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Woody encroachment and proliferation within dryland ecosystems is 

potentially the second largest portion of the North American carbon sink and one of 

the largest areas of uncertainty. This dissertation examines a semi-arid grassland 

located in southeastern Arizona to better understand woody encroachment, agents of 

change, and the resultant carbon storage from 1984-2008. The objectives were to 

quantify changes in woody cover, rank agent importance, estimate carbon density, 

and calculate voluntary market value. 



  

The first objective of mapping changes in woody cover was addressed using a 

Landsat time-series to measure woody cover and calculate the change, rate of change, 

and change relative to initial cover over the 25-year time period. Results show the 

change in woody cover varies spatially and ranges from approximately -2 to 11% 

with most areas experiencing a 5% increase and 92% relative increase over initial 

cover, indicating woody cover nearly doubled in the region.  

The second objective of ranking the importance of agents was achieved using 

an ensemble classifier. Agents examined included grazing, number of times burned, 

soil texture, soil productivity, elevation, slope, aspect, and initial woody cover. Initial 

woody cover, number of times burned, elevation, and grazing were ranked as the 

most important agents of woody encroachment, indicating the importance of 

historical land management and disturbance, frequent fire, topography and correlated 

precipitation, and land use.  

The third objective of producing carbon estimates and calculating economic 

opportunity in the voluntary carbon markets was accomplished by applying cover to 

biomass, root:shoot, and carbon equations to the final woody plant cover maps to 

calculate carbon stocks, carbon density, and voluntary market value. Results show 

very low carbon density in the study area relative to similar ecosystems and other 

ecosystems in general. Given the insignificant annual accumulation of carbon on the 

small ownership parcels, current low carbon trading prices, and high beef prices, 

management for storage is not economically viable in the study area at this time. 
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Chapter 1: Context of Woody Encroachment in Southeastern 

Arizona Semi-arid Grasslands 

1.1 Background and Context 

The Chihuahuan Desert ecoregion located in the southwestern United States 

and northern Mexico is experiencing land cover modification due to human and 

natural agents
1
 of change such as climate change and variability, fire suppression, 

grazing, and invasive species (Mittermeier et al., 2003). Chihuahuan Desert 

grasslands are highly managed systems supporting rich biodiversity and many 

endemic species as well as providing a valuable economic resource for cattle-

ranching livelihoods. These grasslands share many characteristics with other managed 

grazing systems, which occupy 25% of the global land surface and are the most 

extensive form of land use on the planet (Asner et al., 2004). Grasslands around the 

globe are experiencing woody encroachment and increasing woody plant cover 

density, leading to diminished ecosystem processes and services (Wessman et al., 

2004; Humphrey, 1958). More information is needed regarding the rates, dynamics, 

and causes of increasing woody plant cover in Chihuahuan grasslands to inform 

efforts to preserve biodiversity and sustain ecosystem services. 

Woody encroachment has affected ~35,000 sq km, or 84 percent, of current 

and former grasslands in the United States (Gori & Enquist, 2003). Woody 

                                                 

1
 In the context of this dissertation, agents are the explanatory variables that may contribute to the 

proliferation or decline of woody plant cover. 
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encroachment has been documented (Archer, 1994; Van Auken, 2000) in Northern 

Chihuahuan Desert semi-arid grasslands and, in particular, the semi-arid grasslands of 

southeastern Arizona, but with varying results depending on location and timeframe. 

Grasslands in southeastern Arizona are threatened by substantial woody 

encroachment that began in the mid to late 1800s (Hastings & Turner, 1965; Bahre, 

1991). This increase was caused primarily by increased grazing (Bock & Bock, 

2000), wildfire suppression (Humphrey, 1958), reversal of the Native American 

intentional burn regime (Swetnam, 1990), and increased winter precipitation in some 

decades (Archer et al., 1995; Brown et al., 1997). The agents of woody plant 

encroachment and their impacts on the spatial patterns of woody plants, patch 

dynamics, and recruitment are poorly understood (Turner et al., 2003; Bock & Bock, 

2005).  

Land management is a critical determinant of land cover in this region, yet 

management for sustainability presents a challenging goal. Northern Chihuahuan 

Desert grasslands were historically managed with frequent fire by Native Americans 

in order to maintain open and productive grasslands for hunting purposes (Pyne, 

1982). Fires were burned during all seasons and with greater frequency than the 

natural fire return interval (Bock and Bock, 2005). No large-scale livestock 

operations existed on the land and grazing was limited to wild animals and small 

herds of domesticated animals (Turner et al., 2003).  

