
ABSTRACT

Title of thesis: DISTRIBUTED LOAD BALANCING ALGORITHM
IN WIRELESS NETWORKS

Alireza Sheikhattar, Master of Science, 2014

Thesis directed by: Dr. Mehdi Kalantari
Department of Electrical and Computer Engineering

As communication networks scale up in size, complexity and demand, effec-

tive distribution of the traffic load throughout the network is a matter of great

importance. Load balancing will enhance the network throughput and enables us to

utilize both communication and energy resources more evenly through an efficient

redistribution of traffic load across the network.

This thesis provides an algorithm for balancing the traffic load in a general

network setting. Unlike most of state-of-the-art algorithms in load balancing con-

text, the proposed method is fully distributed, eliminating the need to collect infor-

mation at a central node and thereby improving network reliability. The effective

distribution of load is realized through solving a convex optimization problem where

the p-norm of network load is minimized subject to network physical constraints.

The optimization solution relies on the Alternating Direction Method of Multipli-

ers (ADMM), which is a powerful tool for solving distributed convex optimization

problems. A three-step ADMM-based iterative scheme is derived from suitably refor-

mulated form of p-norm problem. The distributed implementation of the proposed

algorithm is further elaborated by introducing a projection step and an initialization

setup. The projection step involves an inner-loop iterative scheme to solve linear

subproblems. In a distributed setting, each iteration step requires communication

among all neighboring nodes. Due to high energy consumption of node-to-node

communication, it is most appealing to devise a fast and computationally efficient

iterative scheme which can converge to optimal solution within a desired accuracy

by using as few iteration steps as possible. A fast convergence iterative scheme is

presented which shows superior convergence performance compared to conventional

methods. Inspired by fast propagation of waves in physical media, this iterative

scheme is derived from partial differential equations for propagation of electrical

voltages and currents in a transmission line. To perform these iterations, all nodes

should have access to an acceleration parameter which relies on the network topol-

ogy. The initialization stage is developed in order to overcome the last challenging

obstacle toward achieving a fully distributed algorithm.

DISTRIBUTED LOAD BALANCING ALGORITHM
IN WIRELESS NETWORKS

by

Alireza Sheikhattar

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2014

Advisory Committee:
Dr. Mehdi Kalantari, Chair/Advisor
Professor Mark Shayman
Professor Richard J. La

© Copyright by
Alireza Sheikhattar

2014

Acknowledgments

I would like to take this opportunity to express my gratitude to all the people

who have made this thesis possible. First and foremost, I am deeply thankful to

my advisor, Dr. Mehdi Kalantari for his supervision, encouragement, and strategic

guidance which has greatly shaped this work from the very beginning. His wide

knowledge and constructive comments have been a great value for me.

I would also like to thank Professor Richard La and Professor Mark Shayman

for agreeing to serve on my thesis committee and generously sharing their valuable

time and expertise to enrich this work.

I have been fortunate to have great friends at UMD over these years, who

helped me to get through the tough times.

Lastly and most importantly, I owe my deepest thanks to my family - my

mother, father and my sisters who have always stood by me in the worst of times

and supported me in all manners during my entire academic process. They have

lost a lot due to my studies abroad. To them I dedicate this thesis.

This work was partially supported by NSF under grant 0931957.

ii

Table of Contents

List of Tables iv

List of Figures v

List of Abbreviations vii

1 Introduction 1

2 Fast Convergent Iterative Scheme Design 8
2.1 Motivation . 8
2.2 Accelerated Iterations Inspired by Wave Propagation 9

2.2.1 Numerical Analysis of Wave Propagation in Transmission Lines 10
2.2.2 General Scheme . 13

2.3 Stability and Convergence Rate Analysis 15
2.3.1 Optimal Acceleration Parameter Derivation 17
2.3.2 Special Scenario: Simple Path Graph 21

2.4 Numerical Examples . 23

3 Distributed Load Balancing Protocol 26
3.1 Network Model . 26
3.2 Problem Formulation . 28
3.3 ADMM Overview . 30
3.4 Algorithm Derivation . 33

3.4.1 Application of ADMM to p-norm problem 34
3.4.2 Distributed Projection Subproblems 38
3.4.3 Initialization Stage . 42

4 Numerical Results 47
4.1 Convergence Performance . 47
4.2 initialization stage . 51

Bibliography 54

iii

List of Tables

4.1 Dominant mode estimation within a specific accuracy for the gener-
ated network graph. 53

iv

List of Figures

2.1 From top to bottom: 1) A continuous single stub transmission line
discretized on indicated points Vi = V (i∆x) with spacing ∆x, 2)
Equivalent circuit model consists of series of elementary components,
each containing primary elements R,L,C, 3) Equivalent network
graph model as a path containing N + 1 nodes with source and sink
nodes at both ends. 10

2.2 The circuit interpretation of iterative equations: (a) the i-th node
voltage Vi updated using the difference of input Ii and output Ii+1

currents, (b) the branch current Ii+1 updated using the difference of
two adjacent node voltages Vi and Vi+1. 12

2.3 The Kirchhoff’s nodal rule for i-th node in general setting as a junc-
tion of M branches. 14

2.4 A path network with source node as the first vertex (v0) and sink
node as the last vertex (vN) and (N − 1) relay nodes. 21

2.5 A typical network with 12 nodes, where the first three nodes (v1, v2, v3)
are source nodes injecting (b1, b2, b3) = (1, 2, 1) units of traffic respec-
tively, and node v12 is the sink node. 23

2.6 The convergence rate performance of the proposed iterative scheme
for all node potentials. 24

2.7 Convergence rate comparison of potential levels for path network with
N = 20 links and source and sink node at both end for two differ-
ent iterative techniques: 1)Jacobi iterations with averaging policy, 2)
proposed accelerated scheme with optimum stability factor (ξ = π

40
). . 25

4.1 A complex network graph of N = 100 nodes and M = 386 edges ran-
domly generated over a square of side 100 units, with five designated
source nodes and a single sink node. The minimum cutset or namely
bottleneck of network graph has been highlighted in dashed blue lines. 48

4.2 The convergence performance of the load-balanced network flow us-
ing the proposed ADMM-based algorithm applied to the generated
network in figure 4.1 for the most significant network flows. 49

4.3 The convergence performance of primal residuals rk showing the amount
of violation from the flow conservation. 50

v

4.4 The convergence performance of dual residuals sk. 51
4.5 Convergence performance of the inner-loop accelerated iterative scheme

for the first four ADMM iteration steps at all nodes in network graph
4.1. 52

4.6 Impulse response of generated network graph at the location of all
nodes. 53

vi

List of Abbreviations

ADMM Alternating Direction Method of Multipliers
WSN Wireless Sensor Network
WMN Wireless Mesh Network
MANET Mobile Ad hoc Network
LTE Long-Term Evolution
D2D Device-to-Device
SPOF Single Point of Failure
PDE Partial Differential Equation
FDM Finite Difference Method
MIMO Multiple-input Multiple-output

vii

Chapter 1: Introduction

A wireless multihop network is a collection of interconnected nodes commu-

nicating with each other over a shared wireless medium. Each network node has

the capability of both generating information and relaying data belonging to other

nodes. Thus, a typical route consists of several hops or intermediate nodes forward-

ing data to the destination. Information generated by the source nodes should be

routed through specific nodes which possess higher energy supply and processing

capabilities, termed as the fusion or sink nodes. One of the main goals of designing

routing protocols in multihop wireless networks is to establish an effective traffic

pattern from the source nodes to the sinks in the sense that it utilizes network

resources in the most efficient way.

The majority of routing protocols in multihop networks use the shortest path

or the minimum hop routing, where each source node transmits information via the

shortest path to its corresponding destination. This routing policy concentrates the

traffic load along certain paths leading to an imbalanced load distribution. As a

result, intermediate nodes located on these paths have to deal with heavier traffic

loads compared to their peers. These overloaded nodes may form routing bottlenecks

which will reduce the networking performance through congestion, while rapidly

1

consuming energy resources at node level causing connectivity losses in network.

While several multi-path routing methods [1,2] have been proposed, they tend

to be extension of the single shortest-path routing paradigm with use of additional

alternate paths. Despite what is commonly believed in the networking community,

[3] shows that using multiple paths for routing does not necessarily result in a better

load balance compared to single-path routing, unless a huge number of paths is used

between any source-destination pair of nodes. A load balancing scheme directly

embedded in the network routing layer would resolve these problems through an

efficient redistribution of traffic load across the network. Load balancing reduces

the likelihood of congestion at the bottleneck links and improves the data delivery

rate as the traffic load is dispersed uniformly along multiple paths. The balanced

distribution of traffic load ensures effective use of links’ capacities, and consequently,

maximizes the network throughput. Load balancing plays a vital role in wireless

sensor networks (WSNs), as it prolongs the expected lifetime of the sensor network

by balancing the energy consumption of sensor nodes.

In this thesis, we will study the problem of load balancing in the general con-

text of multihop networks. As defined in [4], the term load is generally defined

as the quantity of traffic received and transmitted by a node per unit of time on

behalf of other nodes in the network. Load balancing is defined as the uniform

distribution of communication and processing operations among different entities of

network to avoid overloading any one element. A large body of research has been

conducted on load balancing in different types of networks, such as wireless mesh

networks (WMNs) [5–7], mobile ad hoc networks (MANETs) [8–10], wireless access

2

networks [11], WiFi networks [12], and satellite networks [13]. Load balancing tech-

niques have even found their way into the cellular networks [14–16] through several

offloading techniques. In [14], a new wireless system architecture called Integrated

cellular and ad hoc relaying (iCAR) systems is presented which can efficiently bal-

ance traffic loads between cells by using ad hoc relaying stations. Very recently in

Long-Term Evolution Advanced (LTE-A) networks [17], a device-to-device (D2D)

communication based technique for load balancing has been proposed which utilizes

D2D communication to efficiently offload traffic among multi-tier cells according to

their real-time traffic distributions.

