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This dissertation proposes three new methodologies in empirical production

economics for assessing technical change, production risks, and technological frontiers.

Each methodology is demonstrated with an application to Maryland dairy operations,

with an emphasis on comparing production technologies between confinement and

management-intensive grazing (MIG) dairy systems. The rapid decline of small to

medium scale dairies has made the study of alternative dairy production like MIG

politically and socially important.

The first essay develops a regression-based approach to the Malmquist produc-

tivity index (MPI) decomposition that attributes production heterogeneity to techni-

cal change (i.e., shifts of technological frontiers) and technical efficiency change (i.e.,

shifts of technical efficiency). Unlike the conventional, producer-level decomposition

measures, the proposed method obtains sample-level decomposition measures, for

which the researcher can fully utilize unbalanced panel data and control for the in-

fluence of potentially-confounding non-production factors. The results find 1.3% and

0.6% annual technical change during 1995-2009 for confinement and grazers respec-

tively. For both dairy systems, farm ownership and off-farm income are positively

and negatively associated with technical efficiency respectively.

The second essay considers an empirical application of the state-contingent (SC)

approach to production risks. In the context of agricultural production, uncertainty

in the SC framework is defined over distinct weather events or market conditions,

for which the producer is assumed to prepare a portfolio of SC production outcomes.



This study shows how production data over multiple years can be regarded as mul-

tiple draws from the contingent states of nature, by which SC technologies can be

approximated by Data Envelopment Analysis (DEA). The results suggest that op-

timal production decisions for a moderate-to-maximally risk-averse producer have

become riskier for the confinement system and less risky for the grazing system.

The third essay proposes a refinement of the DEA frontier approximation by

integrating the concepts of technical, allocative, and scale inefficiencies. Technology

is estimated in the form of a weighted-average of the benchmarking-frontiers that

are associated with these inefficiency concepts. In the current dataset, the proposed

method finds 7.5% to 9.2% higher mean-technical efficiency than the standard prac-

tice, indicating the increased discriminatory power in efficiency analysis.
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Chapter 1: Introduction

The US dairy industry has gone through significant structural changes, which

has nearly halved the number of dairy farms from 1992 to 2007. Most of this decline

is attributed to the disappearance of small-to-medium scale dairies (e.g., less than

200 cows) in the face of the competition against newly-emerged, very large-scale

operations (e.g., over 1,000 cows). The search for economically-viable solutions for

small to medium scale dairies has made the study on alternative dairy production

politically and socially important.

In traditional dairy regions like the Northeast, some dairies have been experi-

menting with management-intensive grazing (MIG) techniques. Using a uniquely-long

panel dataset of Maryland dairy operations over 15 years, Hanson et al. (2013) pre-

viously investigated the systematic differences in production decisions between MIG

dairies (or “grazers” in below) and conventional confinement dairies (or “confine-

ment”). The study concluded that financially, MIG is equally competitive and likely

less risky. This dissertation utilizes the same dataset and expands on these results.

The main findings include: varying rates of technical change and technical efficiency

change for the two dairy systems, increased and decreased riskiness for confinement

and grazers respectively, inefficient allocation of crop acreage between the two dairy

systems, and tendencies for over-utilization of machinery under confinement and that

of labor under MIG.
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Compared to major crop productions, where large-scale operations have long

dominated, the dairy sector presents a case of large production heterogeneity where

many small- and medium-scale producers coexist with very large-scale producers.

Given the diverse production practices across scales of operations, technical efficiency

has been an important topic in the empirical literature on dairy production. In ad-

dition, the rapidly-increasing consumer interests in organic foods, grass-fed livestock

products, and environmentally-sustainable production practices have created oppor-

tunities for smaller-scale producers to simultaneously pursue economic viability in

addition to other goals of farm resource-managements. These factors motivate the

comparison of confinement and MIG dairies, as described in chapter 2.

The main chapters 3, 4, and 5 develop new tools for empirical production eco-

nomics in assessing technical change, production risks, and technological frontiers

respectively. These methods are demonstrated with applications to Maryland dairy

operations, with an emphasis on comparing the production technologies of the two

dairy systems.

Chapter 3 links two strands of literature: one that pertains to the measurement

of technical change and the other that analyzes the determinants of technical effi-

ciency. The comparison of intertemporal productivity changes and the correlation be-

tween decisions and producer characteristics are integrally modeled as the analysis of

between-frontier and within-frontier efficiency. Compared to the standard Malmquist

Productivity Index (MPI) decomposition of efficiency scores by Data Envelopment

Analysis (DEA), the proposed method allows for a full utilization of balanced panel

data and the use of control variables in a regression framework.

Chapter 4 investigates a feasible empirical application of the state-contingent
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(SC) perspective on production uncertainty, which assumes that the producer pre-

pares a portfolio of SC outcomes for the states of nature. Under the assumptions of (i)

no contingent-states change, (ii) no technical change, (iii) time-invariant SC portfolio

decisions by the producer, and (iv) cross-sectionally homogeneous state realizations,

balanced panel data can be viewed as cross-sectional data of the partially-revealed

SC portfolio decisions. This allows for estimating SC technologies and simulating

optimal portfolios under various risk preferences. The SC analysis is contrasted with

the common approach that views a stochastic distribution of production outcomes as

exogenously-determined production risks.

Chapter 5 extends a technological frontier approximation in DEA that inte-

grates the concepts of technical, allocative, and scale inefficiencies. In contrast to the

standard sequential estimations of these inefficiencies, the proposed method estimates

them simultaneously using a weighted average of the associated benchmarking fron-

tiers as a new technology approximation. Optimal weight selection is derived from

well-known statistical properties of DEA estimators.

Chapter 6 draws brief conclusions, highlighting the main findings in empirical

analyses and contributions of the proposed methodologies.

3



Chapter 2: The Background, Motivations, and Data

2.1 Overview

This chapter provides an overview of economic discussions on the US dairy

sector and motivations for the study, followed by a brief description of the dataset

used throughout the dissertation. The central focus in the US dairy literature is the

increasing concentration of dairy production at large scale operations. A dominant

perspective is that changes in technologies and production environments have enabled

large-scale dairy operations to significantly benefit from scale economies while leaving

many small-scale dairies unable to compete. Several of the most influential papers on

the subject are briefly reviewed in below.

In regions like the Northeast and the Upper Midwest, management-intensive

grazing (MIG) has emerged as a rediscovered dairy practice for small-scale dairies

to potentially enhance their economic viability. MIG involves increased utilization

of pasture as a main source of forage (by rotating cows through finely-partitioned

plots on a daily basis), which greatly reduces the need for purchased or self-harvested

feeds. While milk production per cow typically declines under MIG, the cost saved

through reduced expenses in feed, labor, machinery, energy, and veterinary care could

more than offset the lost milk sales revenues. Existing studies generally support the

equal or higher competitiveness of MIG dairies. This dissertation utilizes unique panel

data on Maryland dairies over a 15-year period to make relatively robust comparisons
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between MIG and conventional confinement dairy systems. The discussions on MIG

in the following motivate the analyses presented in later chapters.

2.2 Trends in US Dairy Production and Scale Economies

The US dairy industry has been undergoing substantial consolidations in pro-

duction. Table 2.1 contrasts the total number of farms and farm assets in the US

dairy sector to the US agriculture as a whole in the four rounds of Agricultural Cen-

sus from 1992 to 2007. While the total number of farms has been relatively stable

in the US agriculture, the number of dairy farms has declined by 49% from 113,412

to 57,318 during this period. A similar decline has occured in the land acreage used

for dairy production. In contrast, at the farm level, the monetary values of land

and building structures and those of machinery and equipment have increased by

247% and 141% in the dairy sector, which is substantially faster than 122% and 88%

for the corresponding national trends of increasing capital requirements and mecha-

nization. Also, the composition of operational scales in table 2.2 suggests the rapid

decrease in small-scale dairies and the steep increase in large-scale operations. By

2007, large-scale dairies with a herd size of 1,000 or higher accounted for only 3% of

the dairy farms yet produced 42% of milk output in sales values (2007 US Census of

Agriculture).

The increase in the scale and intensity of dairy operations is commonly at-

tributed to a combination of economies of scale in the use of buildings, machinery,

and other fixed factors of production and greater efficiency in the use of variable in-

puts (Kumbhakar et al., 1991; Tauer and Mishra, 2006; Mosheim and Lovell, 2009;

Nehring et al., 2009). Using the data on 519 dairies from the USDA 1985 Farm Cost
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and Return Survey, Kumbhakar et al. (1991) estimated a stochastic Zellner-Revankar

production function, a variant of Cobb-Douglas production function with a flexible

returns to scale (RTS) structure, along with farm-specific technical and allocative

efficiency measures. They found that large-scale farms were more cost efficient and

also technically and allocatively more efficient, compared to medium- and small-scale

farms.

Tauer and Mishra (2006) estimated stochastic unit-cost frontiers with 755 dairy

operations in the Agricultural Resource Management Survey (ARMS) of year 2000.

Variable and fixed cost frontiers per hundredweight (cwt) of milk were modeled with

either quadratic or logarithmic function of herd size and state fixed effects. Economies

of size and the correlation between farm size and technical inefficiency were found in

the fixed cost equation but not in the variable cost equation. The fixed cost attributed

to technical inefficacy was much larger than that of size inefficiency. For example, with

a herd size 100, a farm would have incurred extra $6.62 (per cwt) due to technical

inefficiency and $0.82 due to size inefficiency. The total fixed cost for this group,

including these inefficiency costs, was estimated at $10.86 (per cwt), compared to

$8.66, $5.74, and $3.55 for the farm groups with a herd size of 200, 500, and 1,000

respectively. The authors concluded that small-scale dairies could be competitive

with large-scale operations if they were technically efficient.

Using the same ARMS 2000 data, Mosheim and Lovell (2009) estimated a vari-

able cost function incorporating parameterized technical inefficiency and cost share

equations for allocative inefficiencies. The authors analyzed variable costs and fixed

costs of capital to study economies of scale from two sources: the elasticities of vari-

able costs with respect to outputs (e.g., an elasticity smaller than one indicating
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increasing returns) and with respect to capital (e.g., a negative elasticity indicating

decreasing variable costs in capital). On both accounts they found increasing returns

to scale. The plot of a calculated average incremental cost curve for milk production

visually illustrated a decreasing average cost curve for herd sizes ranging from 50 to

2000.

Lastly, Nehring et al. (2009) examined separate dairy production frontiers for

conventional, confined operations, and pasture-based systems with ARMS 2003-2007

data sets.1 By estimating system-specific distance functions by SFA, conventional

operations of the largest category were found economically the most superior with

respect to returns on assets, variable cost per cow, and technical efficiency. The

elasticity of inputs to outputs was estimated at 0.65 for conventional dairies and 0.44

for pasture-based dairies, both suggesting the presence of scale economies.

While the above studies all point to increasing returns to scale in dairy produc-

tion, several methodological weaknesses can be noted. First, some of the production

frontiers may be misspecified. The Cobb-Douglas-like function in Kumbhakar et al.

(1991) is estimated with three inputs of cows, capital, and labor with regional and

farm-size dummies. This specification is more restrictive than the translog form used

in Mosheim and Lovell (2009) or Nehring et al. (2009) and offers no clear explanations

for including the arbitrary farm-size dummies and excluding feed (a major expense

category in dairy production) from the input specification. Also, the stochastic cost

frontiers of Tauer and Mishra (2006) that utilize herd size as both a covariate of the

cost frontier and a determinant of technical inefficiency would in fact violate the basic

1Dairy-focused AMRS 2005 is used to predict dairy system determination for other ARMS data in
2003-2007.
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assumption of SFA that technical inefficiency is independently distributed from the

determinants of a frontier.

Second, despite the interests in identifying scale economies, the most crucial

variables like capital stock or fixed cost may be poorly constructed. Mosheim and

Lovell (2009) define capital K as K = (revenue − V C)/(cost of K) where V C rep-

resents variable costs over feed, labor, and energy, implying that any measurement

error in V C would propagate through the measurement error in capital K. Not only

does the labor cost include some crude estimates for the opportunity costs of family

labor, but also every farm is assumed to exactly break-even, by which every omit-

ted cost component in V C is counted as a part of capital K.2 In particular, given

highly variable milk and feed prices, imposing such a zero-profit condition for a sam-

ple of a single production year seems unwarranted. In another example, the proxy

for capital input in Kumbhakar et al. (1991) is constructed based on dairy machinery

hours that consist of tractor-operation hours and horsepower-adjusted feed-machine

hours, ignoring the substantial portion of capital such as land holdings or building

structures.

Third, the relationship between variable costs and capital is inherently diffi-

cult to estimate. The methodology used in Mosheim and Lovell (2009) traces back

to Caves et al. (1981), in which the cost structure for the railroad industry was

estimated for exogenously-determined outputs of transportation services as a pseudo-

public good. In contrast, in the case of dairy production, outputs are a part of the

choice variables. Under standard economic theory, an increase in capital would be

2More natural construction seems K = (Total Cost − V C)/(cost of K) without imposing restrictions
on profits.
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accompanied by an increase in outputs until the contribution of the new capital on

variable costs completely dissipates. Thus, the contribution of capital on variable

costs for a given output level may not be estimated from observational data if capital

investments and outputs are simultaneously determined. The constant variable costs

with respect to farm size found in Tauer and Mishra (2006)3 is indeed sensible in a

situation where producers of various scales of operations face a common set of factor

prices.

Fourth, their production frontier estimations may be confounded with regional

heterogeneity in production environments. Dairy production practices vary substan-

tially across farms, including the conventional joint production of milk and feed crops,

emerging large-scale operations with “dry lots” (confined and almost entirely relying

on purchased feeds), and MIG operations. To what extent the regional compositions

of these practices are attributable to regional differences in production environments

such as climate, resource scarcity, market efficiency, and social institutions remains

an open question. Without this knowledge, for instance, it is unclear to what extent

the economy of scale in California or Idaho could be replicated in other states.

The previous studies try to account for unobserved regional heterogeneity via

fixed effects (i.e., region-specific constants) at the state level (Tauer and Mishra,

2006), the regional level (Kumbhakar et al., 1991), and a single indicator for tradi-

tional dairy states (Mosheim and Lovell, 2009), which may be inadequate to properly

accommodate producer adaptations to such heterogeneity. If production decisions

follow fundamentally different data generating processes across regions, the distribu-

tional assumptions used in the above studies would be violated. Blayney (2002) and

3This result is also found when inefficiency specification is omitted.
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McBride and Green (2009) suggest that the observed trends in scale compositions are

likely due to favorable regional conditions such as the lower cost and availability of

land, feed, and labor. In fact, some studies that focused on particular regions found

no evidence of scale economies in production (in Wisconsin; Cabrera et al., 2010) and

in the propensity to stay in business (in Connecticut; Foltz, 2004).

Simple budgetary statistics by scale and region are provided to supplement the

above discussions. Tables 2.3 and 2.4 are taken from “Milk cost of production by

size of operation” and “Milk cost of production by State” for years 2005 and 2010

by USDA Economic Research Service, which reported revenues and expenses per

hundredweight (cwt) of milk as well as operational characteristics like average herd

size and milk output per cow. In table 2.3, some indications for scale economies are

discerned in the estimated opportunity cost of unpaid labor and the capital cost of

machinery, both of which decrease substantially with herd size (e.g., $0.16 (per cwt)

and $1.90 respectively at 1,000+ cows and $3.47 and $4.37 at 100-199 cows in 2010).

These are typically considered part of fixed costs, which do not vary with the level

of outputs and is spread over the total quantity of outputs. On the other hand, the

influence of scale economies on variable costs is rather small (e.g., $8.98 (per cwt) for

feed costs and $1.87 for hired labor at 1000+ cows and $11.18 and $1.25 respectively

at 100-199 cows in 2010). Also, milk output per cow tends to be higher at larger scale

operations (e.g., 23,019 (pounds/cow) at 1000+ cows and 18,925 at 100-199 cows in

2010) though the rate of increase declines for medium-scale operations (e.g., 19,840

at 200-499 cows and 22,546 at 500-999 cows).

Table 2.4 contains similar statistics grouped by State.4 The price of milk, set by

4Due to space limitation, the top 5 states in milk sales are reported among the total of 23 states surveyed.
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regional marketing orders, varies more by time than by State (see figures 2.1 and 2.2).

In contrast, feed costs tend to vary by State in a given point in time (e.g., ranging from

$8.02 in WI to $9.19 in PA in 2005; from $8.23 in ID to $11.06 in WI in 2010), likely

reflecting regional differences in production practices and compositions of purchased

and self-harvested feeds. The opportunity costs of unpaid labor and the capital cost

of machinery, spread over the total output, dramatically vary by State (e.g., together

$1.76 (per cwt) in ID and $10.68 in PA in 2010) and have significant influence on

the overall financial performance. Also notable is relatively high variability in the

average herd size and milk output per cow across States (e.g., 1,098 cows with 22,010

(pounds/cow) in ID and 73 cows with 19,701 (pounds/cow) in PA in 2010). It may be

surprising to see that even the top dairy states are characterized with relatively small

dairy farms on average except in California and later in Idaho in 2010. Overall, there

is considerable regional heterogeneity in production practices, in which the structure

of scale economies may be also different.

Figures 2.1 and 2.2 present the yearly fluctuations of milk price and feed cost

for years 2005-2010. Around year 2008, the fear of food crises around the world had

pushed food prices until financial downfall overtook the trend. Large-scale production

in California that heavily depended on purchased feeds seems most severely affected

during this period. Despite the large price fluctuations, the trends of increasing

average herd size and milk output per cow were almost unchanged. This seems to

suggest that dairy farms have very limited capabilities to adjust their production

in response to price changes and hence the aggregate supply is nearly fixed in a

short run. Some farms focusing on maximizing long-term profits might have utilized

production contracts under predetermined prices or participating in futures markets
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to hedge market risks. While the period 2005-2010 may not be very representative,

the volatile market conditions suggest that risk management has become a major

component of dairy operation.

In many traditional dairy communities where smaller dairy operations are still

prevalent but are one the decline, the debates on scale economies and survival of

smaller farms have become an important policy issue. While the mechanism behind

the on-going structural change in the industry, particularly the relationship between

increased cost savings from scale economies and the shift in regional comparative

advantages, is yet to be fully uncovered, some solutions are needed to mitigate the

rapid and disproportional decline of small-scale dairies. This dissertation contributes

to the discussion of whether and how the MIG dairy system can be a viable, alternative

production model in these communities.

2.3 Management Intensive Grazing & Motivations for Studies

Management-intensive grazing (MIG) is gaining attention in the Northeast and

Upper Midwest as an economically competitive practice for smaller-scale dairies.

Studies using data from short term experiments and single-year farm records indicate

that, while MIG systems produce less milk per cow, they can be equally or sometimes

more profitable than confinement systems due to lower operating costs (Elbehri and

Ford, 1995; Rust et al., 1995; Dartt et al., 1999; Soriano et al., 2001; Tucker et al.,

2001; Gloy et al., 2002; White et al., 2002; Tozer et al., 2003; Fontaneli et al., 2005;

Gillespie et al., 2009).5 The recent analysis of Maryland dairy operations over a 15-

5Regional studies on the profitability of grazing relative to the confinement operation include field ex-
periments in Minnesota (Rust et al., 1995), Virginia (Soriano et al., 2001), Mississippi (Tucker et al., 2001),
North Carolina (White et al., 2002), and Pennsylvania (Tozer et al., 2003) and economic analyses on the
data collected in Pennsylvania (Elbehri and Ford, 1995), Michigan (Dartt et al., 1999), and New York (Gloy
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year period has augmented such findings (Hanson et al., 2013). Additionally, MIG is

touted for its environmental sustainability with lower phosphorous run-offs (Bishop

et al., 2005), reduced soil erosion (Digiacomo et al., 2001), and increased carbon

sequestration (Guo and Gifford, 2002).

In a broad perspective, one can also see the development of the MIG dairy sys-

tem as a form of a producer adaption to the trends in consumer attitudes and changing

production environments. Consumer trends are a major driver for changing product

characteristics and production practices in many sectors of agriculture. For exam-

ple, the increased demand for diversity generally encourages a development of new

products beyond the long standardized varieties of agricultural products. Also, some

consumers seek higher food quality and food safety through assurances or certifica-

tions beyond the standards set by regulators. Non-traditional product attributes (e.g,

environmental protection, animal welfare, local employments, fair-trade agreements)

can influence the demand for agricultural products just as traditional characteristics

like flavors and freshness do. Some of them are conducive to more flavorful or more

nutritional products, as demonstrated with many organically- or locally-produced

fruits and vegetables. Since the implementation of stringent food safety procedures,

minimum quality standards, and mandatory labeling policies may be perceived as dis-

guised protectionism and potentially develop into trans-border disputes, the oversight

by regulators would likely be substituted over time with voluntary consumer-producer

interactions, aided by information technology and social media. This scenario sug-

gests that producers face higher incentives to improve quality and safety beyond the

standardized grading scales when their products can be more easily and more distinc-

et al., 2002).
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tively marketed to processors, retailers, or directly to consumers. Then, successful

farms would seek to produce either standardized products most efficiently or to create

additional values through product differentiations.

The dairy industry is no exception to emerging consumer concerns for potential

effects of the modern agricultural production and consumption on health, environ-

ments, and local communities. Industrial-scale dairy operations relying on artificial

hormones, antibiotics, and biotechnologies are increasingly met with varying con-

sumer responses. Meanwhile, the demand for more “naturally” or “responsibly” pro-

duced milk seems to grow as the moral visions of producers resonate with those of

consumers. Dairy producers need to be attentive not only to regulatory standards

but to the trends in consumer preferences for product attributes such as local brands,

organic or ecological certifications, unpasteurized (raw) milk, and additional health

or nutritional benefits that allow for product differentiations. MIG operations seem

well-suited for producers to experiment with enhancing multi-dimensional values of

dairy products.

While future agricultural policies are highly uncertain, some changes may be

postulated if the above consumer trends provide some guidance to policymaking. In

a diverse agricultural-product market with an increased degree of product differentia-

tion, it will be more difficult to subsidize producers directly through price supports or

indirectly through input use for specific outputs. If such traditional subsidy programs

are phased out, individual producers must assume increased responsibility in value

creation and risk management. For the latter, some producers already hedge risks

through private insurance schemes and futures markets, which weakens the case for

continuing traditional insurance subsidies and income supports. Future policies may

14



be alternatively focused on promoting efficient supply chains and fair competition by

facilitating a network of contractual and institutional relationships between suppliers,

producers, processors, and financial institutions with minimal distortionary influence

on agricultural markets.

In dairy production, future prices of milk and feed will pose the biggest risks to

many producers. Federal and State marketing orders have long been used to stabilize

milk prices to partially offset negative production shocks. These policies may fail

to keep pace with increasingly-volatile prices of feed and energy-intensive inputs. In

theory, uncertainty over input and output prices can be hedged in futures markets, yet

such hedging would be ineffective for short-term decisions due to the highly serially-

correlated nature of future prices. The use of production contacts, as widely seen

in poultry and hog industries, can shift a portion of risks to large-scale processors,

which comes at the implicit cost of insurance to producers. An alternative is the

MIG system that partially insulates producers from market risks as the intensive use

of pasture greatly reduces the need for purchasing or producing feed. On the other

hand, compared to the conventional dairy systems, it is more constrained by the

cost and availability of land, which is subject to changes in non-dairy commodity or

conservation programs.

Additionally, the advantage of scale economies that might have benefited the

large-scale dairies may erode under a variety of environmental policy initiatives to

improve water and air quality. There is a possibility that the Environmental Protec-

tion Agency (EPA) will start to regulate major agricultural producers as point-source

polluters, especially highly-concentrated dairy operations for their waste disposal. In

the Northeast, the dairy sector could be brought under water quality regulations for
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reducing nitrogen and phosphorous runoff into the Chesapeake Bay to meet the to-

tal maximum daily load (TMDL) of these pollutants. Regulations requiring dairy

operations to internalize their pollution or to offset the associated damage will raise

the comparative advantage of MIG operations relative to large-scale, confinement

operations.

While many of the above topics are beyond the scope of this dissertation, this

broad perspective provides a context for the following chapters that compare the

conventional confinement operations and MIG operations for technical change, risks,

and technological frontiers.

2.4 Data

This dissertation utilizes data derived from IRS Form 1040 Schedule F (farm

income tax returns) of 63 dairy farmers who have been participating in the University

of Maryland Extension. Twenty of these farmers have used an MIG system for all or

part of the 15-year period covered by the study. The dataset contains a total of 580

unbalanced-panel observations on herd size, milk output, crop sales, cow sales, expen-

ditures on numerous inputs, and profit for the period 1995-2009; some demographic

information (e.g., age, education, family size and composition) and attitudes toward

risks. As briefly summarized in table 2.5, the dataset contains on average 9 years of

observations per farm, with 11 MIG farms and 28 confinement farms observed per

year.

One unique aspect of the dataset is its relatively-long survey period. Most

studies on MIG have used either single-year cross-section data from actual farm en-

terprises or experimental data collected over a relatively-short time period, limiting
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the inferences that can be drawn from them, especially in relation to long-term eco-

nomic sustainability. In contrast, the unique panel of financial data, collected during

a 15-year-long extension program, provides an opportunity to investigate relative per-

formances of MIG operations with more robustness and more depth than previous

studies. Since financial snapshots of dairy farms are heavily affected by milk and feed

prices of the time, it is necessary to examine the long-term average and variability

of income to make fair and robust assessments. Table 2.6 provides comparisons for

various revenues and expenses from Hanson et al. (2013). MIG operations produce

less milk per cow but also spend less on producing milk by reducing purchases of feed,

fertilizers, chemicals, and other inputs. Lower costs contribute to lower variability of

income, leading to lower downside income risk.
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2.5 Tables

Table 2.1: Number of Farms and Farm Asset

Year Farms Land in farms Ag. Revenue Land & Build. Machine
(acres) ($1000) ($/farm) ($/farm)

(A) US Agriculture, Total
1992 1,925,300 945,531,506 162,608,334 357,056 48,375
1997 1,911,859 931,795,255 196,854,649 449,748 57,678
2002 2,128,982 938,279,056 200,646,355 537,833 66,570
2007 2,204,792 922,095,840 297,220,491 791,138 88,357

% ∆ 15% -2% 83% 122% 83%

(B) Dairy cattle and milk production
1992 113,412 38,133,176 20,008,977 377,865 92,624
1997 86,022 30,612,398 20,291,979 500,245 104,000
2002 72,537 27,351,777 22,737,525 845,790 155,271
2007 57,318 21,270,780 34,754,031 1,313,027 223,368

% ∆ -49% -44% 74% 247% 141%

Based on Agricultural Census 1992-2007.

Table 2.2: Number of Farms by Herd Size

Herd Size 1992 1997 2002 2007 % ∆

20 to 49 49,418 33,137 21,974 16,344 -67%
50 to 99 41,813 33,488 25,465 18,986 -55%
100 to 199 14,062 12,602 10,816 8,975 -36%
200 to 499 4,652 4,881 4,546 4,307 -7%
500 to 999 1,130 1,379 1,646 1,702 51%
1,000 or more 564 878 1,256 1,582 180%

sub-total 111,639 86,365 65,703 51,896 -54%

Based on Agricultural Census 1992-2007 milk cow inventory.
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Table 2.5: Sample Characteristics: Summary

Item Mean S.D. Min Max

(A) Grazers
years/farm 8.6 4.9 1 15
farms/year 10.9 3.1 4 15
cows 86 29 37 195
cwt milk 12320 5605 2670 42955
acres (total) 283 134 115 700
acres (pasture) 152 60 53 280
acres (crop) 132 108 0 600

(B) Confinement
years/farm 8.7 4.7 2 15
farms/year 27.7 3.9 19 32
cows 116 70 22 468
cwt milk 22634 16114 3761 110668
acres (total) 338 160 90 845
acres (pasture) 50 39 0 141
acres (crop) 289 155 60 704

Sources: Hanson et al. (2011).

