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The air transportation system in the United States is one of the most complex systems 

in the world. Projections of increasing air traffic demand in conjunction with limited 

capacity, that is volatile and affected by exogenous random events, represent a major 

problem in aviation system management. From a management perspective, it is 

essential to make efficient use of the available resources and to create mechanisms 

that will help alleviate the problems of the imbalance between demand and capacity. 

Air traffic delays are always present and the more air traffic increases the more the 

delays will increase with very unwanted economic impacts. It is of great interest to 

study them further in order to be able to more effectively mitigate them. A first step 

would be to try to predict them under various circumstances. A second step would be 

to develop various mechanisms that will help in reducing delays in different settings. 



  

The scope of this dissertation is to look closer at a threefold approach to the problem 

of congestion in aviation. The first effort is the prediction of delays and the 

development of a model that will make these predictions under a wide variety of 

distributional assumptions. The work presented here is specifically on a continuum 

approximation using diffusion methods that enables efficient solutions under a wide 

variety of distributional assumptions. The second part of the work effort presents the 

design of a parsimonious language of exchange, with accompanying allocation 

mechanisms that allow carriers and the FAA to work together quickly, in a 

Collaborative Decision Making environment, to allocate scarce capacity resources 

and mitigate delays. Finally, because airlines proactively use longer scheduled block 

times to deal with unexpected delays, the third portion of this dissertation presents the 

assessment of the monetary benefits due to improvements in predictability as 

manifested through carriers’ scheduled block times. 

 

 

 

 

 

 

 

 

 

 
 



  

 
 
 
 
 
 
 
 

AVIATION CONGESTION MANAGEMENT 
IMPROVEMENTS IN MODELING THE PREDICTION, MITIGATION, AND 

EVALUATION OF CONGESTION IN THE NATIONAL AIRSPACE SYSTEM 
 

 
 
 

By 
 
 

Kleoniki Vlachou 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2014 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor David J. Lovell, Chair 
Professor Michael O. Ball 
Professor Paul Schonfeld 
Professor Cinzia Cirillo 
Dr. Robert Hoffman 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Kleoniki Vlachou 

2014 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Dedication 

To my beloved parents Georgios and Christina Vlachou. 



 

 iii 
 

Acknowledgements 

This has been a long journey and it wouldn't be feasible to reach the end without the 

help of many valuable people. Most of all, I would like to thank my advisor Pr. David 

Lovell for his guidance, help and support all these years. He is a very knowledgeable 

educator and a great mentor. I admire his ingenuity and his approach to problem 

solving, and he will always be a role model for me.  

I would also like to thank Pr. Michael Ball, it was an honor working with him and 

being guided by him. I would also like to thank the members of my committee, Pr. 

Paul Schonfeld, Pr. Cinzia Cirillo and Dr. Bob Hoffman, for their valuable feedback 

and direction. 

I would also like to thank my NEXTOR office mates with whom we shared ideas, fun 

times and I got to learn a lot from them: Andy, Alex, Moein, Nasim, Charles, Kennis, 

Carina, Xenia and James. 

Of course, this journey would not be the same without being surrounded by good 

friends, who made these past 7 years fun. I had the pleasure to meet and befriend so 

many people along the way. Friends, that we shared interests, concerns and 

experiences. I want to thank Kostas, Nikos, Giannis, Kostas, Laoura, Alex, Evripidis, 

Vasilis, Jason, Thodoris, Maya, Sasha, Udayan, Prem, Aram, David, Alice.  

I want also to thank some wonderful friends that I hold in a special place in my heart: 

Konstantinos, Anastasia, Myra, Rama, Pauline, Gianluca, Meggy. 

A special thanks goes to some friends that were my biggest support in the most 

difficult times and the best company for the wonderful times. My wonderful Giota 

Andrakakou who although thousands of miles away, was always there for me when I 



 

 iv 
 

needed someone to talk; and I am so lucky to know her. I love you. My beloved 

Georgia Vergadou who is one of the very few people I could open up to when I need 

it the most. I love you. Christos Vergados who knows me so well and would always 

understand me even if I said nothing. I love you. Yolanda Mahnke, my "sister" who is 

an amazing woman and cook (!) and it is a blessing to have her in my life. I love you. 

Konstantinos Zampogiannis who doesn't know how amazing he is, but I do, and I am 

so fortunate to call him my friend. I love you. 

I want also to thank my family. My parents Georgios and Christina Vlachou, who 

always supported, inspired and believed in me. I love you. My brother Nikos and 

sister-in-law Giouli and of course my niece Elisavet and nephew Aggelos. I love them 

dearly. They have given me so much strength to keep trying and never give up. 

Last but not least, I want to thank Haytham, who gave me the courage to finish this 

journey well. He is my biggest supporter. He was there in the craziest final moments, 

to cheer me up and make me believe that I have the strength to reach my goal. Enta 

habibi, behabak ktir.   



 

 v 
 

Table of Contents 
 
 
Dedication ..................................................................................................................... ii	
  
Acknowledgements...................................................................................................... iii	
  
Chapter 1: Introduction ................................................................................................. 1	
  

1.1 Problem Description ........................................................................................... 1	
  
1.2 Air Traffic Management ..................................................................................... 6	
  

1.2.1 Air Traffic Flow Management Initiatives .................................................... 9	
  
1.3 Scope of Work .................................................................................................. 19	
  

1.3.1 Prediction of Delays................................................................................... 20	
  
1.3.2 Delay Mitigation ........................................................................................ 22	
  
1.3.3 Improved Predictability Will Ultimately Lead to Reduced Delays ........... 23	
  

1.4 Organization of the Document.......................................................................... 26	
  
Chapter 2: Delay Prediction........................................................................................ 27	
  

2.1 Model Development.......................................................................................... 29	
  
2.1.1 Governing Differential Equations.............................................................. 29	
  
2.1.2 Boundary Conditions ................................................................................. 34	
  
2.1.3 Initial Conditions ....................................................................................... 36	
  

2.2 Numeric Solution Scheme ................................................................................ 38	
  
2.3 Model Validation and Results........................................................................... 42	
  
2.4 Conclusions....................................................................................................... 48	
  

Chapter 3: Incorporating Airlines’ Preferences in Resource Allocation Mechanisms 
During Irregular Operations........................................................................................ 50	
  

3.1 Motivation for this Research............................................................................. 50	
  
3.2 Feedback from Airline Experts......................................................................... 51	
  
3.3 Expressing Airlines Priorities ........................................................................... 52	
  
3.4 Allocation Mechanism...................................................................................... 56	
  
3.5 Trade-Off Between Slot Quantity and Minimizing Delay................................ 60	
  
3.6 Results............................................................................................................... 62	
  
3.7 Estimating the Long Run Effect of Preference Based Proportional Random 
Allocation................................................................................................................ 68	
  

3.7.1 Monte Carlo Simulation for Deterministic Set of Flights.......................... 71	
  
3.7.2 Monte Carlo Simulation for Random Set of Flights.................................. 78	
  

3.8 Conclusions....................................................................................................... 87	
  
Chapter 4: Impact of Improved Predictability ............................................................ 90	
  

4.1 Analyzing Scheduled Block Times................................................................... 90	
  
4.1.1 Scheduled Block Time for a Single Flight................................................. 92	
  
4.1.2 Scheduled Block Time for Multiple Flights in a Day................................ 93	
  
4.1.3 Estimating Distributions ............................................................................ 96	
  
4.1.4 Fitting Gamma Distribution to Data ........................................................ 101	
  

4.2 Estimating Scheduled Block Times ................................................................ 104	
  
4.2.1 Source of Information .............................................................................. 104	
  
4.2.2 General Process........................................................................................ 104	
  
4.2.3 Airlines’ Differentiations ......................................................................... 106	
  

4.3 Estimating the Strategic Benefits of Increased Flight Predictability .............. 108	
  



 

 vi 
 

4.3.1 Estimating the Benefits for the NAS ....................................................... 115	
  
Chapter 5: Conclusion............................................................................................... 121	
  
Bibliography ............................................................................................................. 126	
  



 

 vii 
 



 

 1 
 

Chapter 1: Introduction 

The air transportation system in the United States is one of the most complex systems 

in the world. Every day approximately 60,000 flights of commercial, military and 

general aviation aircraft occupy the National Airspace System (NAS). Air traffic 

volume has proven to be quite volatile and susceptible to outside political and 

economic pressures, including most recently the terrorist attacks of September 11th 

and the recent economic recession. These events of course caused air traffic to 

decrease, and continue to hamper its recovery. Despite the economic downturn, the 

long range forecast remains positive. Even in a pessimistic scenario, the Federal 

Aviation Administration (FAA) has predicted that the average passenger enplanement 

growth for the following 10 years will be about 1.5 percent per year (FAA, 2013a). In 

Figure 1.1 we can see the 2013 forecast for the system enplanements for the years 

2013-2022 under different scenarios. In the optimistic scenario, the growth rate of the 

passenger traffic could reach 3.4 percent annually. 

Another forecast for the next 20 years, which we can see in Figure 1.2, shows that the 

passenger enplanements could increase beyond 1 billion passenger enplanements in 

the next 20 years. This would be a result of an average annual increase of 2.2 percent. 

1.1 Problem Description 

Projections of increasing demand only represent one side of the problem in aviation 

system management, however. The capacities of various system resources can also be 

volatile and affected by exogenous random events, such as fluctuating weather 

conditions and equipment outages. From a management perspective, it is essential to 
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make efficient use of the available resources and to create mechanisms that will help 

alleviate the problems of the imbalance between demand and capacity. Even with 

good forecasts of demand growth and capacity evolution, it is still complicated to 

model the specific consequences to be expected at individual airports. Day-to-day 

airline and airport operations are also quite complex, with their own uncertainties, 

plus un-knowable factors such as the proprietary actions of air carriers. 

 

Figure 1.1 2013 FAA Forecast for the system enplanements for the years 2013-2022 

(Source: 2013 FAA forecast) 

 

The performance of the NAS is too complicated to be represented directly by its 

“inputs” demand and capacity. Together, these things conspire to produce other 

metrics, chief amongst them delay. Not surprisingly, when air traffic demand 
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increases, system delays tend to do the same. Similarly, delays increase with 

decreases in resource capacity, either systemic or impromptu, such as under the 

influence of adverse weather.  

Figure 1.3 shows the actual flight operations throughout the NAS for the years 2004-

2013. On the left portion of the figure, we can see evidence of the continued slow 

recovery of NAS traffic after September 11, 2001. The economic downturn that 

began in 2007-2008 is also reflected in a commensurate decrease in air traffic. There 

is some hint, on the right portion of the figure, that traffic is beginning to rise again.  

 

 

Figure 1.2 2013 FAA forecast for the system enplanements till the year 2033 

(Source: 2013 FAA forecast) 
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Figure 1.3 Flight operations for 2004-2013 

 

For the same years if we look at the percentage of flights that were delayed, in Figure 

1.4, we will see how these correlate to the traffic. Arrivals were delayed heavily in 

2007, when traffic had reached a seasonal high. A commensurate pattern of slightly 

lower magnitude can be seen for the departures. When the system was at its worst, 

about 24 percent of arrivals and 21 percent of departures were delayed more than 15 

minutes. The delays in 2007 were estimated to have cost the U.S. economy as much 

as $41 billion according to a report by the Joint Economy Committee (2008). More 

specifically, it was estimated that the traffic delays caused an increase of $19 billion 

of airlines’ operating costs, a $12 billion cost of passengers’ time and about $10 

billion cost to other industries. 
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Figure 1.4 Percentage of arrivals and departures that were delayed in the years 2004 – 

2013 

Looking at Figure 1.4 we can see that once the economy started impacting air traffic, 

the delayed flights dropped to about 15 – 18 percent. For 2013, where air traffic 

showed some significant increase, the delayed flights also increased in turn, to reach 

about 20 percent. 

It is evident that air traffic delays are always present and the more air traffic increases 

the more the delays will increase with very unwanted economic impacts. It is of great 

interest to study them further in order to be able to more effectively mitigate them. A 

first step would be to try to predict them under various circumstances. A second step 

would be to develop various mechanisms that will help in reducing delays in different 

settings. 
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Once the system is better handling unpredictable situations and delays are reduced, so 

will the need of airlines to pad their schedules against unforeseen circumstances. It is 

very well known that airlines, due to their need to adhere to their schedules, tend to 

add extra minutes to their scheduled flight times. Of course this allows them to be 

more resilient in cases where some flights suffer delays. In so doing, carriers can keep 

up with their schedules, have less missed connections and better on-time 

performance. At the same time this causes them to incur costs because of the extra 

time that planes and crews go unused. This is another aspect of traffic delays that is 

very interesting to look at further. 

1.2 Air Traffic Management 

In quite broad terms, the intended scope of this dissertation is to make inroads into 

three areas discussed so far: prediction of NAS system delays, system designs to 

allow carriers and the FAA to work together to reduce congestion and delays, and 

estimation of expected benefits from improving system efficiency. Before defining 

this scope of work in greater detail, a brief presentation of Air Traffic Management as 

it is contemporarily understood will follow in order to get a better understanding of 

the system, its components and actions. 

Air Traffic Management (ATM) is essential for the safe and efficient operation of 

airports and the airspace system. Advanced ATM systems as defined by deNeufville 

and Odoni (2003) must: 

• Accommodate an increasing number of users 

• Achieve an exceptional level of safety 
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• Have a large number of skilled human operators to work seamlessly with a 

network of computers and communications, surveillance, and navigation 

equipment 

• Take advantage of technological developments 

• Keep the cost of all of this at a reasonable level 

ATM is considered to consist of two major components: Air Traffic Control (ATC) 

and Air Traffic Flow Management (ATFM), as can be seen in Figure 1.5 below 

(Vossen, 2002). ATC refers to the processes that provide tactical separation services. 

The system users must maintain enough horizontal and vertical separation to avoid 

the risk of collision but at the same time capacity must be efficiently used (Ashford 

and Wright 1992). 

 

Figure 1.5 Air Traffic Management components 

(Source: Vossen, 2002) 
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Air Traffic Flow Management aims to detect and resolve demand-capacity 

imbalances by adjusting the flow of aircraft so that demand matches as well as 

possible the available capacity.  

The principal functions of ATFM, according to deNeufville and Odoni (2003), are: 

• To predict the locations of potential overloads 

• To develop strategies that will relieve these overloads 

• To oversee the implementation of these strategies 

Odoni (1987) has classified the ATFM initiatives that can resolve air traffic 

congestion in the following categories: 

• Long-term approaches that are focused on increasing capacity. That is 

achievable by constructing new airports or adding more runways to existing 

facilities. This approach is characterized by very high costs and raises many 

environmental concerns. Thus it is more difficult to implement. 

• Medium-term approaches that are more administrative and economic in nature 

and try to mitigate congestion by modifying temporal or spatial traffic 

patterns. For example at some airports, where the demand for airport 

infrastructure significantly exceeds the airport’s capacity, slots are allocated to 

the airlines by a coordinator, according to International Air Transport 

Association (IATA) guidelines (IATA 2012). Other approaches considered 

are congestion pricing and slot auctions. 

• Short-term approaches that consist mainly of adjusting the air traffic flows to 

match demand with available capacity. These approaches tend to mitigate 
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congestion caused by unpredictable disruptions such as bad weather and are 

performed a few hours in advance.  

The research proposed for this dissertation is mostly motivated by some short-term 

initiatives.  

1.2.1 Air Traffic Flow Management Initiatives  

The Federal Aviation Administration (FAA) is responsible for the coordination of air 

traffic and for ensuring the proper separation requirements in the controlled airspace. 

In order to carry out these functions, the FAA has divided the airspace over the 

Continental United States into 20 areas, as shown in Figure 1.6 (FAA 2009). Each of 

these areas is controlled by the corresponding Air Route Traffic Control Center 

(ARTCC). Each en route center is then divided into smaller areas, called sectors, 

because the traffic load in any single center is too much to be handled by one 

controller.  
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Figure 1.6 En-Route Traffic Control Centers, United States. 