Load balancing has received much attention recently by emerging large-scale

wireless sensor networks (WSNs). Most of the previous works on load balancing in

WSNs deal with the problem of maximizing the network lifetime [1, 18, 19]. In [1],

an energy aware routing protocol has been developed for low energy networks with

the aim of network survivability. This protocol use probabilistic forwarding to send

traffic on different routes providing a simple multipath routing mechanism. In [18],

routing has been formulated as a linear programming problem where the network

lifetime is maximized constrained to flow conservation. As a result, a shortest cost

path routing algorithm has been proposed, whose link cost is a combination of

communication energy consumption and the residual energy levels. Several works

in the context of WSNs tackle load balancing problem directly by distributing the

traffic load across the network [20–23]. In [20], load balancing in dense wireless

networks has been studied, where the authors consider a minimax optimization

problem and develop lower bounds for the achievable minimal maximal traffic load.

3

In [21], the authors have proposed a novel cost-based routing protocol for WSNs

called Arbutus, which tends to improve data delivery performance by balancing the

workload through different routes.

Majority of load balancing techniques in the literature hold the notion of cen-

tralized processing in common. Load balancing strategies proposed in the MANETs

literature require network topological information to be available at the node level.

In the centralized scenario, all information is aggregated at a central or fusion node

for processing. Data collection and transmission to a central processing node pose

a major drain on communication and energy resources. Furthermore, the central

node that performs load balancing introduces a single point of failure (SPOF) re-

ducing the reliability of network. To overcome these shortcomings, it is desirable to

replace the notion of centralized processing with decentralized cooperation of net-

work nodes in a distributed scenario. By distributed we imply that a central node

no longer exists and there is no global network information available at any loca-

tion. Furthermore, each node only has one-hop access to the network information

by exchanging data with neighbor nodes.

To the best of our knowledge, very few algorithms has been offered for load

balancing in the distributed context. In [24], two algorithms have been proposed,

one partially and one fully distributed, based on the subgradient algorithm to com-

pute an optimal routing flow to maximize the network lifetime. These algorithms

achieve the optimal load-balanced traffic pattern with multipath structure. How-

ever, the fully distributed algorithm shows slow convergence performance and the

partially distributed algorithm requires global communication among all nodes. In

4

this thesis, we propose a fully distributed algorithm for load balancing in a general

network setting. We consider the convergence rate issue as one of the determining

factors in our distributed algorithm design. Hence, our proposed algorithm offers the

advantage of requiring fewer iteration steps to balance the traffic load. The balanced

distribution of load is achieved through solving a convex optimization problem where

p-norm of network flow is minimized subject to flow conservation constraint. The

p-norm flow optimization will result in a balanced flow assignment to the network

links, as network flows with larger absolute values incur higher penalty costs. The

parameter ”p” serves as the balance factor; as it grows larger, network load will be

distributed more evenly throughout the network. In order to develop a distributed

load balancing algorithm, a fast iterative scheme is required to solve linear equations

problem on the network graph. In the first part of this thesis, we propose a fast

convergence iterative scheme inspired by wave propagation in a transmission line,

whose accelerated iterations are derived from partial differential equations (PDE)

for propagation of voltages and currents in a physical medium. We show that the

proposed scheme outperforms the Jacobi method in the sense of convergence rate.

Indeed, we show that the iterations required for convergence of our proposed method

is reduced to O(N) for a path network of N nodes.

The key contribution of this thesis is to design a distributed scheme to solve

the p-norm optimization in a network setting. Such distributed scheme follows an

iterative procedure where the iterations converge to the optimal solution of the p-

norm problem. Our solution for this problem relies on the Alternating Direction

Method of Multipliers (ADMM), which is a powerful algorithm for solving convex

5

optimization problems [25]. ADMM is an effective tool suitable for distributed

convex optimization problems, originally proposed in 1970’s [26, 27], studied and

developed in earlier literature with focus on convex programming and variational

inequalities [28,29]. It has received more attention recently by emerging large-scale

distributed frameworks, and has found many applications in diverse areas [30–38].

A considerable body of work show the close relevance of ADMM, or equivalence in

some cases, to a class of well-known algorithms, such as Douglas-Rachford splitting,

and Bregman iterative algorithms [39–41]. Generally, ADMM is the joint process

of decomposition-coordination where a large problem is decomposed to small local

subproblems and then the solution to the global large problem found by coordination

of local subproblems. A comprehensive survey on ADMM and its applications can

be found in [42].

ADMM provides a three-step iterative scheme when applied to the suitably

reformulated form of p-norm problem. These three iteration steps are as follows:

Distributed projection, parallel flow minimization, and dual update. The distributed

implementation of these three steps are discussed thoroughly in chapter 3. We

present a distributed procedure for the projection step by reducing it into solving

system of linear equations. A significant desirable feature pertaining distributed

iterative schemes is their fast convergence rate. Hence, the accelerated second-order

iterative scheme presented in chapter 2, is employed to solve linear subproblems in

an efficient distributed way. To perform these iterations, all nodes should have access

to a certain parameter which relies on the network topology. To find this parameter,

we use a distributed initialization and network identification, which is based on novel

6

idea of distributed estimation by modeling network as a multi-input multi-output

(MIMO) dynamical system. Using this initialization setup, each node can make an

accurate evaluation of the desired parameter only by exchanging information with its

neighboring nodes. Simulation results show that our proposed algorithm requires

very few (typically, 3-5) ADMM iterations to achieve a load-balanced traffic on

bottleneck links, even when used on randomly generated complex network graphs.

7

Chapter 2: Fast Convergent Iterative Scheme Design

2.1 Motivation

In this chapter, a fast iterative scheme is presented which can solve linear sys-

tem of equations on a network graph in a distributed fashion. The proposed scheme

has several applications in variety of network optimization problems such as load

balancing, maximum utilization, optimal node deployment and sink placement. The

proposed scheme is originally proposed in the context of potential-based routing [43],

where a potential function is used as the basis for routing of information flow from

sources to their corresponding destinations. This potential function determines a

simple routing policy such that the input flow to each node is divided by amounts

proportional to the potential decent to respective neighbor nodes. The potential-

based approach is used for load balancing in [44]. In a potential-based routing, it is

essential to compute the potential function at the location of nodes. Generally, it is

desirable to calculate potential values in a distributed fashion (i.e., nodes compute

their potential values through a sequence of distributed iterations with their neigh-

bors). The best existing method for distributed potential calculation makes use of

Jacobi iterations [45]. These iterations are well-known for their slow convergence

which makes them useless for practical applications.

8

In this chapter, we first present an iterative scheme inspired by fast transient

behavior of voltages and currents in transmission line. The proposed scheme is

extended to make it compatible with the general network setting. Based upon the

derived iterations, a second order iterative scheme is proposed in network domain.

In the sequel, the stability and convergence properties of the proposed scheme is

further analyzed for general network topology. The optimal rate of convergence is

attained by optimally choosing an acceleration parameter. It has shown that the

proposed scheme enhances the convergence rate by one order of magnitude, as it

requires O(N) number of iterations compared to O(N2) for Jacobi iterations. In the

last section, convergence performance has been shown using numerical examples and

simulations.

2.2 Accelerated Iterations Inspired by Wave Propagation

In this section, we use a numerical approximation scheme to discretize the wave

propagation differential equation in transmission lines. Then, we introduce a new

iterative method for distributed calculation of potential values in communication

networks by drawing analogy between the transient behavior of voltages and currents

in transmission line, and potential iterations in a path network. Later in this section,

we will explain how the new scheme can be generalized to all network topologies.

9

2.2.1 Numerical Analysis of Wave Propagation in Transmission Lines

To analyze the transient behavior of voltages and currents, a continuous trans-

mission line is modeled as a sequence of two-port elementary components, each rep-

resenting an infinitesimally short segment of transmission line shown in Figure 2.1.

V0 V1 V2 V3 VN-1 VN

∆x∆x∆x ∆x

Traffic u0 u1 u2 u3 uN-1 uN

Source Sink

Figure 2.1: From top to bottom: 1) A continuous single stub transmis-
sion line discretized on indicated points Vi = V (i∆x) with spacing ∆x,
2) Equivalent circuit model consists of series of elementary components,
each containing primary elements R,L,C, 3) Equivalent network graph
model as a path containing N + 1 nodes with source and sink nodes at
both ends.

A pair of first-order partial differential equations (PDE), known in classical physics

as telegrapher’s equations, describes wave propagation in the transmission line

∂

∂x
I(x, t) = −C ∂

∂t
V (x, t)−GV (x, t)

∂

∂x
V (x, t) = −L ∂

∂t
I(x, t)−RI(x, t) (2.1)

10

where the parameters R,L,C and G are distributed elements of transmission line

per unit length known as primary line constants. Inspired by fast transient behavior

of voltages and currents, our goal is to model wave propagation as an effective

iterative process. An accurate numerical approximation scheme is required to make

use of the fast transient behavior. For this purpose, we use the finite difference

method (FDM) to discretize telegrapher’s equations (2.1) and to convert them into

difference equations by sampling in discrete space. We use V n
i = V (i∆x, n∆t) and

Ini = I(i∆x, n∆t), i ∈ {0, 1, 2, . . . , N}, n ∈ {0, 1, 2, . . . }, to denote the numerical

approximation for voltages and currents at time sample n and location i. In other

words, voltages and currents are sampled at discrete points with uniform spacing

on both dimensions (∆x,∆t). Replacing the derivatives in equations (2.1) by their

finite difference approximations results in the following discrete equations:

Ini+1 − Ini
∆x

≈ −CV
n+1
i − V n

i

∆t
−GV n

i

V n+1
i+1 − V n+1

i

∆x
≈ −L

In+1
i+1 − Ini+1

∆t
−RIn+1

i+1 (2.2)

Given the initial conditions for voltages and currents along the line, they can

both be obtained for every time index n. In order to achieve a time balance in (2.2),

the loss terms GV n
i and RIn+1

i+1 can be replaced by their time-averaged version,

(V n
i + V n+1

i)/2 and (Ini+1 + In+1
i+1)/2, respectively. This also helps get more accurate

approximations and reduced discretization error. By applying this change and re-

arranging the terms in (2.2), we find the following iterative system for voltages and

11

currents:

V n+1
i =

1− G∆t
2C

1 + G∆t
2C

V n
i −

∆t
C

1 + G∆t
2C

(Ini+1 − Ini) (2.3)

In+1
i+1 =

1− R∆t
2L

1 + R∆t
2L

Ini+1 −
∆t
L

1 + R∆t
2L

(V n+1
i+1 − V n+1

i) (2.4)

where the first equation updates the voltage at each node and the second equation

updates the current in each branch, as illustrated in Figure 2.2.