Table 2.6: Sample Characteristics: Differences Under Year Fixed Effects

Item Grazers Confinement Difference

(1) Milk Output (cwt) 11545 22952 11,407***
(2) Milk Sales ($) 180884 359980 179,096***
(3) Crop Sales ($) 516 4516 4,000***
(4) Cattle Sales ($) 15771 20599 4,828***
(5) Other Income ($) 9940 25928 15,988***
(6) Chemical ($) 1073 9293 8,220***
(7) Custom Hire ($) 3600 11898 8,298***
(8) Depreciation ($) 22521 35378 12,857***
(9) Feed ($) 54476 104592 50,116***
(10) Fertilizer ($) 3988 13300 9,312***
(11) Fuel ($) 4513 9515 5,002***
(12) Interests ($) 8872 13808 4,936***
(13) Hired Labor ($) 3557 26192 22,635***
(14) Maintenance ($) 11290 27057 15,767***
(15) Seed ($) 4377 7812 3,435***
(16) Veterinary ($) 5119 18236 13,117***
(17) Supplies ($) 9788 18484 8,696***
(18) Gross Income ($) 207118 411046 203,928***
(19) Total Expense ($) 163308 361580 198,272***
(20) Net Profit ($) 43811 49467 5,656

Sources: Hanson et al. (2013). Statistical significance: * 10%, ** 5%, *** 1%.

21



Figure 2.1: Milk Price and Feed Cost for 2005-2010 By Size
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Figure 2.2: Milk Price and Feed Cost for 2005-2010 By Size
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Chapter 3: A Difference in Distance-Functions (DDF) Approach to Production Het-

erogeneity: Application to Technical Change Measurement

Kota Minegishi†

Abstract

This paper proposes a new approach to attributing observed production heterogeneity to

the shift of a technological frontier (i.e., technical change) and the shift of technical effi-

ciency (i.e., technical efficiency change) by extending the method of Malmquist Productivity

Index (MPI) decomposition into a regression framework. The method, named Difference in

Distance-Functions (DDF) approach, obtains decomposition measures at the sample level,

allowing for these measures to be estimated from unbalanced panel data and to be identi-

fied while accounting for the influence of non-production factors. An empirical application

using data on Maryland dairy operations during 1995-2009 finds an annual 0.60% MPI

that decomposes into a 1.29% expansion in the technological frontier and a 0.69% decline

in the mean technical efficiency. Farm ownership and off-farm income are associated with

4.48% higher and 5.78% lower technical efficiency respectively. The second version of the

TC measurement, derived from hypothetical technical efficiency assessments in the spirit

of the standard MPI calculations as opposed to a typical econometric formulation, yields

an annual technical change of 2.17%. Increasing summer rainfall, winter temperature, and

summer temperature by one standard deviation suggests 3.18%, 3.23%, and -3.46% shifts in

the technological frontier respectively. The DDF approach appears to perform best among

the alternative specifications which include the two-stage DEA of Simar and Wilson (2007),

two-stage SFA, and pooled SFA.

Keywords: Data Envelopment Analysis, Technical Change, Productivity Index

Decomposition, Sources of Frontier Gaps, Determinants of Technical Inefficiency,

Agricultural Economics
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3.1 Introduction

Understanding production heterogeneity is essential to policy-making for any

given industry. This study analyzes production heterogeneity in two dimensions:

production contexts such as the timing or the location of production decision and

non-production factors such as non-input-output characteristics of the producer, the

market, or the nature of production contexts. Research in the former is most fre-

quently associated with assessing technical change, or the intertemporal shift of a

technological frontier, while that in the latter with identifying the determinants of

technical inefficiency. It is relatively simple to study the two dimensions of production

heterogeneity simultaneously in a parametric frontier framework such as Stochastic

Frontier Analysis (SFA). Yet, a typical application under Hicks-neutrality implies

highly restrictive assumptions on the marginal rate of transformations (MRT’s: i.e.,

shape of a frontier) and the trajectory of frontier shifts. In general, there is little

theoretical ground for such explicit assumptions over the functional forms (i.e., tech-

nological frontier, technical inefficiency, and their intertemporal-shift structures), the

distribution of the composite error (i.e., technical inefficiency and stochastic noise

components), and the complex interactions between them.

On the other hand, for the nonparametric frontier framework such as Data

Envelopment Analysis (DEA), there is no such integrated approach to production

heterogeneity, and the literature reflects a disconnect between the two types of anal-

yses. This study fills the gap.

On the first dimension of production heterogeneity above, a prominent nonpara-

metric application is the decomposition of Malmquist Productivity Index (MPI) into

technical change (TC) and technical efficiency change (TEC), first conceptualized by

Nishimizu and Page (1982) and Caves et al. (1982a) and later adopted under DEA

by Färe et al. (1994). MPI is a generalization of the T́’ornqivist index that admits

technical inefficiency (Färe et al., 1994) and is closely related to Fisher’s productivity

index and the like (e.g., see Grosskopf, 2003). The common MPI decomposition using

DEA proceeds in two stages, where the researcher estimates time-specific technolog-

ical frontiers in the first stage and analyzes the relationships among the technical

efficiency measures against those frontiers in the second stage, yielding producer-level
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decomposition measures. Its advantage is the general treatment on the MRT’s and

their intertemporal structure, as demonstrated in empirical works such as Färe et al.

(1994), Kumar and Russell (2002), Timmer and Los (2005), and Färe et al. (2006).

Its disadvantage is that when summarized at the sample level, the overall TEC and

TC in the existing method may be biased due to the failure to utilize the entire

dataset (i.e., unbalanced panel data Kerstens and Van de Woestyne, 2014) or to

account for potentially confounding, non-production factors. This study extends the

MPI decomposition under a regression framework to overcome these drawbacks.

The second dimension of production heterogeneity, or the interaction mechanism

between production decisions and non-production factors, is perhaps where the non-

parametric frontier estimation is most frequently employed. Numerous studies have

examined the determinants of technical inefficiency in the form of a two-stage DEA

analysis (e.g., see Coelli, 2005; Fried et al., 2008), in which observed input-output

bundles are first evaluated for technical efficiency and then the predicted technical

inefficiencies are regressed on non-production factors (cast as the shifters for the un-

derlying distribution of technical inefficiency). This procedure has been criticized for

its lacking a clear relationship with the data generating process, and as such for the

poor statistical inferences of its coefficient estimates in the second stage. Today, its

leading statistical interpretation is found in Simar and Wilson (2007) where its use

is still cautioned (e.g., Simar and Wilson, 2011).

This study develops a unified, nonparametric frontier framework to study the

above two dimensions of production heterogeneity. The proposed Difference in Distance-

Functions (DDF) approach is an analysis of between-frontier and within-frontier ef-

ficiency measures that can also estimate their intertemporal trends and correlations

with non-production factors. It is a regression-based MPI decomposition as well as an

extended two-stage DEA analysis under a multiple-frontier setting. Defining sample-

level decomposition measures facilitates overcoming the above shortcomings of the

standard MPI decomposition, while setting the marginal effects (of non-production

factors) proportional to the level of technical inefficiency allows for a coherent statis-

tical interpretation of the two-stage DEA estimation.

The most significant implication of the DDF approach is that the general
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methodology of MPI decomposition, rooted in the traditional economic theory of

production such as Samuelson and Swamy (1974), Diewert (1976), and Caves et al.

(1982b), is shown to be empirically more flexible and accessible. Indeed, this in-

herently general treatment is more widely applicable for analyzing production het-

erogeneity with respect to varying production contexts such as diverse geographical

regions or different phases of policies and regulations.

The study proceeds as follows. Section 3.2 introduces the employed concept

of frontier comparisons, describes the proposed DDF approach, and derives an addi-

tional technique to compare frontiers. An empirical application to Maryland dairy

production is presented in section 3.3, followed by conclusions in section 3.4.1

3.2 The Model

3.2.1 Preliminaries

A production technology is a set of feasible input-output bundles, and the bound-

ary of this set is referred to as a technological frontier or simply frontier. The time-

specific technology in time period t is denoted by Ft = {∀(x,y) ∈ RL
+ × RM

+ : x

can produce y in time period t}. For each period t, Ft is assumed to satisfy the fol-

lowing properties: (a) feasible inaction ((0,0) ∈ Ft), (b) monotonicity ( (x,y) ∈ Ft,

(−x′,y′) ≤ (−x,y)⇒ (x′,y′) ∈ Ft), and (c) convexity ((x,y), (x′,y′) ∈ Ft, λ ∈ [0, 1]

⇒ λ(x,y) + (1 − λ)(x′,y′) ∈ Ft). The union of such time-specific technologies is

referred to as meta-technology F = ∪tFt, or a technology that envelops subsample-

specific technologies (e.g., Bhattacharjee, 1955; Griliches, 1964; Salter, 1966; Krueger,

1968; Hayami and Ruttan, 1970).

Consider an empirical representation by dataset {(xit,yit)}it∈IT for observation

it ∈ IT = {11, ..1T, .., IT} of producer i ∈ I = {1, .., I} and time period t ∈ T =

{1, .., T}. From a subsample of observations in IT(k) = {it ∈ IT| t = k}, Ft is

approximated by DEA under non-increasing returns to scale (NIRS) (i.e., a free-

1 Working paper version of this paper also contains (A) an appendix section on the joint modeling of a
technological frontier and technical inefficiency, (B) a simple extension to group-specific MPI decompositions,
related to (ODonnell et al., 2008; Chen and Yang, 2011), (C) additional illustrations for the second version
of TC measurement (cross-period TC), (D) a supplementary discussion on the comparison of frontiers and
mean efficiency levels, and (E) complete estimation tables. Estimation codes are also available upon request.
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disposable convex hull including the origin);

∀k ∈ T, F̂k ={(x′,y′) ∈ RL
+ ×RM

+ :
∑

j∈IT(k)

λj ≤ 1,

∑
j∈IT(k)

λjxj ≤ x′,
∑

j∈IT(k)

λjyj ≥ y′, λ ∈ R
Nk
+ }, (3.1)

which also yields meta-technology F̂ = ∪t∈TF̂t.

For given decision (x0,y0), the distance function of Farrell (1957) defines the

output-oriented, radial technical efficiency (TE) against time-specific technology Ft

and the meta-technical efficiency (MTE) against meta-technology F ;

TE(x0,y0; t) = inf{φ : (x0,y0/φ) ∈ Ft},

MTE(x0,y0;T) = inf{φ : (x0,y0/φ) ∈ F} (3.2)

where efficiency measures TE and MTE represent the maximum, proportional ex-

pansions of outputs in the corresponding technologies Ft and F . Measures TE and

MTE take values in (0, 1] if the decision (x0,y0) is technically feasible, with the value

of 1 being fully technically-efficient. TE can be greater than 1 when the decision in

a given time period outperforms the frontier of previous period. Estimates F̂t and F̂

allow for calculating feasible measures T̂E(x0,y0; t) and M̂TE(x0,y0;T). Note that

specification (3.1) implies M̂TE(xi,yi;T) = inft∈T{T̂E(xi,yi; t)}.2

The ratio of the two efficiency scores in (3.2) provides a technology gap ra-

tio (TGR) that measures the relative distance between the meta-frontier and the

subsample-specific frontier (Battese, 2002; Battese et al., 2004). TGR for period t at

decision (x0,y0) is;

TGR(x0,y0; t) = MTE(x0,y0;T)/TE(x0,y0; t), (3.3)

which represents the pseudo-technical efficiency of a subsample-specific frontier Ft

relative to the meta-frontier F along the ray (x0, λy0), λ ∈ R. Empirical applications

include ODonnell et al. (2008),Chen and Song (2008), and Moreira and Bravo-Ureta

2F̂ = ∪tF̂t implies M̂TE(x0,y0;T) = inf{φ : (x0,y0/φ) ∈ ∪tF̂t} = inft{inf{φ : (x0,y0/φ) ∈ F̂t}} =

inft{T̂E(x0,y0; t)}.

28



(2010).

Figure 3.1 depicts how decision (xt0,yt0) at point A is projected to meta- and

time-specific technologies F̂ = F̂t1 and F̂t0 at points B and C respectively. The projec-

tion of point A to the horizontal axis is denoted as point Q. The efficiency measures in

(3.2) lead to T̂E(xt0,yt0; t) = AQ/CQ evaluated against F̂t0 and M̂TE(xt0,yt0;T) =

AQ/BQ evaluated against F̂ , yielding T̂GR(xt0,yt0; t) = CQ/BQ.

The central idea in this study is to derive a measure of technical change from the

intertemporal changes in TGR’s. MTE, a productivity measure comparable across

time periods, can be decomposed into the within-time technical efficiency TE(.; t)

(i.e., the distance between the observed decision and the time-specific frontier) and the

between-time technological gap TGR(.; t) (i.e., the distance between the time-specific

frontier and the meta-frontier). Since the intertemporal shift of this productivity

measure is analogous to the Malmquist productivity index (MPI), the intertemporal

shifts in efficiencies TE(.; t) and in frontier gaps TGR(.; t) can be cast as alternative

decomposition measures for technical efficiency change and technical change respec-

tively. The next subsection briefly reviews the standard MPI decomposition and then

describes this new decomposition method.

3.2.2 Regression-Based Malmquist Productivity Index and Technical Change Mea-

surement

The Malmquist productivity index (MPI) by Caves et al. (1982a,b) compares

the efficiency measures of observations from two different time periods, say {t0, t1},

using the frontier of either period as a baseline. The calculation involves efficiency as-

sessments under hypothetical production contexts in the sense that decision (xt1,yt1)

in period t1 is evaluated against the technology of period t0 or vice versa. The change

in productivity with baseline of t0 or t1 is;

MPIt0(xt0,yt0,xt1,yt1) = TE(xt1,yt1; t0)/TE(xt0,yt0; t0)

MPIt1(xt0,yt0,xt1,yt1) = TE(xt1,yt1; t1)/TE(xt0,yt0; t1), (3.4)
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which are commonly combined into the geometric mean of the two (Färe et al., 1994);

MPIt0,t1(xt0,yt0,xt1,yt1) = [MPIt0(xt0,yt0,xt1,yt1) ·MPIt1(xt0,yt0,xt1,yt1)]1/2 .

(3.5)

The MPI can be decomposed into technical efficiency change (TEC) and technical

change (TC);

MPIt0,t1(xt0,yt0,xt1,yt1) = TECt0,t1(xt0,yt0,xt1,yt1) · TCt0,t1(xt0,yt0,xt1,yt1)

TECt0,t1(xt0,yt0,xt1,yt1) = TE(xt1,yt1; t1)/TE(xt0,yt0; t0)

TCt0,t1(xt0,yt0,xt1,yt1) =

(
TE(xt0,yt0; t0)

TE(xt1,yt1; t1)

TE(xt1,yt1; t0)

TE(xt0,yt0; t1)

)1/2

. (3.6)

In these definitions, TEC is the ratio of technical efficiency measurements for the

observed decisions in two time periods, where each decision is evaluated against the

corresponding time-specific frontier. Also, TC is the geometric mean of the rela-

tive distances between the two frontiers along two rays (xt0, λ0yt0) and (xt1, λ1yt1),

∀λ0, λ1 ∈ R+.

Figure 3.1 illustrates these measurements in the single-input, single-output

space. Two decisions in periods {t0, t1} are plotted at points A and A′. Point

A is projected to two time-specific frontiers F̂t0 and F̂t1 at points B and C, and so is

point A′ at points B′ and C ′. The projections of points A and A′ to the input axis

(i.e., zero-outputs) are labeled as Q and Q′ respectively. According to (3.6), the MPI,

TEC, and TC for the two decisions are;

M̂PI t0,t1 =

[
A′Q′/C ′Q′

AQ/CQ

A′Q′/B′Q′

AQ/BQ

]1/2

,

T̂ECt0,t1 =
A′Q′/B′Q′

AQ/CQ
, T̂Ct0,t1 =

[
BQ

CQ

B′Q′

C ′Q′

]1/2

. (3.7)

Sample-level summaries of MPI, TEC, and TC may be obtained by averaging

the corresponding producer-level estimates. For example, given panel data on pro-

ducers i = 1, .., I, the mean TC from time t0 to time t1 is E[TCt0,t1] = 1
I

∑
i TCt0,t1

(xi,t0, yi,t0, xi,t1, yi,t1). Estimates like this require balanced panel data over the time
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periods of comparison.

This study proposes a new decomposition method, named the Difference in

Distance-Functions (DDF) approach, in which a sample-level MPI decomposition is

derived from a regression analysis on estimated technical efficiencies. Specifically, the

following system of linear equations are used to analyze estimated distance func-

tions q̂it ∈{M̂TE(xit,yit;T), T̂E(xit,yit; t), T̂GR(xit,yit; t)} for the correlations

with observation-specific characteristics zit, linearly-detrended time-specific charac-

teristics wt, and time-fixed effects τ qt without constant terms3;

q ∈{MTE, TE, TGR}, ln q̂it = τ qt + zitα
q +wtγ

q + εqit (3.8)

where regression residuals εqit are assumed orthogonal to covariates zit, wt. Under

ordinary least squares (OLS), residuals εqit and parameters θq ∈ {αq, γq, τ qt } are

linearly decomposed;

εMTE
it = εTEit + εTGRit , θMTE = θTE + θTGR. (3.9)

For example, parameters τMTE
t , τTEt , and τTGRt are the time-t regression-means of

MTE, TE, and TGR respectively under identity τMTE
t = τTEt +τTGRt . Also, given the

logarithmic transformation applied to distance function q̂it, marginal effects αq and

γq represent proportional shifts in the dependent variable. The simplest case under

αq = γq = 0 reduces to the analysis of variance (ANOVA) for estimating time-specific

means.

The use of time-specific variables requires a few additional steps. First, to

preserve the linear trends of MTE, TE, and TGR under τMTE
t , τTEt , and τTGRt , the

linear time trends of these variables should be removed before being used in estimation

(3.8). Second, due to the linearity of (3.8), parameters γq and τ q need to be indirectly

estimated from τ̃ qt = γqwt + τ qt where τ̃ qt is the initial estimate of τ qt without using

variables wt.

Equation (3.8) provides a comparable framework between the standard MPI

decomposition above and the following counterpart. Namely, regression-based MPI,

3τ qt ≡
∑T
k=1 τ

q
t,k1t(t = k) for time-period indicators 1t(t = s) that take the value of one if t = s and

zero otherwise.
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TEC, and TC are the differences in time-specific means of MTE, TE, and TGR. For

any two time periods t0, t1 ∈ {1, .., T},

lnE[MPIt0,t1] ≡ τMTE
t1 − τMTE

t0 ,

lnE[TECt0,t1] ≡ τTEt1 − τTEt0 , lnE[TCt0,t1] ≡ τTGRt1 − τTGRt0 (3.10)

where E[.] is the expectation operator over relevant observations. These sample-level

measures are analogous to the ratio of means whereas the sample-averages of the

standard producer-level counterparts in (3.6) are based on the means of ratios. The

two sets of sample-level estimates differ in the method of aggregation but represent

the same distance concepts defined among production decisions and frontiers.

Replacing time fixed effects in specification (3.8) with linear trends defines its

close variant;

q ∈{MTE, TE, TGR}, ln q̂it = βq0 + βq1 t+ zitα
q +wtγ

q + εqit (3.11)

where parameter βq1 yields the direct MPI decomposition given by;

lnE[MPIt0,t1] ≡ βMTE
1 , lnE[TECt0,t1] ≡ βTE1 , lnE[TCt0,t1] ≡ βTGR1 . (3.12)

The two sets of decompositions in (3.10) and (3.12) are conceptually equivalent ex-

cept that specification (3.10) allows for the comparisons between any two periods

while specification (3.12) summarizes them as a linear time-trend. Under OLS, point

estimates of coefficients αq and γq are identical between (3.8) and (3.11).

The advantage of a regression-based MPI decomposition is twofold. First, the

ratio-of-means-estimators in equations (3.10) do not require balanced panel data since

the time-specific means are calculated without referencing to individual producers.

This enables the proposed MPI decomposition to be estimated from unbalanced panel

or repeated cross-section data. The capability of utilizing the data on firms that have

dropped out of survey or newly emerged as industry leaders is crucial to study an in-

dustry with active entries and exits. Second, the measures of MPI, TEC, and TC can

be refined by controlling for the potentially-confounding influence of non-production
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variables on production decisions. This also reveals correlations between the mean

MTE, TE, and TGR and observation-specific characteristics such as demographics

and skill sets of producers as well as time-specific shocks in weather and market

conditions.

In specifications (3.8) and (3.11), DEA consistently identifies time-specific tech-

nological frontiers and associated technical efficiency measures in the first stage, while

the OLS identifies the shifters of those frontiers and efficiencies in the second stage.

Now, these two-stage procedures under DDF must also conform with the so-called

separability condition of factors zit from the production possibility Ft. To put it

in econometric terms, variables zit are assumed to shift the underlying distribution

of technical efficiency TE(x,y; t) without influencing time-specific technical feasibil-

ity Ft. This assumption is applicable for any two-stage estimation that eschews a

single-stage, joint specification for a technological frontier and technical efficiency,

simultaneously using variables (x,y, z). A coherent two-stage estimation must (a)

consistently estimate frontier Ft without variables zit in the first stage and (b) cast

the second-stage model of technical efficiency as an integral part of some implicit data

generating process (DGP) for variables (x,y, z).

In theory, item (a) always holds under the well-known consistency of DEA tech-

nology approximations. Empirically, there is no easy way to ensure that the status of

full technical efficiency is statistically independent of variables zit; incidental correla-

tions may exist without implying the causality. In many situations, it is safe to assume

that variables like producer age, education, and experience may affect production de-

cisions without influencing technical feasibility, which is defined at the industry level.

In other situations, the concern for potential causality may be well-grounded, for ex-

ample, when variables zit can be seen as non-discretionary inputs such as weather

conditions in agriculture that limit the technical feasibility at a large scale. If these

factors are invariant across producers but vary with time, their influence on techno-

logical frontiers can be estimated as coefficients γTGR. If observation-level variation

is available, one can incorporate these variables into a technological specification.

For item (b), one way to ensure a coherent interpretation as the DGP is to em-

ploy a functional relationship between efficiency estimate T̂E(.; t) and variables zit
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that diminishes as the decision approaches the estimated frontier, or at the full tech-

nical efficiency. Conveniently, for specifications (3.8) and (3.11), the marginal effects

of environmental factors zit that are specified proportional to technical inefficiency

must diminish with technical inefficiency and become zero at the full efficiency (i.e.,

ln T̂E(.; t) = ln(1) = 0). Thus, this built-in separability condition does not need to

invoke a direct distributional assumption such as a truncated normal distribution in

Simar and Wilson (2007).

The relations of specifications (3.8) and (3.11) to the existing methodologies are

summarized in table 3.1. Notably, the equation under q = TE is an OLS variant of

the common two-stage DEA analysis on the determinants of technical efficiency. In

particular, Simar and Wilson (2007)’s model employs a truncated regression using

T̂Eit < 1 as a dependent variable. With the concepts of meta-frontier and tech-

nological gap, their model can be extended to the equations under q = MTE and

q = TGR.

In the single-output case, substituting first-stage DEA frontiers with SFA fron-

tiers yields variants of the above DDF specifications. For instance, for a given subsam-

ple indexed by IT(k), consider a SFA estimation for yit = ft(xit)exp(−uit+vit) under

technical efficiency exp(−uit) ∈ (0, 1] and stochastic noise exp(vit) ∈ (0,∞). Once

time-specific frontiers ft(xit) are estimated, the composite error term exp(−uit+vit) =

yit/ft(xit), say T̂E
SFA

it (xit,yit; t), can be regressed on variables zit (and wt) and time

trends by an OLS or truncated regression in the form of (3.8) or (3.11). Such a two-

stage SFA model can be consistent, despite the measurement error in the dependent

variable.

Under the Hicks-neutrality of frontier shifts, one could also employ a single-

stage, pooled SFA for a technological frontier, technical efficiency, and their time-

trends and shifters. For instance, a specification based on Battese and Coelli (1995)’s

efficiency-component frontier model is yit = Aitf(xit)exp(−uit+vit) for frontier shifter

Ait = exp(βf0 + βf1 t+ zitα
f +wtγ

f ) and efficiency component exp(−uit) = exp(βu0 +

βu1 t+ zitα
u +wtγ

u). A similar specification under a nonparametric frontier may be

pursued by adding an efficiency component to the corrected convex non-parametric

least squares (C2NLS) model of Kuosmanen and Johnson (2008) (i.e., a single-stage
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quadratic programming problem for a DEA-like frontier and a technical efficiency

component with additive and linear marginal effects of non-production factors).

Finally, confidence intervals for statistical inferences are obtained by bootstrap-

ping as follows. Let parameters in equation (3.8) be denoted by Θ̂ ≡ [θ̂
MTE

θ̂
TE
θ̂
TGR

]

where θ̂
q

= [α̂q γ̂q τ̂ qt ] for each q ∈ {MTE, TE, TGR}. Each bootstrap replication

b = 1, ..., B yields parameters Θ̂
∗b

. For given parameter θ̂j ∈ Θ̂, the distribution of

true deviation θ̂j−θj can be approximated by the distribution of bootstrap deviation

θ̂∗bj − θ̂j through probabilistic bounds;

1− a = Prob[ν̂j,a/2 ≤ θ̂j − θj ≤ ν̂j,1−a/2] ≈ Prob[ν̂j,a/2 ≤ θ̂∗bj − θ̂j ≤ ν̂j,1−a/2] (3.13)

where ν̂j,x is the x-percentile value in the distribution of bootstrap deviations {θ̂∗bj −

θ̂j}Bb=1. This yields 1− a confidence interval [θ̂j − ν̂j,1−a/2, θ̂j − ν̂j,a/2].

Bootstrapping procedure incorporates implicit distributional assumptions on

the error terms. Assuming εqit ∼ (0, σqt ) ∀t ∈ T for equations q ∈ {MTE, TE, TGR},

this study implements the following procedure for each replication b = 1, ..., B.

(Bt1) For each observation ik ∈ IT in time period k, randomly draw error ε̂TE,∗bik

(with replacement) from the empirical distribution of residuals {ε̂TEit }it∈IT(k)

and define initial bootstrap-estimate
∼
TE

∗b
ik= τ̂TEk +zikα̂

TE+W kγ̂
TE+ε̂TE,∗bik .

(Bt2) Construct frontiers F̂ ∗bt and F̂ ∗b from pseudo-data {xit,yit(
∼
TE

∗b
it /T̂Eit)}it∈IT

and obtain efficiency scores q̂∗b ∈ {M̂TE
∗b
, T̂E

∗b
, T̂GR

∗b
}.

(Bt3) Estimate parameters Θ̂
∗b

by the regression analysis in (3.8).

Step (Bt1) requires that error term εTEit is randomly distributed in a given period,

allowing for potential heteroskedasticity across time. Steps (Bt2) and (Bt3) take the

bootstrap data set as given and simply repeat the above two-stage estimation, in

which the interdependence across equations q ∈ {MTE, TE, TGR} is introduced

through bootstrap frontiers F̂ ∗bt and F̂ ∗b.

3.2.3 Alternative TC Measure Using Cross-Period TGR

The basis of any TC estimation is the distance measurement between two fron-

tiers, e.g.,, the mean distance between some points along these frontiers. In the
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above MPI decompositions, the basis of comparison is technical efficiency measure-

ment, or the projections of observed input-output decisions toward the technological

frontiers. In the equation for q = TGR from specifications (3.8) and (3.11), each data

point (xit,yit) is projected to meta-frontier F̂ and time-specific frontier F̂t, yield-

ing a between-frontier distance measure T̂GR(xit,yit; t). Now, another possibility is

to project each data point to the meta-frontier F̂ and all time-specific frontiers F̂t,

t ∈ T, yielding multiple distance measurements T̂GR(xit,yit; k) that involve cross-

period technical efficiency assessments T̂E(xit,yit; k) against time-specific technolo-

gies F̂k, k = 1, .., T .

