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The host antiviral innate immunity mainly relies on host pattern recognition 

receptors (PRR) and downstream interferon (IFN) signaling. Host PRR for RNA 

viruses include Toll-like receptors (TLR) and Retinoic acid-inducible gene I (RIG-I) 

like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead 

to the secretion of type I IFNs, which can modulate both innate and adaptive immune 

responses against viral pathogens, including hepatitis E virus (HEV). HEV causes 

acute hepatitis in humans and has been responsible for several outbreaks of hepatitis 

across the world. Currently, no commercial vaccine is available for the prevention of 

HEV infection in any country except China. HEV biology and pathogenesis as well as 

its responses to host innate immunity are poorly understood, though other hepatitis 

viruses, including the hepatitis A, B and C viruses, have been much better studied. In 



  

this study, how HEV interferes with IFN induction and IFN-activated signaling had 

been examined. Results showed that the protein encoded by HEV ORF1 can inhibit 

type I IFN synthesis and downstream JAK/STAT signaling pathway. However, the 

HEV ORF3 product is able to enhance RIG-I-mediated signaling to a certain extent. 

These data suggest that HEV proteins interfere with the host innate immune response 

and may exert the diverse roles depending on the stage and/or context of infection. 

These studies contribute to a better understanding of HEV pathogenesis and may 

facilitate a strategy development for the prevention and control of HEV infection.   
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Chapter 1: Hepatitis E Virus 

Introduction 

Hepatitis E virus (HEV) causes acute hepatitis in humans and has been 

responsible for several large outbreaks of hepatitis across the world. It has been classified 

as the sole member of the genus Hepevirus, the family Hepeviridae (74). Currently, there 

is no commercial vaccine available for prevention of this infectious disease in any 

country except for China. HEV is a fecal-oral transmitted viral pathogen that causes acute 

hepatitis with a mortality rate from 0.5 to 3% in young adults and up to 30% in pregnant 

women in their third trimester of gestation (139). It has been estimated that one third of 

total population in the world have been infected by HEV on the basis of seroprevalence. 

However, for a long time, HEV infection was thought to be a public health problem only 

for the developing countries. Hepatitis E is now frequently recognized in industrialized 

countries, where it was not thought to be endemic (76, 145, 185, 252, 337, 348, 430). 

Moreover, HEV is also a zoonotic agent and isolation of HEV from the pig, chicken, 

mongoose, rabbit, rat, ferret, bat, fish and deer has been reported (105, 202, 246). It is 

thought that transmission of HEV from animal reservoirs to humans is the major cause of 

sporadic cases of hepatitis E in the industrialized countries. In this chapter, the molecular 

virology, cell culture system, pathogenesis, epidemiology, treatment and vaccine of HEV 

are discussed in detail.  

HEV Virology 

Originally, hepatitis E was classified as enterically transmitted non-A, non-B 

hepatitis (ET-NANBH) due to similar clinical findings to hepatitis A and B in patients, 
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but the prospective causative agent was unknown (321). Although earlier research 

implied an RNA virus as the potential pathogen for the ET-NANBH, direct evidence 

came from the Reyes group. By using infectious bile to construct a cDNA library, they 

identified a portion of a highly conserved RNA-dependent RNA-polymerase (RdRp) 

motif, which is present in all RNA viruses (320). They designated this new virus as the 

hepatitis E virus, which was responsible for the outbreak of ET-NANBH.  

The complete sequence of the HEV genome came out one year later (393). 

Computer based analysis of the sequencing data indicated it has a 7.2 kb single-stranded 

positive-sense RNA genome, which is capped and poly-adenylated. It contains three 

partially overlapped open reading frames (ORFs) with an order of sequences encoding 

non-structural proteins, followed by sequences encoding structural proteins (393, 401) 

[Fig.1.1]. HEV ORF1 encodes a polyprotein including non-structural proteins of HEV. 

ORF2 encodes the capsid protein, which is the major structural protein of the HEV virion. 

ORF3 encodes a small multifunctional protein with a molecular weight of 13 kDa (vp13). 

There are also short untranslated regions (UTRs) in both the 5′- and 3′- end of the 

genome.  

 

   

 

Fig. 1.1  Schematic illustration of HEV genome, sub-genomic RNA, ORFs 
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The ORF1 of HEV can be translated directly from its genomic RNA, while ORF2 

and ORF3 can be translated only from sub-genomic RNAs (99). In an earlier report, three 

RNA species were detected in the liver tissue of experimentally infected macaques, with 

sizes of 7.2, 3.7 and 2 kb (393). The 3.7 and 2 kb RNA species were considered to be 

sub-genomic RNAs for ORF2 and ORF3 translation, respectively. However, a later study 

in Huh7 cells only identified one capped 2.2 kb sub-genomic RNA, which was 

considered to be a bicistronic mRNA for translation of both ORF2 and ORF3 (99). 

Transcription of this sub-genomic RNA initiates at nucleotide position 5122 in the Sar55 

strain, which is located downstream of the first two methionine codons of the earlier 

presumed ORF3. The same conclusion was drawn from another in vitro assay of type III 

HEV infection in RLC/PRF/5 cells (135). 

HEV was initially classified as a member of the Caliciviridae family. However, 

sequence comparison of the HEV ORF1 with corresponding ORFs from other viruses 

indicated no homology with Caliciviruses, or other picorna-like viruses. On the other 

hand, there is limited but significant homology with the alphavirus-like superfamily of 

RNA viruses, specifically the rubella virus (30). Consequently, HEV was reclassified as 

the only member of the genus Hepevirus (30, 74). 

Genotypes of Hepatitis E viruses 

HEV strains are highly diverse and heterogenic. Classification of HEV strains is 

under transition due to the different criteria used (372). Early classification was based on 

partial genomic sequences, i.e. strains with nucleotide variations differing by >20% in 

ORF2 should be considered as different genotypes (431). However, a comprehensive 
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analysis of the complete genome and sub-genome regions has classified HEV into at least 

four major genotypes with several subtypes in each (222). HEV genotype I with the 

prototype Sar55 strain is the most conserved among the four genotypes and contains five 

subtypes. The genotype II sequences are limited and can be divided into two subtypes. 

Genotype III and IV strains are highly diverse and there are ten and seven subtypes, 

respectively (222). Both HEV genotypes I and II are restricted to humans with no animal 

reservoirs, whereas genotypes III and IV are zoonotic with an expanded host range (7, 

245). However, as new HEV isolates from rabbit, rats, ferret, bats and wild boar have 

been reported, there is concern as to whether these new isolates should be listed as a new 

genotype or subtype (64, 90, 144, 309, 386, 456).  

There have also been HEV-like viruses isolated from avian species called avian 

HEV (105, 132). Avian HEV shares less than 50% nucleotide identity with mammalian 

HEV and has been proposed as a new genus within the family Hepeviridae (International 

Committee for the Taxonomy of Viruses; Ninth Report) (132, 414). However, the 

common antigen epitopes in the capsid protein are shared among mammalian HEV and 

avian HEV (104). A more recent study further classified HEV strains into six genotypes 

with two additional genotypes from wild boar (372). Moreover, although it is very rare, 

intra- and inter genotypic recombination of HEV has been reported and is believed to 

contribute to the diversity of this virus (423). 

For the traditional four genotypes of HEV, there are differences in their 

geographic distributions. Genotype I HEV mainly includes strains from Asia and Africa 

including the prototype Sar55, while genotype II contains a Mexican strain and variants 
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from Africa. However, genotypes III, including human and swine HEV, are mainly found 

in industrialized countries, while genotype IV is particularly found in China (304).  
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Viral Proteins of HEV 

ORF1 polyprotein   

ORF1 of HEV is the largest ORF in the HEV genome with 5082 bp in length 

according to the prototype Sar55 strain (75, 401). It starts at the 5’ end of the genome 

after a 25 bp non-coding region and can be translated directly from the HEV genome. 

ORF1 encodes a 1693 amino acid (aa) polyprotein, which is necessary for viral 

replication and protein processing. Bioinformatic analysis of the ORF1 sequence has 

revealed that it is highly related to the group of Rubi-like viruses including Rubivirus, 

Betatetravirus, Benyvirus, Omegatetravirus, Sclerotinia sclerotiorum debilitation-

associated virus and cutthroat trout virus (26, 178, 214). The analysis also indicated eight 

putative functional domains according to the homology of already known functional 

domains from other viruses (179) [Fig.1.2]. These functional domains can be listed as 

follows from the protein’s N terminus: methyltransferase domain (Met), Y domain (Y), 

papain-like cysteine protease (PCP), hypervariable region (HVR), proline-rich region 

(Pro), X domain, helicase domain (Hel) and RNA-dependent RNA polymerase domain 

(RdRp). In recent publications, the proline-rich region has been incorporated into the 

hypervariable region.  

The current data are controversial about whether the HEV ORF1 product 

functions as a single polyprotein or needs to be further processed into smaller units by 

viral or cellular proteases (17, 289, 329, 357, 381). An earlier study by the Frey group 

using a vaccinia-derived expression system demonstrated that the ORF1 polyprotein can 

be cleaved by the PCP within it (329). However, more than ten years later, a publication 

from the same group indicated a lack of processing of the ORF1 polyprotein in HEK293T 
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cells, which contradicts their previous observation (381). In another report by Perttila et 

al., although in vitro translation of full-length pORF1 yielded smaller quantities of two 

fragments, these fragments were not observed in pulse–chase studies in human cells, and 

their production was not dependent on the predicted protease domain in pORF1(289). 

Furthermore, in E. coli and a cell-free system based on HepG2 cells, ORF1 was 

expressed as a 186 kDa protein without further processing (17).   

 

 

 

 

However, other studies demonstrated contrasting results. In one study, the ORF1 

product expressed in insect cells by a baculovirus system could be processed into smaller 

fragments correlated with proposed functional domains, and this type of processing could 

be inhibited by E-64d, a cell-permeable cysteine protease inhibitor (357). In a more 

detailed study, transfection of HepG2 cells with in vitro transcribed RNA from HEV 

cDNA produced cleaved products with sizes of 35, 38 and 36 kDa for the Met, Hel and 

RdRp domains, respectively (279). Another study focusing on the analysis of the ORF1 

functional domains also observed proteolytic processing of the HEV ORF1 fragment in 

insect cells (227). A recent publication reported that the refolded PCP domain expressed 

in E. coli is able to process ORF1 protein in vitro (277). Moreover, based on an HEV-

Sar55 replicon system in S10-3 cells (a subclone of Huh7 cells with improved HEV 

replication) (99), it has been demonstrated that the putative “catalytic” aa residues in the 

Fig. 1.2 Schematic illustration of ORF1 product. 

Met: Methyltransferase domain; Y: Y domain; PCP: papain-like cysteine protease; HPX: 

hypervariable region, proline-rich domain and X-domain; Hel: helicase; RdRp: RNA-dependent 

RNA polymerase. The numbers above the boxes indicate numbers of amino acids of ORF1 

polyprotein. 
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ORF1 protease domain are indispensable during HEV replication, as well as the putative 

X-domain “protease-substrate” residues (282). Overexpression of ORF1 from HEV Sar55 

strain in S10-3 cells also resulted in cleaved products that were barely visible (282).  

Thus, although there is no solid data to support a conclusion on the processing of 

the HEV ORF1 polyprotein, majority of the data available so far are in favor of the 

polyprotein proteolysis, which indicates that HEV ORF1 can be processed into smaller 

units. Additionally, some studies have analyzed the functions of the putative domains. 

Met domain 

The Met domain is the first functional domain of the ORF1 polyprotein. As 

evidence has indicated that the HEV genome is capped and that the capping is crucial for 

its infectivity, a viral-specific methyltransferase is expected (75, 450). Based on 

bioinformatic analysis, aa residues 60-240 could be the putative methyltransferase (179). 

The HEV Met domain shows high similarity to that of Tricornaviruses, which belong to 

the alpha-like supergroup of RNA viruses (414). Members of this virus superfamily code 

a unique methyltransferase with four conserved motifs. There are an invariant His residue, 

an AspXXArg signature and an invariant Tyr residue in motifs I, II, and IV of 

methyltransferase, respectively (333). Expression of HEV ORF1 cDNA (aa residue 1-979) 

in insect cells yields a 110 kDa protein (P110), along with a 80 kDa protein which is 

believed as the proteolytically processed product from P110 (227). In vitro assays have 

confirmed that P110 possesses guanine-7-methyltransferase as well as guanylyl 

transferase activity (227). 
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Y domain 

The second functional domain following methyltransferase is the Y domain. It 

starts from aa residue 216 and ends at aa 442, and is highly similar to that of the rubella 

virus (179). Currently, no information is available for the function of this Y domain in 

either HEV or the rubella virus.  

PCP domain 

Downstream of the Y domain, there is a putative papain-like cysteine protease 

(PCP) domain. Just as the Y domain, the PCP domain demonstrates moderate similarity 

with the protease domain in the rubella virus (179). In the rubella virus, the PCP domain 

is responsible for the proteolytic processing of its non-structural protein (NSP) (232). 

Mutation of the catalytic residue within the PCP (Cys1151) abolishes its protease activity 

and results in inhibition of the NSP processing. It is also involved in trans and cis 

cleavage of the rubella virus NSP (208). However, regarding the function of the HEV 

PCP domain, the current data are incomplete and controversial.  

In the vaccinia-mediated ORF1 expression system, mutation of the putative 

catalytic core (Cys483) of HEV PCP had no effect on proteolytic processing of the ORF1 

product (329). Another putative catalytic site of His590 in PCP is not conserved among 

different HEV strains. Later studies showed controversial data for the processing of the 

HEV ORF1 product (17, 329, 357, 381), which leads to the speculation as to whether 

HEV PCP is a real cysteine protease. Recently, Parvez demonstrated that the mutation of 

six cystine residues (C457, C459, C471, C472, C481, C483) and three histidine residues 

(H443, H497, H590) in the PCP domain completely abolished HEV RNA replication in a 

Sar55-based replicon system in S10-3 cells. Notably, of these essential Cys and His 
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residues, C483 and H590 had been previously predicted as putative catalytic residues in 

the PCP domain (282). Furthermore, an Indian group demonstrated that the PCP domain 

expressed in the E. coli C43 strain (a strain resistant to toxic protein expression) 

possesses protease activity (277). The recombinant protein was shown to cleave both in 

vitro translated HEV ORF1 and ORF2 products. Protease inhibitor assays further 

indicated the HEV PCP domain is a chymotrypsin-like protease (277). This latter 

evidence indicates that HEV PCP could be a real protease responsible for HEV ORF1 

polyprotein processing. 

In recent years, the connection between ubiquitination and innate immunity 

signaling has been demonstrated (216, 231, 448), and the antiviral function of some 

ubiquitin-like molecules, such as ISG15 and SUMO, has been described (216). Evidence 

from other studies indicate that viral coded cysteine proteases possess deubiquitinase 

activity to inhibit host innate immunity, such as arterivirus papain-like protease 2 (415) 

and PCP from porcine reproductive and respiratory syndrome virus (199, 380). As a 

result, similar research was performed on the HEV PCP domain, which suggests that 

HEV PCP could act as an antagonist to ISG15 function to inhibit host innate immunity 

when expressed together with Met as the Met-PCP protein (157).  

HVR domain 

Between the PCP domain and the X domain, there are a hypervariable region 

(HVR) and a proline-rich region (Pro). Those two regions were first named together as 

the hypervariable region due to the extreme divergence between nt2011 to nt2325 

(corresponding to aa 662 to 766) when comparing the HEV prototype Sar55 with two 

other strains (401). In a later study, aa 712 to 778 in this region was designated the 
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proline-rich region, which could be found in rubella virus as well. It was also considered 

to serve as a hinge between the X domain and its upstream domains because multiple 

prolines in a protein or peptide may result in an unstable tertiary structure (63, 67, 179, 

400). The length and sequence of HVR and Pro is highly variable among different HEV 

strains and usually need to be excluded for phylogenetic analysis (302, 372). Currently, 

there is some confusion regarding the designation of those two regions. Some of the 

recent publications have named the aa 712 to 778 region as the hypervariable domain, 

which originally referred to proline-rich region and left out the immediately upstream 

domain (aa 592 to 711) (302, 303), while others still name the aa 712 to 778 domain as 

the proline-rich region (305). Current research mainly focuses on the Pro domain and 

pays less attention to the upstream HVR domain. As a result, the function of HVR is 

unknown. However, data gained from the rubella virus shows that deleting part of the 

HVR domain along with part of the Pro domain results in a mutant unable to replicate 

(410). 

Pro domain 

The Pro domain is considered as an intrinsically disordered region (IDR) with 

flexibility for insertion and deletion (305, 306). Data from its counterpart in the rubella 

virus indicates that this region is not required for viral replication (410). As expected, 

deletion and mutation of this region in HEV indicates that it is not required for viral 

replication and infectivity, but it plays a role in replication efficiency in vitro (302, 303). 

It was also demonstrated that the Pro domain is interchangeable between genotypes with 

genotype-specific differences and is affected by viral replication (303). More 

interestingly, a remarkable cell-culture adapted HEV strain Kernow-C1, which was 
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derived from an HIV patient with chronic HEV infection, demonstrated an insertion of a 

174 bp gene fragment of human ribosomal protein S17 in the Pro region (369). This 

recombinant virus was adapted in cell culture and was permissible for cells from different 

species. It was speculated that insertion of the S17 fragment into the viral genome 

occurred in the host but was selected in cultured cells. This speculation needs further 

verification as direct detection of the inserted fragment from the host sample was not 

successful. Experimental insertion of the S17 fragment into the Pro domain of the 

prototype Sar55 strain also generated a viable chimeric virus and further demonstrated 

that this region could tolerate sustainable changes (369).  

Although the Pro domain was considered a highly diverse region that is 

intrinsically disordered regions (IDR), some motifs are found in the region. Based on 

computer analysis and predication with comparison of other IDRs, Purdy et al. identified 

several linear motifs (LMS), including two protease cleavage sites, three ligand binding 

sites and two kinase phosphorylation sites across all four genotypes and the HEV strain 

isolated from a Japanese wild boar (306). The putative protein-protein interactions of the 

Pro domain were proposed in the same report as well, but need experimental verification. 

Nevertheless, this report provides some useful insight into disorder-to-order state 

transitions about the Pro domain. In a recent study, alignment of the Pro domain from 

different genotypes indicated the sequence is more conserved in genotypes I and II rather 

than genotypes III and IV (305). Adaption of a wider host range for genotypes III and IV 

was a possible reason. The authors also assessed the diversity of the Pro domain due to 

the higher rate of substitutions at the first and second codon positions, leading to a shift in 

translation to more proline, alanine, serine and threonine rather than histidine, 
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phenylalanine, tryptophan and tyrosine. This pattern matches the aa usage in proline-rich 

IDRs (305). Furthermore, it is probable that all zoonotic HEV isolates share a common 

ancestor for the Pro domain, and the C-terminus of this domain could tolerate more 

mutations than the N-terminus. HEV evolution has favored the formation of IDR 

structures in the Pro domain (305). Recently, the heterogeneity of the Pro and X domains 

is implicated in HEV persistence, which was revealed in an investigation into the 

association between the genetic heterogeneity of HEV quasispecies in ORF1 and the 

outcome of infection in solid-organ transplant patients (198). 

X Domain 

The X domain is located immediately downstream of the Pro domain. In HEV, it 

was first identified as a domain with unknown function, which commonly flanks the PCP 

domain in the rubella virus, alpha virus and coronavirus (95, 179). It has now been given 

a new name, macro domain, due to its homology shared with non-histone domain of the 

histone macroH2A. It has been identified in a variety of bacterial, archaeal and 

eukaryotic organisms (286, 287).  

Earlier studies into the human macro domain indicated that it is enriched in 

inactive mammalian X chromosomes, suggesting a role in gene silencing and inactivation 

(51). The in vitro assays have shown that the macro domain inhibits transcription, and 

this inhibition was further confirmed by binding of the macro domain to the transcription 

factor NF-κB (16, 288). Crystal structure analysis also identified a DNA binding motif in 

the macro domain, suggesting that it might interact with nucleic acids (12). A 

biochemical functional analysis indicated that the macro domain is involved in the 

downstream processing of ADP-ribose 1"-phosphate, a side product of cellular pre-tRNA 
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splicing (233). Furthermore, the macro domain had been found in association with 

proteins involved in poly(ADP-ribose) polymerization, ADP-ribosylation and ATP-

dependent chromatin remodeling (6).  

Information about the viral macro domain is limited. ADP-ribose 1"-phosphatase 

activities have been demonstrated in macro domains from three coronaviruses (233, 307, 

308, 338). Crystal structure analysis and in vitro assays on the macro domain of the 

SARS virus indicate that the viral macro domain has relatively poor ADP-ribose 1"-

phosphohydrolase activity, but can bind free ADP-ribose and poly(ADP-ribose) 

efficiently (69). In another report, the viral macro domain (Semliki Forest virus, HEV and 

SARS virus) along with a yeast macro domain were compared with the human macro 

domain. The data from this report indicated that viral macro proteins bind poly(ADP-

ribose) and poly(A), but have a low affinity for monomeric ADP-ribose. This implies that 

viral macro domains are functionally different from homologues in the human, and the 

viral macro domain may participate in cellular pathways involving in RNA rather than 

ADP-ribose derivatives (268). Furthermore, other cell-based studies have indicated the 

expression of the macro domain in liver cells, leading to the inhibition of apoptosis since 

the macro domain is functionally related to poly(ADP-ribose) polymerase-1 (PARP-1) 

(12, 43), suggesting that the viral macro domain might regulate apoptosis during viral 

infection as well. Recently, a highly conserved “glycine-triad” (G815-G816-G817) was 

identified downstream of the macro domain of HEV, which is homologous to the rubella 

virus protease-substrate (G1299-G1300-G1301) (282). Mutagenesis assays indicated that 

G816V and G817V mutations in the macro domain are lethal for Sar55 replication in 

S10-3 cells. As mentioned above, a clinical report suggested the great quasispecies 
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heterogeneity in the macro domain may facilitate HEV persistence in HEV infected solid-

organ transplant patients (198). 

Helicase domain 

The next domain downstream of the X domain is the RNA helicase domain, 

which is encoded by many positive-stranded RNA viruses and is essential for their 

replication (146). Helicases are motor proteins which are able to unwind nucleic acid 

strands by using energy derived from ATP hydrolysis , and helicases play an 

indispensable role in many positive stranded RNA viruses (146). Generally, helicases can 

be divided into six superfamilies (SF1-6) (371). RNA virus coded RNA helicases are 

mainly classified into SF1 and SF2. Helicases SF1 and SF2 contain seven signature 

motifs (I, Ia, II, III, IV, V and VI) that form the core of the enzyme (146). The helicase 

domain of HEV belongs to helicase superfamily SF1 and is proposed to possess both 

NTPase activity and an RNA unwinding domain (146, 179). In vitro experiments have 

demonstrated that the purified HEV helicase domain from E. coli has both NTPase and 

RNA unwinding activities. It drives the hydrolysis of rNTPs but also dNTPs with a lower 

efficiency, as well as unwinds RNA duplexes with 5’ overhangs (159). RNA 5’-

triphosphatase activity has also been observed in the HEV helicase domain, which is 

proposed to function along with methyltransferase for catalyzing RNA capping (160). 

Recently, in an in vitro mutagenesis study on HEV helicase demonstrated that motifs  I, 

IV and VI are dispensable, while motifs Ia and III are crucial and unique for HEV 

helicase function (248). 
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RdRp Domain 

The last domain of HEV ORF1 polyprotein is the RNA dependent RNA 

polymerase domain (RdRp). All positive-stranded RNA viruses code an RdRp, which is 

necessary for viral replication (270). The RdRp from all positive-stranded RNA viruses 

can be divided into three large supergroups. All RdRp domains contain approximately 

300 amino acid residues, with the central and C-terminal parts showing high similarity 

between each other (177). RdRp from HEV belongs to supergroup III and has the highest 

similarity to the domains in rubella virus and beet necrotic yellow vein virus (BNYVV) 

(179). All eight conserved motifs can be found in HEV RdRp, including an Mg2+ binding 

sequence (GDD), which is essential for RdRp activity. The purified RdRp protein of 

HEV is able to bind the 3’ end of HEV RNA, and two stem-loop structures at the 3’ end 

of the poly(A) stretch are necessary for this binding (5). Expression of the RdRp domain 

in mammalian cells as a GFP fusion protein indicate that it localizes in endoplasmic 

reticulum (ER), which could be a potential replication site for HEV (315). 

The capsid protein encoded by ORF2 

HEV ORF2 encodes the capsid protein, which is the major component of the 

HEV virion. It begins from 37 nt downstream of ORF1, is 1980 nt in length and 

terminates 65 nt upstream of the polyadenylation tail (319). The full-length ORF2 

product is predicted to have 660 aa residues with a molecular mass of 72 kDa (325). 

Recombinant ORF2 protein can bind to the 5′ region of HEV genome (382). The first 

study performed in mammalian cells showed that the ORF2 product exists as an 88 kDa 

protein which carries N-terminal linked glycans and a potential endoplasmic reticulum 

(ER)-directing signal about 15 aa from its N terminus. This 88 kDa protein can be further 
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processed and has the potential to form non-covalent homodimers (140). A further study 

from the same group demonstrated Asn-310 in ORF2 to be the major site for 

glycosylation (445). A mutagenesis assay indicated that the N-terminal signal peptide is 

required for its cell surface expression via ER transition, but glycosylation of the capsid 

protein is not required (445).  

Since glycosylation of the capsid protein in non-enveloped viruses is not common, 

it is not clear whether these modifications have biological significance for HEV infection. 