(Source: Federal Aviation Administration) 

Traffic controllers guide the aircraft from one sector to another until they arrive 

approximately 50-150 nautical miles from the destination airport. Then the aircraft 

are handled by the Terminal Radar Approach Control facility (TRACON). Finally, 

for the last 5 nautical miles to the destination airport, the handling of traffic is 

performed by the airport traffic control towers. A detailed flow chart of a flight 

trajectory decomposed by phase of flight is depicted in Figure 1.7 below (FAA 2009). 

Air traffic controllers in the above centers are responsible for the movement of 

aircraft within their area of responsibility and their decisions are based on real-time 

information about the flights entering their sectors. The strategic ATFM functions 

performed by the FAA are coordinated by the Air Traffic Control System Command 

Center (ATCSCC) located near Washington DC. The ATCSCC continuously 
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monitors the current and forecast traffic demand throughout the National Airspace 

System (NAS) and identifies potential problems (like bad weather) that may constrain 

capacity. Whenever demand is predicted to exceed capacity the ATCSCC generates 

and implements strategies to mitigate the problem.  

 

Figure 1.7 Air Traffic Flow Chart 

(Source: Federal Aviation Administration) 

At this point it is important to mention that there is a need for partial decentralization 

of decision making. The FAA does not necessarily have all the information needed to 

make decisions on behalf of the users. To this end, Collaborative Decision Making 

(CDM) is an effort to improve Air Traffic Management. It is essential for all 

stakeholders involved (FAA, airlines) to share information so that all will be aware of 

the current situation. All users of ATM will benefit from sharing information and 
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collaborating. As described by deNeufville and Odoni (2003) the specific goals of 

CDM are: 

• To provide the FAA and the airlines with a common picture of the current and 

forecast air traffic conditions 

• To allow the person or organization in the best position to make each decision 

• To make the decisions in open manner so all will know what is happening and 

can contribute as necessary 

The ATFM initiatives that the FAA can implement under a CDM framework may be 

outlined as follows. 

Ground Delay Programs 

The Ground Delay Program (GDP) is a mechanism implemented when it is projected 

that the arrival demand at an airport would exceed capacity, usually because of 

adverse weather conditions around the airport area (Ball and Lulli 2004), although 

occasionally as a result of over-scheduling. The goal of a GDP is to decrease the 

arrival rate and this is achieved by intentionally delaying the take-off times for most 

flights intending to land at that airport (deNeufville and Odoni 2003). The motivation 

for doing so is that it is safer and cheaper for flights to absorb delays on the ground 

before take-off rather than while airborne. 

Metering 

Metering is used to control the rate that aircraft cross some specified spatial 

boundaries by adjusting the spacing between aircraft (deNeufville and Odoni 2003). 

Metering procedures can be divided in two categories. The first is time-based, which 
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controls the minimum time headways with which aircraft are allowed to pass a 

specific geographical point. The second category is distance-based, which specifies a 

minimum separation (in miles) between aircraft moving at the same direction. This is 

also known as “Miles-In-Trail” (Vossen 2002). 

Rerouting 

When an airspace area is impacted by adverse weather conditions and its capacity is 

reduced, rerouting might occur. With rerouting some flight routes are changed or 

restructured to modify the distribution of traffic flows (deNeufville and Odoni 2003). 

Rerouting sometimes is part of Severe Weather Avoidance Programs (SWAPs), 

which are implemented when traffic flows are affected by widespread severe weather 

in the system (Vossen 2002). 

Airspace Flow Program 

Airspace Flow Program (AFP) is a relatively new traffic flow initiative that was first 

introduced in the summer of 2006 and it marked a new step in Air Traffic 

Management (FAA 2009). When there is a capacity reduction in an area of the 

airspace (not a specific airport) due to adverse weather conditions, and rerouting by 

itself is not enough to deal with the problem, the AFP is intended to solve the 

problem. The first step is to identify the problematic area by creating an FCA. A Flow 

Constrained Area (FCA) is an area of the airspace that the FAA has identified as 

potentially congested (Hoffman et al., 2004). NAS users are informed when FCAs are 

issued along with reroute advisories in order to reduce the number of planes passing 

through the impacted area to an acceptable level. Sometimes a Flow Evaluation Area 
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(FEA) precedes an FCA. The Traffic Situation Display (TSD) and the Common 

Constraint Situation Display (CCSD) provide traffic managers and flight dispatchers 

with the ability to define and display FEAs and/or FCAs (Vakili 2009). In the second 

step the Enhanced Traffic Management System (ETMS) takes the FCA description 

and produces a list of the affected flights and the times at which they are expected to 

pass through the FCA (Vakili 2009). This list is sent to the Flight Schedule Monitor 

(FSM) where flight operators, traffic controllers and service providers have access to 

the information and have a “common picture” of the situation. The traffic manager 

enters the expected capacity – expressed as the number of flights that can pass 

through the FCA per hour - in the FSM, which will then compute the best departure 

time for each flight scheduled to pass through the FCA, in order to lower the demand 

to meet the new capacity. During an AFP, resources are rationed by procedures such 

as Ration By Schedule (RBS), which is based on the principle of first-scheduled-first-

served.  

The FSM sends the controlled departure times to the flight operators and control 

towers. After they get the new flight-slot list, airlines have various options. They can 

have some of their flights depart according to the controlled times, they can reroute 

other flights around the FCA, and they can cancel some others. They can also swap 

departure times among their set of flights or they can even exchange slots with other 

operators, in a controlled transaction structure. All of these mechanisms are part of 

Collaborative Decision Making. Importantly, it is evident that airlines have at least 

some control of their flights and options after the initial allocation. 
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Collaborative Trajectory Options Program 

One of the practical problems with the AFP, as described above, is that all of the 

mechanisms that carriers can employ to inject some of their individual preferences 

into the dispositions of their flights come after the initial capacity allocation done by 

the FAA. These machinations take time and are complicated to communicate quickly 

between the FAA and the carriers. Further, there is a sense that, if the carriers are to 

make significant revisions to each initial AFP allocation, then there is a waste of 

efficiency in the process to begin with. It might make more sense to try to capture at 

least some sense of their intentions before the initial allocation is conducted, thereby 

minimizing the effort involved in revising and coordinating with the FAA. 

This is the primary driver behind the Collaborative Trajectory Options Program 

(CTOP), which is part of the Collaborative Airspace Constraint Resolution (CACR) 

concept. With this program, airlines can express which flights they want to be 

assigned to which slot in the AFP capacity allocation process. 

There are three main points that distinguish CTOP from the current practices (FAA, 

2011a). 

• The communication between the FAA and the flight operators will be all 

electronic, which will make it faster and more precise than having voice calls 

or text advisories. 

• The flight operators can express their preferences in great detail and FAA 

honors them to the extent that the problem permits. 
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• The decisions for the routes and assigned delays are made by automation and 

not humans, which allows a finely tuned solution to the congestion problem. 

Here follows an example of message exchange in CTOP for a better understanding of 

it (FAA 2011a). First, the flight operators send Trajectory Options Sets (TOS’s) to the 

Traffic Flow Management System (TFMS). A TOS is a set of trajectories for a given 

flight that are acceptable to the flight operator. Trajectories consist of route text, 

altitude, speed and departure time that specify the intended path of a flight through 

the NAS. An example of TOS for a flight from LAX to IAD is depicted in Figure 1.8 

(Flow Evaluation Team, 2014). The flight operator specifies the relative cost of each 

trajectory options as the extra amount of delay compared with the best trajectory (this 

has a delay equal to zero). 

 

Figure 1.8  Example of TOS for a flight from LAX to IAD 

(Source: Flow Evaluation Team)  
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When the FAA defines one or more FCA’s, the TFMS under CTOP sends a Traffic 

Management Initiative (TMI) with the airspace constraints to the flight operators, 

who reply with TOS’s appropriate for the subject flights. Through TFMS the traffic 

manager determines the best solution from a system perspective, taking both overall 

FAA objectives and carrier-declared delays into account. The solution consists of 

assigned routes, arrival slots and departure times for the constrained flights. If a flight 

does not have multiple trajectory options, it will be controlled by the current route. 

Thus, clearly carriers are not bound to participate or to declare TOS’s for all of their 

flights; there is a default posture for each flight when entering the optimization 

process. 

This process is not static – flight operators monitoring their flights are allowed to 

send new TOS’s (clearly only for those flights whose dispositions are not yet fixed), 

to update them according to evolving traffic conditions and other new information. In 

that case, TFMS will evaluate the updated TOS’s and possibly find new solutions. If 

any are found, they will notify the flight operators of the changes. 

Given any particular set of flight dispositions, the flight operators can determine the 

impact the solution has on their operations, and they might decide to cancel a flight, 

or ask for substitution. In the latter case, TFMS will check the feasibility of the 

proposed substitution and will give the associated flights their new assigned routes, 

departure times and slots if it is possible. Ultimately, the flight operator will file a 

flight plan where the route will be in accordance with the CTOP assigned route. 
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Collaborative Airspace Constraint Resolution 

The Collaborative Airspace Constraint Resolution (CACR) concept extends the 

capabilities of the Collaborative Trajectory Options Program (CTOP) by managing 

flights within 45 minutes prior to departure and with adequate automation assistance 

provided to traffic managers for defining airspace constraints (Metron Aviation 

2012).  According to Stalnaker et al. (2009) CACR has four key components: 

• Predicts sector demand and takes into account its uncertainty 

• Predicts sector capacity and potential impact adverse weather will have 

• Identifies the problem 

• Generates congestion resolution initiatives 

CACR will also be implemented under the CDM framework since it will collect and 

incorporate user preferences in terms of enhanced Trajectories Options Sets (TOSs). 

The last two initiatives are of particular importance for this dissertation because they 

motivate the second proposed area of work, that of designing a simpler language of 

exchange between the FAA and carriers by which some carrier preferences can be 

incorporated into the capacity allocation process. The first and third aims of the 

dissertation were to develop new modeling methods for delay prediction and to assess 

the benefits associated with improved efficiency, particularly as it relates to the 

predictability of the system. As will be seen below, the first part is mainly concerned 

with predicting delays at a course scale where details of specific traffic management 

initiatives are not known, but rather the basic inputs of demand and capacity (either 
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the natural capacity of the airport and runway configuration or the reduced capacity 

imposed by a Ground Delay Program) are enough to make broad predictions of 

delays at an airport. The third part of the dissertation is aimed at benefits assessment, 

in this case in response to technological innovations that might improve the 

predictability of the system. This is likely to be addressed at both strategic and 

tactical scales, so some consideration of the details of traffic management initiatives 

may be warranted. 

1.3 Scope of Work  

The scope of this dissertation is to look closer at a threefold approach to the problem 

of congestion in aviation mentioned above. In part, this is predicated on the fact that 

three separate sponsored research projects have already been conducted, each of 

which provides the fodder for a specific line of inquiry in the dissertation. The 

common thread between the three is airspace congestion and the management thereof. 

The first effort is the prediction of delays and the development of a model that will 

make these predictions under a wide variety of distributional assumptions. This work 

was conducted as part of a NASA-sponsored project whose purpose was to develop 

queuing models as a means of assessing how precise adherence to 4D trajectories, 

that specify current and future aircraft position, will affect capacity and delay in the 

NAS. The focus of this effort was specifically on a continuum approximation using 

diffusion methods that enables efficient solutions under a wide variety of 

distributional assumptions. 
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The second part of the work effort proposed herein was initiated as part of an 

Aviation Cooperative Research Program (ACRP) fellowship that was awarded to Ms. 

Vlachou. Her proposed research topic for that fellowship was the design of a 

parsimonious language of exchange, with accompanying allocation mechanisms that 

allow carriers and the FAA to work together quickly, in a CDM environment, to 

allocate scarce capacity resources. 

The third portion of the dissertation derives from a research project sponsored by the 

FAA that is only recently completed. The overall goal of that project was to develop 

metrics and assessment methods for technological innovations that might effect an 

improvement in predictability in various dimensions of the NAS. The scope of this 

work was specifically to assess the monetary benefits of improvements to 

predictability as manifested through carriers’ scheduled block times. 

1.3.1 Prediction of Delays 

Studies of queuing delays in the National Airspace System (NAS), and other large 

networks, for that matter, are typically conducted either in a Monte Carlo simulation 

environment, where a considerable amount of fidelity is available at the expense of 

computational efficiency, or with closed-form equilibrium queuing models fraught 

with distributional assumptions that are typically not very representative of real 

situations. A common example of the latter is the use of the Poisson process to 

represent arrival processes to queues, motivated by its mathematical tractability, even 

in the face of fairly compelling evidence that the system is not Markovian. 
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1.3.1.1 Existing Queuing Models 

One well-known aviation queuing model is LMINET (Lee et al., 1997, 1998), in 

which a network of airport queues is represented by means of interconnected single-

server queues. Each queue has a time-dependent Poisson arrival process, and an 

Erlang-k service process. One serious problem with this approach is that because the 

input process to each downstream node is Poisson, one cannot have independent 

control of its mean and variance. Thus, while the outputs from upstream nodes may 

have variances different than what the Poisson process would be constrained to, the 

model cannot enforce these properly. More importantly, any technologies or policies 

that might be adopted to reduce variance in the system (such as improved trajectory 

accuracy) cannot be modeled accurately. The goal of this part of the dissertation is to 

provide a single-airport building block that might eventually be extended to a network 

environment, and that would allow for modeling of more complex and dependent 

interactions between aviation network nodes. 

Another single-airport queuing model commonly used in aviation is the DELAYS 

model developed at MIT, the methodology behind which is captured in Kivestu 

(1976), Horanjic (1990), and Malone (1995). This model uses a time-dependent 

Poisson arrival process and an Erlang-k service process, much the same as LMINET 

(both models have a common heritage). One major difference is that the DELAYS 

model was later adopted for a network structure that does not suffer from the same 

independence problems as outlined for LMINET. The Approximate Network Delays 

(AND) model was originally proposed in Malone (1995), but was not assembled into 

a working model until more recently (Malone and Odoni, 2001). The idea driving the 
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AND model is that the DELAYS model, by itself, might produce excessively large 

estimates of delay, when fed purely scheduled arrival times. In reality, the network 

would not permit such large delays, as demands would be spread over time due to 

controller actions, metering by upstream queues, etc. Thus, the AND model iterates 

between the DELAYS model and a delay propagation algorithm, in an effort to find 

an estimate that more closely matches expectations. This is a heuristic approach, and 

it still suffers from the drawback this research is intended to address, which is the 

strong dependence between arrival process mean and variance. 

Another aviation queuing model is the National Airspace System Performance 

Analysis Capability (NASPAC), which was developed beginning in the 1980s by the 

Federal Aviation Administration (FAA) and Mitre Corporation. A good description of 

the original model can be found in Millner (1993). The model is now housed at the 

FAA, and continues to be developed (see for example Post et al., 2008). The model 

includes a number of detailed components, such as realistic fleet information, fuel 

burn, etc., but its queuing engine is quite rudimentary, consisting of a simple 

deterministic queue with scalar capacity values for the airports. The claimed path 

forward to dealing with real stochastic queuing effects is to incorporate Monte Carlo 

simulation (Post et al., 2008), which will seriously impact the computational 

complexity of the model, as described above. 

1.3.2 Delay Mitigation 

As presented earlier, FAA implements various Traffic Management Initiatives (TMIs) 

in order to mitigate problems that arise due to the demand-capacity imbalance in the 

system. The most recently developed TMI is the Collaborative Trajectory Options 
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Program (CTOP), which is about to start being implemented and has as a great 

advantage the increased participation of the airlines in order to determine which flight 

is assigned to which slot. A piece of work that considered this feature (the extensive 

listing of airlines preferences), was conducted by Vakili (2009). In this research she 

considered a detailed way for airlines to express their preferences, where she 

provided for each flight in which priority they will be assigned to which slots. Then 

she presented various resource allocations mechanisms, other than Ration-by-

Schedule, that take into account these preferences and allocate the slots to flights.  