The first small populations of cattle arrived in the region shortly after 

Coronado’s exploration of the region in 1540, which noted significantly fewer woody 

plants than seen today (Bock and Bock, 2005). The Gadsden Purchase in 1854 



 

 

3 

 

prompted an increase in settlement and cattle in the region and enabled livestock 

grazing to become the primary land use across the American West (Bock and Bock, 

2005). Settlement required significant wood cutting and increased grazing led to 

prairie dog extirpation (Turner et al. 2003). Substantial westward expansion to the 

region began in the 1870s and led to intensive grazing and trampling of the landscape 

with subsequent changes in grassland composition, including an increase in woody 

plant cover (Bahre, 1991). At the same time, the forced removal of Native Americans 

from the landscape brought an abrupt end to the frequent fire return interval (Pyne 

1982). Grazing aided woody plant establishment, since cattle fed on woody plant 

seedpods and dispersed the seeds around the grasslands with a supply of fertilizer 

(Humphrey, 1958). Grazing also reduced the fine fuels needed to carry surface fire 

across the landscape, further enabling woody plant establishment in the region. 

Chihuahuan grasslands require frequent, low intensity fires to keep woody 

encroachment from mesquite (Prosopis glandulosa and Prosopis velutina), juniper 

(Juniperus monosperma), creosote bush (Larrea tridentata), and other species in 

check.  

Today, grazing and fire suppression/exclusion are still important agents in the 

region, with ~90% of the grasslands open to grazing (McNab and Avers, 1994) and 

fire suppression policies to protect natural resources and property, reversing the land 

management regime of Native American. Land management occurs within both the 

public and private domains and refers primarily to grazing management, although 

some grassland units are managed for historical preservation, biodiversity 

conservation, mining, and military exercises. Land management decisions, such as 
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grazing practices, woody plant removal methods (e.g., mechanical and chemical 

thinning), drought management, and erosion management, impact woody plant 

proliferation or decline in the region. 

While not necessarily agents on their own, site specific characteristics such as 

soils, topography, and initial woody plant cover can influence woody plant 

encroachment. Soils can influence the rates of growth and recruitment of woody 

plants (Browning et al. 2008). Topography, in particular elevation and related 

climatic characteristics, can also influence growth and recruitment (Franklin 1998). In 

addition, initial woody cover at the start of a given time series analysis is a result of 

the impacts of past agents and recruitment and influences future growth, recruitment, 

and patch dynamics unless altered through fire or human removal of woody plants. 

Climate change and variability is also a contributing factor to woody 

encroachment in Chihuahuan grasslands. Paleo-records indicate an oscillation 

between grassland and shrubland in this region over the past 10,000 years due to 

temperature and precipitation fluctuations (VanDevender and Spaulding, 1979). 

These records also suggest that the grass species that dominated the region up until 

~50-100 years ago, black grama (Bouteloua eriopoda), was a relic of a cooler and 

wetter post-ice age climate (Fredrickson et al., 2005). In addition, El Niño Southern 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) cycles have strong, phase-

dependent relationships with winter precipitation totals in the region, and woody plant 

growth is correlated with these totals (Neilson, 1986). El Niño years lead to increased 

winter precipitation in the region while La Niña years lead to decreased precipitation. 

Drought over long periods of time can lead to widespread woody plant mortality. 
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Freeze events can also cause mortality (Bock and Bock 2005). 

Figure 1-1 shows a conceptual model of woody plant cover and agents and 

conditions of change based on the scientific literature. Increased carbon dioxide, 

erosion, soil texture, higher soil productivity amounts, intense grazing followed by a 

reprieve, and terracing can all encourage woody plant establishment and growth. 

Current cover also serves to encourage increasing cover through growth and 

recruitment. Increased carbon dioxide encourages an increase in foliage, leading to a 

denser canopy and a greener signal in spectral approaches (Donohue et al. 2013). 