Lately, in a more detailed study, all three putative glycosylation sites (aa137, aa310, 

aa562) were mutated in an infections clone to verify their function. It was found that that 

any mutation in the glycosylation site prevented the formation of viral particles but 

without an effect on virus replication in cells; the first two glycosylation sites prevented 

virion assembly, while the third site was related to virion particle formation and RNA 

encapsulation (100). 

 On the other hand, data acquired in insect cells provided a different conclusion 

regarding ORF2 expression and processing. When expressed in insect cells by the 

baculovirus expression system, ORF2 can be expressed as an insoluble full length protein 

of about 72 kDa, as well as a soluble form of 56.5 kDa which is a processed product of 

the intact p72 kDa form (237). Another group showed that when expressed in SF9 cells, a 

62 kDa product was generated from p72 kDa, which lacks the first 111 aa residues of the 

putative ORF2 product (454). Further study performed in two different insect cell lines 

(SF9 and Tn5) for ORF2 expression showed a soluble form of pORF2 with a molecular 

mass of 50 kDa which lacks the first 111 aa of the N-terminal and the last 52 aa of the C-

terminus but retains the ability to form virus-like particles (VLP) (203, 204). VLP 
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assembly is thought to involve dimer formation, and the C-terminus of the recombinant 

ORF2 protein is believed to be responsible for homo-oligomerization (200, 405, 432). A 

3.5-Å resolution crystal structure obtained from HEV VLP indicated that the truncated 

HEV capsid protein has three definite domains designated as S (shell, aa 129-319), M 

(middle, aa 320-455) and P (protruding,  aa 456-606) (437). This VLP particle is 

composed of 60 subunits of the truncated capsid protein, forming icosahedral 2-, 3-, and 

5-fold axes (437). Mutational analyses indicated that the protruding domain is involved in 

binding to the susceptible cells and contains neutralization epitopes (437). Moreover, in a 

more detailed study focusing on the spatial configuration of VLP, ORF2 could be 

modified to be a delivery system for foreign epitopes (433).  

  

 

 

The ORF2 product expressed in insect cells is reactive with anti-HEV antibodies 

(402). Another study indicated that anti-HEV serum collected from humans is reactive 

with a synthesized peptide (aa 414-433)  from ORF2 (58). Genetic analysis of ORF2 

showed over 85% homology among the four major HEV genotypes in mammalian hosts 

(257). Amino acid alignment indicates that divergences are mainly in the first 111 aa of 

Fig. 1.3 Schematic illustration of ORF2 product. 

AA: amino acid; S domain: Shell domain; M domain: Middle domain;  

P domain: Protruding Domain 
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the N terminus, which is not a component of the virion (257). A study manipulating a 

phage display system for overlapping peptides and truncated ORF2 proteins mapped the 

major neutralizing domain to residues 458 to 607, which matches the location of the P 

domain (244, 354, 459). These data provide valuable information for vaccine 

development. The ORF2 truncated protein generated by baculovirus or bacterial systems 

was tested in clinical trials (367, 460). However, a recent study that evaluated cross-

protection against heterologous HEV indicated that pigs vaccinated with truncated capsid 

proteins derived from swine, rat and chicken HEV only generated partial protection 

against a genotype III mammalian HEV (341). 

Additionally, as a structural protein, the HEV capsid protein was found to interact 

with many cellular proteins and play a role in cell signaling. In one study, HEV ORF2 

was found to activate the pro-apoptotic gene CHOP (143). The same study also 

demonstrated that ORF2 increases the expression of Hsp72, Hsp70B and Hsp40, and 

interacts with Hsp72, which may inhibit apoptosis. Moreover, it was demonstrated that 

ORF2 interacts with β-TRCP, a component of the ubiquitination complex that inhibits 

IκBα ubiquitination-mediated NF-κB activation (383). However, these data are all based 

on the overexpression of ORF2 in mammalian cells, which needs to be further verified in 

whole virus infection.  

ORF3-encoded protein  

The ORF3 is the smallest among the three ORFs of HEV and overlaps with ORF2 

by approximately 300 nt in a different reading frame. However, it does not overlap with 

ORF1 (99). The overlapping region (nt 5147 to 5477) had been found to be the most 

conserved region between the prototype Sar55 and BUR121 (401). An early study 
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proposed that ORF3 codes for a protein with 123 aa and comes from a different 

subgenomic RNA other than that encoding ORF2 (393). However, a later study based on 

an HEV replicon suggested that ORF3 is translated from a bicistronic subgenomic RNA 

at the third AUG at nt5131 for Sar55 and expressed as a protein with 114 aa and 

molecular size of 13 kDa (hereinafter called vp13), which is 9 aa shorter than the 

predicted version (99). This observation has been confirmed by another study (134).  

Sequence analysis has indicated that vp13 is unique and has no homology with 

any other proteins. It contains two hydrophobic domains in its N-terminal half and two 

proline-rich domains in its C-terminal half (121, 154). A phosphorylation site (Ser71) has 

been identified in the first proline-rich domain and can be phosphorylated by MAP kinase 

(446). Furthermore, two PSAP motifs have been identified in vp13, with the first PSAP 

motif located at aa 86-89 and the second located at aa 95-98 (262).  

Although the full functions of HEV vp13 have not been defined yet, some studies 

have suggested that vp13 plays multiple roles during HEV infection. Earlier studies 

focusing on vp13 antigenicity and epitope mapping demonstrated that the last 32 aa of 

vp13 contain an immunodominant region, and a synthesized peptide from that region is 

reactive with anti-HEV serum from a recovered patient (58, 359). However, another 

study which tried to map the T cell epitopes for ORF2 and ORF3 indicated that no T cell 

proliferation was observed when cells were stimulated with peptides from vp13 (4). In 

mutagenesis studies, although vp13 is dispensable for viral replication in cell culture (72), 

it is indispensable for HEV infectivity in vivo, implying an important role for vp13 (134). 

A yeast two-hybrid system was employed to screen for the interaction partners for 

vp13. The screen indicated that vp13 can bind to inactive mitogen-activated protein 
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kinase (MAPK) phosphatase and lead to activation of the MAPK (156), suggesting that 

vp13 can modulate host gene expression since MAPK is related to cell signaling and gene 

expression. Chandra et al. found that vp13 inhibits the nuclear translocation of STAT3 

and down-regulates STAT3-mediated gene expression, such as acute-phase response 

proteins (41). The vp13 could also increase the expression of glycolytic pathway 

enzymes by increasing the phosphorylation and transactivation activity of p300/CBP by 

stabilizing HIF-1 transcription factor (253). Furthermore, microarray analysis for Huh7 

cells with vp13 expression suggested that liver-specific genes can be modulated, as vp13 

is able to modulate the phosphorylation of hepatocyte nuclear factor 4 (39).  

The vp13 can also up-regulate mitochondrial voltage-dependent anion channel 

genes, which can protect cells from mitochondrial depolarization and death (254). This 

result implies that vp13 is able to inhibit the mitochondrial apoptosis pathway. The pro-

survival role of vp13 was also demonstrated in another study showing vp13 delays the 

trafficking and degradation of the activated hepatocyte growth factor receptor to prolong 

endomembrane growth factor signaling (40). Additional interacting molecules have been 

identified for vp13 by yeast two-hybrid screens, including α-1-microglobulin, bikunin, 

and bikunin precursor protein (AMBP), fibrinogen β chain and hemopexin (312, 313, 408, 

409).  

Besides yeast two-hybrid screens, overexpression of the vp13-coding plasmid in 

mammalian cells was also employed to elucidate the function of vp13. Studies have 

indicated that vp13 can associate with the cytoskeleton fraction when expressed in cells, 

and deletion of the N-terminal hydrophobic domain of vp13 abolishes this association 

(446). In a more detailed study, GFP-tagged vp13 was found to interact with 
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microtubules to form a filamentous pattern in cells; this pattern could be altered by a 

microtubule-destabilizing drug (154). Furthermore, the expression of vp13 leads to an 

elevation in acetylated α-tubulin, indicating increased microtubule stability (154). 

Truncation analysis indicated that both the hydrophobic domains in the N-terminus of 

vp13 are required for its association with the microtubules. Moreover, salt extraction 

studies have suggested that the vp13-microtubule interaction is electrostatic and dynein is 

needed for the interaction. An earlier study showed that vp13 cannot be co-precipitated 

with tubulin by anti-tubulin antibody (446). These results suggest that vp13 may 

associate with microtubules through interactions with other proteins. This microtubule-

like distribution of vp13 suggests that it may play a role in promoting virus egress, as the 

pUL37 protein of herpes virus can interact with dystonin, an important cytoskeleton 

cross-linker involved in microtubule-based transport, in order to promote capsid transport 

on microtubules during egress (283).  

More interestingly, another study using a monoclonal antibody against vp13 to 

capture HEV particles showed that vp13 can associate with virions and support virus 

release (387). This was later confirmed by a cell culture-adapted genotype III HEV strain 

with vp13 deletion, indicating vp13 is required for virion release (435). Studies in Caco2 

and Huh7 cells for the prototype Sar55, genotype I HEV, showed that the intact PSAP 

motif in vp13 is required for virion release (73, 262). For avian HEV, the PSAP motif in 

vp13 has also been found to play a role in virus release (170). It has been revealed that 

the PSAP motif in vp13 is required for the formation of membrane-associated HEV 

particles with the vp13 protein itself associated with lipids. This process is mediated by 

the cellular Tsg101 protein (262, 263). Although these results all suggest that vp13 is 
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associated with virion during egress, anti-vp13 antibodies are only able to capture HEV 

from the serum, not fecal samples from patients (387). A possible explanation for this is 

that viral particles could lose lipid-associated vp13 after passing through the gut (387). 

The role of vp13 in virus release may be one of its functions during HEV replication, and 

it may explain why vp13 is indispensable during in vivo infection. 

On the other hand, as a small phosphorylated protein, vp13 can be phosphorylated 

at Ser71 by MAPK when expressed in COS1 and Huh7 cells (446). A later study 

indicated that the Ser71 phosphorylation site is required for the ORF2/ORF3 interaction 

as ORF3 can interact with ORF2 in a yeast two-hybrid screen, especially for non-

glycosylated ORF2 (407). This finding also supports a role for vp13 in HEV structural 

assembly. However, a mutagenesis study indicated that HEV lacking the phosphorylation 

site in vp13 was able to replicate its genome in cultured cells, and infection of rhesus 

monkeys with wild type HEV and the phosphorylation site mutant virus induced the same 

viremia and seroconversion (98). These data suggest that phosphorylation of vp13 is not 

necessary for genome replication or for the production of infectious virions. Moreover, in 

addition to phosphorylation and interaction with ORF2, vp13 could form a homodimer 

and the 43 aa domain located in the vp13 C-terminal is responsible for its self-association 

(406).  

Recently, our study indicated that vp13 is able to enhance host interferon 

induction via increasing RIG-I expression and activation  (264). We found that vp13 

extends RIG-I half-life and interacts with N-terminal portion of RIG-I to enhance its 

activation by polyIC. Especially interesting, there is a strain difference in the 
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enhancement of RIG-I mediated IFN induction by vp13, implicating that vp13 may 

contribute to HEV virulence and pathogenesis. 

In summary, as the smallest among the three ORFs of HEV, ORF3 encodes vp13 

that plays an indispensable role in infectivity in experimentally infected animal models. 

However, it appears not required for HEV replication in culture cells. Our current 

knowledge indicates that vp13 is a multifunctional protein. It interacts with many cellular 

proteins, modulates host gene expression and is required for virion release.   

Replication cycle of Hepatitis E Virus  

Due to the lack of an effective in vitro cell culture system for HEV, the replication 

cycle of HEV is largely unknown. The capsid protein is believed to bind to a cellular 

receptor to initiate viral entry, and there is evidence for the binding of recombinant capsid 

protein to the cell surface during HEV entry (110). It is also believed that HEV enters 

liver cells through clathrin-mediated endocytosis (155). However, the exact cellular 

receptor for HEV is still unidentified. One study based on a viral overlay protein binding 

assay (VOPBA) suggested that a protein with molecular weight about 55 kDa could be 

the candidate for HEV entry, but mass spectrometry revealed that this virus binding band 

contained 31 different proteins (452). Another study suggested that aa 458-607 located in 

the C-terminal region of the HEV capsid protein may be the putative receptor binding site 

of HEV virions (110). 

After virus entry into permissive cells, HEV genomic RNA is uncoated by 

unknown mechanisms. In one study utilizing truncated capsid protein HEV239, an 

HSP90-specific inhibitor (geldanamycin) blocked the intracellular transport of the 

HEV239 capsid protein without affecting the entry of it (457). This suggests that Hsp90 
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may play a role in the intracellular transport of HEV particles. After that, the HEV 

genome will start ORF1 translation, and its genome replication is believed to rely on the 

necessary enzymes encoded by ORF1. Then, with the generation of sub-genomic RNA 

for ORF2 and ORF3 translation, there will be virion packing and egress based on our 

current understanding of the functions of the ORF2 and ORF3 products.  

Cell culture and propagation of Hepatitis E virus  

Since the discovery of HEV, many efforts had been made to develop an in vitro 

cell culture system for it. However, as of now, the cell culture system HEV is limited and 

ineffective. An early study tried to use primary hepatocytes from macaques supplied with 

serum-free medium for HEV propagation; however, virus replication was limited and the 

detection of virions in the medium relied on PCR (394). Almost at the same time, a group 

from Japan reported that HEV isolate 87A was able to replicate in A549 cells with 

cytopathic effect (CPE); however, PCR was used to detect viral RNA in the cell culture 

medium (133). Lately, a group from China also claimed that the A549 cell line could be 

used effectively for passaging two Chinese HEV isolates, but these findings were not 

confirmed for other HEV strains or in other labs (427).  

On the other hand, as the commonly employed method for single-stranded, 

positive-sense RNA virus, transfection of capped RNA from an HEV cDNA infectious 

clone via in vitro transcription to PLC/PRF/5 and Huh7 cells demonstrates limited 

replication of HEV (71). Although cell lysates from RNA transfected cells is infectious in 

rhesus monkeys, cell to cell spread of the virus is not observed (71). S10-3 cells, a 

subclone of Huh7 hepatoma cells, demonstrates improved replication efficiency of HEV 
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for the genotype I HEV Sar55 strain but this assay still relies on the transfection of HEV 

RNA (99, 369).  

A Japanese group reported that a genotype III isolate from acute hepatitis patient 

could propagate in PLC/PRF/5 (hepatocellular carcinoma) and A549 (lung cancer) cells 

(272). After A549 cells were seeded in a six-well plate, they were inoculated with HEV 

at 1.0 × 104 and 1.0 × 105 RNA copies per well, and HEV RNA reached the highest titer 

of 107 copies/ml 50 days post inoculation. However, PLC/PRF/5 cells could only support 

as efficient growth as A549 with a higher MOI (with 1.0 × 105 viral RNA copies per 

well). Moreover, in this HEV cell culture system, HEV infected cells need to be 

maintained at 35.5°C and cultured with a mixed cell culture medium (50% Dulbecco's 

Modified Eagle Medium and 50% Medium 199) supplemented with 2% (v/v) fetal bovine 

serum and 30 mM MgCl2. 

Recently, a genotype III HEV strain, Kernow, with an insertion of the human S17 

gene was adapted for cell culture in HepG2/C3A cells (369). The authors speculated that 

this S17 insertion might occur in the HEV patient. The recombinant virus was a minor 

species in the host but selectively adapted to cells after six passages. In a seven-day 

incubation period, the replication of this HEV isolate was 7.5-fold higher in HepG2/C3A 

human hepatoma cells than in Huh7.5, PLC/PRF/5, A549, Caco-2 intestinal cells or 

rhesus kidney cells, suggesting that HepG2/C3A cells were the most permissive. 

Moreover, this HEV isolate was also able to infect a variety of non-primate cells, 

including cow, mouse, chicken, cat, dog and rabbit cells, but with less efficiency. 

In summary, the current cell culture system for HEV has limitations. Until now, 

no cell culture system has been established for genotype I HEV except for the RNA 
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transfection-based system. On the other hand, although several groups have demonstrated 

that genotype III or IV HEV strains can be adapted to cell culture and is able to re-infect 

new cells, it needs a long incubation time compared to other RNA viruses. Moreover, the 

cell culture adapted Kernow virus may have a different phenotype compared with the 

wild type virus as virus-host recombination occurred in this cell culture adapted virus. 

Transmission and epidemiology of HEV 

The hepatitis E virus is a fecal-oral transmitted viral pathogen. The most common 

source of infection is contaminated drinking water in developing countries. It has been 

estimated that one third of the world total population have been infected by HEV on the 

basis of seroprevalence. However, for a long time, hepatitis E was thought to be a public 

health problem only for developing countries. Hepatitis E is now recognized frequently in 

industrialized countries where it was not thought to be endemic before (76, 145, 185, 252, 

337, 348, 430).  

World Health Organization (WHO) estimated that there are 14 million 

symptomatic cases of HEV infection with 300,000 deaths and 5200 stillborns annually in 

the world (429). According to WHO, hepatitis E is highly endemic in East and South 

Asia, where annual hepatitis E symptomatic cases are estimated at 6.5 million, with 

160,000 deaths and 2,700 stillborn babies. The number of deaths indicates the more than 

50% of global hepatitis E deaths occur in this region. In East Asia, large outbreaks of 

hepatitis E have only been described in China. Hepatitis E accounts for 20%-50% of 

acute hepatitis cases in this region. The seroprevalence of anti-HEV antibodies in the 

region varies from 10% to 50%, indicating that hepatitis E is hyperendemic in this region. 

In South Asia, outbreaks of hepatitis E have been reported in most countries in this region, 
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but variable in size. Hepatitis E virus accounts for 20-60% of sporadic acute hepatitis and 

fulminant liver failure in this region. Specifically, the rates of fulminant liver failure are 

usually higher in pregnant patients. A recent paper reported that HEV infection causes 

49% acute viral hepatitis and 75% fulminant hepatic failure in pregnant women (183). 

However, the seroprevalence rates of prior exposure to HEV are relatively low, being 

10%-40% in most studies.  

In developed countries, such as North America, Western Europe and Japan, no 

outbreaks have been reported. These areas are considered as low or non-endemic for 

HEV. However, there have been sporadic cases of hepatitis E reported. Transmission of 

HEV from animal reservoirs to humans is the major cause of those sporadic cases. A 

series of cases of HEV infection in people who ate undercooked deer meat 6 to 7 weeks 

before the onset of disease have been reported (202, 395, 440). HEV RNA recovered 

from the leftover deer meat was found to be identical in sequence to the HEV RNA 

recovered from the patients (385). Recently, the consumption of shellfish was considered 

a risk factor in a documented case (175). Thus, foodborne infection could occur from the 

consumption of uncooked/undercooked products from infected animals. Moreover, blood 

transfusion-mediated HEV transmission had been also been reported. IgM and IgG 

against HEV have been detected in recipients of blood transfusions (426).  

HEV genotype I is responsible for most endemic and epidemic cases of hepatitis 

E in Asia, and genotype II is prevalent in Central America and Africa (304). There is no 

known animal reservoir for HEV genotypes I and II (426), which may explain why HEV 

infections in developed countries are mainly caused by genotype III and genotype IV, as 

these two genotypes are zoonotic. 
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Pathogenesis, clinical signs and diagnosis of HEV  

Hepatitis E virus infection causes acute hepatitis with a mortality rate from 0.5 to 

3% in young adults (139). However, according to WHO, acute hepatitis and fulminant 

liver failure caused by HEV account for 20%-60% of the total cases in South Asia. 

Remarkably, death resulting from HEV-related fulminant liver failure has drastically 

increased to 30% in pregnant women in their third trimester of gestation (139). Generally, 

HEV has an incubation period of 3 to 8 weeks (34). The initial symptoms of acute 

hepatitis E are unspecific and flu-like, such as myalgia, arthralgia and weakness. After 

this short prodromal phase, a period of symptoms such as vomiting, jaundice, itching, 

uncolored stools, darkened urine and jaundice could last for days to several weeks 

accompanied by increased levels of liver transaminases, bilirubin, alkaline phosphatase 

and γ-glutamyltransferase (123, 426). Current case reports indicate that most cases are 

self-limited and do not result in chronic hepatitis (123). Recently, an investigation was 

conducted by Kumar et al. on pregnancy outcomes in hepatitis E (183). In their report, 

higher HEV viral loads were observed in pregnant women with acute viral hepatitis and 

fulminant hepatic failure, as well as higher levels of TNF-α, IL-6, IFN-γ and TGF-β1, 

which suggests that high cytokine levels are responsible for severe liver injury in HEV 

infection (183). 

Chronic infection of HEV has been identified almost exclusively among 

immunocompromised persons, including organ transplant recipients, patients receiving 

cancer chemotherapy and human immunodeficiency virus (HIV)-infected persons (123). 

However, although such cases are rare, chronic HEV infection may occur in adults 

without apparent immunodeficiency, and the source of infection is often unknown. In 
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organ transplant recipients, the chronic course leads to persistent increases in levels of 

alanine aminotransferase, significant histological activity and fibrosis in some cases (426). 

On the other hand, although there have been reports showing that HIV infected 

individuals have higher positive results in anti-HEV antibody tests than individuals 

without HIV infection, but chronic hepatitis E was not described in HIV-infected patients 

before 2009 (426).  

Besides hepatitis, extrahepatic manifestations have been documented as well. 

Neurological disorders, such as polyradiculopathy, Guillain–Barré syndrome, bilateral 

brachial neuritis, encephalitis and proximal myopathy have been reported in patients with 

acute and chronic HEV infections (150). Furthermore, a recent report provided evidence 

that extrahepatic replication of hepatitis E virus in the placenta of infected mothers and 

replication of HEV in the placenta may be associated with fetal mortality (35).  

Recently, there was a report focusing on the association between the outcome of 

HEV infection in solid-organ transplant patients and the genetic heterogeneity of HEV 

quasispecies in ORF1. This report demonstrated that both sequence entropy and genetic 

distance during the hepatitis E acute phase were higher in patients whose infection 

became chronic than in those who cleared the virus (198).  

Although diagnostic tests for HEV are commercially available, none of them have 

been formally approved in the United States by the Food and Drug Administration (FDA) 

(123). Current tests mainly target anti-HEV antibodies, including IgG and IgM. However, 

several assays are based on antigens expressed by a single HEV genotype, especially 

genotype III, and might be limited for the detection of all HEV genotypes. Indeed, there 

are variations in sensitivity, specificity and agreement in the results of these assays, 
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which may account for the discrepancies among positive rates of anti-HEV antibodies in 

various populations (65, 118, 234). On the other hand, HEV RNA can also be detected in 

blood and stool for several weeks after acute HEV infection. However, current RNA tests 

are still experimental since they have not been standardized yet (426). Furthermore, 

serologic and virological tests are also available for free from the Centers for Disease 

Control and Prevention.  

Treatment and Prevention of HEV  

HEV infection causes a self-limited disease and almost all infected individuals are 

able to clear the HEV infection spontaneously. Although the mortality in young adults is 

0.5%-3%, the deaths caused by fulminant liver failure can increase to 30% in pregnant 

women during their third trimester of gestation in South Asia (139). Therefore, antiviral 

therapy may be needed for some acute cases. Although no specific treatment has been 

approved for HEV, off-label application of ribavirin for HEV has demonstrated 

promising results in both acute and chronic hepatitis E patients (91, 152, 230). For 

immunosuppressed patients, a reduction of immunosuppression has shown efficacy in the 

treatment of chronic HEV infection (426). Moreover, application of pegylated interferon 

in combination with ribavirin has been reported as well as a treatment for chronic HEV 

infection (426). 

Current prevention for HEV in developing countries relies on sanitary measures, 

such as providing clean water. In developed countries, prevention is more complicated 

due to the existence of several possible transmission routes which are not fully 

understood (149). 
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Since in vitro culturing of HEV is limited and ineffective, HEV vaccine 

development mainly focuses on the expression of the capsid protein as a subunit vaccine. 

The capsid protein shares over 85% homology among the four major HEV genotypes in 

mammalian hosts (257). Currently, the capsid protein expressed by insect cells via 

baculovirus or bacterial vectors has been tested in clinical trials. The first candidate was a 

56 kDa protein encoded by ORF2 and expressed in insect cells. In a phase 2 trial in Nepal, 

the vaccine was well-tolerated and highly immunogenic, with 95% efficacy for protection 

against hepatitis E (367). The second vaccine, HEV 239, was a 26 kDa truncated protein 

(aa 358-606) of ORF2 product expressed in E. coli (201). This vaccine was well tolerated 

with an efficacy of 100% protection after three doses in a tested population of China, 

which included both men and women aged 16–65 years (460). The HEV 239 vaccine was 

approved in China in 2012. Whether it will be endorsed in other countries or how 

effective it is against all genotypes of HEV remains unknown.  

Summary 

More than 20 years have passed since the discovery and complete genome 

sequencing of the hepatitis E virus. Our understanding of HEV is still limited, though 

ongoing research continues to reveal more and more information about this virus. 

Currently, we know that HEV is not only a public health concern in developing countries 

as previously thought, but also a health concern with a more complicated background in 

developed countries. More and more animal reservoirs have been revealed and we now 

understand that HEV is a zoonotic and foodborne disease. On the one hand, although 

approved in China, the vaccine is still unavailable to most of the world despite the fact 

that serum surveillance surveys indicate a high prevalence rate of HEV throughout the 
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world. On the other hand, virus specific treatment for HEV is not available yet. Although 

the off-label using of pegylated IFNs and anti-viral drugs for general purposes have 

demonstrated efficacy against HEV, safety is still a concern as no validation has yet been 

conducted for these treatments. Furthermore, due to the absence of a suitable animal 

model and an effective cell culture system, many details about this virus, such as its 

pathogenesis, strain differences, genotype differences, molecular mechanisms and 

vaccine efficiency for cross protection are still missing.  