The standard MPI, TC, and TEC in (3.6) employ such calculations. Recall that

hypothetical efficiency scores are calculated for each production decision (xit,yit), t ∈

{t0, t1} (for given producer i) against each time-specific technology F̂t, t ∈ {t0, t1},

regardless whether the decision took place in that period. In figure 3.1, four TGRs

can be defined;

TGR(xi t0, yi t0; t0) = CQ/BQ, TGR(xi t1, yi t1; t1) = B′Q′/B′Q′,

TGR(xi t1, yi t1; t0) = C ′Q′/B′Q′, TGR(xi t0, yi t0; t1) = BQ/BQ,

where the last two TGR measures involve cross-period evaluations for the decision

of one time period at the frontier of another. These calculations amount to creating

hypothetical “observations” that serve as additional sampling points for a frontier

comparison.

In the absence of covariates, the TC in (3.10) from time t0 to t1 becomes;

lnE[TCt0,t1] = lnE[TGR(xi t1, yi t1; t1)]− lnE[TGR(xi t0, yi t0; t0)], (3.14)

while another way to define TC is to use cross-period TGR’s, say cross-period TC

(C.TC);

lnE[C.TCt0,t1] = lnE[(TGR(xi t1, yi t1; t1) TGR(xi t0, yi t0; t1))1/2]

− lnE[(TGR(xi t0, yi t0; t0) TGR(xi t1, yi t1; t0))1/2]. (3.15)
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When calculated for a given producer, C.TC measure is equivalent to the producer-

specific TC measure in (3.6). For multiple time periods T, C.TC measure is a geo-

metric mean;

lnE[C.TCt0,t1] = lnE[ Πk∈TTGR(xi k, yi k; t1)1/T ]− lnE[ Πk∈TTGR(xi k, yi k; t0)1/T ]

(3.16)

where Πk∈T denotes the multiplication operator across time index k ∈ T.

Formally, the regression-based C.TC measure is obtained from a second-stage

analysis. Cross-period TGR (C.TGR) is denoted by T̂GR(xit,yit; k) for the combina-

tion of production decisions {(xit,yit)}it∈IT and time-specific frontiers F̂k, k = 1, .., T .

Variables zit are orthogonal to the C.TGR measures by construction and are hence

omitted from the analysis. Then, the regression analyses of C.TGR parallel to equa-

tions (3.8) and (3.11) are4;

ln(T̂GR(xit,yit; k)) = τTGRk +W kγ
TGR + εTGRitk , (3.17)

ln(T̂GR(xit,yit; k)) = βTGR0 + βTGR1 k +W kγ
TGR + εTGRitk (3.18)

where subscript itk represents the unit of observation at the C.TGR level. Intertem-

poral difference in τTGRt yields a C.TC measure; lnE[T̂Ct0,t1] = τTGRt1 −τTGRt0 as shown

in equation (3.10) or lnE[T̂C] = βTGR1 as in equation (3.12). Statistical inferences can

be made by a bootstrapping procedure based on implicit time-specific distributions

εTGRitk ∼ (0, σTGRk ), k ∈ T. The C.TC measure generally differs from the previous,

specific-period TC measure (“S.TC” or simply “TC”), particularly when the under-

lying distribution of input-output systematically shifts from one period to another –

possibly as a result of technical change or time-specific shocks that temporarily are

correlated with the trend in observed decisions.

4The equations for ln M̂TE(xit,yit;T), ln T̂E(xit,yit; t) from (3.8) and (3.11) are omitted; equation
MTE is redundant under the hypothetical observations, and equation TE no longer bears the interpretation
for technical efficiency.
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3.3 Application

3.3.1 Empirical Context & Data.

The proposed DDF approach is demonstrated with an analysis of Maryland

dairy operations. This unbalanced panel dataset comprises revenues and expenses of

63 dairy farms during 1995-2009 (for details see Hanson et al., 2013). Two types

of dairy systems are included in this dataset; conventional confinement dairies and

management intensive grazing dairies, hereafter referred to as “confinement” and

“grazers” respectively. The grazers manage pasture through the frequent rotation of

cows between finely partitioned plots, by which they replace substantial portions of

feed purchases and on-site crop production. Grazing operations tend to be smaller

than their confinement counterparts in terms of both herd size and milk output per

cow. The relative profitability of the two systems varies across years and producers,

depending on the prices in relevant agricultural markets and the technical efficiencies

of individual producers; on average there is no statistically significant difference in

profits between the two (Hanson et al., 2013). These dairy systems may be directly

comparable in budget analyses but not in production analyses that require the ho-

mogeneity of production inputs. Given the different breeds of cows utilized by the

confinement and grazers, the following analysis examines the two systems separately.

Milk production is modeled with four inputs: herd size measured in the num-

ber of cows, capital equivalent (e.g., aggregate expenditure),5 and crop and pasture

acreages. The statistical properties of these inputs and milk output (hundredweight,

cwt) are reported in table 3.2. Similarly, the average production practices are listed

by dairy system and calender year in table 3.3. Given the relatively small sample

size for DEA, the current application assumes no technological regress by imposing

constraint F̂t0 ⊂ F̂t1 for all t0, t1 ∈ T with t0 ≤ t1; under new time-specific index set

IT(k) = {it ∈ IT| t ≤ k}, time-specific technology Fk is estimated from all decisions

observed in period k or earlier.

Table 3.3 exhibits major trends in production decisions for the two dairy sys-

5Capital equivalent is a quasi-quantity aggregate-input defined as the total dairy expenditure deflated
by an observation-specific production cost index. This cost index is a share-weighted average of cost indices
for the corresponding itemized expenses. Price indices are obtained from National Agricultural Statistical
Service at USDA.
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tems. Average confinement dairy has nearly doubled its milk output from 15,338 cwt

in 1995 to 30,399 cwt in 2009, for which the increase mostly stems from the increased

scale of operation from 85 cows to 150 cows with a slight increase in output per cow

from 183 cwt/cow to 199 cwt/cow. These increases have been matched by a similar

increase in capital equivalent input from 255,522 to 504,675 with little changes in land

acreages for crop production and pasture at around 300 acres and 50 acres respec-

tively. In contrast, milk output for an average grazing operation has remained stable

at around 13,000 cwt during the same period with a slight increase in herd size from

75 cows to 101 cows. Its milk output per cow has declined from 183 cwt/cow to 124

cwt/cow along with the reductions in land acreages from about 100 acres to about

130 acres for crop production and from about 170 acres to about 130 acres for pas-

ture. Importantly, the assumption of equiproportional shifts in production frontiers,

the common Hicks-neutral technical change assumption in a single-stage estimation,

is unlikely to hold for these trends.

In the following, empirical results are reported in three parts. The first part

discusses the estimates for DEA efficiency scores and regression-based MPI decom-

positions. The second part reports the estimates for the marginal effects of non-

production factors. Observation-specific factors comprise the indicators for farm-

ownership and off-farm income. Time-specific factors contain season-average rainfalls

and temperatures. The third part summarizes current findings and compare results

across alternative specifications.

3.3.2 DEA Scores & Regression-based MPI Decompositions.

Table 3.4 shows the summary of DEA results for the meta-technical efficiency

(MTE) scores measured against the meta-frontiers, technical efficiency (TE) scores

compared to year-specific frontiers, and technology gap ratios (TGR’s). These ef-

ficiency scores are calculated separately for confinement and grazers under non-

increasing returns to scale (NIRS). The parallel analyses under CRS obtain quali-

tatively and quantitatively similar results.

The median MTE is found at 0.820 for confinement and 0.797 for grazers, indi-

cating that for given inputs, the producers of the median technical efficiencies achieve
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82.0% and 79.7% of the maximum output levels relative to their meta-frontiers respec-

tively. Similarly, the median TE estimates suggest that the median-producers among

confinement and grazers respectively achieve 89.9% and 85.2% of the maximum out-

put levels relative to their year-specific frontiers. The median (specific-period) TGR

finds that the time-specific frontiers of confinement and grazers achieve 95.4% and

100% of the maximum output levels relative to their meta-frontiers at the medians of

their technological gaps. Cross-period TGR (C.TGR) is similar to the specific-period

TGR except that it is slightly smaller when compared at the 25th, 50th, and 75th

percentiles of their distributions. The minimum of the C.TGR is estimated at 0.117

to 0.213, compared to 0.704 to 0.723 of the specific-period counterpart, indicating

that some segments of the year-specific frontiers, examined only under C.TGR, are

far less efficient than the meta-frontiers.

The second-stage analysis estimates the intertemporal mean differentials in pro-

ductivity, efficiency, and frontiers, as represented by MTE, TE, and TGR, that pro-

vide estimates for regression-based MPI, TEC, and TC respectively. The regression

coefficients are reported as point estimates, for which the above bootstrapping pro-

cedure provides statistical inferences.6

Table 3.5 contains the results for regression-based MPI decompositions in equa-

tions (3.8) and (3.10), relative to the 1995 baseline values. The means of MTE, TE,

and TGR for confinement have changed respectively by 3.7%, -4.6%, and 8.7% in

2000; 5.2%, -7.5%, and 13.7% in 2005; and 8.7%, -8.9%, and 19.3% in 2009. On the

other hand, the estimates for grazers indicate negative productivity change, which

is mostly explained by negative TEC; from 1995 to 2009, grazers have experienced

-11.7% MPI, -18.4% TEC, and 8.1% (statistically-insignificant) TC. These year-by-

year estimates of TEC and TC are fitted to linear trends for the ease of interpre-

tations. Figure 3.2 shows the point estimates, 95% confidence intervals, and fitted

linear trends. The fitted trends are virtually equivalent to the linear-trends βq1 under

(3.11) as reported in columns (1) and (5) of table 3.6, or 0.60% MPI, -0.69% TEC,

and 1.29% TC per year for confinement and -1.12% MPI, -1.67% TEC, and 0.56%

(at the 10% statistical-significance level) TC per year for grazers.

6Accounting for cross-equation correlations may result in asymmetric confidence intervals around point
estimates.
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The estimates for cross-period TC (C.TC) are reported in the last two columns

of table 3.5 and in the first column of table 3.8. They obtain 36.3% and 25.9% TC

during 1995-2009 for confinement and grazers, resulting in the linear trends of 2.17%

and 1.61% per year respectively. While these S.TC and C.TC measures provide sub-

stantially different interpretations of the data, it is not so surprising. The primary

reason for such an apparent inconsistency is that these TC measures are directional,

just as any other distance measure in an input-output space. In assessing technologi-

cal progress, the S.TC considers the directions of comparisons that are likely the most

relevant to producers in each time period. On the other hand, the C.TC indiscrimi-

nately accounts for technological progress in the directions of all observed decisions

regardless of their timing. The S.TC focuses on the comparisons of the most produc-

tive, observed production decisions while the C.TC compares estimated time-specific

frontiers in a time-invariant and more comprehensive set of directions.

3.3.3 Marginal Effects of Observation-specific & Time-specific Factors.

The marginal effects of non-production factors on MTE, TE, and TGR are

reported in table 3.6, and the corresponding marginal effects on C.TGR in table 3.8.

The results under the DDF approach by equations (3.11) and (3.18) are shown in

columns (1) and (5) in both of these tables.

Observation-specific variables contain two indicator variables for farm owner-

ship and off-farm income.7 In the equation for MTE, the presence of farm ownership

and off-farm income are associated with 5.66% higher and 5.73% (statistically in-

significant) lower MTE respectively for confinement dairies. Correspondingly, the

two variables indicate 10.17% higher and 6.30% lower MTE for grazers. These ef-

fects are mostly driven by the shifts in technical efficiency rather than the shifts in

technological gaps; farm-ownership and off-farm income are correlated with 4.88%

higher and 5.78% lower TE for confinement and 10.13% higher and 5.59% lower TE

for grazers, leaving the correlations with TGR nearly zero or imprecise. These results

are consistent with conventional economic theory. The owner-operator has higher in-

centives to work on his farm than a renter-operator whose profits are shared with the

7The sample means of the indicators for farm ownership and off-farm income are 0.77 and 0.07 respec-
tively among confinement and 0.71 and 0.21 among grazers.
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owner (i.e., avoiding a moral hazard problem).8 The presence of off-farm income, an

indication for a higher opportunity cost of the producer, prohibits full commitment

to dairy operations, which would result in the lower optimal effort level at the margin

than otherwise.9

Turning to time-specific factors, the marginal effects of seasonal-average rain-

falls and temperatures are reported in the form of the prediction for a change in each

variable by one standard deviation.10 Generally, greater rainfall and higher temper-

atures are considered beneficial for dairy operations, with clear exceptions such as

winter snowfall or summer droughts hindering plants’ growth and cold winters or hot

summers increasing animals’ energy consumption. Estimated correlations are con-

sistent with this conventional knowledge for economically significant marginal effects

(e.g., 2% or higher). These effects, detected only among grazers, include 4.43% higher

MTE and 5.66% higher TE for greater summer rainfall, and 2.27% higher MTE and

2.53% higher TE for greater spring temperature, and 3.22% higher TE for greater

winter temperature. Other coefficient estimates are not entirely in agreement with

the above predictions, but they are economically insignificant (e.g., less than 2%).

The effects on C.TGR are more pronounced and also similar between the two

dairy systems, compared to the effects on single-period TGR. The increases in summer

rainfall, winter temperature, and summer temperature (by one standard deviation)

are associated with 3.18%, 3.23%, and -3.46% changes in the frontier-output level

for confinement and, correspondingly, 0.54% (statistically insignificant), 1.57%, and

-4.40% changes in the frontier-output level for grazers, as expected from the favorable

conditions under moist summers, warm winters, and cool summers. The counterin-

tuitive, negative correlations with spring rain for both systems seem to be explained

by the relatively high profits in 1999 and low profits in 2009 that have coincided with

the years of low and high spring rainfall respectively.

8Anecdotally, dairy producers tend to pay fixed-term cash rents to landlords and hence are less subject
to the moral hazard problem than the case of crop producers. Alternatively, the renter-operator may be less
willing to invest in on-site production facilities due to potential change of terms in his contract.

9The presence of off-farm income may also influence producer’s decisions through reducing downside
income risks, for which the effect on technical efficiency is theoretically ambiguous.

10The means (s.d.) of time-specific weather variables of seasonal rainfall and temperatures for winter,
spring, summer, and fall during 1995-2009 are 9.08 (2.89), 11.32 (2.92), 11.83 (3.50), and 11.64 (4.76)
for rainfall (inches) and 36.31 (2.60), 53.98 (1.66), 75.2 (1.6), and 57.27 (1.41) for temperatures (degrees
Fahrenheit).
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It may be noted that imposing the assumption of no technological regress would

have introduced some measurement errors in estimating the marginal effects for time-

specific variables. The observed positive impacts of the above weather variables are

assumed to persist in the time-specific frontiers of subsequent periods and hence tend

to be overrepresented. On the other hand, the observed negative impacts of these

variables are partially or completely ignored in the concurrent and subsequent time-

specific frontiers and hence tend to be underrepresented.

3.3.4 Summary & Comparisons Across Alternative Specifications

During 1995-2009, the average annual productivity change for confinement dairies

is 0.60%, comprising -0.69% TEC and 1.29% TC, while that for grazers is -1.12%,

comprising -1.67% TEC and 0.56% TC (at the 10% statistically-significance level).

C.TC measurements alternatively indicate 2.17% TC and 1.61% TC per year for con-

finement and grazers. The increasing inefficiencies and positive technical change in

both systems suggest that some producers have successfully adopted new technologies

and improved their management while others have been struggling to keep up with

these changes. The different magnitudes in these trends between the two systems

indicate that the technological advances have benefited the majority of confinement

operations but few grazing counterparts. This may be related to the fact that con-

finement dairy operations tend to follow fairly standardized production techniques of

the industry (see e.g., Khanal et al. (2010) for recent technological adoption in the

US dairy sector), while intensive grazing involves very localized production practices

(due to local soil and micro-climate conditions that require experimentations by in-

dividual producers). Additionally, the analysis has obtained several results that are

consistent with conventional economic theory and real-world production constraints

in dairy operation.

The above results are contrasted with the estimates under alternative specifi-

cations listed in table 3.1. Tables 3.6 and 3.8 contain the parallel results under four

different two-stage estimations, including DEA-OLS in columns (1) and (5), DEA-

truncated regression in columns (2) and (6), SFA-OLS in columns (3) and (7), and
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SFA-truncated regression models in columns (4) and (8).11 Statistical inferences are

provided by the same bootstrapping procedure adopted in the DDF approach, except

that the two truncated regression models include Simar and Wilson (2007)’s bias

correction technique for the first-stage frontier estimates.

The results are similar between the models that share the first-stage frontier

estimation. That is, the second-stage marginal effects are similar between DEA-OLS

and DEA-truncated regression models and between SFA-OLS and SFA-truncated re-

gression models. Under the DEA-truncated regression model (columns (2) and (6)),

annual MPI, TEC, and TC are estimated at 0.74%, -1.01%, and 1.75% for confinement

and -1.69%, -2.41%, and 0.73% (statistically-insignificant) for grazers respectively,

thus fairly similar to the previous DDF estimates. When the first-stage employs SFA,

annual MPI, TEC, and TC are 0.46%, 0.56%, and -0.10% (statistically-insignificant)

for confinement and -0.30% (statistically-insignificant), -1.75%, and 1.45% for graz-

ers respectively under the SFA-OLS model, to which the SFA-truncated regression

obtains qualitatively similar estimates. These SFA results would imply that posi-

tive productivity growth among confinement dairies is attributable to the increased

technical efficiency rather than technical change (i.e., technological catch-up), while

grazers’ positive TC and negative TEC cancel out with each other, yielding no sig-

nificant productivity change. Of these estimates, the findings under the DEA-based

models are more in congruence with the conventional view of the positive TC for

confinement and some negative TEC for both systems.

The influence of non-production factors shows mixed evidence for proper iden-

tification. By focusing on economically-significant marginal effects, the results reveal

some similarities with the DDF estimates as well as counterintuitive correlations.

Common findings with the DDF (columns (1) and (5)) include the positive effects of

farm ownership on TE in columns (2), (3), and (6) and the negative effects of off-farm

income on TE for confinement under the SFA models in columns (3) and (4). The

same SFA models (columns (7) and (8)) find that for grazers, the farm ownership

positively shifts the technological frontier by 21.65% and 18.27% respectively, which

11The first-stage SFA is estimated using the observations in a given year (without including other obser-
vations from preceding years). For grazers, observations in year 1995 are treated together with those in year
1996 due to insufficient sample size in 1995.
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are probably incidental and rather suggest misspecification. For weather variables,

summer rainfall is predicted to be positively correlated with TE in columns (3), (6),

and (8), similar to the finding under the DDF in column (5). Autumn rainfall is

predicted to be positively correlated with the frontier-output level in these SFA mod-

els. The negative correlations of spring and autumn rainfall with TE for confinement

under the SFA models in columns (3) and (4) are likely spurious. Other marginal

effects are either economically insignificant or inconsistent within the models sharing

the first-stage frontier estimation by DEA or SFA.

In table 3.8, the marginal effects under C.TC vary between the models. The

DDF findings of positive TC’s for confinement and grazers (columns (1) and (5)) are

supported respectively by the DEA-truncated regression model (column (2)) and the

SFA-OLS model (column (7)), while other models detect no significant TC. Based on

the relationships between dairy production and weather as noted above, three likely-

spurious results are found for grazers: the positive correlations of summer temperature

in columns (6) and (8), the negative correlations of summer rainfall in column (7),

and the negative correlations of fall temperature in columns (6) and (8).

Table 3.7 shows the results under the single-stage, pooled SFA model. Cobb-

Douglas technology is estimated along with proportional marginal effects of frontier

shifters and technical-efficiency shifters. The table contains the two sets of results for

the restricted model under αu, γu = 0 and the full model. Technological parameters

explain milk output from the relative input contributions of cows, capital, crop acre,

and pasture acre, which are approximately 60%, 39%, 1% to and -2% for confinement

and 65%, 36%, 3%, and -17% for grazers respectively in the full model. This appears

reasonable, but for grazers the relative contributions of cows and capital to the output

are sensitive to the inclusion of non-production variables.

Importantly, the highly dominant role of technical inefficiency relative to stochas-

tic noise (i.e., parameter “Eta”) suggests that the model identification depends cru-

cially on the specification for the technical efficiency component. Indeed, all parame-

ters (i.e., TC, TEC, and the shifters of frontier and technical efficiency) are sensitive

to parametric restrictions of this component. The full model finds that confinement

dairies have experienced neither significant TC nor TEC during 1995-2009, while in-
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tensive grazing dairies have become less productive on the technological frontier but

become more technically efficient relative to that frontier, which is not consistent

with any of the findings from the previous two-stage SFA models. Additionally, the

marginal effects of non-production factors appear to suffer from spurious correlations.

Overall, the proposed DDF approach appears to perform best among the al-

ternative specifications considered above. Replacing the second-stage OLS regression

with a truncated regression (analogous to the model of Simar and Wilson (2007))

obtains similar estimates for the intertemporal trends in technological frontiers and

technical efficiency. However, the resulting marginal effects of non-production factors

appear less accurate, compared to the DDF estimates. This is particularly apparent

in the equations for TGR and C.TGR, perhaps because truncated regressions dis-

card the information that could be gathered from the fully-efficient decisions. Also,

substituting the first-stage DEA with a SFA estimation yields drastically different

estimation results. The TC and TEC estimates under two-stage SFA models do not

conform with the conventional perspective on the US dairy industry. Relaxing the

Cobb-Douglas technology assumption may improve estimation results. Lastly, the

single-stage pooled SFA model for the same Cobb-Douglas specification is estimated

under Hicks-neutral TC. The estimates for TC and TEC are sensitive to the spec-

ification of technical efficiency component, whose distribution is found to be more

important than the distribution of stochastic noise. The model misspecification is

clear from the ill-suited nature of Hicks-neutral TC for the data. The proposed DDF

approach is both intuitive and conservative in its assumptions for the technological

frontier, technical efficiency measurement, and the intertemporal relationships and

also turns out to be the most reliable specification in this application. All the while,

further assessments of the models’ relative performance are outside the scope of this

study and left for future works.

3.4 Conclusions

This study proposes a systematic treatment of contextual and non-production

variables in comparing technological frontiers and technical efficiencies. This bridges

the gap between the analysis of production contexts and the analysis of non-production
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factors in the nonparametric frontier literature. The concept of MPI decomposition,

originally developed for producer-level technical change measures, is extended for

sample-level measures in a regression framework. The generality of this concept sug-

gests a wide range of potential applications in analyzing production heterogeneity for

varying production contexts, including before and after policy intervention, in the

form of mean context-specific frontier-outputs and mean efficiency levels.

The empirical study of production heterogeneity is no simple matter. The

workhorse of modeling is the estimation of a technological frontier and technical

efficiency from observed input-output decisions, to which incorporating information

on production contexts or non-production factors poses serious challenges in the over-

all econometric identification. Despite the complexity of the problem, the proposed

DDF approach employs an intuitive estimation procedure and based on fairly con-

servative assumptions. This simple methodology should afford increased attention to

the specification choice of production variables, or the input-output space in which

production heterogeneity is analyzed through distance measurements.
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3.5 Tables and Figures

Table 3.1: Alternative Specifications For Technological Frontiers and Technical Efficiency

Models Frontier Efficiency TC M.E. in EC Notes

(M1) DEA OLS Non-Hicksian Proportional Proposed DDF Model

(M2) DEA Trunc.reg Non-Hicksian Linear[ Simar and Wilson (2007)

(M3) SFA OLS Non-Hicksian Proportional Variant of DDF Model

(M4) SFA Trunc.reg Non-Hicksian Linear[ Variant of DDF Model

(M5) Pooled C2NLS Hicks-Neutral] Linear Kuosmanen and Johnson
(2008)†

(M6) Pooled SFA Hicks-Neutral] Proportional Battese and Coelli (1995)

1. Marginal effects in the efficiency component (EC) typically enter in the estimation equation as linear or
proportional shifts of the input-output distance measure. [ Either linear or proportional marginal effects
may be admitted.

2. ] It may be possible to alter a part of the frontier to be non-Hicksian TC.

3. † Admissible marginal effects for an additional efficiency component are likely linear effects.

Table 3.2: Summary Statistics

Confinement (Obs. 314) Grazers (Obs. 161)

Variable Mean S.D. Min Max Mean S.D. Min Max

Milk (cwt) 24,145 17,577 3,761 110,668 12,442 5,573 2,670 42,955
Cow 122 76 22 468 87 29 37 195
Output Equiv. 369,033 289,506 56,331 1,917,846 199,108 85,553 59,487 696,891
Capital Equiv. 416,037 308,346 70,637 1,780,881 204,625 91,698 58,246 645,498
Total Acre 338 160 90 845 283 134 115 700
Crop Acre 289 155 60 704 132 108 0 600
Pasture Acre 50 39 0 141 152 60 53 280

Unit “cwt” stands for hundredweight (i.e., 100 pounds). Output equivalent is the gross income deflated by
the observation-specific price index. Capital equivalent is the total cost of production, deflated by a farm
production cost index. For more information on the dataset, see Hanson et al. (2013).
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Table 3.3: Average Production Decisions By Dairy System and Year

Year N.Obs Output Eq. Milk (cwt) Cow Capital Eq. Tot.Acre Cro.Acre Pas.Acre

Confinement
1995 21 222,173 15,338 85 255,522 328 273 55
2000 21 358,828 24,649 121 403,807 340 292 48
2005 22 397,284 27,628 137 498,483 348 297 51
2009 19 534,353 30,399 150 504,675 369 316 53
Grazers
1995 4 183,251 13,534 75 207,129 368 195 173
2000 11 225,735 13,270 85 215,347 295 130 164
2005 12 181,581 11,076 84 181,681 254 109 144
2009 12 244,684 13,168 101 210,822 273 138 135

See supplemental materials for the values for complete years 1995-2009.

Table 3.4: Summary of DEA Efficiency and TGR Scores

Summary Statistics

System Min 25th Median Mean 75th Max

A. Efficiency at meta-frontiers (MTE)
(1) Confinement 0.408 0.764 0.820 0.827 0.902 1.000
(2) Grazers 0.362 0.698 0.797 0.796 0.927 1.000

B. Efficiency at year-specific frontiers (TE)
(3) Confinement 0.465 0.807 0.899 0.884 0.978 1.000
(4) Grazers 0.362 0.715 0.852 0.822 0.951 1.000

C. Specific-Period Technology Gap Ratios (TGR)
(5) Confinement 0.704 0.903 0.954 0.937 0.988 1.000
(6) Grazers 0.723 0.959 1.000 0.971 1.000 1.000

D. Cross-Period Technology Gap Ratios (C.TGR)
(7) Confinement 0.117 0.884 0.950 0.918 0.991 1.000
(8) Grazers 0.213 0.922 0.993 0.935 1.000 1.000

1. Technical efficiencies (TE) and meta-technical efficiency (MTE) are measured
against year-specific frontiers and meta-frontiers respectively. Technology gap
ratio (TGR) is the ratio of those efficiency measurements (i.e., MTE/TE) at
observation level.

2. Cross-Period TE measures include the pseudo-technical efficiency scores where
observed input-output decisions are evaluated against frontiers of different time
periods.

