 3x above background. Traces were made of moving particles, and parameters for 

each ribosomal particle were computed.  Mean particle parameters were computed and 

presented as average values. Net velocity was computed based on the aggregate distance 

traveled by all particles in a given sample divided by the time window of observation [6].  

This provides a reasonable surrogate for the collective level of transport conducted by a 

cell throughout the duration of the 5 minute imaging window. 

Subsection 9: Multiple regression analysis 

Multiple regression analysis was performed on the z-scored data of all individual 

traces within an experimental group. The dependent variable (net displacement) was 

regressed against the independent variables average velocity, total duration, anterograde 

velocity, anterograde duration, stationary velocity, stationary duration, retrograde 

velocity, and retrograde duration. Higher β-weights indicate a stronger contribution to the 

regression model.  

Subsection 10: Modeling 

A ribosomal transport model was implemented using a rate kinetics model to 

evaluate transitions from stationary, retrograde, and anterograde ribosomal populations. 

The model, modified slightly from its original form [137], used a system of coupled 

differential equations for each population: 

   (1) 

 (2) 

 (3) 
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The model schematic can be seen in Figure 3-7. Particle amounts while modeled 

as concentrations within the equations refer to instantaneous particle counts. The model 

was implemented in MATLAB (MathWorks, Natick, MA) using the differential equation 

solver ode45 which implements a Runge-Kutta method with a variable step size. In order 

to find a unique best solution, rates were varied between 0.001 and 1.001 in 0.01 steps for 

each rate constant. Sensitivity analysis for each model parameter was performed by 

varying each parameter over its allowed range, and plotting model outputs. Best fit was 

determined by minimizing the mean square error (MSE) between modeled parameters 

and experimental data for net displacement and the number of particles in each state. 

Initial model fit was made using the time points untreated with ascorbic acid. A fit was 

then made between the Day 4 time point of the fit (when ascorbic acid was added) and 

the Day 7 treated group. Within the model, net velocity was calculated by multiplying the 

instantaneous particle populations of each state by the instantaneous velocity of the 

population for a given time step and summing the two populations. Experimentally 

measured velocities were fit using linear regression to provide an approximate 

instantaneous velocity (Table 3-1). 

Subsection 11: Statistical analysis 

In all cases a 1-way ANOVA was performed across all experimental groups (Day 

1, Day 3, Day 7 No AA, Day 7AA). Additionally, Tukey’s HSD was performed post-hoc 

to determine significant differences between individual groups of interest while 

accounting for multiple comparisons. Differences were considered significant for p < 

0.05. A minimum sample size of 7 was used for each group, corresponding to a statistical 

power of 0.91 and effect size capable of being detected of 0.96. 
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Table 3-1: Model parameters  

Constants for linear fits of velocities used in transport model for each experimental state 

(based on fits of experimental velocity data) 
 

Section 3: Results 

Subsection 1: L4-GFP transfection and ribosomal expression in Schwann cells 

We confirmed and characterized transfection of SCs with the L4-GFP plasmid 

(Figure 3-2A).  Only ~15% of cells were successfully transfected; however, comparison 

of transfected cells with fixed cells immuno-labeled for ribosomal protein L4 showed 

strong agreement in localization (Figure 3-2B). Of particular note was the punctate 

expression within the nucleolus and higher relative fluorescence within the cell body 

compared to the projection of the SC. Comparison with Ribo-P, a marker for 

phosphorylated ribosomes, showed strong co-localization outside of the nucleus (Figure 

3-2C). The expression profile of L4-GFP also differed greatly from that of GFP 

expression (Figure 3-2D), which was evenly distributed in low levels throughout the 

entirety of the SC. 

Subsection 2: Ribosomal expression characteristics within Schwann cell 

projections  

Following successful transfection, SCs associated with neurons were identified 

based on the position of cell bodies and projections of each cell type. We investigated 

these cells to determine the development of ribosomal distributions within SC projections 

over time and following myelination induction (Figure 3-1A). We compared early (Days 
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1 and 3) and late (Day 7 No AA) time points for untreated cells, and for the late time 

point, also cells treated with ascorbic acid at day 4 to induce myelination (Day 7AA). 

 

Figure 3-2: Transfection and ribosomal labeling  

(A) Transfected Schwann cell expressing L4-GFP (magnified in inset); (B) Schwann cell 

immunostained with anti-L4; (C) Schwann cell immunostained with anti-Ribo-P shows 

strong extra-nuclear co-localization with L4 expression; (D) Transfected Schwann cell 

expressing GFP (magnified in inset) shows continuous low-level expression throughout 

cell, including the nuclear compartment, and differs from L4-GFP labeling pattern; Scale 

bar:  50 µm 
 

The ratio of cell body fluorescence to projection fluorescence was used to 

determine any difference in bulk localization of ribosomes. This ratio was calculated for 

sub-saturation fluorescence, and was independent of any cell to cell differences in 

fluorescence expression. The ratios at each time point were consistent, falling between 

0.406 and 0.429 (p = 0.486; One-way ANOVA, Figure 3-3A), suggesting no net increase 

or decrease in projection expression levels among all experimental groups.  
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Figure 3-3: Projection ribosomal distributions  

Ribosomal expression in the projections of Schwann cells remained relatively consistent 

throughout the experimental proceedings according to a number of metrics: (A) The ratio 

of fluorescence in the projection compared to the cell body remained consistent 

throughout the experimental groups; (B) The number of observed ribosomal peaks (or 

puncta) did not vary significantly throughout the experimental groups; (C) The distance 

between peaks varied albeit not significantly throughout the experiment (Means ± SEM). 

Statistics: 1-way ANOVA. 

 

Bright, stationary ribosomal patches dotting the Schwann cellular projection were 

consistently observed at each time point. The peaks were characterized by a minimum 3x 

increase in fluorescence over the average projection expression level. The number of 

these peaks did not change amongst the experimental groups (between 2.2. and 3.4; p = 

0.77; One-way ANOVA, Figure 3-3B).  Additionally the peak to peak distance did not 
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vary (p = 0.605 One-way ANOVA, Figure 3-3C). Several additional morphological and 

fluorescence parameters of interest, including projection length, raw fluorescence, and 

distances of peaks from cell bodies were also calculated (Table 3-2). These also yielded 

no significant differences. This evidence points to an early establishment and inherent 

stability of the ribosomal clusters following SC alignment with neurons, independent of 

time or early myelination.  

 

Table 3-2: Projection data  

Additional values from projection analysis show little variability between experimental 

groups, p-values based on 1-ANOVA of experimental group 
 

Subsection 3: Cytoskeletal characteristics of ribosomal clusters in Schwann cells 

Based on observations of apparently stable ribosomal clusters, we tested whether 

any particular cytoskeletal components were associated with local ribosomal clusters. In 

neurons, previous reports indicated high densities of F-actin subjacent to ribosome-

enriched periaxoplamic ribosomal plaques (PARPs) [62]. We therefore tested whether a 

similar phenomenon also occurred in SCs, by examining co-localization of 

immunolabeled L4 and phalloidin-labeled F-actin. We did observe bright regions of actin 

along the SC projection, interspersed with dim regions, enabling analysis of co-

localization with ribosomal clusters. However, L4 clusters in SC projections showed no 

specific co-localization or apparent proximity to F-actin in SCs alone (Manders = 
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0.179±0.082), in the presence of neurons without induction of myelination (Day 1; 

Manders = 0.341±0.288) and in the presence of neurons following induction of 

myelination (Day 7AA; Manders = 0.197±0.113) (Figures 3-4A-C). We also examined 

localization of RPL4 relative to microtubules, indicated by tubulin. However, fluorescent 

intensity of tubulin was consistent along axons at the imaged resolution, and thus 

precluded any analysis of co-localization (Figure 3-4D).  

 

Figure 3-4: Cytoskeletal distributions in Schwann cells  

(A) Schwann cell immunostained for L4 shows expression throughout the projection with 

specifically punctate regions (arrows) corresponding to ribosomal rich regions; (B) 

Phalloidin staining highlights cortical regions rich in actin (arrows) but not necessarily 

corresponding with ribosomal rich regions (C); (D) Tubulin immunostain revealed 

consistent ubiquitous expression throughout Schwann cells showing no preference for 

ribosomal puncta; Scale bar:  50 µm 

 

Subsection 4: Ribosomal transport characteristics within Schwann cell projections  

Though densities were apparently stable, movies of L4-GFP dynamics, captured 

using time-lapse fluorescence microscopy, revealed movement of less intense L4-GFP 

puncta between densities. Thus, to examine whether ribosomal transport contributed to 
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the maintenance of densities, we next quantitatively characterized the movement of L4-

GFP using kymograph analysis, which allowed the observation of moving L4-GFP 

particles, and the characterization of puncta directionality, velocity, and duration of 

movement (Figure 3-5). Individual puncta were treated as single particles, independent of 

fluorescence intensity.  