In this study, we attempted to determine the mechanism that HEV interferes with 

host interferon induction and signaling, and to identify the viral proteins responsible for 

this interference. As interferons play key roles in host innate immunity against viral 

infection and in the development of adaptive immunity, understanding the mechanism of 

how HEV evades host innate immunity will provide valuable information for studies on 

HEV pathogenesis and strain differences and provide insight into potential strategies to 

combat HEV. 
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Chapter 2: Interferons and Induction 

Introduction 

Host immunity can be divided to two broad categories: innate and adaptive. 

Vertebrates have developed strong innate immunity against viruses, and the key player in 

this system is interferons. Since the discovery of interferon in the 1950s, numerous 

studies have been conducted on this protein family. By the technology of molecular 

biology, many genes coding for the interferons have been cloned and sequenced, as well 

as expressed in E. coli. With the advantage of purified interferons, interferon-based 

therapy had been developed and applied to treat cancer and viral infection. In this chapter, 

interferons, their classification, function and induction are reviewed in detail.  

Interferons and Their Classification  

Interferons are a large family of proteins which are genetically and functionally 

related (193). The discovery of these mediators occurred in the 1950s, when researchers 

observed that virus-infected cells could be made resistant to secondary viral infection 

under certain circumstances. Similarly, it was also observed that treatment of cells with 

inactivated virus made cells resistant to infection by the same but live virus. Later, the 

term “interferon (IFN)” was created to describe a special substance, possibly produced by 

cells, which could interfere with virus replication. However, due to technical limitations, 

it took more than two decades until interferons could be purified for further analysis (290, 

334). The antigenic differences between IFNs generated by human fibroblasts and 

leukocytes led to the idea that IFNs constitute a protein family (108). Currently, the 

functions of interferons are well-known, including antiviral activity, antiproliferative 
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activity, stimulation of T cell cytotoxic activity and modulation of the immune response 

(290). Since their approval, purified interferons have also been used for the treatment of a 

variety of cancers and viral diseases (290). 

Interferons are divided into three different types: type I, type II and type III. In 

humans, type I interferons, generally called IFNs, are the largest IFN family, which 

includes IFN-α, IFN-β, IFN-ε, IFN-κ and IFN-ω (292, 412). They belong to the class II 

family of α-helical cytokines, which includes type II IFN-γ, the newly identified type III 

IFNs, IL-10 and several IL-10 homologs (62, 181, 291). Type I IFNs are encoded by 

individual genes except IFN-α, which has 13 subtypes (79). IFN-δ, IFN-τ and IFN-ζ (or 

limitin) have also been identified as type I IFNs in swine, ruminants and mice, 

respectively (79). Almost all cell types are capable of producing IFN-α/β; however, 

plasmacytoid dendritic cells (pDC) are considered as the major source for IFN-α 

production during the course of an infection (217, 370). All type I IFNs binds a 

ubiquitously expressed heterodimeric receptor complex, which includes the IFN-α 

receptor 1 (IFNAR1) and IFN-α receptor2 (IFNAR2) as subunits. Data suggest that 

IFNAR2 serves for ligand binding, but both subunits are required to activate downstream 

signaling (397). However, the various subtypes of type I IFNs display different binding 

affinities for the receptor complex and thus lead to various outcomes with respect to their 

antiviral, antiproliferative and immunomodulatory activity (138, 148, 256). 

The type II interferons include only IFN-γ, which functions as a homodimer (79). 

unlike type I IFNs, IFN-γ production is restricted to activated T cells, natural killer cells 

and macrophages (413). Signaling for IFN-γ is transduced via the IFN-γ receptor 

complex (IFNGR). IFN-γ homodimer intimately interacts with two IFNGR1 subunits, 
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with further binding of two IFNGR2 subunits, which results in receptor activation (420). 

IFNGR is ubiquitously expressed, which means nearly all cell types are capable of 

responding to IFN-γ (413). IFN-γ plays a major role in establishing cellular immunity; 

however, it is also able to induces expression of a group of genes that respond to type I 

IFN treatment (56, 197). 

The type III interferons are a newly discovered family of interferons which 

comprise IFN-λ1, IFN-λ2, IFN-λ3 (also known as interleukin (IL)-29, IL-28A, and IL-

28B, respectively) (79). They were initially named “interferon-like cytokines” because 

IFN-λ is functionally similar to type I IFNs but has a distinct gene sequence and 

chromosomal location (397). Besides, IFN-λ signals through a heterodimeric receptor 

composed of IFRL1 (or IL-28R) and IL-10R2, which are different from type I IFN 

receptors (79, 291, 292). However, IFN-λ activates the same pathway and similar gene 

expression as type I IFNs. Recently, IFN-λ4 was described as the fourth member of the 

type III IFNs (301). 

After the discovery of IFNs and their antiviral activity, viral RNA was proposed 

to be the potential inducer. Many early studies focused on the identification of possible 

nucleic acid inducers and numerous synthetic and biological RNAs were tested for this 

purpose. Unlike ssRNA, DNA or RNA:DNA hybrids, the dsRNA was found to be a 

potent trigger of the interferon response (28). Specifically, dsRNA from bacteria, reovirus, 

vaccinia virus and synthetic polyinosinic:polycytidylic acid (polyIC) were shown to be 

potent activators of IFN production (28). However, only recently have we begun to 

understand how the host detects virus infection and initiates interferon synthesis.  



 

 

 

37 

 

The discovery of Toll and the Toll-dorsal pathway in Drosophila led us to 

understand that there are conserved signaling pathways across the plants and animals as a 

common defense against pathogens (29). Identification of the first Toll homologue in 

humans finally led us to gain the concept of Toll-like receptors (TLRs) (241). The TLRs 

were subsequently shown to distinguish unique molecules present in a variety of 

pathogens from bacteria, fungi to viruses (239). Now, we understand that pathogens are 

recognized by a group of pattern-recognition receptors (PRRs). Besides membrane-

associated TLRs, there are another group of PRRs called RIG-I-like receptors (RLR), 

which comprise the cytoplasmic sensors of viral nucleic acids (25). Taken together, while 

the host IFN response plays a key role during the early stage of viral infection, host PRRs 

for RNA viruses include the RLR and TLR pathways. Both RLR and TLR3 can 

recognize double-stranded RNA (dsRNA) of the viral genome or replication intermediate 

of RNA viruses. Activation of RLR and TLR3 signaling leads to the activation of 

interferon regulated factor-3 (IRF3), IRF7 and NF-κB. Those transcription factors 

translocate to the nucleus and result in the induction of type I IFNs and expression of 

inflammatory cytokines. In the following section, Toll-like receptors, RIG-I-like 

receptors and their corresponding signaling pathways are discussed further. 

Toll-like Receptor Pathway 

Discovery of Toll in Drosophila  

Toll is a gene from Drosophila and was identified during a study for genes 

essential for the establishment of the dorsal-ventral axis in Drosophila during embryo 

development (269). Toll contains an extracellular domain which consists of leucine-rich 

repeats (LRRs), flanked by cysteine-rich regions (68). LRRs are found on a wide variety 
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of proteins involved in some form of protein-protein interaction, such as receptors and 

adhesion molecules (388). The cytoplasmic domain of Toll shows high similarity to the 

cytoplasmic domain of the mammalian interleukin 1 type I receptor (IL-1RI) (89, 353). In 

1994, the ligand of Toll in Drosophila, a novel secreted protein encoded by 

the spätzle gene, was identified and confirmed to be necessary to establish the dorsal-

ventral pattern of the Drosophila embryo (258). However, a later study demonstrated an 

additional, non-developmental role played by Toll that the activation of Toll could result 

in an immune response in Drosophila cell lines. This kind of immune response is 

mediated by transcript factors from the Rel family, i.e. Dorsal-related immunity factor 

(Dif) and Dorsal, both of which are NF-κB like transcript factors in Drosophila (331). 

Conclusive evidence from in vivo experiments demonstrated that Toll mediates signaling 

pathways and the extracellular Toll ligand, spätzle, controls the expression of the 

antifungal peptide gene drosomycin in Drosophila adults (192). Mutations in the Toll 

signaling pathway dramatically reduce the survival of Drosophila after fungal infection 

(192). These discoveries led to the formation of a conserved signaling pathway of the 

immune response: the Drosophila Toll-Dorsal pathway, which is considered the 

homologue of the interleukin-1 receptor (IL-1R)-NF-κB pathway in mammals (29). 

Discovery of Toll-like receptors in mammalian hosts  

After revealing the role played by Toll in the immunity of Drosophila, researchers 

started to look for the analogous genes in humans that are involved in this evolutionally 

conserved immune signaling pathway. However, the idea for the existence of certain 

cellular receptors which could sense pathogens and deliver signals to cells was generated 

even earlier, in 1989 (141). In 1997, the first human homologue of Drosophila Toll, later 
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known as Toll-like receptor 4 (TLR4), was cloned and confirmed to induce the activation 

of NF-κB and the expression of NF-κB activated inflammatory cytokines (241). However, 

since little knowledge about the existence of the natural ligand or the human homologue 

of the spätzle gene was available for the first discovered Toll homologue in humans, the 

strategy employed to confirm its function relied on artificial modification of this Toll 

homologues. Based on the previous data for generating the constitutively active mutant of 

Drosophila Toll, researchers generated a similar mutated construct and fused it to a CD4 

ectodomain as a marker for verifying the expression of the hybrid protein. When this 

CD4–Toll fusion protein was overexpressed in a macrophage-derived cell line, it 

constitutively activated NF-κB and resulted in the upregulation of inflammatory 

cytokines as well as costimulatory molecules, as originally predicted (241). Later, a total 

five Toll homologues from human were identified, and designated as TLR1 to 5 (326).  

The term TLR was initially assigned to describe a Toll related gene that 

contributes to hedgehog function in the adult eye of Drosophila in 1994 (44). Using of 

this term occurred earlier than the discovery of Toll as an immune response related 

receptor. However, since the discovery of Toll homologues in mammalian hosts, TLR 

have been assigned to describe a new receptor family more closely related to Drosophila 

Toll homologs rather than to vertebrate IL-1Rs (326). Currently, a total of 13 TLRs have 

been identified in humans and mice (TLR1-13) (33, 48, 49, 187, 391, 449). TLR1 to 

TLR10 are expressed in humans, while TLR11 to TLR13 are found exclusively in the 

mouse. There is indeed a TLR10 homologue identified in the mouse; however, a 

retroviral insertion disrupted the TLR10 gene and rendered it non-functional (107). 

Furthermore, increasing evidence shows that other mammals may express TLRs that are 
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not found in humans. Some TLRs, such as TLR14, TLR5S, TLR20 and TLR21 have 

been identified in Takifugu pufferfish and catfish, and may be found in non-mammalian 

species with unique properties distinct from those in mammals (23, 278, 323). Of the 

human TLRs, TLR3, TLR7, TLR8 and TLR9 are membrane proteins localized in the 

endosome while the remaining TLRs are mainly locate on the cell surface (167).  

TLR ligands  

After the discovery of TLRs in humans, a key question remained unanswered: Do 

human TLRs recognize natural ligands from pathogens or are there human homologues 

of the spätzle gene that serve as  ligands for TLRs (240)? Data from HEK293 cells 

indicated that TLR2 mediates LPS-induced signaling when co-expressed with CD14 

(438). The conclusive answer came unexpectedly from a study in a mutated TLR4 gene 

in the LPS-unresponsive C3H/HeJ mouse strain (297). Before the identification of TLR 

in mammals, researchers were unable to identify the gene responsible for the LPS 

mediated response in different mouse strains with different phonotypes in their response 

to LPS stimulation, and they termed this proposed gene LPS (18, 250, 330, 379). In 1998, 

a mutation in the TIR domain of TLR4 was finally identified that led to defective LPS 

signaling in C3H/HeJ and C57BL/10ScCr mice, which  confirmed that LPS is the ligand 

for TLR4 (297). Later, TLR4 was confirmed to be the product of the proposed LPS gene 

(127). Furthermore, other studies indicated that another molecule, MD-2, which non-

covalently binds to the extracellular domain of TLR4, serves as the real “receptor” for 

LPS, whereas TLR4 serves as the signal-transducing component of the larger “TLR4 

signaling complex” (366). Since then, more TLR ligands have been identified.  
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TLR1 in association with TLR2 as a heterodimer recognizes peptidoglycan and 

lipoproteins (77, 142, 356). The dsRNA is recognized by TLR3 (11). Bacterial flagellin is 

recognized by TLR5 (109). TLR6 recognizes lipopeptide cooperatively with TLR2 (77). 

TLR7 mainly recognizes single-stranded RNA, a common feature of most RNA viral 

genomes. Some artificially synthesized compounds, such as imiquimod, can be 

recognized by TLR7 as well (114). TLR7 and TLR8 are functionally related, as TLR8 

recognizes viral RNA and self-RNA within snRNP autoantibody complexes (83). 

Unmethylated CpG DNA derived from bacteria is recognized by TLR9 (115). Currently, 

no specific ligand had been identified for TLR10. It has been shown that TLR10 plays a 

role in mediating bacterial peptidoglycan-induced trophoblast apoptosis, which implies 

that TLR10 may recognize a bacteria-derived component (261).  

In summary, within the TLR family, TLR3, 7, 8, and 9 represent a subfamily that 

is localized in intracellular compartments, such as endosomes and the endoplasmic 

reticulum (ER), where they recognize viral nucleic acid species (167). There is cell-

specific expression of those four TLRs. Innate immune cells express the endosomal TLR 

7, 8 and 9, which sense GU-rich RNA and CpG-containing DNA, while TLR3 is 

expressed in broad cell types, such as endothelial cells, fibroblasts and astrocytes (349). 

On the other hand, the other subfamily includes TLR1, 2, 4, 5, and 6, which are localized 

on the cell surface and mainly recognize bacterial cell wall components (167).  

Recently, the connection between autoimmune disease and TLRs activated by 

endogenous ligands was revealed (116). There is increasing evidence indicating that 

some endogenous ligands can activate TLR7 and TLR8 and result in autoimmune disease 

in mouse models (101). TLR8 and 9 are believed to be involved in the development of 
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some autoimmune diseases such as rheumatoid arthritis. Endogenous DNA fragments 

generated during cell death, either apoptosis or necrosis, are believed to serve as the 

endogenous ligand for these TLRs (116, 295). A full list of TLRs ligands is listed in 

Table 2.1 below. 

 

 

         Table 2.1 Toll like receptors and their ligands 

 

 
TLRs Adaptor(s) Ligand 

TLR1 MyD88 Peptidoglycan/ 

lipoproteins 

TLR2 MyD88 Peptidoglycan/ 

lipoproteins 

TLR3 TRIF dsRNA 

TLR4 MyD88/TRIF/TRAM/TICAM LPS 

TLR5 MyD88 Bacterial flagellin 

TLR6 MyD88 lipopeptide 

TLR7 MyD88 ssRNA 

TLR8 MyD88 ssRNA 

TLR9 MyD88 CpG DNA 

TLR10 MyD88 unknown 

TLR11 MyD88 Unknown  

TLR12 MyD88 Unknown 

TLR13 MyD88 Unknown 

 



 

 

 

43 

 

TLR signaling  

TLRs are believed to function as dimers. Schematic illustration of the TLR 

signaling is shown in Fig 2.1. After recognition of their ligands, TLRs activate the same 

signaling components as those used in IL-1 receptor (IL-1R) signaling due to a conserved 

Toll-IL-1R (TIR) domain in intracellular regions (259). As a result, TLRs recruit a set of 

adaptor proteins with TIR domains by homophilic interaction of their TIR domains. 

Those adaptor molecules include myeloid differentiation primary response gene 88 

(MyD88), TIR-containing adaptor protein/MyD88-adaptor-like (TIRAP/MAL), TIR-

containing adaptor inducing interferon-β/TIR-domain-containing adaptor molecule 1 

(TRIF/TICAM1) and TIR-domain-containing adaptor molecule/TRIF-related adaptor 

molecule 2 (TICAM2/TRAM) (166). Adaptor molecules used by TLRs are varied for 

different TLRs. TLR4 uses all four adaptors while TLR3 uses only TRIF (166).  

The most well-known adaptor molecule for TLRs is MyD88, which is utilized by 

all TLRs except TLR3. MyD88 is composed of a death domain as well as a TIR domain. 

Upon TLR activation, a homophilic interaction occurs between the death domain of 

MyD88 and members of the IRAK (IL-1 receptor-associated kinase) family, including 

IRAK1 and IRAK4 (10, 428). IRAK4 is initially activated, which in turn phosphorylates 

and activates IRAK1. Then, phosphorylated IRAK4 and IRAK1 dissociate from MyD88 

and interact with TRAF6, which is a RING-domain E3 ubiquitin ligase. TRAF6 promotes 

the Lys63-linked polyubiquitination of itself and NEMO (42). Ubiquitinated NEMO and 

TRAF6 subsequently recruit a protein kinase complex involving transforming growth 

factor-β activated kinase1(TAK1) and TAK1 binding proteins (TABs) (3). TAK1 and the 

TABs (TAB1 and TAB2) then activate two distinct pathways involving the IKK complex 
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and MAPK. TAK1 promotes downstream activation of the IκB kinases (IKK) IKKα and 

IKKβ. These IKKs directly phosphorylate the inhibitory IκB family, which normally 

sequester NF-κB in its inactive form in the cytosol. However, phosphorylation of IκB 

leads to its polyubiquitination and degradation, which enables the activation and nuclear 

translocation of NF-κB. The activation of the canonical NF-κB pathway results in  the 

induction of inflammatory cytokines and co-stimulatory molecules (259). 

A notable function of MyD88 is that signaling transduced via MyD88 due to 

activation of TLR7 and TLR8 in plasmacytoid dendritic cells (pDCs) results in induction 

of IFNs (165). TLR7 and TLR9, are selectively expressed by pDCs (also known as 

professional IFN-producing cells), which are a subset of DCs with a plasmacytoid 

morphology and unique in their capacity to rapidly secrete type I IFNs in response to 

viral infection (50, 217). In pDC, IRF7 is constitutively expressed and binds MyD88 to 

forms a signaling complex with IRAK4, TRAF6, TRAF3, IRAK1 and IKKα (122, 168). 

Within this complex, IRF7 becomes phosphorylated, dissociates from the complex, and 

translocates into the nucleus to activate IFN induction upon activation of TLR7 and 

TLR8. 

Besides MyD88, TRIF is another adaptor molecule that is specially utilized by 

TLR3 and represents another important pathway for TLR signaling (166). Upon 

activation of TLR3 by dsRNA, TRIF interacts directly with the TIR domain of TLR3 

(273). TRIF also directly binds TRAF6 via its TRAF6-binding motifs in the N-terminal 

region (343). TRAF6 then activates TAK1 in a manner similar to that of the MyD88-

dependent pathway for NF-κB activation. On the other hand, TRIF has been confirmed to 

associate with both IKKε and TBK1 via its N-terminal region, which shares binding with 
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TRAF6; the TANK family protein NAK-associated protein 1 (NAP1) might facilitate the 

interaction of both kinases with TRIF (342, 343). TBK1 and IKKε possess essential roles 

in the induction of type I IFNs through phosphorylation and activation IRF3 and IRF7 

(365). Upon activation, IRF3 forms a homodimer, which translocates to the nucleus and 

binds to its target sequences, such as the promoter region of the IFN-β gene. Thus, there 

is a TLR3-TRIF-IKKε (TBK1)-IRF3 signaling axis which finally leads to IFN production. 
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Fig. 2.1 Schematic illustration of TLR mediated signaling 
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TIRAP and TRAM are another two adaptors that are less investigated, but still 

play important roles in TLR signaling. Their functions are related to TLR4-mediated 

signaling. TLR4 is the only TLR that uses all four adaptors. With assistance from TRAM, 

TLR4 can function via TRIF as well to activate TLR3-TRIF-IKKε (TBK1)-IRF3 

signaling axis. TRAM, also known as TICAM-2, acts as a bridging adaptor between 

TLR4 and TRIF (275). TIRAP has a crucial role in the MyD88-dependent signaling 

pathway shared by TLR2 and TLR4. Just like TRAM, TIRAP serves as a “bridge” for 

MyD88 and receptors and thus activates NF-κB (124, 147). Taken together, as the 

consequence of activation, all TLRs commonly promote chemokine and pro-

inflammatory cytokine expression via NF-κB. However, the hallmark of endosomal 

TLR3, 7, 8 and 9, which sense nucleic acids, is the induction of type-I IFNs (167). A 

schematic illustration of TLR mediated signaling is shown in Fig. 2. 1. 

RIG-I  like Receptor Pathway  

Discovery of the RIG-I like receptor 

 Retinoic acid-inducible gene I, or RIG-I (also known as DDX58), is a member of 

the so-called DExD/H box RNA helicase family. DExD/H box RNA helicase and its 

related DEAD box helicase, named according to one of the conserved protein motifs, 

belong to helicase superfamily 2 (94, 212). This is the largest helicase group and, in fact, 

a subset of it includes proteins from E. coli, eukaryotes, even from DNA and RNA virus 

(94, 212). RIG-I-like receptors (RLRs) currently include three members: RIG-I , 

melanoma differentiation-associated gene 5 (MDA5, also known as Helicard or IFIH1) 

and Laboratory of Genetics and Physiology 2 (LGP2) (236). Unlike membrane-

associated TLRs that detect pathogen-associated molecular patterns (PAMPs) derived 
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from viruses, bacteria and fungi, RLRs are cytoplasmic proteins that are specific for 

detecting RNA derived from viruses in the cytosol (349). 

RIG-I was originally identified as a gene induced by retinoic acid during the 

differentiation of an acute promyelocytic leukemia cell line (136, 453). In 1997, a 

Chinese research group from the Shanghai Institute of Hematology, which focused on 

employing all-trans retinoic acid (ATRA) as a treatment for acute promyelocytic 

leukemia, cloned a novel set of ATRA-inducible genes when using retinoic acid to induce 

the differentiation of an acute promyelocytic leukemia cell line. This group named these 

genes “RIG-A, RIG-B, RIG-C,” and so on. They deposited the sequence of the genes into 

GenBank, including the sequence for RIG-I (215, 236). Later, another study identified a 

RIG-I homologue in swine, and named it RNA helicase induced by virus (RHIV-1). This 

gene was upregulated when porcine alveolar macrophages were infected with porcine 

reproductive and respiratory syndrome virus (PRRSV) (453). Another group from Japan 

also reported that stimulation of endothelial cells with lipopolysaccharide (LPS) led to the 

up-regulation of RIG-I (136). Since then, more reports have indicated that RIG-I can be 

up-regulated in cells infected with a virus or cells treated with IFN-γ (52, 255). Taken 

together, the earlier reports connected RIG-I with innate immunity and IFNs.  

The first report to describe the function of RIG-I came from Yoneyama et al., who 

found that the helicase domain of RIG-I is responsible for dsRNA recognition and the 

caspase activation and recruitment domain (CARD) for transmitting the signal 

downstream, leading to the activation of NF-κB and IRF3 and then IFN induction (442). 

After revealing the function of RIG-I, the same group started searching mammalian 
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databases for RIG-I related genes, leading to the discovery of two other members of the 

RLR family, MDA5 and LGP2 (441).  

MDA5 is another member of the RLR family. Similar to RIG-I, MDA5 was 

identified in a differentiation induction subtraction hybridization (DISH) screen which 

was designed to define genes regulated by the induction of terminal differentiation in 

human HO-1 melanoma cells (130, 131). The genes identified by the DISH screen were 

named melanoma differentiation-associated (MDA) genes. MDA5 was one of these novel 

genes that was induced by IFN-β in human melanoma cells and had melanoma growth-

suppressive properties (153). MDA5 shares 23% and 35% identical aa with RIG-I in the 

CARD and helicase domains, respectively (441).  

LGP2, the latest member of the RLR family discovered, was identified based on a 

set of studies in mammary gland development and remodeling, which are regulated by 

two members of the STAT (signal transducer and activator of transcription) family, 

STAT3 and STAT5. Since Stat3, Stat5a, and Stat5b are closely related in a region of 

mouse chromosome 11, this led the research team to hypothesize that additional genes 

involved in mammary gland development might harbor in this locus (53, 251). Finally, 

two novel genes, Lgp1 and Lgp2, were identified and LGP2 was found as a cytoplasmic 

protein harboring a DExH/D-box helicase domain (53). Unlike RIG-I and MDA5, which 

contain both the CARD and helicase domains, LGP2 contains only the helicase domain 

with 31% and 41% identical aa residues to the helicase domains of RIG-I and MDA5, 

respectively (441). 
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Ligands of RLRs  

RLRs present in the cytosol of all cell types induce type I IFNs and cytokines 

upon activation (349). As RNA helicases, RLRs mainly recognize RNA molecules 

derived from viruses, and in some cases, RNA from bacteria (349). However, ligand 

preference varies among different RLRs. Specially, even though the details of the RLRs 

ligands have been revealed, there are still many questions remaining. Currently, RIG-I is 

better defined than MDA5 and LGP2, and considerable efforts have been made to 

identify its ligands.  