The allocation mechanism she proposed falls into a category of methods designed for 

fair treatment of claimants to, and allocation of, a scarce resource and this subject has 

received considerable attention in the applied economics literature. One of the more 

well-known problems is the apportionment problem, which exists when a set of 

indivisible objects must be distributed among numerous claimants in proportion to 

their claims (Young 1994). 

1.3.3 Improved Predictability Will Ultimately Lead to Reduced Delays 

The Federal Aviation Administration continues an effort to address customer 

requirements. One such requirement is to be accountable for the quality of service 

provided. The Office of Performance Analysis and Strategy contributes to the FAA’s 

success by analyzing and monitoring performance through existing metrics and 

proposing new metrics that better evaluate National Aviation System efficiency and 

the FAA’s customer service. 
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The FAA has identified 11 categories of system performance indicators: access and 

equity, capacity, cost-effectiveness, efficiency, environment, flexibility, global 

interoperability, safety, predictability, security, participation by the Air Traffic 

Management community (FAA 2011b). The one that has gained more attention lately 

is flight predictability and the work covered by this effort is contributing to research 

of the flight predictability concept in aviation.  

By increasing flight predictability, airlines should experience significant benefits, 

mostly because this will allow them to reduce their scheduled block times. Scheduled 

block time is a major driver for crew costs and usage of equipment. Part of this 

research was to investigate how airlines set their scheduled block times. This will 

allow the examination of potential benefits for the airlines, at a strategic level, when 

the scheduled block times will be reduced because of the increased predictability in 

the system. Also by reducing the actual block time there will be benefits in the day-

of-operations level, where the passenger delays will be reduced and regarding the 

crew perspective there will be less overtime and fewer crew time-outs. 

1.3.3.1 Defining Predictability 

There is some work done in the past related to flight predictability. The term flight 

predictability is defined in ICAO (2005) as “the ability of airspace users and ATM 

service providers to provide consistent and dependable levels of performance. 

Predictability is essential to airspace users as they develop and operate their 

schedules”. In another report by Bolczak et al. (2007) predictability measures how the 

airspace user experiences the variation in the Air Traffic Management System. 
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Most of the studies in the literature for aviation and public transit that use 

predictability metrics are dealing with travel times. There are some that use delay and 

flights per day to quantify predictability, or the lack thereof. Following we summarize 

the metrics in each category. 

Flight/Travel Times 

In the work of Gulding et al. (2009) flight predictability is measured as the difference 

between the 80th and 20th percentiles of the distributions for taxi-out, en route, and 

taxi-in times. In this work they have broken the flight into different phases and 

considered one metric for each of them. In another report (Bolczak et al., 1997) 

predictability is defined as the deviation of ground movement times, the statistical 

spread of ground movement times and the statistical deviation of en route times. 

According to an ATSP Focus Group report (1999), a predictability metric considered 

is the ratio of the actual flight time to the scheduled flight time.  

There are also studies related to predictability in public transit. In Taylor (1982), a 

metric for travel time variability is defined as the coefficient of variation (the ratio of 

the standard deviation to the mean) of travel time. In another work by Uniman et al. 

(2010), they consider the reliability from the passengers’ perspective and they define 

it as the standard deviation of the travel time distribution. They also introduce the 

notion of the Reliability Buffer Time (RBT) metric, which is the buffer time that 

passengers must allow above their typical travel time to arrive on time with a 

specified level of certainty. This is analogous to air carriers building buffers into the 

scheduled block time. 
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Delay 

A study that considers delay as a metric for flight predictability is by Gulding et al. 

(2009). They define that predictability is measured from the flight perspective as the 

difference between the 80th and 20th percentiles for pre-departure delay and arrival 

delay. In the report by Bolczak et al. (1997) predictability is measured by the arrival, 

departure and overflight delay. Predictability is assumed to be a measure of the 

variance between the planned and realized delay in a report by Ball et al. (2011). 

Flight per Day 

Finally there is a report by EUROCONTROL (2003) where they consider the 

seasonal and hourly variability as metrics for flight predictability. In more detail the 

metrics considered for the seasonal variability are the ratio of summer to winter 

traffic in flights per day and the ratio of traffic in the peak week to the average. For 

the hourly variation they define it as the ratio of the average hourly traffic to the 

average in the peak three hours. 

1.4 Organization of the Document 

In Chapter 2, the modeling effort for the delay prediction is presented. In Chapter 3 

the allocation mechanism developed to reduce delays during severe enroute weather 

is presented, which takes into account the preferences of the airlines. In Chapter 4 the 

work done regarding identifying the benefits for the airlines as a result of increased 

predictability in the system is presented. Chapter 5 presents the conclusions, and 

suggestions for further extension of this work. 
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Chapter 2: Delay Prediction 
Air traffic system undergoes a continuous transformation by shifting to smarter, 

satellite-based and more advanced technologies (FAA, 2013b). An important feature 

of the Next Generation Air Transportation System (NextGen) is the use of four-

dimensional trajectories (4D Trajectories). Aircraft position will be known not only in 

space but also in time. This will increase the precision of the operations and lead to 

the reduction of the required spacing between the aircraft. Currently the system is 

stochastic and with 4D Trajectories in place will move to a more deterministic 

system. The queuing models that are more suitable to predict delays in the current 

state are stochastic in nature and based on solutions of differential equations. Delays 

in the future, when everything will be more predictable, will be best modeled with 

deterministic models. 

As precision increases – and the system is moving from the stochastic state to the 

more deterministic-, the airspace capacity also will increase and this will lead to 

reduced delays. As is was shown in the work of Hansen et al. (2009), the delay 

reduction as it is derived by comparing a stochastic and a deterministic queuing 

model will be of the order of 35%. Poisson models are great to capture the stochastic 

nature of the system and set the lower boundary of the system’s performance. 

Deterministic on the other hand are the upper boundary. The work conducted here 

presents the creation of a model that will be the intermediate part. The evolution of 

models capturing the increased precision can be seen in Figure 2.1. In the future with 

more precision in place, mean will remain the same but variance will reduce, so it is 

was desired to be able to handle mean and variance independently and diffusion 

models offer this great advantage. 
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Figure 2.1 Queuing models under various degree of precision 

With the aviation system in mind, the idea behind this research was to adapt a 

common continuous approximation technique known as the diffusion approximation 

to a queuing problem, with a specific interest in modeling arrival and departure delay 

statistics at an airport over the course of several hours or a day. The primary 

advantages of using the diffusion approximation for these purposes are that specific 

distributional assumptions can be relaxed in favor of an approximate description of 

the relevant stochastic processes by a small number of their time-dependent moments, 

that the full spectrum of probabilistic results can be obtained via a single run of the 

model, and that propagation of higher moments beyond the mean queue behavior can 

be captured. In general, is believed that it should be possible to represent a network of 

queues using methodology similar to the methods herein, although the results to date 

apply only to a single queue with a general arrival and general service process. A 
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concise version of the results presented in this chapter is published in Lovell et al. 

(2013). 

2.1 Model Development 

In this section is introduced the modeling assumptions that lead to the particular 

continuum approximation for queuing systems known as the diffusion approximation. 

This consists of a governing differential equation, which is presented first, and which 

represents the primary dynamics of the system. This equation is valid for a closed 

subset of the real numbers representing all realistic values of the system state, but 

some boundary conditions must be imposed to prevent physically meaningless results 

outside of this interval. It is also described the set of initial conditions required to 

represent any particular queuing problem for which a solution is sought. 

2.1.1 Governing Differential Equations 

Diffusion methods have been applied to queuing problems in a variety of domains, 

including road transportation (Newell, 1971), computer networks (Kobayashi, 1974), 

and more general queuing systems (Gaver, 1968 and Kimura 1983). No significant 

use of them in an aviation setting is recorded in the literature. The development of the 

model shown in the following pages borrows very heavily from the exposition of 

Kimura, 1964, which develops the diffusion approximation in the context of a very 

different application, that of population genetics. The reason for following the 

template of that paper, however, is that the treatment is very thorough but also 

accessible to readers without prior experience in diffusion methods, and it can be 

adapted readily to the aviation context. 
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Suppose the arrival process to an airport is modeled as a single-server queue. This is 

admittedly an abstraction, because there are frequently multiple cornerpost entry 

points to an airport, often the possibility of multiple arrival runways, and incoming 

aircraft do not physically line up in queue in the same manner as customers at a 

grocery store, or even vehicles at a traffic signal. Nevertheless, it is common to model 

the competition amongst multiple arriving aircraft for the capacitated resource (the 

arrival runway system) as a queue, with the interpretation that the delays thereby 

imparted are assigned and incurred at en route locations farther away from the airport. 

Let  represent the time-dependent random variable describing the length of the 

(virtual) queue for arrival aircraft at time t. While beyond the scope of this research, 

the ultimate goal of this endeavor is to model more complicated aviation networks. In 

that context, one could use the airport node being described here to model an arrival 

or departure resource like a runway, a gate, or an esoteric en route node intended to 

represent a capacity constraint in the airspace itself. 

The first assumption necessary for consideration of continuum models is that of 

continuity; i.e., that the queue length measurement at any given time need not be an 

integer. Because aircraft only come in discrete units, this is obviously an artificial 

construct. However, it is mostly of interest in using queue length measurements as 

preliminaries to computing delay statistics, so they will be averaged over a large time 

domain. As a result, this assumption is probably no more malignant than assuming 

that there is such a thing as a "queue" at an arrival airport. This is a stochastic queuing 

system, and the probability density function for the queue length x at time t is denoted 

. A graphical example of  is shown in Figure 2.2. In this notional example, 
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the queue density transitions over the time interval , with a mean that increases 

and then decreases again, and a variance that changes similarly.  

 

Figure 2.2 Queue length probability density function  

The probability density transition function  is also defined as the 

probability density associated with a change in queue length from x to  in the 

time interval . An example of  for a single choice of t and  is shown 

in Figure 2.3.  

 

f 

t 
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Figure 2.3 State transition probability function  

The density function for the queue length at some future time  can be expressed 

using the continuous Kolmogorov-Chapman equation: 

  (1) 

This equation encapsulates conditioning over all of the possible queue states  at 

time t from which a transition to the state x at time  is possible. The necessary 

assumption to use this equation is that the transition probabilities of the state of the 

queue can be described entirely by the function g, regardless of the history of the 

prior queue states. 
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If the condensed notation  is used, then the integrand of (1) 

can be expanded as a Taylor series around the point x as follows: 

 

 (2) 

Then (2) is substituted back into (1), and integration and differentiation is 

interchanged. This presumes, of course that the functions are well-behaved (i.e., 

bounded). 

 

 (3) 

Since g is a proper density function, then for any choices x, t, and , it must be that 

. Hence the first term on the RHS of (3) is simplified, and then f is 

subtracted from both sides and divided by : 

  (4) 

The limits of two of the elements contained in the RHS of (4) are frequently called 

the “infinitesimal” mean and variance, respectively: 

  (5) 

  (6) 
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A second assumption is made, which is that all of the important information about the 

transition density function g can be captured adequately in its first and second 

moments, as in (5) and (6), respectively. This is not a severe limitation; for situations 

where this is not the case, additional infinitesimal moments can be defined, and the 

analyst is then responsible for providing that information as well. In fact, in aviation 

applications, the best contemporary network models, such as LMINET (Lee et al., 

1997, 1998) only deal with the propagation of average behavior, and usually with 

independent Poisson processes at each downstream node. Thus, including  is 

already a step forward. For the present case, assuming that the first two moments 

suffice, this is tantamount to the assumption: 

  (7) 

Then, taking the limit of (4) as   and substituting (5) and (6) yields: 

  (8) 

Equation (8) is commonly called the Kolmogorov forward equation in the stochastic 

processes literature, or the Fokker-Planck equation in the physics literature. In the 

second case, the term  is referred to as drift, while the term  is called 

diffusion. Equation (8) is the governing differential equation (GDE) for our queuing 

system. 

2.1.2 Boundary Conditions 

In this section, the boundary conditions are developed to prevent the model from 

generating non-zero probabilities for states that are not physically possible, including 
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negative values of the queue length. A similar constraint can be imposed to prevent 

the possibility of what might be considered unnaturally large queue lengths. The 

upper bound is more difficult to specify precisely, but it is necessary from a 

pragmatic standpoint in the numerical scheme because the solution space must be 

bounded, as will be seen in Section 2.2. It is also practically useful, since air carriers 

use cancellations and other initiatives to protect against unacceptably long delays.   

Because the random variable  represents a queue length, it makes no sense for it 

to be negative. Thus, an auxiliary condition is applied that can guarantee that 

  (9) 

This cannot be accomplished by simply saying that (9) must be true; an additional 

differential equation must be specified that follows the same temporal evolution as (8)

, and whose effect is to guarantee that (9) holds. Assuming that the initial conditions 

obey (9) (as they should, since they are controlled), a way to do this is to guarantee 

that the “net probability flux” (what would be thought of as the mass flux if this were 

a problem in physics) across the point  is always zero.  

A point x is fixed in one dimension and the probability flux across that point in both 

directions is considered. By integrating all possible increasing transitions that cross 

this barrier, and subsequently all possible decreasing transitions that cross the same 

barrier, and then adding them together, lead to the following requirement that the net 

probability flux be zero. This constraint is referred to in the physics or stochastic 

processes literature as a reflecting barrier. 

  (10) 



 

 36 
 

At all times,  must also be a proper density function: 

  (11) 

  (12) 

These last two conditions are notoriously difficult to enforce in a numerical solution 

scheme (Kumar et al., 2006). This is discussed further in Section 2.2. 

2.1.3 Initial Conditions 

The functions  and  represent the first and second moments, 

respectively, of the rate at which the length of the queue is changing at time t, given 

that its current state is x. In a queuing system where the arrival process is independent 

of the service process, then with the possible exception of  and an upper 

reflecting barrier, there is no reason to suspect that these functions should vary across 

the x dimension. In such situations, it is only necessary to specify how these functions 

change over time. For most aviation applications, for example, one would expect 

 to be positive at the beginning of the day, negative at the end of the day, and 

perhaps with some additional cycles in between. One would expect  to be 

small (approaching zero) at the beginning and end of the day and something larger in 

between, and of course never negative. If this construction was extended to a queuing 

network, these functions could be derived entirely from the outputs  of 

upstream queues i, with some time lags and with some rules for mixing them 

together. 
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Although negative queues are explicitly prevented, it also makes sense to preclude 

initial conditions that would seem in conflict with this goal. Thus, it is required that 

  (13) 

At any node to which this method is applied, one can imagine that  will be 

computed as the differential of the difference between the arrival rate, which it might 

be got from the outputs of upstream processes, and the departure rate, which is related 

to the capacity of the airport or other resource. This being the case, (13) simply 

prevents an airport from serving traffic that does not exist. 

At some airports, however, the rate of queue growth might depend on its current state. 

For example, at many airports, runway configurations prevail such that the total 

capacity of the airport is divided between arrivals and departures, and the airport has 

some control over that split.  In such cases, when there is an excess of arrivals, the 

airport might choose to emphasize arrivals over departures to ameliorate this queue. 

This is tantamount to a temporary increase in the arrival capacity of the airport. If this 

were repeatable and quantifiable behavior, that could be captured in differences in 

 across different values of x. 

An initial queue length distribution must be specified. For real airport problems, the 

queue is empty at the beginning of the day, so one might require: 

  (14) 

where  is the Dirac delta function. Alternatively, one might consider analyzing a 

problem starting at some other point in the middle of the day, in which case the 

restriction (13) is not required. 
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2.2 Numeric Solution Scheme 

In order to solve a system including partial differential equations and their associated 

boundary and initial conditions, a numerical scheme is necessary to convert that 

continuum problem into some discrete form appropriate for solution by computer 

(Pepper and Heinrich, 1992). In this research is presented a discretization method 

based on the well-known finite element method (FEM) (with some elements of finite 

differences included as well) that is appropriate for this problem. The construction of 

numeric schemes for PDEs is very much an art, and certainly a host of other schemes 

could be attempted, including methods relying entirely on finite differences. The 

colloquial understanding of the competition between finite element (FE) methods and 

finite difference (FD) methods is that the former allows for an exact solution to an 

approximation of the problem, while the latter allows for an approximate solution to 

the exact problem.  Neither is considered uniformly better than the other, and they 

both certainly have their proponents. 