3. The results under Constant Returns to Scale are nearly identical.
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Table 3.6: Marginal Effect Estimates in the Second Stage across Alternative Specifications

Confinement Grazers

First Stage: DEA SFA DEA SFA

Second Stage: OLS Trunc.[ OLS Trunc. OLS Trunc.[ OLS Trunc.
(1) (2) (3) (4) (5) (6) (7) (8)

Equation MTE
Year (MPI/year) 0.60‡ 0.74‡ 0.46‡ 0.79† -1.12‡ -1.69‡ -0.30 -0.31
Farm ownership 5.66‡ 6.43† 2.96‡ 4.79 10.17‡ 12.90‡ 23.20‡ 26.64‡
Off-farm income -5.73 -4.74 -1.94‡ -0.91‡ -6.30‡ -6.03 2.50 4.98
Rainfall winter -0.73‡ -0.87 -0.56 -0.91 1.15‡ 2.54 1.74* 2.67
Rainfall spring -0.12 -0.10* -0.39‡ -0.75* 0.09 1.15 1.60† 1.37
Rainfall summer 0.32‡ 0.30 1.61‡ 2.53* 4.43‡ 8.19* 2.19* 3.31
Rainfall fall 0.01 -0.17 -0.82† -1.32‡ -1.92‡ -2.53 0.06 -0.59
Temp. winter 1.00‡ 1.02 1.31 2.20 1.62‡ 3.85 1.31 1.79
Temp. spring -0.20† -0.26 0.15 0.02 2.27‡ 4.67 2.55‡ 3.73
Temp. summer -0.80‡ -0.79 0.26 0.07* 1.51‡ 2.48 -1.31 -0.88
Temp. fall -0.51‡ -0.64 -1.03 -1.17* -0.22 -0.15 -0.85† -0.60
Constant 21‡ -1458‡ -944‡ -1585* -184‡ 3011‡ 513 446

Equation TE
Year (TEC/year) -0.69‡ -1.01‡ 0.56‡ 0.87† -1.67‡ -2.41‡ -1.75‡ -6.90‡
Farm ownership 4.48‡ 4.59† 2.51‡ 3.55 10.13‡ 14.09‡ 1.55 8.37
Off-farm income -5.78‡ -5.26 -5.05‡ -14.09‡ -5.59‡ -5.14 -2.48 -1.48
Rainfall winter -0.42 -0.97 0.62 1.05 1.42* 3.38 -3.38† -3.36
Rainfall spring 1.75‡ 2.75* -2.25‡ -7.70* 0.19 -1.52 -3.78 -3.84
Rainfall summer -1.07‡ -1.61 4.35‡ 9.96* 5.66‡ 11.80† 4.00 28.48*
Rainfall fall 0.77‡ 1.12 -2.87† -9.41‡ -1.22 -2.54 -2.22 -10.77*
Temp. winter -0.05 -0.71 -0.74 -3.96 3.22‡ 9.70* 2.92 12.35
Temp. spring -0.42† -0.80 1.26 1.65 2.53‡ 4.35 -1.42‡ 4.68
Temp. summer 0.58 0.97 3.65 9.91* 0.46 -4.59 -3.46 6.38
Temp. fall -0.65 -0.96 -1.68 -6.74* 0.73‡ 2.27 5.82‡ 7.57
Constant 1 2026‡ -1257‡ -1880* -207* 4598‡ 3416‡ 12862‡

Equation TGR
Year (TC/year) 1.29‡ 1.75‡ -0.10 -0.08 0.56* 0.73 1.45‡ 6.60‡
Farm ownership 1.18* 1.84 0.44 1.23 0.04† -1.19 21.65‡ 18.27‡
Off-farm income 0.06 0.52 3.12 13.18 -0.71 -0.90 4.97 6.46
Rainfall winter -0.31 0.10 -1.18 -1.95 -0.27 -0.84 5.12† 6.03
Rainfall spring -1.87‡ -2.85 1.87 6.95 -0.10 2.66 5.38 5.21
Rainfall summer 1.39‡ 1.92 -2.74* -7.44 -1.24‡ -3.60 -1.81 -25.17
Rainfall fall -0.76‡ -1.29 2.05† 8.08† -0.70‡ 0.01 2.27 10.18*
Temp. winter 1.05† 1.73 2.05 6.16 -1.60‡ -5.85 -1.61 -10.56
Temp. spring 0.22 0.54 -1.10 -1.63 -0.26 0.32 3.97‡ -0.96
Temp. summer -1.38 -1.76 -3.39 -9.84* 1.06‡ 7.07 2.15 -7.25
Temp. fall 0.14 0.32 0.66 5.57 -0.95‡ -2.43 -6.67‡ -8.17
Constant 20 -3484‡ 314 295 23 -1587 -2904‡ -12416‡
1. Statistical significance: ‡ α=0.01, † α=0.05, * α=0.1. [ Estimation adopts Simar and Wilson

(2007)’s bias correction for DEA efficiency scores. Constant coefficients are rounded.

2. Marginal effects of these weather variables are reported for the change by one standard
deviation.
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Table 3.7: Pooled SFA Analysis Under Hicks-Neutral Technical Change

M.E. (in Percentage)
Confinement (N=314) Grazers (N=161)

(1) (2) (3) (4)

Estimate S.D. Estimate S.D. Estimate S.D. Estimate S.D.

Frontier
Intercept 274‡ (63) 186 (130) 69 (141) 411† (127)
Year (TC/Year) 0.28* (0.13) 0.96 (1.45) -0.46 (0.39) -0.68* (0.28)
log(Cow) 63.77† (3.70) 59.49‡ (4.64) 46.76‡ (8.52) 65.45‡ (8.27)
log(Capital) 34.02 (3.45) 39.41‡ (7.42) 59.92‡ (6.18) 35.93‡ (6.07)
log(Crop Acre) 3.85* (1.64) 1.17 (6.96) 0.94 (0.76) 2.76‡ (0.72)
log(Pasture Acre) -1.84 (0.41) -1.90* (0.96) -19.00‡ (3.79) -17.27‡ (2.15)
Farm ownership 3.75† (1.32) 4.82. (2.52) 0.58 (3.30) -25.69‡ (4.76)
Off-farm income -8.70‡ (2.20) -22.48‡ (2.66) -6.30. (3.34) -36.55‡ (4.54)
Rainfall winter -0.51 (0.74) 0.01 (0.63) 0.91 (1.68) 1.65 (1.35)
Rainfall spring 0.12 (1.03) -3.21 (2.61) 2.88 (2.36) 0.68 (1.83)
Rainfall summer 0.89 (1.14) 5.87‡ (1.66) -0.67 (2.65) -1.98 (1.98)
Rainfall fall 0.26 (0.68) -3.49 (3.72) -0.40 (1.58) 0.05 (1.30)
Temp. winter 1.51 (1.10) 2.65. (1.50) -0.56 (2.48) -0.48 (2.04)
Temp. spring -0.02 (0.73) 0.61 (0.69) 1.56 (1.62) 0.03 (1.44)
Temp. summer -0.69 (1.21) 0.79 (0.67) 1.47 (2.92) -0.47 (2.36)
Temp. fall -0.44 (0.82) -1.44. (0.84) -1.72 (1.90) -0.99 (1.48)

Technical Efficiency
Intercept -17624 (39660) -32 (63) -934 (1502) 343 (412)
Year (TEC/Year) -271.89 (622.23) 1.00 (4.42) 57.25 (88.60) 4.24‡ (0.94)
Farm ownership 2.24 (9.19) -50.02‡ (7.00)
Off-farm income -46.52 (33.36) -6390 (95466)
Rainfall winter 0.91 (2.27) 1.90 (3.78)
Rainfall spring -6.26‡ (1.82) 0.84 (5.64)
Rainfall summer 7.55† (2.49) -8.89 (6.12)
Rainfall fall -5.05* (2.28) 2.44 (3.89)
Temp. winter 3.04‡ (0.17) -2.30 (6.57)
Temp. spring 0.85 (1.10) -4.44 (4.72)
Temp. summer -0.24 (1.38) -2.77 (7.86)
Temp. fall -0.43 (2.81) -0.44 (4.13)

SFA parameters
Sigma Square 16.850 (37.959) 0.018* (0.008) 0.416 (0.597) 0.046‡ (0.008)
Eta 1.000* (0.001) 0.998‡ (0.289) 0.967‡ (0.048) 0.923‡ (0.031)
Log Likelihood 278.2 283.48 66.35 95.74

Mean TE 0.921 0.832 0.893 0.786

1. Statistical significances: ‡ α = 0.01, † α = 0.05, * α = 0.1. Intercepts and some large coefficient
estimates are rounded.

2. Linear trends of weather variables are removed before they are used in the second-stage DEA regression
analysis. Reported marginal effects of these weather variables are linearly extrapolated by multiplying
with one standard deviation in each variable.

3. Output is log(Milk). “Sigma square (σ2)” and “Eta (η)” define the joint distribution of technical
inefficiency u ∼ N+(µ, σ2

u) and stochastic noise v ∼ N(0, σ2
v) where σ2

u = σ2η, σ2
v = σ2(1− η).
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Table 3.8: Marginal Effect Estimates in the Second Stage across Alternative Specifications
(C.TC)

Confinement Grazers

First Stage: DEA SFA DEA SFA

Second Stage: OLS Trunc. OLS Trunc. OLS Trunc. OLS Trunc.
(1) (2) (3) (4) (5) (6) (7) (8)

Equation Cross-Period TGR
Year (C.TC/year) 2.17‡ 1.42‡ -0.17 1.42‡ 1.61‡ 0.31 1.03‡ 0.31
Rainfall winter 0.16 0.12 -0.03 0.12 0.14 0.01 0.21 0.01
Rainfall spring -3.92‡ -0.51 -0.76 -0.51 -3.96‡ 0.06 1.25* 0.06
Rainfall summer 3.18‡ -0.30 0.46 -0.30 0.54 -2.35 -2.39‡ -2.35
Rainfall fall -1.40‡ 0.31 -0.58 0.31 -0.69‡ -2.21 0.94 -2.21
Temp. winter 3.23‡ 0.44 0.39 0.44 1.57‡ -3.82 -0.71 -3.82
Temp. spring 0.46 -0.07 -0.07 -0.07 -1.56‡ -1.56 -0.75 -1.56
Temp. summer -3.46‡ -0.91 -0.16 -0.91 -4.40‡ 7.54† -1.50* 7.54†
Temp. fall 0.95‡ 0.44 0.01 0.44 -0.55† -4.32‡ -0.77 -4.32‡
Constant 30.43 -2820.34‡ 332.13 -2820.34‡ 286.54‡ -673.68 -1964.61‡ -673.68

1. Statistical significance: ‡ α=0.01, † α=0.05, * α=0.1.

2. Marginal effects of these weather variables are reported for the change by one standard deviation.

Figure 3.1: MPI Decomposition
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Chapter 4: Comparison of Production Risks in the State-Contingent Framework:
Application to Balanced Panel Data

Kota Minegishi†

Abstract

In a balanced panel data setting, this article proposes an empirical application of the state-

contingent (SC) framework for production uncertainty. The SC approach (e.g., Chambers

and Quiggin, 2000) casts production decisions under uncertainty as the decision to select a

portfolio of Arrow-Debreu SC outputs, scheduled to be delivered in the contingent states

of nature. Under some stationarity assumptions on the SC decisions (i.e., no technical

change, time-invariant states of nature, time-invariant SC portfolio decisions) and regular-

ity assumptions on the data generating process (i.e., cross-sectionally homogeneous state

realizations), SC technology can be estimated from balanced panel data that are framed

as cross-sectional data of partially-revealed SC portfolio decisions. This allows one to sim-

ulate an optimal SC portfolio, determined by the interaction between the estimated SC

technology and presumed risk preferences. In the application to Maryland dairy production

data, the stochastic technologies of confinement and intensive-grazing dairy systems are

compared. Of the two time intervals (years 2000-2004 and years 2006-2009) separately an-

alyzed, the optimal production decision for a moderate-to-maximally risk-averse producer

has become riskier for the confinement system and less risky for the grazing system. These

contrasting trends appear directly related to the volatile milk prices, feed cost hikes, and

increasing organic milk production during 2006-2009. The results from the 2006-2009 panel

suggest that at the herd size of 100 cows, a risk-averse producer would prefer the grazing

system to the confinement system for its reduced reliance on purchased feeds and rather

stable organic milk prices.

Keywords: State Contingent Production, Uncertainty, Panel Data Analysis, Data

Envelopment Analysis, Agricultural Economics

JEL Codes: D22, Q12, C44

0† This article is prepared as a chapter of the author’s dissertation at University of Maryland, College
Park. I thank professor Robert Chambers for overseeing the project as well as professor Erik Lichtenberg
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4.1 Introduction

In the absence of complete insurance markets, the producer bears risks under

uncertainty. The extent of optimal risks depends on the production technology, na-

ture of uncertainty, and the producer’s attitude toward risks. The state contingent

(SC) approach (e.g., Chambers and Quiggin, 2000) casts production decisions under

uncertainty as the decision to select a portfolio of Arrow-Debreu SC outputs, sched-

uled to be delivered in the contingent states of nature. In the context of agricultural

production, for example, uncertainty in the SC approach is defined as distinct weather

events or market conditions, for which the producer prepares a portfolio of contin-

gent production yields. This analytical framework is more general than a typical

empirical specification that regards statistical errors for yield predictions as produc-

tion uncertainty in the form of stochastic outcome-states (OS). However, empirical

applications of the SC approach are scarce in production economics and primarily lim-

ited to the estimations of very specific stochastic technologies. The previous studies

have proposed the estimations of output-cubical (i.e., non-substitutable SC outputs)

(O’Donnell and Griffiths, 2006), state-specific (i.e., independent technologies across

states) (ODonnell et al., 2009), single-input single-output CES (Shankar et al., 2010),

and imputed SC-output production functions (Chavas, 2008). An exception is a

survey-elicited ex ante-outputs technology (Chambers et al., 2014; Serra et al., 2014)

utilizing a specifically-designed survey. Generally, the challenge is to specify empirical

state-contingency, in which a stochastic technology should capture the technological

relationships for the states that were realized while consistently handling those for

the states that were never realized.

This study develops a simple empirical approach to adopting the SC framework

in a balanced panel data setting. Under the assumptions of no technical change, time-

invariant states of nature, time-invariant SC portfolio decisions (e.g., each producer

using the same risk management practice over time), and cross-sectionally homoge-

neous state realizations (e.g., producers experiencing identical market and weather

conditions in a given time period), production data over multiple time periods can be

regarded as a sequence of draws from the scheduled SC decisions. By framing balanced

panel data as cross-sectional data of partially-revealed SC portfolios, SC technology

can be non-parametrically estimated by Data Envelopment Analysis (DEA), simply
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excluding the decisions for unrealized states. For this revealed subset of contingent

states, one can then simulate an optimal SC portfolio determined by the interaction

between the estimated SC technology and presumed risk preferences.

The rest of the study proceeds as follows. Section 4.2 reviews the SC approach

for production decisions under uncertainty and discusses the scope of the proposed

method. Section 4.3 formally presents comparable risk analyses under the SC and

OS frameworks. Empirical application to Maryland dairy production in section 4.4

examines the riskiness associated with two types of dairy production systems. Section

4.5 concludes the study.

4.2 Background: The State Contingent Approach

Consider production decisions under uncertain outputs and output prices. Let

Ω = {1, 2, .., S} be the index set for the contingent states of nature with associated

probabilities π ≡ {πs}s∈Ω. For given non-stochastic input prices w ∈ R
L
++ and

stochastic output prices p ∈ RMS
++ , the producer selects L-dimensional inputs x ∈ RL

+

to schedule M -dimensional state-contingent (SC) outputs z ∈ RMS
+ for the S states

in Ω. Production technology is denoted by input set X(z) = {x ∈ RL
+ : x can

produce z} where X(z) is assumed to be (1) closed, (2) monotonic (i.e. freely-

disposable inputs x ∈ X(z), x′ ≥ x ⇒ x′ ∈ X(z) and freely-disposable outputs

z ≤ z′ ⇒ X(z) ⊂ X(z′)), and (3) convex (i.e. x,x′ ∈ X(z), λx + (1 − λ)x′ ∈

X(z), ∀λ ∈ [0, 1]) and to satisfy (4) no free lunch (i.e. 0 /∈ X(z) for z 6= 0,

z ≥ 0) and no fixed cost (i.e. X(0) = R
L
+) and (5) the concavity of the output

correspondence (i.e. λX(z) + (1− λ)X(z′) ⊂X(λz + (1− λ)z′), ∀λ ∈ (0, 1)).1

The production decisions can be equivalently stated for selecting a portfolio

of SC revenues r ≡ {
∑M

m=1 pms zms}s∈Ω while accounting for revenue-cost function

C(r;p,w) = w x(r;p,w) where optimal inputs x(r;p,w) depend on revenue re-

quirement r. C(r;p,w) is homogeneous of degree zero in (r,p), bounded at zero

from below by assumption (4), non-decreasing in r and non-increasing in p by (2),

and convex in r by (5).

1The properties (1)-(4) represent the standard assumption for ensuring the duality between the input
correspondence and the cost function, which makes duality theorems (e.g. McFadden, 1978; Färe, 1988)
directly applicable. Property (5) can be equivalently stated for output set Z(x): µZ(x) + (1 − µ)Z(x′) ⊂
Z(µx+(1−µ)x′), ∀µ ∈ (0, 1). Properties (3) and (5) together correspond to the convexity of the technology
in both inputs and outputs.
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Producer’s risk preferences W : RS → R are defined over SC incomes y =

r − C(r;p,w)1S where 1S denotes a S-dimensional vector of 1’s and are assumed

differentiable and generalized Schur-concave (i.e. weakly increasing in ys for each state

s ∈ Ω and weakly risk-averse in the sense that W (y) ≤ W (ȳ1S) for ȳ = πy).2 If state

probabilities π are unknown, perceived riskiness depends on subjective probabilities

πi of individual producer i.

The extent of risk aversion for W (.) can be characterized with absolute risk

premium ρ(y;π) for portfolio y = r − C(r;p,w)1S that measures the maximum

willingness to pay (today with certainty) for its non-stochastic income πy1S at fair

odds π; ρ(y;π) = max{ρ : W ((πy − ρ)1S) ≥ W (y)}.3 This also defines certainty-

equivalent income e(y;π) = πy − ρ(y;π), or the minimum non-stochastic income

to attain utility level W (y). Figure 4.1 illustrates this risk premium ρ(y0;π) as the

distance between the utility level W (y0) of stochastic incomes y0 = r0 − C(r0)1S

and the utility level W (πy01S) of non-stochastic income πy01S = (πr0 −C(r0))1S.

Imposing some properties of ρ(y;π) along expansion paths in y yields the common

characterizations of constant absolute risk-averseness (CARA: i.e., translation ho-

motheticity) or constant relative risk-averseness (CRRA: i.e., radial homotheticity).4

Additionally, under the property of invariance that refers to a preserved risk-ordering

under the translation and radial expansion of SC incomes on equal-mean sets (Quig-

gin and Chambers, 2004),5 Chambers et al. (2012) recently show that a variety of

risk aversions specifications for the trade-off between the mean of stochastic income

and its riskiness can be obtained.6

Formally, the producer chooses r to maximize W (r − C(r;p,w)1S). The first

order conditions (FOC’s) yield;

FOC’s: ∀s ∈ Ω, Ws −
∑
t∈Ω

Wt Cs ≤ 0, rs ≥ 0 (4.1)

2 Generalized Schur-concavity with respect to π refers to the condition (Ws(y)/πs−Wt(y)/πt)(ys−yt) ≤
0, ∀s, t ∈ Ω where Ws(y) ≡ ∂W (y)/∂ys. These preferences can be defined for either known/objective or
unknown/subjective probabilities π.

3Relative risk premium is a monotonic transformation of absolute risk premium and takes the form
(1− ρ(y;π))−1.

4CARA: e(y+λ1S ;π) = e(y;π)+λ, ∀y ∈ RS , ∀λ ∈ R and CRRA: e(λy;π) = λe(y;π), ∀y ∈ RS , ∀λ ∈
R++.

5Translation and radial invariance on equal-mean set M(µ) are defined as y,y′ ∈M(µ), with y � y′ ⇒
e(y + δ1S) ≥ e(y′ + δ1S), ∀δ ∈ R and e(ty) ≥ e(ty′), ∀t ∈ R+ respectively.

6Also, invariant expected-utility class coincides with a family of mean-standard deviation (SD) prefer-
ences (Quiggin and Chambers, 2004).
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where Ws = ∂W/∂ys and Cs = ∂C/∂rs. Summing the FOC’s across states (
∑

s∈ΩWs

(1−
∑
Cs) ≤ 0) leads to arbitrage condition

∑
s∈ΩCs(r;p,w) ≥ 1, indicating that at

the optimum the producer exhausts options to formulate a surely-profitable, marginal

SC-revenue increase. Figure 4.2 illustrates the optimal SC revenue decision. The fea-

sible SC revenue set for a given cost level is denoted by R(C(r,p,w)) = {r′ ∈ RS
+ :

C(r′;p,w) ≤ C(r;p,w)} where the boundary represents an iso-cost curve of the

underlying technology. Given the convexity of revenue-cost function C(r,p,w) in r,

revenue set R(C0) is convex for any cost level C0 ≥ 0.7 Then, the optimal SC rev-

enue r0 is located at the tangency between W (r0−C(r0;p,w)1S) andR(C(r0;p,w))

with a supporting hyperplane defined by risk-neutral probabilities π∗ ≡ {π∗s}s∈Ω (e.g.,

Yaari, 1969). These shadow probabilities π∗ are defined with respect to the point of

tangency in each producer’s problem, apart from objective probabilities π or subjec-

tive probabilities πi.

Brief econometric discussion clarifies the scope of the proposed SC estimation

that follows and highlights the issues associated with a common estimation strategy

under the outcome-states (OS) representation of uncertainty. Suppose that the data

are generated by the following production decisions; for contingent states of nature

Ω = {1, .., S}, each producer i ∈ {1, .., N} chooses L inputs xi ∈ RL
+ and prepares

a portfolio of 1-dimensional SC outputs {zi,s}s∈Ω for S states under given stochastic,

technological frontier f : RL
+ × Ω → R. Under complete information, suppose that

the true econometric specification is;

zi,s = f(xi; s) exp(−ui), ∀s ∈ Ω (4.2)

where exp(−ui) ∈ (0, 1] is technical efficiency of producer i. In practice, only one

outcome zi,s in portfolio {zi,s}s∈Ω is observed, according to state realization s, so that

specification (4.2) is inestimable with observational data.

In a balanced panel data setting, consider stationary SC decisions under no tech-

nical change, time-invariant states of nature, and time-invariant SC portfolio decisions

for given fixed inputs.8 Then, assuming homogeneous state realization s̃(t) ∈ Ω̂SC for

all producers in a given time period t ∈ {1, .., T}, this study frames observed outputs

7The convexity of C(r;p,w) in r implies for any r, r′ ∈ R(C0), ∀λ ∈ [0, 1] C(r;p,w), C(r′;p,w) ≤ C0

and C(λr + (1− λ)r′;p,w) ≤ C0.
8In a multiple-input multiple-output specification, inputs can be modeled as either fixed over time, state

contingent, or the mixture of the two.
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over multiple time periods as a revealed subset of the portfolio, or {zi,s̃(t)}s̃(t)∈Ω̂SC

under Ω̂SC ⊂ Ω. This yields estimable frontier f̂SC(.; s̃(t));

zi,s̃(t) = f̂SC(xi; s̃(t)) exp(−ûi), ∀s̃(t) ∈ Ω̂SC . (4.3)

Equation (4.3) differs from a typical econometric specification for (state-invariant)

frontier f̂OS(.) with (state-variant) stochastic error component exp(vs̃(it));

zs̃(it) = f̂OS(xit) exp(−uit + vs̃(it)), ∀s̃(it) ∈ Ω̂OS (4.4)

where the empirical states of nature are represented by stochastic error exp(vs̃(it)), or

a distribution of outcome-states Ω̂OS. Whence the OS framework allows one to model

a statistical relationship between inputs xit and outputs zs̃(it) defined for a residual

distribution over stochastic states Ω̂OS. However, it has long been recognized that

such a representation of production uncertainty imposes, a priori, very restrictive

patterns of technical substitution (e.g., Just and Pope (1978); Chambers and Quiggin

(2002)).9 Specifications like (4.4) do not account for the host of situations where the

contribution of inputs x to SC outputs {zs}s∈Ω potentially varies across the states

of nature. The key insight of the SC approach is that producers manage production

risks through state-variant, input-output relationships, for example, by allocating re-

sources to enhance state-specific output gains (e.g., applying fertilizers to boost yields

under good weather conditions) or mitigate state-specific output losses (e.g., applying

pesticides to protect plants from potential pest infestations). Analytically, the OS

representation is a special case of the SC approach where the stochastic technology

allows no technical substitutions across states. This study formally considers the sets

of assumptions that lead to empirical specifications like (4.3) and (4.4) under the SC

and OS frameworks respectively.

4.3 Comparison of Stochastic Technologies with Balanced Panel Data

This section considers the analyses of production risks using balanced panel

data under each of the SC and OS frameworks of uncertainty. The decision-making

9Just-Pope technology specification partially relaxes this assumption by allowing the variance to depend
on input variable (Just and Pope, 1978), capturing a certain inter-dependence between the inputs and the
role of uncertainty.
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of the standard SC approach in the previous section is adapted to a stylized empirical

context for estimating a model of uncertain annual returns on fixed production assets.

4.3.1 Empirical Context

Consider a context of agricultural production where the producer, endowed

with some fixed assets xf , selects a schedule of contingent input-output decisions

(xv, z) under uncertain weather outcomes and market conditions for the upcoming

production season. The model in consideration casts production risks over multiple

time periods as a repeated cycle of uncertainty resolutions, in which predetermined

fixed assets xf are regarded as “input” variables in the terminology of the previous

section, and state-contingent input-output decisions (xv, z) similarly as “output”

variables. This allows some inputs in xv to be committed before the resolution of

uncertainty (e.g., applying herbicides to prevent weed infestations) and others to be

brought in after the resolution (e.g., applying insecticides in response to an insect

outbreak). Thus, the model does not require the classification of inputs xv into such

ex ante commitments or ex post responses, which largely depends on the situation at

hand and may be ambiguous at best if the timing of input use is flexible in relation

to the timing of contingent events.10 The technology for this model is represented as

Ψ = {(xf , [−xv z]) ∈ RL1
+ ×R

(L2+M)S
+ : xvs can produce zs in state s ∈ Ω, given fixed

assets xf}.

For simplicity, the focus of the modeling is placed on a reduced-form, technolog-

ical relationship, referred to as value-added (VA) SC technology Y (xf ) = {y ∈ RS: a

portfolio of SC incomes y for states Ω is producible, given fixed assets xf}.11 Since SC

incomes y = {pszs −wv
sx

v
s}s∈Ω are simply the linear projection of SC input-outputs

(xv, z) at corresponding prices (wv,p), it follows that y ∈ Y (xf )⇔ (xv, z) ∈ Ψ(xf )

for technology Ψ conditionally on fixed assets xf . If, for instance, Ψ is closed, free-

disposable/monotonic in (x, z), and convex in (−x, z) with feasible inaction, then

Y (xf ) satisfies (VA1) closure, (VA2) monotonicity (y′ ≤ y ∈ Y (xf ) ⇒ y′ ∈ Y (xf ),

and xf ′ ≥ xf ⇒ Y (xf ′) ⊇ Y (xf ) for all xf ,xf ′ ∈ RL1
+ ), (VA3) feasible inaction

(0S ∈ Y (xf ) for all xf ∈ RL1
+ ), and (VA4) the convexity of input and output sets

10The potential input misclassification applies to the OS framework as well since specifying a distribution
conditionally on regressors does not correctly account for the state-specific contributions of these inputs.

11The reduced-model through VA technology Y (xf ) is optional, but for the current dataset the reduction
in the dimension of input-output specification is needed to conserve degrees of freedom. Also, it simplifies
the comparison between the SC and OS frameworks in below.
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(λY (xf ) + (1− λ)Y (xf ′) ⊆ Y (λxf + (1− λ)xf ′) for all λ ∈ [0, 1] and xf ,xf ′ ∈ RL1
+ ).