The summation of net displacement for each individual L4-GFP particle within a 

given movie offers a summary of directionality and extent of movement within a cell 

during our imaging period. Normalization of this displacement to the imaging duration 

yields net velocity, which enables comparison with bulk transport rates captured over a 

longer time frame [2,6]. There are significant differences in net velocity of ribosomes 

over the course of Schwann cell development (p = 0.0038, One-way ANOVA, Figure 3-

6A). In particular, though ribosomal transport is anterograde (away from the Schwann 

cell body) at all time points, ribosomal transport at Day 7 increases in the absence of 

ascorbic acid, but is suppressed in the presence of ascorbic acid. (Mean ± SEM; No AA: 

0.388±0.074; AA: 0.129±0.025, p = 0.00189, Tukey’s HSD). 
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Figure 3-5: Kymograph development  

(A) Schwann cell projections were cropped and traced to develop (B) a kymograph (y-

axis: time, increasing downward; x-axis: position along the projection, with anterograde 

to the right); (C) Trajectories for puncta observed in continuous frames were traced on 

the kymograph to identify ribosomal movement throughout the projection, and allow for 

quantification of transport parameters during the course of the experiment; Scale bar:  20 

µm, duration 5 minutes. 

 

We further examined individual transport parameters to determine their contribution to 

net displacement/velocity in each experimental group. The comprehensive data set, 

including statistical analysis, is summarized in Table 3-3. For clarity, we discuss key 

findings below.  

 

Table 3-3: Ribosomal transport data 

Transport data values from transport analysis showing variability among velocities and 

particle distributions between groups, p-values passed on 1-ANOVA (Tukey HSD, p < 

0.05 compared to *Day 1, ^Day 3, †Day 7 – No AA) 
 

The average ribosomal velocity was also dependent upon the developmental state 

of the Schwann cell (p = 0.0025 One-way ANOVA, Figure 3-6B). Most notably, there 

was a significant reduction in average velocity from Day 3 (0.56 μm/s) to Day 7 (No AA: 

0.25 μm/s; AA: 0.22 μm/s) irrespective of ascorbic acid treatment (Day 3 – Day 7 No 

AA: p = 0.041; Day 3 – Day 7 AA: p = 0.004, Tukey’s HSD). While the reduction in 

average velocity might be expected in the case of Day 7AA, where net velocity is also 

reduced, this was unexpected in the case of the untreated Day 7 group, where net velocity 
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in fact increases. This apparent paradox indicates that other phenomena are integral in 

determining the net velocity. 

Average particle run durations varied between 24 and 33 seconds in the 

anterograde direction and 21 and 35 seconds in the retrograde direction. Though there 

were no significant differences in particle durations in either direction (Figure 3-6C), 

interestingly, durations in each direction seemed to mirror one another, with the ratio of 

anterograde to retrograde durations confined to a narrow range of 0.93-1.12. This may 

indicate that variations in duration could result from a more systematic reduction in 

ribosomal transport regardless of directionality. 

A final component of net velocity is the number and proportion of particles being 

transported in each direction. There were significant differences in both particle 

populations (Anterograde: p = 0.006; Retrograde: p = 0.000006, One-way ANOVA, 

Figure 3-6D). Of note in the case of the anterograde particles is the significant increase in 

anterograde particles from Day 3 (5.125 particles) to Day 7 (No AA: 8.25 particles) in the 

absence of ascorbic acid (p = 0.005, Tukey’s HSD), but not the presence of ascorbic acid 

(AA: 5.6 particles; p = 0.918, Tukey’s HSD). This increase in particle number thus may 

be a key factor contributing to the observed increase in net velocity. 

Subsection 5: Multiple Regression 

We performed multiple regression analysis on a particle by particle basis to 

determine the individual contributions of each component measurement (independent 

variables) to the resultant net velocity (dependent variable). A complete summary of 

regression results is found in Table 3-4. At early time points, anterograde velocity had a 

strong influence on net velocity (Day 1: 0.431; Day 3: 0.474), with additional 

contributions from directional durations (Day 1 total duration: 0.537; Day 1 retrograde  
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Figure 3-6: Ribosomal transport measures  

Kymograph analysis provided a clear picture of the dynamics of ribosomal transport. (A) 

Net velocity, a measurement that provides a relative comparison of the bulk transport 

occurring in the cell, showed increased levels after 7 days. These levels were decreased 

when the cultures were treated with ascorbic acid indicating an effect of this treatment 

and early myelination on ribosomal transport; (B) In both day 7 treatment groups, the 

average velocity was decreased compared to day 3; (C) Anterograde and retrograde 

durations varied over the course of the experiment but failed to show any significant 

differences; (D) The number of anterograde particles increased after 7 days in the 

absence of ascorbic acid compared to both the day 3 and day 7 ascorbic acid treated 

groups. Additionally, there was an increase in retrograde particles in both the day 7 

groups compared to the earlier time points, likely influencing the observed changes in net 

velocity  (Means ± SEM) Statistics: 1-way ANOVA (* p < 0.05); Tukey HSD (▬ p < 

0.05). 
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duration: -0.595; Day 3 anterograde duration: 0.474). At later stages, irrespective of 

ascorbic acid treatment, directional (anterograde) duration continued to contribute most 

strongly to net velocity (Day 7 AA: 0.630; Day 7 no AA: 0.925). Though the effect of 

anterograde velocity was sharply diminished, average velocity also contributed strongly 

to the model (AA: 0.525; No AA: 0.480). Thus, under the assumption that each parameter 

is modulated, at least partially, by a different set of biological influences, these results 

suggest that regulation of ribosomal transport in Schwann cells evolves temporally, but is 

not influenced by early myelination.  

 

Table 3-4: Multiple regression  

β-weights for multiple regression of z-scored data for independent variables regressed 

against the dependent variable net velocity show a shift from anterograde velocity 

dependence at early time points (Days 1 and 3) to anterograde time dependence at later 

time points (Day 7) 
 

Subsection 6: Ribosomal Transport Model 

A limitation of the narrow temporal window during which transport was assessed 

as well as a finer understanding of factors underlying outcomes from multiple regression 

analysis was an inability to examine directional transitions in particle movement. Thus, 

we developed a simple yet informative kinetic model, driven and validated by our 

experimental data, which was captured over a time frame of minutes, on net transport, 

which was measured over a time frame of days (Figure 3-7). The model determined a set 
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of rate constants that best fit experimental parameters for net velocity and the number of 

anterograde and retrograde particles, based on computed mean squared error. Numerical 

solution of the system of differential equations was stable. Model fits were extremely 

strong (No AA: MSE = 0.068; AA: MSE = 0.0018), and were unique within the wide 

range of allowed parameter values. Sensitivity analysis was also performed for each rate 

constant over this range of values (Supplementary Figure 3-1), and revealed that the 

model was most sensitive to changes in k+1 followed by k+2. 

The transition of rate constants upon addition of ascorbic acid provided 

information about the shift in ribosomal transport during onset of myelination. In both 

cases the rate of conversion from stationary to anterograde particles remained 

comparatively stable (k+1, No AA: 0.151; AA: 0.181). This was not the case for 

retrograde particles, which showed a large decrease in conversion from stationary to 

retrograde particles (k+2, No AA: 0.961; AA: 0.281), suggesting increased particle 

retention within projections. Further, the rate of conversion back to stationary increased 

dramatically with the addition of ascorbic acid for both anterograde (k-1, No AA: 0.001; 

AA: 0.441) and retrograde particles (k-2, No AA: 0.611; AA: 0.761), consistent with 

observed decreases in transport durations bidirectionally. Cumulatively, these results 

suggest that the increases in k-1 and k-2 are the likely drivers of decreased anterograde and 

retrograde particle number, as well as net velocity following induction of myelination. 

Section 4: Discussion 

The localization, dynamics, and activity of protein synthetic machinery have 

received increased attention in neurons [6,48,124,138,139], motivated in large part by the 

demands imposed by neuronal polarity and geometry. Local protein synthesis has been 

less extensively studied in Schwann cells, though they also extend long projections, and 
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thus also face similar metabolic, structural, and biochemical demands [48,52,123]. 

Additionally, recent evidence has suggested that Schwann cells are a source of mRNA 

and ribosomes for neurons recovering from injury, providing additional rationale for 

localizing protein synthetic machinery to SC projections [27,28].  

 

 

Figure 3-7: Rate kinetic model of ribosomal transport  

(A) Schematic of the rate kinetic model shows possible particle states and transition rate 

constants between the three states; (B) Plotting of the optimized model (lines) shows 

strong agreement with experimental data (points); (C) Following ascorbic acid treatment 

the rate of conversion from anterograde to stationary (k-1) increased while the rate of 

conversion from stationary to retrograde decreased (k+2), leading to the overall reduction 

in net velocity. 
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This study used a combined experimental and theoretical approach to examine the 

localization and movement of ribosomes within the projections of Schwann cells at high 

resolution. While several important studies have documented the presence of mRNA and 

ribosomes in SC projections [48-52], the development and plasticity of ribosomal 

populations locally remain unknown. Our overall hypothesis was that local populations 

would be developed early during projection extension to enable projection outgrowth. 