ViIi Ii+1

C

(a)

R L

Vi Vi+1Ii+1

(b)

Figure 2.2: The circuit interpretation of iterative equations: (a) the i-th
node voltage Vi updated using the difference of input Ii and output Ii+1

currents, (b) the branch current Ii+1 updated using the difference of two
adjacent node voltages Vi and Vi+1.

The steady state behavior of voltages and currents in single stub transmission

line resembles the final solution for network parameters in a path network as shown

in Figure 2.1, where voltages are analogous to node potentials and so are currents to

information flows. Furthermore, the information source and sink nodes are equiva-

lent to current sources and short circuits to ground, respectively. In order to develop

12

a new scheme compatible with our desired network behavior, we assume G is zero in

our scheme (note that a nonzero G implies leaking information at a node, which vi-

olates flow conservation law). However, it is desirable to have a nonzero R, because

otherwise, we will have a lossless transmission line, which causes instability. This

circuit model with zero G and nonzero R leads to steady state response consistent

with our desired network behavior, as we will further discuss shortly.

2.2.2 General Scheme

So far, we have used the analogy between a discretized single stub transmission line

and a path network. In the next step, we present a general scheme applicable to

all possible network topologies. Using the transmission line model representation

for a network, nodes and communication links are modeled as capacitors connected

to ground and RL-series branches, respectively. Unlike the path network where

each relay node connects only two communication links, a node in general network

topology can be at junction of M branches. In both cases, there is only one link

between two neighboring nodes. Therefore, the iterative equation (2.4) for updating

currents between two adjacent nodes remains the same as before, while the paired

equation (2.3) for updating voltages at each node requires modification.

For the general case, we derive this iterative equation directly from the Kirch-

hoff’s Current Law (nodal rule) as shown in Figure 2.3. The updating equation for

voltage Vi can be represented in term of the input current to the node’s capacitor,

13

Vi
Iin Iout

CT

V1

V2

Vm

Vm+1

Vm+2

VM

IFi

IC

Figure 2.3: The Kirchhoff’s nodal rule for i-th node in general setting
as a junction of M branches.

ICi
, as below:

V n+1
i = V n

i +
∆t

CT
InCi

(2.5)

where the product term InC∆t can be interpreted as the amount of new electric

charge ∆Qn deposited in node’s capacitor, and if divided by total capacitance CT ,

the voltage difference ∆V n is obtained. Moreover, according to Figure 2.3, ICi
can

be calculated as:

InCi
=

m∑
j=1

Inj,i −
M∑

j=m+1

Ini,j + InFi
(2.6)

where the InFi
is the injected current at node i, which has a nonzero value for source

nodes. The input and output currents are indexed by j = 1, . . . ,m and j = m +

1, . . . ,M , respectively, where Ii,j is the current flowing from node i to node j. The

total capacitance at each node CT is proportional to the node degree M , which is

consistent with the parallel connection of M capacitors.

After designing the iterative scheme for general network topology, we still

14

need to transform it to the network domain with equivalences in mind. In the next

section, we will analyze the stability and convergence rate of the proposed scheme

to desired solution.

2.3 Stability and Convergence Rate Analysis

In this section, we will analyze the stability and convergence properties of the

proposed iterative scheme for general network topology. The convergence rate is

enhanced by choosing optimal iteration parameters derived from the spectral analy-

sis. We will prove the superior convergence performance of the proposed accelerated

scheme compared to classical Jacobi iterations for the simple path graph.

Based on the aforementioned equivalences between network and circuit models,

the proposed iterative scheme can be rewritten in network components as follows

un+1
i = uni − σi

(∑
i→k

fni,k −
∑
j→i

fnj,i − fnbi
)

(2.7)

fn+1
i,j = αfni,j − β(un+1

j − un+1
i) (2.8)

where uni , i ∈ V is the potential of node i, and the flow from node i to node j

is denoted by fni,j, both at time iteration n. The first equation (2.7) represents the

nodal equation (2.5) in network domain, where σi = σ/ni is the network factor for i-

th node which is inversely proportional to node degree ni. The notations (i→ k) and

(j → i) are used to denote the neighbor nodes with output flow from i-th node and

input flow to i-th node, respectively. The paired equation (2.8) is the transformed

version of currents update equation in (2.4). Similar to partial differential equations,

these coupled difference equations require boundary and initial conditions to lead

15

to a unique solution. The boundary conditions for the general case is determined

by the location of sources and sinks in the network graph; with the i-th node as a

source or a sink, the boundary condition appears in the form of fnbi = ri or uni = 0

for all times n, respectively, where ri is the generated traffic rate at node i. In the

sequel, we will show how choosing network parameters (α, β, σ) ensures the stability

condition and accelerates the convergence rate.

The pair of equations (2.7) and (2.8) can be combined into a single equation

for node potentials.

un+1
i = uni − σi

(∑
i→k

[
αfn−1

i,k − β(unk − uni))
]
−
∑
j→i

[
αfn−1

j,i − β(uni − unj)
])

(2.9)

By two consecutive substitutions of (2.8) into (2.7) and rearranging terms, we find

the following single iterative equation performed at each node

un+1
i = (α + 1)uni − αun−1

i + βσi(
∑
j∼i

unj − niuni) + cni (2.10)

where notation (j ∼ i) is used to denote the neighborhood of node j and node i, and

the bias term cni = σ(1− α)rni /ni. According to the normalized Laplacian operator

matrix ∆ = D−1L defined as [∆u]i := ui − 1
ni

∑
j∼i u

n
j in [46], this linear iterative

equation can be rewritten in matrix format as follows

u(n+1) = 2Au(n) − αu(n−1) + b(n) (2.11)

16

where

2A = δI + γS, (2.12)

S = I −∆, (2.13)

δ = (α + 1)− βσ, (2.14)

γ = βσ (2.15)

where u(n) = [un1 , u
n
2 , . . . , u

n
N]T is the potential vector of size N at time n containing

node potentials and b(n) = (1− α)D−1rn is the bias vector containing contributions

from boundary conditions. The spectrum of normalized Laplacian matrix of graphs

is extensively studied in spectral graph theory [47]. In the next section, we will

show the derivation of optimum factors (αopt, δopt, γopt) for the general network graph

scenario based on the spectral analysis of iteration matrices.

2.3.1 Optimal Acceleration Parameter Derivation

By carefully choosing the network parameters, an accelerated rate of conver-

gence would be achieved. The derived iteration (2.11) describes a second order

iterative scheme, since computing the next state u(n+1) requires the value of the

preceding two states, u(n) and u(n−1). To analyze the stability and convergence rate,

the second order iterative scheme (2.11) can be reduced to first order matrix form

as follows,

û(n+1) = Mû(n) (2.16)

17

where û(n+1) is a column vector of 2N elements and M is matrix of size 2N × 2N

defined as,

M =

 2A −αIN

IN 0N

 , û(n+1) =

 u(n+1)

u(n)

 (2.17)

where IN and 0N are identity matrix and square zero matrix of size N . Since each

iteration step in (2.16) involves a matrix multiplication, the stability condition is

satisfied when all eigenvalues of M are within the unit circle in the complex plane.

Therefore, it is required that |µ1| ≤ 1, where µ1 = ρ(M) is the spectral radius of

M , which has a key role in both stability and convergence rate of iterative scheme.

In order to achieve a fast convergent scheme, the absolute value |µ1| should be min-

imized, while satisfying the stability conditions. In other words, the spectral gap,

d = 1 − |µ1| should be maximized. The spectral radius |µ1| relies on α and the

spectrum of matrix A. Assume A is a diagonalizable matrix and can be factor-

ized by eigenvalue decomposition to A = QΛQ−1, where Q is square matrix with

eigenvectors as columns and Λ is the diagonal matrix with real eigenvalues on the

diagonal, Λii = λi. By this decomposition, matrix M can be factorized to,

M =

 Q 0

0 Q


 2Λ −αIN

IN 0N


 Q−1 0

0 Q−1

 (2.18)

Let M̃ be defined as,

M̃ =

 2Λ −αIN

IN 0N

 (2.19)

18

Since M ∼ M̃ are similar matrices 1, they share the same set of eigenvalues. More-

over, M̃ can be decomposed to 2× 2 matrices for each eigenvalue λi as below, 2λi −α

1 0


 x

y

 = µi

 x

y

 (2.20)

where each eigenvalue µi can be simply found as root of the characteristic polyno-

mial,

µ2
i − 2λiµi + α = 0 (2.21)

Note that each λi is mapped to a pair of eigenvalues µ±i = λi ±
√
λ2
i − α. To

achieve optimum convergence rate, the parameter α should be chosen such that |µ1|

is minimized. The spectral radius of A is denoted as λ1. For the case when λ2
1 > α,

there exists |µ1| > |λ1|. In the other case, when λ2
1 ≤ α, it will lead to complex

conjugate pair, µ±1 = λ1 ± j
√
α− λ2

i where |µ±1 | =
√
α. Hence, the lower bound for

|µ1| is achieved by choosing α to be equal to

αopt = λ2
1 (2.22)

By choosing the above αopt, all eigenvalues on the spectrum λi will be mapped into

complex conjugates µ±i on a circle of radius
√
α = |λ1|.