Erosion is usually associated with intense grazing, where grasses are eaten to ground 

level and hooves churn soils (Turner et al. 2003). Clayey soil textures exhibit faster 

rates of woody plant growth after plants establish (Browning et al. 2008). More 

productive soil types can lead to greater woody plant cover than less productive soils 

(Turner et al. 2003). Intense grazing causes erosion, eliminates fire, and encourages 

cattle to feed on mesquite seedpods and subsequently deposit them throughout the 

grasslands (Bahre 1991). Mesquite seedlings are usually eaten by cattle until there is a 

reprieve from intensive grazing, then they flourish in the open landscape. Terracing 

and other water and erosion control land shaping projects collect water and seeds and 

make an ideal location for seedlings to sprout (Bock and Bock 2005). 
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Figure 1-1. Conceptual model of woody encroachment and agents and conditions of 

change based on the scientific literature. Green boxes and arrows represent agents 

which encourage woody plant growth, red boxes and arrows represent agents which 

discourage woody plant growth, and grey boxes and arrows represent agents which 

may encourage or discourage woody plant growth. Boxes with dashed outlines, 

prairie dogs and wood cutting, represent historical agents that no longer affect woody 

plants in the study area but may explain spatial variability in cover amounts. 
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Freeze events, prolonged drought, prairie dogs, mechanical and chemical 

thinning, woodcutting, prescribed fire, and natural fire all serve to damage and kill 

woody plants. Freeze events can cause widespread mortality among mesquite and 

other sensitive species (Bock and Bock 2000); however, there has not been a freeze 

event in the study area since 1978. Prior to 1978, freeze events were more common in 

the region. Prolonged drought can also cause mortality as the water table drops below 

the reach of deep tap roots. Prairie dogs were common in the study area prior to 

settlement and removed woody plants from the landscape, but they were extirpated 

with intensive grazing in the region (Archer et al. 1987). Mechanical and chemical 

thinning techniques have been used for the past 100 years, but they are highly 

localized in space and time (Turner et al. 2003). Woodcutting was common during 

settlement and especially near mines (Bahre and Hutchinson 1985), but is no longer 

needed. Prescribed fire remains a popular tool for reducing woody plant cover and 

slowing spread, and natural fire from lightning strikes can also lead to mortality if let 

burn policies are in place. However, effectiveness is dependent upon fine fuels 

available to facilitate fire spread and the size of the woody plants (Pyne 1982). Larger 

plants usually survive with damage ranging from light defoliation to top killing. 

Grazing is argued in the scientific literature as both an agent of increase and 

decrease. Grazing can increase woody plant cover through reduced fine fuels and 

resultant reduced fire spread as well as through seed scarification and dispersal. 

Grazing can decrease woody plant cover by preventing new woody plants from 

establishing. Topography can also impact woody plant cover; however, the impacts of 

slope and aspect are muted in this study area due to the flat and rolling terrain. 
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While it is understood that historical land use, land management, and climate 

variation have facilitated initial woody encroachment in the region, the current 

relative influence of land use, land management, fire/fire suppression, precipitation 

variability, and site specific conditions on change in woody plant cover remains 

unclear. Ongoing research indicates that land use, land management, and fire 

suppression are the primary agents causing increased woody plant cover in 

Chihuahuan grasslands. However, there is disagreement as to the dominant agent(s) 

causing this land cover modification. Some scientists advocate climate change and 

variability as the dominant factor (VanDevender and Spaulding, 1979; Neilson, 

1986). Other scientists believe the introduction of intensive livestock grazing to an 

ecosystem not adapted to large herbivores is primarily responsible for the land cover 

modification (Van Auken, 2000; Drewa et al., 2001; Kennedy and Bock, 2005). In 

particular, overgrazing, where grasses are exposed to an overpopulation of animals 

relative to the carrying capacity of the ecosystem and/or grazed intensively by 

livestock over an extended period of time without a sufficient recovery period, is a 

popular explanation for woody encroachment and expansion in the region (Kennedy 

and Bock 2005). However, many local ranchers and some scientists insist that 

sustainable grazing reduces woody encroachment into grasslands (Washington-Allen 

2004; Browning et al. 2009; Browning and Archer, 2011). Finally, some scientists 

believe that fire suppression caused by reduction in fine fuels from grazing, fire 

suppression policy, infrequent or non-existent prescription fire, and/or reversal of 

Native American land management regimes is the primary cause (O’Neal, 2004; 

Hutchinson et al., 2000; Sayre, 2005; Bock et al., 2007; Bock and Bock, 2005; 
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Humphrey, 1958). 