However, such populations would then require supplementation, both for maintenance, 

given the ~40 hour half-life of ribosomes [140], as well as to sustain increased 

interactions with neurons, which may be stably myelinated for years [141]. Our results 

support our original hypothesis of anterograde transport of ribosomes developing 

ribosomal populations in the projections of Schwann cells during initial projection 

elongation. In early phases of myelination, ribosome trafficking decreases slightly as 

expected, in line with a shift towards a maintenance regime. 

Subsection 1: Stable ribosomal populations 

Localization of L4-GFP in transfected Schwann cells showed strong agreement 

with immunolabeled L4. Two characteristics of ribosomal expression in Schwann cell 

projections, seen both in transfected cells and immuno-labeled cells, are of particular 

note. First, similar to MBP mRNA distributions described previously,[48,50,51] there 

was a level of punctate ribosomal expression throughout the projection. It is possible that 

these ribosomes are associated with RNA granules of varying size and function, as 

suggested for oligodendrocytes [142]. Second, there were 2-3 stable peaks of high 

fluorescence intensity within each Schwann cell projection, likely pointing to locations of 

ribosomal clustering. These peaks were apparent upon initial projection extension on day 

1 and persist throughout the seven days of observation both in the presence and absence 
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of ascorbic acid. This pattern too is similar to MBP mRNA densities within SC 

projections [48]. Future studies will reveal whether ribosomal densities synthesize 

proteins for stages of myelination or participate in ribosomal transfer to neurons[27,48] at 

structures yet to be formed. For instance, Schmidt-Lanterman incisures have been 

suggested as the region of ribosomal transfer following injury and occur at similarly 

spaced intervals (~25-30 μm) [143] as the observed ribosomal clusters [27,143]. 

Interestingly, while protein synthesis does not appear to extend into the Schmidt-

Lanterman incisures there does seem to be significant ribosomal localization to the 

surface network in the region adjacent the incisures [48]. 

To probe a possible structural basis for observed ribosomal densities, cells were 

co-labeled for RPL4 and cytoskeletal components. In neurons, ribosomal clusters 

(periaxoplasmic ribosomal plaques) are observed within axons and cluster around regions 

enriched in F-actin [62]. Similarly, Schmidt-Lanterman incisures are enriched in F-actin 

[27,28,144]. However, co-labeling of ribosomal subunits with F-actin and tubulin failed 

to display any obvious co-localization with ribosomal clusters (Figure 3-4). On the other 

hand, it is possible that a specific set of actin- or tubulin-associated proteins rather than 

the filaments themselves may play a role in docking or sequestering ribosomes [145]. 

Subsection 2: Ribosomal movement 

By Day 1 after neuronal contact, newly synthesized ribosomes containing L4-

GFP were already distributed throughout Schwann cell projections. Additionally, 

distributions revealed minimal changes between Day 1 and Day 7, in the presence or 

absence of ascorbic acid. Though it was somewhat surprising that ribosomal densities 

were stabilized so rapidly, also of interest was the activity of more dynamic populations 

of directionally moving ribosomes observed using time-lapse microscopy. Kymograph 
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analysis, which captured ribosomal transport characteristics at each experimental time 

point at high resolution, enabled us to quantify and compare transport parameters in 

greater detail. 

Individual transport parameters were integrated into an estimate of net movement 

(net velocity) of ribosomal populations, which served as a rough surrogate for ribosomal 

demand at a given stage of growth or myelination. The nucleus was the source of newly 

synthesized fluorescent ribosomal subunits, and as such explains the net anterograde 

velocities for each experimental group. Bulk rates were ~0.1–0.3 μm/sec (~8–25 

mm/day), which corresponds to an intermediate rate of transport in a neuron [146]. 

Interestingly, at early time points, the net velocity remained quite stable, but diverged at 

Day 7, dependent upon ascorbic acid treatment; ascorbic acid treatment led to an overall 

reduction in net anterograde velocity, whereas the absence of ascorbic acid led to an 

increase. 

The cellular processes driving reduced net velocity in the presence of ascorbic 

acid are mostly unexplored. Reduced ribosomal demand may simply represent a more 

focused diversion of translational machinery to the myelination process [33]. On the 

other hand, several Schwann cell activities appear to be coupled to early stages of SC-

neuron contact and myelination. Structurally, neuronal contact alters the nucleation, 

polarity, and distribution of microtubules within myelinating Schwann cells [147]. In 

addition, consistent with reduced cellular extension and crawling during neuronal 

interactions, mobility of Schwann cell membranes and their associated cytoskeleton is 

reduced and adhesion is enhanced [2,148,149]. It is not inconceivable that such structural 

changes during early stages of myelination could influence the directionality, duration, 
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and overall levels of ribosomal transport. Indeed, initiation of myelination in regenerating 

nerves results in altered expression and distribution of several genes and proteins in 

Schwann cells, including neurofilaments [150],  TGF-beta [151], P0 glycoprotein [152], 

and ion channels [153].  

While there are drastic changes in net velocity with the initiation of myelination, 

the average anterograde and retrograde velocities did not change, suggesting that the 

regulation of molecular motor activity is changed, not the responsible motors themselves. 

While it is unclear which motors are responsible for ribosomal transport in Schwann 

cells, in other cellular systems the distribution of ribosomes depends on early endosome 

trafficking of both kinesin-3 and dynein [154,155]. Parameters that might change include 

binding affinities, number of available motor proteins, and initiation of transport all of 

which would affect net velocity but not the individual components of velocity [156]. The 

observed decrease in ribosomal trafficking is mostly attributable to the increased levels of 

retrograde moving particles. The increase in retrograde particles at Day 7, for both 

ascorbic acid-treated and untreated cells, are perhaps due to ribosomal recycling [157]. 

However, the net velocity remains positive at these times indicating that ribosomes are 

still required in the periphery and needed to maintain and replenish the stable ribosomal 

pools. 

Subsection 3: Theoretical modeling of ribosomal transport 

To further understand differences in transport, we used our high-resolution 

assessment of transport to develop and validate a simple, yet powerful, data-driven rate 

kinetic model of ribosomal transport. This model was particularly effective at describing 

the transfer of particles from one movement state (stationary, anterograde, or retrograde) 
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to another, providing insight into underlying transport dynamics not amenable to other 

types of analyses.  

For example, population analysis indicated that both anterograde and retrograde 

populations decreased, and as a consequence, the magnitude of net velocity was also 

reduced. Our model enabled us to assess whether these reductions in anterograde and 

retrograde populations resulted from increased transition from moving to stationary 

particles, decreased transition from stationary to moving particles, or both. For our case, 

the model revealed an increased rate of conversion from anterograde to stationary (higher 

k-1), a decreased rate of conversion from stationary to retrograde (lower k+2), and a 

slightly higher rate of conversion from retrograde to stationary (higher k-2) upon addition 

of ascorbic acid. These three changes thus drove the observed reduction in bidirectional 

movement and net velocity.  

The model also raises hypotheses about different mechanisms for the decrease in 

both anterograde and retrograde populations. The decreased recruitment of retrograde 

particles may result from decreased recruitment of motor proteins and a desire to 

conserve established ribosomal populations within the projections. The increased 

conversion of anterograde particles to stationary may be resultant of myelin compaction 

and other restrictions on transport within the projection compartment, a systemic effect 

that could additionally affect retrograde transport. Such possibilities may be considered 

and tested in future experiments.  

Section 5: Conclusions and future directions 

This study provides a first quantitative look into the establishment of ribosomal 

populations within Schwann cells following neuronal contact and myelination, and 

transport changes associated with a hypothesized change in demand for a local protein 
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synthesis source. While others have shown that proteins are synthesized locally in 

Schwann cell projections and are required for myelination, we are the first to observe, 

quantify, and model the process dynamics during early development and myelination. 

The observed ribosomal transport decrease into the Schwann cell projection is likely tied 

to a decrease in demand for protein synthesis. However, many questions remain to be 

answered about how and why such dynamics occur, including which motor proteins are 

at work, the effect of early and late myelination on local protein synthesis, and the role, if 

any, early ribosomal localization may have on the proposed process of transcytosis [27]. 

Our initial findings open the possibility for a number of future studies that might be 

integral in developing translational clinical solutions for nervous system disease and 

injury.  

Section 6: Acknowledgements 

 We gratefully acknowledge funding support from the Alzheimer’s Association 

(NIRG09133270) and National Science Foundation (CBET-0932590). We also 

acknowledge helpful conversations with members of the Neuromuscular Bioengineering 

Laboratory.  