To further analyze stability, let us define the stability factor parameter, ξ, as

below:

ξ =
1− α
1 + α

(2.23)

where this transformation leads to the same inverse form, α = 1−ξ
1+ξ

. Now we inves-

tigate how changing the parameters (α, β, σ) will affect the spectrum of matrix A.

1Matrix B is similar to matrix A denoted as A ∼ B, if there is an invertible matrix P such that
B = P−1AP , or in other words if they represent the same transformation up to a change of basis.

19

From the spectral perspective, the coefficient matrix in (2.12) is structured on the

basis of the translation factor δ in (2.14) and the scale factor γ in (2.15). These

factors (δ, γ) translate and scale the spectrum domain of matrix S and affect all its

eigenvalues in the following way

2λi = δ + γνi (2.24)

where {νi}Ni=1 denotes the spectrum of matrix S. The necessary condition to obtain

stability is to satisfy |λ1| ≤ 1. Furthermore, the fastest convergence rate would

be achieved through minimizing the |λ1| magnitude, which consequently leads to

minimal spectral radius |µ1| =
√
αopt. Since the spectrum of S = I − ∆ is nor-

malized {νi}Ni=1 ∈ [−1,+1], the optimal spectrum domain will be achieved when

the spectrum is centered around the origin, δ = 0, which yields the optimal scaling

factor

γopt = α + 1 (2.25)

Hence, the second order iterative scheme takes the following form in the optimal

convergence rate scenario by choosing the optimal factors (δopt, γopt) = (0, α + 1)

u(n+1) = (α + 1)Su(n) − αu(n−1) + b(n) (2.26)

It is easy to observe that the matrix equality 2A = (α+1)S will result in the spectral

equality

λ1 =
α + 1

2
ν1 (2.27)

where the spectral radius of matrix S is denoted as ν1. Substituting this result in

20

(2.22), we will have

ν2
1 =

4αopt
(αopt + 1)2

(2.28)

Based on definition (2.23), the optimal stability factor can be computed for the

general network graph as follows

ξ2
opt = 1− ν2

1 (2.29)

Hence, the optimum parameter αopt which attains optimal convergence performance

is equal to,

αopt =
1− ξopt
1 + ξopt

=
1−

√
1− ν2

1

1 +
√

1− ν2
1

(2.30)

2.3.2 Special Scenario: Simple Path Graph

In this section, we choose the simple path graph as our network configuration.

As shown in figure 2.4, one unit of information is generated at the first node, going

through N − 1 relay nodes to route through the sink node at the other end. The

boundary conditions are determined as fn0 = 1 and unN = 0 for all n. For initial

condition, we assume u0
i = 0 for all i and f 0

i = 0 for all i 6= 0. Applying the flow

injection fn0 = 1 to source node, all potentials and flows take values iteratively until

finally reaching a steady state value.

vNv0 v1 v2 v3 vN-1 vN
Information

Flow

f1 f2 f3 fNf0

Figure 2.4: A path network with source node as the first vertex (v0) and
sink node as the last vertex (vN) and (N − 1) relay nodes.

21

The spectrum of matrix S for the path graph has the following closed form:

νi = cos (
2iπ

2N + 1
), 1 ≤ i ≤ N (2.31)

where the stability condition is obviously satisfied as we have |νi| ≤ 1, and the

spectral radius is equal to |ν1| = cos (π
2N+1

). Iterative schemes converge to the

optimal solution at a rate governed by the dominant mode of the iteration matrix.

To analyze the convergence rate of Jacobi iterations, we compute the spectral gap

of iteration matrix S as follow

d = 1− |ν1| = 2 sin2 (
π

4N + 2
) (2.32)

where for large N , it can be approximated by d ≈ π2

8N2 . Hence, Jacobi iterations

require order of O(N2) iterations to converge to the optimal solution. However, in

the case of accelerated iterations, using the general form of optimal stability factor

in (2.29), we find the following for the path graph

ξopt = sin (
π

2N + 1
) (2.33)

If the length of the path, N , is large enough, we will have the approximation ξopt ≈

π
2N

. By substituting this approximation into dmax = 1−√αopt, we find the following

new approximation for maximum gap as a function of N :

dmax u
π

2N + π
(2.34)

Hence, it can be seen that the rate of convergence for our proposed method is reduced

to O(N) iterations, compared to the Jacobi method whose convergence happens by

O(N2) iterations. Therefore, the number of iterations required to converge to the

22

optimal solution within desired accuracy decreases significantly, especially when the

network size grows.

2.4 Numerical Examples

In this section, we will show the convergence performance of the proposed fast

convergent scheme and compare it to the well-known Jacobi iterations. Consider

v1

v3

v2

v4

v5

v6

v7

v8

v10

v9

v11

v12

Source 2

Source 1 Sink

Source 3

Figure 2.5: A typical network with 12 nodes, where the first three nodes
(v1, v2, v3) are source nodes injecting (b1, b2, b3) = (1, 2, 1) units of traffic
respectively, and node v12 is the sink node.

a typical network in Figure 2.5, in order to evaluate the convergence rate of our

proposed method. This network consists of 12 nodes with three nodes (v1, v2, v3)

as source nodes injecting (1, 2, 1) units of flow, respectively, and v12 as sink node

gathering all flow from network. In this example, the link capacity is assumed to

be the same and equal to one for all links. Figure 2.6 shows performance of the

proposed method in converging to final solution for all node potentials. For the first

node potential v1, our proposed method requires only 17 iterations to converge with

error tolerance 1% to final solution. Figure 2.7 depicts the convergence rate of our

proposed method for the path network with N = 20 compared to the Jacobi method

23

0 50 100 150 200 250 300
0

2

4

6

8

10

12

Number of Iterations

po
te

nt
ia

l l
ev

el
 fo

r
A

ll
no

de
s

(u
)

u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11

Figure 2.6: The convergence rate performance of the proposed iterative
scheme for all node potentials.

based on averaging. As it can be seen, our proposed method requires considerably

smaller number of iterations required compared to the Jacobi method. In partic-

ular, as the numerical results show, our proposed method requires 70 iterations to

converge compared to 1200 iterations required for Jacobi method.

24

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Iterations

N
or

m
al

iz
ed

 p
ot

en
tia

l l
ev

el
 fo

r
th

e
fir

st
 n

od
e

(V
1)

Jacobi method

Proposed method

Figure 2.7: Convergence rate comparison of potential levels for path
network with N = 20 links and source and sink node at both end for two
different iterative techniques: 1)Jacobi iterations with averaging policy,
2) proposed accelerated scheme with optimum stability factor (ξ = π

40
).

25

Chapter 3: Distributed Load Balancing Protocol

3.1 Network Model

We consider a network model based on a connected directed graph G = (V , E)

with V = {1, 2, . . . , N + 1} as the set of vertices and E ⊂ V × V as the set of edges.

In this model, network nodes and communication links are represented by vertices

and edges, respectively. Each edge is denoted by (i, j) ∈ E , with i < j, means that

nodes i and j are neighbors which can exchange information directly. The set of

one-hop neighbors of node i is denoted by Ni; the cardinality of this set, di = |Ni|,

defined as the degree of node i. Assume there is M links available in the network

graph. We assume that the network topology has no change or changes slowly giving

enough time to optimally balance the traffic.

Let f be the flow vector containing network flows fm,m = 1, 2, . . . ,M stream-

ing on the links. The sign of flow fm corresponding to the link (i, j) determines the

direction of flow from node i to j, with fm < 0 meaning that flow is streaming in

the opposite direction. The source vector b = [b1, b2, . . . , bN] contains information

rates generated at each node. The sign of component bi determines the role of node

in the network with positive sign as the source node, negative sign as the sink node

and zero-valued for intermediate relay nodes. It is obvious that the total generated

26

flow would be routed through the sink node,
∑

i∈V bi = 0.

The basic feasibility condition for our network flow model is the flow conserva-

tion law. This implies that the sum of input flows to a node, including the generated

flow at that node, is equal to zero. The flow conservation can be written in the com-

pact form, K̃f = b̃, where matrix K̃ is the incidence matrix of size (N + 1) ×M

for network graph. This matrix contains all the information about the node-edge

relationship and show how node i is related to edge m by the K̃im element of matrix

K̃im =



+1 if edge m leaves node i

−1 if edge m enters node i

0 otherwise.

(3.1)

It is known that the rank of the incidence matrix K̃(N+1)×M for a typical connected

graph is equal to N [48]. Based on rank-nullity theorem, the nullity of K̃ is M −N ,

which is equal to the number of independent meshes in graph. Therefore, the set of

linear equations for flow conservation law is linearly dependent. In order to obtain

an independent set of equations, one node is specified as the reference node and the

corresponding equation is eliminated to achieve

Kf = b (3.2)

where KN×M is the reduced incidence matrix of full-row rank. The reduced source

vector b of size N specifies the generated flow rates at all nodes excluding the

reference node. We assume that b is feasible in the sense that there exists at least

one flow vector f ∈ F(b) satisfying the flow conservation and channel capacity

27

constraints. It means that the total generated flow at any arbitrary set of nodes

should not exceed the total capacity constraint of their corresponding minimum

cutset to the sink.

3.2 Problem Formulation

Our main goal is to devise a fully distributed routing protocol to balance the

traffic load in a general network setting, in particular on the bottleneck links where

congestion is more likely to occur. A load balancing scheme directly embedded

at the network layer would improve the information delivery rate through an effi-

cient redistribution of traffic load across the network. It would also alleviate the

congestion problem at hot spots.