The analysis seeks to compare the risks associated with distinct systems of

production. Observed production decisions are partitioned based on employed system

g ∈ {1, .., G} = G of technology Ψg ⊂ Ψ that allows for distinct possibilities to

arrange SC input-output decisions and are technically-evaluated against comparable

peer-observations within the system, while the associated production risks can be

compared both within and across the system. Each system g ∈ G of technology Ψg

is assumed to be closed, monotonic, and convex with feasible inaction, and hence

the associated VA technology Y g(xf ) satisfies assumptions (VA1) through (VA4).

Meanwhile, industry-level technology Ψ = ∪g∈GΨg can be non-convex if observed

fixed assets xf are systematically different across systems or potentially disjoint across

them, for example, due to distinct characteristics of land and capital utilized under

each system.

Consider a dataset containing decisions of N producers in T time periods, in-

dexed by i ∈ {1, .., N} = I and t ∈ {1, .., T} = T respectively. Let Ig denote the

index set for Ng producers employing system g ∈ G. Each producer i employs single

system g ∈ G throughout the time span T, so that
∑

g∈GNg = N and I = ∪g∈GIg.

Then, the analysis assumes the following.

A 1. No Contingent-State Change. Contingent states Ω are time-invariant in

T.

A 2. No Technical Change. Each system g ∈ G of VA technology Y g(.) is time-

invariant in T.

With assumptions A1 and A2, the above empirical context can be described as a

repeated cycle of events defined as follows. In each time period t ∈ T; each producer

i ∈ Ig selects SC input-outputs {(xvit,s, zit,s)}s∈Ω ∈ Ψg(xfi ) where subscripts it and s

denote the index of producer-time periods it and the index of state s respectively; the

Nature draws some state s ∈ Ω for the producer; the producer earns his SC income

yit,s = pt,szit,s −wv
t,sx

v
it,s as scheduled.

Under full information (disregarding the availability of data) with assumptions

A1 and A2, SC technology Ψg(xf0) for given xf0 can be approximated by a free-
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disposable convex hull;

Ψ̂g,DEA(xf0) = {(xv ′, z′) ∈ R(L2+M)S : ∀s ∈ Ω,
∑
i∈Ig

∑
t∈T

λit zit,s ≥ z′s,∑
i∈Ig

∑
t∈T

λit x
v
it,s ≤ xv ′s ,

∑
i∈Ig

∑
t∈T

λit x
f
i ≤ x

f
0 ,
∑
i∈Ig

∑
t∈T

λit = 1, λ ∈ RNgT
+ }

(4.5)

or its reduced-form;

Ŷ g,DEA(xf0) = {y′ ∈ RS :∀s ∈ Ω,
∑
i∈Ig

∑
t∈T

λit yit,s ≥ y′s,∑
i∈Ig

∑
t∈T

λit x
f
i ≤ x

f
0 ,
∑
i∈Ig

∑
t∈T

λit = 1, λ ∈ RNgT
+ } (4.6)

where Ψ̂g,DEA(xf0) and Ŷ g,DEA(xf0) are DEA approximations for SM -output and S-

output technologies under variable returns to scale (VRS) respectively. The data

requirement for estimating Ŷ g,DEA(xf0) is the set of fixed inputs xi and SC-income

portfolios {yit,s}s∈Ω of producer-time periods it ∈ Ig ×T.

So far, no assumption is made for producer’s preferences (and his subjective

probabilities). Specifying some arbitrary risk preferences W (.) and predicted proba-

bilities of states, say π̂, yields the desired risk comparison.

Remark 1. Analysis of Optimal SC Portfolios. Given assumptions A1 and A2

and equation (4.6), optimal portfolio can be simulated for each system g ∈ G of VA

technology Ŷ g,DEA(.) and ranked across systems, according to some risk preferences

W : RS → R and probability π̂.

The feasibility of this analysis rests on the feasibility of a SC technology approx-

imation like (4.6). The difficulty is to construct an empirical model for contingent

states Ω, based on some available information on state realizations. On one hand,

focusing on limited aspects of the states would fall short of representing the relevant

state pace and likely misrepresent production risks. On the other hand, incorpo-

rating highly-detailed information on the states would create disjointedness in state

realizations among observations and hence make a technology approximation like (4.6)

infeasible. Given these complications, it is not surprising that empirical applications

of the SC approach have been extremely rare in production economics. In below,
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additional assumptions are introduced to circumvent these challenges.

4.3.2 Cross-Sectional Analysis of SC Portfolios Under the SC Framework

An empirically-feasible SC risk analysis is proposed under two additional as-

sumptions. One is that individual producers make time-invariant portfolio decisions

during time span T. This assumption is most naturally interpreted through the fixity

of production assets that completely restricts the ability to adjust their SC portfolios

in a short run.12 The other is that the state realization is identical for all producers

i ∈ I in a given time period. Then, each state realization can be indexed by time

period t, or notationally state s = s̃(t) represents a bundle of SC events in time t that

are shared by producers. This allows one to frame balanced panel data on incomes

as cross-sectional observations of partially-revealed SC portfolios.

Formally, the additional assumptions are stated as follows;

A-SC 1. Time-invariant SC Production Decisions. During time span T,

producers are locked into time-invariant SC portfolio decisions (i.e., ∀i ∈ I, ∀a, b ∈

T, {yia,s}s∈Ω = {yib,s}s∈Ω).

A-SC 2. Cross-sectionally Homogeneous State Realization. In given time

period t ∈ T, the Nature draws identical state s ∈ Ω for all producers i ∈ I.

Assumption A-SC1 states that producers cannot alter their SC production

schedules {pszit,s − wv
sx

v
it,s}s∈Ω = {yit,s}s∈Ω throughout time span T. This is, in

spirit, akin to the putty-clay model of technology (e.g. Bischoff, 1972; Fuss, 1978), in

which the producer is initially presented with the opportunity to choose any input-

output decision in the technology but becomes stuck with a specific decision once the

decision is made. The putty-clay model reflects a stylized fact that the lumpiness

of investment tends to severely limit producer’s technical substitution possibilities in

a short run. For example, the asset fixity for agricultural producers has long been

considered as a major explanation for particularly slow downward supply curve re-

sponses in agricultural production (often referred to as irreversible supply), dating

back to Galbraith and Black (1938), Johnson (1950), and Edwards (1959).13

12It is not uncommon to assume restrictive production sets at the producer level while regarding the
envelop of these sets as an industry-level technological frontier; see the tradition since T. C. Koopmans
(1952) and Houthakker (1955) and recent applications in, for example, Kortum (1997) and Jones (2005).

13Readers interested in empirical tests of asset fixity is directed to, for example, Chambers and Vasavada
(1983).
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In the current case, each schedule of SC input-output decisions {(xvit,s, zit,s)}s∈Ω

should be regarded as a specific production technique accompanied with a set of

contingent action plans for various risk scenarios. The fixity of the SC schedule does

not imply that the producer makes identical, state-specific input-output decisions

(xvit,s, zit,s) in each period t ∈ T since his action depends on state realization s that

is assumed to vary across time periods. Instead, it means that if the draws of states

were identical for any two periods, the producer would act on the same input-output

decision, according to the same schedule.

Note that this assumption is much more restrictive than the fixed effects assump-

tion in panel-data econometrics, which invokes a time-invariant conditional-mean

relationship between the observable and unobservable characteristics of a decision-

maker. Under assumption A-SC1, the relationship between the observed SC decisions

(for realized states of nature) and unobserved decisions (for unrealized states) of a

producer is assumed to be strictly time-invariant. The deterministic and stronger

version of the time-invariance assumption is necessary for modeling the exact tech-

nological relationships across states as opposed to some average characterizations at

their conditional means. Assumption A-SC1 is most naturally interpreted as the strict

time-invariance of risk management plans due to the underlying, short-run fixity of

production assets. Then, the producer is stuck with a certain schedule of contingent

actions {(xvit,s, zit,s)}s∈Ω over production cycles during T, regardless the changes in

the likelihoods of contingent states.

Assumption A-SC2 would be most sensible when producers operate in the same

production environments – in terms of market conditions, regulations, and weather

patterns – for example, due to geographical proximity. Then, the reference to period

t can be interchangeably treated as the reference to state realization s = s̃(t) under

some mapping s̃(.) from T to Ω, yielding an empirical set of state realizations Ω̂SC ⊂

Ω. When appropriate, the representativeness of empirical state-space Ω̂SC may be

assessed based on the likelihoods of observed SC events like market prices and weather

outcomes in historical records.

Some implications of assumptions A-SC1 and A-SC2 are noted in simple two-

state examples. Figure 4.5 illustrates a case where SC decisions are in fact time-

variant so that assumption A-SC1 is violated. Points yA = (yAs , y
A
t ) and yB =

(yBs , y
B
t ) represent two SC portfolios (yi1,s, yi1,t) and (yi2,s, yi2,t) of producer i and
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time k = 1, 2 respectively. Portfolio yA has a higher income in state s and a lower

income in state t than portfolio yB, or yi1,s > yi2,s and yi1,t < yi2,t. Of these, suppose

that observed are yi1,s and yi2,t in time k = 1, 2, for which state realizations are

modeled by assignments s = s̃(k = 1) and t = s̃(k = 2). This yields a prediction

of single time-invariant SC portfolio (yi1,s, yi2,t) depicted at yC = (yAs , y
B
t ), which

overstates technical feasibility in its neighborhood. Alternatively, if observed decisions

are instead yi1,t and yi2,s in time k = 1, 2, predicted portfolio (yi1,t, yi2,s) at (yAt , y
B
s )

would underestimate technical feasibility in this neighborhood.

In another example, figure 4.6 depicts a case where state-realizations are in

fact cross-sectionally heterogeneous so that assumption A-SC2 is violated. This time,

points yA and yB denote two time-invariant portfolios (yi1,s, yi1,t) = (yi2,s, yi2,t) and

(yj1,s, yj1,t) = (yj2,s, yj2,t) of producers i and j respectively in time k = 1, 2. Suppose

that observed decisions are yi1,s and yi2,t for producer i and yj1,t and yi2,s for producer

j in time k = 1, 2. Under state assignments s = s̃(k = 1) and t = s̃(k = 2), time-

invariant SC-income portfolios are predicted correctly as (yi1,s, yi2,t) for producer i

(at point yA) and incorrectly as (yj1,t, yj2,s) for producer j (at point yC). When

yjk,s < yjk,t, incorrect portfolio yC would estimate a higher income in state s and

a lower income in state t than correct portfolio yB, by which the frontier would be

overestimated around yC and underestimated around yB.

Thus, assumptions A-SC1 and A-SC2 compensate for the incomplete informa-

tion on SC portfolio decisions at the risk of potential misrepresentations of a technol-

ogy. Only by discarding any between-time variation in SC decisions, does assumption

A-SC1 make it possible to study within-portfolio differences across states. Only by

ignoring any within-time variation in realized states, does assumption A-SC2 allow

one to compare between-portfolio differences across producers.

Under incomplete information with assumptions A1, A2, A-SC1, and A-SC2,

the VA technology in (4.6) for empirical states Ω̂SC becomes;

Ŷ g,DEA(xf0 ; Ω̂SC) ={y′ ∈ RT : ∀s = s̃(t) ∈ Ω̂SC ,
∑
i∈Ig

λi yi,s̃(t) ≥ y′s,∑
i∈Ig

λi x
f
i ≤ x

f
0 ,
∑
i∈Ig

λi = 1, λ ∈ RNg
+ }, (4.7)

which is a DEA approximation for a T -output VRS technology. Its data requirement
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is a set of fixed inputs xi and SC-income portfolios {yi,s̃(t)}s̃(t)∈Ω̂SC of producers i ∈ I

over time span T.

The frontier approximation allows one to estimate technical efficiency (TE) for

a given direction and a unit in the empirical state-space. For example, distance

function D̂g(xf0 ,y0) = min{φ : y0/φ ∈ Ŷ g,DEA(xf0 ; Ω̂SC)} ∈ (0, 1] measures the

output-oriented, radial TE of portfolio y0 for given fixed assets xf0 where the technical

inefficiency represents the extent of the underexploited, proportional increase in SC

incomes for states Ω̂SC . If the direction of the TE measurement is instead taken in

the uniform-increase in state-space Ω̂SC , the associated technical inefficiency would

measure the missed opportunity in uniformly increasing SC incomes for states Ω̂SC .

Under approximation (4.7), the SC incomes for unrealized states are seen as

omitted variables in the input-output specification. Omitted variables do not induce

bias in the estimation of a distance function like D̂g(xfi ,yi) but instead affect the

efficiency calculation by limiting the direction of the TE measurements. For instance,

the feasible radial TE measurement estimates the proportional increase in SC incomes

for realized states Ω̂SC but not those for unrealized states. Without a sound method to

utilize information on the unrealized states, excluding these states from the efficiency

evaluation seems sensible. The DEA frontier approximation is well-suited for this

nonparametric treatment of an empirical state-space.

In summary, the SC risk analysis is feasible under empirical state-space Ω̂SC ;

Remark 2. Cross-sectional Analysis of Optimal SC Portfolios. Given as-

sumptions A1, A2, A-SC1, and A-SC2 and equation (4.7), optimal portfolio can be

simulated for each system g ∈ G of VA technology Ŷ g,DEA(.; Ω̂SC) and ranked across

G according to some risk preferences W : RΩ̂SC → R and probability π̂ defined on

Ω̂SC ⊂ Ω.

4.3.3 Pooled Analysis of Income Distribution Under the OS Framework

In contrast to the above SC approach, a standard practice is to analyze pooled

observations across producers and time periods in what this study refers to as the

outcome-state (OS) representation framework. The following highlights the linkage

between the theoretical framework of SC decision-making in the previous section

and the typical risk analysis under the OS framework. For consistency, the input-
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output specification in the previous SC framework (i.e., SC portfolio decision {yit,s}s∈Ω

for given fixed assets xfi ) is kept unchanged. Notationally, each state realization is

indexed by producer-time period it, or s = s̃(it) where state s̃(it) ∈ Ω̂OS represents a

bundle of SC events that can vary across producers and time periods.

The assumption for the OS framework can be stated as the lack of technical

substitutability of SC decisions across observations (Chambers and Quiggin, 2002).

The assumption corresponds to “output-cubical” technology (e.g. Luenberger, 1995),

represented by a free-disposable hull with a single vertex of portfolio yg(xf ) ∈ RS that

weakly-dominates all feasible portfolio decisions (i.e., Y g(xf ) = {y′ ∈ RS : yg(xf ) ≥

y′}). In a panel data analysis, this amounts to assuming the time-invariance and

producer-invariance of the optimal portfolio decision for given inputs;

A-OS 1. Output-Cubical Technology. For each system g ∈ G, VA technology

Y g(.) allows no substitutions of SC incomes across states (i.e., ∀i, j ∈ I, ∀a, b ∈

T, {yia,s}s∈Ω = {yjb,s}s∈Ω).

Casting production uncertainty as an exogenous distribution of SC incomes

implies that the producer apparently plays no active role in formulating this portfolio,

for example, due to technical restrictions. This is ensured under assumption A-OS1;

conditionally on the differences in input levels, observed incomes ys̃(it) for ∀it ∈ Ig×T

can be all traced back to a representative portfolio-decision {ys̃(it)}s̃(it)∈Ω̂g,OS .

Under incomplete information with assumptions A1, A2, and A-OS1, the VA

technology in (4.6) for empirical states Ω̂g,OS becomes;

Ŷ g,DEA(xf0 ; Ω̂g,OS) = {y′ ∈ RNgT : ∀s = s̃(it) ∈ Ω̂g,OS,

λs̃(it) ys̃(it) ≥ y′s, λs̃(it) x
f
i ≤ x

f
0 , λ ∈ R

NgT
+ } (4.8)

where each observation it is associated with distinct state realization s̃(it), and its

collection defines empirical states Ω̂g,OS. Specification (4.8) is a DEA approximation

for a NgT -output VRS technology estimated with NgT observations, albeit it would

be a free-disposable hull with single vertex {ys̃(it)}s̃(it)∈Ω̂g,OS with no comparable peer

observations.

In practice, the researcher instead employs a parametric-frontier estimation

where the distribution of statistical errors is assumed to represent empirical state-

space Ω̂g,OS. A typical stochastic frontier analysis (SFA) specification like equation

68



(4.4) is written as ys̃(it) = f g(xfi ) exp(−uit + vs̃(it)), for which model identification

requires the statistical independence between frontier function f g(xfi ) and the joint

distribution of technical efficiency exp(−uit) and stochastic error exp(vs̃(it)).
14 Such

an estimation implies an output-cubical technology defined over some realized and

other unrealized state-spaces, say Ω̂g,OS = Ω̂g,OS
R + Ω̂g,OS

U , such that;

Ŷ g,SFA(xf0 ; Ω̂g,OS) = {y′ ∈ Ω :∀s = s̃(it) ∈ Ω̂g,OS
R , f g(xfi ) exp(vs̃(it)) ≥ y′s,

∀s = s̃ ∈ Ω̂g,OS
U , f g(xfi ) exp(v̂s̃) ≥ y′s}, (4.9)

for which data requirement is a set of fixed inputs xi and SC-income portfolios

{ys̃(it)}s̃(it)∈Ω̂g,OS of producer-time periods it ∈ Ig ×T.

Some implications of assumption A-OS1 are noted in simple two-state exam-

ples. Figure 4.7 considers a parallel case to figure 4.5 that the underlying deci-

sions (yi1,s, yi1,t) and (yi2,s, yi2,t) of producer i in time k = 1, 2 (depicted at points

yA = (yAs , y
A
t ) and yB = (yBs , y

B
t )) violate the time-invariance of SC decisions.

Suppose that observed decisions are yi1,s and yi2,t in time k = 1, 2. Under state as-

signments s = s̃(k = 1) and t = s̃(k = 2), these observations can be interpreted as a

vertex (yi1,s, yi2,t) of the output-cubical technology in (4.8) (at point yC = (yAs , y
B
t )).

Or, based on the average of the observations (yAs + yBt )/2 at yD along with some

predicted stochastic errors and technical inefficiencies, an SFA technology in (4.9)

may yield non-stochastic portfolio yD ∗ (i.e. f g(xfi )) and stochastic portfolio yE (i.e.

f g(xfi ) exp(v̂ ˜s(it))) at full technical efficiency. Note that in this example, taking any

portfolio among yC , yD, yD ∗, or yE as a vertex of output-cubical technology would

result in overestimating the technology around the vertex.

Figure 4.8 illustrates the case of having the same underlying decisions but ob-

serving decisions yi1,s and yi2,s of producer i in time k = 1, 2. Under state assignments

s = s̃(k = 1) and t = s̃(k = 2) (instead of true assignments s = s̃(k = 1) = s̃(k = 2)),

portfolios yC , yD, yD ∗, and yE can be predicted similarly as in the previous exam-

ple. Then, taking any of theses points as a vertex would underestimate the technology

around the vertex in this case. Given the parallel roles of the time-invariance and

14See also Chambers and Quiggin (2002) for the relationships between the stochastic error structure an
the restricted expansion path of a stochastic technology. The authors show that additive and multiplicative
stochastic error structures impose constant absolute riskiness (CAR) and constant relative riskiness (CRR)
respectively and that the Just-Pope technology specification relaxes these properties and allows for a flexible
expansion path.
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producer-invariance assumptions in defining empirical state space Ω̂g,OS, analogous

examples can be constructed for violating producer-invariant SC decisions.

Thus, by discarding any differences in the underlying portfolio decisions condi-

tionally on inputs, assumption A-OS1 makes it possible to reduce the analysis of SC

portfolio decisions into the analysis of a stochastic income distribution across pro-

ducers and time periods. Such an analysis can be additionally facilitated by certain

parametric-distributional relationships among empirical states s̃(it) ∈ Ω̂g,OS.

The task of comparing different systems of technologies Ŷ g,SFA(xf0 ; Ω̂g,OS), de-

fined over different empirical-state spaces Ω̂g,OS (which are not directly comparable),

are undertaken through the ordered statistics of their optimal portfolios defined over

a common domain, say, Ω̂OS. Under probabilistic sophistication of risk preferences,

equally-probable states of nature can be regarded as interchangeable.15 Then, the OS

risk analysis is feasible under empirical state-spaces Ω̂OS.

Remark 3. Pooled Analysis of Optimal OS Portfolios. Given assumptions

A1, A2, and A-OS1 and equation (4.9), optimal portfolio can be simulated for each

system g ∈ G of VA technology Ŷ g,SFA(.; Ω̂g,OS) and ranked across G according to

some probabilistically-sophisticated preferences, W : RΩ̂OS → R with probability π̂

defined on Ω̂OS.

4.4 Application

4.4.1 The Data

Using data on Maryland dairy production, this section compares relative riski-

ness associated with two dairy production systems, or confinement and management-

intensive grazing dairy practices. Confinement dairies tend to use more inputs like

purchased feeds and machinery and produce more milk than grazers. The dataset

was previously analyzed in Hanson et al. (2013), which found that on average the

two groups earn about the same amount of income, but the confinement dairy was

deemed riskier based on its higher variation in income.

This study separately analyzes two balanced-panel subsets for years 2000-2004

and years 2006-2009 of the original dataset. The 2000-2004 panel contains 11 grazers

15Following the definition of Machina and Schmeidler (1992), utility W (.) : RΩ → R is probabilistically
sophisticated if ∀y, y′ ∈ RΩ with the same cumulative distribution ∀x, Pr(X ≤ x;y,π) = Pr(X ≤ x;y′,π)
⇒W (y) = W (y′). In general, the probabilistic sophistication is not a particularly restrictive assumption.
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and 20 confinement dairies, and in the 2006-2009 panel there are 11 grazers and

17 confinement counterparts. Table 5.1 reports the means and standard deviations

of the relevant input and output variables by dairy system and production year,

including milk output, herd size, crop acreage, and pasture acreage. These statistics,

calculated within the two subsamples, are fairly representative of the whole dataset

for the corresponding years.

For these dairies, the most important source of uncertainty was the fluctuation

of milk and feed prices. Table A.1 shows the inflation-adjusted price indices from

US Department of Agriculture as well as the sample-average milk prices calculated

from the milk revenues and quantities in the data. The feed price index climbed from

the baseline of 100 in 1990-1992 to a peak of 111-117 during 1996-1997, plateaued

around 89-92 during 2001-2006, and spiked at 127-132 during 2008-2009 (due to the

food crisis of 2008). The milk price index, which one would expect to follow the

underlying trends in feed costs, frequently diverged from the movements of the feed

price. Notably, milk price was rather volatile when the feed price was relatively stable.

Another source of uncertainty is weather. Reduced rainfall and lower temper-

atures generally limit forage production in dairy farming. Colder winters and hotter

summers increase the physical stresses for cows and increase the costs associated with

their dietary needs and veterinary cares than otherwise. During the two time inter-

vals 2000-2004 and 2006-2009, the producers have experienced a dry autumn in 2001,

a dry and warm winter in early 2002, and a dry spring in 2006, compared to their

20-year norms. No obvious weather shocks to milk outputs are observed in the data.

It is likely because some inputs were adjusted to absorb major impacts of weather on

milk production, impacting the cost of production.

4.4.2 Optimal Production Risks Under the SC Framework

Under the SC framework, the states of nature are indexed by calender year

and assigned some probability distribution across states. While one could investi-

gate the underlying likelihoods of relevant SC events in historical records, given the

relatively short panel datasets at hand, this study simply assigns arbitrary probabil-

ity distributions that represent four distinct probability-scenarios. To help interpret

these scenarios, realized states are heuristically labeled as either “good,” “bad,” or

“normal” states in terms of the average profit level in the sample. Specifically, in
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the 2000-2004 panel, years 2001 and 2004 are assumed to represent “good” states,

years 2002 and 2003 “bad” states, and year 2000 a “normal” state. Similarly, in

the 2006-2009 panel, years 2007 and 2008 are regarded as “good” states, and years

2006 and 2009 as “bad” states. These labels largely reflect the outcomes of market

prices rather than those of weather conditions. The state probabilities in scenario P-1

(equal) are set all equally-likely (e.g., uniform state-probability of 0.2 for a 5-state

case). Three other scenarios are derived by shifting these probabilities between good

and bad states; probabilities are shifted from two bad to two good states respectively

by 0.1 in P-2 (optimistic), shifted from two good to two bad states by 0.1 in P-3

(pessimistic), and shifted from the second worst and the second best to the worst and

the best by 0.1 in P-4 (volatile).16

Value-added (VA) technologies for the two dairy systems are estimated sepa-

rately, according to equation (4.7). The observed profits in relevant years are regarded

as multi-dimensional SC outputs whereas herd size, crop acreage, and pasture acreage

are used as short-term fixed inputs.17 The assumption of constant returns to scale

(CRS) is added to specification (4.7) (i.e., unrestricted
∑

j λj) to simplify optimal

portfolio simulations across input-mixes in below.

Table 4.3 presents the summary of output-oriented technical efficiency and state-

allocative efficiency scores (TE and SAE) by dairy system and balanced-panel sub-

sample. In this application, the majority of decisions are found technically-efficient in

most of the efficiency analyses. Confinement dairies are on average 80% and 85% tech-

nically efficient in the 2000-2004 and 2006-2009 panels respectively, indicating that

the average confinement dairy was operating at the 80% and 85% SC profit-levels

of the technically-efficeint peers. Grazers are on average 85% and 94% technically

efficient in the panels of correspoding time periods. The rather high efficiency scores

may be attributed to the relatively small degrees of freedom due to the small sample

size and the selection effects by potential attrition of inefficient producers who might

have gone out of operation at some point during the study periods.

Under each probability scenario of P-1 through P-4, SAE is measured as the

ratio of the expected profit at a given SC portfolio decision (projected to the frontier)

16For example, probability scenarios for 2000-2004 are {0.2,0.2,0.2,0.2,0.2} in P-1 (equal),
{0.2,0.3,0.1,0.1,0.3} in P-2 (optimistic), {0.2,0.1,0.3,0.3,0.1} in P-3 (pessimistic), and {0.2,0.3,0.1,0.3,0.1}
in P-4 (volatile).

17Strictly speaking, these inputs have minor variations across production years (e.g., see table 5.1), so
that the farm-averages of these variables are used.
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to that of the state-allocatively efficient portfolio. For a given portfolio decision,

its SAE score tends to vary across probability scenarios more substantially if the

technology allows for a greater degree of technical substitution across states. At the

sample level, higher prevalence of state-allocative inefficiency and its higher sensitivity

across scenarios would indicate greater importance of formulating an SC portfolio with

respect to state probabilities that effectively serve as the “prices” for SC incomes.

For the 2000-2004 panels, the estimated SAE scores are very similar between the

two dairy systems, averaging around 82% to 84%. For the 2006-2009 panels, these

scores become higher among confinement (e.g., averaging at 91% to 96%) and lower

among grazers (e.g., averaging at 76% to 88%). This is consistent with a view that

confinement operations have become more homogenized over time, accompanied with

a reduction in the SC substitutability, but intensive-grazing operations have become

more diversified, accompanied with an increase in the SC substitutability, by which

some grazers improved risk management through the means of production practices.