The FEM scheme developed for this problem consists of transforming the governing 

differential equation with its boundary and initial conditions into linear algebraic 

equations that can be solved at every time step. This transformation is possible by 

constructing a discrete approximation to the queue length density function  

using the N Lagrange basis functions . Each basis function has a triangular 

shape; the collection of them is illustrated in Figure 2.4 for . Mathematically, 

the basis functions can be represented as follows: 
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The approximation for f can then be expressed using these basis functions as: 

  (15) 

where L is the number of time steps , N is the number of Lagrange basis functions, 

and  are the parameters of the approximation. Using the finite element method, 

the “solution” of the problem essentially amounts to determining the values .  

 

Figure 2.4 Lagrange basis functions for the finite element method 

Using a finite difference approach, the left hand side of the PDE (8) can now be 

approximated by: 

 , 

and the dynamics can be re-written as: 

 
 (16) 
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The equation (16) is enforced by defining the residue r, which is essentially the 

difference between the LHS and RHS of (16), 

  

The residue is enforced to zero by using a test function . All of the projections 

of the residue on w are equate to be zero; i.e., where  is the domain of 

interest in x and  its boundary. Integrating by parts yields: 

 

 (17) 

where the last term on the RHS depends on the boundary conditions. 

It is assumed that the interval is closed, and that at the right boundary , and is 

desired the net probability flux to be 0. For some large l, the probability density 

function will approach 0 for all . This will make the net probability flux 

approach zero at , although it cannot be absolutely guaranteed. This is discussed 

more in the conclusions.  Together with equation (10), we conclude: 

 . 

The test function w is parameterized with the Lagrange basis functions  and 

parameters : 
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 (18) 

The Lagrange approximations of w and f  are used to obtain: 

 
 (19) 

where  

  

  

In the last two equations, is denoted  and suppressed the dependence of 

the basis functions  on x for the sake of clarity. As mentioned before, it is also 

assumed that the function  is constant in x. 

Since the set  is arbitrary, (19) is equivalent to solving the linear algebraic 

equations: 

 
 (20) 

The solution of (20) is the set of parameters  which define  according to 

(15). One of the advantages of the finite element method is the ability to solve these 

algebraic equations element by element. The N Lagrange basis function approximation 

defines  elements, which makes it possible to solve  independent algebraic 

equations. 



 

 42 
 

The two remaining boundary conditions to enforce on the solution are (11) and (12). 

As described in Kumar et al. (2006), equation (12) is enforced by scaling the solution 

appropriately. The non-negativity constraint is harder to enforce. One possible solution 

is the partition of unity finite element method (PUFEM), described in Kumar et al. 

(2006). For the time being, however, the problems solved here always result in 

positively valued density functions, and they solve very quickly, so a more complex 

solution method is not justified unless that situation changes. 

2.3 Model Validation and Results 

In this section, some results are showed of applying the modeling with different input 

data sets. In order to validate this model, Monte Carlo simulation is used as ground 

truth. The simulation ran a number of iterations (1000 and 10,000) and averaged over 

this number in order to get the mean and the variance of the queue length. The first 

set of experiments involves comparisons against the steady state M/M/1 queue. This 

is not a very useful system for modeling airports, but because the stationary moments 

are known, it can demonstrate that the diffusion model converges to the proper 

equilibrium solution, so it is useful from a validation perspective. 

Figure 2.5 shows how the results from the diffusion model compare to the results 

from the Monte Carlo model. The latter results are for an M/M/1 queue with arrival 

rate  aircraft/hour, and a service rate of  aircraft/hour.  The traffic 

intensity is thus . The equilibrium queue length is then given by: 

  

and the equilibrium variance by: 
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Both the Monte Carlo and the diffusion results obviously converge to these values, 

although the diffusion model does so much more smoothly. That is because in this 

figure, only 1000 replications of the Monte Carlo simulation were conducted, hence a 

certain amount of noise around the equilibrium values. Figure 2.6 shows similar 

results for Monte Carlo runs with 10,000 replications instead. 

 

 

Figure 2.5 M/M/1 queue with 1000 replications,  
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Observe that as the number of replications for the Monte Carlo simulation increases, 

it follows much better the diffusion solution and the equilibrium solution. One 

important advantage of the diffusion model is the solution time. The Monte Carlo 

simulation required 10.86 seconds for 1000 runs and 106.9 seconds for 10,000 runs. 

The diffusion model completes in one iteration, which takes about 8.2 seconds. 

 

 

Figure 2.6 M/M/1 queue with 10,000 replications,  

In Figure 2.7, are shown results for some realistic airport demand and supply profiles. 

In this case, the demand profile is from the published (OAG) schedule for Miami 
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International Airport, from a peak day in 2007. The capacity profile is a single cluster 

from a k-means cluster analysis on airport arrival rates (AARs), generated using the 

methodology shown in Liu et al. (2008). These demand and capacity data have been 

used for previous studies on queuing see for example Hansen et al. (2009). The 

arrival data show considerable fluctuation over the course of the day, while the 

capacity profile is nearly flat. The arrival process was modeled as a non-stationary 

Poisson process, and the service process as a non-stationary Erlang-k process, with 

. This was done for two reasons, first to show that the diffusion model produces 

good results with different distribution assumptions, and second because this has been 

shown to be a reasonable model for a single airport server process in other literature 

(see for example Malone and Odoni, 2001). The Monte Carlo results include 1000 

replications. The reason simulation was used to compare our results and not real data, 

is that real data include propagated delays (Churchill et al. 2008), and that would 

make the results not directly comparable. 

From observation of the figure, one can tell that the diffusion model replicates the 

Monte Carlo ground truth quite well, in both the first and second moments. This is a 

very uncongested day, so the mean queue length remains quite low over the entire 

day. 
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Figure 2.7 Diffusion and Monte Carlo queuing results for Miami International Airport 

The final results come from a peak day at Chicago O’Hare International Airport. 

These results are shown in Figure 2.8. The demand profile is very oscillatory, and it 

frequently surpasses the capacity over the first three quarters of the day. Thus, larger 

mean queue lengths are to be expected. The demand subsides towards the end of the 

day. The smooth oscillations of the service rate between 22 and 23 aircraft per hour 

are an artifact of specifying integer 15-minute service rates derived from hourly rates 

that happen not to be multiples of 4. Again, the profiles of the first and second 
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moments of the queue length over time match quite closely between the diffusion and 

the Monte Carlo models. 

For both of these last two sets of results, the Monte Carlo runs complete in about 31 

seconds, and the diffusion runs in about 8 seconds. The time required for the Monte 

Carlo runs is directly proportional to the number of replications, so if more precision 

were required, for example 10,000 runs, then the run time would be closer to 310 

seconds. The diffusion model is immune to these considerations. 

 

Figure 2.8 Diffusion and Monte Carlo results for Chicago O’Hare International 

Airport 



 

 48 
 

2.4 Conclusions 

The research has presented the mathematical construction of a continuum 

approximation to a queuing system that might represent a single congested resource 

in the National Airspace System, such as an airport, a runway, or some en route 

resource. The result is derived from the diffusion approximation. A numeric solution 

scheme based on the finite element method is also shown. 

The use of this type of approximation requires one to be comfortable with some of the 

assumptions made in the research, such as the willingness to consider non-integer 

queue lengths. That notwithstanding, the method has seen considerable application in 

other areas of queuing theory that also deal with countable objects, so this assumption 

is not unique to the aviation context. 

This result is a stepping-stone in what will hopefully be a larger system of inquiry 

into the use of such continuum approximations to study systems of aviation queues. 

In particular, the ability to model the propagation of both the mean and the variance 

of delay statistics through a connected network would mark a major leap forward in 

the performance analysis of the aviation system. 

In this study a validation effort of the model is conducted. It was feasible to replicate 

the known steady-state results from that small set of queuing systems for which 

equilibrium results are known in closed form. The results in such cases showed that 

the diffusion approximation gives exactly the same results very quickly. Furthermore, 

a Monte Carlo exercise was also conducted for a number of other cases whose 

solutions cannot be found analytically. Again, the diffusion model seemed to perform 
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very well, and it is much faster than running large numbers of Monte Carlo 

simulations. 
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Chapter 3: Incorporating Airlines’ Preferences in Resource 

Allocation Mechanisms During Irregular Operations 

3.1 Motivation for this Research  

As mentioned in the first section of this dissertation a couple of new and promising 

Traffic Management Initiatives are about to start being implemented; i.e. the 

Collaborative Trajectories Options Program (CTOP) and the Collaborative Airspace 

Constraint Resolution (CACR). When these systems are fully implemented, there will 

be a capability at the FAA to allow carrier preferences to affect the allocation of 

constrained airspace resources. However it is not clear whether (FAA 2011a) carriers 

will be able to generate full and robust sets of trajectory alternatives on the fly, with 

associated costs, in response to suddenly changing capacity conditions, and (Ball and 

Lulli 2004) that such information, even if it could be generated, could be exploited in 

a systematic optimization of resource allocation. This is the motivation for the work 

presented in this research. A mechanism is proposed by which simpler, yet still 

useful, information could be submitted by carriers, and an algorithm is demonstrated 

that directly employs this information to influence the capacity allocation process. 

Also extensions are proposed for both the way that airlines can submit their 

preferences and the resource allocation algorithm. Finally the long run effect of using 

the proposed allocation mechanism with this preference structure is tested. A version 

of this work has also been published, in this case in Vlachou and Lovell (2013). 
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3.2 Feedback from Airline Experts 

Part of this research was to find a meaningful way for carriers to express some 

preference structure - which flight-slot assignments are preferable for them - that 

would be different than the exchange language used in CTOP (TOS’s). Since airlines 

play an important role in this program, input from experts from the aviation industry 

and airlines was sought in order to get their feedback and opinions regarding the 

usefulness of CTOP and more insight into what they would prefer, or what might not 

be very attractive to them with the existing structure. The latter will be a starting point 

in order to find a different way for carriers to express their priorities.  

A number of people working for airlines were contacted via email and by phone and 

those who kindly provided their feedback are: 

Jim Hamilton – Air Traffic System manager with UPS 

George Kypreos – SOC sector manager at American Airlines 

Frank Ketcham – Pilot with Delta Airlines and commercial aviation specialist 

Don Wolford - Primary instructor for the United Airlines Flight Dispatch 

ATC coordinator desk and the flight operator lead on the CDM Future 

Concepts of TFM working group 

Mark Hopkins - General Manager, ATM/CDM at Delta Airlines and chairman 

of the CDM Stakeholders Group (CSG) 

There was an agreement in all opinions that the philosophy behind CTOP is 

something good since it gives some control to the airlines and airlines will benefit 

from it. Their operations will benefit because they will be able to recover better from 

delays and cancellations. It will also be more economical, safer and more comfortable 
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for the passengers. Passenger satisfaction is one of the top priorities for all airlines. 

Another top priority was to keep the schedule intact. Some of the interviewees 

referred to their business models without revealing of course much information. Some 

of the things taken into consideration are the passenger connections, crew scheduling, 

and fuel burn. 

From these discussions some concerns were expressed. The first one was about the 

amount of information that airlines have to share while expressing the various 

trajectory options sets. Also there was a concern for the extra workload that 

dispatchers will have to absorb in order to create the trajectory options, probably 

necessitating the hiring of additional people to perform this task. 

Another concern that was brought up is that some airlines will be hesitant to provide 

information, invest, and participate in this program if there is no analysis that will 

show them that it is worth the investment, e.g., that it will be a money saver. Finally, 

another concern had to do with how equitable this will be and how for example 

international flights and pop-ups will be treated.  

3.3 Expressing Airlines Priorities 

It was ascertained from some of the interviewees that one of the issues surrounding 

incorporating carriers’ preferences into a collaborative decision-making setting is 

that, while they would like the final allocation to be sensitive to their wishes, they 

would prefer not to articulate those wishes in such a clear manner that their internal 

business models might be discerned. Currently in CTOP airlines have to give great 

amount of detail about route text, altitude, speed, departure time, as depicted in the 

Figure 1.8 earlier. For this research, it is proposed to investigate simpler and more 
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obscure ways of expressing preference information, with the hope that they can be 

just as powerful in injecting carrier preferences into the allocation process. By 

making the language simpler, this also addresses to an extent the concerns about the 

extra workload that dispatchers will have in order to create and submit the detailed 

options, or the updated TOS’s. As mentioned above, this will not necessarily mean 

that the usefulness and the effectiveness of this tool is compromised or diminished. 

For example, one very simple mechanism that was investigated requires each airline 

to give to each of their flights a priority number ranging from 1 to 4. The greater the 

number assigned to a flight the more important this flight is. An extension requires 

that for each flight, carriers specify the maximum delay in minutes that they would 

allow it to be assigned on the ground. In Table 3.1 it can be seen an example of how 

an airline A, that had initially scheduled 6 flights to pass through the affected area 

within a two hour frame, can provide this information. The estimated time of arrival 

is the time that the flight would have reached the FCA boundary if there were no bad 

weather in the area. 

Here must be mentioned that in addition to the preference language being different, 

the resource allocation mechanism will also be different (compared to the RBS 

paradigm that is currently used) in order to make use of the priorities. The details of 

the algorithm are not defined yet, which will be the next step for this research, but 

what it will do is to pick the flights with the highest priorities first and assign them to 

slots. Going back to the example, in this list, airline A, for its first flight ( ), will 

give a priority number 3, and for its second flight ( ), a priority number 4, which 

means that it considers the second flight as more important than the first.  
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Table 3.1 Example of list with Airline Priorities 

Flight 
Estimated Time of 

Arrival 

Priority 

Number 

Max Delay Allowed 

(min) 

fA1 3:04 3 35 

fA2 3:15 4 25 

fA3 3:40 4 23 

fA4 3:48 3 32 

fA5 4:12 2 50 

fA6 4:30 3 33 

 

If the slot assigned to a flight is much later than the initial estimated time of arrival, 

so that the maximum delay allowed is exceeded then this flight will get rerouted and 

another flight from the same airline will get the slot. Again this flight will have a 

higher priority number than the others yet unassigned and its maximum delay allowed 

will not be violated. 

Since the number of flights that are scheduled to pass through the FCA is reduced, 

each airline will have fewer flights passing through that area for the duration it is 

expected to last. Since some of their flights will be more important than others, 

airlines have no reason to claim that all their flights have the same high priority 

number. Also it is important to understand that airlines do not compete with the other 

airlines for a specific slot, so there is no point in submitting fallacious information. 

The priority numbers for flights are used to sort the flights of each airline separately 
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A flight of an airline with priority 4 does not compete with a flight with priority 4 of 

another airline. Importantly, such a scheme would not be useful in trying to game the 

system into ensuring that all their flights will go thought the FCA. Some of the flights 

will be pushed back in time and if they have intentionally given big priority numbers 

to flights that are not important, they essentially allow less important flights to pass 

the FCA before their more important ones. If all the flights are given the same priority 

number and high allowable delay, then the slots would end up being assigned 

following the Ration-By-Scheduled (RBS) method, as it is being currently used. This 

essentially would cancel the allocation mechanism proposed here and the potential 

benefits for the airlines to give priority to flights they are more important. Also, if the 

maximum allowed delay is set unreasonably small, then the flights – especially the 

ones further down the duration of the program - might not be able to be assigned to a 

slot. This will cause slots to go unused. 