The balanced load distribution is achieved through solving a convex optimiza-

tion problem where p-norm of network flow is minimized as cost function constrained

to flow conservation law. Thus, the main problem can be formulated as an equality-

constrained convex optimization problem as follows

minimize
f

Jp(f) = ‖f‖p

subject to Kf = b

(3.3)

where the p-norm, p ∈ [1,∞), of vector f ∈ Rn can be defined as

‖f‖p =

(
M∑
m=1

(fm)p

) 1
p

(3.4)

where fm is the m-th component of f . In the p-norm problem, ”p” determines the

balance level of load distribution. The case p = 1 is equivalent to the shortest path

routing where no load balancing occurs. By increasing the parameter p, the cost

28

function imposes higher penalties on network flows’ absolute values and tries to

redistribute flows more evenly throughout the network. In this case, each node dis-

tribute the incoming traffic (including the generated traffic) through multiple paths

instead of forwarding to the node in the shortest path direction. The optimization

solution will tend to minimax problem solution for the limiting case when p → ∞.

In most practical scenarios, the solution for the p-norm problem with sufficiently

large p will be a good approximation of the maximally balanced flow.

Several convex optimization techniques have been proposed to solve (3.3) in

a centralized way, which requires all information to be collected at a central node.

This centralization makes these methods useless in a practical setting. In [45], a

method based on Sequential Quadratic Programming (SQP) is proposed to opti-

mize the p-norm of network flow. The SQP method solves the main problem (3.3)

through solving subproblems of constrained quadratic programming. Each subprob-

lem reduces to linear system of equations solved iteratively using Jacobi iterations,

which suffers from slow convergence rate. Large number of iterations is required to

achieve the optimal solution within acceptable accuracy. Another serious drawback

is the instability caused by the singularity of weighted Laplacian matrices in the

case when some flow iterates approach zero. We will come up with a distributed

algorithm which overcomes these fundamental problems. In the sequel, we will first

provide a brief overview of ADMM algorithm. Then, we will propose a distributed

method based on ADMM iterations to solve the p-norm optimization problem.

29

3.3 ADMM Overview

Alternating Direction Method of Multipliers (ADMM) is an iterative approach

to solve convex optimization problems. ADMM combines two methods of dual ascent

and the method of multipliers [42]. Hence, it tends to gather the benefits of both

methods together: the decomposability and decentralized nature of dual gradient

ascent and improved convergence properties of the method of multipliers. In the

standard ADMM form of problem, both the objective function and constraints are

assumed to be separable across the splitting of the optimization variable x into two

blocks of variables x1 and x2

minimize f1(x1) + f2(x2)

subject to A1x1 + A2x2 = c

(3.5)

where f1, f2 are closed convex functions and A1, A2 are full-column rank matrices

with the same number of rows. A wide range of important optimization problems

can be reformulated in this form (3.5). In the extended version of ADMM, this

form can be generalized to the case of multi-block convex optimization problem

with objective function separable on n > 2 blocks of variables {xi}ni=1.

The ADMM algorithm consists of sequential Gauss-Seidel based minimization

steps on primal variables, and single dual variable update. In each minimization

step, the augmented Lagrangian is minimized with respect to a single primal variable

to update it to the next iteration. The set of ADMM iterations for (3.5) can be

30

expressed in the following form

xk+1
1 = argmin

x1

Lρ(x1, x
k
2, y

k)

xk+1
2 = argmin

x2

Lρ(x
k+1
1 , x2, y

k)

yk+1 = yk + ρ(A1x
k+1
1 + A2x

k+1
2 − c) (3.6)

where xk1, x
k
2 and yk are the k-th iteration updates of primal variables x1, x2 and

dual variable y; additionally, ρ is the augmented Lagrangian parameter called the

penalty factor for the augmented Lagrangian in the form

Lρ(x1, x2, y) = f1(x1)+f2(x2)+yT (A1x1+A2x2−c)+(ρ/2)‖A1x1+A2x2−c‖2
2 (3.7)

This Formulation for ADMM can be eased to scaled form [42], by scaling the dual

variable u = (1/ρ)y, and combining linear and quadratic terms as follows

xk+1
1 = argmin

x1

(
f1(x1) +

ρ

2
‖A1x1 + A2x

k
2 − c+ uk‖2

2

)
xk+1

2 = argmin
x2

(
f2(x2) +

ρ

2
‖A1x

k+1
1 + A2x2 − c+ uk‖2

2

)
uk+1 = uk + A1x

k+1
1 + A2x

k+1
2 − c (3.8)

The convergence of standard ADMM is assured under two mild assumptions

on functions and Lagrangian [42]. Functions are assumed to be closed1 , proper2 and

convex leading to solvable primal updates. A wide range of functions including non-

differentiable and unlimited range functions (e.g., indicator function) are covered

1A function f : Rn → R is called closed if, the epigraph of f , epif = {(x, t) ∈ Rn|x ∈
domf, f(x) ≤ t} is a closed set.

2A convex function f : Rn → R ∪ {+∞} is proper if f(x) < +∞ for at least one x and
f(x) > −∞ for all x.

31

under this general assumption. The unaugmented Lagrangian L0 is assumed to

have a saddle point.

While there is a body of research literature on convergence of ADMM [27,49],

studies on its convergence rate have been established recently for several different

scenarios. In [50], the sublinear convergence rate of O(k) for the Jacobi version of

ADMM and O(k2) for the accelerated version has been shown under assumption

of smooth objective functions with Lipschitz continuous gradients. The same rates

have been proved in [51] for Gauss-Seidel version of ADMM when there is only

one of the two objective functions required to be smooth with Lipschitz continuous

gradient. [52] proves the convergence rate O(k2) of the dual objective value for

modified version of ADMM and requires functions to be strongly convex and both

subproblems to be solved exactly. Stronger result in [53] proves the linear rate of

convergence O(ck) with c > 1, for several different scenarios of ADMM when at least

one of the two objective functions is strictly convex and has Lipschitz continuous

gradient.

In general, standard ADMM algorithm shows a good performance for modest

accuracy, practically sufficient in most applications. Some variants and extensions

of this algorithm show improved convergence performance compared to the standard

version [52]. In most practical network load balancing scenarios, traffic patterns in

which the load on bottleneck links is balanced within moderate accuracy (e.g. ±5%)

of the optimally balanced solution gives an excellent performance.

We will discuss a few variations of ADMM which would not violate our aim

of rendering distributed iterations, in the meanwhile show good improvement in

32

convergence. One way to obtain several variations is to perform updates in differ-

ent orders or even multiple times. Since the problem is symmetric with respect to

the primal variables, their order could be reversed. The variant of algorithm with

symmetric update order, where an extra dual update is performed between mini-

mization steps is equivalent to Peaceman-Rachford splitting [25]. This variant bring

the symmetry to the standard ADMM which will enhance the overall convergence

performance. Another simple variation is the over-relaxation, where the primal iter-

ate is substituted by relaxed version with parameter α ∈ (0, 1) in iteration updates.

In [54], it has been shown that convergence can improve by choosing α ∈ (1.5, 1.8).

Another variation, called inexact minimization or early termination, can be helpful

in the case where at least one minimization step is carried out in an iterative way.

Due to the resilience property of ADMM, the convergence still persists when iter-

ative minimization steps are solved approximately in early ADMM iterations and

more accurately for further iterations, provided that certain suboptimality condi-

tions satisfied [40].

3.4 Algorithm Derivation

In this section, we will present a reformulation of our optimization problem

and show how application of ADMM would yield distributed, fast, and numerically

stable iterations.

33

3.4.1 Application of ADMM to p-norm problem

We will apply ADMM algorithm to the p-norm optimization problem in (3.3).

Among all possible reformulations for ADMM, we choose the one which best match

our problem formulation and our aim of distributed implementation. We choose

the ADMM formulation proposed for constrained convex optimization in [42]. The

equality-constrained convex optimization problem (3.3) can be reformulated in ADMM

form as

minimize IC(x) + ‖z‖pp

subject to x− z = 0

(3.9)

where IC(x) is the indicator function of constraint set C = {x ∈ RM |Kx = b}, which

is equal to 0 when constraint is satisfied x ∈ C, and takes value +∞ if constraint is

violated x /∈ C. By this formulation, the constraint appears in the objective term as

the indicator function on the duplicate variable x enforcing the optimal solution to

satisfy the constraint x ∈ C, while minimizing the p-norm cost function.

For ease of formulation, ADMM algorithm for our reformulated problem (3.9)

can be expressed in scaled form as follows

xk+1 = argmin
x

(
IC(x) +

ρ

2
‖x− zk + uk‖2

2

)
(3.10)

zk+1 = argmin
z

(
‖z‖pp +

ρ

2
‖xk+1 − z + uk‖2

2

)
(3.11)

uk+1 = uk + xk+1 − zk+1 (3.12)

where uk is the scaled dual variable.

The minimization steps (3.10) and (3.11) can be be efficiently simplified ex-

34

ploiting the special function structures of indicator and p-norm form. The minimiza-

tion on the indicator function (3.10) takes the form of projection on the constraint

set

xk+1 = ΠC(z
k − uk) (3.13)

where ΠC is the projection operator on the constraint set C. The projection onto

set C = {x ∈ RM |Kx = b} can be casted as a minimum Euclidean norm problem

of underdetermined set of linear equations, where the solution takes the following

closed form

xk+1 = (I −K†K)(zk − uk) +K†b (3.14)

where K† = KT (KKT)−1 is the Moore-Penrose pseudo-inverse of K, and (I−K†K)

is the projection operator on the null space of K. Hence, the first term xH =

(I −K†K)(zk − uk) lies in the nullspace of incidence matrix Null(K), also known

as cycle space [48]; and the second term xP = K†b is the least norm-2 solution to

Kx = b. This closed form of solution can be interpreted in a different way from graph

theory perspective. The iteration update (3.14) tends to balance the feasible flow

xP by further refining a circulation flow xH from the cycle space. The cycle space

is the set of all flow vectors with zero divergence at every node Kx = 0, forming

circular flows which pass through the loops of network graph, therefore termed as

circulation. As iterations proceed, the initial feasible flow will be balanced by the

optimal circulation flow.