Optimal decisions along the two technological frontiers are simulated under

three different risk-preference specifications: risk-neutral, maximin, and linear mean-

MAD (mean absolute deviation) preferences. For each specification, the optimal

portfolio of SC incomes is identified at the “tangency” between a technological frontier

and an indifference curve.18 The risk-neutral preferences (i.e., hyperplanes defined by

state probabilities) maximize expected profits. Figure 4.3 illustrates how optimal

expected-profits differ in revenue-mixes for “bad” state s and “good” state t under

equal, optimistic, and pessimistic probability-scenarios (at points a, b, and c). The

maximin preferences (i.e., Leontief utility: the most risk-averse case of increasing

and concave preferences) maximize the minimum payment across states. The linear

mean-MAD preferences for arbitrary risk-averseness (i.e., a special case of invariant

preferences) maximize µ−kφ, given the trade-off between mean µ and MAD φ, in this

case, for constant k ∈ {1/2, 1, 2}. Figure 4.4 depicts an optimal decision for maximin

preferences at point a and that for a typical risk-averse utility at point b.19

In simulating optimal portfolios, short-term fixed assets xf are set at the fol-

18Technically speaking, the indifference curves considered here are all non-smooth. These optimal deci-
sions are easily estimated by linear programming. In future research, more general mean-MAD specification
may be considered under quadratic programming.

19Indifference curves for linear mean-MAD preferences are characterized with kinked lines like those of
maximin preferences but with larger angles. The associated optimal decisions differ from those of maximin
preferences when the technological frontier is non-smooth like piecewise-linear DEA frontiers.

73



lowing ten input-mixes for confinement (c1-c10) and grazers (g1-g10). Holding herd

size constant at 100 cows, the first 9 input-mixes are defined as the combinations of

crop acreage in {200, 300, 400} and pasture acreage in {25, 50, 100} for confinement

and the combinations of crop acreage in {50, 100, 150} and pasture acreage in {100,

150, 200} for grazers. Input-mixes c10 and g10 are chosen at the sample-averages

in the corresponding subsamples. Under CRS, these input-mixes and the associated

optimal portfolios can be scaled up or down by a constant proportion.

Table 4.4 presents the maximin and risk-neutral utility-levels at the optimal

portfolio decisions.20 The utility levels of confinement tend to vary with crop acreage

while those of grazers tend to vary with pasture acreage. Also, the “good” states of

years 2001 and 2004 positively impact the optimal utility of grazers, while the “bad”

states of years 2006 and 2009 negatively affect the optimal utility of confinement.

Under the representative case for input-mix c5 (100 cows, 300 crop acres, 50 pasture

acres), the most risk-averse confinement producer would schedule the non-stochastic

income of $117k and $62k at the frontiers of 2000-2004 and 2006-2009 technologies

respectively. At input-mix g5 (100 cows, 100 crop acres, 150 pasture acres), the most

risk-averse grazer would similarly earn the non-stochastic income of $90k and $84k

at their frontiers respectively. The risk-neutral confinement producer with input c5

would obtain the expected income of $127k in scenario P-1 (with ±$4k in scenarios

P-2 to P-4) and $89k in P-1 (±$12k in P-2 to P-4) respectively at the 2000-2004 and

2006-2009 frontiers, while the risk-neural grazer with input g5 would generate the

expected income of $121k in P-1 (±$21k in P-2 to P-4) and $88k in P-1 (±$1k in P-2

to P-4) at their frontiers. It may be noted that these calculations do not account for

the opportunity cost of fixed inputs.21

Similarly, tables 4.5 and 4.6 summarize the optimal, linear mean-MAD utility

levels for selected input-mixes. While these utility levels (“µ − kφ”) are not di-

rectly comparable to those of maximin or risk-neutral preferences in dollar terms, the

expected value of optimal SC incomes (“µ”) theoretically converges to that of the

risk-neutral preferences as k → 0 and to that of the maximin preferences as k →∞.

20For each of the point-estimate for utility levels, confidence interval (CI) can be calculated by a common
bootstrapping method on efficiency score distributions (e.g., Simar and Wilson, 2000), which predicts a CI
for a DEA frontier. To give some idea on the scale of precisions in this study, the length of the 95% CI
measured in relation to the median uility-level is about 55% for maximin preferences, 50% for the risk-neutral
preferences, and 47% for mean-MAD preferences.

21 For example, input-mixes c5, c10, g5, and g10 would incur the cost of $72k, $86k, $51k, and $55k
respectively at the rates of $400/cow, $70/crop-acre, and $40/pasture-acre.
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In the table, µ is generally close to the corresponding risk-neutral utility at k = 0.5

and maximin utility at k = 2 from table 4.4. At k = 1, the confinement producer

with input-mix c5 obtains the expected income of $127k in scenario P-1 (±$10k in

scenarios P-2 to P-4) with the associated MAD of $8k (±$8k in P-2 to P-4) at the

2000-2004 frontier and the expected income of $76k in P-1 (±$27 in P-2 to P-4) with

the MAD of $10k (±$19 in P-2 to P-4) at the 2006-2009 frontier. Similarly, at k = 1,

the grazer with input-mix g5 earns the expected income of $118k in P-1 (±$25k in

P-2 to P-4) with the MAD of $21k (±$19k in P-2 to P-4) at the 2000-2004 frontier

and the expected income of $84k in P-1 (±$3k in P-2 to P-4) with the MAD of less

than $1k (±$2k in P-2 to P-4) at the 2006-2009 frontier. Overall, the optimal port-

folios in these tables show how the optimal riskiness associated with each technology

varies with producer risk-aversion and state probability scenario. The optimality of

relatively low-risk portfolios under various degrees of risk-aversion and various prob-

ability scenarios (e.g., the 2000-2004 confinement frontier and the 2006-2009 grazing

frontier) suggests that the uncertainty in SC incomes can be largely offset through

production practices. Meanwhile, if a technology allows the producer to formulate

portfolios of higher expected incomes at higher risks (e.g., the 2006-2009 confinement

frontier and the 2000-2004 grazing frontier), taking higher risks is optimal under weak

risk-aversion or an optimistic prospect for the uncertainty.

The results for optimal portfolios appear to reflect the factors that have been

driving risks in dairy production. First, the optimal MAD levels tend to be higher

for grazers than confinement in the 2000-2004 panel, and this tendency is reversed

in the 2006-2009 panel, making the grazing system the lower-risk option. Second,

such results in relative riskiness stem from the system-specific trends of increasing

optimal riskiness for confinement and decreasing optimal riskiness for grazers. For

confinement producers, larger-scale production and associated cost-savings under in-

creased standardizations (e.g., Khanal et al., 2010; Winsten et al., 2010) appear to

have increased the optimal riskiness in their SC decisions. Their incomes were highly

influenced by the volatile milk prices in years 2006-2009 and the hikes of feed costs

induced by the 2008 food crisis. On the other hand, grazers, who have been exper-

imenting with their herd composition and pasture management in local production

environments (e.g., Hanson et al., 2013), have increasingly insulated their operations

from these market risks. The optimal decisions for grazers appear to have shifted to-
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ward low-market-risk practices through increased use of pasture to replace purchased

feeds and more prevalent product differentiations under organic milk production.22

As a result, at the scale of 100-cow dairy operations, the intensive-grazing system

has become a preferred option to the confinement system under a relatively high

risk-aversion or under a neutral-to-pessimistic prospect for market conditions.

4.4.3 Optimal Production Risks Under the OS Framework

In the outcome-state (OS) framework, production risks are analyzed in the

pooled observations of production decisions across producers and production years.

In particular, consider an estimation that decomposes a conditional profit distribution

into a predicted frontier-output, a TE component, and a stochastic error component

that represents outcome-states.23 For the current dataset, common SFA estimations

fail to produce sensible results due to the right-skewness of joint distributions for

TE and stochastic error components (i.e., attributing nearly all deviations from the

estimated frontier to technical inefficiency and none to stochasticity). For this de-

composition, analogous estimation is specified under weighted COLS (WCOLS) as

a convex combination of the OLS and COLS (corrected OLS, Greene, 1980).24 The

WCOLS specification for given weights λ ∈ [0, 1] placed on COLS and 1− λ on OLS

is

yit = f(xit;β) + εit = [f(xit;β) + λεmax] + [(1− λ)εit] + [λ(εit − εmax)] (4.10)

where εmax = maxit{εit}. WCOLS interprets the first component in brackets as the

frontier-output, the second as stochastic error, and the third as technical inefficiency.

This specification coincides with OLS as λ → 0 and COLS as λ → 1. Note that as

parameter λ increases, the deviation is less attributed to stochastic error and more

attributed to technical inefficiency and thus the increased frontier-output. Also, a

higher variability of deviation εit tends to predict a larger constant shift in the frontier-

output through greater εmax. For given λ, the optimal portfolio is predicted as the
22Four out of eleven grazers in the dataset have become certified as organic milk producers in all or part

of the 2006-2009 period, by which they earned the average of $30/cwt or higher price in each year, compared
to the milk prices of $15.0, $21,2, $19.8, and $13.7/cwt earned by non-organic grazers (and confinement
dairies) correspondingly during years 2006-2009.

23One could additionally employ producer or year fixed effects, yet it would be unclear whether it assumes
the fixity of production decisions or that of state realizations as well as how it relates to the distributional
assumption.

24Alternatively, one may use some distributional assumption (e.g., modified OLS, Fried et al., 1993).

76



sum of the frontier-output for a given input-mix and the empirical distribution of

stochastic errors.

Table 4.7 reports the summary statistics of optimal portfolios at two differ-

ent input-mixes under WCOLS for λ ∈ {0, 0.05, 0.10} as well as implied mean-SD

utility-levels “µ − k φSD” for constant k ∈ {1/2, 1, 2}, or another special case of in-

variant preferences. The estimations are based on the OLS regression on the natural

logarithm of profit on the natural logarithm of herd size.25 At the 100-cow oper-

ational scale, the optimal portfolios for confinement have the expected income of

$71k at λ = 0.05 (±$12k at λ ∈ {0, .10}) with the associated SD of $58k (±$3k at

λ ∈ {0, .10}) for the 2000-2004 frontier and the expected income of $52k at λ = 0.05

(±$18k at λ ∈ {0, .10}) with the SD of $78k (±$4k at λ ∈ {0, .10}) for the 2006-2009

frontier. Similarly, the optimal portfolios for grazers consist of the expected income of

$72k at λ = 0.05 (±$6k at λ ∈ {0, .10}) with the SD of $43k (±$3k at λ ∈ {0, .10})

for the 2000-2004 frontier and the expected income of $64k at λ = 0.05 (±$5k at

λ ∈ {0, .10}) with the SD of $37k (±$2k at λ ∈ {0, .10}) for the 2006-2009 frontier.

These portfolios can be ranked by mean-SD preferences for a given degree of risk

aversion.

For a more general structure of risk-preferences, implicit utility levels can be

ranked by a second-order stochastic dominance (SSD) test. For given λ, the test

compares the optimal portfolios between confinement and grazers in each of the sub-

panels I through IV defined for different operational scales of comparisons. When

the minimum income in grazers’ portfolio FG(:) is higher than that of confinement’s

FC(:), for instance, the null hypothesis is that FG(:) second-order stochastically dom-

inates FC(:) (i.e. H0 :
∫ z
z
FC(t) − FG(t) dt ≥ 0 for all z ∈ [z, z̄]) against the al-

ternative hypothesis of such a SSD relationship (i.e. H1 :
∫ z
z
FC(t) − FG(t) dt <

0 for some z ∈ [z, z̄]). Following Barrett and Donald (2003), test statistic Ŝ =√
(NGNC)/(NG +NC) supz

{∫ z
z
FC(t)− FG(t) dt

}
for NG and NC sample observa-

tions is used as an estimate for the supremum of the cumulative difference between

the two distributions. At the 100-cow operational scale, the test finds no SSD rela-

tionship for the 2000-2004 frontiers (sub-panel I) and the SSD of grazer’s portfolio

over confinement’s for the 2006-2009 frontiers (sub-panel III). At the sample-average

25When included in the regression, the coefficients of crop acreage and pasture tend to be negative in
many situations. Since such predictions are inconsistent with free-disposability, these variables are omitted
from the regression.
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operational scales, it finds the SSD of confinement’s portfolio for the 2000-2004 fron-

tiers (sub-panel II) and little evidence of SSD for the 2006-2009 frontiers (sub-panel

IV ).

The results under the OS framework are generally in agreement with those

under the SC framework. However, the current WCOLS analysis depends on arbitrary

parameter λ for weighting stochasticity against technical inefficiency in the optimal

portfolio calculations, unlike the endogenous weight determinations under SFA. The

above exercise, in turn, underscores the importance of distributional assumptions in

representing production risks as outcome-states.

4.5 Conclusions

This study has proposed a simple application of the state-contingent (SC) ap-

proach in a balanced panel data setting, with an empirical analysis of Maryland dairy

production data. The empirical challenge is to identify relevant heterogeneity in state

realizations and model ex ante production decisions that were formulated to manage

risks in those states. Assuming that SC decisions are time-invariant and that a subset

of those decisions is observed under cross-sectionally homogeneous state realizations

over multiple time periods, this study has proposed to analyze balanced panel data as

cross-sectional observations of SC incomes. The results from separate panel analyses

on years 2000-2004 and 2006-2009 suggest that the optimal portfolios for confine-

ment and grazers have become riskier and less risky respectively. An analogous risk

analysis under the outcome-state (OS) framework yields apparently similar results at

some moderate degrees of stochasticity. Future research may be targeted at modify-

ing the current assumptions for different data structures, extending optimal portfolio

simulations for alternative risk preferences, or deriving formal statistical properties

for the proposed SC risk analysis. More importantly, breakthroughs in the empirical

analysis of production risks await novel methods for improved accommodations of the

theoretical, SC production trade-offs in empirical settings. The value of adopting the

SC approach increases with the extent that producers actively manage risks through

the means of production.
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4.6 Tables and Figures

Figure 4.1: Risk Premium in State-
Contingent Preferences

Figure 4.2: Optimal State-Contingent Rev-
enues

Figure 4.3: Optimal Decisions under Risk
Neutral Preferences

Figure 4.4: Optimal Decisions under
Maxmin and Risk-averse Preferences
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Figure 4.5: Violation of Assumption A-SC1 Figure 4.6: Violation of Assumption A-SC2

Figure 4.7: Violation of Assumption A-
OS1 (1)

Figure 4.8: Violation of Assumption A-
OS1 (2)
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Table 4.2: Prices Indices and Sample-Average Milk Price Received

Inflation Adjusted Avg. Milk Price

Year Dairy Feed Inflation Dairy Feed Graz. Conf.

1995 98 103 2.58 91 96 19.0 18.6
1996 114 129 2.83 103 117 20.7 20.4
1997 102 125 2.44 90 111 19.5 18.5
1998 119 110 1.43 104 96 20.7 20.7
1999 110 100 2.06 94 86 19.7 20.1
2000 94 102 3.40 78 85 17.0 16.8
2001 115 109 2.79 94 89 20.3 20.1
2002 93 112 2.06 75 90 16.0 16.5
2003 96 114 2.82 75 89 15.5 16.1
2004 123 121 3.46 94 92 20.1 19.6
2005 116 117 3.65 86 87 19.3 18.3
2006 99 124 3.61 72 90 17.5 15.1
2007 146 149 2.56 104 106 22.9 21.1
2008 140 191 3.99 97 132 23.0 20.1
2009 93 184 0.02 64 127 18.9 13.9

1. External sources: USDA’s Indexes of Prices Received and Paid by Farmers, United
States (1990-1992=100) and CPI for the Northeast. Annual inflation rate is calculated
as the percentage change in the CPI from previous year.

2. Milk price ($) is inferred for each producer-year by dividing milk sales revenue by
milk production quantity.
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Table 4.4: Risk Comparisons in State-Contingent Framework, Maxmin & Risk-Neutrality

A. 2000-2004 Analysis B. 2006-2009 Analysis

Fixed Inputs Risk-Neutral Risk-Neutral

{cow, crop acre, pasture} Maxmin P-1 P-2 P-3 P-4 Maxmin P-1 P-2 P-3 P-4

Confinement
c1: {100, 200, 25} 98 115 119 118 117 55 89 104 71 90
c2: {100, 200, 50} 107 115 119 118 117 62 89 104 68 90
c3: {100, 200, 100} 107 115 119 118 117 62 89 104 68 90
c4: {100, 300, 25} 105 121 125 124 122 55 89 106 71 90
c5: {100, 300, 50} 117 127 130 131 126 62 89 106 68 90
c6: {100, 300, 100} 117 127 130 131 126 62 89 106 68 90
c7: {100, 400, 25} 105 121 125 124 122 55 90 108 71 91
c8: {100, 400, 50} 117 127 130 131 126 62 90 108 68 91
c9: {100, 400, 100} 117 127 130 131 126 62 90 108 68 91
c10: {sample avg.∗} 141 154 158 158 153 92 136 159 107 137

Grazers
g1: {100, 50, 100} 63 78 86 70 80 56 58 61 58 59
g2: {100, 50, 150} 79 109 121 97 112 80 84 86 85 86
g3: {100, 50, 200} 79 122 137 108 124 88 97 93 101 99
g4: {100, 100, 100} 73 95 103 86 98 61 65 71 63 66
g5: {100, 100, 150} 90 121 133 109 124 84 88 88 88 89
g6: {100, 100, 200} 90 122 137 109 124 88 97 93 101 99
g7: {100, 150, 100} 84 111 120 102 115 63 72 80 68 73
g8: {100, 150, 150} 90 121 133 110 124 84 88 88 88 89
g9: {100, 150, 200} 90 122 137 110 124 88 97 93 101 99
g10: {sample avg.∗} 80 107 120 97 109 81 84 86 83 85

1. ∗Sample average input mixes for cow, crop acreage, and pasture acreage are {124,294,48} for 2000-2004
confinement, {88,131,164} for 2000-2004 grazers, {153,322,54} for 2006-2009 confinement, and {99,138,136}
for 2006-2009 grazers.

2. Probability scenarios: P-1 (Equal), P-2 (Optimistic), P-3 (Pessimistic), and P-4 (Volatile).
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Table 4.7: Risk Comparisons in Outcome-State Framework

µ− k φSD Values at Percentiles SSD Test

Mean S.D. k =0.5 k =1 k =2 Min. 25th 50th 75th Max S-hat P-val

A. 2000-2004 Analysis
I. Comparison at the Same Input-level

Confinement (cow=100)
λ =0 59 61 28 -2 -63 -106 28 68 95 303 - -

λ =0.05 71 58 42 13 -45 -85 41 80 105 303 - -
λ =0.10 83 55 56 28 -26 -65 55 92 116 303 - -

Grazers (cow=100)
λ =0 66 46 43 21 -25 -78 45 67 90 184 59 0.103

λ =0.05 72 43 50 29 -15 -65 52 73 95 184 41 0.178
λ =0.10 78 41 57 37 -4 -52 59 79 100 184 27 0.276

II. Comparison at the Sample-Average Input-levels
Confinement (cow=124)
λ =0 84 61 53 23 -38 -81 53 93 120 328 159† 0.006

λ =0.05 96 58 67 38 -20 -60 66 105 130 328 196‡ < 0.000
λ =0.10 108 55 81 54 -1 -40 80 117 141 328 234‡ < 0.000

Grazers (cow=88)
λ =0 57 46 34 12 -34 -87 36 58 81 175 - -

λ =0.05 63 43 41 20 -24 -74 43 64 86 175 - -
λ =0.10 69 41 48 28 -13 -61 50 70 91 175 - -

B. 2006-2009 Analysis
I. Comparison at the Same Input-level

Confinement (cow=100)
λ =0 33 82 -8 -49 -131 -137 -10 39 75 400 - -

λ =0.05 52 78 12 -27 -105 -110 11 57 91 400 - -
λ =0.10 70 74 33 -4 -78 -83 31 75 107 400 - -

Grazers (cow=100)
λ =0 59 39 40 20 -19 -4 35 54 92 149 162‡ < 0.000

λ =0.05 64 37 45 27 -10 3 41 58 94 149 96† 0.005
λ =0.10 68 35 51 33 -2 11 46 63 97 149 61† 0.033

II. Comparison at the Sample-Average Input-levels
Confinement (cow=153)
λ =0 70 82 29 -12 -95 -101 27 75 111 437 - -

λ =0.05 88 78 49 10 -68 -74 47 93 127 437 - -
λ =0.10 106 74 69 32 -42 -47 68 111 144 437 - -

Grazers (cow=99)
λ =0 59 39 39 20 -19 -5 34 53 91 148 51� 0.099

λ =0.05 63 37 45 26 -11 3 40 58 94 148 31 0.225
λ =0.10 68 35 50 33 -2 10 46 63 97 148 18 0.345

1. Statistical significance of the SSD Test: ‡ α = 0.01, † α = 0.05, � α = 0.1.

2. Income distributions are simulated using weighted COLS (WCOLS) in equation (4.10) as explained in
the text.

3. µ − k φSD represents the mean-SD (standard deviation) preference level for mean µ, SD φSD, and
constant k.

4. SSD test (Barrett and Donald, 2003) compares income distributions of confinement and grazers for each
input mix and value of λ. Reported Ŝ-values are in the unit of 1,000’s.
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Chapter 5: Integrating Efficiency Concepts in Technology Approximation: A Weighted

DEA Approach

Kota Minegishi†

Abstract

A method is developed to integrate the efficiency concepts of technical, allocative, and scale

inefficiencies (TI, AI, and SI) into the variable returns to scale (VRS) frontier approximation

in Data Envelopment Analysis (DEA). The proposed weighted DEA (WDEA) approach

takes a weighted average of the profit, constant returns to scale (CRS), and VRS frontiers,

so that the technical feasibility of a VRS frontier is extended toward scale- and allocatively-

efficient decisions. A weight selection rule is constructed based on the empirical performance

of the VRS estimator via the local confidence interval of Kneip et al. (2008). The resulting

WDEA frontier is consistent and more efficient than the VRS frontier under the maintained

properties of a data generating process. The potential estimation efficiency gain arises from

exploiting sample correlations among TI, AI, and SI. An application to Maryland dairy

production data finds that technical efficiency is on average 7.5% to 9.2% lower under the

WDEA results than under the VRS counterparts.

Keywords: Data envelopment analysis, Technical Efficiency, Allocative Efficiency, Scale

Efficiency, Production Economics

JEL Codes: D22, Q12, C44

0† This article is prepared as a chapter of the author’s dissertation at University of Maryland, College
Park. I thank professor Robert Chambers for overseeing the project as well as professor Erik Lichtenberg
and Dr. Jim Hanson for helpful comments. I am grateful to Mr. Dale Johnson for sharing his data for this
study. All remaining errors are my own. Contact: kota0403@umd.edu
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5.1 Introduction

The concept of optimality and the subsequent definition of inefficiency depends

on the focus of benchmarking by a relevant “frontier” of decision possibilities. In the

tradition of production economics, three concepts of optimality stand out. Technical

inefficiency (TI) assesses the extent of feasible output expansions for given inputs

(or input reductions for given outputs) relative to the technological frontier of input-

output decisions. Allocative and scale inefficiencies (AI and SI) represent the extents

of forgone opportunities by the misallocation of resources and the suboptimal scales of

operations respectively, relative to the frontier of revenue maximization (or cost min-

imization) and the frontier of linear-homogeneous production process (i.e. constant

returns to scale; CRS). Numerous empirical studies have analyzed TI while paying

little attention to AI or SI.

However, the interconnections among the concepts of TI, AI, and SI suggest

an opportunity to improve technological frontier estimations. Conceptually, TI is a

gap between an input-output decision and a technological frontier, and AI and SI are

the gaps between the technological frontier and its outer frontiers of different bench-

marking focuses. Empirically, the pivotal role of a technological frontier implies that

the most efficient estimation strategy entails a joint specification of the frontier and

these inefficiency concepts. In the parametric frontier literature, such simultaneous

estimations have been developed mainly by incorporating AI into the optimal factor

demands from cost minimization (e.g., Yotopoulos and Lau, 1973; Schmidt and Lovell,

1979, 1980; Kumbhakar, 1989, 1997; Kumbhakar and Wang, 2006; Kumbhakar and

Tsionas, 2011). For nonparametric frontier models like Data Envelopment Analysis

(DEA), on the other hand, there is no coherent estimation technique that integrates

these efficiency concepts. This gap in knowledge is partially filled in this article.

Inefficient DEA estimations manifest themselves in the form of a limited abil-

ity to discriminate individual TI measurements. Efficiency analysis with a small

sample size tends to find an unexpectedly large number of observations being fully

technically-efficient, a pervasive concern in the nonparametric frontier literature (e.g.,

Dyson et al., 2001; Podinovski and Thanassoulis, 2007). One strand of literature

tackles this issue by applying direct value judgments (i.e. shadow price restrictions)

based on perceived importance of inputs and outputs (e.g., Allen et al., 1997; Thanas-
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soulis et al., 2004) or so-called assurance regions (e.g., Dyson and Thanassoulis, 1988;

Thompson et al., 1990; Sarrico and Dyson, 2004; Podinovski, 2004a; Tracy and Chen,

2004; Khalili et al., 2010). Other lines of research incorporate additional knowledge

about production processes or constrain the range of technological parameters so as to

increase estimation efficiency. Examples include weak disposability of inputs or unde-

sirable outputs (Chung et al., 1997; Scheel, 2001; Seiford and Zhu, 2002; Kuosmanen,

2005; Podinovski and Kuosmanen, 2011), non-discretionary factors (Ruggiero, 1998),

unobserved decisions (Thanassoulis and Allen, 1998; Allen and Thanassoulis, 2004),

selective linear homogeneity (Podinovski, 2004c; Podinovski and Thanassoulis, 2007),

and prescribed producer trade-offs (Podinovski, 2004b). Following the second strand

of literature, this article refines a variable returns to scale (VRS) frontier estimation

by calibrating the degrees of technical substitution and linear homogeneity, based on

sample-level properties of AI and SI respectively. The method is a variant of the DEA

frontier bounds of Chambers and Quiggin (1998) and closely related to the allocative

inefficiency bounds of Kuosmanen and Post (2001).

Namely, this study proposes a weighted DEA (WDEA) approach that estimates

a technological frontier as a weighted average of the profit, CRS, and VRS frontiers.

By integrating the concepts of TI, AI, and SI, it enhances the discriminatory power

of DEA. An optimal weight selection rule is devised based on the empirical perfor-

mance of the VRS estimator via the local confidence interval proposed by Kneip et al.

(2008). The resulting WDEA frontier is consistent and more efficient than the VRS

frontier under the maintained properties of a data generating process. The potential

estimation efficiency gain arises from exploiting sample correlations among TI, AI,

and SI.

In a single-input single-output (x-y) space, figure 5.1 illustrates the concept of

WDEA for the relationships among the CRS, VRS and postulated technological fron-

tiers (depicted as a solid-curve). The optimal projections of the decision at point A to

the VRS and CRS frontiers are shown at points B and C, yielding the conventional

measures of TI and SI as distances AB and BC respectively. WDEA postulates a

technological frontier through a weighted average of the VRS and CRS frontiers (i.e.,

somewhere between the inner and outer frontier-approximations). The new TI and SI

measurements under WDEA are distances AD(> AB) and DC(< BC) where point

D denotes the projection of point A onto the WDEA technological frontier. A parallel
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refinement of the frontier approximation can be obtained using similar relationships

among the profit, VRS, and postulated frontiers. Together, these refinements are

formalized under a weighted-average of the profit, CRS, and VRS frontiers.

In the following, section 2 presents the WDEA approach, and section 3 applies

the method to Maryland dairy production data, followed by conclusions in section 4.

5.2 Methods

Technical, allocative, and scale inefficiencies (TI, AI, and SI) are measured by

the directional distance function of Chambers and Quiggin (1998). Its additive nature

is notationally well-suited for describing the weighted average of these inefficiency

concepts. The section consists of the descriptions of preliminary concepts, a weighted

DEA (WDEA) approach, and a weight selection for WDEA.

5.2.1 Preliminaries

Notations and preliminary concepts are defined as follows. Technology T is a

set of feasible input-output bundles, or T = {(x,y) ∈ RL
+ ×RM

+ : x can produce y}

where

A.1 T is closed.

A.2 T satisfies free-disposability: (x,y) ∈ T and (−x,y) ≥ (−x′,y′)⇒ (x′,y′) ∈ T .