The times of the slots are not known in advance, so airlines cannot request specific 

flight-slot assignments. By giving a priority number and a maximum delay allowed, 

the airlines are given the chance to prioritize their flights without the need to reveal 

any information of why one flight is more important than the other. At the same time 

they are given some flexibility as to which slot they can get. For example from the 

above table it can be seen that the first flight was initially scheduled for 3:04 and is 

given a 35 minute allowance of delay, which means it will be considered in the 

system if it is given a slot before 3:39. For illustration purposes, assume that available 

slots might be at 3:10, 3:15, 3:20, 3:25, 3:30 and 3:35. This means that this flight can 
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have a number of possible slot assignments that will be within the desired time 

window.  

There is always the option of substitutions among the flights of the same airline after 

slots have been assigned to flights. One advantage of prioritizing the flights with the 

way suggested here is that it may reduce the need and the number for substitutions. 

Looking again at the example, flight  has priority number 4 and flight has 

priority 3. With the allocation mechanism that is considered developing,  will get 

picked first to get the first available slot for that airline  and then flight  would 

get the second one . Without this prioritization scheme the first flight  would 

get  and flight  would get slot , and the airline later would have to ask for 

the swap. 

3.4 Allocation Mechanism  

Assuming that the FAA has a list of all flights determined to be affected by an FCA, 

and also has the accompanying preference information for those flights garnered from 

their respective carriers, the next proposed step is an allocation mechanism by which 

a subset of those flights would be allowed to use the FCA, and the provided 

information would play a role in that decision. It is not declared explicitly what 

happens to flights not captured in the AFP – carriers could choose to re-route them 

around the FCA, cancel them altogether, or re-schedule them to use the airspace in 

question at a later time.  If enough flights elected to take extended ground delays, 

then presumably the FAA would have to extend the FCA or create a new one, as long 

as a demand-capacity imbalance continued to exist. 
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The allocation mechanism for airspace slots proposed by Vakili (2009) and is the 

basis for the allocation portion of this work. She had proposed an allocation scheme, 

called Preference Based Proportional Random Allocation (PBPRA), which was 

proven to be fair, equitable, and immune to gaming, and she used a different way for 

airlines to submit their preferences. The PBPRA is a two-step process: 

Step 1: Determine the fair share of the constrained resource set for each carrier, 

using the original schedule as the basis of fairness 

Step 2: Allocate flights to slots in a manner consistent with the fair share 

determined in Step 1. 

The allocation mechanism tested in this research is consistent in motivation and basic 

construction with PBPRA.  In the first step, the amount of claim is determined that 

each carrier has on each available slot – in other words, a number that should, in the 

long run, be proportional to the number of times that carrier is allocated that slot, 

under identical circumstances. 

For example, consider the case where several carriers have flights, not previously 

assigned to slots, which can feasibly reach the FCA in time for a given slot.  Each 

carrier can be thought of as having some “claim” on that slot.  In trying to assign a 

numeric value to the claim of a particular carrier, one might consider allowing that 

number to depend on such things as the total number of flights that carrier has 

scheduled through the FCA that can feasibly use that slot, the number of flights owned 

by that carrier that were eligible for previous slots but were not assigned, and so on. 
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Here is an example of how fair share is computed. Let’s assume that there are 6 ( ) 

flights from 3 different ( ) carriers  that are 

scheduled to arrive at the boundary of the FCA in the following times 

respectively. The time of available slots ( ) due to 

reduced capacity are . The earliest slot that each 

flight can be assigned to is . Then the total number of flights  

that can be assigned to each slot is estimated by , where 

. 

Then the share of each flight for each slot is computed by 

, where  is the earliest slot the flight  can 

be assigned to and  is the number of flights that can be assigned to the respective 

slot. For example the share of the first flight  for the second slot  is 

. Then the next step is to find the total share 

of each flight to all slots and by adding these shares, the total fair share for each airline 

is computed. For this example, the final total fair share ( ) for each airline is 

.  

A carrier can only have a claim for a slot if it has flights that can feasibly reach the 

edge of the FCA in time for that slot.  Furthermore, is not allowed a flight to count 

towards a carrier’s claim for a slot if the amount of delay required to fit that particular 
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flight into that slot exceeds the carrier’s declared maximum allowable delay for that 

flight.  This is another departure from the PBPRA algorithm described in Vakili 

(2009).  Thus, for each slot, is identified which flights are feasible, and therefore 

which carriers have some claim to that slot. 

This mechanism ensures that all slots will be assigned to flights, as long as the 

maximum allowable delay is set reasonably.  Additionally, since the number of 

available slots is less than the number of scheduled flights, the fair share for each 

airline will be a smaller number than their initial number of flights.  The fair share is 

likely not to be integer-valued, as was shown in the example above. 

When this initial step is completed, the fair share, or claim, that each carrier has on 

each slot has been computed.  A carrier with many flights scheduled through the FCA 

might have a claim of something like 2.4 on a slot later in the program, while a carrier 

with less presence might have just a fractional claim of 0.25, for example.  If this 

situation were to repeat itself over time, it would be expected the carrier with the 2.4 

claim to be assigned the slot much more often than the one with the 0.25 claim 

(approximately 10 times as often).  Because the smaller claim is not zero, however, the 

algorithm does not allow that carrier to be systematically denied that slot. 

In the next step, slots are assigned to carriers, and then to specific flights.  It begins by 

allocating only the fractional shares; the integer shares are allocated later.  There is a 

specific reason for doing so.  A carrier with a very small share to a slot, by virtue of 

having very few flights captured in the program, would be very unlikely to receive 

that slot by way of a deterministic allocation mechanism.  As a result, there would be 

a systematic bias against that smaller carrier, particularly since FCAs tend to appear 
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(or be declared) with some geographic regularity, due to recurrent congestion or 

recurrent weather patterns.  Since there are strong geographic patterns to carriers’ 

networks, this conspires to produce noticeable patterns in the extent to which carriers 

are represented in AFPs.  This process of considering fractional shares first, coupled 

with the proportion-based assignment described below, obviates this bias. 

A random process is used to assign a slot to a carrier, where each carrier’s probability 

of being chosen is proportional to its fair share.  Thus, a carrier’s expected return is 

equal to its fair share, while its actual return in any particular AFP may differ from 

that.  Again, in the first step is considered only the fractional shares.  Once all 

carriers’ shares have been reduced to integer values, the algorithm continues, 

considering their remaining integer shares until all slots have been allocated. 

Once a carrier has been allocated a slot, the particular flight allocated to that slot is 

the one with the highest priority (as stated by the carrier itself) that is feasible for that 

slot.  That flight is then removed from further consideration, as is that slot, and the 

process continues.  This process ensures that carriers’ preferences play a role, but not 

in such a way that there would be any advantage to gaming the priority numbers 

claimed by the carriers – they are only used to measure relative worth within a given 

carrier’s own stable of flights.  This is a further departure from the mechanism of 

Vakili (2009), which did not consider carrier priorities. 

3.5 Trade-Off Between Slot Quantity and Minimizing Delay  

For the purpose of this research, is also proposed an enhanced version of this 

allocation scheme, which is called Alternative Preference Based Proportional 

Random Allocation (A-PBPRA) and this is another contribution of this thesis. This 



 

 61 
 

allocation mechanism will also be a two-step process, and the first step is identical to 

PBPRA.  In this scheme, however, each airline is allowed, when declaring its 

preferences, to also declare its intent to be considered as one of two different kinds of 

airlines: those that would prefer getting earlier slots (at a cost of depleting their fair 

share faster), and those that would prefer getting a larger number of slots overall, with 

the understanding that some of those will likely have large delays associated with 

them. For a particular AFP, this would allow carriers with a nearby hub and some 

higher priority connecting flights, for example, to choose to be treated differently than 

a regional carrier whose main concern is keeping the breadth of their schedule and 

moving their airframes to the next intended destination. So this consists of an 

additional airline preference input along with the flight priority number and the 

maximum allowable delay.  

This modified scheme can be related to the first proposed scheme by imagining that 

in the first scheme, the “price” of each slot is one point of fair share, while in this 

second or modified scheme is allowed that “price” to be higher for carriers that prefer 

to be allocated a smaller number of premium slots.  The allocation mechanism is 

modified so that when an airline of this type is chosen to be assigned a slot, it is also 

assigned to the slot that its next most valuable flight can use, albeit at a significant 

cost (for example two units of fair share). 

As mentioned above, airlines always have the option of substitutions among their 

own flights after slots have been assigned to flights. It might be the case that, after 

looking at the resulting allocation, a carrier has a slightly different view of its relative 

priorities than it did when it first submitted its preferences, and it would be free to 
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make swaps amongst its own assigned slots if it saw fit and if those swaps were 

feasible. 

3.6 Results 

The two allocation schemes (PBPRA and A-PBPRA) are compared to two schemes 

that can be thought of as representative of how AFPs are currently handled.  One is a 

straightforward application of RBS, which is a presumption of what the FAA would 

do if it had no information on preferences whatsoever.  The second is a proxy for 

RBS with intra-carrier substitutions allowed (RBS with substitutions). This process is 

mimicked by making first an RBS allocation, and then use the flight priorities to 

make an optimal assignment of flights to slots within each carrier’s holdings. 

The methodology is tested with a hypothetical AFP with a realistic sized FCA and a 

realistic capacity reduction.  The AFP time is set to be 2 hours, and tested 3 different 

scenarios for capacity reduction: 25, 20, and 15 aircraft per hour, respectively. This is 

out of a nominal flow of approximately 30 aircraft per hour. Hypothetical carriers 

were invented, and in order to properly represent the variety of share sizes that each 

might have in an AFP, actual data were considered on flights into the Boston Logan 

airport, from the Bureau of Transportation Statistics (BTS 2012).  From this the mean 

number of flights per airline was found, which is shown in Table 3.2.  

 

 

 

Table 3.2 Average Number of Flights per Airline 
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Airline 
Average Number of Flights 

Per Airline 

1 3 

2 2 

3 6 

4 5 

5 10 

6 16 

7 6 

8 11 

9 4 

total 63 

 

Because each of the proposed schemes ensures that all AFP slots are utilized, there is 

no difference between these mechanisms and any version of RBS that differs in the 

efficiency with which the capacitated resource is used.  It is not claimed that flights 

that are not given a slot in the 2-hour time period of the allocation mechanism are 

necessarily re-routed, delayed further, or cancelled, either for the proposed 

mechanisms or for the RBS mechanisms to which they are compared. The 

dispositions of these flights are unknown under all allocation schemes.  The 
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performance metrics, therefore, relate only to those flights captured in the 2-hour 

period of the AFP.  

First the results from PBPRA are compared with the results from RBS and RBS with 

intra-carrier substitutions. The metric chosen for the comparison is the total weighted 

delay, which is computed by multiplying the delay for each flight by its priority 

number and summing across flights. For example, if a flight with priority number 3 

was delayed for 9 minutes, its weighted delay would be 27. Since the PBPRA 

mechanism is a randomized procedure, each scenario is ran 100 times in a Monte 

Carlo simulation in Matlab and the average for each metric used is computed. 

 

Figure 3.1 Total weighted delay for RBS, RBS with substitutions and PBPRA for 

each capacity scenario 

In Figure 3.1 the total weighted delay accrued by the number of flights that were 

assigned to pass through the FCA during the two hour period is always less for 
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PBPRA compared to RBS and RBS with substitutions. RBS with substitutions 

performs better than RBS since flights with higher priority get earlier slots than 

initially assigned. With PBPRA not only are higher priority flights assigned earlier, 

but they are also assigned much closer to the desired slots in order to minimize the 

total delay.  

To see how the allocation schemes compare, Figure 3.2 presents the weighted (by the 

priority number of each flight) average delay in minutes per flight for RBS, RBS with 

Substitutions and PBPRA. As capacity decreases the weighted average delay for RBS 

increases rapidly, for RBS with substitutions at a lesser rate, and for PBPRA at an 

even smaller rate. The weighted average delay for PBPRA is consistently lower than 

the other two schemes. 

 

Figure 3.2 Weighted average delay in minutes/flight for RBS, RBS with Substitutions 

and PBPRA for each capacity scenario 
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For the second part of the analysis two different sets of airlines are considered. In the 

first set are included the airlines that are willing to pay more to get an extra early 

flight in the beginning of the allocation process and in this case is assigned Airline 6 

and Airline 8 from Table 3.2 to belong to this set. The other set consists of the rest of 

the flights that do not want to pay extra and have a chance of getting more later slots. 

Also for this analysis since the A-PBPRA mechanism is a randomized procedure, 

each scenario ran 100 times in a Monte Carlo simulation in Matlab and the average 

for each metric used is computed. 

 

Figure 3.3 Total weighted delay in minutes for RBS, RBS with substitutions and A-

PBPRA for each capacity scenario 
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Figure 3.4 Weighted average delay in minutes/flight for RBS, RBS with substitutions 

and A-PBPRA for each capacity scenario 

Figure 3.3 compares the total weighted delay accrued from all flights assigned to slots 

for the duration of the FCA, as determined by the Alternative PBPRA (A-PBPRA) 

mechanism, RBS, and RBS with substitutions. The total weighted delay for each 

capacity scenario with A-PBPRA is consistently lower than total weighted delay with 

RBS and RBS with substitutions. Figure 3.4 presents the weighted average delay for 

each flight that gets a slot. This is much lower for A-PBPRA compared to RBS and 

RBS with substitutions, especially for the cases for which the capacity is greatly 

reduced.  

Overall, both proposed allocation mechanisms – PBPRA and A-PBPRA – perform 

better than RBS and RBS with substitutions, with regard to ensuring that carriers’ 

higher priority flights are indeed treated better than lower priority flights. The total 
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weighted delay for both mechanisms is consistently much lower than RBS and lower 

than RBS with substitutions. Also, each flight with the proposed allocation 

mechanisms has to suffer less delay than RBS and RBS with substitutions, since it is 

assigned to the closest possible slot in order to minimize its delay. 

3.7 Estimating the Long Run Effect of Preference Based Proportional 

Random Allocation 

During an AFP the number of available slots is less than the number of flights 

scheduled to pass through the FCA, which means that these slots must be divided in a 

fair way among the carriers. So it is important to have an equitable resource allocation 

mechanism to do so. But even then, on a given day the slots allocated to an airline will 

not match exactly its fair share. Some days they will get more and some others less, so 

it is important to see if in the long run they will get on average what they want. If the 

difference of the fair share from the actual allocation is considered as an error, another 

goal of this research is to measure this error.  

Also another aspect of this problem is the variety in the sizes of carriers, or more 

precisely, the number of flights they have planned through the FCA.  This does not 

stem only from the size of the carrier itself, but also takes into account the fact that 

FCAs are geographically specific, and carriers have definite geographic patterns with 

which they operate, regardless of their size.  Nevertheless, in a given FCA, there will 

be “big” airlines, which will have many of their flights planned to pass through the 

affected area, and there will also be “smaller” ones with fewer flights. It would be 

interesting to see what would be the impact of allocation procedures on those two 
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different categories of carriers. For example, there might be cases where an airline has 

one flight scheduled to pass through the FCA. This means that its share in the 

available slots will be less than one, which means the resulting slot allocation might 

omit this carrier altogether. It might be “fair” to do this on some fraction of days, but 

certainly not on every day, if the underlying pattern were to be repeated.  So equity 

between carriers is a major concern, and perhaps more so for those who would expect 

to have a small presence in the schedule affected by a given FCA.  

As mentioned before, one of the goals of this research is to examine if this way of 

expressing priorities is valid. It was desired to see if at the end most of the higher 

priority flights have been assigned to slots. Also another goal was to check if the 

delays occurred by the highest priority flights are less than the rest. It is requisite 

airlines to give truthful preferences for which they will be more willing to do if they 

actually see that it makes sense delays-wise for some of their flight to have higher 

priority. If airlines give a 4 in all their flights on purpose to game the system, and since 

they will not be able to assign all these flights to slots, they might miss the opportunity 

of actually a flight that is in reality more important than others to get a slot. 