Initially, polyIC was used as an artificial ligand for RIG-I to activate IFN 

production, consistent with a previous concept of dsRNA as a physiological viral trigger 

for IFN induction due to the simple explanation that RNA viruses are bound to make 

mistakes during replication and are therefore likely to expose at least some dsRNA 

molecules in the cell (28). However, this assumption is questionable. Studies employing 

dsRNA-specific antibodies have shown that positive-stranded RNA and DNA viruses 

make dsRNA during replication; however, negative-strand RNA viruses do not appear to 

produce detectible amounts of dsRNA, such as influenza A virus (425). On the other 

hand, an important addition to this field was the discovery that a 5′ triphosphate (5′ppp) 

group on an RNA molecule serves as a activator of RIG-I in addition to dsRNA (125, 

294). This discovery gives a potential explanation to the earlier observation that 5' 

triphosphate bearing siRNA generated from in vitro transcription is able to induce 

interferon induction, while removing the 5' triphosphate from artificially synthesized 

siRNA maintains full efficacy but no longer induces IFN (172).  
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On the contrary, later studies challenged the earlier observation that the 5' 

triphosphate alone is sufficient for RIG-I activation and indicated the requirement for a 

double-stranded component in addition to the triphosphate (28). Specifically, synthetic 

5′ppp ssRNA was not capable of inducing IFNs when introduced into cells, while the 

same RNA molecule generated by in vitro transcription served as a competent activator 

of the IFN response since the RNA mixture from the T7 transcript contained a significant 

portion of dsRNA molecules (28). Further characterization of RIG-I activation 

requirements showed that dsRNA complementarity of at least 10–18 nt is required at the 

5′ppp containing end in order to induce RIG-I activity. These types of RNA molecules 

can form a panhandle structure,  and is supported by the data that ends of defective 

interfering (DIs) genomes from negative-stranded RNA viruses are very potent IFN 

inducers (378). Thus, for a negative-stranded RNA virus, the complementary 5′ and 3′ 

terminal sequences of its genomes bear the potential to hybridize as 

dsRNA panhandle structures with blunt ends and 5′ppp groups, thereby meeting the 

requirements of a RIG-I ligand (351).  

In addition to 5' triphosphate dsRNA, another study defined the RIG-I ligand as 

blunt-ended dsRNA longer than 23 bp with higher activity when the RNA contains two 

blunt ends (350). Since the dsRNA antibody recognizes dsRNA longer than 40 bp, this 

ligand size requirement gives a potential explanation for why dsRNAs generated by 

negative-stranded RNA virus replication were not detected since they maybe too short for 

the antibody detection (349). Moreover, a recent study indicated that RIG-I is also 

involved in DNA-initiated IFN induction (349). dAdT functions as a template for 
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endogenous RNA polymerase III, which generates 5′triphosphorylated AU-polymers in 

the cytosol to stimulate RIG-I (47).  

There has been less attention on the ligand of MDA5. Although polyIC indeed 

binds and stimulates RIG-I, it is worth noting that polyIC fails to induce IFN- when 

injected intravenously into MDA5-deficient mice or transfected in vitro into MDA5-

deficient cells (93, 162). While RIG-I is essential for interferon induction for 

paramyxoviruses, influenza virus and Japanese encephalitis virus, MDA5 is critical for 

picornavirus detection (162). This implies that MDA5 and RIG-I helicases have 

differential roles in the recognition of RNA viruses. Another study demonstrated that 

MDA5 was only stimulated by long polyIC fragments when using polyIC fragments of 

different sizes generated from RNase-III digestion as the activator (161). Briefly, dsRNA 

of 1 kb was entirely dependent on RIG-I for IFN induction, while increasing the length to 

4 kb progressively led to dual MDA5 and RIG-I dependence. MDA5 can recognize 

dsRNA more than 7 kb long. This also shows that viral dsRNAs differentially activate 

RIG-I and MDA5, depending on their length as well. Furthermore, an mRNA fragment 

from the negative-stranded RNA parainfluenza virus 5 activated type-I IFN expression in 

a MDA5-dependent manner (225). Since type I IFN induction by this mRNA fragment 

requires the involvement of RNase L, it implies that RNase L may recognize and process 

viral mRNA into a MDA5-activating structure (225). 

As the third member of the RLRs, LGP2 is not fully understood and the current 

data on its function are controversial. No specific research has been performed on ligand 

identification for LGP2. Unlike RIG-I and MDA5, LGP2 structurally lacks CARD 
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domain, suggesting a putative ligand sequestering role (349). Indeed, earlier reports 

suggested an immune suppressive function for LGP2 (176, 332, 339).  Moreover, a 

mutant LGP2 with abolished RNA binding ability was still able to inhibit RIG-I mediate 

signaling (205). However, further studies on LGP2-deficient mice revealed an 

indispensable role of LGP2 for the immune response to viruses that are mainly detected 

by MDA5 (344, 417). In some cases, an impaired RIG-I antiviral response was observed 

as well (344). Another study also demonstrated that LGP2 contributed to sustained RLR 

signaling for IFN-β expression in myeloid cells, and that LGP2 promotes an essential 

pro-survival signal in response to antigen stimulation to induce CD8+ T cell expansion 

and effector functions against divergent RNA viruses (384). Therefore, although no 

finalized conclusion has yet been made, LGP2 appears to have a modulatory role in fine-

tuning the innate immune response to viruses depending on the context of viral infection.   

Collectively, the current data indicate that RIG-I and MDA5 recognize different 

types of viruses with a possible overlapping recognition by both, while LGP2 plays a role 

as a potential regulator. However, both RIG-I and MDA5 require the same adaptor 

molecule, mitochondrial antiviral signaling (MAVS) (also known as virus-induced 

signaling adaptor (VISA), IFN-β promoter stimulator 1 (IPS-1) and the CARD adaptor 

inducing IFN-β (Cardif)) to activate innate immune defense. In the next section, the 

downstream signaling pathway of RLRs will be discussed. 

              Signaling of RLRs 

When RLRs were found to be the intracellular receptor of viral RNAs, it was less 

clear which molecule acts downstream of these helicases and facilitates the activation of 
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IRF3, IRF7 and NF-κB, which are required for IFN transcription and utilized by TLRs. 

Soon thereafter, MAVS was identified as the necessary adaptor for RLR signaling from 

different research groups with different names (MAVS, IPS-1, VISA or Cardif. 

hereinafter, MAVS is used) assigned to the same molecule (169, 247, 363, 434). MAVS 

contains an N-terminal CARD-like domain just like RLRs and a C-terminal 

transmembrane domain which defines its mitochondrial localization. Both domains are 

essential for MAVS signaling (363). MAVS also interacts with TRIF, TRAF6, IKKα, 

IKKβ and IKKε, thus leading to the activation of NF-κB and IRF3 (247, 434). Although 

the details of these interactions and activation pathways are still incomplete, available 

data for RLR signaling indicates a schematic picture. Briefly, in the absence of its ligand, 

RIG-I is in an  

 

  

 

Fig. 2.2 Schematic illustration of RIG-I mediated IFN induction 
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inactivated form. Binding of dsRNA or 5’ppp-RNA to the basic cleft in the C-terminal 

domain (CTD) induces a conformational change, which causes uncovering of the CARD 

domain in the presence of ATP (389). TRIM25, a member of the tripartite motif (TRIM) 

protein family, is an ubiquitin E3 ligase reported to bind to the N-terminal CARD of 

RIG-I and conjugate the lysine 172 in the internal CARD with a lysine 63-linked 

polyubiquitin chain (86, 322). Then, the CARD domain of RIG-I interacts with the 

CARD domain of MAVS, which causes the conversion of MAVS on the mitochondrial 

membrane to a prion-like aggregate (128). MAVS then activates the cytosolic kinases 

IKKs and TBK1, which activate the transcription factors NF-κB and IRF3. Finally, type I 

interferons and cytokines are induced (238). A schematic illustration of RIG-I mediated 

IFN induction is shown as Fig. 2.2.  

In this RLRs-MAVS-IRF3/7 axis, another study identified that receptor-

interacting serine-threonine kinase 1(RIP1) and Fas-associated death domain (FADD) are 

involved in the TLR-independent innate immune pathway. Both RIP1and TBK1 are 

required for the activation of the transcription factor IRF3 (22). Moreover, lysine-63 

(K63) polyubiquitin chain-mediated ubiquitination of TRAF6 and TBK1 is also required 

for the activation of TRAF6 and TBK1 (59, 403). 

Viral antagonism of IFN induction 

Antagonism via direct interaction with host molecules in the IFN induction pathway  

It is well-known that viruses employ multiple strategies to evade host TLR and 

RLR mediated signaling. Some viral proteins can directly interact with host signaling 

molecules to inhibit their functions. For example, the NS1 protein of influenza A virus is 
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able to interact with RIG-I to block downstream signaling (249). The V protein of 

paramyxoviruses binds MDA5 to inhibit the downstream activation (14). Respiratory 

syncytial virus (RSV) NS1 protein associates with MAVS during early infection to 

disrupt the RIG-I and MAVS interaction as well as downstream signaling (38). The 

γ134.5 protein of HSV forms a complex with TBK1 and disrupts the interaction of TBK1 

and IRF3, which prevents the induction of interferons (418). The Ebola virus protein 

VP35 interacts with IKKε and TBK-1 to impair the activation of IRF3 (300). Human 

papillomavirus 16 (HPV16) E6 oncoprotein binds to IRF3 and inhibits its transcriptional 

activity as well (328). 

Antagonism via degradation or cleavage of host molecules in the IFN induction pathway 

On the other hand, viruses can encode proteins that target host molecules to 

degrade or be cleaved as another way to inhibit the activation of IFN-β. For example, 

viral-encoded 3C protease by encephalomyocarditis virus (EMCV) induces RIG-I 

degradation during EMCV infection (280). MDA5 protein is degraded in poliovirus-

infected cells in a proteasome and caspase-dependent manner (24). HCV protease 

NS3/4A cleaves MAVS to evade innate immunity (206). The 3Cpro cysteine protease of 

coxsackievirus B3 (CVB3) cleaves both MAVS and TRIF to escape host immunity (260). 

CSFV Npro induces the proteasomal degradation of IRF3 (27).  

Antagonism IFN induction via inhibiting IRF3 activation or function  

As a key transcription factor, IRF3 is a frequent target of viral proteins to inhibit 

its phosphorylation, such as HCV NS3/4A protease and PRRSV nsp1β (32, 84). Hepatitis 

A virus and hepatitis B virus suppress IRF3 activation and nuclear translocation as well 

(78, 444). Varicella-Zoster virus (VZV) immediate-early protein 62 blocks IRF3 
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phosphorylation (361). IRF3 can be inhibited by viral coded homologues vIRF3 from 

Kaposi’s sarcoma-associated herpesvirus (KSHV) (137). vIRF3 have been shown to 

interact directly with cellular IRF3 (137). Furthermore, immediate early ICP0 protein 

from herpes simplex virus (HSV) can recruit activated IRF3 and CBP/p300 to ICP0 

nuclear foci to block IFN-β induction (243). 

Antagonism of IFN induction via virally-encoded deubiquitinases  

Recently, the connection between ubiquitination and activation of the IFN 

induction pathway was defined, and cellular and viral deubiquitinases have been 

demonstrated to play a negative role in IFN induction (216, 231, 448). Cysteine proteases 

represent a large family of deubiquitinases (13), which implies that viral-encoded 

cysteine proteases can function as deubiquitinases to inhibit ubiquitination-dependent 

activation of host IFN signaling. Evidence from virus studies indicates that viral-encoded 

cysteine proteases indeed possess deubiquitinase function and inhibit host innate 

immunity, such as arterivirus papain-like protease 2 (415), the PCP domain of PRRSV 

(199, 380) and the leader proteinase of foot-and-mouth disease virus (FMDV) (422). 

Furthermore, as an ubiquitin homologue, small ubiquitin-related modifiers (SUMO) 

cause the sumoylation of IRF3 and IRF7, which has been demonstrated as a means of 

negative regulation of IFN induction by viruses (182). 

Antagonism via viral homologues of host molecules 

Viruses can encode some homologues of the host TLR and RLR signaling 

molecules or related molecules to interfere with host signaling, especially for some DNA 

viruses with a larger genome. For example, vaccinia A46R and A52R, which share amino 

acid sequence similarity with TIR domain, are antagonists of TLR signaling (36, 374). 
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KSHV encodes four homologs of IRFs, vIRF1–4, which inhibit the activity of their 

cellular counterparts. vIRF1, 2, and 3 have been shown to interact directly with cellular 

IRFs (137). 

Other functions of TLRs and RLRs 

TLRs and RLRs form the most important sensor families for viral infection, 

resulting in an innate immune response within minutes of infection to produce type I 

IFNs and pro-inflammatory cytokines. For TLRs, besides their important roles played in 

host innate immunity, TLR mediated signaling is involved in many other biological 

processes. TLRs have also been shown to be an important linker between innate and 

adaptive immunity through their presence in dendritic cells (DCs) (113). TLR activation 

in DCs causes an enhanced display of MHC peptide ligands for T cell recognition. TLR 

activation can also up-regulate co-stimulatory molecules that are important for T cell 

clonal expansion and the secretion of immunomodulatory cytokines to direct T cell 

differentiation into effectors (318). TLRs are able to regulate neutrophil migration, 

activation and apoptosis (335). TLR signals also regulate B-cell activation and survival 

(92). Due to their unique feature linking innate and adaptive immunity via DCs, 

considerable effort has been made to testing TLR ligands as novel vaccine adjuvants to 

enhance the efficacy of vaccination.  

TLRs also play important roles in some diseases and are regarded as potential 

therapeutic targets. It was demonstrated that TLR4 plays a crucial role in the 

development of contact allergy to nickel (352). The application of a TLR4 antagonist in 

the treatment of severe sepsis has entered into clinical trial as well (398). Moreover, 

besides their roles in the immune system, TLRs in the intestinal epithelium affect 
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intestinal function (1), and TLRs are also able to modulate adult hippocampal 

neurogenesis (327). Activation of TLR3 is required for efficient nuclear reprogramming 

during the generation of induced pluripotent stem cells (iPSCs) (190). 

For RLRs, other than its ability to initiate an innate response, RIG-I has been 

proposed to participate in a variety of intracellular events. ATRA-induced differentiation 

and normal myelopoiesis are accompanied by the induction of RIG-I (215, 236).  

Conversely, disruption of the RIG-I in mice leads to the development of a progressive 

myeloproliferative disorder (451). It has been suggested that RLRs also participate in cell 

differentiation, and RIG-I participates in TLR-stimulated phagocytosis (215). In vivo 

studies and work in clinical samples suggest that RIG-I may be involved in immune 

responses associated with both non-infectious and infectious diseases, such as 

atherosclerosis, psoriasis and rheumatoid arthritis (236). 

Taken together, TLRs and RLRs play crucial roles both in immunity and non-

immune events. As IFNs are the key consequence of TLR and RLR activation, IFNs 

induce the synthesis of proteins with antiviral activity. In the next chapter, IFN signaling 

via the JAK/STAT pathway will be reviewed in detail. 
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Chapter 3: Interferon Signaling and Function 

Introduction 

IFNs activate cells to establish an antiviral state that is characterized by the 

expression and antiviral activity of IFN-stimulated genes (ISGs) (163). More than 300 

ISGs can be upregulated by IFNs (60). Those ISGs include antiviral effectors, such as 

ISG15 (an IFN-stimulated protein of 15 kDa), the GTPase MX1 (myxovirus resistance 1), 

ribonuclease L (RNaseL) and protein kinase R (PKR). The major signaling pathway 

results in ISG expression is JAK/STAT (Janus kinase and signal transducer and activator 

of transcription) pathway (346). There are other pathways involved in IFN-mediated 

signaling as well, such as the MAPK-p38 pathway and the phosphatidylinositol 3-kinase 

(PI3 kinase) pathway (296). In this chapter, the classical JAK/STAT pathway in type I 

IFN signaling and the effectors of IFNs for their antiviral functions are reviewed in detail. 

Discovery of IFN-mediated signaling 

The concept that individual cytokines or peptides bound to specific cell surface 

receptors cause the transcription of specific sets of genes was established 30 years after 

the initial definition of IFNs (196, 373). The study of IFNs started to focus on what kind 

of genes would be upregulated by IFNs. Early studies indeed demonstrated that IFN 

binding to distinct cell surface receptors leads to the synthesis of several unique 

polypeptides and their corresponding mRNAs (186). Due to technical limitations, less 

attention was paid to the function of those ISGs during that time. However, by analyzing 

the genomic 5'-flanking regions of the ISG54 and ISG15, an IFN-stimulated response 

element (ISRE) was identified (196). Using the ISRE as a probe to react with an IFN-

http://www.nature.com/nri/journal/v8/n7/glossary/nri2314.html#df2
http://www.nature.com/nri/journal/v8/n7/glossary/nri2314.html#df3
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treated cell lysate, a cellular factor (named ISGF3) was identified as well 

(196). Subsequent studies revealed that ISGF3 consisted of four pre-existing proteins in a 

large complex with sizes of 48, 84, 91 and 113 kDa for each protein. Three of those 

proteins with sizes of 91, 84 and 113 kDa were suggested to come from the same protein 

family and are currently known as STAT1α, STAT1β and STAT2, respectively. The 48 

kDa protein was later confirmed as IRF9, belonging to the interferon regulator factor 

(IRF) family (416). STAT1α and STAT1β have different sizes of 91 and 84 kDa due to 

alternative splicing of the same gene product (368). STAT1β, which lacks the 38 C-

terminal residues, including the Ser727 site and most of the C-terminal transactivation 

domain (TAD), is believed to serve as a negative regulator (368). Since that time, more 

details about the STAT family have been revealed, and different signaling pathways for 

type I IFNs and type II IFN have been discovered. The IFN-γ specific promoter (GAS, 

gamma IFN-activated sequence), with a different sequence from the ISRE and another 

factor, only contains STAT1 bound to this promoter (GAF, gamma IFN activated factor) 

(57, 197). Further studies have demonstrated the involvement of a kinase in IFN-α 

induced ISGF3 formation and ISG expression, indicating a requirement for kinase 

activity in IFN signaling (316). Additionally, phosphopeptide mapping confirmed that 

STAT1 and STAT2 are phosphorylated at tyrosine (Y) 701 and 690, respectively, in 

response to IFN-α (346, 368). Collectively, this evidence finally led to the formulation of 

the concept of the JAK/STAT pathway. In the next part, the details of the JAK/STAT 

pathway will be discussed in detail. 
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Fig. 3.1  Schematic illustration of IFN-mediated JAK/STAT activation 
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JAK/STAT pathway  

The JAK/STAT pathway was first characterized in the type I interferon (IFN) 

response (54). Beyond IFN signaling, STAT proteins are critical for signal transmission 

of many different membrane receptors, such as cytokine and hormone receptors (195). 

The JAK/STAT pathway is conserved during eukaryotic evolution. In Drosophila, the 

JAK/STAT pathway is genetically well-characterized and has been shown to be 

important for larval hematopoiesis, sexual identity, embryo segmentation and the 

formation of polarity in the eye (447). JAK/STAT are the transducers of cytokine-

mediated signaling in mammals after cytokines bind to specific cell-surface receptors 

(376).  

There are four members in the JAK family: JAK1 to 3 and tyrosine kinase 2 

(TYK2). They are all characterized by a C-terminal catalytic domain and a related, but 

enzymatically inactive, pseudo-kinase or kinase-like domain (271). They also share five 

additional domains of sequence similarity throughout the N-terminal region (195). All 

those seven domains are now called Janus homology domains (JHD) 1 to 7.  

The STAT family contains seven members: STAT1, 2, 3, 4, 5A, 5B and 6. 

STAT1 contains two isoforms: STAT1α and STAT1β. All STATs except STAT1β share 

a very similar structure: an N-terminal domain (ND), a coiled-coil domain (CCD), a 

DNA-binding domain (DBD), a linker domain (LD), a Src homology 2 (SH2) domain, 

and a transactivation domain (TAD) (376). Generally, JAKs are non-covalently 

associated with the cytoplasmic tail of specific receptors. Upon cytokine binding, 

receptor dimerization or oligomerization leads to JAK apposition and 

autophosphorylation on tyrosine residues, releasing their intrinsic catalytic activity. 
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Tyrosine phosphorylation by activated JAKs of cytokine-receptor cytoplasmic domains 

then provides binding sites for SH2 domain of the STAT proteins. The STAT proteins are 

then recruited to the JAKs, whereupon they are phosphorylated on a tyrosine residue 

(around residue 700 of their 750–850 aa-long sequence) (195). Depending on the nature 

of the activating ligand, STAT/STAT interactions occur immediately through reciprocal 

SH2 interactions (126). All STAT proteins are able to form homodimers and 

heterodimers depending on the signaling pathway activated by different cytokines (195, 

296).  

STATs transduce signals for a large subfamily of cytokines due to the conserved 

receptor families to which JAKs bind. These cytokine families include the IFN family 

(IFN-α/β, IFN-γ; IL10, IL-19, IL-20, IL-22), the gp130 receptor family (IL-6, IL-11, 

OSM, LIF, CT-1, G-CSF, IL-12, IL-23, leptin, CTNF, NNT-1/BSF-3), the γC family (IL-

2, IL-4, IL-7, IL-9, IL-15, IL-21) and the single chain family (Epo, GH, PRL, Tpo) (345, 

347). STAT1 and STAT2 are the major players involved in type I IFN-mediated 

signaling. The activation of such STATs is a common response to different type I IFNs 

since the same receptor is utilized by those IFNs, thereby activating TYK2 and JAK1. 

Phosphorylated STAT1 and STAT2 form heterodimers, with the further association of 

IRF9 to form the ISGF3 complex. Other complexes induced by type I IFNs include 

STAT1-STAT1, STAT3-STAT3, STAT4-STAT4, STAT5-STAT5 and STAT6-STAT6 

homodimers, as well as STAT1-STAT3, STAT1-STAT4, STAT1-STAT5, STAT2-

STAT3 and STAT5-STAT6 heterodimers (296). On the other hand, type II IFN activates 

JAK1 and JAK2 and results in the phosphorylation of STAT1 on the tyrosine residue at 

Tyr701 as well, but this leads to the formation of STAT1-STAT1 homodimers as GAF, 
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which translocates to the nucleus and binds to GAS elements to initiate transcription 

(296). Karyopherin α1 (KPNA1) is the essential importin for the nuclear transport of 

phosphorylated STAT1 (358). However, the interaction of STAT1 and KPNA1 does not 

appear to be involved in the “classical nuclear localization signal (NLS)” recognition 

(358). Additionally, STAT1 possesses a non-classical NLS and KPNA1 binds between 

two STAT1 monomers, with two major binding determinants in the SH2 and DNA 

binding domains (266).  

For the function of other STATs, STAT3 was initially identified as an IL-6 

dependent transcription factor that promotes acute phase gene expression (9). It is now 

known to transduce signals for the entire IL-6 (IL-6, IL-11, IL-31, LIF, CNTF, CLC/CLF, 

NP, CT1, OSM) and IL-10 (IL-10, IL-19, IL-20, IL-22, IL-24, IL-26) families, as well as 

granulocyte colony stimulating factor (G-CSF), leptin, IL-21 and IL-27 (173). Recently, 

STAT3 was implicated for its involvement in transformation. It has been demonstrated 

that STAT3 is constitutively active in some murine and human tumors, and is able to 

regulate the Src-dependent transformation of fibroblasts (37).  

STAT4 was initially identified through screens for STAT homologues and found 

to share 52% identical amino acids to STAT1 (436). Unlike STAT1, neither IFN-α nor 

IFN-γ activate STAT4 (436). The expression of STAT4 was found to be limited to 

myeloid cells, NK cells, dendritic cells and T lymphocytes (436, 458). Subsequent studies 

determined that STAT4 is activated by IL-12, which plays a critical role in the 

development of the Th1 subset of T helper cells (21, 173).  

STAT5A and STAT5B were found to be encoded by two linked genes, STAT5a 

and STAT5b, which shared 96% identity and only diverged at their carboxyl termini (173). 
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STAT5 was originally identified as mammary gland factor (MGF), which is the central 

mediator in the lactogenic hormone response in mammary epithelial cells (419). In 

addition to be a prolactin-induced transcription factor, STAT5 proteins are activated by 

the IL-3 family (IL-3, IL-5 and GM-CSF), the IL-2 family (IL-2, IL-7, TSLP, IL-9, IL-15 

and IL-21), growth hormone (GH), Epo and Tpo (173). STAT5A and STAT5B display 

functional redundancy. Despite these structural and functional similarities, STAT5A 

single knockout mice are predominately defective in prolactin (RPL) dependent 

mammary gland development, while STAT5B single knockout mice exhibit defects 

similar to GH receptor deficient mice (173). STAT5 can also act as an oncogene and was 

found to be constitutively phosphorylated in cancer cells (267).  

STAT6 was originally identified from cell extracts as the IL-4 stimulated STAT 

and it was soon shown to be also activated by IL-13 as well as to the common receptor 

chain shared by IL-4 and IL-13 (129, 210). As mediator for IL-4 and IL-13 signaling, 

STAT6 plays an important role in regulating acquired immunity since IL-4 is secreted by 

activated T and B lymphocytes, mast cells and basophils and promotes the activation of 

several cell types, most notably Th2 cells (173). 

Functions of ISGs 

The binding of type I IFNs to their receptors on the cell surface initiates the 

signaling cascade, which leads to the induction of more than 300 ISGs. Some of these 

ISGs can be upregulated by type II IFNs as well (55, 60). The functional diversity of 

ISGs indicates that IFNs play multiple roles in the host beyond their anti-viral or anti-

tumor function. Evidence from microarray studies have also confirmed that the 

expression of ISGs is cell type-specific, ranging from 50-1000 genes with 200-500 genes 
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that are commonly expressed (355). This implies that IFNs can also have different 

functions in different cells. ISGs can be further classified into different categories 

according their functions. Depending on the category, ISGs are involved in many distinct 

pathways, such as amino acid and lipid metabolism, antigen processing and presentation, 

host cell signaling, transcriptional regulation, ubiquitination, apoptosis, host defense, 

immune modulation, inflammation and tumor suppression (55). 