The minimization in z-update step (3.11) can be carried out in a parallel

way through M separate scalar minimizations on components zm. This is due to

35

the fact that the p-norm function has the component separability feature, where

the objective function can be separated as summation of functions on individual

components, ‖z‖pp =
∑M

m=1(zm)p. This separability property alongside the separable

quadratic term in (3.11) will result in a separable Lρ(x
k+1, z, uk) and the opportunity

to update zk+1 in a completely parallel way

zk+1 =
M∑
m=1

argmin
zm

(
(zm)p +

ρ

2
(xk+1

m − zm + ukm)2
)

(3.15)

The parallelization of z-update step on network flow components perfectly matches

up to the aim of decentralization and makes it suitable for a distributed algorithm

design. By this parallel structure, each scalar minimization can be rewritten as a

root-finding problem solved locally for m-th component as follows

zk+1
m = Root

[
p(zm)p−1 + ρzm − ρ(xk+1

m + ukm) = 0
]

(3.16)

where the local minimization problem reduces to finding roots for a polynomial of

degree p − 1. In order to avoid the ambiguity of having multiple roots, let p to be

even, leading to monotone behavior of polynomial in (3.16) where a single root can

be found easily. In the final step of ADMM iteration (3.12), the dual variable is

updated.

In summary, ADMM iterations for our case can be expressed in the following

three steps: (1) Projection on the constraint set, (2) Parallel flow minimization, and

36

(3) Dual update

xk+1 = (I −K†K)(zk − uk) +K†b

zk+1 =
M∑
m=1

argmin
zm

(
(zm)p + (ρ/2)(xk+1

m − zm + ukm)2
)

uk+1 = uk + xk+1 − zk+1 (3.17)

For convergence analysis, we know that zk+1 minimizes scaled objective term

in (3.11). By substituting the dual variable (3.12), we will find that

∇g(zk+1) = ρuk+1 (3.18)

where g(z) = ‖z‖pp is the p-norm function powered to p. Since g(z) is strictly convex

with Lipschitz continuous gradient, we have the inequality

‖∇g(zk+1)−∇g(zk)‖ ≤ Lp‖zk+1 − zk‖ (3.19)

where Lp ∈ (0,∞) is the Lipschitz constant. Using (3.18), this inequality can be

simplified in the following form

‖rk+1‖ ≤ Lp
ρ2
‖sk+1‖ (3.20)

where rk+1 = xk+1 − zk+1 and sk+1 = ρ(zk+1 − zk) are respectively the primal

residual and dual residual terms at iteration k + 1. As ADMM iterations proceed,

these residuals {rk} and {sk} converge to zero [42]. The linear rate of convergence

is guaranteed for our proposed algorithm based on the result in [53], since the p-

norm function g(z) satisfies the strong convexity and Lipschitz continuous gradient

conditions.

37

It should be noted that the convergence of ADMM to the optimal solution

is independent of initial values of variables; however, a good initial point can sig-

nificantly reduce the number of iterations required to converge within a desired

accuracy. The main rationale behind choosing the updating order in (3.17) stem

from the ”warm start” idea. If we perform the projection step firstly, the primal

variable will update to x1 = K†b = KT (KKT)−1b in the first step, assuming zero

initials z0 = u0 = 0. As stated earlier, this term is the minimum norm-2 solution

of Kx = b, denoted as x∗`-2. It is evident that the roughly balanced flow x∗`-2 is a

fairly good approximation to the optimal norm-p flow x∗`-p leading to fewer iterations

required for convergence.

In our proposed ADMM iterations, two last steps (the z-update and u-update)

have straightforward computations involving only local processing such as additions,

multiplications, and simple root-finding process, which can be carried out in a decen-

tralized way without the need of exchanging information between neighbor nodes;

however, the projection step has more complicated computations involving matrix

inversion which requires some communication steps among nodes.

3.4.2 Distributed Projection Subproblems

In this section, we will show how the projection step needs to be specially

designed to perfectly match the distributed setting. We will discuss how the projec-

tion problem will reduce to solving linear subproblems in an iterative approach. The

accelerated second-order iterations is employed to solve subproblems in an efficient

38

distributed way.

In a distributed setting, nodes perform updates based on local variables avail-

able within their one-hop neighborhood and keep track of variables associated with

their outgoing links. It is easy to verify that (3.14) can be rewritten in the following

simplified format

xk+1 = wk +KTvk (3.21)

where wk = zk − uk, rk = b−Kwk, and vk = L−1rk are new auxiliary variables and

L = KKT is the Laplacian matrix of network graph G. Given vk, it is straightfor-

ward to show that the x-update can be implemented in a distributed way. The k-th

iteration of (3.21) can be interpreted in the following way: the flow xkm correspond-

ing to the link (i, j) ∈ E , is updated by adding virtual flow wkm to the difference

value sgn(j − i)(vki − vkj) of nodes at the both end, where sgn(a) = 1 for a ≥ 0,

and sgn(a) = −1, otherwise. By this interpretation, we only need to develop a dis-

tributed scheme to compute vk. Hence, the projection step at k-th ADMM iteration

is reduced to solving system of linear equations expressed as

rk = Lvk (3.22)

where the direct computation of vk requires inversion of Laplacian matrix. We

know that the distributed implementation would require each node to have access

to the corresponding row. Unlike the Laplacian matrix, its inverse L−1 has nonzero

coefficients corresponding to non-neighbor nodes at each row. Hence, the direct

inversion solution for (3.22) requires centralized calculation and therefore global

communication of nodes together. Several centralized graph-based algorithms have

39

been proposed for solving symmetric linear equations [55], [56], [57] in an efficient

way. In [56], an efficient graph-based algorithm has been proposed for solving lin-

ear systems in symmetric M-matrices which yields a nearly-linear time convergence

performance.

Distributed implementation of projection step (3.21) requires an inner-loop

iterative scheme in order to solve linear subproblems (3.22). Each iteration step

involves node-to-node communication between neighboring nodes which is the main

source of drain on energy and communication resources. It is more appealing to

devise a fast and computationally efficient iterative scheme which can converge to

desirable accuracy by far fewer iteration steps. A classical iterative scheme which can

solve linear system of equations in a distributed fashion is the well-known Jacobi

method [58]. However, Jacobi method suffers from slow convergence rate which

makes it practically inefficient. The fast convergent iterative scheme proposed in

our previous work [43] can be a suitable candidate. This iterative scheme origi-

nally inspired by wave propagation in physical media shows superior convergence

performance compared to Jacobi method. Analysis results show that this scheme

significantly improves the convergence rate by reducing the number of iterations

from O(N2) to O(N) for the path network of N nodes. Our proposed algorithm use

a second order linear iterative scheme in the following matrix form

v(l+1) = (α + 1)Sv(l) − αv(l−1) + c (3.23)

where l is the inner-loop iteration index. S = I−∆ is the iteration matrix containing

averaging weights, and c = (1 − α)D−1rk is the bias vector. ∆ = D−1L is the

40

normalized Laplacian matrix, and D is the degree matrix. The iteration parameter

α plays a key role in acceleration of convergence rate. As shown in (2.30) in previous

chapter, the optimum iteration parameter can be computed for the general network

graph in the following form

αopt =
1−

√
1− λ2

1

1 +
√

1− λ2
1

(3.24)

where λ1 is the spectral radius of matrix S. Every node in network need to compute

the optimum parameter αopt to perform the accelerated iterations in (3.23). Hence,

all nodes should have the information about spectral radius λ1, which depends on the

network topology. This fact is in conflict with the aim of distributed implementation

where each node just has a degree-1 access to the network structure. In the next

section, we resolve this issue by proposing an initialization stage where each node

can individually estimate the spectral radius λ1 within desired accuracy.

Algorithm 1 gives a concise and elegant presentation of our proposed algo-

rithm as executed at each node. Assuming zero initial values x0
m = z0

m = u0
m = 0,

after sufficient number of inner-loop iterations L̃ at each node (line 4), the linear

subproblem, Lvk = rk is solved in a distributed manner. Then, each node updates

the set of virtual flows {(xm, zm, um)|m ∈ Fi} connected to the corresponding node

in a parallel way (lines 7 to 9), where Fi = {m|Kim 6= 0}. The x-update step in

line 7 is the nodal representation of (3.21), where the m-th virtual flow corresponds

to the link (i, j). This iterative procedure is repeated until reaching some stopping

criterion. Finally, the resulting flow vector x is the desired balanced network flow.

It should be noted that the optimal parameter is assumed to be already estimated

41

at each node α̂i ∼= αopt in algorithm 1. The distribution estimation of αopt will be

presented in algorithm 2.

Algorithm 1 Main Algorithm

Initialization: for all i ∈ V , set v
(−1)
i = v

(0)
i = 0, and for all m ∈ Fi set x0

m = z0
m =

u0
m = 0, and k = 0

1: repeat

2: for all i ∈ V do

3: for l = 0, . . . , L̃− 1 do

4: v
(l+1)
i = (α̂i+1)

di

∑
i∈Ni

v
(l)
i − α̂iv

(l−1)
i + ci

5: end for

6: for all m ∈ Fi do in parallel

7: xk+1
m = zkm − ukm + sgn(j − i)(v(L̃)

i − v
(L̃)
j)

8: zk+1
m = argmin

zm

(
(zm)p +

ρ

2
(xk+1

m − zm + ukm)2
)

9: uk+1
m = ukm + xk+1

m − zk+1
m

10: end for

11: end for

12: k ⇐ k + 1

13: until some stopping criterion is satisfied

3.4.3 Initialization Stage

The global information about network spectral radius required at each node

seems to be in conflict with the distributed nature of our algorithm. We design

42

the initialization stage to overcome this obstacle in the path of achieving a fully

distributed algorithm. We claim that after sufficient number of iterations, each node

can individually estimate λ1 within desired accuracy. It is noteworthy to mention

that the proposed initialization routine should be implementable in a distributed

way by itself.