The delays accrued by flights that were given the highest priority number 4 are 

penalized more. The delay of these flights are multiplied by 4. Respectively the delays 

occurred by flights given priority number 3 were multiplied by 3, those with priority 

number 2 multiplied by 2 and those with priority 1 stayed as were. In this analysis was 

estimated the average delay per flight per priority number. The flights that essentially 

were accounted for their delays, were the ones that actually got allocated to a slot. The 

flights that did not assigned to a slot, for which each airline will decide whether to 
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reroute, cancel, or delay them more, were not included in the calculations. Another 

thing also examined is the average delay per flight per airline and in this calculations 

the delays were not weighted according to the priority number assigned to them. 

In this problem there are two levels of randomness that can be identified and 

examined. The first is due to the random selection of airlines in the allocation 

algorithm. Even when the number of flights and slots stay the same, each time the 

allocation scheme is implemented the selection of airlines can differ. The second level 

of randomness comes from the fact that each time an AFP is implemented the number 

of flights that each airline has will vary. For the purpose of this research and in order 

to be able to have multiple repetitions of the allocation mechanism with varying input 

data, simulation was used. Simulation is a very fast and reliable tool for analysis of 

this kind. 

The first thing measured from the simulation output was, for each airline, how much 

variance there was in the number of assigned slots. Since each airline does not get the 

exact same number of slots each time, it would be desirable for these numbers to be 

quite close. For example, if an airline gets on average 10 slots but one time gets 5 and 

the next time 15, is this something that will not be easily acceptable from the airline’s 

dispatchers. 

Also it was of interest to see how much on average the slots assigned to the airlines 

deviated from their initially calculated fair share. In order to measure the deviation of 

the actual allocation to the fair share of each airline the following indicator was used: 
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The fair share deviation indicator, as it was similarly used by Carr et al. (1998), 

shows how much the actual average share (number of slots allocated to each airline) 

deviates from the fair share estimated before the allocation. If the numbers are zero 

then the actual share matches the fair share computed. The bigger this number 

becomes (positive) the actual share deviates and essentially the particular airline 

receives less slots than its fair share. If the number is negative the particular airline 

receives more slots than its fair share. What would be desirable is these numbers to be 

very close to zero. 

For the purposes of this research simulation was divided into two different parts, in 

order to isolate the variance that will appear in the outputs into two different sources. 

In the first part, was tested the effect that the random allocation procedure has by 

itself. In order to do that, a deterministic set of input data was used, so the only 

randomness in the simulation is in the proportional allocation procedure itself. In the 

second part, recognizing that there are stochastic fluctuations in demand input data due 

to various causes (e.g., schedule changes, seasonality, unexpected cancellations and 

delays due to crew issues and maintenance, etc.) randomness to the input data was 

added. 

3.7.1 Monte Carlo Simulation for Deterministic Set of Flights 

In the first set of simulations was considered a deterministic set of input data to our 

Monte Carlo simulation. Rather than work with a particular geographic scenario and 

its associated FCA, a hypothetical AFP was used whose magnitude is commensurate 
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with what tends to be observed in reality.  The exact same data set used in the previous 

analysis was used here also, and the mean number of flights per airline is shown in 

Table 3.2. Each simulation ran for 1000 replications and the results are presented in 

the following figures and tables.  

In Figure 3.5 can be seen the fair share for each airline, computed as described in 

section 3.4. After the allocation procedure ran, the average number of slots that each 

airline actually received was estimated, as can be seen in Figure 3.6. A first 

comparison of those two figures shows that, in the long run, airlines will be assigned 

numbers of slots that are close to their estimated fair share. 
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Figure 3.5 Computed fair share for each airline and for each capacity reduction 

scenario 

 

Figure 3.6 Average number of slots for each airline 
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The median number of slots for each airline is also presented in Figure 3.7, to have a 

better idea of how many slots airlines will usually get. Here it is clearer that smaller 

airlines have a good chance of getting slots. In Table 3.3 the coefficient of variation of 

slot allocation for each airline is presented. The coefficient tends to be smaller for 

bigger carriers. Probably this is caused by the fact that the resource allocation 

mechanism is specifically designed to be protective of small airlines’ slot claims. In 

general the coefficients for all airlines are very close, which is a good indication of the 

fairness of the allocation process. 

 

Figure 3.7 Median number of slots for each airline 
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Table 3.3 Coefficient of Variation of Slots Allocated to Each Airline 

  Capacity Reduction to n ac/hr 

  25 20 15 

1 0.1962 0.2229 0.3227 

2 0.2457 0.4366 0.4893 

3 0.0799 0.1301 0.1473 

4 0.1330 0.1153 0.1903 

5 0.0493 0.0768 0.0982 

6 0.0392 0.0554 0.0350 

7 0.0955 0.1607 0.1366 

8 0.0413 0.0867 0.0825 
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 In Table 3.4 the results for the fair share deviation indicator can be seen. As 

explained before, the fair share deviation indicator shows how much the actual 

average share deviates from the fair share estimated before the allocation. As can be 

seen in this table, the indicator for each airline is quite close to zero, which means that 

in the long run airlines will receive numbers of slots that are very close to their fair 

share. 

In Table 3.5 the average delay per flight per airline occurred by flights that actually 

got assigned to a slot is presented. Can’t say a clear trend exists here. For some 

airlines as the number of slots available gets smaller, their average delay increases 

and for some other decreases. The smaller the airline the delays decrease, because 
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they get fewer flights, so fewer flights are included in the calculations. The second 

airline has the least flights and when the capacity is reduced to 15ac/h, many times it 

wouldn’t get a slot at all, which means the delay is accounted as zero. There isn’t any 

extremely big difference in the delays among the airlines. 

Table 3.4 Deviation of the Fair Share from the Actual Average Allocation 

  
Capacity Reduction to n 

ac/hr 

  25 20 15 

1 -0.0024 -0.0029 -0.0046 

2 0.0022 -0.0019 0.0036 

3 0.0035 0.0013 0.0012 

4 -0.0011 0.0007 -0.0034 

5 -0.0013 0.0055 -0.0028 

6 -0.0017 -0.0008 -0.0012 

7 0.0007 -0.0025 0.0023 

8 -0.0008 0.0006 0.0004 
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9 0.0010 0.0000 0.0043 
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Table 3.5 Average Delay (in Minutes) per Flight per Airline 

  
Capacity Reduction to n 

ac/hr 

  25 20 15 

1 17.5 25.9 20.4 

2 9.9 9.9 3.5 

3 6.1 15.5 22.4 

4 10.3 22.6 17.1 

5 4.0 13.1 17.8 

6 7.9 10.4 14.3 

7 11.5 18.2 17.9 

8 7.5 12.9 26.0 
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9 18.0 12.9 14.2 

Finally in Table 3.6 the results of the weighted average delay per priority number are 

presented. Although the delays of flights with priority given equal to 4 were weighted 

more, the average delay per flight is consistently less than the average delay of flights 

with priority 3. From the simulation was observed that most of the flights assigned to 

slots were of priority 4 and 3 and consequently most of the flights left unassigned had 

a priority of 2 and 1. This explains the fact that the delays for flights with priority 2 

and 1 are less than the ones with higher priorities. It is not that they were assigned to 

slots that were closer to the initial scheduled times, but they weren’t assigned to any 

slot at all. The fact that many flights with priorities 2 and 1 are excluded by the 

program and do not contribute to the metrics, makes it trickier to compare the 
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numbers. 

Table 3.6 Weighted Average Delay (in Minutes) per Flight per Priority Number 

  Capacity Reduction to n ac/hr 

  25 20 15 

4 16.4 35.3 67.2 

3 22.4 47.6 76.6 

2 21.5 28.8 13.6 

Weighted 

Average 

Delay (in 

min) per 

Priority 

Number 

1 15.5 20.4 12.1 

 

3.7.2 Monte Carlo Simulation for Random Set of Flights 

For the next part of the simulation, variability to the input data (the number of flights 

for each airline) was added. In reality, the schedule of airlines fluctuates, and since it 

was a goal to comply with that, the traffic at Boston Logan for every Monday of two 

consecutive months was observed – February and March of 2011. For the same 

airlines as mentioned before, the number of flights was observed and incorporated 

similar levels of variation into the simulation. The mean number of flights matches the 

number of flights used in the previous set of experiments, but now the number of 

flights for each airline for each run varies following a uniform distribution whose 

extremes are identical to what was observed from the real data. 
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In Figure 3.8 is present the average fair share computed for each airline. Since the 

number of flights for each airline fluctuated from run to run, a new fair share was 

calculated in each run and in this table we have the average fair share from these runs.  

 

Figure 3.8 Computed average fair share for each airline and for each capacity 

reduction scenario 
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Figure 3.9 Average number of slots for each airline 

In figures 3.9 and 3.10, are present the average and median number of slots that each 

airline actually got after the resource allocation mechanism was implemented. Again 

here it can be seen that the number of slots allocated to each airline matches very well 

its estimated fair share, and also smaller carriers have good chances to get slots.  
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Figure 3.10 Median number of slots for each airline 

In Table 3.7 can be seen the coefficient of variation of slots allocated to each airline. 

The coefficient for airlines with larger numbers of flights tends to be smaller than for 

those with fewer flights. This is partly because the bigger airlines have greater 

fluctuation in their schedules on a day-to-day basis. Overall the coefficients for all 

airlines are similar. Also the coefficients compared to the results with deterministic 

flights are a bit larger. This is expected, and the difference represents the marginal 

contribution of the noise in the schedule to the observed variation.  The added effect of 

variability on number of flights has contributed to that. This can be better observed in 

the following Figures 3.11-3.13.  
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Table 3.7 Coefficient of Variation of Slots Allocated to Each Airline 

  
Capacity Reduction to n 

ac/hr 

  25 20 15 

1 0.2336 0.2878 0.2743 

2 0.3007 0.3710 0.4073 

3 0.1405 0.1539 0.1517 

4 0.1930 0.2205 0.2353 

5 0.1313 0.1400 0.1440 

6 0.0853 0.0933 0.0914 

7 0.1600 0.1886 0.1922 

8 0.0960 0.1181 0.1145 
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Figure 3.11 Variance of slots when capacity is reduced to 25 ac/hr 

 

Figure 3.12 Variance of slots when capacity is reduced to 20 ac/hr 
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Figure 3.13 Variance of slots when capacity is reduced to 15 ac/hr 

In Figures 3.11-3.13 can be seen that the airlines 5 and 6 have greater difference in 

their variances for each scenario, between the deterministic and the stochastic cases. 

This is due to the fact that they are bigger carriers and the range of flights they have is 

greater than the other airlines. For example airline 6 has on average 16 flights but it 

was observed that there were days that had 14 flights and other days up to 17. The 

airline 2, which represents the smaller carrier with only 2 flights, has small variance 

and the difference of it between the deterministic and stochastic cases is also small, 

because it was observed that the number of flights it has doesn’t fluctuate with time. 

In Table 3.8 are presented the results for the fair share deviation indicator. Here also, 

the indicator for each airline is very close to zero, which means that the airlines on 

average will be getting slots that are close to their fair share. 
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Table 3.8 Deviation of the Average Fair Share from the Actual Average Allocation 

  Capacity Reduction to n ac/hr 

  25 20 15 

1 -0.00093 -0.00008 -0.00181 

2 -0.00043 -0.00173 0.00245 

3 0.00009 0.00074 0.00152 

4 -0.00007 0.00009 -0.00116 

5 -0.00024 0.00018 -0.00111 

6 0.00043 0.00085 -0.00041 

7 0.00077 -0.00011 -0.00136 

8 -0.00011 0.00095 -0.00021 
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9 0.00050 -0.00089 0.00209 
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Table 3.9 Average Delay (in Minutes) per Flight per Airline 

  
Capacity Reduction to n 

ac/hr 

  25 20 15 

1 12.2 17.1 21.2 

2 13.0 19.9 3.8 

3 10.0 15.6 19.9 

4 10.8 17.4 21.2 

5 8.2 13.3 18.9 

6 6.5 11.4 16.1 

7 10.6 16.1 20.9 

8 7.7 13.0 18.5 
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Table 3.10 Weighted Average Delay (in Minutes) per Flight per Priority Number 

 
 

Capacity Reduction to n 

ac/hr 

  25 20 15 

4 23.2 36.8 48.1 

3 24.8 44.0 64.4 

2 20.1 35.6 47.3 

Weighted 

Average 

Delay (in 

min) per 

Priority 

Number 

1 11.6 17.1 18.0 

 

Finally at tables 3.9 and 3.10 are presented the average delays per flight per airline and 

per priority number assigned respectively. In the first of these two tables, it is clear 

that when capacity reduces the amount of delay accrued by each airline increases. 

With the exception of airline 2, which has the least slots and when capacity reduces 

much it doesn’t often being assigned to any slot, the differences in delays among the 

airlines are reasonable. In the other table can be seen again the same trend as before. 

The weighted average delay for flights with priority 4 is consistently less than the 

delay of flights with priority 3. As the number of priority reduces it was observed that 

the number of flights left without being assigned increased, which caused the reduced 

weighted delay compared to the higher priority flights. 

3.8 Conclusions 
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In this research was proposed a meaningful way for carriers to express some 

preference structure during AFP. Also two resource allocation mechanisms were 

proposed that will improve the system efficiency and at the same time will take into 

account the preferences of the airlines. First, was examined how the results from 

using the proposed preference structure of airlines in the first proposed allocation 

scheme –PBPRA- is compared to RBS and RBS with substitutions. The results 

showed that the total weighted delay and weighted average delay for PBPRA is 

consistently lower than RBS and RBS with substitutions. Then was examined how 

the second allocation mechanism proposed, A-PBPRA, works compared to RBS and 

RBS with substitutions. The results showed that the total weighted and weighted 

average delay accrued by the flights with the proposed mechanism – A-PBPRA- is 

also much lower than the ones with RBS and RBS with substitutions. This work can 

be extended to look at other allocation mechanisms that can for example consider 

some airlines getting a number of early flights (more than one) for a higher price and 

then the rest of their share of flights to be of lesser value. Also the airlines preference 

structure can be extended to have some additional components, apart from the priority 

number and the maximum delay allowed, to make it even more rich and at the same 

time not containing much proprietary information.  

During AFPs the airlines in the long-run will be getting on average what they want. 

As was estimated the smaller carriers have good chances of actually getting slots in 

the constraint areas. For smaller airlines the variance of slots allocated tends to be 

smaller than the variances for the bigger carriers. It was also shown that for the flights 

with priorities 4 and 3 were most of them assigned to slots and most of the ones with 
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priorities 2 and 1 were not. The weighted delays for the flights with priority 4 were 

less than the ones with priority 3. 



 

 90 
 

Chapter 4: Impact of Improved Predictability 

As mentioned in the beginning of this dissertation, airlines will benefit from increased 

flight predictability. Airlines tend to add extra time to their scheduled block times in 

order to absorb delays and maintain their schedules intact as much as possible. It is a 

way to deal with unexpected delays that occur frequently and cause many problems to 

the airlines due to missed connections, crews being overtime, unhappy passengers etc. 

The anticipated mechanisms by which benefits could be realized as a result of 

improvements in strategic flight predictability can be articulated as follows: 

• A reduction in the variability of actual flight times should lead to a reduction 

in scheduled block times and fuel buffers. 

• The reduction in scheduled block times should lead to shorter actual block 

times. 

• The reduction in fuel buffer will lead to a reduction in contingency fuel 

loaded, which will also lead to a reduction in actual fuel usage. 

• With improvements in scheduled and actual block times, carriers could 

hypothetically achieve the same levels of scheduled operations with fewer aircraft 

and less total crew duty time. 

While the number and duration of operations is not expected to change under this 

hypothesis, the fuel burned on every segment of each itinerary would be reduced. 

4.1 Analyzing Scheduled Block Times 

Since scheduled block time is the key component of the benefits analysis and in order 

to set a baseline of how airlines set their scheduled block times, historical data for 
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specific flights were analyzed. Before any analysis, it is important to clarify the 

definitions of some of the phases of flight. A graphical display of them is presented in 

the following Figure 4.1. 