The ISGs can be divided into at least two large groups based on their major 

functions. The first group is proteins involved in host defense, including proteins directly 

possessing antiviral activity at the cellular level, as well as immunomodulatory genes 

including cytokines and chemokines, which recruit lymphocytes to sites of inflammation 

or infection (55). There are also genes in this group that promote lymphocyte adhesion to 

endothelial cells, such as ICAM1, SELL and CD47. Adhesion of lymphocytes to vessel 

walls is an important first step in the trafficking of lymphocytes to areas of infection (55).  

The second large group of ISGs includes genes involved in host signaling. In this 

group, there are PRRs, such as TLRs and RLRs, which detect pathogens and initiate the 

signaling of the host innate response. Some adaptor proteins for TLRs that mediate 

signaling, such as MyD88, can be upregulated as well to enhance PRR signaling (189). 

There are also transcription factors, such as members of the IRF family, the STAT family 

and NF-κB, which form amplification loops, resulting in increased IFN production or 

ISG expression (55, 189, 336). Moreover, some proteins that are involved in other 

pathways can be upregulated as well, such as genes of ubiquitin activating E1 and 

conjugating E2, as well as IL1-β converting enzyme (189). IFNs have anti-proliferation 
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and tumor suppression functions. There are indeed some ISGs classified as proteins 

involved in apoptosis and tumor suppression (189). 

Mechanisms of antiviral ISGs 

Among all the ISGs, the most important ones for viral infection are those 

molecules possessing antiviral activity as the effectors of IFNs, such as ISG15, MX1, the 

2'-5' oligoadenylate synthetase (OAS) family, RNaseL, PKR and ISG56 or the IFIT1 

family. In this section, each of these ISGs will be discussed. 

ISG15 

ISG15 was identified soon after the discovery of ubiquitin, and was recognized as 

an ubiquitin homologue (219). As an ubiquitin-like molecule, ISG15 can be conjugated to 

protein substrates; this process is called ISGylation, and is reversible. However, 

ISGylation does not result in the degradation of the substrates as K48-linked 

ubiquitination, but instead parallels the activating effects of K63-linked ubiquitination 

(336). ISG15 has been reported to interfere with Ub-E2 and E3 interactions to inhibit 

protein ubiquitination (228), and can also prevent virus-mediated degradation of IRF3 to 

increase the induction of IFN-β expression (221). Besides, ISGylation has also been 

shown to modulate the function of enzymes. As an example, the conjugation of ISG15 to 

protein phosphatase 1B (PPM1B) suppresses its activity and enhances NF-κB signaling 

(392). Moreover, mice deficient in ISG15 show increased susceptibility to influenza A 

and B viruses, Sindbis virus and HSV-1 (194, 276). 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=9636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=4599
http://www.nature.com/nri/journal/v8/n7/glossary/nri2314.html#df3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=5610
http://www.nature.com/nri/journal/v8/n7/glossary/nri2314.html#df5
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MX1 

In addition to components of the ISGylation pathway, IFNs induce the expression 

of several guanine-hydrolyzing proteins such as MX proteins. MX1 and MX2 were first 

identified as antiviral proteins by the observation that mutations within the MX locus on 

chromosome 16 confer susceptibility to orthomyxovirus infection in mice (19). Two 

human homologues, MXA and MXB, have been identified as well. MX proteins can 

target viral nucleocapsid-like structures (174). 

The smooth endoplasmic reticulum localization of MXs allows them to screen 

exocytic events and mediate vesicle trafficking to trap essential viral components, and 

therefore, prevent viral replication at early time points (2). Furthermore, MX1 can 

associate with subunits of the influenza virus polymerase to block viral gene transcription 

(404). 

OAS1 and RNaseL 

The OAS protein family and RNaseL are another two important ISGs. The OAS 

family and RNase L are functionally related. The OAS proteins are unique in their 

capacity to synthesize 2' to 5' linked phosphodiester bonds to polymerize ATP into 

oligomers of adenosine (314). These unique 2',5'-oligomers specifically activate the latent 

form of RNaseL, which can then mediate RNA degradation (229). RNA degraded by 

RNaseL can then serve as the ligand for MDA5, resulting in enhanced induction of IFNs 

(229). 



 

 

 

70 

 

PKR 

PKR is another important ISG that belongs to a small family of protein kinases 

responding to environmental stresses to regulate protein synthesis (324). PKR is 

constitutively expressed in all tissues at a basal level and is upregulated by IFNs. Under 

normal circumstances, PKR is maintained as an inactive monomer. This repression is 

released by activating ligands, such as viral RNAs, which elicit a conformational change 

and result in the activation of PKR. The active PKR enzyme consists of a homodimer 

with autophosphorylation at several key residues (336). Activation of PKR following 

dimerization leads to the phosphorylation of initiation factor eIF2α to halt translation. 

ISG56 

The ISG56/IFIT1 family is comprised of four members, ISG56/IFIT1, 

ISG54/IFIT2, ISG60/IFIT3 and ISG58/IFIT5, whose homologs are evolutionarily 

conserved (80). ISG56 expression is extraordinarily responsive to not only IFN treatment 

but also to certain viral and bacterial molecular patterns. ISG56 family members can 

inhibit translation by binding to specific subunits of eIF3, presenting a mechanism of 

inhibition distinct from PKR and OAS (80). Translation of the hepatitis C virus (HCV) 

positive-sense RNA genome is initiated by IRES-dependent ribosome recruitment, which 

is different from cap-dependent translation, and can be compromised in the presence of 

ISG56 (224, 421). For translation-unrelated inhibition, human ISG56 can directly bind 

the E1 helicase of human papillomavirus (HPV) to sequester the E1 helicase in the 

cytoplasm, separating it from the viral genome in the nucleus (396). Furthermore, ISG56 

can also act as a negative feedback regulator to dampen virus-induced innate immune 

signaling (207). Recently, the crystal structure revealed that ISG54 binds specifically to 
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some RNAs, such as adenylate uridylate (AU)-rich RNAs, with or without a 5' PPP, 

suggesting a new mechanism underlying the antiviral activity of this ISG family (439). 

Viperin 

Viperin (also known as cig5 and RSAD2) is a highly conserved, 361-amino-acid 

protein with a molecular mass of 42 kDa (112). It was first identified as a human 

cytomegalovirus (HCMV)-inducible gene in fibroblasts that was renamed viperin (for 

virus inhibitory protein, endoplasmic reticulum (ER) associated, interferon inducible). 

Viperin was first shown to be antiviral against HCMV. Overexpression of viperin in 

human fibroblasts prior to HCMV infection was found to significantly decrease the 

expression of the late viral proteins such as gB, pp28 and pp651(45). Since then, viperin 

has been demonstrated to have antiviral activity against a broad range of viruses from 

both DNA and RNA viral families, such as CMV, RSV, DENV, influenza A and HIV 

(112). Viperin had been shown to inhibit influenza A and HIV-1 via blocking viral 

particle release (112). It also regulates cellular lipid metabolism during HCMV infection 

(362). However, the full details of the antiviral mechanisms of viperin remain unknown 

and need further investigation. 

PML protein 

PML (promyelocytic leukemia protein) protein is an ISG as well, containing both 

an IFN-stimulated response element and a gamma-activated site, meaning its expression 

is responsive to both type I IFNs and type II IFN, respectively (375). PML mediates 

PML-nuclear body (PML-NB) formation, generating electron-dense nuclear punctate 

areas within the intrachromosomal regions of the nucleus (46). The integrity of these 

structures has been correlated with the regulation of cell proliferation, and PML functions 
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as a tumor suppressor (340). In addition to these processes, PML-NBs have been 

implicated in multiple cellular responses, including apoptosis, DNA damage repair, the 

cellular stress response, transcriptional regulation, antiviral defense and post-translational 

modifications (411). 

Viral interference of IFN-activated JAK/STAT signaling 

As IFN signaling induces the expression of ISGs to inhibit virus replication, 

viruses employ different strategies to antagonize IFN-activated JAK/STAT signaling to 

facilitate their replication. Viruses can target different stages of the JAK/STAT pathway 

to inhibit signaling. All flaviviruses examined thus far, including the West Nile virus, 

Japanese encephalitis virus, Langat virus and Dengue virus (DENV), can suppress 

JAK/STAT signaling by inhibiting JAK phosphorylation (31, 102, 119, 211). This blocks 

downstream phosphorylation of STAT1 and STAT2. The hepatitis C virus proteins 

phosphatase 2A and NS5A disrupt STAT1 phosphorylation and suppress type I interferon 

signaling (184, 364). Rotavirus NSP1 inhibits interferon-mediated STAT1 

phosphorylation as well (360).  

Besides STAT1 phosphorylation, STAT degradation is also a common 

mechanism of viral IFN antagonism. The V protein of human parainfluenza virus 2 can 

lead to the proteolytic degradation of STAT1 and STAT2 (15, 281, 298, 299). The 

activity of DENV NS5 protein can also mediate STAT2 degradation (20). HCV also 

targets the interferon-α-activated JAK/STAT pathway by promoting proteasome-

mediated degradation of STAT1 and STAT3 in immune cells and hepatocytes (377). 

Nuclear translocation of STAT1 is another antagonizing target for viruses. VP24 

of Ebola virus is known to antagonize interferon signaling by binding host KPNA1 



 

 

 

73 

 

proteins, thereby preventing them from transporting tyrosine-phosphorylated STAT1 to 

the nucleus (317). PRRSV nsp1β is able to induce ubiquitin-mediated degradation of 

KPNA1 to inhibit nuclear translocation of the ISGF3 complex (284, 424). The 3Cpro of 

FMDV contributes to the degradation of KPNA1 and thus blocks STAT1/STAT2 nuclear 

translocation as well (66). 

Moreover, activation of the JAK/STAT pathway can be regulated by suppressors 

of cytokine signaling (SOCS) proteins (8), as SOCS proteins negatively regulate 

signaling pathways by facilitating ubiquitination and proteasome degradation of signaling 

molecules (8). However, viruses have also developed strategies to induce robust SOCS 

protein expression, which essentially “hijack” SOCS function to promote virus 

replication. These viruses include HIV-1, HBV, HCV, HSV1, RSV, Ebola virus, 

influenza A virus and coxsackievirus (8). 

Summary  

The IFNs are responsible for inducing expression of a large group of ISGs, which 

play roles in host resistance to viral infections and activate key components of the 

adaptive immune system, including antigen presentation, activation of T cells, B cells, 

and natural killer cells. IFNs activate signaling via an evolutionally conserved 

JAK/STAT pathway, which transduces signals from other cytokines as well. Though the 

induction and signaling of IFNs are well-defined and antagonism of many viruses are 

known, further studies are needed to address how viruses regulate IFN induction and 

signaling to facilitate their replication and pathogenesis in vivo. On the other hand, 

elucidation of ISG functions is also interesting as most ISGs are not well-defined, though 

they play important roles during the host defense. However, the combined roles of the 
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ISGs in antiviral responses make it difficult to tease apart the functions of individual 

ISGs. In the coming decade, we expect more data will be available to increase our 

understanding of the IFN pathway. 
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Chapter 4: Hepatitis E Virus Inhibits Type I Interferon Induction  

ABSTRACT 

HEV causes both endemic and epidemic human hepatitis by fecal-oral 

transmission in many parts of the world. Zoonotic transmission of HEV from animals to 

human has been reported. Due to the lack of an efficient cell culture system, the 

molecular mechanisms for HEV infection remain largely unknown. In this study, we 

found that HEV replication in hepatoma cells inhibited polyIC-induced IFN-β expression 

and that HEV ORF1 product was responsible for this inhibition. Two putative domains, 

X and the papain-like cysteine protease domain (PCP), from HEV ORF1 were identified 

as the IFN antagonists. When overexpressed in HEK293T cells, the X domain (or Macro 

domain) inhibited polyIC-induced phosphorylation of IRF3, which is the key 

transcription factor for IFN induction. The PCP domain was shown to have 

deubiquitinase activity for both RIG-I and TBK-1, whose ubiquitination is a key step in 

their activation in polyIC-induced IFN induction.  Furthermore, replication of a HEV 

replicon containing GFP (E2-GFP) in hepatoma cells led to impaired phosphorylation of 

IRF3 and ubiquitination of RIG-I and TBK-1, which confirmed our observations of X 

and PCP inhibitory effects in HEK293T cells. Taken together, our study identified the 

IFN antagonists within the HEV ORF1 polyprotein and expanded our understanding of 

the function of several of the HEV ORF1 products as well as the mechanisms of HEV 

pathogenesis.  
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INTRODUCTION 

      Hepatitis E Virus is a fecal-oral transmitted viral pathogen, which causes 

acute hepatitis with a mortality rate at or  below 3% in young adults and to up 30% in 

pregnant women in the third trimester (151, 171). While previously thought as a public 

health problem only for developing countries, hepatitis E has now been recognized 

frequently in industrialized countries (171). Isolation of HEV from the pig, chicken, 

mongoose, rabbit, rat, ferret, bat, fish and deer has been reported (105, 202, 246). 

Zoonotic transmission of HEV from animals to human has been documented (171), and is 

considered as a major transmission route for sporadic cases in the industrialized countries.  

   HEV contains a 7.2 kb single-stranded positive-sense RNA genome, which is 

capped and poly-adenylated (74). It has been classified as the sole member of the genus 

Hepevirus, family Hepeviridae (74, 151).  There are four major genotypes and a single 

known serotype for HEV (105, 252). There are three ORFs in the HEV genome (393).  

ORF1 encodes a polyprotein that has all non-structural proteins needed for HEV 

replication. ORF2 encodes the capsid protein of HEV virion. ORF3 encodes a small 

multifunctional protein with a molecular weight of 13 kDa (vp13).  

As an invader, HEV faces host innate immune responses, which are mainly 

induced by activation of host pattern recognition receptors.  For recognition of RNA 

viruses, those receptors include RLRs and TLRs. Stimulation of the RLR and TLR 

signaling pathways leads to activation of transcription factors such as IRF3, IRF7 and 

NF-κB. These transcription factors mediate expression of type I IFNs and inflammatory 

cytokines, which not only lead to an antiviral state of the neighboring uninfected cells, 

but also serve as regulators to evoke adaptive immune response. Thus, viruses have 
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evolved many strategies to evade from host innate immune responses. Little is known 

about how HEV evades from host IFN induction. Microarray analysis from Hepatitis C 

virus (HCV) and HEV-infected chimpanzees showed that HEV evoked a lower 

magnitude of IFN response than HCV, indicating that HEV must employ an effective 

strategy to dampen host innate immune responses (443).  

The objective of this study was to elucidate the mechanism of HEV interference 

with type I IFN induction. We found that HEV replication in S10-3 hepatoma cells 

inhibited IFN-β induction stimulated by polyIC, a dsRNA homologue. Further studies 

identified two putative domains (X and PCP) from ORF1 to be the IFN antagonists. The 

X domain (also known as Macro domain) inhibited polyIC-induced IRF3 

phosphorylation while the PCP led to deubiquitination of both RIG-I and TBK-1. These 

findings were also confirmed in hepatoma cells with HEV replication. Our findings 

provide valuable information about function of the HEV ORF1 product and improve our 

understanding of HEV pathogenesis. 
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MATERIALS AND METHODS 

Cells, transfection, viruses and chemicals. HEK293T and HEK293 cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS). S10-3 cells, a subclone of Huh-7 hepatoma cells (99),  were 

maintained in DMEM-Reduced Serum (DMEM-RS) medium supplemented with 3% 

FBS. Transfection of HEK293T and HEK293 cells with plasmid DNA was performed by 

using FuGeneHD (Promega, Madison, WI), according to the instructions of the 

manufacturer.  

Full-length RNAs of HEV and HEV-GFP were obtained by in vitro transcription 

from plasmids pSK-E2 and pSK-E2-GFP (71), respectively, using AmpliCap-Max T7 

High Yield Message Maker Kit (Cellscript, Madison, WI). Transfection of S10-3 cells 

with RNA was performed using an optimized protocol with DMRIE-C reagent 

(Invitrogen, Grand Island, NY). Briefly, after S10-3 cells reaching 70% confluence in a 

12-well plate, medium was discarded and the monolayer cells were washed twice with 

PBS pH7.4, followed by addition of 0.5 mL serum-free Opti-MEM to each well.  For 

each well, 1 µg RNA was add to 50 µL Opti-MEM and mixed evenly with 4 µL DMRIE-

C. After incubation under room temperature for 20 minutes, the mixture was added to the 

S10-3 cells. One mL DMEM-RS with 3% FBS was added to each well 5 h post 

transfection. The cells were cultured at 34.5ᵒC. 

HEK293 cells stably expressing VenusC1-IRF3 (HEK293-IRF3) were established 

by transfection of the cells with VenusC1-IRF3 and selection under antibiotic G418. The 

surviving cells were cloned by limited dilution and cell sorting by flow cytometry.  
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Polyinosinic-polycytidylic acid (polyIC, LMW), a synthetic analog of double-

stranded RNA (dsRNA) (Invivogen, San Diego, CA) was used to induce interferon 

production. The HEK293T and S10-3 cells were transfected with the polyIC at a 

concentration of 1 µg/ml and incubated for 12 h before harvested for further analysis.   

Plasmids. Putative ORF1 domains were PCR amplified and cloned to vector 

pCAGEN (Addgene plasmid# 11160) with HA-tag at N-terminus as previously reported 

(235, 424). VenusC1-IRF3 was constructed in house by subcloning IRF3 from pFLAG-

CMV-IRF3 (a gift from Dr. Michael Gale Jr.). Full length RIG-I cDNA from S10-3 cell 

RNA was cloned into KpnI site in pCMV-Flag-MAT-Tag-1 vector (Sigma). All primers 

used for plasmid construction in this chapter were listed in Table 4.1. All in house 

constructed plasmids were subjected to DNA sequencing to confirm the inserts.  

HEV replicons: pSK-E2 and pSK-E2-GFP were described previously (71, 75, 97). 

Construction of Myc-RIG-I(N) (87), Myc-IPS1 (220), MDA5(N) (441), FLAG-TBK-1 

(399), and FLAG-IKKε (293) plasmids were previously described.  

Immunofluorescence assay (IFA) An immunofluorescence assay (IFA) was 

carried out as previously reported (154),  by using chimpanzee antibody against the HEV 

capsid protein. Specific antibody-capsid reactions were detected by DyLight 549 goat 

anti-human immunoglobulin (Ig) G conjugate (Rockland Immunologicals, Gilbertsville, 

PA). The coverglass was mounted onto slide using SlowFade Gold antifade reagent 

containing 4’6’-diamidino-2-phenylinodole (DAPI) (Invitrogen) and observed using 

fluorescence microscopy.  

Western blot analysis. Cells were lysed in the Laemmli sample buffer. The 

whole proteins in the lysate were analyzed by sodium dodecylsulfate-polyacrylamide gel 
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electrophoresis (SDS-PAGE) and Western blot as previously described (154, 455). 

Antibodies against GFP (Santa Cruz Biotechnology, Santa Cruz, CA), phos-IRF3-S396 

(Cell Signaling Technology, Danvers, MA), HA (Thermo Fisher Scientific, Waltham, 

MA), IRF3 (Santa Cruz) and tubulin (Sigma-Aldrich, St. Louis, MO) were used in the 

blotting. The chemiluminescence signal was recorded digitally using a ChemiDoc XRS 

imaging system (Bio-Rad Laboratories, Hercules, CA). Digital signal acquisition and 

densitometry analyses were conducted using the Quantity One Program, Version 4.6 

(Bio-Rad).  

Reverse transcription and real-time PCR (RT-qPCR). Total RNA was isolated 

from cells with TRIzol® Reagent (Invitrogen). RNase-free DNase was used to remove 

carryover DNA from the RNA isolation procedure. Reverse transcription using AMV 

reverse transcriptase was conducted along with oligo dT and random 15-mer. Real-time 

PCR with SYBR Green detection (Invitrogen) for IFN-β was done as described 

previously (285). Transcripts of RPL32 (ribosomal protein L32) were also detected from 

the same samples to serve as an internal control for normalization. Gene expression was 

quantified by 2-∆∆CT method (218). Primers of IFN-β and RPL32 were described 

previously (265). 

Ubiquitination Assay. Immunoprecipitation (IP) was conducted as previously 

described (284, 424) with modifications. Briefly, S10-3 and HEK293T cells were lysed 

with a lysis buffer (50mM Tris pH 7.4, 150 mM NaCl, 0.2 mM EDTA, 2 mM EGTA, 0.5% 

IGEPAL CA-630, 10% glycerol, 1 mM sodium vanadate) as described previously (424), 

with the supplement of a protease inhibitor cocktail (Sigma) as recommended by the 

manufacturer and N-Ethylmaleimide (NEM) (Sigma) at a final concentration of 50 µM. 



 

 

 

81 

 

The lysate was clarified by centrifugation at 14000 xg for 5 min at 4ºC. Antibodies 

against RIG-I or TBK-1 were added to the supernatant. IP with protein G agarose (KPL 

Inc, Gaithersburg, MD) was done following the manufacturer’s instructions. The IP 

samples were subjected to immunoblot analysis with antibody against ubiquitin. 

Reporter assay. HEK293T cells were transfected with the reporter pGL3.0-IFN-

β promoter, and testing plasmids. Renilla vector pRL-TK (Promega) was also transfected 

for normalization. At 48 h after transfection, the cells were lysed for luciferase activity 

assay of Firefly and Renilla luciferases, respectively, by following manufacturer’s 

instructions (Promega). Lysate of cells transfected with empty vector of testing plasmids 

was used as a control for calculation of IFN-β promoter activation level. Relative fold of 

luciferase activity is shown.  

Statistical analysis. Differences in indicators between treatment samples, such as 

IFN-β mRNA level between the group in the presence of HEV replication and the control 

sample, were assessed by Student t-test. A two-tailed P-value of less than 0.05 was 

considered significant. 
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RESULTS 

HEV replication inhibits IFN-β expression induced by polyIC transfection 

We first tested whether HEV replication would interfere with interferon 

induction. S10-3 cells, a subclone of Huh-7 cells that is more susceptible to transfection 

with whole HEV genomic RNA (369), were used. HEV genomic RNA was transcribed 

from pSK-E2 plasmid containing whole cDNA of Sar55 (genotype I) HEV genome, as 

previously described (71). Full length HEV RNA generated from the  pSKE2-GFP 

construct, in which insertion of GFP disrupts expression of ORFs 2 and 3 (71), was 

included for comparison. S10-3 cells were transfected with the two different HEV RNAs. 

HEV replication was detected by immunofluorescence assay with HEV antibody (Fig. 

4.1A). The cells were transfected with polyIC 10 days post-HEV RNA transfection to 

stimulate IFN production. RT-qPCR was then conducted to detect IFN-β transcript. 

Compared with uninfected cells, S10-3 cells with HEV replication (from pSK-E2 RNA) 

had significantly lower level of IFN-β transcript by 3.2-fold (Fig. 4.1B), which indicates 

that HEV replication reduced IFN expression evoked by polyIC. Similarly, the cells 

transfected with RNA from pSKE2-GFP had significantly lower level of IFN-β transcript 

by 4.8-fold. This result suggests that ORF1 product was at least partially responsible for 

the inhibition as GFP insertion interrupts expression of both ORF2 and ORF3 in pSKE2-

GFP. 
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 HEV ORF1 product inhibits IFN production  

After finding that the inhibition of IFN induction was potentially due to the ORF1 

product, we cloned 6 fragments of ORF1 into pCAGEN plasmid with HA tag at N 

terminus according to a previous analysis of the putative domains (179) (Fig. 4.2A). They 

were methyltransferase domain (Met); Y domain (Y); papain-like cysteine protease 

(PCP); a fragment covering hypervariable region, proline-rich domain and X-domain 

(HPX); helicase (Hel); and RNA-dependent RNA polymerase (RdRp). Protein expression 

of these HA-tagged fragments in HEK293T cells transfected with these plasmids was 

confirmed with Western blotting using HA antibody (Fig. 4.2B). All the proteins except 

HPX appeared to be one band. The HPX lane had two bands, indicating an excision of 

the product.  

 
Fig. 4.1 HEV replication in S10-3 cells reduces IFN production induced by 

polyIC. 

A. HEV replication in S10-3 cells detected by immunofluorescence assay. The cells were 

transfected with full length HEV genomic RNA from pSK-E2. Red fluorescence on the left 

panel indicates HEV ORF2 protein. Nuclear DNA shown on the right panel was counterstained 

using DPAI. B. Reduction of IFN-β expression in HEV-infected S-10 cells detected by real 

time RT-PCR. The cells were transfected with polyIC (PIC). Relative folds of IFN-β mRNA 

level in comparison to control cells without HEV RNA transfection are shown. Significant 

differences from HEV-negative group are denoted by “**”, which indicate P < 0.01. 
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Next we examined their effects on IFN expression in HEK293T cells. Empty 

vector and PRRSV nsp1β, which is known to inhibit IFN induction (32), were included 

as controls.  At 48 h after the transfection, the cells were transfected with polyIC to 

stimulate IFN induction. RT-qPCR was conducted to detect IFN-β mRNA level. 

Compared with the cells transfected with empty vector, PCP and HPX led to a significant 

reduction of IFN-β expression by 2.6 and 7.6-fold, respectively (Fig. 4. 2C). Likewise, 

PRRSV nsp1β led to 4.6-fold reduction. However the other fragments of ORF1 did not 

have an inhibitory effect on IFN-b induction, indicating that ORF1 PCP and HPX were 

IFN antagonists. 