The initialization stage starts with the process of averaging iterations, where

each node updates its value by averaging the neighbor nodes’ values. These itera-

tions can be easily formulated in the matrix form as follows

x̄(n+ 1) = Sx̄(n) + ū(n) (3.25)

where x̄(n) and ū(n) are vectors of size N containing states and input values of all

nodes at time n respectively, and S is the averaging matrix whose spectral radius

we need to estimate. It should be noted that matrix S = I − D−1L has the same

structure as the Laplacian matrix L where nonzero elements at each row corresponds

only to the neighbor nodes.

From a purely different viewpoint, an N -node network can be considered as

a MIMO system of size N × N with input vector ū(n) excited at the location of

all nodes and the state vector x̄(n) containing observed values at each node at

time n. The averaging iterations in (3.25) can be equivalently regarded as the first

order linear state-space model for the network system. The basic idea behind the

initialization stage is that the dominant mode of system can be extracted from the

impulse response. In the case of linear time-invariant system, the solution can be

43

simplified in the following form

x̄(n+ 1) = Sn+1x̄(0) +
n∑
l=0

Sn−lū(l) (3.26)

Assuming zero initial state at all nodes, the impulse response can be written in the

following form

x̄(n+ 1) = Snū(0) (3.27)

where all nodes are excited by impulse-shaped signals, ūi(n) = δ(n) for i = 1, . . . , N .

Since the averaging matrix S is diagonalizable, it can be factorized by eigenvalue

decomposition to S = QΛQ−1 where Q and Q−1 are square matrices formed of right

and left eigenvectors as their columns and rows respectively, and Λ = diag[λ1, . . . , λN]

is the diagonal matrix with eigenvalues on the diagonal. Let qi be the i-th column

of Q and q̃i be the i-th row of Q−1. The state vector can be expressed as linear

combination of various modes of the system as follows

x̄(n+ 1) = QΛnQ−1ū(0) =
N∑
i=1

(λi)
n〈q̃i|ū(0)〉qi (3.28)

where 〈.|.〉 is the inner product operation. Suppose the eigenvalues to be indexed

in order |λ1| > |λ2| ≥ · · · ≥ |λN |. Since we have |λi
λ1

|n � 1, i ∈ {2, . . . , N} for

sufficiently large n, the output response will be dominated by the term associated

with the largest eigenvalue. Hence, after sufficient number of iterations, the decay

rate of output response is determined by the dominant mode

x̄(n+ 1) ≈ (λ1)nα1q1 (3.29)

44

where α1 = 〈q̃1|ū(0)〉. It should be noted that the network graphs with the dominant

mode ratio (λ2/λ1) close to one, require larger number of iterations for extraction

of dominant mode within a desired accuracy.

The expression in (3.29) verifies the fact that the dominant mode can be

extracted from output response x̄i(n) of every node in network, if the corresponding

q1,i 6= 0. By further processing, each node can easily evaluate the dominant mode

as follows

λ̂
(n)
1,i =

x̄i(n+ 1)

x̄i(n)
≈ λ1 (3.30)

where λ̂
(n)
1,i is the estimated dominant mode value from the n-th iterate of node

i. As n grows large, the dominant role of λ1 increases which will result in more

accurate estimates at all nodes. Furthermore, the accuracy of λ̂
(n)
1,i estimate can

be increased by computing average of dominant modes extracted from a few recent

output samples. In our proposed method, each node simply performs s iterations,

then the dominant mode is estimated based on average of last r estimated values

λ̂1 =
1

r

s∑
k=s−r+1

λ̂
(k)
1 (3.31)

where λ̂1 is the vector of size N containing estimated dominant mode values at

all nodes. It should be noted that the process of evaluating dominant mode at

each node does not require any further communication between nodes. In other

words, every node in network can individually compute an accurate estimate of the

dominant mode of system or namely spectral radius of matrix S after sufficient

number of iterations. Hence, we achieve an efficient distributed method to estimate

the spectral radius of matrix S and consequently optimum parameter αopt.

45

Algorithm 2 shows the initialization setup required for the accelerated itera-

tions solving the projection subproblems. As we see, each node computes an estimate

of optimum parameter, α̂i ∼= αopt, after s averaging iterations.

Algorithm 2 Initialization Stage

Initialization: for all i ∈ V , set x̄i(0) = 0, and impulse input ūi(n) = δ(n)

1: for all i ∈ V do

2: for n = 0, . . . , s− 1 do

3: x̄i(n+ 1) = 1
di

∑
i∈Ni

x̄i(n) + ūi(n)

4: end for

5: λ̂1,i = 1
r

∑s−1
k=s−r

x̄i(k+1)
x̄i(k)

6: α̂i =
1−

√
1−λ̂21,i

1+
√

1−λ̂21,i

7: end for

46

Chapter 4: Numerical Results

The proposed distributed load balancing protocol is simulated over a network

of N = 100 nodes randomly distributed over a square of side 100 units. As shown

in figure 4.1, network graph has a relatively complex topology inspired by sensor

networks, where each node communicates with the neighbor nodes not farther than

a specific coverage radius. Five nodes have been chosen arbitrarily as source nodes

generating uneven (0.5, 0.2, 0.1, 0.1, 0.1) units of information which would be routed

through the sink node. The total generated traffic is normalized to one without loss

of generality. The link capacity is assumed to be the same and normalized to one for

all links. As highlighted in figure, the generated network graph turns out to have a

bottleneck with 3 mainstream flows. The penalty factor is assumed to be equal to

ρ = 1 for ADMM iterations.

4.1 Convergence Performance

Figure 4.2 shows the convergence performance of the proposed ADMM-based

algorithm for the generated network graph. To highlight the significance of flows on

bottleneck, this figure contains the convergence performance of most significant flows

in network with larger absolute values. It is interesting to note that our proposed

47

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10
 11

 12
 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26 27 28

 29

 30

 31

 32

 33

 34 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53
 54 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88 89

 90

 91

 92

 93 94

 95

 96 97
 98

 99

 100

source
sink
relay
bottleneck

Figure 4.1: A complex network graph of N = 100 nodes and M =
386 edges randomly generated over a square of side 100 units, with five
designated source nodes and a single sink node. The minimum cutset or
namely bottleneck of network graph has been highlighted in dashed blue
lines.

48

Figure 4.2: The convergence performance of the load-balanced network
flow using the proposed ADMM-based algorithm applied to the gener-
ated network in figure 4.1 for the most significant network flows.

method requires only 4 ADMM iterations to balance network flows on bottleneck

links within 5% accuracy to the optimal solution of p-norm problem x∗`-p. Simula-

tion results show that by further iteration steps, network flow will be redistributed

more evenly throughout the network. Figures 4.3 and 4.4 confirm the linear conver-

gence rate of the residuals validating the excellent convergence performance of the

proposed algorithm. Finally, figure 4.5 shows the iterative solution of distributed

projection subproblems for the first four ADMM-based iteration steps using the

accelerated iterative scheme in (3.23). This figure plots the node values vk versus

number of inner-loop iterations at all nodes.

49

Figure 4.3: The convergence performance of primal residuals rk showing
the amount of violation from the flow conservation.

50

Figure 4.4: The convergence performance of dual residuals sk.

4.2 initialization stage

The impulse response of the network system is depicted in figure 4.6 for all

nodes. This figure illustrates the fact that dominant mode can be extracted from the

impulse response at the location of all nodes, as the decay rates are roughly equal

for all nodes after sufficient number of iterations. Hence, all nodes can estimate

the dominant mode individually. The dominant mode true value for the generated

network graph in (4.1) is equal to λ1 = 0.9984. In table (4.1), we have shown

the number of iterations required to estimate the dominant mode within a desired

accuracy. The mean squared error MSE = E[(λ̂1−λ1)2] is chosen as the estimation

accuracy measure. For the case of our generated network, we chose the parameter

51

Figure 4.5: Convergence performance of the inner-loop accelerated it-
erative scheme for the first four ADMM iteration steps at all nodes in
network graph 4.1.

52

Figure 4.6: Impulse response of generated network graph at the location
of all nodes.

r = 10, where every node perform total s averaging iterations and the dominant

mode is estimated based on average of last 10 estimated values. Since the dominant

mode ratio for the generated graph (4.1) is close to one, larger averaging operations

is required to achieve a specific accuracy. It should be noted that these iterations

are performed only once as the initialization setup and would not increase the total

computational cost.

Accuracy measure Number of iterations
(MSE) required

10−4 25

10−5 70

10−6 105

Table 4.1: Dominant mode estimation within a specific accuracy for the generated
network graph.

53

Bibliography

[1] Rahul C Shah and Jan M Rabaey. Energy aware routing for low energy ad hoc
sensor networks. In Wireless Communications and Networking Conference,
2002. WCNC2002. 2002 IEEE, volume 1, pages 350–355. IEEE, 2002.

[2] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin.
Highly-resilient, energy-efficient multipath routing in wireless sensor networks.
ACM SIGMOBILE Mobile Computing and Communications Review, 5(4):11–
25, 2001.

[3] Yashar Ganjali and Abtin Keshavarzian. Load balancing in ad hoc networks:
single-path routing vs. multi-path routing. In INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications Societies,
volume 2, pages 1120–1125. IEEE, 2004.

[4] Mounir Frikha. Ad Hoc Networks: Routing, QoS and Optimization. John Wiley
& Sons, 2013.

[5] Banani Das and Sudipta Roy. Load balancing techniques for wireless mesh
networks: A survey. In Computational and Business Intelligence (ISCBI), 2013
International Symposium on, pages 247–253. IEEE, 2013.

[6] Yigal Bejerano, Seung-Jae Han, and Amit Kumar. Efficient load-balancing
routing for wireless mesh networks. Computer Networks, 51(10):2450–2466,
2007.