A.3 T is convex: (x,y), (x′,y′) ∈ T ⇒ ∀λ ∈ [0, 1], ∀(λx+(1−λ)x′, λy+(1−λ)y′) ∈

T .

The boundary of a technology is referred to as technological frontier. T can be com-

pletely characterized by the directional distance function of Chambers and Quiggin

(1998)1 in the sense that (x,y) ∈ T ⇔ DT (x,y; gx, gy) ≥ 0 where

DT (x,y; gx, gy) = max{b ∈ R : (x− bgx,y + bgy) ∈ T}. (5.1)

Function DT (x,y; gx, gy) measures the distance between point (x,y) and the frontier

of technology T in direction (−gx, gy), representing technical inefficiency (TI). As a

special case, setting direction (−gx, gy) = (−x0,0) yields an input-oriented, radial TI

measurement, which is equivalent to Shephard’s input distance function θV (x0,y0) =

1The directional distance function is the technology-counterpart to the shortage function of Luenberger
(1994).
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max{θ : x0/θ ∈ V (y0)} ≥ 1 for the input set V (y) associated with technology T .

Similarly, setting direction (−gx, gy) = (0,y0) leads to an output-oriented, radial

TI measurement, or the inverse of Farrell’s output efficiency φY (x0,y0) = max{φ :

φy0 ∈ Y (x0)} ≥ 1 for the output set Y (x) associated with T .2

Profit function πT (w,p) attains the highest production value in technology T

for given input-output prices (w,p) ∈ RL+M
+ ;

πT (w,p) = max
x,y
{py −wx : (x,y) ∈ T}

= max
x,y
{py −wx+DT (x,y; gx, gy)(pgy +wgx)} (5.2)

where the second expression follows from the definition of directional distance function

(x−DT (x,y; gx, gy)gx,y +DT (x,y; gx, gy)gy) ∈ T . The duality between the profit

function and the directional distance function (Chambers et al., 1998) yields;

DT (x,y; gx, gy) = min
w′,p′

{
πT (p′,w′)− (p′y −w′x)

p′gy +w′gx

}
, (5.3)

which shows that in the set of supporting hyperplanes for technology T , TI is obtained

at the shadow values that evaluate the decision most favorably. For given market

prices (w,p), profit inefficiency (PI) is defined as

DPF (x,y; gx, gy) =
πT (p,w)− (py −wx)

pgy +wgx
(5.4)

where the subscript PF refers to profit-function (PF) technology TPF (w,p), which

is cast as a hypothetical technology that envelopes T under linear techical substi-

tutability and takes the form of a half-space bounded by the profit function, or

TPF (w,p) = {(x,y) : py − wx ≤ πT (w,p)}. Strictly speaking, the PI in (5.4)

and the PF technology should be represented conditionally on (w,p), yet this no-

tation is omitted by assuming fixed market prices. At direction (−gx, gy) = (0, gy)

or (−gx, gy) = (−gx,0), PF frontier reduces to a revenue or cost frontier for the as-

sociated revenue or cost function respectively. According to additive decomposition

PI = TI + AI,3 the difference between the PI in (5.4) and the TI in (5.3) defines

2θV (x0,y0) = 1/(1−DT (x0,y0;x0,0)) and φY (x0,y0) = 1/(1−DT (x0,y0;0,y0)).
3The multiplicative decomposition in the form of PI = TI ∗ AI is referred to as a Nerlovian profit

inefficiency measurement as it first appeared in Nerlove (1965). Its PI measure is given as π(w,p)/(py−wx).
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allocative inefficiency (AI);

AI(x,y; gx, gy) = DPF (x,y; gx, gy)−DT (x,y; gx, gy). (5.5)

Any input-output bundle on the frontier of TPF is allocatively-efficient at prices (w,p)

and attains the maximum profit at πT (w,p).

The assumption of constant returns to scale (CRS) considers a hypotheti-

cal technology that envelops T under the linear homogeneity of input-output rela-

tionships, or TCRS = ∪λ∈R+λT .4 Let the profit function associated with TCRS be

πCRS(w,p) = maxx,y{py−wx : (x,y) ∈ TCRS}, which equals 0 if πT (w,p) ≤ 0 and

∞ if πT (w,p) > 0.5 Assuming πCRS(w,p) = 0 (e.g., equilibrium outcome under per-

fect competition with free entry and exit), the corresponding pseudo-TI measurement

under CRS, say TI(CRS), is;

DCRS(x,y; gx, gy) = min
p′,w′

{
πCRS(p′,w′)− (p′y −w′x)

p′gy +w′gx

}
, (5.6)

which is positive and bounded. According to additive decomposition TI(CRS) =

TI+SI, the difference between the TI(CRS) in (5.6) and the TI in (5.3) defines scale

inefficiency (SI);

SI(x,y; gx, gy) = DCRS(x,y; gx, gy)−DT (x,y; gx, gy). (5.7)

Any decision on the frontier of TCRS is scale-efficient.

5.2.2 Weighted DEA (WDEA) Approach

Turning to empirical efficiency measurements, the weighted DEA (WDEA) ap-

proach is presented below for input-output bundles {(xi,yi)}i∈I with observations

indexed by I = {1...N}.

The DEA approximations under VRS and CRS are respectively the free-disposal

4 For input-output relationships specified in physical quantiles, linear-homogeneity is most suitably
defined with respect to the origin. For those specified in monetary variables or qualitative indices, one
may postulate a shifted CRS (SCRS) technology under a pseudo CRS-assumption around arbitrary point
(xo,yo) instead of the origin, or TSCRS = (xo,yo) + ∪λ∈R+λ(T − (xo,yo)). The associated profit function
is πSCRS(w,p) = pyo −wxo + maxx,y{py −wx : (x,y) ∈ TSCRS} which equals pyo −wxo if πT (w,p) ≤
pyo −wxo or ∞ if πT (w,p) > pyo −wxo.

5Under the CRS assumption, zero-profit is always feasible by the feasible inaction (0,0) ∈ TCRS at
λ = 0.
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convex hull of data points (i.e., all convex combinations of data points and the points

implied by free-disposability) and the free-disposal conical hull of data points (i.e.,

every point in T̂V RS and any scaler multiple of it), or

T̂V RS = {(x′,y′) :
∑
j∈I

λjyj ≥ y′, ,
∑
j∈I

λjxj ≤ x′,
∑
j∈I

λj = 1, λ ∈ RN
+}, (5.8)

T̂CRS = {(x′,y′) :
∑
j∈I

λjyj ≥ y′, ,
∑
j∈I

λjxj ≤ x′, λ ∈ RN
+}. (5.9)

T̂V RS corresponds to the smallest producible set satisfying assumptions A.1-A.3, while

T̂CRS envelops T̂V RS under linear homogeneity. The estimates for TI and TI(CRS)

by the directional distance function in (5.1) are D̂V RS(x0,y0; gx, gy) = max{b : (x0−

bgx,y0 + bgy) ∈ T̂V RS} and D̂CRS(x0,y0; gx, gy) = max{b : (x0 − bgx,y0 + bgy) ∈

T̂CRS} respectively. The dual problem for D̂V RS(x0,y0; gx, gy), corresponding to the

dual representation in (5.3), is

min{ρ ∈ R : ∀j ∈ I, pyj −wxj ≤ py0 −wx0 + ρ,

pgy +wgx = 1, p ∈ RM
+ , w ∈ RL

+}, (5.10)

which minimizes TI-parameter ρ subject to the optimality of shadow value py0 −

wx0 + ρ for decision (x0,y0), given the feasibility constraints under T̂V RS and price

normalization pgy + wgx = 1. The dual estimation for D̂CRS(x0,y0; gx, gy), corre-

sponding to (5.6), is obtained by imposing additional constraint py0 −wx0 + ρ = 0

in problem (5.10), as implied by condition πCRS(p,w) = 0.

Profit-function (PF) technology is estimated as the half space bounded by

π̂V RS(w,p);

T̂PF = {(x,y) : py −wx ≤ π̂V RS(w,p)} where

π̂V RS(w,p) = max
x,y
{py −wx : (x,y) ∈ T̂V RS} = max

j∈I
{pyj −wxj}. (5.11)

The conventional measures of technical, allocative, and scale inefficiencies are

estimated as distances T̂ IV RS, ÂIV RS, and ŜIV RS in (5.3), (5.5), and (5.7) respec-

tively using frontier approximations (5.8), (5.9), and (5.11). The standard practice is

to utilize technology approximation T̂V RS, from which TI, AI, and SI are measured.

While these estimates are consistent, a more efficient estimation can be devised under
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a simultaneous estimation of the technology and inefficiency concepts.

To this end, the current study proposes a weighted DEA (WDEA) approach for

integrating the concepts of TI, AI, and SI into a technology approximation. Consider

WDEA technology T̂W (α,β) defined as the weighted average of T̂V RS, T̂PF , and T̂CRS

for given weights {1− α− β, α, β} respectively;6

T̂W (α,β) ≡ (1− α− β)T̂V RS + αT̂PF + βT̂CRS

= T̂V RS + α(T̂PF − T̂V RS) + β(T̂CRS − T̂V RS), (5.12)

which expands the conventional producible set T̂V RS by the α-portion of the input-

output space conventionally regarded as AI and the β-portion of the space convention-

ally regarded as SI.7 The arbitrary weights α and β respectively generalize the extents

of linear substitution and linear homogeneity assumptions in DEA. Consequently,

T̂W (α,β) includes the conventional DEA frontiers of PF, CRS, and VRS as special cases;

T̂W (0,0) = T̂V RS, T̂W (1,0) = T̂PF , and T̂W (0,1) = T̂CRS. If weights α and β fall outside

of range [0, 1], the technical feasibility can be defined as T̂ ∗W (α,β) ≡ T̂W (α,β) ∪ T̂V RS, so

that the WDEA approximation of a technology is bounded from below by T̂V RS.

For decision (x0,y0), let the TI measured under WDEA technology T̂W (α,β) be

D̂W (α,β)(x0,y0) = (1− α− β)D̂V RS(x0,y0) + αD̂PF (x0,y0) + βD̂CRS(x0,y0)

= T̂ IV RS(x0,y0) + αÂIV RS(x0,y0) + βŜIV RS(x0,y0), (5.13)

and let the associated AI and SI measures be

ÂIW (α,β)(x0,y0) = D̂PF,W (x0,y0)− D̂W (α,β)(x0,y0), (5.14)

ŜIW (α,β)(x0,y0) = D̂CRS,W (x0,y0)− D̂W (α,β)(x0,y0) (5.15)

where D̂CRS,W (x0,y0) and D̂PF,W (x0) are obtained by replacing T̂V RS in (5.9) and

(5.11) with T̂W (α,β) respectively. Note that at β = 0, the new AI measurement reduces

6While notation (w,p) is omitted, T̂W (α,β) clearly depends on the market prices through the profit

frontier along T̂PF .
7Alternatively, one can define T̂W (α,β) with a convex combination of arbitrary direction (−g̃x, g̃y) instead

of the current, radial orientation.
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to;

ÂIW (α,0)(xi,yi) = (1− α)(D̂PF (xi,yi)− D̂V RS(xi,yi)) = (1− α)ÂIV RS(xi,yi).

(5.16)

Similarly, at α = 0, the new SI measurement reduces to;

ŜIW (0,β)(xi,yi) = (1− β)(D̂CRS(xi,yi)− D̂V RS(xi,yi)) = (1− β)ŜIV RS(xi,yi).

(5.17)

The next subsection considers an optimal weight selection for α and β. In the

following, simplified notations are used for distance function DT,i ≡ DT (xi,yi) and

inefficiencies TIT,i ≡ TIT (xi,yi), AIT,i ≡ AIT (xi,yi), and SIT,i ≡ SIT (xi,yi).

5.2.3 Weight Selection

Consider the following weight selection mechanism that proceeds in two steps.

The first step makes some initial estimate D̂T,i at the observation level and the second

step predicts sample-level relationships between this estimate D̂T,i and the conven-

tional measures of TI, AI, and SI. Namely, the second step estimates optimal weights

by minimizing least square errors of the form;

{α̂, β̂} = argmin
α,β

{
1

N

∑
i∈I

(
D̂T,i − (T̂ IV RS,i + αÂIV RS,i + βŜIV RS,i)

)2
}
, (5.18)

which is the moment condition implied by equation (5.13) when D̂W (α,β),i is substi-

tuted with some estimate D̂T,i from the first step. The remainder of this section

describes the first-step estimation for D̂T,i, discusses some properties of this weight

selection, and provides a simple, illustrative example.

The conceptual underpinning for the first-step estimate D̂T,i draws on the

subsample-bootstrap estimator proposed by Kneip et al. (2008). The authors showed

that for a convex technology, the behavior of the VRS estimator can be analyzed

through the relative frequency for observations to be located in a small neighborhood

around the true frontier. Assuming a uniform density in the neighborhood, they de-

rived an asymptotic distribution of this estimator. Given the equivalence between

the asymptotic properties of (additive) directional distance functions and those of
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(multiplicative) radial inefficiency measures (Simar and Vanhems, 2012), the 1 − a

confidence interval for D̂V RS,i can be written as;

1− a = Pr(Ca ≤ D̂V RS,i −DT ≤ Cb) ≈ Pr(Ca ≤ D̂∗V RS,i − D̂V RS ≤ Cb) (5.19)

where Ca and Cb represent lower and upper critical values for the deviation, and

D̂∗V RS,i is a bootstrap VRS estimator using K(< N) observations sampled without

replacement.8 The critical values are substituted with estimates Ĉa = ψa/2,K and

Ĉb = ψ1−a/2,K where ψx,K ≤ 0 denotes the x-quantile of the bootstrap distribution

{K2/(L+M+1)(D̂∗,bV RS,i−D̂V RS,i)}Bb=1 from B bootstrap replications. The concept behind

the subsample-bootstrapping is that the distribution of the difference D̂V RS,i − DT

between the VRS estimator (in the sample) and the true value (in the universe) can be

predicted from the distribution of the difference D̂∗V RS,i−D̂V RS between the bootstrap-

VRS estimator (in a subsample) and the VRS estimator (in the full sample), given

the adjustments for the different rates of convergence under different sample sizes.

Then, the confidence interval in (5.19) can be estimated as

[D̂V RS,i −N−2/(L+M+1)ψ1−a/2,K , D̂V RS,i −N−2/(L+M+1)ψa/2,K ], (5.20)

which reflects the accuracy of local VRS estimator D̂V RS,i, predicted from the local

sample density in the neighborhood. Let the mean of this confidence interval be

referred to as mean bootstrap (MB) estimator (e.g., Simar and Vanhems, 2012),

which makes upward adjustments to conventional TI estimate D̂V RS,i;
9

D̂MB,i = D̂V RS,i −
(
K

N

)2/(L+M+1)
1

B

B∑
b=1

(D̂∗,bV RS,i − D̂V RS,i) (5.21)

where D̂∗,bV RS,i − D̂V RS,i ≤ 0. In effect, MB estimator tends to assume a larger pro-

ducible set than T̂V RS everywhere along the frontier.

Two modifications to D̂MB,i are made before arriving at the proposed estimate

for D̂T,i. One modification is to correct for systematic bias in D̂MB,i with respect

to the scales of operations. The bias arises from the potential inapplicability of TI

8Another approach would be the smooth-bootstrap method of Kneip et al. (2011).
9The mean can be replaced with the median or mode of distribution {K2/(L+M+1)(D̂∗,bV RS,−D̂V RS,i)}

B
b=1.

Simulation study may be helpful to investigate these alternative estimators.
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measurements under random subsamples (which may not contain reference observa-

tions for sufficiently small- or large-scale operations) and is systematically related to

the direction of the TI measurement; small-scale decisions cannot be assessed for an

output-oriented TI if comparably-small scale input-decisions are absent in the sub-

sample, and similarly large-scale decisions cannot be evaluated for input-oriented TI

if comparably-large scale output-decisions are absent. Using only the estimable cases

of bootstrap-TI measurements would underestimate the bias-corrections in (5.21) for

these decisions. By simultaneously employing input- and output-oriented MB esti-

mators, denoted by D̂I
MB,i and D̂O

MB,i respectively, scale-neutral MB technology can

be specified as;

T̂NMB = {(x′,y′) :
∑
j∈I

λj(yj + D̂O
MB,i) +

∑
j∈I

ηjyj ≥ y′,∑
j∈I

λjxj +
∑
j∈I

ηj(xj − D̂I
MB,i) ≤ x′,

∑
j∈I

λj +
∑
j∈I

ηj = 1, λ, η ∈ RN
+},

(5.22)

which yields associated estimator D̂N
MB,i = max{b : (xi − bgx,yi + bgy) ∈ T̂NMB} for

direction (gx, gy).

The other modification is to reduce the magnitude of upward adjustments in

(5.21), such that some observed decisions can be regarded fully-technically efficient

under the implied technology. This prevents the model from postulating a strictly

larger technical feasibility than T̂V RS. For constant c̄ = E[D̂N
MB,i − D̂V RS,i], consider

shifted-mean bootstrap (SMB) estimator D̂SMB,i = max{D̂N
MB,i − c̄, D̂V RS,i}. In

this construction, constant c̄ is used to shift back MB estimator D̂N
MB,i by the mean

difference between the above MB and VRS estimators. The lower bound for TI by

D̂V RS,i is added to ensure that the associated technical feasibility is bounded from

below by T̂V RS. It may be noted that the magnitude of constant c̄ directly affects the

mean TI under SMB and hence the mean TI under WDEA.10

Hence, the proposed weight selection first estimates D̂T,i by D̂SMB,i and then

weights α̂ and β̂ by equation (5.18). These weights represent the sample-level rela-

tionships between locally-derived adjustments D̂SMB,i − D̂V RS,i (i.e., predicted bias

10An alternative for c̄ is to use the minimum of the difference D̂N
MB,i − D̂V RS,i instead of the mean. Yet,

given the relative inaccuracy in predicting T̂NMB , the use of the mean difference appears more reliable.
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corrections for the conventional TI measure D̂V RS,i) and the conventional measures

of AI and SI. By accounting for the sample correlations among these inefficiency

concepts, WDEA technology T̂W (α̂,β̂) systematically extends conventional technology

approximation T̂V RS, or the smallest feasible set meeting assumptions A1-A3.

Some properties of the WDEA estimator are noted with respect to the following

relationships between unobserved DT,i and its estimates by VRS, SMB, and WDEA;

V RS : DT,i = T̂ IV RS,i + εV RS,i, εV RS,i > 0

SMB : DT,i = D̂SMB,i + εSMB,i, E[εSMB,i] = 0

WDEA : DT,i = T̂ IV RS,i + αÂIV RS,i + βŜIV RS,i + εW (α,β),i, E[εW (α,β),i] = 0

(5.23)

where εV RS,i, εSMB,i, and εW (α,β),i are residual terms that close these identities. In the

first equation, the well-known one-sided bias of the VRS estimator (i.e. εV RS,i > 0)

implies mean-inconsistency E[DT,i − T̂ IV RS,i] = E[εV RS,i] > 0, while it is asymptot-

ically consistent, or E[DT,i − T̂ IV RS,i] → 0 for a sufficiently large sample (Banker

et al., 1993). In the second equation, the SMB estimator is assumed to be consistent,

so that E[DT,i − D̂SMB,i] = E[εSMB,i] = 0. Given this assumption, combining the

second and the third equations to eliminate DT,i and using α̂ and β̂ in (5.18) yields

a consistent WDEA estimator;

Remark 4. In (5.18) and (5.23), if E[εSMB,i|D̂SMB,i, T̂ IV RS,i, ÂIV RS,i, ŜIV RS,i] = 0,

then the WDEA estimator is consistent, or E[εW (α̂,β̂),i] = 0.

Turning to estimation efficiency, simple comparisons are noted;

Remark 5. In (5.23), if E[εSMB,i|D̂SMB,i, T̂ IV RS,i] = 0, then the SMB estimator

is more efficient than the VRS estimator in that E[(εSMB,i)
2] ≤ E[(εV RS,i)

2] where

εV RS,i = (D̂SMB,i − T̂ IV RS,i) + εSMB,i.

Remark 6. In (5.18) and (5.23), if E[εW (α̂,β̂),i|ÂIV RS,i, ŜIV RS,i] = 0 and α̂, β̂ ≥ 0,

then the WDEA estimator is more efficient than the VRS estimator in that

E[(εW (α̂,β̂),i)
2] ≤ E[(εV RS,i)

2] where εV RS,i = αÂIV RS,i + βŜIV RS,i + εW (α̂,β̂),i.

Remark 7. In (5.18) and (5.23), if E[εSMB,i|D̂SMB,i, T̂ IV RS,i, ÂIV RS,i, ŜIV RS,i] = 0

and α̂, β̂ ≤ 0, then the SMB estimator is more efficient than the WDEA estimator in
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that E[(εSMB,i)
2] ≤ E[(εW (α̂,β̂),i)

2] where εSMB,i = αÂIV RS,i + βŜIV RS,i + (T̂ IV RS,i −

D̂SMB,i) + εW (α,β),i.

Remark 5 follows from D̂SMB,i − T̂ IV RS,i ≥ 0. Remark 6 similarly follows under

α, β ≥ 0. Remark 7 states that under α, β ≤ 0, incorporating AI and SI into

a technology estimation would be counterproductive. Meanwhile, there seems no

simple condition that ensures higher efficiency of the WDEA estimator than the

SMB counterpart.

The following example illustrates a process of constructing simplified versions

of SMB and WDEA estimators. Consider a case of one-input, one-output produc-

tion with a sample of 6 observations (xi, yi), i = 1, .., 6. Figure 5.3 depicts relative

geometric locations of these observations, labeled A1-A6. Points A1,A2, and A3 are

technically-efficient under VRS but only point A2 is technically-efficient under CRS.

Points A4, A5, and A6 are all technically-inefficient under VRS and are less effi-

cient versions of points A1,A2, and A3 respectively, such that x1 = x4 < x2 = x5

< x3 = x6 and y1 > y4, y2 > y5, y3 > y6. For the ease of illustration, consider the

SMB estimator based solely on the output-oriented TI by D̂O
MB,i (without using the

output-oriented TI by D̂I
MB,i) and single WDEA weight β̂ > 0 (with α̂ = 0). In

relation to the total number of observations N = 6, the number of subsample obser-

vations is set at K = 1 for simplicity. At K = 1, bootstrap VRS frontier reduces to a

free disposable hull (FDH), so that D̂O
MB,i can be described as the difference in out-

puts of two decisions. With a sufficient number of bootstrap replications b = 1, .., B,

each data point is drawn at probability pi = 1/6, and the mean bootstrap estimate

D̂MB,i (1/B)
∑

b(D̂
∗,b
V RS,i−D̂V RS,i) converges to its expected value. Then, without loss

of generality, by treating observation index i interchangeably with bootstrap index

b = 1, .., 6, the MB estimator for point A1 can be described as

D̂MB,1 = D̂V RS,1 − (K/N)2/(L+M+1)[p̃1(D̂∗,b=1
V RS,1 − D̂V RS,1) + p̃4(D̂∗,b=4

V RS,1 − D̂V RS,1)]

= 0− C0[
1

2
(y1 − y1 − 0) +

1

2
(y4 − y1 − 0)] = C0 Eb[y1 − yb |b = 1, 4] (5.24)

where C0 = (K/N)2/L+M+1 is a constant ((1/6)2/3 in this example), and p̃1 = p̃4 =

1/2 is a pseudo-probability defined conditionally on the feasible TI estimation under

bootstrap replications b = 1, 4. 11 Similarly, those for points A2 to A6 are D̂MB,2 =

11The number of comparable points for calculating D̂MB,i increases in subsample size, making the issue
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C0Eb[y2−yb|b = 1, 2, 4, 5], D̂MB,3 = C0Eb[y3−yb], D̂MB,4 = (y1−y4)+C0Eb[y1−yb|b =

1, 4], D̂MB,5 = (y2−y5)+C0Eb[y2−yb |b = 1, 2, 4, 5], and D̂MB,6 = (y3−y6)+C0Eb[y1−

yb]. Thus, the local frontier levels are adjusted by C0 times expected bootstrap

deviation Eb[yi − yb]. By setting c̄ = (1/3)
∑

j=1,2,3[D̂MB,j − D̂V RS,j|D̂V RS,j = 0] and

D̂SMB,i = max{(D̂MB,j − D̂V RS,j − c̄)/(1 + c̄), D̂V RS,i} for i = 1, .., 6, optimal weight

is estimated by β̂ = Cov(D̂SMB,i− D̂V RS,i, D̂CRS,i− D̂V RS,i)/V ar(D̂CRS,i− D̂V RS,i) =

Cov(D̂SMB,i − T̂ IV RS,i, ŜIV RS,i)/V ar(ŜIV RS,i) where Cov(.) and V ar(.) denote the

covariance and variance operators respectively.

Figure 5.4 sketches the SMB estimates (at points C1, C2, and C3) and WDEA

estimates (at points D1, D2, and D3) from the above example. The SMB estimator

yields no adjustment at A1, a small expansion of technical feasibility at A2, and a large

expansion at A3, according to the local performance of VRS estimators assessed by the

bootstrapping process. The WDEA estimator consolidates these local adjustments

into systematic frontier expansions from the VRS frontier toward the CRS frontier at

weight β̂, resulting in moderate expansions of technical feasibility at A1 and A3 with

no expansion at scale-efficient point A2. Weight β̂ depends on the covariance between

SMB’s adjustments to TI (i.e., distances C1A1, C2A2, and C3A3 in figure 5.4) and

conventional SI measures (i.e., distances B1A1, B2A2, and B3A3 in figure 5.3).

Hence, the proposed two-step weight selection is summarized as follows. The

subsample bootstrapping in the first step links the performance of the VRS estimator

to its local probability density. This yields a presumably-consistent adjustment at the

observation level, yet its estimation efficiency depends on the nature of the data and

the choice of subsample sizes that specifies the level of “locality.”12 The second-step

regression summarizes this local adjustment into the sample correlations among TI,

AI, and SI, all of which producers strive to minimize.

5.3 Results and Discussion

5.3.1 Data and Efficiency Measurements

Proposed WDEA approach is used to examine technical efficiencies and producer-

specific input shadow values for Maryland dairy operations during 1995-2009. The

of non-estimable TI situations less important.
12The confidence interval in (5.21) can be sensitive to the choice of K (Kneip et al., 2008). The current

application follows Simar and Wilson (2011)’s subsample-size selection that minimizes the volatility of the
estimator.
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dataset, previously analyzed in Hanson et al. (2013), contains unbalanced panel en-

tries of production inputs and outputs. Each operation is categorized as either a con-

ventional confinement dairy or management-intensive grazing dairy. The producer-

year level observations represent 314 confinement operation-years and 164 grazing

operation-years.

Dairy production is modeled with seven inputs; herd size (cows), hired labor,

crop, animal care, machinery, crop acreage, pasture acreage, where the four items

from “labor” to “machinery” are quasi-quantity inputs measured as the correspond-

ing categorical expenses divided by observation-specific price indices.13 Table 5.1

provides summary statistics of milk output and these inputs. In the sample, a typical

confinement operation produces about twice as much milk as a typical grazing oper-

ation and utilizes a 40% bigger herd, 486% more labor, 160% more crop-production

inputs, 93% more animal-care inputs, 76% more machinery, 119% more crop acreage,

and 67% less pasture acreage. In the current application, the two dairy systems are

separately analyzed for their efficiency measurements.

Table 5.2 reports a summary of input-oriented radial efficiency scores ranging

from 0 to 1 with 1 being fully-efficient.14 Listed items TE(VRS), SMB, and WDEA re-

port technical efficiency estimates against a VRS technology, a shifted mean bootstrap

(SMB) technology, and a weighted DEA (WDEA) technology respectively. Items

SE(VRS) and AE(VRS) are the scale and allocative efficiency estimates under the

VRS technology. The mean scores of TE, SE, and AE under VRS are 0.896, 0.965,

and 0.787 for confinement and 0.931, 0.914, and 0.717 for grazers respectively. The

relatively high SE scores are likely explained by the limited range of operational scales

in the sample, ranging up to 468 cows for confinement and 195 cows for grazers; the

inclusion of large-scale operations with over 1000 cows would lower these SE scores.