HEV X domain inhibits IFN induction via blocking phosphorylation of IRF3 

 After finding the two ORF1 products inhibit IFN induction, we selected HPX to 

determine its interference mechanism first. HEK293T cells were transfected with 

plasmids encoding the IFN-β reporter, HPX, and specific component of the RIG-I 

signaling pathway, specifically RIG-I(N-terminal domain), MDA5(N-terminal domain), 

TBK-1  or IKKε. Compared with cells transfected with empty vector, HPX expression 

resulted in a significant reduction of RIG-I and MDA5-induced IFN-β reporter 

expression by 1.8 and 2.2-fold, respectively (Fig. 4. 3A). Similarly, when the cells were 

transfected with TBK-1 or IKKε plasmid, HPX reduced luciferase yield significantly by 

2.26 and 2.35-fold, respectively (Fig. 4. 3B). PRRSV nsp1β reduced luciferase yield of 

IFN-β reporter, as expected. These results indicated that HPX interfered with IFN 

induction via RLR pathway. 

As HPX inhibits RLR pathway, we tested the activation status of IRF3 in cells 

expressing HPX. Since the phosphorylation level of endogenous IRF3 in HEK293T cells 
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after polyIC stimulation is hard to detect, we co-transfected the cells with FLAG-IRF3 

and HPX plasmids. At 40 h after the transfection, the cells were transfected with  

 

 

 

 

 

 

polyIC and harvested 8 h later for Western blotting. Compared with cells transfected with 

empty vector, the cells with HPX had much lower level of IRF3 phosphorylation (Fig. 4. 

4A), while the levels of total IRF3 and tubulin were similar between the samples. The 

result indicated that HPX interfered with IRF3 activation. 

The HPX regions contains 3 putative domains. To determine which domain was 

capable of antagonizing IRF3 activation, we cloned the three domains individually into 

pCAGEN expression vector, which encodes an HA tag at the N-terminus. When co- 

Fig. 4.2 Screening of ORF1 products for potential IFN antagonists. 

A. Schematic illustration of ORF1 products. Met: Methyltransferase domain; Y: Y domain; PCP: 

papain-like cysteine protease; HPX: hypervariable region, proline-rich domain and X-domain; Hel: 

helicase; RdRp: RNA-dependent RNA polymerase. The numbers above the boxes indicate numbers 

of amino acids of ORF1 polyprotein. B. Cloning and expression of ORF1 fragments in HEK293T 

cells detected by Western blotting. The fragments were expressed as HA-tagged proteins. C. 

Inhibition of polyIC-induced interferon-β expression by ORF1 fragments in HEK293T cells 

detected by RT-qPCR. The cells were transfected with plasmids of the ORF1 fragments and then 

transfected with polyIC. At 12 h after polyIC treatment, the cells were harvested for RNA isolation 

and real time PCR to detect IFN-β transcript. PRRSV nsp1β was included as a control. Relative 

folds in comparison with untreated control cells are shown. EV: empty vector. Significant 

differences from EV control are denoted by “**”, which indicate P < 0.01. 
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expressed with FLAG-IRF3 in HEK293T cells, expression of the three small HPX 

domains was very low. However, unexpectedly, FLAG-IRF3 expression was interfered in 

the cells transfected with plasmids of HV and Pro domains, while endogenous IRF3 

 

 

 

 

 

expression was not affected (data not shown). To solve the issue of plasmid interference 

in co-expression, we established HEK293 cells stably expressing VenusC1-IRF3, which 

makes it easy to observe IRF3 expression and select positive clones. Phosphorylation of 

VenusC1-IRF3 after polyIC stimulation in the stable cells in the presence of HV, Pro or 

X domain was examined by Western blotting. The X domain was identified to be the 

inhibitor for IRF3 phosphorylation, while HV and Pro domains had minimum effect (Fig. 

4. 4B).  

Fig. 4.3 Reporter assay showing ORF1 HPX product inhibits IFN-β 

induction 

A. HPX product inhibits RIG-I or MDA5-activated IFN-β induction. HEK293T cells were 

transfected with IFN-β reporter plasmid, along with RIG-I(N) or MDA5(N), and nsp1β or 

HPX DNA. Firefly and renilla luciferase activities were measured at 48 h post transfection. 

PRRSV nsp1β was included as a positive control. EV: empty vector. Significant differences 

from EV control are denoted by “**”, which indicate P < 0.01. B. HPX fragment inhibits 

TBK-1 or IKKε-activated IFN-β induction. 
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PCP domain deubiquitinates both RIG-I and TBK-1 

 During our screening for the IFN antagonists from ORF1 domains, the papain-

like cysteine protease domain also inhibited polyIC-induced IFN expression. It was 

reported that HEV Met-PCP polyprotein had deubiquitination activity for ubiquitin, 

SUMO and ISG15-conjugated cellular proteins (157). We reasoned that PCP could 

potentially lead to deubiquitination of both RIG-I and TBK-1 as ubiquitination of these 

two molecules is essential for their activation (226). To test this, we co-transfected 293T 

cells with plasmids expressing PCP and RIG-I or TBK-1, since the levels of endogenous 

RIG-I and TBK-1 are too low to be detected in Western blotting. Samples were 

immunoprecipitated with antibodies to RIG-I or TBK-1 and the ubiquitination status 

assessed by Western blotting with ubiquitin antibody. Decreased ubiquitination level of 

both RIG-I and TBK-1 were observed in cells co-transfected with PCP cells (Fig. 4. 5A 

and 4. 5B), while the total RIG-I and TBK-1 levels were not affected in whole cell lysate. 

These results suggested that PCP may inhibit RIG-I and TBK-1 activation via its 

deubiquitinase activity.  

 

 

 

 

Fig. 4.4 Inhibition of IRF3 phosphorylation by X domain 

A. Expression of HPX fragment inhibits IRF-3 phosphorylation. HEK293T cells were transfected with 

IRF-3 and empty vector (EV) or HPX plasmids, and then transfected with polyIC (PIC). At 8 h post-

PIC treatment, the cells were harvested for detection of IRF-3 phosphorylation by Western blotting 

with antibody against phosphorylated IRF-3 (pIRF-3). Total IRF-3 and HPX expression were detected 

with IRF-3 and HA antibodies, respectively.  B. Identification of X domain in inhibition of IRF3 

phosphorylation. HEK293-VenusC1-IRF-3 stable cells were transfected with HV, Pro or X domain 

plasmids  and Western blotting were done similarly as detailed in “A” caption. 
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Fig. 4.5 Deubiquitination of RIG-I and TBK-1 by PCP domain 

A. RIG-I deubiquitination by PCP. HEK293T cells were transfected with PCP and RIG-I 

plasmids, and then transfected with polyIC (PIC). At 8 h post-PIC treatment, the cells were 

harvested for immunoprecipitation with RIG-I antibody. Western blotting with antibodies 

against ubiquitin and RIG-I was conducted. Whole cell lysate (WCL) was used to detect 

ubiquitin, RIG-I, PCP and tubulin. B. TBK-1 deubiquitination by PCP. Experiment was 

done similarly as in “A” with the exception of TBK-1 plasmid used. 

Fig. 4.6 HEV replication leads to downregulation of IRF3 phosphorylation 

and deubiquitination of RIG-I and TBK-1 in S10-3 cells.  

A. Reduction of PIC-induced IRF3 phosphorylation in S10-3 cells transfected with HEV RNA 

from pSK-E2-GFP replicon. The cells were treated with PIC to induce IRF3 activation. At 8 h 

post-PIC treatment, the cells were harvested for detection of IRF3 phosphorylation by Western 

blotting with antibody against pIRF3. Total IRF-3, GFP and tubulin were detected too. B. 

Deubiquitination of RIG-I in S10-3 cells with HEV replication. At 8 h post-PIC treatment, the 

cells were harvested for immunoprecipitation with RIG-I antibody. Western blotting with 

antibodies against ubiquitin and RIG-I was conducted. Whole cell lysate (WCL) was used to 

detect ubiquitin, RIG-I, PCP and tubulin. C. Deubiquitination of TBK-1 in S10-3 cells with 

HEV replication. Ubiquitin level in WCL is the same as in “B”. 
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HEV replication in hepatoma cells inhibits IRF3 phosphorylation and ubiquitination of RIG-

I and TBK-1 

 The above results showed that overexpression of X and PCP domains from HEV 

ORF1 in HEK293T cells led to inhibition of IRF3 phosphorylation and RIG-I and TBK-1 

ubiquitination, respectively. We reasoned that the HEV ORF1 product could perform the 

same functions during whole viral infection in hepatoma cells. To test this speculation, 

we employed HEV replicon pSK-E2-GFP. S10-3 cells that were transfected with RNA 

from E2-GFP and cultured for 10 days were stimulated with polyIC for 10 h. Compared 

to the cells without HEV RNA, the cells with E2-GFP replication had much lower 

polyIC-induced IRF3 phosphorylation, while the total IRF3 level had minimum change 

(Fig. 4. 6A). This result was consistent with the findings for X domain expression in 

HEK293 cells.  

In the S10-3 cells transfected with E2-GFP RNA, ubiquitination levels of RIG-I 

and TBK-1 were also examined. IP results showed that both RIG-I and TBK-1 in S10-3 

cells transfected with E2-GFP RNA had lower ubiquitination levels than the control 

without HEV replication (Fig. 4. 6B and 4.6C). Again the results were consistent with the 

observation of PCP overexpression in HEK293T cells. Endogenous RIG-I in S10-3 cells 

was also detectable, and no change in its expression was observed between control cells 

and E2-GFP RNA-transfected cells (Fig. 4. 6B). So was the total cellular ubiquitination 

level in the whole cell lysate. However, endogenous TBK-1 in whole cell lysate of S10-3 

cells was below detection level in the Western blotting, though it was detectable after 

enriched by IP (Fig. 4. 6C). These results demonstrated that HEV replication inhibited 
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polyIC-induced IFN production by blocking phosphorylation of IRF3 and ubiquitination 

of RIG-I and TBK-1.  

DISCUSSION  

            Type I IFNs, such as IFN-α and β, are critical to innate immunity against viral 

infection and contribute to the modulation of adaptive immunity (390). Viruses have 

developed a variety of strategies to subvert or evade the innate immune response. IRF3, a 

critical transcription factor, is frequently targeted by viruses to interfere with IFN 

induction. VP35 of Ebola virus inhibits IRF3 activation and this inhibition is related to 

the viral virulence (106). PRRSV nsp1β inhibits IRF3 activation (32). Npro of Classical 

swine fever virus induces proteasome-mediated degradation of IRF3 (27, 96). In this 

study, we demonstrated that HEV replication inhibited IFN production.  Furthermore, the 

ORF1 product was responsible for this inhibition. Out of 8 putative domains in HEV 

ORF1 product, the PCP and X domains were demonstrated to inhibit RIG-I mediated 

signaling in different steps. PCP may mediate the deubiquitination of RIG-I and TBK-1, 

while the X domain may inhibit polyIC-induced IRF3 phosphorylation.  

The X domain of HEV is known as a macro domain due to its homology with the 

C-terminal  non-histone domain of histone macroH2A, and such domains have been 

identified in a variety of bacterial, archaeal, and eukaryotic organisms (reviewed in 

reference (103)). Studies of human macro domains indicate they possess a DNA binding 

motif, and are involved in DNA repair, chromatin remodeling and transcriptional 

regulation. Little information about viral macro domains is available. The coronavirus 

macro domains were shown to possess relative poor ADP-ribose 1"-phosphohydrolase 

activities, implying they are functionally different from their human homologues (69).  
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In our study, the HEV X domain was found to inhibit IRF3 phosphorylation, 

which appears to be a new function for a viral macro domain. However, we were unable 

to detect interaction between X domain with IRF3 or upstream kinase TBK-1 in IP 

experiments (data not shown). Thus, the mechanism that X domain inhibits IRF3 

phosphorylation needs to be further elucidated. In addition, we also found that X domain 

from HEV could bind tightly with chromosomal DNA when overexpressed in HEK293T 

cells (data not shown).  The human macro domains have a DNA binding motif and are 

involved in down-regulation of gene activation, suggesting that HEV X domain could 

potentially regulate host gene expression such as IFN-stimulated genes, which may 

further dampen IFN signaling. However, due to the lack of X antibody and an efficient 

cell culture system for HEV, we do not know whether X domain perform the function 

during HEV replication.   

Another IFN antagonist we identified from HEV ORF1 is the PCP domain, which 

has moderate similarity to protease domain of Rubella virus (179). While the PCP 

domain encoded by Rubella virus has been shown to be responsible for the proteolytic 

processing of its non-structural protein (232), the role of the HEV PCP in proteolytically 

processing the ORF1 product into small subunits has yet to be confirmed. Recently, the 

connection of ubiquitination and activation of IFN induction pathway was defined 

(reviewed in reference (216)). Since cysteine proteases represent a large family of 

deubiquitinases (13), it implies that viral-encoded cysteine proteases could function as 

deubiquitinases to inhibit ubiquitination-dependent activation of host IFN induction 

pathways. Evidence from other viruses shows that viral coded cysteine proteases indeed 

possess deubiquitinase function and inhibit host innate immunity, such as arterivirus 
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papain-like protease 2 (415) and the leader proteinase of foot-and-mouth disease virus 

(422). 

In a previous report, HEV Met-PCP polyprotein that contains the Met, Y and PCP 

domains was found to act as a deubiquitinase for ubiquitin, SOMO and ISG15-linked 

proteins in a cell-free system (158). However, the Met-PCP was unable to cleave a 

LXGG motif, which should be recognized by cellular or viral PCP. In this study, we 

demonstrate the PCP domain could act as the deubiquitinase for RIG-I and TBK-1 in 

HEK293T cells. In addition, our data indicate HEV replication in S10-3 cells could lead 

to deubiquitination of RIG-I and TBK-1. Since the PCP domain does not contain a Zn-

binding finger, which is required for protease activity (117), our data suggests that the 

PCP deubiquitinase activity does not rely on its protease activity. Another study from the 

foot-and-mouth disease virus also indicated the deubiquitinase activity of viral leader 

protease does not rely on its proteolytic activity (422).  

What is more, SARS virus processes a papain-like cysteine protease that is 

capable of cleaving ubiquitin and ISG15 conjugated proteins and helping virus evade 

from host innate immunity (213, 311). One study demonstrated that targeting the viral 

cysteine protease by virus-specific inhibitor blocks SARS virus replication while not 

affecting cellular deubiquitinases (310). It implies that deubiquitinase function of viral 

PCP could be a potential therapeutic target.  

In conclusion, in this chapter, we identified PCP and X domains of HEV ORF1 

polyprotein are the IFN antagonists and they inhibit RIG-I-mediated signaling in different 

steps, ubiquitination of RIG-I and TBK-1 and IRF3 phosphorylation, respectively.  
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Primera Sequences (5’ to 3’)b Target gene 

H1F1 GCGAATTCGAGGCCCATCAGTTTATCAAGG Cloning of “Met” 

H1R7 CCCTCGAGTTAAATCCAGGAGCGCAGGTT

GG 

 

H1F3 GCGAATTCAGAACCACTAAGGTTACCGG Cloning of “Y” 

H1R6 CCCTCGAGTTACTGAGCGTAGAACTCCAAC  

H1F4 GCGAATTCTGTAGGCGCTGGCTCTCGGC Cloning of “PCP” 

H1R5 CCCTCGAGTTAGAGATTGTGGCGCTCTGG  

H1F5 GCGAATTCTCTTTTGATGCCAGTCAGAG Cloning of “HPX” 

H1R4 CCCTCGAGTTAGCCGGCACAGGCCCGGCC

G 

 

H1F6 GCGAATTCTGTCGAGTCACCCCCGGCG Cloning of “Hel” 

H1R3 GCGATATCTTAACCAGCAAGGAAAAAGTT

ATTA 

 

H1F7 GCGAATTCGGCGAAATTGGCCACCAGCG Cloning of “RdRp” 

H1R2 GCGATATCTCATTCCACCCGACACAGAAT  

H1F10 CGCTCGAGCTTTTGATGCCAGTCAGAG Cloning of “HV” 

H1R16 GCGAATTCTAAACAGCATCAACCTCCGAC  

H1F9 GCGAATTCCCTAGTCCAGCCCAGCCCG Cloning of “Pro” 

H1R18 GCGAATTCTAGCGATGCCGGGCCGTCTGG  

H1F8 GCGAATTCCCGGATGGCTCTAAGGTG Cloning of “X” 

H1R13 CCCTCGAGTGCTGTCCGCGCAACATCC  

IRF3-F2 CGGAATTCGGGAACCCCAAAGCCACGGAT

C 

Cloning of IRF3  

IRF3-R2 CCGGTACCTCAGCTCTCCCCAGGGCCCTG  

RIG-I-F1 TTAGGTACCATGACCACCGAGCAGCGAC   Cloning of RIG-I  

RIG-I-F2 GGAGGTACCTCATTTGGACATTTCTGCTG  

a. F: forward primer, R: reverse primer. The “H1” before a primer name indicates the primer 

 is based on sequences of HEV ORF1.  

b. The italicized letters indicate restriction enzyme cleavage sites for cloning.    

 

Table 4.1 List of primers used in Chapter 4 
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Chapter 5: Inhibition of Interferon-Activated Signaling by 

Hepatitis E Virus 

ABSTRACT 

Since the initial identification of HEV, lots of effort have been made to study on 

HEV virology and epidemiology. However, the molecular mechanisms for HEV infection 

remain largely unknown. As an invader, HEV faces host innate immune responses, which 

are mainly mediated by type I IFNs and inflammatory cytokines. Our earlier study 

indicates that HEV inhibits host IFN synthesis. Yet it was not known whether HEV is 

able to inhibit downstream IFN-activated JAK/STAT signaling pathway. In this study, 

we demonstrated that HEV replication in hepatoma cells significantly inhibits type I IFN 

signaling and downstream gene expression and that ORF1 product of HEV is responsible 

for this inhibition. Further analysis of the domains of ORF1 product indicates that 

methyltransferase (Met) and ProX domains are able to inhibit IFN-mediated signaling. 

The expression of Met domain appeared to have no effect on IFN-induced STAT1 

phosphorylation. Immunofluoresce assay shows that majority of Met is located in the 

nucleus and the rest as speckles in the cytoplasm. Further analysis will be conducted to 

elucidate the mechanisms of Met and ProX domains in the inhibition of IFN-activated 

JAK/STAT signaling.  
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INTRODUCTION 

HEV has been classified as the sole member of the genus Hepevirus (74). There 

are at least four major genotypes and a single known serotype for HEV strains (105, 252). 

There are three ORFs in the HEV genome (393).  ORF1 encodes a non-structural 

polyprotein that is required for HEV replication. ORF2 encodes the capsid protein of 

HEV virion. ORF3 encodes a small multifunctional protein with a molecular weight of 13 

kDa (vp13).  

As an intruder for the host cell, HEV faces innate immune responses that are 

mainly induced by activation of host pattern recognition receptors.  Activation of pattern 

recognition receptors results in production of type I IFNs and proinflammatory cytokines. 

Type I IFNs, such as IFN-α and β, activate cells via JAK/STAT pathway and are critical 

to innate immunity against viruses (390). Therefore, viruses evolve different strategies to 

evade from IFN-mediated innate immune responses. Hepatitis C virus phosphatase 2A 

and NS5A disrupts STAT1 phosphorylation and suppresses type I IFN signaling (184, 

364). VP24 of Ebola virus antagonizes IFN signaling by binding host KPNA1 protein, 

thereby preventing them from transporting the tyrosine-phosphorylated STAT1 to the 

nucleus (317). The nps1β of PRRSV is able to induce ubiquitin-mediated degradation of 

KPNA1 to inhibit nuclear translocation of ISGF3 complex (284, 424). Dong et al also 

demonstrated that a type III HEV is able to inhibit IFN-α mediated signaling in A549 

cells via blocking STAT1 phosphorylation by vp13(61). However, in our recent 

publication (also Chapter 6 of this thesis) which demonstrated vp13 from type I HEV can 

enhance IFN induction (264).We did not observe any inhibition of JAK/STAT pathway 

by vp13, because IFN bioassay in vp13-stable HeLa cells indicated an intact IFN 
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signaling.  It is possible that there is strain or genotype difference for vp13 interaction 

with JAK/STAT pathway. Furthermore, it is unknown that what role the other HEV 

proteins play in JAK/STAT1 signaling pathway.  

In this chapter, we found that HEV replication significantly reduced expression of 

ISGs after IFN treatment of hepatoma cells and that HEV ORF1 product is responsible 

for this inhibition. Further analysis indicates that methyltransferase domain and a 

fragment encoding the hypervariable (HV), proline rich (Pro) and X domains from ORF1 

are able to inhibit IFN signaling. Our findings provide valuable information about 

function of the HEV ORF1 product and improve our understanding of HEV 

pathogenesis. 
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MATERIALS AND METHODS 

Cells, transfection, viruses and chemicals. HEK293T cells, HEK293 cells and 

S10-3 cell were maintained in the same way as described in Chapter 4. Transfections of 

HEK293T, HEK293, and HEK293-ISRE cells with plasmid DNA were conducted in the 

same way as described in the Chapter 4. HEV RNA transfection of S10-3 cells was 

described in the Chapter 4. 

HEK293 cells stably expressing pGL3.0-ISRE were established by transfection of 

the cells with pGL3.0-ISRE and selection under antibiotic G418, towards which the 

resistance gene was provided by VenusC1 empty vector.  The surviving cells were cloned 

by limiting dilution and cell sorting by flow cytometry. Quantification of firefly 

luciferase activity was described in the Chapter 4. 

Plasmids. Cloning of putative ORF1 domains to vector pCAGEN (Addgene 

plasmid# 11160) with HA-tag at N-terminus was described in the Chapter 4. In vitro 

RNA transcription of HEV replicon pSK-E2 and pSK-E2-GFP was described in the 

Chapter 4.  

Western blot analysis. Cells were lysed in the Laemmli sample buffer for SDS-

PAGE and Western blot as described in the Chapter 4. Antibodies against STAT1-Y701 

(Santa Cruz Biotechnology), STAT2 (Santa Cruz Biotechnology), ISG56 (Thermo Fisher 

Scientific, Rockford, IL) and tubulin (Sigma-Aldrich, St. Louis, MO) were used in the 

blotting. The chemiluminescence signal was recorded digitally using a ChemiDoc XRS 

imaging system (Bio-Rad Laboratories, Hercules, CA). Digital signal acquisition and 

densitometry analyses were conducted using the Quantity One Program (Bio-Rad). 
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RESULTS 

HEV replication inhibits ISGs expression induced by IFN-α 

We first transfected the S10-3 heptoma cells with full-length HEV RNAs. Ten 

days after the tansfection, replication of HEV was detected by IFA using chimpanzee 

anti-HEV serum. HEV-GFP replicon was also included in the transfection, and GFP-

positive cells were observed under flouresence microcsopy. To investigate whether HEV 

replication can inhibit IFN-mediated JAK/STAT activation, we treated S10-3 cells with 

human IFN-α2 at the concerntration of 500 U/mL. At 24 hours after the treatment, the 

cells was lyzed for SDS-PAGE and Western blot assay. STAT2 and ISG56 are two ISGs 

that can be upregulated by IFN treatment in a variety of cell lines such as MARC-145 and 

VERO cells (265, 284). In this experiment,  compared with  normal cells treated with the 

IFN, cells with HEV replication had significant lower levels of STAT2 and ISG56 

proteins (Fig.5.1) , indicating an inhibition of the JAK/STAT signaling. Notablely, in the 

cells with HEV-GFP replicon transfection, expression of  STAT2 and ISG56 were also 

inhibited as well. As insetion of GFP in the HEV replicon disrupts expression of HEV 

ORFs 2 and 3 (71), this result indictaes that the ORF1 product was the major player for 

the inhibition of IFN signaling in the hepatoma cells.  

 Fig. 5.1. Inhibition of ISG expression by HEV replication in S10-3 cells. 

IFN-α2 treatment was conducted to stimulate JAK/STAT pathway in normal S10-3 cells, and cells 

with HEV replication. HEV-GFP replicon was included for comparison. At 12 hours after the IFN 

treatment, STAT2 and ISG56 levels in the S-10 cells were detected by Western blot. 
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Met domain and ProX domain of HEV ORF1 inhibit IFN signaling  

After finding that the inhibition of IFN signaling was potentially due to the ORF1 

product, we used plasmids constructed in the Chapter 4 that express 6 fragments of ORF1 

polyprotein with HA tag for screening for the IFN antagonist.  Our earlier experience 

with co-transfection of several plasmids suggests that some viral plasmids interfere with 

expression of the other plasmids. The interference leads to difficulty in normalization of 

the transfection efficiency in such a reporter assay. We also observed that endogenous 

expression of proteins is rarely affected by the transfection. To overcome such 

shortcoming of the co-transfection of multiple plasmids in the screening, we create a 

HEK293 cell line with stable expression of an ISRE reporter containing firefly luciferase 

driven by the ISRE promoter. The cells also express Veuns protein driven by a CMV 

promoter for easy selection during the cell cloning and later use. IFN treatment of the 

stable cells can lead to increased luciferase activity while fluorescence reading from the 

Venus protein can be used as an internal control for normalization. We transfected the 

HEK293 ISRE-stable cells with each of the plasmids and treated the cells with IFN at 

500 U/mL 48h after the plasmid transfection. Based on luciferase activity, the Met 

domain and ProX domain demonstrated the strongest inhibition of IFN-stimulation of the 

ISRE promoter (Fig. 5.2). This result indicates the Met domain and ProX fragment of 

ORF1 are able to play the role as IFN antagonist in genotype I HEV. 
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Fig. 5.2. Screening of ORF1 products for potential JAK/STAT 

antagonists. 

HEK293 ISRE-stable cells were transfected with the plasmids of the ORF1 

fragments and then treated with IFN-α2 at the concentration of 500 U/mL. 