  



66 

 

Section 7: Supplemental Figure 
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Figure 3-1 (Supplemental): Variation of model rate constants  

Model traces for varying rate constants show degree of sensitivity for the unique solution. 

No AA groups were highly sensitive to both forward rate constants, k+1 (A) and k+2 (C), 

yet slightly less sensitive to variations in both reverse rate constants, k-1 (B) and k-2 (D). 

Similar results held for parameter variations in the AA treated model with higher 

sensitivity to changes in both forward rate constants, k+1 (E) and k+2 (G), and lower 

sensitivity to the changes in the reverse rates, k-1 (F) and k-2 (H). 
 



68 

 

Chapter 4: Nerve strain correlates with structural changes 

quantified by Fourier analysis [3] 

Section 1: Introduction 

Peripheral nerve deformation affects electrophysiological function. Excess 

deformation results in functional deficits and the amount of strain dictates the 

reversibility of deficits [55,158,159]. This concept is particularly important during repair 

of severed nerves or limb lengthening procedures. Surgeons rely primarily on their 

experience and “feel” when they determine the appropriate tension for nerve 

reattachment [160,161]. Though tension-free repairs are a clinically accepted standard, 

some studies suggest that a modest level of strain can benefit nerve repair [78] and may 

even enhance neuronal function and promote survival [162]. Therefore, the ability to 

accurately and objectively monitor physiological strain may ultimately be of clinical 

utility. 

Originally identified in 1781 [163], one can observe the bands of Fontana, a 

distinct optical phenomenon that results from undulations in axonal tracts and their 

surrounding connective tissue [58,164-166]. The periodicity of bands of Fontana varies 

with strain; they ultimately disappear at ~14% strain (8% beyond resting strain) in the 

sciatic nerve of rats [164], which correlates with functional loss [55,158,159]. Thus, 

bands of Fontana may provide a sensitive structural predictor of nerve function. 

We report an automated Fourier-based image processing method to quantify 

periodicity of bands of Fontana in rat sciatic nerves from digital images.  Positive 

correlation between periodicities and applied strain was observed. Application of this 

method to immuno-labeled longitudinal sections of nerves at varying strain provide a 
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structural correlate for changes in the bands of Fontana, and demonstrate the versatility of 

the analytical method.  

Section 2: Methods  

Subsection 1: Animals and tissue collection 

Sciatic nerves were excised from 8 3-month old male Sprague-Dawley rats 

(Charles River Labs).  Procedures were approved by the UCSD Institutional Animal Care 

and Use Committee.  Six nerves from 3 animals were examined for in situ and severed 

studies. Following sacrifice, sciatic nerves were exposed, and in situ images of banding 

patterns at relaxed knee and ankle joint angles were collected (85-95° each).  Nerves 

were then transected just proximal to the trifurcation, and images were obtained of the 

severed nerve. Nerves were then excised 15 mm proximal to the site of transection.  

Three nerves, 1 from each animal, were pinned to cork board and imaged at 0% (prior to 

stretch), 10%, and 20% strain. 

Subsection 2: Imaging 

Bands of Fontana were imaged using a D5100 digital camera with a DX SWM 

VR Aspherical ∞ - 0.28m lens (Nikon). Histological sections were imaged with a Leica 

SP5 confocal imaging system and a 10x objective (resolution of 3.027 μm/pix). An argon 

laser enabled excitation at 488nm. Emission was captured between 500-550 nm.  Vertical 

stacks of ~24 images were acquired for each sample, with section thickness of 0.5-0.7 

μm. 

Subsection 3: Histology 

 Nine separately excised nerves from 6 specimens were pinned at specified 

strains, flash-frozen in liquid nitrogen-cooled 2-methylbutane for 2 minutes, and stored at 
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-80°C. Excised nerves were embedded in OCT, sectioned longitudinally and placed on 

Superfrost® Plus slides (Fisher 12-550-15).  

Subsection 4: Immunostaining 

Triplicate washes were performed in PBS.  Samples were permeabilized with 

0.2% Triton-X 100 in PBS for 5 minutes, washed, blocked with 10% FBS and 3% BSA 

in PBS for 30 minutes at room temperature, washed, and incubated with a monoclonal 

primary antibody targeting myelin-basic protein (MBP) (MAB382, Millipore) for 1.5 

hours at room temperature. Samples were then washed and incubated for 2 hours in 

Alexa Fluor 488-goat anti-mouse secondary antibody (Invitrogen A-11001). Primary and 

secondary antibodies were diluted in blocking solution (1:200). 

Subsection 5: Signal processing 

Images were cropped and contrast enhanced to visualize bands in ImageJ (NIH) 

(Figure 4-1A). Cropped images were analyzed using a custom Matlab (Mathworks Inc.) 

program. Images were treated as two-dimensional matrices, with 8-bit pixels possessing 

an intensity normalized between 0 and 1.  For each horizontal image row, using logic 

similar to subtracting DC-offset, a smoothed intensity trace [“smooth” function, Lowess 

method, span of (row length – 1)] was subtracted from the raw intensity profile to 

minimize zero-frequency artifacts during subsequent analysis (Figures 4-1B and 4-1C). A 

fast Fourier transform of this trace provided a peak frequency corresponding to the 

frequency (reciprocal of peak-to-peak distance) of bands of Fontana (Figure 4-1D) or 

axonal undulations. Residual zero-frequency peaks were ignored. The average frequency 

was computed for each sample by averaging individual row frequencies. 
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Figure 4-1: Correlation of band frequency with nerve strain 

A: Sample of cropped section used to identify bands of Fontana frequency; bar = 1 mm 

B: Plot of sample trace and corresponding smoothed function from custom MATLAB 

program C: Plot of sample trace offset by smoothed trace, providing a waveform that 

reflects around 0 D: Sample Fourier power spectrum used to identify peak frequency of 

each trace E: Samples of bands of Fontana imaged in situ and following transection; bars 

= 1 mm F: Average frequencies of bands of Fontana between severed and in situ samples 

(Mean ± SEM, *p < 0.05) G: Frequency changes with varying strain in histological cross-

sections and bands of Fontana in fresh nerve (Mean ± SEM) H: Longitudinal nerve slice 

stained against MBP and projected into XZ plane between dotted lines.  Solid line 

indicates smoothed fit of the maximal intensity location shows axonal undulations in the 

Z-direction; bar = 500 μm. Intensity plot of maximal intensities along projection reveals 

regional agreement between decreased intensity and axonal undulations designated by 

arrows. 
 

Subsection 6: Statistics 

Means were compared using t-test or ANOVA with  = 0.05 for hypothesis 

testing. Strain and frequency correlations were tested using linear regression. 

Section 3: Results  

In situ, bands of Fontana were periodic but appeared slightly disjointed and 

blurred. Bands appeared sharper and narrower upon severing the nerve (Figure 4-1E), 

which resulted in a 10% recoil of the nerve and a corresponding 60% increase in band 

frequency. (Figure 4-1F; P <0.05, unpaired t-test, n = 5 or 6). 

To correlate nerve strain with band frequency, we stretched excised nerves by 

10% and 20%. Comparison of the means revealed a significant effect of strain on 

frequency (P < 0.05, 1-way ANOVA, n = 3), and a strong linear relationship between 

nerve strain and band frequency (Figure 4-1G; -0.0056 μm
-1
∙%

-1
, r

2
 = 0.829; P < 0.05, 

regression, n = 9). To investigate a structural basis for bands of Fontana, Fourier analysis 

was applied to longitudinal sections immuno-labeled for MBP. Alternating light and dark 

regions indicated waviness in the perpendicular plane, as confirmed by three-dimensional 
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reconstruction (Figure 4-1H). Higher variability compared to intact nerves, possibly due 

to varying planes of undulation, resulted in an underpowered statistical comparison. 

Nevertheless, a trend similar to that in fresh nerve was observed at low strains. Increased 

frequencies at large strain may result from observed structural damage incurred at super-

physiological strains. Manual measurement of frequencies in both whole nerve and 

sections confirmed the accuracy of computed frequencies (e.g., Figures 4-1E and 4-1H). 

Section 4: Conclusions 

Using Fourier analysis, we successfully correlated increases in nerve strain with 

decreased frequencies of bands of Fontana and axonal undulations. These relationships 

are consistent with the concept that axons first unravel within deformed nerves to 

minimize their exposure to tensile loads. Differences in the magnitude of bands of 

Fontana and axonal undulation frequencies may indicate that additional structures 

contribute to bands of Fontana, such as superposed undulations of perineurial structures 

ensheathing fascicles [165]. Crimped epineurial collagen has been posited previously to 

contribute to bands of Fontana. This is unlikely, as crimp frequency is higher than axonal 

undulations [167]. A comprehensive three-dimensional study of nerve architecture will 

further clarify the relationship between structural elements and bands of Fontana.  