 

 

Figure 4.1 Definitions of phases of flight 

The actual block time is the time between the actual departure and actual arrival time. 

As the effective flight time is considered the time elapsed between the scheduled 

departure time and the actual arrival time. In other words it includes the actual block 

time and the departure delay. Some portion of the departure delay is caused by the 

late arrival of the aircraft from its previous leg (late aircraft delay) and since this 

delay is already counted in the previous leg, the idea is to remove this portion from 

the current flight. So the truncated effective flight time can be considered, which is 

the effective flight time minus the late aircraft delay. 



 

 92 
 

4.1.1 Scheduled Block Time for a Single Flight 

First data for a single flight from January 2009 to December 2011 was collected (BTS 

2013) and broken it down by quarter. Weekdays only were taken into account. The 

flight chosen was a United Airlines from Boston to San Francisco that leaves around 

6am. In the data the scheduled time of departure was ranging is between 6.00am to 

6.20am. The flight number for this was UA171 until October 2010 and changed to 

UA893 afterwards. After the analysis of the data the results are presented in the 

following figures. 

 

 

Figure 4.2 Average and median scheduled block time for a single flight between BOS 

and SFO 
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From the figures 4.2 and 4.3, it is evident that airlines do not have a fixed schedule 

block time for each flight within the same quarter. As it can be seen in Figure 4.2, the 

scheduled block times oscillate quarterly and during the 1st and 4th quarter these times 

are higher. In Figure 4.3 can be seen that during some quarters, especially the 4th 

there is increased standard deviation.  

 

Figure 4.3 Standard deviation of the scheduled block time for a single flight between 

BOS-SFO 

4.1.2 Scheduled Block Time for Multiple Flights in a Day 

The next step in the data analysis was to examine the effect of different departure 

times to the scheduled block times for the same Origin-Destination (O-D) pair for the 

same airline. For this part, other flights scheduled between BOS and SFO from 

United Airlines were included in the analysis. Again flights from January 2009 to 

December 2011 were considered, weekdays only, and broken down by quarter. The 
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flights were grouped to 5 different sets of departure times from BOS (6AM, 8AM, 

11AM, 3PM, 6PM, local times), because the departure times were changing a bit 

throughout the years. In the following figures, Figures 4.4-4.6, the results are 

presented.  

 

Figure 4.4 Average scheduled block times for all United Airlines flights between 

BOS-SFO 



 

 95 
 

 

Figure 4.5 Median scheduled block times for all United Airlines flights between 

BOS-SFO 

As it can be seen in figures 4.4 and 4.5, flights with different departure times in the 

day for the same O-D pair have different scheduled block times. The difference in 

scheduled block times can exceed 20 minutes, for example the flight departing at 

3PM and flight departing at 6PM the 4th quarter in 2009. Finally the scheduled block 

times oscillate similarly by quarter and during the 1st and 4th quarter these times 

appear to be higher.  
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Figure 4.6 Standard deviations of the scheduled block times for all United Airlines 

flights between BOS-SFO 

4.1.3 Estimating Distributions 

It is known that airlines look at historical data, up to 5 years, for each Origin-

Destination (OD) pair and look at the distribution of the effective flight times. It is 

also common for them to use historical data of competitor airlines for the same OD 

pair.  From these distributions they set an on-time performance goal, which is flight 

specific and it may vary from 60% to 75%.  Some airlines might ignore the Late 

Aircraft Delay (LAD), which is defined as the portion of the departure delay 

attributed to the aircraft arriving late from its previous flight leg, and construct the 

distributions of the truncated effective flight time (Deshpande and Arikan 2012). In 

this section these distributions are analyzed to find which ones fit better the actual 

data. 
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In Figure 4.7 and Figure 4.8 are presented the distribution of the effective flight time 

and the truncated effective flight time respectively for the third quarter of the years 

2009 and 2010. It appears that both distributions are skewed to the right and possible 

distributions that could fit this shape are the log-normal, log-Laplace, gamma. 

 

Figure 4.7 Distribution of the effective flight time of flight with departure time 3PM 
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Figure 4.8 Distribution of the truncated effective flight time of flight with departure 

time 3PM 

 

Figure 4.9 Cumulative distribution of the effective flight time of flight with departure 

time 3PM 
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Figure 4.10 Cumulative distribution of the truncated effective flight time of flight 

with departure time 3PM 

In Figure 4.9 and 4.10 are presented the cumulative distribution of the effective flight 

time and truncated effective flight time respectively. As mentioned above, it is 

believed that airlines look at the distributions of the past few years and try to set a 

goal for the next year, to reach a certain level of service. While looking at the average 

scheduled block time set for the third quarter of 2011, which was 385.1 minutes, and 

at Figure 4.10 it can be deduced that United had set it’s goal to be approximately 60% 

of flights to be on time. The actual percent of flights that arrived with delay less than 

15 minutes in 2011 was 74%. For the rest quarters of 2011, by looking at the actual 

average scheduled block times set for each of them, and looking at the distributions 

constructed from 2009-2010 data, can be concluded that United had set it’s goal to be 

60% of flights to be on time for this specific OD pair. 
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In Figure 4.11 the distribution of the actual block time can be seen, which appears to 

be slightly skewed to the right. 

 

Figure 4.11 Distribution of the actual block time of flight with departure time 3PM 

 

Figure 4.12 Distribution of the departure delay of flight with departure time 3PM 
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Figure 4.13 Distribution of the truncated departure delay of flight with departure time 

3PM 

Finally in figures 4.12 and 4.13 are presented the distribution of the departure delay 

and truncated departure delay respectively. Possible distributions that could fit their 

shape is the exponential and gamma. 

4.1.4 Fitting Gamma Distribution to Data 

The next step presented in this section is to fit the actual data to a distribution. The 

distribution chosen is gamma, because of its flexible shape, depending on the 

parameters chosen – shape and scale -.  First the gamma distribution was fitted to the 

effective flight times for the 3rd quarter of 2009 and 2010. In Figure 4.14 is depicted 

the fitting for which the shape parameter is 275.977 and scale parameter is 1.387. 
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To have 385.1 average scheduled block time for the 3rd quarter in 2011, the percent 

given from the gamma distribution is 54.9%. In other words the airline must had 

chosen 54.9% of their flights to be on time.  

 

Figure 4.14 Fitting gamma distribution to the actual data of effective flight time 
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Figure 4.15 Fitting gamma distribution to the actual data of truncated effective flight 

time 

Then the gamma distribution was fitted to the truncated effective flight times for the 

3rd quarter of 2009 and 2010. The shape parameter is 413.889 and scale parameter is 

0.919 for this gamma distribution, which is depicted in Figure 4.15. To have 385.1 

average scheduled block time for 3rd quarter in 2011 the percent given by this 

distribution is 60.6%. If the findings from the two fittings are compared with what we 

get from the cumulative distribution functions, which is approximately 60% of flights 

to be considered on time, can be concluded that the fitting of the truncated effective 

flight times data gives better estimate than the effective flight data.  
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4.2 Estimating Scheduled Block Times 

4.2.1 Source of Information 

In order to solidify how airlines set their scheduled block times, input from industry 

experts was asked for. Individual meetings and phone interviews with the following 

people were held: 

-­‐ Meeting with the Delta team responsible for the estimation of SBT 

-­‐ Teleconference with Jim Hamilton, from UPS 

-­‐ Teleconference with George Kypreos from American Airlines 

-­‐ Teleconference with Michael Clarke from Sabre and Tuell Green from 

American Airlines 

4.2.2 General Process 

From the discussions came out that all airlines follow the same general approach in 

order to estimate the SBT. They all break the block time in 3 components: taxi-in, 

airtime, taxi-out, as we can see in Figure 3.16. They look at historical data for each 

component and plot the distribution of block time. From this distribution they set an 

on-time performance goal, which is flight specific.  As it can be seen in Figure 3.17, 

for the distribution of historical block times an airline sets its goal to α%, which 

means that they want α percent of the time their flight to be on-time.  
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Figure 3.16 Block time breakdown  

 

Figure 3.17 Block time distribution and on-time performance goal set to α% 

The above three time components depend on the Origin-Destination (O-D) pair, the 

aircraft used, the time of the day, day of week and season. 

The airtime depends on what aircraft is used for the specific route. Airlines tend to 

estimate their en-route times by considering aircraft flying at their optimal speed. So 

for the same O-D pair, if various aircraft types are used, then for each of them a 

different SBT is calculated. Airtime also depends on the O-D pair because of some 
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traffic issues in certain areas, like the Northeast where there are many metroplexes, 

which cause a greater variance in the flight times. Finally airtimes depend on the 

season since different wind patterns exist. 

Taxi times depend on the origin and destination airports. For each airport a different 

taxi-in and taxi-out time is calculated in order to take into account the specific 

characteristics of the airport (like runway usage, traffic, runway configuration etc). 

Taxi times also depend on the time of the day (peak and non-peak traffic) and the day 

of the week.   

All airlines exclude the outliers from their data and also constantly monitor the on-

time performance of flights and tweak the schedule as needed. Also, they do not take 

into account directly the propagated delay. 

4.2.3 Airlines’ Differentiations 

The general process is common for each airline. Of course depending on the airline 

and its business needs and models some parameters differentiate. The ones that vary 

are summarized as follows. 

Percentiles 

The range of percentiles that each carrier considers varies. UPS for example, a freight 

carrier, gives a great emphasis on the on-time arrival of parcels in critical markets, 

especially for the early morning deliveries. So for these kinds of markets they look at 

the 80th to 90th percentile instead of the 60th percentile that they usually do. The range 

of percentiles for Delta Airlines is 65%-75% and for American Airlines 70%-75%. 

Taxi-in and taxi-out estimation 
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Different approaches are used to estimate the taxi-out and taxi-in times. One airline 

takes the average taxi-in and taxi-out times observed. Another airline takes the 

average taxi-in and taxi-out times observed the few previous months. In the case of 

contingencies such as runway construction they use surface simulations to estimate 

the new taxi times. In another airline, they estimate the taxi-out times with the 

assistance of a simulation software after they input all the parameters i.e. other airline 

traffic, runway usage during different time periods, taxiway traffic, separation, 

runway configuration etc. For the taxi-in times they usually set to 5-8 minutes, unless 

there is a big issue with terminal location versus runway usage. 

Data used 

The data that each airline uses for their analysis is also different. One of the airlines 

looks at historical data for each O-D pair since 1988. Another airline looks at the last 

3-4 last years if nothing has changed. The third airline for the airtime looks at the last 

5 years and for the taxi times only the most recent – few months-.  

Seasons considered 

Two of the airlines consider only two seasons (Summer-Winter). At the other airline 

they consider eight seasons for the domestic flights and two seasons for their 

international flights. 

Types of days 

For this parameter there is a great variation among the airlines. One airline considers 

all days together. Another airline considers each day separately. And for the third 

airline there are two types of days: Saturdays and all other days. 
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4.3 Estimating the Strategic Benefits of Increased Flight Predictability 

The scope of this work is to estimate the benefits for airlines due to the improvement 

in strategic flight predictability. The work flow for the benefits assessment related to 

scheduled block time begins with the work conducted by U.C. Berkeley, which 

developed airline specific scenarios for the impact of changes in empirical block time 

distributions on scheduled and actual block times.  These scenarios were used as the 

entry points for an economic benefits assessment. In all scenarios the median block 

time remains the same. Scenario1 depicts a condition where flight time variability is 

reduced due to the increase of the shortest flight times. The second scenario depicts 

the exact opposite case, where the longest block times are reduced the most. Finally 

Scenario 3 considers a consistent change throughout the flight time distribution. 

The benefits assessment process will use the results shown in Table 4.1, for Low Cost 

Carriers (LCC) and legacy carriers, Delta Airlines, American Airlines, and United 

Airlines.  

Table 4.1 Evaluation results under different scenarios 

 LCC Delta Airlines American Airlines United Airlines 

Scenario 1 2 3 1 2 3 1 2 3 1 2 3 

Mean 
Block 
Time 
Difference 

0.96 -3.27 -1.16 1.19 -3.44 -1.12 1.23 -3.58 -1.17 1.31 -3.35 -1.02 

SBT 
Difference -1.82 -3.03 -2.38 -2.16 -3.88 -3.02 -1.93 -4.51 -3.22 -0.19 -0.27 -0.23 
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These changes in mean actual and scheduled block time can be related to changes in 

average daily flights per aircraft and average pilot salary per available seat mile 

(ASM) using regression coefficients from a study by Moreno-Hines and Kirkman 

(2013). In their analysis was included the estimation of coefficients that can be 

directly applied to the task of converting between average scheduled block time and 

certain dependent variables that, by themselves, are not monetized, but that can be 

monetized in a subsequent step using some reasonable assumptions. Table 4.2 below 

shows the coefficients used in this benefits assessment, as taken from that reference. 

Table 4.2 Block time benefits regression coefficients 

Δ in 
Dependent 
Variable 

Δ in 
Explanatory 
Variable 

AΑ American 
Eagle Delta  JetBlue Northwest 

Airlines 
Southwest 
Airlines UΑ US 

Average 
Scheduled 
Block Time 

Average 
Actual Block 
Time 

0.75 0.75 0.91 0.9 0.8 0.78 0.62 0.89 

Average 
Daily 
Flights per 
Aircraft 

Average 
Scheduled 
Block Time 

-0.02   -0.02   -0.05   -0.02   

Average 
Pilot Salary 
per 
Available 
Seat-mile 

Average 
Scheduled 
Block Time 

6.4Ε-5       8.2Ε-5 6.7Ε-5     

There are two limitations of that study that add some complication to the prospect of 

using the results in this benefits analysis. First, the empty cells in Table 4.2 represent 

coefficients that would be necessary for completeness, but were not included in the 

paper. In the paper, each model was developed in a parsimonious form, so 

independent variables that did not significantly improve the fit of the model were 

removed from the model specification. There is no way of knowing, at this point, 
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what the un-estimated coefficients might have been, or what their p-values might 

have been. 

Secondly, the set of carriers reported in that study does not match exactly the set used 

for the scenario generation as part of the scheduled block time impact modeling 

performed for this work.  As a result, a mapping between the two sets was 

constructed, which then necessitates the assumption that the effects to certain carriers 

are expected to be the same as those of other “similar” carriers.  In particular, both 

studies used the major carriers American, Delta, and United, so those results were 

directly transferable. The Moreno-Hines and Kirkman study included Northwest 

Airlines, which was absorbed into Delta Airlines in 2010. In this study, the results for 

Northwest are ignored, although one could argue that their expected behavior might 

in some way manifest itself as part of Delta, but there is no way of quantifying this. 

Among low-cost carriers, the Moreno-Hines and Kirkman paper included American 

Eagle, JetBlue, and Southwest. In the current study, low-cost carriers were 

consolidated into one entity with respect to scenario generation.  

Table 4.3 below shows the data used for the benefits assessment.  The Available Seat 

Miles (ASM), numbers of pilots/copilots, fleet size, and departures per year are from 

BTS.  The wage data is also from BTS, specifically US DOT Form 41, Schedule P6 

& P10.  The yearly ownership cost per aircraft is computed as a weighted average.  