[7] Liang Ma and Mieso K Denko. A routing metric for load-balancing in wireless
mesh networks. In Advanced Information Networking and Applications Work-
shops, 2007, AINAW’07. 21st International Conference on, volume 2, pages
409–414. IEEE, 2007.

[8] Hossam Hassanein and Audrey Zhou. Routing with load balancing in wireless
ad hoc networks. In Proceedings of the 4th ACM international workshop on
Modeling, analysis and simulation of wireless and mobile systems, pages 89–96.
ACM, 2001.

54

[9] Chai Keong Toh, Anh-Ngoc Le, and You-Ze Cho. Load balanced routing pro-
tocols for ad hoc mobile wireless networks. Communications Magazine, IEEE,
47(8):78–84, 2009.

[10] Shouyi Yin and Xiaokang Lin. Malb: Manet adaptive load balancing. In Vehic-
ular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, volume 4,
pages 2843–2847. IEEE, 2004.

[11] Pai-Hsiang Hsiao, Adon Hwang, HT Kung, and Dario Vlah. Load-balancing
routing for wireless access networks. In INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, volume 2, pages 986–995. IEEE, 2001.

[12] Huazhi Gong and JongWon Kim. Dynamic load balancing through association
control of mobile users in wifi networks. Consumer Electronics, IEEE Trans-
actions on, 54(2):342–348, 2008.

[13] Tarik Taleb, Daisuke Mashimo, Abbas Jamalipour, Nei Kato, and Yoshiaki
Nemoto. Explicit load balancing technique for ngeo satellite ip networks with
on-board processing capabilities. Networking, IEEE/ACM Transactions on,
17(1):281–293, 2009.

[14] Hongyi Wu, Chunming Qiao, Swades De, and Ozan Tonguz. Integrated cellular
and ad hoc relaying systems: icar. Selected Areas in Communications, IEEE
Journal on, 19(10):2105–2115, 2001.

[15] Wei Song, Weihua Zhuang, and Yu Cheng. Load balancing for cellular/wlan
integrated networks. Network, IEEE, 21(1):27–33, 2007.

[16] Evsen Yanmaz and Ozan K Tonguz. Dynamic load balancing and sharing per-
formance of integrated wireless networks. Selected Areas in Communications,
IEEE Journal on, 22(5):862–872, 2004.

[17] Jiajia Liu, Yuichi Kawamoto, Hiroki Nishiyama, Nei Kato, and Naoto Kad-
owaki. Device-to-device communications achieve efficient load balancing in lte-
advanced networks. Wireless Communications, IEEE, 21(2):57–65, 2014.

[18] Jae-Hwan Chang and Leandros Tassiulas. Maximum lifetime routing in wireless
sensor networks. IEEE/ACM Transactions on Networking (TON), 12(4):609–
619, 2004.

[19] Ritesh Madan, Shuguang Cui, Sanjay Lall, and Andrea Goldsmith. Cross-
layer design for lifetime maximization in interference-limited wireless sensor
networks. Wireless Communications, IEEE Transactions on, 5(11):3142–3152,
2006.

[20] Esa Hyytiä and Jorma Virtamo. On traffic load distribution and load bal-
ancing in dense wireless multihop networks. EURASIP Journal on Wireless
Communications and Networking, 2007(1):21–21, 2007.

55

[21] Daniele Puccinelli and Martin Haenggi. Arbutus: Network-layer load balanc-
ing for wireless sensor networks. In Wireless Communications and Networking
Conference, 2008. WCNC 2008. IEEE, pages 2063–2068. IEEE, 2008.

[22] Gaurav Gupta and Mohamed Younis. Load-balanced clustering of wireless
sensor networks. In Communications, 2003. ICC’03. IEEE International Con-
ference on, volume 3, pages 1848–1852. IEEE, 2003.

[23] Hui Dai and Richard Han. A node-centric load balancing algorithm for wireless
sensor networks. In Global Telecommunications Conference, 2003. GLOBE-
COM’03. IEEE, volume 1, pages 548–552. IEEE, 2003.

[24] Ritesh Madan and Sanjay Lall. Distributed algorithms for maximum lifetime
routing in wireless sensor networks. Wireless Communications, IEEE Transac-
tions on, 5(8):2185–2193, 2006.

[25] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods. Prentice-Hall, Inc., 1989.

[26] Roland Glowinski and A Marroco. Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes
de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical
Analysis-Modélisation Mathématique et Analyse Numérique, 9(R2):41–76, 1975.

[27] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of
nonlinear variational problems via finite element approximation. Computers &
Mathematics with Applications, 2(1):17–40, 1976.

[28] Gong Chen and Marc Teboulle. A proximal-based decomposition method for
convex minimization problems. Mathematical Programming, 64(1-3):81–101,
1994.

[29] Paul Tseng. Applications of a splitting algorithm to decomposition in con-
vex programming and variational inequalities. SIAM Journal on Control and
Optimization, 29(1):119–138, 1991.

[30] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-
backward splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[31] Junfeng Yang and Yin Zhang. Alternating direction algorithms for `1 problems
in compressive sensing. SIAM journal on scientific computing, 33(1):250–278,
2011.

[32] Manya V Afonso, José M Bioucas-Dias, and Mário AT Figueiredo. Fast image
recovery using variable splitting and constrained optimization. Image Process-
ing, IEEE Transactions on, 19(9):2345–2356, 2010.

56

[33] Mário AT Figueiredo and José M Bioucas-Dias. Restoration of poissonian im-
ages using alternating direction optimization. Image Processing, IEEE Trans-
actions on, 19(12):3133–3145, 2010.

[34] Ioannis D Schizas, Alejandro Ribeiro, and Georgios B Giannakis. Consensus
in ad hoc wsns with noisy linkspart i: Distributed estimation of deterministic
signals. Signal Processing, IEEE Transactions on, 56(1):350–364, 2008.

[35] Ioannis D Schizas, Georgios B Giannakis, Stergios I Roumeliotis, and Alejandro
Ribeiro. Consensus in ad hoc wsns with noisy linkspart ii: Distributed estima-
tion and smoothing of random signals. Signal Processing, IEEE Transactions
on, 56(4):1650–1666, 2008.

[36] Min Tao and Xiaoming Yuan. Recovering low-rank and sparse components of
matrices from incomplete and noisy observations. SIAM Journal on Optimiza-
tion, 21(1):57–81, 2011.

[37] Michael K Ng, Pierre Weiss, and Xiaoming Yuan. Solving constrained total-
variation image restoration and reconstruction problems via alternating direc-
tion methods. SIAM journal on Scientific Computing, 32(5):2710–2736, 2010.

[38] Pedro A Forero, Alfonso Cano, and Georgios B Giannakis. Consensus-based
distributed support vector machines. The Journal of Machine Learning Re-
search, 11:1663–1707, 2010.

[39] Daniel Gabay. Chapter ix applications of the method of multipliers to vari-
ational inequalities. Studies in mathematics and its applications, 15:299–331,
1983.

[40] Jonathan Eckstein and Dimitri P Bertsekas. On the douglasrachford splitting
method and the proximal point algorithm for maximal monotone operators.
Mathematical Programming, 55(1-3):293–318, 1992.

[41] Ernie Esser. Applications of lagrangian-based alternating direction methods
and connections to split bregman. CAM report, 9:31, 2009.

[42] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–
122, 2011.

[43] Alireza Sheikhattar and Mehdi Kalantari. Fast convergence scheme for
potential-based routing in wireless sensor networks. In Wireless Communi-
cations and Networking Conference (WCNC), 2013 IEEE, pages 1980–1985.
IEEE, 2013.

[44] Mehdi Kalantari, Masoumeh Haghpanahi, and Mark Shayman. A p-norm flow
optimization problem in dense wireless sensor networks. In INFOCOM 2008.

57

The 27th Conference on Computer Communications. IEEE, pages 341–345.
IEEE, 2008.

[45] Sina Zahedpour Anaraki. Distributed flow optimization in dense wireless net-
works. PhD thesis, 2011.

[46] Anirban Banerjee and Jürgen Jost. On the spectrum of the normalized graph
laplacian. Linear algebra and its applications, 428(11):3015–3022, 2008.

[47] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical
Soc., 1997.

[48] Béla Bollobás. Modern graph theory, volume 184. Springer, 1998.

[49] Roland Glowinski and Patrick Le Tallec. Augmented Lagrangian and operator-
splitting methods in nonlinear mechanics, volume 9. SIAM, 1989.

[50] Donald Goldfarb and Shiqian Ma. Fast multiple-splitting algorithms for convex
optimization. SIAM Journal on Optimization, 22(2):533–556, 2012.

[51] Donald Goldfarb, Shiqian Ma, and Katya Scheinberg. Fast alternating lineariza-
tion methods for minimizing the sum of two convex functions. Mathematical
Programming, 141(1-2):349–382, 2013.

[52] Tom Goldstein, Brendan ODonoghue, and Simon Setzer. Fast alternating di-
rection optimization methods. CAM report, pages 12–35, 2012.

[53] Wei Deng and Wotao Yin. On the global and linear convergence of the gen-
eralized alternating direction method of multipliers. Technical report, DTIC
Document, 2012.

[54] Jonathan Eckstein. Parallel alternating direction multiplier decomposition of
convex programs. Journal of Optimization Theory and Applications, 80(1):39–
62, 1994.

[55] Daniel A Spielman. Algorithms, graph theory, and linear equations in lapla-
cian matrices. In Proceedings of the International Congress of Mathematicians,
volume 4, pages 2698–2722, 2010.

[56] Samuel Isaac Daitch. Efficient graph-based algorithms for linear equations,
network flows, and machine learning. Yale University, 2009.

[57] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 81–90. ACM, 2004.

[58] Roland Bulirsch and Josef Stoer. Introduction to numerical analysis. Springer
Heidelberg, 2002.

58