Methodologically, similar Fourier-based techniques have been used to identify 

periodic patterns in other tissues, including tendon and skeletal muscle [168-170]. Our 

approach is both accurate and objective and thus has considerable value towards 

understanding structure-function relationships in the nervous system and guiding the 

preservation or enhancement of neural function.  
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Chapter 5: Strain induced mTOR signaling leads to enhanced 

protein synthesis in Peripheral nerves 

Section 1: Introduction 

Excessive tensile strain (stretch) or high strain rates can damage peripheral nerves 

and their component neurons, often irreversibly [55,56]. On the other hand, neurons also 

possess a remarkable ability to accommodate and respond to moderate levels of tensile 

loading. Nerves are stretched during rapid phases of organism growth [171], bear acute 

strains up to 25% during joint movement [54], and also adapt to more persistent strain, 

such as that occurring during limb lengthening [71]. Consistent with the latter, in vitro 

evidence suggests that strained axons can increase both their growth capacity and rate of 

elongation [75-77].  

These concepts have recently been translated into strain-based neuroregenerative 

strategies, with varied success [21,78,172]. Limiting our ability to optimize strain-driven 

regenerative strategies, though, is a poor understanding of biological mechanisms 

underlying neuronal response to strain. Axons gain volume rather than simply thinning 

while under strain [173], and thus require an increase of cellular material to support this 

expansion. Such a response is analogous to that occurring during axonal outgrowth 

during development or following injury, in which the production of many proteins, 

including those associated with the cytoskeleton, is increased  [66,174,175].  

Local protein synthesis provides an efficient way to mobilize structural elements 

required for increased neuronal volume. To this end, a number of mRNAs encoding 

cytoskeletal proteins are present locally within the axonal compartment, including β-

actin, tubulin, and neurofilament heavy subunit (NF-H) [66-68]. These transcripts appear 
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to be translated under conditions of stress. For example, severed axons require axonal 

protein synthesis to regenerate [69,81,82], in an mTOR dependent manner. Consistent 

with these findings, suppression of PTEN, an inhibitor of mTOR, enhances axonal 

elongation [70]. A role for mTOR in regulating strain-associated axonal expansion has 

not yet been tested. However, several other tissue systems, including skeletal and cardiac 

muscle, respond to strain by activating mTOR-dependent protein synthetic pathways , 

which are initiated by FAK phosphorylation [79,80].  

Considering the importance of mTOR in axonal extension as well as its role in 

responding to strain in non-neuronal cells, we hypothesized that applied peripheral nerve 

strain activates mTOR-mediated signaling pathways within axons, resulting in increased 

local synthesis of cytoskeletal proteins within the nerve.  Our data reveal that mTOR-

associated pathways are activated and cytoskeletal proteins increase their expression 

upon rat sciatic nerve strain. However, mTOR differentially regulates the synthesis of 

individual cytoskeletal proteins. 

Section 2: Methods 

Subsection 1: Animal care 

Animal usage was in accordance with protocols approved by the UCSD 

Institutional Animal Care and Use Committee (IACUC). For in vivo experiments, adult 

male rats between the ages of 10 – 13 weeks were utilized. For in vitro experiments, 

pregnant female rats were euthanized to obtain embryos for primary DRG culture. All 

adult animals were sacrificed by asphyxiation with CO2 followed by confirmation via 

removal of major organs. Embryonic rats were sacrificed by decapitation. 
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Subsection 2: Animal surgery and nerve strain 

Anesthesia was induced with 5% isoflurane, and maintained for the duration of 

the experiments at 1.5– 3% isoflurane. The strained experimental limb was randomly 

assigned and contralateral limb was used for paired comparison. Surgery consisted of 

sciatic nerve exposure through separation of the fascial band of the biceps femoris. The 

nerve was then freed from the tissue bed by removing superficial fascia. A custom wedge 

(Figure 5-1B) was placed beneath the sciatic nerve, creating strain by elevating the nerve 

from the tissue bed (cf. bow-stringing in single axon studies [176]). This method avoided 

potential damage associated with grasping or clamping strategies for nerve lengthening. It 

also avoided regional variability in strain incurred by manipulating joint positions. 

Nerves were strained for a period of either 15 minutes (acute signaling) or 6 hours 

(protein synthesis) depending upon the desired outcome measurement. The strained 

section of the sciatic nerve was excised and flash frozen in liquid nitrogen-cooled 

isopentane, and stored at –80°C for future processing. Sham surgeries were performed on 

contralateral limbs, exposing and freeing the sciatic nerve without wedge insertion. 

Subsection 3: Rapamycin treatment 

To inhibit mTOR activity, rats were injected with 5 mg/kg rapamycin (J62473; 

Alfa Aesar) in a solution consisting of 1 mg/ml rapamycin, 5% v/v ethanol, 4% v/v 

Tween 80, 4% v/v polyethylene glycol in sterile water (as described in [177]). Carrier 

control rats were injected with the same solution without rapamycin. 

Subsection 4: Tissue homogenization and sample preparation 

Individual nerves were homogenized in 150 μl of homogenization buffer 

consisting of 20 mM Tris-HCL, 150 mM NaCL, 1% v/v NP-40, 20 mM NaF, 2 mM 

EDTA, 2.5 mM NaPP, 20 mM β-glycerophosphate and 10% glycerol [178,179]. 
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Homogenization buffer was supplemented with cOmplete (04693116001; Roche) and 

phosSTOP (04906845001; Roche) to inhibit protein degradation and dephosphorylation. 

Whole protein levels were quantified by BCA analysis. Samples were diluted to 1 μg /μl 

total protein with additional homogenization buffer, and supplemented with Laemmli 

sample buffer at 3:1 (sample:LSB). Samples were boiled at 100°C for 10 minutes to 

denature proteins prior to storage at –80°C. 

 

Figure 5-1: Experimental set-up and electrophysiology 

(A) Sciatic nerves were marked and imaged following exposure for baseline reference. 

(B) Insertion of custom wedge strained the nerve locally while minimizing damage. 

Markings were used to ensure consistent strain of the nerves. (C) Sample EMG recording 

from the TA displays characteristic depolarization and hyperpolarization following 

sciatic nerve stimulation. (D) Latency measurements made from stimulation to minimum 

and maximums of the recording trace revealed no difference following stretch compared 

to pre-stretch (paired t-test); Mean ± SEM 
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Subsection 5: Western blotting  

Samples were removed from –80°C and heated at 60°C for 6 minutes. Samples 

were loaded into precast 3-8% Tris-acetate gels with 20 μg total protein per well. Gels 

were run in Tricene running buffer for 95 minutes with a constant voltage of 110 Volts. 

Following electrophoresis, proteins were transferred from the gel to a nitrocellulose 

membrane. Transfer occurred at 4°C and 200 mA for 2 hours in transfer buffer (18 g 

glycin, 3.8 g Tris base in 1 L H2O supplemented with 200 ml of methanol). The 

membrane was then blocked in 5% milk in TBS-T (2.43 g Tris base, 8 g NaCl, 0.5 μl in 

1L H2O; pH = 7.5) for 1 hour. Membrane was washed 4x (10 min, 10 min, 5 min, 5 min) 

after blocking and then placed in primary antibody in TBS-T overnight at 4°C on a 

rocker. Primary antibody was removed and membrane was again washed 4x (10 min, 10 

min, 5 min, 5 min) and secondary was added (1:1000 in TBS-T) for 1 hour. Secondary 

antibody was removed and the membrane was again washed 4x (10 min, 10 min, 5 min, 5 

min). Proteins were visualized using ECL. Blots were stripped and reprobed for 

additional proteins. Image capture and quantification of western blots was performed 

using ImageLab software. Phosphorylated levels of proteins were normalized to the total 

levels of the particular protein. To avoid confounding effects of anticipated fluctuations 

in levels of cytoskeletal proteins, which are often used for normalization, we normalized 

total protein levels to those of GAPDH (Ning 2010). Antibodies used were: pmTOR
Ser2448

 

(5536P; Cell Signaling), total mTOR (2983P; Cell Signaling), pFAK
Y397 

(44624G; Life 

Technologies), total FAK (05537; Millipore), pS6
Ser240/244

 (2215S; Cell Signaling), total 

S6 (2317S; Cell Signaling), β-actin (A5060; Sigma-Aldrich), tubulin (T9026; Sigma-



80 

 

Aldrich), SMI-31 (ab24573; abcam), GAPDH, p-p38 MAPK
T180/Y182

 (9211S; Cell 

Signaling), total p38 MAPK (9212; Cell Signaling).  