For each carrier, their fleet is stratified into different airframe types, each with 

different ownership costs.  The average ownership cost per aircraft is then a weighted 

average of these values, weighted by the fraction of the total fleet represented by that 

particular airframe type.  The data for this analysis are from Aviation Daily (2013). 
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The three following tables 4.4-4.6 show the results of the analysis, one for each of the 

scenarios.  In Scenario 1, American and Delta can save over 1.5 aircraft apiece, 

resulting in significant savings in ownership costs.  The savings to United are more 

modest.  As mentioned above, the necessary data to compute these savings for the 

low cost carriers are missing.  For all of the carriers, however, it was possible to 

compute expected savings in pilot and flight attendant salaries that would be realized 

by conducting the same operational tempo with fewer total aircraft.  Again, the 

numbers for American and Delta are high, and for United quite low.  The savings for 

the LCCs are somewhere in between. 
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Table 4.3 Data for benefits assessment 

    Low Cost Carriers (LCC) 

 American 
Airlines 

Delta 
Airlines 

United 
Airlines 

Airtran JetBlue Southwest 

Available 
Seat Miles 
(2011) 

9.00E+10 1.09E+11 6.27E+10 2.34E+10 3.09E+10 1.03E+11 

Pilots/Co-
pilots (2011) 

4898 6980 3731 1570 1730 5676 

Departures 
per year 
(2011) 

531,000 729,000 319,000 246,000 209,000 1,142,000 

Mean 
Annual Wage 
for Pilots 
(2011) 

$139,963 $150,099 $125,690 $128,225 $139,744 $203,196 

Mean 
Annual Wage 
for Flight 
Attendants 
(2011) 

$51,197 $40,475 $37,888 $32,088 $37,987 $54,120 

Fleet 
Count 

608 722 697 129 183 582 

Yearly 
Ownership 
Cost per 
Aircraft 

$1,766,492 $1,748,785 $2,366,392 $1,949,242 $1,735,440 $1,457,649 
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Table 4.4 Results for benefit Scenario 1 

    Low Cost Carriers (LCC) 

 American 
Airlines 

Delta 
Airlines 

United 
Airlines Airtran JetBlue Southwest 

% of Saved 
Aircraft 1.61 1.56 0.30 0.00 0.00 0.00 

Savings from 
Aircraft Saved  

 
$17,326,246   $19,717,863   

$4,998,482   $-     $-     $-    

Reduction in Pilot 
salaries for 
current scenario 
(salary savings) 

 
$11,116,924   $15,040,097   $762,955   

$2,857,420  
 
$3,769,531   $12,578,477  

Reduction in 
Flight Attendant 
Salaries (salary 
savings) 

 $4,066,454   $4,055,643   $229,985   $715,063   
$1,024,682   $3,350,200  

 

Scenario 2 exhibited the most pronounced reduction in scheduled block times, and 

hence should produce the greatest expected savings.  The results in Table 4.5 below 

can verify this. The relative standings amongst the airlines are the same as before, 

which is to be expected, because the cost coefficients are the same. Finally, Table 4.6 

below shows the results for Scenario 3, which was representative of an intermediate 

level of reduction of scheduled block time. 
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Table 4.5 Results for benefit Scenario 2 

    Low Cost Carriers (LCC) 

 
American 
Airlines 

Delta 
Airlines 

United 
Airlines Airtran JetBlue Southwest 

% of Saved 
Aircraft 3.77 2.81 0.43 0.00 0.00 0.00 

Savings from 
Aircraft Saved   $40,487,757   $35,419,125   $7,103,105   $-     $-     $-    

Reduction in 
Pilot salaries for 
current scenario 
(salary savings) 

 $25,977,889   $27,016,471   $1,084,199   
$4,757,133  

 
$6,275,648  

 
$20,941,091  

Reduction in 
Flight Attendant 
Salaries (salary 
savings) 

 $9,502,440   $7,285,136   $326,821   
$1,190,461  

 
$1,705,927   $5,577,530  

 

Table 4.6 Results for benefit Scenario 3 

    Low Cost Carriers (LCC) 

 
American 
Airlines 

Delta 
Airlines 

United 
Airlines Airtran JetBlue Southwest 

% of Saved 
Aircraft 2.69 2.18 0.37 0.00 0.00 0.00 

Savings from 
Aircraft Saved  

 
$28,907,002  

 
$27,568,494  

 
$6,050,794   $-     $-     $-    

Reduction in 
Pilot salaries for 
current scenario 
(salary savings) 

 
$18,547,406  

 
$21,028,284   $923,577   

$3,736,626   $4,929,387   
$16,448,777  

Reduction in 
Flight Attendant 
Salaries (salary 
savings) 

 $6,784,447   $5,670,390   $278,403   $935,082   $1,339,969   $4,381,030  
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4.3.1 Estimating the Benefits for the NAS 

 An extension of this work is to estimate what would be the benefits across the 

National Airspace System (NAS). In order to do so, it was need to include a few more 

carriers in this analysis. From Figure 3.18 can be seen which carriers have the biggest 

domestic market share. Most of the top airlines have been included already in the 

analysis, but two major carriers are missing and these are US Airways and Alaska 

Airlines. Since the coefficients are not known for these airlines, some assumption 

need to be made, that these carriers are similar with some of the carriers used 

previously and have the necessary data and assume that the benefits will be similar. 

For US Airways and Alaska Airlines is assumed that they have the same coefficients 

as American Airlines. From Figure 3.18 can be seen that their share is closer to 

American Airline’s than the other two major carriers, Delta and United. 

 In the figure is also depicted that two regional carriers are included ExpressJet and 

Skywest. Unfortunately in the initial analysis there was no regional carrier included, 

so there are no data available to work with. However, since some Low Cost Carriers 

are included, this work could be extended by considering an additional one. Frontier 

is also a LCC and the assumption has to be made is that it will get similar benefits as 

Airtran, so this input can be used. Another type of carriers that are not included in this 

work is freight carriers. Freight carriers operate under different business model than 

major carriers, so their benefits cannot be directly associated. Also, most of their 

critical operations take place overnight where traffic levels are low and queuing 

delays are present. This means that the need to add contingency to their scheduled 

block times is not as big as is for the passenger carriers, so the benefit of increased 
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predictability will not be as profound. Additionally freight carriers do not report to 

BTS and that would make very difficult to find the necessary input data.  

 

Figure 3.18 Airline Domestic Market Share (source: BTS) 

The following Table 4.7 shows the data we used for this analysis. The sources of the 

data are exactly the same as with the previous analysis. 
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Table 4.7 Additional data for benefit assessment 

 
US Airways Alaska 

Airlines Frontier 

Available Seat 
Miles (2011) 5.25E+10 2.38E+10 1.11E+10 

Pilots/Co-pilots 
(2011) 4003 1286 676 

Departures per 
year (2011) 403000 145000 85000 

Mean Annual 
Wage for Pilots 
(2011) 

$109,535 $155,024 $113,250 

Mean Annual 
Wage for Flight 
Attendants (2011) 

$40,442 $35,433 $19,105 

Fleet Count 327 131 60 
Yearly 
Ownership Cost 
per Aircraft 

$2,469,821 $2,138,191 $2,496,360 

 

In the following tables 4.8-4.10 are presented the results for each of the scenarios 

used in the previous analysis. Again, the scenario that shows the most cost savings is 

Scenario 2.  

 

 

 

 

 

 

 

 

 



 

 118 
 

Table 4.8 Additional results for Scenario 1 

 US Airways Alaska 
Airlines Frontier 

% of Saved 
Aircraft 1.14 1.27 0.00 

Savings from 
Aircraft Saved  $9,232,857 $3,565,342  $-    

Reduction in Pilot 
salaries for 
current scenario 
(salary savings) 

 $6,481,836   $2,940,270   $1,352,193  

Reduction in 
Flight Attendant 
Salaries (salary 
savings) 

 $2,393,193   $672,042   $228,112  

 

Table 4.9 Additional results for Scenario 2 

 
US Airways Alaska 

Airlines Frontier 

% of Saved 
Aircraft 2.67 2.97 0 

Savings from 
Aircraft Saved  $21,575,227 $8,331,446  $-    

Reduction in Pilot 
salaries for 
current scenario 
(salary savings) 

$15,146,673 $6,870,787 $2,251,178 

Reduction in 
Flight Attendant 
Salaries (salary 
savings) 

$5,592,384 $1,570,419 $379,768 
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Table 4.10 Additional results for Scenario 3 

 
US Airways Alaska 

Airlines Frontier 

% of Saved 
Aircraft 1.91 2.12 0 

Savings from 
Aircraft Saved   $15,404,042   $5,948,394   $-  

Reduction in Pilot 
salaries for 
current scenario 
(salary savings) 

 $10,814,254   $4,905,528   $1,768,252  

Reduction in 
Flight Attendant 
Salaries (salary 
savings) 

 $3,992,788   $1,121,230   $298,300  

 

In order to find the overall benefits across the NAS we add the benefits of each airline 

for each scenario, and the results are shown in Table 4.11 

Table 4.11 Total benefits  

 Total Savings from 
Aircraft Saved 

Total Pilot Salary 
Reduction 

Total Flight 
Attendant Salary 
Reduction 

Scenario 1  $54,840,791   $56,899,702   $16,735,373  

Scenario 2  $112,916,660   $110,321,068   $33,130,886  

Scenario 3  $83,878,725   $83,102,092   $24,801,639  

The benefits for Scenario 2 will be the greatest, since for this scenario the reduction in 

scheduled block time was the highest. In general the savings from the pilot salary 

reduction will be approximately equal with the savings from aircraft saved. The 

savings from the flight attendant salary reduction will be approximately a third of the 

other two. Here we have to note that these benefits will take time to get realized. 
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Once the system gets more predictable, the actual block times will be reduced. When 

this reduction will be profound enough will lead airlines to reduce their scheduled 

blocks times.   

 



 

 121 
 

Chapter 5: Conclusion 
The air transportation system in the United States is one of the most complex systems 

in the world. Projections of increasing air traffic demand in conjunction with limited 

capacity, that is volatile and affected by exogenous random events, represent a major 

problem in aviation system management. Air traffic delays are always present and the 

more air traffic increases the more the delays will increase with serious economic 

impacts. The scope of this dissertation was to look closer at a threefold approach to 

the problem of congestion in aviation.  

The first part of this thesis was related to the prediction of delays and the 

development of a model that will make these predictions under a wide variety of 

distributional assumptions. In this work the mathematical construction of a continuum 

approximation to a queuing system was presented, that might represent a single 

congested resource in the National Airspace System, such as an airport, a runway, or 

some en route resource. This was the first time ever to consider diffusion 

approximation in the aviation setting. While the model formulation was based on past 

work done in other areas like biology, the numeric solution scheme – Finite Element 

Method (FEM) - was part of this work. A discrete approximation to the queue length 

density function was constructed by using triangular basis functions, instead of 

Gauss-Legendre quadrature, that have known integrals and can be easily solved. The 

Monte Carlo simulation was set up to serve as the ground truth to compare with the 

results from the diffusion approximation. It was achieved the replication of the known 

steady-state results from that small set of queuing systems for which equilibrium 

results are known in closed form. The results in such cases showed that the diffusion 
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approximation gives exactly the same results very quickly. Furthermore, a Monte 

Carlo exercise was also conducted for a number of other cases whose solutions 

cannot be found analytically. Again, the diffusion model seemed to perform very 

well, and it is much faster than running large numbers of Monte Carlo simulations. 

This is one of the advantages of using this model. While the simulation running time 

increased significantly with the number of iterations, about 310 seconds for 100,000, 

the diffusion model was giving results in less than 10 seconds.  

In the second part of this work a parsimonious language of exchange was designed, 

with accompanying allocation mechanisms that allow carriers and the FAA to work 

together quickly, in a CDM environment, to allocate scarce capacity resources. A 

simple mechanism was proposed that requires each airline to give to each of their 

flights a priority number ranging from 1 to 4. The greater the number assigned to a 

flight the more important this flight is. It is also required that for each flight, carriers 

specify the maximum delay in minutes that they would allow it to be assigned on the 

ground. An extension of this was also proposed, where airlines can give an additional 

input regarding their preferences. Airlines can declare their intent to be considered as 

one of two different kinds of airlines: those that would prefer getting earlier slots (at a 

cost of depleting their fair share faster), and those that would prefer getting a larger 

number of slots overall, with the understanding that some of those will likely have 

large delays associated with them. While the allocation mechanism - Preference 

Based Proportional Random Allocation (PBPRA) - used in the first part of the work 

was proposed in past work, in this work it was modified accordingly in order to use 

the suggested preference structure. Then an enhanced version of this allocation 
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scheme was proposed, which was called Alternative Preference Based Proportional 

Random Allocation (A-PBPRA). This modified scheme can be related by imagining 

that in the first scheme, the “price” of each slot is one point of fair share, while in this 

second or modified scheme we allow that “price” to be higher for carriers that prefer 

to be allocated a smaller number of premium slots.  

The results showed that the total weighted delay and weighted average delay for 

PBPRA is consistently lower than RBS and RBS with substitutions. Then it was 

examined how the second allocation mechanism proposed, A-PBPRA, works 

compared to RBS and RBS with substitutions. The results showed that the total 

weighted and weighted average delay accrued by the flights with the proposed 

mechanism – A-PBPRA- is also much lower than the ones with RBS and RBS with 

substitutions. 

On a given day the slots allocated to an airline will not match exactly its fair share. 

Some days they will get more and some others less, so it is important to see if in the 

long run they will get on average what they want. As mentioned before, one of the 

goals of this research is to examine if this way of expressing priorities is valid. It was 

interesting to check if the delays occurred by the highest priority flights are less than 

the rest. In this problem there are two levels of randomness that were identified and 

were examined. The first is due to the random selection of airlines in the allocation 

algorithm. Even when the number of flights and slots stay the same, each time the 

allocation scheme is implemented the selection of airlines can differ. The second 

level of randomness comes from the fact that each time an AFP is implemented the 

number of flights that each airline has will vary. For the purpose of this research and 
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in order to be able to have multiple repetitions of the allocation mechanism (PBPRA) 

with varying input data, simulation was used.  

During AFPs the airlines in the long-run will be getting on average what they want. 

As it was observed the smaller carriers have good chances of actually getting slots in 

the constraint areas. For smaller airlines the variance of slots allocated tends to be 

smaller than the variances for the bigger carriers. It was also shown that for the flights 

with priorities 4 and 3 were most of them assigned to slots and most of the ones with 

priorities 2 and 1 were not. The weighted delays for the flights with priority 4 were 

less than the ones with priority 3. 

In the final part of this work the monetary benefits of improvements in strategic flight 

predictability as manifested through carriers’ scheduled block times were assessed. 

Airlines tend to add extra time to their scheduled block times in order to absorb 

delays and maintain their schedules intact as much as possible. It is a way to deal with 

unexpected delays that occur frequently and cause many problems to the airlines due 

to missed connections, crews being overtime, unhappy passengers etc. Once the 

variability of the actual block times reduces, the scheduled block times will reduce 

and airlines will be able to achieve the same levels of scheduled operations with 

fewer aircraft and less total crew duty time. 

This work contributed in establishing the process that airlines follow to set their 

scheduled block times, since scheduled block time is the key component of the 

benefits analysis. Then the benefits of reduced SBT for some major carriers and Low 

Cost Carriers were estimated. Finally the number of carriers included in the analysis 

was extended in order to estimate the benefits across the NAS. The results show that 
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the savings from aircraft saved and reduced pilot salaries can be very significant and 

reaching more than 100 million dollars per year for each of them. Also much savings 

can be achieved due to reduced flight attendants salaries, and they will be 

approximately a third of the other two categories.  

All this work could be extended in various ways. For the first part, a single queue 

model was proposed, so one of the next steps would be to extend it for multiple 

queues. Then a network of queues would be appropriate to depict the NAS. Similar 

work has been done in the past for waterway delays, which share similar traits, such 

as two-way traffic between nodes, interdependence between arrivals etc. (Dai and 

Schonfeld, 1998). For the second part a single FCA was considered with a 

predetermined duration and fixed area. It would be interesting to develop an 

algorithm that would model the presence of 2 FCAs in certain proximity so there will 

be many flights that are scheduled to pass from both areas. Also another extension 

would be to study a moving FCA or an FCA that is terminated early or have to be 

extended further. This work did not examine what happens to the flights that are left 

without an assigned slot, so further research on this can be conducted. Finally in the 

last part of this work the benefits of improvement in strategic flight predictability 

were estimated. The work can be extended for benefits of improvement in operational 

flight predictability. Carriers will be able to better respond to scheduled disruptions 

on a particular day of operations and this will allow them to better re-accommodate 

passengers, reduce crew overtime and wasted crew sources.  
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