At 24 h after the IFN treatment, the cells were harvested for luciferase 

activity assay. Significant differences from EV control (IFN) are denoted by 

“*”, which indicates P < 0.01.  
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Met domain inhibits IFN signaling without affecting STAT1 phosphorylation 

To further confirm our finding that HEV Met domain inhibits IFN-activated 

signaling, we test whether Met domain inhibit the endogenous ISG expression after IFN 

treatment. Just as expected, when Met domain was expressed in HEK293T cells, IFN-

induced expression of ISG56 was dampened in comparison with normal cells (Fig.5.3A). 

This result is consistent with the ISRE reporter assay. 

Activation of ISG expression needs ISGF3 complex binding with ISRE promoter 

in the nucleus. STAT1 phosphorylation is the key step for the ISGF3 complex formation. 

So we tested whether STAT1 phosphorylation was affected by the Met domain. 

HEK293T cells were transfected with Met plasmid and treated with IFN-α 48 h after the 

transfection. Western blotting revealed that Met domain had minimum effect on STAT1 

phosphorylation (Fig.5.3B).  

In addition, we conducted IFA to observe the sub-cellular localization of the Met 

domain by confocal microscopy.  We noticed that majority of the Met protein was 

located in the nucleus, while the rest exists in cytoplasm as speckles (Fig.5.3C). Whether 

the nuclear or cytoplasmic localization of the Met domain relates to its inhibition of 

JAK/STAT pathway needs further investigation. A plausible speculation is that the 

nuclear Met might inhibit ISGF3 interaction with ISRE promoters because the Met 

domain potentially causes methylation of target nucleic acid sequences.  
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Fig. 5.3. Met domain inhibits ISG56 expression without affecting 

STAT1 phosphorylation. 

A: Met domain inhibits ISG56 expression. HEK293T cells were transfected 

with pCAGEN empty vector (EV) or pCAGEN-HA-Met for 48 hours, then 

treated with IFN-α2 at 500 U/mL for 24h. Western blotting with ISG56, 

tubulin and HA was conducted. B: HEK293T cells were transfected with 

EV or Met domain for 48 hours, then treated with IFN-α2 at 500 U/mL for 

1h.  C: Met domain is mainly located in the cell nucleus.  HeLa cells were 

transfected with HA-Met plasmid and, 24 h later, fixed and stained with 

anti-HA antibody for confocal microscopy. Nuclear DNA was counter 

stained with DAPI. 
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DISCUSSION 

In the Chapter 4, HEV replication in hepatoma cells was found to inhibit the 

polyIC induction of type I IFNs. However, as IFNs need to activate the expression of 

ISGs in the cells via JAK/STAT pathway, many viruses develop varieties of strategies to 

block the pathway to dampen the host defense. In a previous study based in genotype III 

HEV, vp13, the product of HEV ORF3, was shown to bind with STAT1 and inhibit 

STAT1 phosphorylation, thus block IFN-α mediated signaling (61). However, our data 

indicate that the HEV-mediated inhibition of IFN signaling was mainly due to the ORF1 

product as pSK-E2-GFP replicon had similar inhibition to the full length pSK-E2 

replicon. The ORF 2 and 3 are truncated in the pSK-E2-GFP. This difference may be due 

to genotypic difference as our study used a genotype I HEV strain. 

In our screening for IFN antagonist from ORF1 product, the Met domain was 

identified as a potential inhibitor in HEK 293 ISRE reporter cell line. Overexpression of 

Met domain in HEK 293T cells resulted in the inhibition of IFN-stimulated ISG56 

expression. However, our data also showed that the Met domain does not inhibit the 

phosphorylation of STAT1, which is the key step for the JAK/STAT pathway. Thus, the 

inhibition step must be somewhere downstream of STAT1 phosphorylation: either 

STAT1 nuclear translocation or its interaction with ISRE promoters.  

Confocal microscopy showed that majority HA-tagged Met domain has a nuclear 

localization. As the Met domain was proposed to cooperate with  HEV helicase domain 

for catalyzing capping of HEV genomic RNA in the cytoplasm (160), it is intriguing that 

majority of Met-domain is located in the nucleus.  It is possibly the Met in cytoplasm as 

speckles performs the proposed function. Furthermore, as no nuclear location sequence 
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(NLS) has been identified from Met domain, the mechanism for Met-domain’s nuclear 

transportation is not known. It is possible that the Met domain possesses a non-classical 

NLS and competes with STAT1 for the KPNA1 for nuclear transportation since 

phosphorylated STAT1 possesses a non-classical NSL to bind to KPNA1 as well. 

In addition to the Met domain, the ProX domain is able to inhibit the IFN- 

induced ISRE activation as well in HEK293-ISRE reporter cells. As ProX fragment 

codes for HV, Pro and X domain, further research is needed to identify the exact domain 

that is responsible for the JAK/STAT inhibition. Among these three domains, it seems 

that the X domain could be the potential inhibitor as it possesses a DNA binding domain 

and was confirmed to play a role in gene silencing and inactivation. On the other hand, 

our results also indicate that X domain is able to bind tightly with chromosome in 

HEK293T cell (data not shown). It is possible that this DNA binding of X domain plays 

some role to inhibit ISG expression. 
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Chapter 6: Enhancement of Interferon Induction by HEV ORF3 

Product  

ABSTRACT 

 

The HEV ORF3 encodes a 13-kDa multifunctional protein (vp13), which is 

essential for HEV to establish an infection in animals. The exact role of vp13 in HEV 

infection remains unclear. In this chapter, vp13 was found to enhance interferon 

production induced by polyIC, a synthetic analog of dsRNA. PolyIC treatment induced 

higher level of IFN-β mRNA in HeLa cells stably expressing vp13 than control cells. 

Using a luciferase reporter construct driven by IFN-β promoter, we demonstrated that 

vp13 enhanced RIG-I-dependent luciferase expression. This enhancement was found to 

be because of both increased RIG-I protein level and its activation. The levels of both 

endogenous and exogenous RIG-I were increased by vp13 due to extension of RIG-I 

half-life. Additionally, vp13 interacts with RIG-I N-terminal domain and enhances its 

ubiquitination, which is essential for RIG-I activation. Analysis of vp13 deletion 

constructs suggested that C-terminal domain of vp13 was essential for the enhancement 

of RIG-I signaling. In HEV-infected hepatoma cells, wild type HEV led to a higher level 

of RIG-I and more polyIC-induced IFN-β expression than ORF3-null mutants. Analysis 

of vp13 from four HEV genotypes showed that vp13 from type I and type III strains 

boosted RIG-I signaling while vp13 from type II and IV strains had minimal effect. 

These results indicate that vp13 enhances RIG-I signaling, which may play a role to HEV 

invasion.  
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INTRODUCTION  

HEV, a single-stranded positive-sense RNA virus, is the sole member of the 

genus Hepevirus in Hepeviridae family (70). The HEV genome is approximately 7.2 kb 

in length and consists of ORFs (393). HEV ORF3 encodes a phosphoprotein with a 

molecular mass of approximately 13 kDa (vp13) (393). A number of studies showed that 

vp13 plays roles in cellular signaling pathways (7) and interacts with microtubules (154). 

Moreover, vp13 is essential for establishment of HEV infection in macaques and pigs 

under experimental conditions (98, 134). ORF3-null mutants of HEV failed to establish a 

productive infection in Rhesus monkeys suggesting an essential role for vp13 in vivo 

(98). These data indicate that vp13 may play an important role in HEV virus-cell 

interactions. Yet the exact role of vp13 in HEV infection remains unknown. It is also not 

known whether vp13 has any effect on host innate immune responses.  

Host PRRs for RNA viruses include RLR pathway and TLR pathway. TLRs that 

can detect viral RNA are TLR3, TLR7, and TLR8 (111). All TLRs except TLR3 signal 

through the adaptor molecule MyD88 (242). TLR3 signals solely via the adaptor TIR-

domain-containing adaptor inducing IFN-β (TRIF) (120). The RLR family of PRRs is 

comprised of RIG-I and MDA5 (164). Both RIG-I and MDA5 signal through adaptor 

IPS-1 (also known as MAVS, Cardif, VISA) on the outer membrane of the mitochondria 

(169). Both RLR and TLR3 can recognize dsRNA of viral genome or the replication 

intermediates of RNA viruses. Activation of RLR and TLR signaling leads to activation 

of two IκB kinase (IKK)-related kinases, TBK1 and IKKɛ, which phosphorylate IRF3 

and IRF7 (81, 365). These transcription factors translocate into the nucleus and result in 
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induction of type I IFNs, which not only leads to an antiviral state in the neighboring 

uninfected cells, but also serve as key regulators to evoke adaptive immune response. 

In this study, vp13 was discovered to enhance interferon expression induced  by 

polyIC, a synthetic analog of dsRNA. vp13 expression led to increased level of RIG-I via 

extension of half-life of the protein. Immunoprecipitation assay indicated that vp13 

interacted with RIG-I N-terminal domain and increased its ubiquitination. In HEV-

infected hepatoma cells, wild type HEV led to higher levels of RIG-I and increased 

expression of polyIC-induced IFN-β compared to ORF3-null HEV mutants. These results 

indicate that vp13 enhanced IFN induction via RIG-I signaling. 
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MATERIALS AND METHODS 

Cells, viruses and replicons. HEK293T cells and S10-3 cell were maintained as 

same as Chapter 4. HeLa were maintained in DMEM-Reduced Serum (DMEM-RS) 

medium supplemented with 3% FBS. Transfection of HeLa, HEK293T, and S10-3 cells 

was described in Chapter 4.  HeLa cells stably expressing vp13 were established by 

transfection of the cells with VenusN1-H3 or VenusC1-vp13  (154) and selecting for 

resistance to G418 (500 µg/ml). Cell cloning was done by limited dilution. PolyIC 

(Invivogen, San Diego, CA) was used to induce interferon production at a concentration 

of 10 µg/ml for direct addition to the cultured cells or at 1 µg/ml for transfection of the 

cells. Avirulent LaSota Newcastle disease virus with the inserted gene of green 

fluorescence protein (NDV-GFP) was used as an indicator of polyIC-induced interferon 

production, as previously described (265). 

Obtaining of Full-length RNAs of HEV, HEV-ORF3-null, HEV-GFP and HEV-

luciferase by in vitro transcription from replicon plasmids pSK-E2, pSK-E2∆ORF3, pSK-

E2-GFP and pE2-Luc (71, 75, 97) were described in Chapter 4. Transfection of S10-3 

cells with RNAs was described in Chapter 4 as well. 

Plasmids. HEV ORF3 plasmids, VenusN1-vp13 and VenusC1-vp13 used in this 

study were reported previously (154). HEV replicons, pSK-E2, pSK-E2-GFP, pE2-Luc 

and ORF3-null pSK-E2 were described previously (71, 75, 97, 98). ORF3 sequences 

from strains of HEV genotype II (GenBank accession# M74506) and IV (accession# 

AB074915) were synthesized (Genscript, Piscataway, NJ) and cloned to XhoI and EcoRI 

sites in the VenusC1 vector as described (154). ORF3 of HEV genotype III isolate 

Kernow (369) was similarly cloned into VenusC1 vectors with primers listed in Table 
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6.1. ORF3 truncation mutants were constructed using VenusC1 vector with primers listed 

in Table 6.1. 

Full length RIG-I was cloned into KpnI site in pCMV-Flag-MAT-1 vector.  

Construction of Myc-RIG-I(N) (191), MDA5(N) (441), FLAG-TBK1and FLAG-IKKε 

(81) plasmids were described previously. The pCDNA3-TRIF-CFP (82) and pRK5-HA-

Ubiquitin-K63 (209) were obtained from Addgene.  

Immunofluorescence assay (IFA) and live cell fluorescence microscopy. An 

immunofluorescence assay (IFA) was carried out as described previously in Chapter 4 

using chimpanzee antibody against HEV. GFP expression in live cells transfected with 

RNA from HEV replicon containing GFP gene was similarly observed.   

Western blot analysis. Whole cell lysates were analyzed by sodium 

dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting as 

described previously (154, 455). Antibodies against GFP (Santa Cruz Biotechnology, 

Santa Cruz, CA), FLAG (Sigma, St. Louis, MO), HA (Thermo Fisher Scientific, 

Waltham, MA), Myc (Rockland Immunochemicals, Inc., Gilbertsville, PA), vp13, RIG-I 

(Santa Cruz) and tubulin (Sigma) were used in the blotting. The Recording and 

quantification of chemiluminescence signal were described in Chapter 4. To determine 

RIG-I half-life, cycloheximide (Sigma) was used at a final concentration of 100 µg/ml to 

inhibit protein translation. Cell lysate samples harvested at indicated time points after 

cycloheximide treatment were subjected to Western blotting.  

Reverse transcription and real-time PCR (RT-qPCR). Total RNA RNA 

isolation, DNase treatment and Reverse transcription was conducted as same as described 

in Chapter 4. The primers for detection of IFN-β (265) and RIG-I (188) cDNA were 



 

 

 

110 

 

described previously. Real-time PCR with SYBR Green, detection for transcripts of 

house-keeping gene RPL32 and quantification of gene expression was conducted as same 

as Chapter 4.  

Immunoprecipitation (IP). IP was conducted as same as Chapter 4. Antibodies 

against Myc or GFP were added to the supernatant. IP with protein G agarose (KPL Inc, 

Gaithersburg, MD) was done following the manufacturer’s instructions. The samples of 

IP with Myc antibody were subjected to Western blotting with vp13 antibody. The 

samples of IP with GFP antibody were subjected to Western blotting with RIG-I antibody.  

For detection of ubiquitinated RIG-I, N-Ethylmaleimide (NEM) (Thermo 

Scientific, Rockford, IL) was included in the lysis buffer at a final concentration of 50 

µM. After lysate clarification, the supernatant was moved to a fresh tube and SDS was 

added to a final concentration of 1%. The supernatant was then boiled for 5 min and 

cooled down on ice for IP with Myc antibody. The IP samples were subjected to Western 

blotting with ubiquitin antibody. 

Luciferase reporter assay. Transfection of HEK293T cells with firefly luciferase 

reporter plasmid of IFN-β promoter, the indicated plasmids and Renilla luciferase vector 

pGL4.74 hRL-TK (Promega) was described in Chapter 4. VenusC1 Empty vectors of 

testing plasmids were included as control. Measurement of Firefly and Renilla luciferase 

assays were described in Chapter 4.  Firefly luciferase levels were normalized with renilla 

expression. Values representing the fold change in luciferase activity compared to control 

cells are shown.  

Statistical analysis.  Statistical analysis between treatment samples, such as IFN-

β mRNA level between the groups was conducted the same way as Chapter 4. 
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RESULTS  

vp13 enhances polyIC-induced interferon production 

 In our studies of vp13, we established HeLa cells stably expressing vp13 with the 

plasmids encoding vp13 fused to the N- or C-terminal end of GFP, VenusN1-vp13 or 

VenuC1-vp13, respectively (154). HeLa-VenusN1-vp13 was first used in an assay to 

assess the effect of vp13 on polyIC-induction of type I interferons. NDV is sensitive to 

type I IFNs and was used as an indicator of IFN induction. HeLa-VenusN1-vp13 cells 

were inoculated with NDV-GFP 12 h post treatment with polyIC and monitored for the 

expression of GFP. The cell line had a low level VenusN1-vp13 expression that did not 

interfere with observation of NDV-GFP replication. The HeLa-VenusN1-vp13 stable 

cells were expected to have more or similar number of GFP-positive cells than the control 

cells, if vp13 had inhibitory or no effect on IFN induction. However, substantially fewer 

GFP-positive cells were etected in the cells with vp13 expression compared to control 

cells (Fig. 6. 1A). The vp13 expression in cells without polyIC did not affect NDV-GFP 

replication. The result suggested that vp13 enhanced the polyIC-induced IFN production. 

To confirm this observation, we examined the IFN-β transcript levels by RT-

qPCR. HeLa, HeLa-VenusN1-vp13, and HeLa-VenusC1-vp13 stable cells were treated 

with polyIC for 12 h and harvested for RNA isolation. The direct addition of polyIC to 

the cells was supposed to activate the TLR3 signaling pathway to induce IFN production. 

Both HeLa-VenusN1-vp13 and HeLa-VenusC1-vp13 cells had 5.6 and 10.2-fold more 

IFN-β mRNA compared to normal HeLa cells after polyIC direct treatment (Fig. 6. 1B). 

Because polyIC treatment induced higher levels of IFN-β mRNA in HeLa-VenusC1-vp13 

cells compared to HeLa-VenusN1-vp13, HeLa-VenusC1-vp13 cells were utilized in the  
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Fig. 6.1 Enhancement of polyIC-induced interferon production by vp13. 

A. NDV-GFP replication reduced in HeLa cells stably expressing vp13 (VenusN1-vp13). The cells 

were treated with polyIC for 12 h and then inoculated with NDV-GFP. The cells were observed 

under fluorescence microscopy 24 h after NDV inoculation. B. Increase of polyIC-induced IFN-β 

mRNA in HeLa cells with vp13 expression detected by RT-qPCR. The HeLa cells stably express 

with VenusN1-vp13 or VenusC1-vp13 and normal HeLa cells were treated with polyIC, which was 

directly added to the cultured cells. Induction folds of IFN-β mRNA level in comparison to non-

treated control cells are shown. Error bars represent standard errors of three repeated experiments. 

Significant differences from control HeLa cells are shown by “**”, which indicates P < 0.01. C. 

Increase of polyIC-induced IFN-β mRNA in HeLa cells with vp13 expression. The HeLa cells 

stably express with VenusC1-vp13 and normal HeLa cells were transfected with polyIC. Relative 

induction folds of IFN-β mRNA levels are shown. D. Detection of Venus-vp13 fusion protein in 

HeLa-vp13 stable cells. N: VenusN1-vp13; C: VenusC1-vp13. The Western blotting was done with 

anti-vp13 antibody.   
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following experiments. Similarly, VenusC1-vp13 plasmid was used for further analysis 

of the vp13 effect on IFN signaling. To test if vp13 was also able to enhance polyIC-

activated RLR pathway, we transfected the cells with polyIC. IFN-β mRNA level in the 

HeLa-VenusC1-vp13 cells was 3.7-fold higher than HeLa cells after polyIC transfection 

(Fig. 6. 1C). These results indicated that vp13 enhanced polyIC-induced IFN production 

in HeLa cells.   

The vp13 expression in the stable HeLa cells was detected with anti-vp13 

antibody in Western blotting (Fig. 6. 1D). The stable cells with VenusC1-vp13 had higher 

level of vp13 than the cells with VenusN1-vp13, which may be possibly why the polyIC 

induced higher level of IFN-β mRNA in the former cells.  

 

 

 

 

 

Fig. 6.2 vp13 enhances RIG-I-induced IFN-β expression. 

HEK293T cells were co-transfected with IFN-β promoter luciferase reporter, vp13 and one of 

the following stimulator molecules: RIG-I(N), TRIF, MDA5(N), TBK-1 or IKKɛ.  Empty vector 

(EV) of vp13 plasmid was included as a control.  At 24 h after transfection, the cells were 

harvested for luciferase activity assay. Relative folds of the luciferase activity are shown. 

Significant differences in IFN-β promoter activation between vp13 and EV are denoted by  “**”, 

which indicates P < 0.01. 
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vp13 enhances RIG-I-induced IFN-β expression in HEK293T cells.  

Overexpression of signal molecules from TLR3 and RLR pathways such as RIG-

I, MDA5, TRIF, TBK1 and IKKε lead to the activation of IFN-β promoter (32, 88, 223). 

To find out which signal molecule in the IFN induction pathway was affected by vp13, 

we examined induction of the IFN-β promoter using a luciferase reporter assay. 

HEK293T cells were transfected with RIG-I(N), MDA5(N), TRIF, TBK1 or IKKε along 

with vp13 or empty vector control. Among the molecules tested, IKKε overexpression 

induced the highest luciferase yield to 2808-fold and TBK1 led to the lowest induction to 

10-fold. Compared with empty vector control, the presence of vp13 significantly 

increased luciferase expression in cells transfected with N-terminal RIG-I or TBK1 by 

5.94 and  

 

 

 

 

 

 

6.82-fold, respectively (Fig. 6. 2). Co-transfection of vp13 with the other signal 

molecules did not lead to a significant change in luciferase yield. This result suggested 

Fig. 6.3 vp13 induces elevation of endogenous RIG-I protein. 

Western blotting with antibodies against RIG-I, vp13 and tubulin was conducted. A. RIG-I 

protein level is highly elevated in HeLa-vp13 stable cells. Lysate of normal HeLa cells was 

included as a control. EV: empty vector. B. RIG-I protein level is increased in HEK293T cells 

transiently transfected with vp13 plasmid. The cells were harvested at 48 h after the transfection. 

C. RIG-I protein level is increased in S10-3 cells transiently transfected with vp13 plasmid. The 

cells were harvested at 48 h after the transfection. 
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that vp13 may function at multiple steps within the RIG-I signaling to enhance IFN 

promoter activation. 

vp13 induces elevation of endogenous RIG-I level 

To determine the mechanism that vp13 enhances RIG-I-mediated IFN induction, 

we first tested whether vp13 affected RIG-I expression. While RIG-I was below detection 

level in control HeLa cells, the endogenous RIG-I was detected in immunoblot analysis 

in HeLa-VenusC1-vp13 stable cells (Fig. 6. 3A). Likewise, transient expression of vp13 

in HEK293T cells increased endogenous RIG-I expression to a detectable level (Fig. 6. 

3B).  Similar results were detected in S10-3 cells, a cell line capable of supporting HEV 

replication. The S10-3 cells transiently transfected with VenusC1-vp13 plasmid had 

considerably higher RIG-I level compared to the cells transfected with an empty vector 

(Fig. 6. 3C). These results indicated that vp13 expression led to an elevation in the basal 

level of RIG-I, which was likely one of the reasons for the enhancement of RIG-I-

mediated IFN-β induction.  

vp13 expression extends the half-life of RIG-I 

The increased level of RIG-I in cells with vp13 expression could be due to either 

higher level of transcription and/or translation or extension of the protein half-life.  To 

distinguish between these possibilities, HEK293T cells were transfected with VenusC1-

vp13 or empty vector and RIG-I mRNA levels were assessed by RT-qPCR. Similar levels 

of RIG-I transcript were detected in the presence or absence of vp13 expression (Fig. 6. 

4A), which indicated that the elevation in RIG-I was not due to changes in mRNA levels.  
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We next assessed the effect of vp13 expression on translation of RIG-I. HEK293T 

cells were transfected with FLAG-RIG-I plasmid since endogenous RIG-I is barely 

detectable by Western blotting. Exogenous RIG-I protein in the cells with vp13 

expression was 2.8-fold higher than the cells transfected with an empty vector (Fig. 6. 

Fig. 6.4 vp13 extends RIG-I half-life in HEK293T cells. 

A. RIG-I mRNA level remains stable in cells with vp13 expression. HEK293T cells were 

transfected with empty vector or vp13 plasmid and harvested 24 h post-transfection. RT-

qPCR was performed to detect RIG-I transcripts. EV: empty vector. B. vp13 induces elevated 

expression of exogenous RIG-I. HEK293T cells were transfected with RIG-I and vp13 

plasmids.  Western blotting with antibodies against FLAG, GFP and tubulin was conducted. 

C. vp13 extends half-life of RIG-I. HEK293T cells were transfected with FLAG-RIG-I and 

vp13 (right panel) or empty vector (left panel). The cells were treated with cycloheximide 24 

h after transfection and harvested at time points indicated above the images. Western blotting 

with antibodies against FLAG, tubulin and vp13 was conducted. 
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4B). These results suggest that vp13 is acting at the protein level. We next examined the 

effect of vp13 on the protein stability of RIG-I. HEK293T cells were transfected with 

RIG-I and vp13 or an empty vector and treated with cycloheximide to block protein 

synthesis. The assay showed that RIG-I levels decreased 0.5-fold after 18 h of 

cycloheximide treatment in cells transfected with empty vector but after 30 h treatment in 

cells with vp13 expression (Fig. 6. 4C). The RIG-I half-life was extended from 18 h in 

the cells with empty vector to 30 h in the cells with vp13 expression, indicating that vp13 

extended the half-life of RIG-I.  

vp13 interacts with the RIG-I N-terminal domain and increases its ubiquitination 

RIG-I is composed of two N-terminal caspase recruitment domains (CARDs), a 

central DexD/H box helicase/ATPase domain and a C-terminal regulatory domain (CTD) 

(442). N-terminal CARDs are responsible for binding to the adaptor molecule IPS-1 on 

mitochondria. In resting cells, RIG-I CTD represses the interaction between CARDs of 

RIG-I and IPS-1 (339). As N-terminal CARDs of RIG-I interact with IPS-1 in RLR-

pathway and ubiquitination leads to RIG-I activation , we tested whether vp13 would 

interact with RIG-I(N) or alter the ubiquitination status of RIG-I N-terminal CARD 

domains. First we determined if vp13 increased RIG-I(N) expression in a similar way to 

the full-length RIG-I protein. HEK293T cells were co-transfected with Myc-RIG-I(N) 

and vp13 plasmids. Western blotting result showed that the cells expressing vp13 had 

similar level of RIG-I(N) to the cells with empty vector (Fig. 6. 5A), indicating that vp13 

did not affect RIG-I(N) expression or stability.  
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Next we tested whether vp13 had direct interaction with RIG-I(N). HEK293T 

cells were co-transfected with Myc-RIG-I(N) and vp13 plasmids. IP with Myc antibody 

was conducted to pull down Myc-RIG-I(N) and Western blotting with GFP antibody 

Fig. 6.5 vp13 interacts with RIG-I N-terminal domain and enhances its 

ubiquitination. 