Subsection 6: Electrophysiology 

Methods were similar to [180], excepting the use of the TA rather than interosseus 

muscles to record muscle response to nerve stimulation. Briefly, following sciatic nerve 

exposure, a miniature bipolar nerve hook electrode (501650; Harvard Apparatus) was 

positioned proximal to the strained region. The tibialis anterior was exposed and needle 

recording electrodes (Grass F-E2) were positioned adjacent to the endplate zone [181]. A 

ground needle electrode was placed in the contralateral limb. Single pulses of 7 V were 

used to excite the nerve and elicit a response. At each time point, five consecutive 

recordings were made to ensure consistency of stimulation and recording, and averaged 

together to determine the latency between stimulus and recording. Unstrained 

measurements were made with the nerve in a neutral configuration, with knee and ankle 

neutral. As acute strain could not be measured with the wedge in place, for these 

measurements, strain was applied by elevation of the nerve cuff to match the degree of 

strain applied via wedge implantation. Wedges were used to impose strain during the 360 

minute period. Measurements were made at the following time points in the following 

order: unstrained T=0 min, strained T=0 min, strained T = 15 min, unstrained 15 min, 

strained 360 min, unstrained 360 min, unstrained 375 min (an additional 15 min rest 

period following wedge removal).  

Subsection 7: Statistics 

Paired t-tests were used to compare contralateral strained versus unstrained nerves 

(Excel; Microsoft). We used R to run two-way ANOVAs to compare the effects of both 
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rapamycin treatment and strain for signaling characterization. Experimental groups of 8 

rats were used for all experiments except where otherwise noted. 

Section 3: Results 

Subsection 1: Validation of strategy for in vivo nerve strain 

We developed methodology to strain rat sciatic nerves without incurring damage 

associated with clamping or grasping the nerve. Insertion of a custom-made isosceles 

trapezoidal wedge into the underlying nerve bed imparted a consistent tensile strain on 

the top edge of the wedge by bow-stringing the nerve. Rounded corners of the wedge 

minimized any nerve tethering, and allowed a gradual reduction of strain along regions of 

the nerve descending from the wedge. Nerves were subjected to calculated strains of 

11.24 ± 0.95% (Mean ± SEM, n = 5), within the upper limits of physiological strains 

[54]. 

To confirm that nerves did not experience injurious compression or damage over 

the course of the experiment, conduction latencies to the TA were measured, following 

stimulation of the sciatic nerve proximal to the site of strain (Figure 5-1C). Comparison 

of pre-stretch latencies with those following 360 minutes showed no significant 

differences in both the latencies to primary and secondary peaks (Figure 5-1D, Table 5-

1). Additionally, while signal amplitude was variable from time point to time point 

(though not for repeated measurements within a time point), at no point did we see a 

significant reduction in amplitude to peak amplitude between pre-stretch (4.26 ± 2.22 V), 

5 hours stretch (7.09 ± 1.40 V), and recovered (6.49 ± 1.38 V). The apparent increase in 

amplitude is likely a result of increased recruitment of fibers by the electrode due to 

flattening of the nerve following stretch.  
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Table 5-1: TA EMG latencies 

Latency values from TA EMG recordings following sciatic nerve stimulation (Mean ± 

SEM, n = 3). No significant difference, paired t-test to pre-stretch (all p > 0.05) 
 

Subsection 2: mTOR pathway activation and cytoskeletal protein expression 

following nerve strain 

To determine if mTOR-associated translational pathways were activated in 

strained nerves, away from neuronal cell bodies, we first used Western blot analysis to 

examine the response of FAK and mTOR activation levels following 15 minutes of 

applied strain. Consistent with other model systems, a trend towards rapid mTOR 

activation with strain was observed by a 40% increase in the p-mTOR/mTOR ratio for 

strained nerves compared to unstrained (p = 0.070, paired t-test; Figures 5-2A-B). 

Interestingly, however, FAK signaling was unresponsive at this early time point 

suggesting an alternate mode of initiation (Figures 5-2A-B). Following 6 hours of applied 

strain, mTOR signaling persisted, with an increase of 37% over unstrained nerves (p = 

0.002, paired t-test; Figures 5-2C-D). Consistent with this activity, we also observed a 

28% increase in activation of S6, a translational regulator downstream of mTOR, at 6 

hours, in strained compared to unstrained nerves (p = 0.014, paired t-test; Figures 5-2C-

D).  

We then tested whether strain induced a correlative increase in cytoskeletal 

expression. We focused on expression of β-actin, neurofilament heavy subunit (NFH) and 

tubulin, which have been hypothesized to be synthesized locally in neurons [66-68].  
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Figure 5-2 Strain induced signaling and protein expression 

(A) Application of strain for 15 minutes revealed a trend towards increased mTOR 

phosphorylation with constant levels of FAK signaling (n = 4) as revealed by western 

blotting (B). (C) Following 6 hours of strain application, a significant increase was 

observed in both mTOR and S6 phosphorylation levels following the application of strain 

as revealed by western blotting (D). (E) β-actin and SMI31 levels significantly increased 

following application of strain while tubulin and total mTOR levels remained constant 

(*p < 0.05, paired t-test); Mean ± SEM; all graphs normalized to unstrained levels 
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Cytoskeletal protein levels were normalized to GAPDH, a non-cytoskeletal marker. 

Following 6 hours of strain, relative to unstrained contralateral nerves, we observed 

increases in both β-actin (130%; p = 0.035, paired t-test; Figures 5-2E-F) and SMI-31 

(67%; p = 0.008, paired t-test; Figures 5-2E-F). Tubulin, on the other hand, failed to 

show any change in levels following strain application (p= 0.446, paired t-test; Figures 5-

2E-F).  

Subsection 3: Rapamycin differentially regulates strain induced cytoskeletal 

protein synthesis 

Given the correlation between increased mTOR and S6 activation and increases in 

cytoskeletal protein levels following 6 hours of strain, we next tested the hypothesis that 

inhibition of mTOR complex 1 (the mTOR complex associated with activation of S6) via 

systemic rapamycin administration would suppress these increases. Rapamycin was 

administered 1 hour prior to the 6 hour period of strain application. To confirm 

rapamycin activity we examined the level of mTOR activation following strain 

application by western blot. Both the contralateral, unstrained nerve (50% reduction; 

Figures 5-3A-B) and strained nerves (30% reduction; Figures 5-3A-B) revealed a 

significant reduction in mTOR activation. Two-way ANOVA analysis for strain and 

rapamycin revealed a significant rapamycin dependent decrease in mTOR activation (p = 

6.86x10
-13

). Additionally, a strain effect (p = 1.18x10
-6

) and slight interaction effect (p = 

0.074) were observed, suggesting that mTOR activation may be disproportionately 

suppressed in strained nerves. Consistent with these data, similar analysis of activated S6 

levels again revealed suppression of activated levels in both the contralateral, unstrained  
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Figure 5-3: Effect of rapamycin on strain induced signaling and protein expression 

Application of mTOR led to a reduction in phosphorylated levels of both mTOR (A, B) 

and S6 (C, D). The effect of strain remains following rapamycin administration but was 

muted at the level of S6. Administration of rapamycin prior to strain differentially 

regulated protein levels (E, F): β-actin remained elevated, SMI31 was suppressed to 

baseline, and both tubulin and total mTOR were reduced beyond baseline (*p < 0.05, 

paired t-test; two-way ANOVA, Strain: ^p < 0.05, Rapamycin: 
+
p < 0.05); Mean ± SEM 
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limb (82% reduction; Figures 5-3C-D) and the strained nerve (85% reduction; Figures 5-

3C-D). Two-way ANOVA analysis for strain and rapamycin also revealed a significant 

decrease in S6 levels following rapamycin administration (p = 8.89x10
-12

). In this case 

there was no strain effect (p = 0.15) but a slight interaction effect (p = 0.0841). Post hoc 

comparison of individual groups revealed a significant effect of strain in the absence of 

rapamycin which disappears following rapamycin administration (No Rapamycin, p = 

0.014; Rapamycin, p = 0.632). 

Interestingly, rapamycin treatment revealed differential translational regulation of 

the three probed cytoskeletal proteins. β-actin expression remained elevated following 

strain application (p = 0.027; Figures 5-3E-F). However, PNF returned to levels nearly 

equal to those of the unstrained nerve (p = 0.58; Figures 5-3E-F), while tubulin saw a 

significant decrease relative to the unstrained nerve (61% reduction; p = 0.002). These 

results suggest differential activation of mTOR associated pathways at the expense of 

baseline maintenance pathways. 

Subsection 4: Alternative protein synthesis pathways are activated in response to 

strain application 

In light of the differential regulation of mTOR, and the possibility that other 

translational pathways are also at work, p38 activation was probed. There was no effect 

of strain or rapamycin treatment (Strain: p = 0.918, Rapamycin: p = 0.123, Interaction: p 

= 0.123, two-way ANOVA). However, in the absence of rapamycin, there was an almost 

70% reduction in p38 activation levels following the application of strain (p = 0.075; 

Figures 5-4A-B). Interestingly, though, in the presence of rapamycin, there was a trend 

towards increased levels following strain application in the rapamycin group (p = 0.430; 
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Figures 5-4A-B), suggesting complex interactions between mTOR signaling, p38 

signaling, and strain.  