The relatively low AE scores, on the other hand, suggest that in a short run these

input mixes, often linked to long-term assets, are unlikely to be optimally allocated

13For example, the aggregate crop-related expenses for observation i is calculated as pcropi =
(seedi/cropi)p

seed+(fertilizeri/cropi)p
fertilizer+(chemi/cropi)p

chem where cropi = seedi+fertilizeri+
chemi for its total categorical expense for seeds, fertilizer, and chemicals. Price indices are obtained from
Agricultural Statistical Service of USDA.

14Appendix A describes the market price estimation based on Kuosmanen et al. (2006) with some
additional constraints. The estimated prices in table A.1 are used for obtaining allocative efficiency
(AE) and WDEA. The primarily interest is the annual rental rates of dairy cows for confinement and
grazers, estimated at $575/cow and $464/cow respectively. Under the expected 1.5 and 2.5 remaining-
years of economically-viable milking for confinement and grazing cows, the culling value of $500, and a
5% interest rate, these rental rates imply the present values of $575 + ($575/2 + $500)/1.05 ≈ $1325,
$464 + $464/1.05 + ($464/2 + $500)/1.052 = $1570 respectively.
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with respect to market prices.

The mean TE scores under SMB and WDEA are 0.812 and 0.814 for confine-

ment and 0.865 and 0.861 for grazers respectively.15 The optimal weights for WDEA

are estimated at (α, β) = (0.451, -0.478) for confinement and (0.198, 0.004) for graz-

ers. The negative estimate for β for confinement is explained by a positive correlation

(0.283) between AI and SI, indicating that among confinement operations, 45.1% of

the apparent allocative inefficiency and minus 47.8% of the apparent scale ineffi-

ciency under the VRS technology is attributed to the underestimation in technical

inefficiency. The increased discriminatory power under WDEA leads to the decreased

mean TE scores by 0.082 (i.e. 9.2%) and 0.069 (7.5%) for confinement and grazers

respectively, compared to the VRS results. This is similar to the finding in Brissimis

et al. (2010) that their SFA frontier estimation with incorporating AE decreased the

TE by approximately 9%. The same explanation applies to both approaches; account-

ing for AE increases a linear substitutability of the predicted technological frontier

and tends to lower the predicted TE for observed decisions. In a parametric model,

moment conditions on AE can be used to augment a frontier estimation through dis-

tributional assumptions. In WDEA, the weight for linear substitution can be used to

account for the correlation between the conventional AE and TE measures under a

VRS frontier. Both approaches incorporate the concept of AE to enhance estimation

efficiency.

5.3.2 Producer-Specific Shadow Values

Following Chambers and Färe (2008), the willingness to accept (WTA) and

willingness to pay (WTP) for a change in input mixes are inferred by tracing the

curvature along an estimated technological frontier. In theory, at an equilibrium in a

frictionless economy, the WTA must be equal to the corresponding market price or

higher, and the WTP must be equal to the market price or lower. The non-conformity

of estimated shadow values to these theoretical predictions can provide insights into

the state of factor markets or non-technological constraints for producers.

Figures 5.5 and 5.6 present the distributions of estimated WTA and WTP for

confinement, plotted against the sample-proportion scaled from 0 to 1, and figures

15For SMB, the optimum sample sizes of input-oriented and output-oriented TE were found 157 and 267
for confinement and 121 and 129 for grazers. These values were searched from 10 equally-spaced values
within the 40-90% (i.e. 40%,45%,...90%) of their sample sizes.
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5.7 and 5.8 for grazers.16 The WTA and WTP estimates vary substantially across

observations. Under the VRS technology, the mean WTP for a cow (per year rental

rate) is $652 for confinement and $344 for grazers, and the mean WTA $4,082 and

$3,562 respectively. Similarly, under the WDEA technology, the mean WTP for a

cow is $283 for confinement and $672 for grazers, and the mean WTA $3,360 and

$3,425 respectively. Since the distributions of these shadow values are fat-tailed and

contain extreme values, the averages are not be very informative. The distributions

are alternatively studied with respect to their market rates in below.

Somewhat surprisingly, no systematic patterns are discerned in the difference

between the VRS and WDEA results for WTA and WTP estimates. This may strike

some readers as odd since the linear substitutability (as well as linear scalability)

of a predicted technology would be systematically higher under WDEA than under

VRS. In figures 1 and 2, for example, one may expect that WDEA yields a narrower

range for the ratio of admissible shadow values, smaller gaps between WTA and WTP

(e.g., the gap is infinite along a Leontief frontier and zero along a linear frontier), and

generally smaller deviations of WTA and WTP from the market rates, compared to

the VRS estimates. However, the relationships for the shadow values under VRS

and WDEA frontiers in a simple two-dimensional diagram (e.g., see Appendix B) are

generally inapplicable for higher dimensional input-output decisions.

The over-utilization and under-utilization of inputs are studied through the

existence of unmet supply or demand for given market rate wMl for each input l,

or latent marginal supply or demand (LMS or LMD) proportions defined as the

sample proportions of observations i ∈ I satisfying [WTAi,l ≤ wMl ] or [WTPi,l ≥ wMl ]

respectively. Under the VRS-technology specification, confinement operations exhibit

high LMS proportions (i.e, 0.300 or above) for crop, animal, and machinery. Similarly,

grazing operations show high LMS proportions for labor, animal, and crop acreage.

The results under WDEA are generally similar, but the only high LMS proportion is

for grazer’s labor input. The over-utilization of these inputs may be caused by medium

to long term investments in production assets and contractual agreements or the

upward bias from subsidized dairy or crop production. Turning to under-utilization of

16The bottom figures in tables 5.6 and 5.8 contain the distributions of the estimated WTA and WTP for
the bundle of a dairy cow and a crop acre. The WTA for the bundle is higher than the sum of WTA for
individual inputs, and the WTP for the bundle is lower than the sum of WTP for individual inputs by the
superadditivity of the directional derivative.
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inputs, the VRS results find high LMD proportions for cow and crop acreage among

confinement operations and no high LMD proportions among grazing operations.

The WDEA results suggest high LMD proportions for labor and crop acreage among

confinement. Confinement producer might not expand his herd when operational

capacity is nearly full, cows of desired characteristics are scarce in the market, or

operation expansions are put on hold for idiosyncratic reasons (e.g., uncertainty for

family labor supply). Crop acreage appears over-utilized by grazers and under-utilized

by confinement perhaps due to the inefficiency in land markets.

Additionally, the sensitivity of LMS and LMD proportions are summarized as

unit-free elasticity measures with respect to market prices, or |(dq/dp)/(qM/pM)| for

LMS or LMD proportion qM , market price pM , and local slope dq/dp.17 In contrast

to the ideal factor market characterized with zero-LMS and zero-LMD with arbitrar-

ily large elasticities, a poorly functioning factor market would exhibit a high LMS or

LMD proportion with a very small elasticity. Panels B1 and B2 in table 5.3 report the

calculated price elasticities of LMS and LMD across inputs and technology specifica-

tions. Among the inputs with high LMS proportions, highly-inelastic LMS (i.e. less

than 0.300) are found in machinery (under VRS) for confinement and labor (under

both VRS and WDEA) and crop acreage (under both VRS and WDEA) for grazers.

These inputs appear systematically over-utilized since the extents of over-utilization

depend little on their market rates. Capital-intensive confinement operations may

face the difficulty in reversing their investments into machinery. Meanwhile, the ap-

parent (and inexpensive) use of excess labor among grazers may potentially increase

profits if it is related to organic milk production for sufficiently high price premi-

ums. Among the inputs with high LMD proportions, highly-inelastic LMD values

are identified for cows (under VRS), labor input (under WDEA), and crop acreage

(under VRS and WDEA) among confinement. It may be worthwhile to investigate

potential market failures or input distortions that prevent these dairies from expand-

ing their herds and/or systematically hinder transfers of crop acreage from grazers to

confinement operators.

17The slope is estimated by a linear regression with observations restricted to those of non-zero shadow
values falling within the ±5 percentile margins around the market price.
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5.4 Conclusions

This article has developed a simple methodology that integrates the concepts of

technical, scale, and allocative efficiencies into a nonparametric, technological-frontier

estimation. The proposed Weighted DEA (WDEA) extends the standard VRS tech-

nological feasibility by estimating an optimal weighted average of the VRS, CRS, and

profit frontiers. The proposed optimal weights minimize the sum of residual squares

by regressing some initial adjustments for the VRS estimator on the conventional

measures of scale and allocative inefficiencies. In the application to Maryland dairy

data, the technical efficiency is on average 7.5% to 9.2% lower under WDEA, com-

pared to the standard VRS estimates. Estimated producer-specific shadow values

along the VRS and WDEA frontiers are generally similar with no obvious patterns

of systematic differences. Considerations for alternative weight selection rules and

rigorous statistical inferences are left for future research.
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5.5 Tables and Figures

Table 5.1: Summary Statistics of Variables By Dairy System

Distribution

Mean S.D. Min. 25th 50th 75th Max.

Confinement
Milk (cwt) 24,150 17,577 3,761 13,680 19,890 28,550 110,700
Cow (animal) 122 76 22 70 108 145 468
Labor† 35,020 50,010 0 2,064 18,500 45,540 281,300
Crop† 47,400 40,954 0 19,860 35,870 58,910 231,000
Animal Care† 181,200 129,666 32,390 97,320 137,900 210,100 746,900
Machinery† 148,900 101,620 22,060 87,530 129,700 182,100 806,300
Crop Acre (acre) 289 155 60 175 210 350 704
Pasture Acre (acre) 50 39 0 20 40 80 141

Grazer
Milk (cwt) 12,440 5,573 2,670 9,467 11,550 14,550 42,950
Cow (animal) 87 29 37 70 81 97 195
Labor† 6,229 10,383 0 0 1,109 8,608 75,320
Crop† 18,250 17,932 0 6,188 12,240 24,770 107,200
Animal Care† 94,290 48,034 7,882 59,780 86,470 127,300 255,800
Machinery† 84,460 45,587 26,720 54,540 73,230 96,900 327,000
Crop Acre (acre) 132 108 0 30 150 180 600
Pasture Acre (acre) 152 60 53 96 130 207 280

1. Unbalanced panel data set on 1995-2009 contains 17 grazers and 29 confinement dairies with 5 dairies
switching from confinement to grazing during the period, totaling 475 operation-year observations.

2. † Categorical expenses comprise the following: machinery ≡ custom hire + depreciation + fuel + rent
+ maintenance + utility, labor ≡ labor + employment benefit + pension, crop ≡ seed + chemicals +
fertilizer, animal care ≡ feed + veterinary services.
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Table 5.2: Summary of Efficiency Scores

Distribution

Mean S.D. Min 25th 50th 75th Max

Confinement
TE (VRS) 0.896 0.095 0.589 0.821 0.905 0.996 1.000
SE (VRS) 0.965 0.058 0.677 0.962 0.989 0.999 1.000
AE (VRS) 0.787 0.095 0.525 0.729 0.788 0.853 1.000
SMB 0.812 0.170 0.428 0.670 0.848 0.985 1.000
WDEA 0.814 0.087 0.564 0.752 0.805 0.870 1.000

Grazers
TE (VRS) 0.931 0.097 0.640 0.871 0.987 1.000 1.000
SE (VRS) 0.914 0.117 0.440 0.880 0.960 1.000 1.000
AE (VRS) 0.717 0.120 0.485 0.629 0.696 0.801 1.000
SMB 0.865 0.165 0.471 0.747 0.950 1.000 1.000
WDEA 0.861 0.090 0.623 0.820 0.878 0.926 1.000

1. TE (VRS), SMB, and WDEA are technical efficiency estimates. SE and AE
are scale and allocative efficiency estimates respectively.

2. Weights (α, β) for WDEA, obtained in linear regressions, are (0.451, -0.478)
for confinement and (0.198, 0.004) for grazers.
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Table 5.3: Latent Marginal Supply and Demand (LMS and LMD) Proportions and Their
Elasticities

Group Technology Cow Labor Crop Animal Machi. Crop A. Past. A.

A1. LMS Proportion
Confinement VRS 0.035 0.248 0.331 0.462 0.525 0.086 0.162
Confinement WDEA 0.067 0.213 0.242 0.268 0.178 0.061 0.153

Grazers VRS 0.075 0.472 0.130 0.323 0.242 0.311 0.248
Grazers WDEA 0.075 0.460 0.174 0.280 0.224 0.273 0.124

A2. LMD Proportion
Confinement VRS 0.303 0.268 0.019 0.029 0.032 0.328 0.162
Confinement WDEA 0.166 0.328 0.105 0.115 0.080 0.363 0.290

Grazers VRS 0.180 0.043 0.093 0.037 0.043 0.062 0.180
Grazers WDEA 0.273 0.130 0.143 0.081 0.087 0.106 0.211

B1. Elasticity of LMS
Confinement VRS 0.892 0.267 0.740 1.012 0.279 0.122 0.041
Confinement WDEA 0.761 0.219 0.685 3.322 1.753 0.382 0.020

Grazers VRS 0.396 0.071 0.449 0.674 0.771 0.075 0.063
Grazers WDEA 0.280 0.115 0.479 0.760 1.223 0.118 0.095

B2. Elasticity of LMD
Confinement VRS 0.097 0.194 0.270 2.013 0.747 0.044 0.014
Confinement WDEA 0.705 0.219 0.417 2.180 1.968 0.086 0.032

Grazers VRS 0.154 0.005 0.098 1.080 0.952 0.047 0.020
Grazers WDEA 0.101 0.347 0.184 0.629 0.618 0.134 0.043

1. Elasticity measures around the market prices are calculated through |(dq/dp)/(qM/pM )| where pM , qM

are the market price and the LMS or MUP proportion associated with WTP and WTA curves respectively,
and dq/dp is the local slope estimate of those curves near the market valuation. The slops are estimated
by linear regressions with observations restricted to those within the ± 5 percentile margins around the
market price.
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Figure 5.1: CRS, VRS, and Postulated
Frontiers

Figure 5.2: Cost, VRS, and Postulated Fron-
tiers

Figure 5.3: Example: SMB and WDEA
(1/2)

Figure 5.4: Example: SMB and WDEA (2/2)
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Figure 5.5: Shadow Values along VRS and WDEA Technological Frontiers (Confinement
1/2)
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Figure 5.6: Shadow Values along VRS and WDEA Technological Frontiers (Confinement
2/2)
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Figure 5.7: Shadow Values along VRS and WDEA Technological Frontiers (Grazers 1/2)
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Figure 5.8: Shadow Values along VRS and WDEA Technological Frontiers (Grazers 2/2)
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Appendix

A Estimations of Market-level and Producer-level Shadow Prices

This supplementary section describes two procedures employed in the applica-

tion section; one for estimating unknown market-level prices of inputs (which are

used to calculate AI and constructing WDEA frontiers) and the other for estimat-

ing producer-level shadow values (which are used to characterize VRS and WDEA

frontiers).

Market-level input prices are estimated as shared shadow-values in a DEA set-

ting. The linear programming problem proposed by Kuosmanen et al. (2006) com-

bines (otherwise separately-estimated) DEA specifications of multiple producers into

a single estimation problem for a common set of input prices that maximize the joint

objective function subject to the (standard) DEA technological constraints;18

max{
∑
j∈I

γj :∀j ∈ I, γj ≤ pjyj + fj, ∀j, k ∈ I, pkyj −wxj + fk ≤ 0,

w

(∑
j∈I

xj

)
≥ 1, p ∈ RMN

+ , w ∈ RL
+, f ∈ RN

+} (A.1)

where pj is producer-specific shadow output values, fj producer-specific scale param-

eter, and w the common input values across producers that are interpreted as market

rates. To make the large scale linear programming problem manageable, this study

estimates problem (A.1) as the average result of 100 subsample estimations, where

each estimation uses 20 random observations in the sample.19

The current application additionally constraints the range of shadow values

through incorporating market price information. Dairy production decision is mod-

eled with milk output and the total of seven inputs including herd size, four cate-

gorical expenses (in labor, crop, animal, and machinery) divided by share-weighted

price indices, and two types of land areas (for crop production and pasture). The

common shadow-values of inputs are estimated by equation (A.1) with the following

18 The common input price under a free-disposable hall (FDH) is;

max{
∑
j γj : ∀j, k, γj ≤ pjkyj + fjk, ∀j, k,pjkyj −wxj + fjk ≤ 0,w(

∑
xj) ≥ 1, p ∈ RMN2

+ , w ∈ RL+, f ∈
R
N2

+ }.
19When drawing each random subsample, the ratio of two groups of dairy farms was fixed at that of the

sample.

115



constraints;

C1. wlabor = wcrop = wanimal = wmachine

C2. ∀i ∈ I, 0.90 (pmilk,i/p
M
milk) ≤ wlabor ≤ 1.10 (pmilk,i/p

M
milk)

C3. wpasture acre/w
M
pasture acre = wlabor, wcrop acre/w

M
crop acre = wlabor

C4. 0.5 wcow(conf.) ≤ wcow(graz.) ≤ 1.5 wcow(conf.)

C5. 0.90(
∑

i πi/Ci)/N ≤ (
∑

i−fi)/N ≤ 1.10 (
∑

i πi/Ci)/N .

Item C1 sets an identical shadow value for categorical expenses in labor, crop, animal,

and machinery since these variables are originally in dollar terms that should be valued

equally. Item C2 normalizes the price level with nominal milk price pMmilk=$18.74/cwt,

so that the shadow value for one hundredweight of milk is worth about 18.74 times of

the dollar-valued expense within ±10% deviations. Similarly, item C3 normalizes the

shadow rental rates for crop and pasture acreage by nominal rates wMpasture acre =$63.35

and wMcrop acre =$39.02 per acre respectively, or the average rates in North Central

Maryland during years 2008-2012.20 In item C4, the rental rate for cow, estimated

separately for two dairy systems of grazing and confinement, assumes the rate for

grazers to fall within ±50% of the rate for confinemnt. Finally, item C5 confines the

average shadow profit
∑

i(piyi−wxi)/N to±10% deviations from the sample-average

returns to production costs. Once estimated, the shadow values can be converted

back into dollar terms; for instance, the nominal shadow value for labor expenses is

obtained as wNlabor = wlabor ∗ (pMmilk/p̄milk,i) using the average shadow value p̄milk,i of

milk output.

Producer-specific shadow values are estimated as the marginal rate of transfor-

mations along a technological frontier. One difficulty is the non-uniqueness of the

shadow values for inputs and outputs along a piecewise-linear DEA frontier, which

admits infinitely many supporting hyperplanes at its kink points. Following Cham-

bers and Färe (2008), a derivative-like concept for these hyperplanes are given by the

supper differential of D(x,y; gx, gy) for a change of inputs from x to xc ∈ RL;

∂D(x,y; gx, gy) = {ν ∈ RL
+ :D(x,y; gx, gy) + ν(xc − x)

≥ D(xc,y; gx, gy),∀xc ∈ RL}. (A.2)

20These rental prices for crop and pasture acres are taken from the mean rents, across counties in North
Central Maryland and years 2008-2012, of the corresponding items in USDA-NASS rental rate estimates.
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While any member of the super differential could be interpreted as shadow values of

inputs and outputs, its directional derivative is uniquely defined as

D′T (x,y; gx, gy,x
c) = lim

λ→0+

D(x+ λxc,y, gx, gy)−D(x,y, gx, gy)

λ
, (A.3)

which is positive linear homogeneous and concave in xc and satisfiesD′T (x,y; gx, gy,0)

= 0.21

The most economically relevant shadow values are those for the willingness to

pay (WTP) and the willingness to accept (WTA) for a marginal change in inputs. The

authors show that under the directional change toward l-th unit vector el = [0..1..0]T

(i.e. elw = wl), WTP for input l at decision (x0,y0) is calculated as;22

min{wl :∀j ∈ I, pyj −wxj + f ≤ 0, wgx ≥ 1,

py0 −wx0 + f = 0, p ∈ RM
+ , w ∈ RL

+, f ∈ R} (A.4)

where gx is a bundle of inputs that normalizes shadow values (and gx = x0 for

each observation 0 in this study). The estimated values are converted into dollar

terms by, for example, wNlabor,i = wlabor,i ∗ (pMmilk/pmilk,i) where wlabor,i and pmilk,i are

the estimates from (A.4). Similarly, under directional change −el = [0.. − 1..0]T ,

willingness to accept (WTA) for input l is given by;23

max{wl :∀j ∈ I, pyj −wxj + f ≤ 0, wgx ≤ 1,

py0 −wx0 + f = 0, p ∈ RM
+ , w ∈ RL

+, f ∈ R}. (A.5)

Table A.1: Market Prices Used For Calculating Allocative Efficiency

Cow Labor Crop Animal Machi. Crop A. Past. A. Avg.Profit

Confinement 574.83 0.955 0.955 0.955 0.955 60.52 37.28 79,970
Grazer 463.51 1.000 1.000 1.000 1.000 63.36 39.03 55,335

1. Based on Kuosmanen et al. (2006) with additional constraints.

21It is a support function of the super differential; D′T (x,y; gx, gy,x
c) = inf{νxc : ν ∈ ∂D(x,y; gx, gy)}.

22Dual problem: max{θ :
∑
j∈I λjyj ≥ µy0,

∑
j∈I λjxj ≤ µx0−θg0+el,

∑
j∈I λj = µ, λRN+ , µR+, θR+}.

23Dual problem: min{θ :
∑
j∈I λjyj ≥ µy0,

∑
j∈I λjxj ≤ µx0+θg0−el,

∑
j∈I λj = µ, λRN+ , µR+, θR+}.
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B Relative Shadow Values Between VRS and WDEA: A Simple Case

Consider simple geometrical relationships of shadow values along VRS and

WDEA frontiers, as depicted in figure B.1. In two-input space x1-x2, several observa-

tions (shown as circles) are connected by a piecewise-linear VRS frontier. Observation

BAE is also allocatively efficient and supporting a cost frontier. For two observations

B and B′, the intersections between the radial contractions (toward the origin) and

the cost frontier are denoted as points C and C ′ respectively. The figure shows that

decisions B and B′ use too much input x1 and too little x2, compared to decision

BAE. Thus, for example, at decision B the implied shadow value of input x2 to input

x1 is lower than those of market rates, or the slope of BB′ is smaller than the slope

of CC ′.

Suppose that decision D between B and C and decision D′ between B′ and

C ′ are the predicted technically-efficient decisions under WDEA with weights α > 0

and β = 0. The slopes of segments BB′, CC ′, and DD′ correspond to the relative

shadow values of input x2 to input x1 under the frontiers of VRS, cost, and WDEA

respectively. The coordinates of decision D = (xD1 , x
D
2 ) are given by xDl = xBl −

α(xBl − xCl ) = (1 − α)xBl + αxCl for input l = 1, 2. By nothing that xDl − xD′l =

(1 − α)(xBl − xB′l ) + α(xCl − xC′l ) for input l = 1, 2 on segment DD′, it follows that

the slope of BB′ is smaller than the slope of DD′;∣∣∣∣xB2 − xB′2

xB1 − xB′1

∣∣∣∣ < ∣∣∣∣xC2 − xC′2

xC1 − xC′1

∣∣∣∣ ⇒ ∣∣∣∣xB2 − xB′2

xB1 − xB′1

∣∣∣∣ < ∣∣∣∣(1− α)(xB2 − xB′2 ) + α(xC2 − xC′2 )

(1− α)(xB1 − xB′1 ) + α(xC1 − xC′1 )

∣∣∣∣ .
(B.1)

Similarly, if the slope of BB′ were greater than the slope of CC ′, then the slope

of BB′ would be greater than the slope of DD′. This implies that the local marginal

rate of substitution under WDEA (the slope of DD′) is closer to the relative market

rates (the slope of CC ′), compared to that of VRS (the slope of BB′). Thus, WDEA’s

estimates for WTP or WTA of input x1 at decisions D and D′ are lower, and that

of input x2 higher than the VRS counterparts at decisions B and B′. While these

results are fairly straightforward, such relationships become too complicated to derive

simple characterizations in a higher dimensional input-output space.
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Figure B.1: Shadow Values Along Frontiers
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Chapter 6: Conclusions

The composition of the US dairy industry has been shifting toward the high

concentration of production by a small number of very large-scale dairy producers,

who have been replacing small-to-medium-scale dairies. At the aggregate level, it

appears that the dairy industry is simply following the suit of transformations that

various grain and livestock producers have been put through and that are inevitable

in many ways under ever-more sophisticated mechanical and chemical approaches to

food production. At the producer level, however, a number of farms have been ex-

perimenting with combining dairy production and ecological approaches with farm

resource management. Management-intensive grazing (MIG) demands an innovative

approach to strike a balance between pasture production and the dietary needs of

dairy cows. Such experiments are partly a natural response to the general trend in

emerging consumer preferences for organic and local produce, environmentally- and

socially-responsible production practices, and increased information flow between the

producer and the consumer. Many opportunities seem to await innovative farmers

who adapt to the increasingly complex food industry at it meets diverse consumer

demands and accommodates various motivations behind their food choices. Another

explanation for the emergence of MIG would be a technical response to uncertain

production environments in terms of weather, markets, and future policies in agri-

culture and the environment. Innovations in MIG offer possibilities for greater input

substitutability, a more diverse menu of risk management options, and easier entry

and exit decisions with lower fixed costs than the conventional confinement dairy

operations.

The main empirical findings in the thesis are the following. In chapter 3, the

results indicate steady and modest technological progress for dairy production in the

Northeast region, but on average more than half of the progress is unexploited by

the producers. The production gaps between the technically efficient and the less

efficient producers have increased, particularly among MIG farms. Increased efforts

in disseminating the information on new production techniques would be helpful.
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Chapter 4 finds evidence for increased production risks in confinement operations

and decreased production risks in grazing operations for the selected study periods.

During 2006-2009, when dairy profits fluctuated with volatile milk price and feed

costs, MIG operations benefited from reduced reliance on purchased feed and other

market inputs. Some MIG farms also commanded a consistently-high price premium

through organic milk production. The results in chapter 5 suggest that machinery

and (hired) labor are over-utilized by confinement and MIG dairies respectively, and

crop acreage is under-utilized by confinement and over-utilized by MIG. Systematic

over- or under-utilization of inputs calls for further investigations into the issue, which

may require policy reforms that improve market efficiency and ameliorate production

distortions.

Lastly, novelties and shortcomings of the proposed methodologies are noted

along with some future directions for research. The difference in distance-functions

(DDF) approach in chapter 3 is a Malmquist Productivity Index (MPI) decomposi-

tion under a regression framework. The method combines the advantages of flexible

non-parametric functional forms (for technological frontiers and the shifts of those

frontiers) and those of the parametric treatment of non-production factors (as regres-

sion covariates). The two versions of technical change measurements are proposed

in the study: one similar to the econometric distance measurement and the other in

the spirit of the standard MPI decomposition. The two technical change measure-

ments merit further investigations. Chapter 4 develops a state-contingent (SC) risk

analysis on balanced-panel data. This contributes to bridging the gap between the

theoretical SC framework and the empirical risk analysis. One weakness is the simul-

taneous assumptions of no technical change and cross-sectionally homogeneous state

realizations; a short-term time series of data are welcome for the former assumption

but not for the latter. More suitable assumptions may be devised according to data

availability. The weighted DEA (WDEA) approach in chapter 5 simultaneously uti-

lizes several efficiency concepts in a new variant of technology approximation in DEA.

One must recognize that the efficiency gain from imposing sample-level systematic

relationships among these concepts may come at the expense of oversimplifications

at the observation-level. A potential extension is to let a weight structure vary with

certain characteristics of producers.
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