A. vp13 does not enhance expression of RIG-I(N). HEK293T cells were transfected with vp13 

and RIG-I(N) plasmids.  Western blotting with antibodies against Myc, GFP and tubulin was 

conducted. B. Immunoprecipitation (IP) indicates interaction of vp13 with RIG-I(N). HEK293T 

cells were transfected with vp13 and RIG-I(N) plasmids. The upper image shows the presence of 

vp13 in RIG-I(N) IP complex. The second image from top shows the presence of RIG-I(N) in 

vp13 IP complex. The lower two images shows blotting of whole cell lysate (WCL) with 

antibodies against Myc and GFP to detect RIG-I(N) and vp13, respectively. C. Increase of RIG-

I(N) ubiquitination in HEK293T cells with vp13 expression. IP of HEK293T cell lysate was 

done with Myc antibody. The upper image shows the presence of ubiquitin in the IP complex. 

The lower image shows the RIG-I(N) pulled down. Relative level of ubiquitination signal in the 

upper image is shown after normalization with RIG-I. D.  Increase of RIG-I(N) K-63 

ubiquitination in HEK293T cells with vp13 expression. HEK293T cells were transfected with 

HA-Ubiquitin-K63, RIG-I(N) and vp13. 
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showed the presence of vp13 in the RIG-I(N) IP samples (Fig. 6. 5B). Similarly, IP with 

GFP antibody was conducted to pull down GFP-vp13 and Western blotting with Myc 

antibody showed the presence of RIG-I(N) in the vp13 IP samples. The expression of 

RIG-I(N) and vp13 was verified in whole cell lysate (Fig. 6. 5B). These results indicate 

that vp13 is capable of interacting with RIG-I(N). We reasoned that the direct interaction 

of vp13 and RIG-I(N) could induce RIG-I activation. IP was performed to pull down 

RIG-I(N) and then Western blotting with antibody against ubiquitin was conducted. The 

result showed that in the cells with vp13 expression, ubiquitinated RIG-I(N) was 

significantly elevated to 2.7-fold in comparison to the cells transfected with an empty 

vector (Fig. 6. 5C).  These results suggested that vp13 enhanced RIG-I(N) ubiquitination, 

which may lead to an increase of IFN-β promoter activation. 

It is known that lysine 63 (K63)-linked polyubiquitination of RIG-I by ubiquitin 

ligase TRIM25 and Riplet causes RIG-I activation (85, 86, 274). We reasoned that the 

vp13-enhanced ubiquitination of RIG-I should be K63-linked. HEK293T cells were 

transfected with plasmids of vp13, RIG-I(N), and HA-tagged K63-linked ubiquitin (HA-

K63-ubi). IP of RIG-I(N) and Western blotting with antibody against HA were 

conducted. The K63-linked ubiquitination of RIG-I in the cells with vp13 expression 

increased by 2.5-fold, compared with control cells (Fig. 6. 5D). The results suggest that  
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the presence of vp13 promoted RIG-I activation shown by K63-linked ubiquitination.  

The C-terminal domain of vp13 is sufficient to enhance RIG-I expression and polyIC-

mediated IFN production 

 To determine which domain of vp13 was associated with the enhancement of 

IFN production, we constructed three truncation constructs of vp13: D1, D2 and D3 (Fig. 

6. 6A). D1 and D3 cover N and C-terminal half of vp13, respectively, and D2 carries the 

majority of vp13 with a deletion at C-terminal end. HEK293T cells were co-transfected 

with plasmids of full length RIG-I and full-length vp13 or those three vp13 truncation 

constructs. Compared to empty vector control, RIG-I levels in the cells transfected with 

vp13, D1, D2 and D3 plasmids increased 3.2, 1.4, 1.2 and 2.8-fold, respectively (Fig. 6. 

6B). Full length vp13 and D3 was detected with a vp13-specific antibody that was 

generated with a C-terminal peptide and GFP antibody. The RIG-I level in cells with D3 

was similar to full-length vp13, which indicates that C- terminal vp13 contains the 

domain responsible for the enhancement of polyIC-induced IFN expression. 

To confirm this observation, we conducted an IFN-β reporter assay in HEK293T 

cells. Results showed that the D3 increased IFN-β promoter activation to a level similar 

to that induced by full-length vp13, while D1 and D2 had minimum effect (Fig. 6. 6C). 

This indicated that the C-terminal domain of vp13 enhanced RIG-I-induced IFN 

expression.  

Presence of vp13 in HEV-infected S10-3 cells leads to higher levels of polyIC-induced 

IFN-β expression than ORF3-null mutant 

 The results above showed vp13 enhanced IFN induction. So we assessed whether 

vp13 played a similar role during HEV replication. To address the question, we used S10-
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3 cells, a subclone of Huh-7 cells, which support HEV replication (369). The cells were 

transfected with full-length RNAs 

 

 

 

 

 

 

 

from HEV replicon pSK-E2 or pSK-E2-GFP. The GFP insertion in pSK-E2 interrupted 

ORF2 and ORF3 expression, but offered a convenient indicator for direct observation of 

HEV replication. To determine the RIG-I protein level in the S10-3 cells in the presence 

Fig. 6.6. The C-terminal domain of vp13 appears to correlate with enhancement 

of polyIC-induced IFN-β expression 

A. Schematic illustration of cloning vp13 fragments into VemusC vector. The numbers above the lines 

indicate amino acid position in vp13 (aa1-114). B. The C-terminal domain of vp13 correlates with 

RIG-I elevation. HEK293T cells were co-transfected with RIG-I and vp13 truncation plasmids. Empty 

vector (EV) was included as a control. Western blotting with antibodies against RIG-I, GFP, vp13 and 

tubulin was done. D1, D2 and D3 indicate vp13 deletion constructs. The vp13 antibody is against a C-

terminal peptide, and thus does not react with D1 and D2.  C. IFN-β reporter assay. HEK293T cells 

were co-transfected with RIG-I(N), IFN-β reporter and vp13 plasmids. The cells were harvested for 

luciferase activity assay 24 h after transfection. Relative luciferase level is shown in comparison with 

control cells transfected with reporter plasmid and empty vector. Significant differences in IFN-β 

promoter activation compared to the cells with EV are denoted by  “**”, which indicates P < 0.01. 
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of vp13 expression, Western blotting was conducted. The result showed that endogenous 

RIG-I in the S10-3 cells with pSK-E2 was considerably higher than the cells with pSK-

E2-GFP or pE2-Luc (Fig. 6. 7A). Densitometry analysis showed that the RIG-I level in 

the cells with pSK-E2 was 2.3-fold higher than the cells with pSK-E2-GFP or pE2-Luc. 

Transfection of the cells with polyIC, which was expected to activate RLR pathway, was 

conducted to induce IFN expression. The cells were harvested 12 h after polyIC treatment 

for RNA isolation and RT-qPCR. Result showed that the S10-3 cells transfected with 

pSK-E2 RNA had 1.9-fold higher level of IFN-β transcripts than cells transfected with 

pSK-E2-GFP RNA in response to polyIC transfection (Fig. 6. 7B). The cells not 

transfected with polyIC had very low level of IFN-β transcript, as expected.  

These results suggested that the presence of vp13 in the S10-3 cells enhanced 

polyIC-induced IFN expression. To confirm the observation, we used a ORF3-null HEV 

replicon, pSKE2Δ3, in which a termination codon was introduced to stop ORF3 

expression and therefore, no vp13 expression (98). The vp13-null mutant had similar 

replication rate as wide-type virus in S10-3 cells (72). Compared to the S10-3 cells 

transfected with wild-type pSKE2 replicon, the cells transfected with vp13-null pSKE2Δ3 

mutant had significantly lower levels of IFN-β transcript after polyIC stimulation (Fig. 6. 

7C). IFA with antibody against the capsid protein confirmed similar HEV replication in 

the S10-3 cells transfected with either wild-type or ORF3-null mutant genomic RNAs 

(Fig. 6. 7D).  These data suggest that the presence of vp13 in HEV-infected cells elevates 

endogenous RIG-I, which subsequently enhances polyIC-induced IFN expression.  
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Fig. 6.7 Presence of vp13 in HEV-infected S10-3 cells leads to higher IFN-β 

expression induced by polyIC 

A. Elevation of RIG-I level in HEV-infected cells with full-length HEV RNA. S10-3 cells were 

transfected with RNA from pSK-E2, pSK-E2-GFP, and pE2-Luc replicons. Western blotting with 

antibodies against RIG-I, GFP and tubulin was conducted 10 days after the transfection. Relative 

level of RIG-I after normalization with tubulin is shown below the images. Mock-infected cells 

were included for comparison.  B. IFN-β transcript in HEV-infected S-10 cells detected by RT-

qPCR. The cells were transfected with polyIC to induce IFN expression. Induction folds of IFN-β 

mRNA level in comparison to control cells without HEV RNA  and polyIC are shown. Significant 

differences between test sample and control are shown by “*” and “**”, which indicate P < 0.05 

and P < 0.01, respectively.  C. Absence of vp13 in HEV-infected S-10 cells leads to lower IFN-β 

transcript after polyIC stimulation. D. Detection of HEV replication in S10-3 cells. The left panel of 

images shows immunofluorescence assay of the cells transfected with full length HEV genomic 

RNA from pSK-E2 or pSK-E2Δ3. Left images of red fluorescence indicates the presence of HEV 

capsid protein. Nuclear DNA was counterstained using DPAI shown in the right images. 
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           Enhancement of IFN induction by vp13 appears to be genotype-specific. 

 HEV genomic sequences are divergent. There are at least four genotypes of HEV across 

the world. The above experiments were done with vp13 from Sar55, a strain of genotype 

I HEV, which can cause acute hepatitis. We wondered whether vp13 from strains of the 

other three genotypes would similarly enhance IFN production. ORF3 from strains of 

genotype II, III and IV were cloned. To determine the vp13 effect on RIG-I(N)-induced 

IFN production, we performed IFN-β promoter reporter assay. HEK293T cells were 

transfected with IFN-β promoter reporter and vp13 plasmids. The result showed that the 

genotype III vp13 enhanced RIG-I(N)-induced luciferase expression by 2.1-fold 

compared with cells with empty vector (Fig. 6. 8A). vp13 from the genotype II and 

genotype IV HEV strains had slightly lower level of luciferase activity than the empty 

vector. vp13 of genotype I enhanced luciferase activity, as expected.  

RIG-I protein levels in HEK293T cells co-transfected with full length RIG-I and 

one of the four vp13 plasmids were determined by Western blotting. Results showed that 

compared to the cells with empty vector, the cells with vp13 of the genotype III strain 

had 2.4-fold higher level RIG-I expression, which was similar to the cells transfected 

with vp13 from the genotype I strain (Fig. 6. 8B). Blotting with a GFP antibody 

confirmed the similar level expression of vp13 from the four genotypes in the cells.  

However, the cells with vp13 from the genotype II and genotype IV HEV strains led to 

minimal changes of RIG-I level. The results indicate that vp13 from the strains of 

different genotypes had variable effects on RLR pathway 
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Fig. 6.8 vp13 from HEV genotype I and III enhance IFN induction. 

A. vp13 from strains of HEV genotype I and III induce higher IFN-β promoter expression. HEK293T 

cells were co-transfected with vp13 and IFN-β promoter reporter plasmids for luciferase reporter 

assay. Relative luciferase level is shown. Significant differences from cells transfected with empty 

vector are shown by “*”, which indicate P < 0.05. B. vp13 from strains of HEV genotype I and III 

induce RIG-I elevation. HEK293T cells were co-transfected with vp13 and RIG-I plasmids. Western 

blotting with antibodies against FLAG, GFP and tubulin was conducted. C. Alignment of amino acid 

sequence of vp13 from the four genotypes (Genotype I (GenBank accession # AF444002), genotype 

II (accession# M74506), genotype III (accession# HQ709170), and genotype IV (accession# 

AB074915). Those residues that are the same as consensus sequence are shown as “.”. 
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.Amino acid sequence alignment of HEV vp13 of the four genotypes shows there 

are more variations in its C-terminal than N-terminal domain (Fig. 6. 8C). As the C-

terminal domain correlated with the enhancement of IFN expression, the variation in C-

terminal sequence could mean functional divergence. The amino acid sequence identity is 

86% between genotype I and II, 79% between genotype I and III, 78% between genotype 

I and IV. Together, these data shows vp13 enhancement of IFN induction appears to be 

genotype-specific or strain-specific.  
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DISCUSSION 

This study demonstrated that HEV vp13 enhances polyIC-induced interferon 

expression by increasing RIG-I protein level, interacting with RIG-I(N) and increasing 

RIG-I(N) ubiquitination. The vp13-mediated elevation of RIG-I protein level is possibly 

due to the extension of RIG-I half-life.  The C-terminal domain of vp13 was found to be 

sufficient for the enhancement of IFN induction. The vp13-mediated enhancement of IFN 

induction was also observed in HEV-infected S10-3 liver cells.   

We observed that polyIC treatment of HeLa-vp13 stable cells induced stronger 

inhibition of NDV-GFP replication than polyIC-treated normal HeLa cells. The result 

indicates that vp13 plays the role in enhancing polyIC-induced antiviral response. Direct 

addition of polyIC to the cultured cells activates TLR3 pathway and transfection of the 

cells activates RLR pathway. In our experiment, the direct addition induced lower IFN-β 

expression than transfection. So we used the transfection method in this study to delineate 

the mechanism of vp13 enhancement of IFN induction. In addition, our results also 

provide potential answers to the vp13 augmentation of polyIC-induced TLR3 pathway: 

the presence of vp13 enhances TBK1-induced IFN-β expression as TLR3 activation 

induces phosphorylation of IRF3 by TBK1.  

Our screening of signal molecules in the IFN induction pathways identified that 

vp13 could enhance IFN induction by RIG-I and TBK1. The vp13-enhanced RIG-I 

signaling was examined in this study. The mechanism of the vp13 enhancement of IFN 

induction via TBK1 is yet unknown. Up-regulating expression of TBK1 by vp13 might 

be a possible reason, but unlikely, because IFN induction by upstream molecules such as 

TRIF and MDA5(N) was not augmented by vp13 co-transfection.  
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The mechanism for vp13-mediated enhancement of RIG-I induction of IFN was 

delineated in this study. Elevation of basal level of RIG-I was discovered in HeLa-vp13 

stable cells, and transiently transfected HEK293T and S10-3 cells. The increase of RIG-I 

in S10-3 cells could be more meaningful as they are liver-derived HEV-susceptible cells.  

The up-regulation of RIG-I appears to be mainly because of vp13-mediated 

extension of half-life of the protein. Presence of vp13 extends half-life of exogenous 

RIG-I from 18 h to 30 h. The possible mechanisms for this extension might be inhibition 

of RIG-I degradation by ubiquitin-proteasome pathway or increase of the protein 

translation. The former speculation sounds more reasonable as cycloheximide treatment 

blocks protein translation. The observations that expression of RIG-I(N) was not affected 

by vp13 and that half-life of the full-length RIG-I protein was extended in the presence of 

vp13 is consistent with this speculation.  

The other reason for vp13-ehancement of IFN induction could be that vp13 

interacts with RIG-I(N) and enhances its ubiquitination. RIG-I(N) IP pulled down vp13, 

vice versa, vp13 IP pulled down RIG-I(N). As RIG-I(N) contains the CARD domains to 

interact with IPS-1 to transmit the signal to induce IFN production, the up-regulation of 

RIG-I(N) ubiquitination by vp13 further enhances the signaling. Two ubiquitin ligases 

TRIM25 (85, 86) and Riplet (274) mediates K63-linked polyubiquitination of RIG-I, 

leading to its interaction with IPS-1. This study shows that vp13 increases K63-linked 

RIG-I(N) polyubiquitination. The increase of K63-linked polyubiquitination is consistent 

with the vp13 enhancement of RIG-I(N) activation. As RIG-I CTD interacts with N-

terminal CARDs in resting cells, vp13 is not able to interact with the whole RIG-I 

protein. Once the N-terminal CARDs are exposed after RIG-I undergoes conformational 
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change when helicase domain of RIG-I protein senses viral RNA (339), vp13 would be 

able to interact with the CARDs and further augment the activation signaling.  

The active domain of vp13 in this function locates in the C-terminal portion of 

this protein, as identified by truncation analysis. The C-terminal vp13 contains proline-

rich sequence that interacts with SH3 domain in cellular proteins (180). The PSAP motif 

of avian HEV was found to play a role in virus release in vivo though not essential for the 

virus infectivity (170). We constructed mutant vp13 with PSAP mutations and our 

preliminary study with the mutants indicates that the PSAP motif appears not correlate 

with the vp13 enhancement of IFN induction (data not shown). Further study is needed to 

identify the active motif involved in the enhancement of IFN induction found in this 

study. Our finding is consistent with the multi-function characteristic of vp13.  

The vp13-mediated enhancement of IFN induction appears to be true in HEV-

infected hepatoma cells, as polyIC induced higher levels of IFN-β mRNA in HEV-

infected S10-3 cells with vp13 expression. The elevation of RIG-I protein level in the 

HEV-infected S10-3 cells expressing vp13 further substantiates the observation, and is 

consistent with the data that vp13 increases RIG-I protein level in stably or transiently 

transfected cells. Compared to the ORF3 –null mutants, in HEV-infected S10-3 cells, the 

presence of vp13 caused a significant increase in IFN-β mRNA level induced by polyIC. 

The small magnitude of change could be due to the low rate of HEV-positive cells and 

virus-mediated inhibition of the IFN induction. We noticed that HEV ORF1 product 

inhibited polyIC-induced IFN production (manuscript submitted). Therefore, it appears to 

be a balance between IFN induction and inhibition, so that the vp13-induced 

enhancement might be under control by the other viral products. In addition to 
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enhancement of IFN induction, vp13 also enhances RIG-I mediated NF-κB promoter 

activation and leads to expression of NF-κB activated cytokines in HeLa-vp13 stable 

cells stimulated by polyIC (data not shown). Among the cytokines elevated, some are 

proinflammatory and may contribute to HEV-mediated inflammation and pathogenesis 

during HEV infection. A recent report observed that higher levels of TNF-α, IL-6, IFN-γ 

and TGF-β1, as well as higher HEV viral load were in pregnant women with acute viral 

hepatitis and fulminant hepatic failure(183). 

It is generally expected that a virus would inhibit the interferon induction and 

signaling to gain time for its own replication. Why vp13, a viral protein, enhances RIG-I-

mediated IFN production is an intriguing question. In addition to the possibilities 

explained above, the vp13-mediated enhancement of IFN induction could possibly play a 

role in the context of HEV infection, for example, stages of virus replication. We 

hypothesize that during early stage of HEV infection, ORF1 is more expressed and IFN 

induction is inhibited, and during late stage, viral RNA replication is completed and 

ORF3 expression is increased to promote HEV egress and spreading to other cells.  

Our data also showed vp13-mediated IFN enhancement is different among the 

four HEV genotypes.  vp13 from a genotype III strain is also able to enhance IFN 

induction in our study, but a recent report showed that vp13 from a strain of genotype III 

inhibits IFN-α activated signaling in HEV-stable A549 cells (61).  The vp13 of genotype 

I strain appears to have no such effect on IFN-activated signaling because NDV-GFP 

replication was inhibited in HeLa-vp13 stable cells after polyIC treatment. The 

inconsistency might be because of different strains tested and different cells used in our 

study.  
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On the other hand, the finding that vp13 enhances interferon induction would be 

useful in different applications. For example, the C-terminal domain of vp13 can be 

inserted into genomes of attenuated live virus to induce a stronger innate immune 

response for a better protective immunity. The insertion of C-terminal domain of vp13 

into the recombinant virus also makes vp13 act as a marker to differentiate from the wide 

type virus infection.  Further characterization of vp13 and its active domain in this 

application is warranted. 
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a. F: forward primer, R: reverse primer. The “H3” before a primer name indicates 

the primer is based on sequences of HEV ORF3.  

b. The italicized letters indicate restriction enzyme cleavage sites for cloning.    

Primera Sequences (5’ to 3’)b Target gene 

RIG-I-F1 TTAGGTACCATGACCACCGAGCAG

CGAC   

Cloning of RIG-I  

RIG-I-F2 GGAGGTACCTCATTTGGACATTTCT

GCTG 

 

H3F11 CGCCTCGAGTGGGTTCGCGACCAT

GC 

Cloning of vp13 D1  

H3R12 CAGAATTCTTAGGTTGGTTGGATGA

ATAT 

 

H3R24 CAGAATTCTTACCTGGTCACGCCAA

GCGG 

Cloning of vp13 D2 

H3F8 GCGAATTCATGTTCATCCAACCAAC

CC 

Cloning of vp13 D3 

H3R23 CAGAATTCTTAGCGGCGCGGCCCCA

GCTGTG 

 

T2H3F2 GCCTCGAGGTTCGCCACCATGCGCC

CTAG 

Cloning ORF3 of genotype 

II 

T2H3R2 GCGAATTCTCAGCGCCGCAGCCCCG

GCTG 

 

KH3F2 CGCTCGAGGATCACCATGTGCCCTA

G 

Cloning ORF3 of Kenow 

HEV 

KH3R3 GCGAATTCTCAACGGCGCAGCCCCA

GC 

 

T4H3F2 GCCTCGAGAGATGCCACCATGCGC

TCTCG 

 

Cloning ORF3 of genotype 

IV 

T4H3R2 GCGAATTCTCAACGGCGCAGCCCCA

GCTG 

 

Table 6.1 List of primers used in chapter 6 
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Conclusion 

In this study, we examined the mechanisms of HEV interference with host innate 

immune system, specifically IFN induction and IFN-activated signaling. Interestingly, 

our data indicate that HEV modulates the IFN pathways in both a positive and negative 

way. On the one hand, the macro domain and PCP domain from HEV ORF1 polyprotein 

are able to inhibit host IFN induction via block IRF3 phosphorylation and ubiquitination 

of RIG-I and TBK1, which resulted in inhibition of IFN induction. Moreover, IFN-

activated signaling can be inhibited by Met domain and ProX domain of the ORF1 

product as well. This indicates HEV is able to antagonize host innate immunity to 

facilitate virus replication.  

On the other hand, vp13, the product of HEV ORF3, plays an active role in IFN 

induction that is reverse to the role of ORF1 product described above. Our data indicate 

vp13 is able to elevate RIG-I expression and activation to enhance host IFN induction. 

Although data from this study indicate functions of ORF1 and ORF3 products seems to 

be antagonizing each other, considering temporal  order of ORF1 and ORF3 expression 

in HEV-infected cells, we hypothesize that HEV modulates host innate immune response 

differently at different stages of viral replication.  

In the early stage of HEV replication, it inhibits host innate immune response to 

facilitate its replication. In the middle and late stage of its replication, the capsid protein 

and vp13 are translated from HEV subgenomic RNA, followed by virion packaging and 

egress. During this late stage, innate immune response, specifically, proinflammatory 

cytokines, may be enhanced by vp13 and the enhancement may be related with liver 
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injury and virion release. This assumption is corroborated by a recent report that indicates 

that higher cytokine level in HEV-infected pregnant women correlates with fulminant 

liver failure and liver injury. 

The interesting data from this study provide us with more insight on HEV-cell 

interactions and its molecular pathogenesis. The data can also facilitate the development 

of specific antiviral therapeutics against HEV infection, which should benefit HEV-

mediated acute liver injury in immunocompetent individuals or chronic infection in 

immunocompromised patients. Further work is warranted to elucidate the mechanisms of 

HEV modulation during different stages of viral replication and/or infection.  
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Future Directions 

In this study, we firstly demonstrated that HEV inhibit host IFN induction via 

PCP and X domain from ORF1 product. Although PCP domain had been identified as 

deubiquitinase for RIG-I and TBK1, it is possible that PCP domain may cause 

deubiquitination for more molecules such as TRAF6 and NEMO to inhibit NF-κB 

mediated cytokine induction. We will test this hypothesis in future works. Also, the 

mechanism of inhibition of IRF3 activation by X domain is not known. Further work will 

elucidate how X domain inhibits the phosphorylation of IRF3 and the essential motif of X 

in this interference.  

On the other hand, we expect X domain may play more roles than inhibition of 

IRF3 activation. We had observed that X domain can bind chromosome tightly when 

expressed in HEK293T. It is possible that X domain may able to regulate a wide range of 

host gene expression and this could be a common function for X domain homologues in 

other viruses. We will examine this speculation in future works as well. 

In the Chapter 5, we demonstrated HEV Met domain and ProX domain from 

ORF1 product inhibit IFN signaling as well. We speculated the Met domain may result in 

promoter methylation which is downstream of STAT1 phosphorylation and nuclear 

translocation to dampen JAK/STAT activated gene expression. On the other hand, as X 

domain is part of the ProX fragment, it is possible that X domain could bind with ISRE 

promoter region to inhibit transcription initiation. These speculations will be examined 

further in future. 

The vp13 of HEV has been demonstrated as a multifunctional protein. In addition 

to previous knowledge, we further demonstrated that vp13 can enhance RIG-I mediated 
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signaling. Along this line, the detail mechanisms of the interference are not known. 

Further work will be done to figure out how vp13 extends the half-life of RIG-I and what 

the consequence is for the vp13 enhancement of RIG-I signaling in pro-inflammatory 

cytokine induction.   

In addition, vp13 can be explored to enhance vaccine efficacy by increasing 

innate immune response. Currently, we try to insert vp13 into the genome of modified 

live virus (MLV) vaccine strain of PRRSV to see whether vp13 can be utilized to 

enhance vaccine efficiency of the MLV. Taken together, our study generated valuable 

information that can be further explored for studies on HEV pathogenesis and for the 

vaccine and antiviral drug development for HEV and PRRSV. 
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