 

Figure 5-4: p38 MAPK signaling response to strain 

Application of mTOR led to a reduction in phosphorylated levels of both mTOR (A, B) 

and S6 (C, D) (graphs normalized to unstrained, no rapamycin group). The effect of 

strain remains following rapamycin administration but was muted at the level of S6. 

Administration of rapamycin prior to strain differentially regulated protein levels (E, F) 

(protein data normalized to unstrained, rapamycin treated): β-actin remained elevated, 

SMI31 was suppressed to baseline, and both tubulin and total mTOR were reduced 

beyond baseline (*p < 0.05, paired t-test; two-way ANOVA, Strain: ^p < 0.05, 

Rapamycin: 
†
p < 0.05); Mean ± SEM 

 

Section 4: Discussion 

In this study, we implemented a novel experimental model to examine 

translational pathways in response to nerve strain, in the absence of nerve injury. Our 

results suggest that strain induces increased cytoskeletal expression in sciatic nerves. This 
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increase in expression is at least partially coupled to activation of mTOR pathways for 

neurofilaments and tubulin, but not β-actin.  

Although not a prototypical load-bearing tissue, nerves experience, accommodate, 

and respond to tensile deformations [54,56]. At the tissue level, such loading is well-

described during joint movement, limb lengthening surgery [54,71], and more recently, 

strategies for end-to-end nerve repair [78] and strain-based regenerative strategies 

[21,182]. In single neurons, moderate strains induce beneficial outcomes [75-77], with 

one study reporting a dramatic ~eight-fold increase in axonal elongation rates [75].  

In vivo, axons themselves may, at least partially, be protected from nerve strain 

by their unique undulating packing architecture within the nerves as well as properties of 

the extracellular matrix [3,56,57]. However, when axons themselves are strained, whether 

in vivo or in vitro, details on how they respond to deformation are poorly understood. An 

important observation was that axons do not display reduced caliber with strain, 

indicating volumetric expansion as well as structural stability [173]. Multiple sources of 

material may contribute to this expansion. In the short-term, pre-existing pools of 

material may be rapidly recruited from flanking regions of the cell body, consistent with 

the anterograde cytoskeletal flow posited during axonal outgrowth [41,173]. To 

accommodate long-term volume expansion additional material must be newly 

synthesized, either in the cell body or, as we hypothesize, locally within the axon. 

Though not evaluated until this study in the context of neuronal strain, the mTOR 

pathway was hypothesized to be a strong candidate for modulating strain-induced local 

protein synthesis. This pathway is known to respond to loading in muscles by enhancing 

protein synthesis and leading to hypertrophy [79]. Additionally, in neurons it is known to 
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be vitally important in axonal elongation and regeneration following nerve injury 

[70,81,82], as well as for local protein synthesis, which is central to both of these 

processes [69]. In support of this hypothesis, we observed that strain induced a rapid and 

persistent increase in mTOR activation as well as downstream activation of S6 (Figures 

5-2A-B).  

While any number of proteins may be regulated through mTOR-S6 pathways, we 

focused on cytoskeletal proteins, whose synthesis is essential to volume expansion [183-

185]. Expression of each of the three cytoskeletal elements that we examined, β-actin, 

neurofilament-H, and tubulin, appeared to be differentially induced by stretch. As 

observed following nerve injury, β-actin levels also increased following nerve strain. 

Similarly, phosphorylated neurofilament levels also increased. On the other hand, tubulin 

levels remained relatively unchanged with strain.  

Intriguingly, regulation of cytoskeletal protein translation was also differentially 

regulated. Rapamycin treatment induced an approximately 50% reduction in activated 

mTOR levels and an over 80% reduction in activated S6 levels across experimental 

groups. Following reduction of mTOR activation, β-actin levels remained elevated but 

the response of both PNF and tubulin were altered. PNF levels were reduced in the 

strained configuration, leading to no difference in protein levels relative to the unstrained 

configuration. A reduction in tubulin levels in response to strain was also observed. It is 

thus likely that mTOR signaling is responsible for the observed increase in PNF 

following strain application, as well as some component of maintenance of tubulin levels. 

The maintained increase in β-actin levels suggests that an alternative signaling pathway is 

responsible for either de novo synthesis of β-actin or local recruitment to the region of 
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strain. This prompted our investigation of the p38 MAPK/eIF2 pathway as an alternate 

regulatory mechanism for β-actin levels following rapamycin treatment. We observed 

opposing trends in strain activation of p38 MAPK, depending on the presence of 

rapamycin, suggesting the potential for interaction between the two pathways in 

responding to strain. An alternate possibility is translational regulation of β-actin via 

RNA binding proteins. A likely candidate for such regulation is the β-actin binding 

protein zipcode binding protein 1 (ZBP1), whose activity appears to be controlled by 

calcium-mediated Src pathways [186,187]. While manipulation of these non-mTOR 

pathways is necessary to conclude a formal role, our results leave open the compelling 

possibility of competing or synergistic translational regulatory pathways.  

While decreased PNF and tubulin levels in nerves following mTOR inhibition 

points to a strong likelihood for local synthesis, we cannot exclude contributions from 

other sources for the cytoskeletal protein increases. Both the cell body and flanking 

regions may potentially provide material for axonal growth and response to strain, 

however at our six hour time point this contribution is likely to be negligible. Transport 

of cytoskeletal cargoes is well characterized as slow component transport, with bulk rates 

of β-actin, tubulin, and neurofilaments transport rarely exceeding mm/day [59,60]. At 

these rates, six hours is likely an insufficient amount of time for newly transported 

proteins to appreciably contribute to measured increases, which were on the order of 

50%.  

While we cannot exclude contributions from other cellular populations in the in 

vivo response, SMI-31 is almost exclusively neuronal and likely represents a specifically 

neuronal response.  
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Section 5: Conclusions 

Application of excessive strain and tension on nerves has a major deleterious 

effect which at the greatest extremes fully eliminates a nerve’s conductive capacity while 

under experimental load [55,56]. At the extremes only minimal recovery of the signal is 

seen following relaxation [55,56]. In our study we were able to minimize damage as 

evidenced by our electrophysiological results. Nonetheless, application of moderate strain 

led to enhancement of mTOR signaling and cytoskeletal protein levels. The enhancement 

of cytoskeletal protein levels responded differentially to the inhibition of mTOR via 

rapamycin suggesting differential regulation of the local synthesis response to strain. Our 

work is among the first to identify a partial mechanism for the nerve’s ability to respond 

and adapt to strain. It also provides the first evidence that developmental pathways may 

be, at least in part, recapitulated in a non-injury situation.  
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Chapter 6: Conclusions 

Section 1: Introduction 

Peripheral nervous system (PNS) injury affects many people every year. If 

function cannot be fully restored results in a number of burdens ranging from reduced or 

complete loss of motor and sensory function [8]. Current regenerative techniques are 

sufficient in a number of cases but best expected outcomes still result from grafting of 

donor tissues which are coupled with a number of complications ranging from donor site 

morbidity to host rejection [188,189]. For these reasons a number of alternative 

regenerative strategies including grafting of Schwann cells to application of strain are 

being explored in the hope of enhancing restoration of primary function to individuals 

[5]. While, both Schwann cells and strain have been noted to provide enhancements in 

the regenerative capacity of neurons both in vitro and in vivo [20,75-77,190], the 

mechanisms by which these two methods are able to achieve this are still poorly 

understood. My work, formatted in the framework of a two-arm study, examined 

mechanisms underlying both Schwann cell-neuron interactions as well as the response of 

nerves to the application of strain in the context of future applications to PNS 

regeneration techniques. 

Arm 1: I investigated the interaction of Schwann cells and neurons in the context 

of membrane stability (Chapter 2) and transport and localization of ribosomes in 

Schwann cells during early myelination (Chapter 3).  

Arm 2: I investigated both the physical (Chapter 4) and molecular signaling 

(Chapter 5) responses of whole nerve to the application of strain.  
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Section 2: Implications of my work 

 My work in the broadest sense has begun to open the doors for future studies with 

direct translational applications for peripheral nerve repair. In a narrower sense, each 

chapter advances the field’s understanding of how neurons and nerves respond to their 

environment in a particular context. My work achieved this by enhancing the 

understanding of how neurons and Schwann cells interact and affect each other (Chapters 

2 and 3) and how nerves respond to strain application (Chapters 4 and 5) with the specific 

details of each chapter found in the subsequent subsections. 

Subsection 1: Variability in membrane continuity between Schwann cells and 

neurons [2] 

In Chapter 2, I investigated the differences between the membrane stability of 

Schwann cells and neurons and how interactions between the two cell types can affect the 

stability.  I found inherent differences between the membrane stability of Schwann cells 

and neurons. This difference manifested itself through changes in both membrane 

velocity and membrane correlation. The more mobile Schwann cells exhibited both 

higher membrane velocity and more correlated movement of membrane patches. We 

posited that these differences may result from the underlying cytoskeletal structure and 

developmental demands of each cell type.  

Interesting trends were observed based upon the contact state of the cells. In this 

case when Schwann cells were contacting neurons and vice versa there were trends 

towards decreases in both membrane velocity and membrane correlation. The velocity 

decreases point towards a more stable cellular state. Further support for this idea of 

cellular stability emerged from the identification of a trend towards increased levels of 

cell-cell or cell-substrate contact inferred from increased levels of talin immunostaining 
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in Schwann cells upon development of contact with neurons. This is in agreement with 

previous observations of Schwann cells’ ability to upregulate adhesion following 

neuronal contact [34]. Additionally Schwann cells are capable of increasing 

neurofilament phosphorylation levels [35] a hallmark of mature axons [191-193]. It is 

perhaps through increased neurofilament phosphorylation that the trend towards stable 

neuronal membrane was established in my study. Extrapolating from what I have found, 

scientists that intend to incorporate Schwann cells into their regenerative strategy may 

wish to explicitly consider their delivery method. Introduction of Schwann cells via 

engraftment within the conduit or injection at the site of repair could have vastly different 

effects on the physical stability of the cells and the regeneration process. 

Subsection 2: Ribosomal trafficking in Schwann cells depends on early 

myelination cues 

 Inspired by the work detailing the transfer of ribosomes from Schwann cells to 

neurons following axonal injury [27,28] I investigated the development and maintenance 

of these populations in an in vitro culture model of the initial stages of myelination in 

Chapter 3. I found that Schwann cells initially develop distributions of stable ribosome 

clusters along the length of their projections within the first day of plating. These 

distributions are well conserved throughout the early development of the Schwann cell 

and following initiation of myelination. Interestingly the level of ribosomal transport 

decreased over time with the induction of myelination. In the absence of myelination 

induction, the level of ribosomal transport actually increased.  

 While others have noted ribosomes in the myelinated fraction of Schwann cells, it 

has only been within the context of MBP production [48-52]. Additionally, their notable 

localization near Schmidt-Lanterman incisures [48] leaves open the possibility for their 
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transfer following axonal injury [27]. Prior to myelination ribosomes localized to 

Schwann cell projections may possess larger responsibilities including focal adhesion and 

cytoskeletal turnover, important processes in the development and migration of 

unmyelinated Schwann cells. Building off my work, an effort to enhance the ribosomal 

presence within the myelin compartment of Schwann cells may be used to provide an 

enhanced source of ribosomes for local protein synthesis following injury. While 

ribosomal densities are observed early and maintained throughout our experimental time 

frame, enhanced levels could perhaps be reached by manipulation of the transport 

pathways following myelination may allow scientists to  

Subsection 3: Nerve strain correlates with structural changes quantified by Fourier 

analysis [3] 

 Bands of Fontana are an observable banding pattern on the surface of nerves 

[163] which is well conserved across species and nerves types [166]. Implementing 

pattern detection methods previously used in other tissues [170] I was able to identify 

correlations between applied strains and the banding frequency in Chapter 4. These 

findings complement the work in Chapter 5 that investigated the effect of strain on local 

protein synthesis and signaling. If future surgical interventions integrate strain into a 

regenerative strategy or monitor strain during other nerve manipulations, it will be 

important that they impart moderate levels of strain below the damage threshold. 

Development of a tool using the relationship noted here between strain and banding 

pattern can allow surgeons to make simple, accurate, real-time measurements of strain 

while performing peripheral nerve repairs. 
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Subsection 4: Differential regulation of cytoskeletal protein synthesis following 

nerve strain 

 In Chapter 5 I identified strain dependent changes in cytoskeletal levels and 

protein synthetic signaling pathways. I found increases in cytoskeletal proteins β-actin 

and phosphorylated neurofilament-H (SMI31). A strain dependent increase in the protein 

signaling pathway driven by mTOR activation via was observed through increases in 

mTOR signaling and downstream S6 phosphorylation. With the application of the mTOR 

inhibitor rapamycin I found differential regulation of the various cytoskeletal elements in 

response to strain. The increase in β-actin remained whereas the increase in SMI31 was 

eliminated. Additionally, I found a strain dependent decrease in both tubulin and total 

mTOR following inhibition of mTOR with rapamycin.  

 Strain as a positive regulator of axonal outgrowth has begun to be explored in 

vitro [75-77]. In culture, rates of axonal elongation far exceeding native rates have been 

witnessed [75]. The processes underlying the strain-dependent enhancement of outgrowth 

are not yet understood. Combining the current understanding of the fields of muscle 

mechanics [79,80] and axonal elongation [69,70,81,82] I hypothesized that the 

application of strain will enhance activation of mTOR signaling within the axon leading 

to the production of cytoskeletal proteins to aid the growing axon.  The finding that 

nerves increase activation of mTOR and downstream signals within the protein synthesis 

pathway locally supports our hypothesis. The adaptation of the nerve to increase levels of 

cytoskeletal proteins in response to strain provides a potential material and framework for 

axonal elongation. Complete understanding of the strain response of nerves is necessary 

before translational applications of this strategy can be effectively integrated into the 

operating room. Additionally, investigation into the complementation of a strain-based 
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strategy with other regenerative strategies including growth factor incorporation [16] and 

Schwann cell supplementation [20] will help to define the upper limits of regeneration 

attainable by this method. 

Section 3: Future experiments and translational impact 

My work has set the stage for a number of future studies to fully elucidate the 

context of the work within the context of translational surgical applications. In the 

immediate future a complementary in vitro study to Chapter 5 must be completed to fully 

characterize the role of strain in activation of neuronal local protein synthesis. 

Subsection 1: Future experiments 

 Prior to peer-reviewed publication of Chapter 5, a complementary study 

investigating the application of strain on neurons in vitro and their response must be 

completed. The results in whole nerve provide significant evidence that neurons are 

actively responding to the applied strain. Specifically the increase in SMI31, an axonally 

specific protein, supports the idea that the neurons themselves are responding to the 

application of strain. Nonetheless, an in vitro model will do well to support our results in 

the context of neuronally specific activation.  

 Two methods have been devised to complete this task. First, puromycin 

incorporation as a surrogate for protein synthesis [194] will be utilized to identify the 

levels of proteins synthesized in a one hour time window within the axonal compartment 

of dissociated DRGs grown on a flexible substrate. Immunoflourescence quantification of 

puromycin levels (Figure 6-1) similar to talin identification (Figure 2-5) in Chapter 2 will 

be used to quantify and compare synthesis rates in strained and unstrained neurons. As 

this method reveals non-specific protein synthesis, an alternative method may be utilized. 

Whole adult DRGs will be plated and grown for three days on flexible substrates with 
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experimental wells subjected to a period of six hours of strain on Day 3. Following strain 

administration axons in the direction of strain will be collected and processed for western 

blots as done in Chapter 5. Identification of axonally specific changes in signaling and 

protein levels will allow us to strengthen our in vivo results. 

 

Figure 6-1: Immunolabeling of puromycin incorporation 

Identification of puromycin incorporation within cultured DRGs can provide details 

about the amounts and localization of newly synthesized proteins 

 

Subsection 2: Translational impact 

 While the work I have done presents little direct translational impact, it manages 

to open the door for a number of future studies to expand on, clarify, and incorporate my 

work into translational therapies. The work in Chapters 2 and 3 provides an important 

understanding of how Schwann cells and neurons interact with each other in the context 

of membrane stability and ribosomal incorporation in the myelin fraction. These two 

results point to the importance of interactions that should be considered prior to the 

incorporation of Schwann cells in a regenerative solution. Specific considerations include 

the manipulation of the Schwann cells prior to implantation and the method of 

introduction either through incorporation on a guidance conduit or direct injection. 
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 Chapter 4 offers a unique technique that can be incorporated in surgical settings. 

Current surgical convention is to perform tension-free nerve repairs in light of growing. 

Even within current convention, being able to accurately identify the lower limits of 

strain application can limit the size of the surgical gap and potentially improve expected 

outcomes. 

 Chapter 5 focuses on the role strain application has on inducing local protein 

synthesis within the whole nerve. My study was performed outside of the context of 

injury but could potentially be applied to regenerative techniques. Validation of my 

results in the context of recovery following injury will go a long way towards garnering 

support for translational application of this technique in a regeneration strategy. With the 

well-documented importance of local protein synthesis in axonal regeneration and 

elongation [69,81] identification of a local protein synthesis response to strain further 

validates it as a promising repair component. Further understanding of the strain response 

might allow incorporation of the underlying signaling response without the physical 

limitations of strain application and consideration of the inevitable associated pain. 

 The work presented here provides context for a number of peripheral nervous 

system regeneration strategies, offers additional considerations for the future 

development of translational therapeutics, and proposes mechanisms by which the 

nervous system is able to adapt to its current environment. 
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