There has been little research at the landscape scale to quantify the relative 

influence of these human and natural agents of change in fine temporal and spatial 

detail and with consideration for synergies in order to determine the dominant agent. 

While scientists have considered one or two of these agents, few have considered all 

in conjunction with site specific conditions. Bahre and Shelton (1993) performed a 

meta-analysis on woody plant cover change in southeastern Arizona and found broad 

disagreement regarding the type and extent of change occurring as well as the agents 

responsible for observed changes. They attributed the wide range of results to the 

narrow scope: single or dual agents considered, highly localized plot level study 

focus, short temporal duration, and single species focus are among the limitation of 

the broader applicability of most of the studies. Many acknowledged these limitations 

and recommended long-term, landscape-level research with consideration for all 

possible agents of change. Bock and Bock (1997) considered the relative influence of 

all three agents in their study in southeastern Arizona; however, they only examined 

changes in two woody plant species, the research was highly localized with plots 

collected in two sites covering less than 1 km
2
 each, and there was only one fire event 

during the 13-year time series. A review of the scientific literature shows several 

other studies that have examined the relative influence of grazing, fire, and 

precipitation on woody plant cover in similar grasslands located in Arizona (Geiger 

and McPherson, 2005), New Mexico (Drewa and Havstad, 2001), Texas (Brown and 

Archer, 1999), and Argentina (Dussart et al., 1998). However, all have similarly 

limited scope. In addition to the highly localized studies, there are several continental- 
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(Bucini and Hanan, 2007; Sankaran et al., 2005; Sankaran et al., 2008) and landscape-

scale (Roques et al., 2001) studies in Africa that avoid the majority of pitfalls 

described earlier by Bahre and Shelton (1993), in part through the use of remotely 

sensed data. This dissertation serves to fill the gap in the scientific literature by 

providing a landscape-level assessment of the relative influence of natural and 

anthropogenic agents on woody plant cover change in southeastern Arizona 

Chihuahuan Desert semi-arid grasslands. 

Contrary to conservation and livestock forage concerns, woody encroachment 

has a likely positive impact on the carbon cycle through increased carbon storage. 

Woody encroached grasslands account for approximately 30 to 35 percent of 

terrestrial net primary productivity (Field et al., 1998) and contain more than 33 

percent of the above- and belowground carbon reserves (Allen-Diaz, 1996). Woody 

encroachment is ongoing, leading to increased carbon accumulation on the landscape 

(Archer et al., 2001; Wessman et al., 2004). The increase in woody plant abundance 

is well studied (Archer, 1994; Van Auken, 2000), but the resultant impact on 

terrestrial carbon cycling remains poorly understood and presented generalizations 

are controversial (House et al., 2003) and with significant uncertainty (Houghton et 

al., 1999; Pacala et al., 2001; Schimel et al., 2001; Houghton, 2003 a,b). 

The information provided by this research will significantly enhance scientific 

understanding of this system, impact land management decisions in the region, 

improve carbon accounting in woody encroached grasslands, and help understand the 

region’s economic, ecological, and carbon storage and offset future. Further, results 

from this research will enable land change and carbon cycle scientists and resource 
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managers to develop new models and applications to answer both natural and societal 

land management questions and support decision-making processes within a dual use 

livestock and carbon storage system. Finally, the findings on carbon storage and 

uncertainty will provide information relevant to the understanding of the potential of 

woody encroached grasslands in terms of carbon markets. 

 

1.2 Research Objectives 

The goal of this research is to develop a remote sensing and statistical 

methodology to quantify changes in woody plant cover, rank the influence of grazing, 

fire, precipitation variability, and site specific characteristics on changes in woody 

plant cover, and estimate carbon storage and value from 1984-2008 (25 years) in the 

project study region comprised of Chihuahuan Desert grasslands and located in 

southeastern Arizona. This research addresses the scientific question: How do 

grazing, fire, precipitation variability, and site specific characteristics influence 

woody plant cover and carbon sequestration in Chihuahuan Desert semi-desert and 

plains grasslands? The hypothesis of this dissertation research, based upon the body 

of scientific literature on this topic, is: Fire is the most influential control on woody 

plant cover and associated carbon stocks in the study region, followed by grazing, 

precipitation variability, and site specific conditions. This hypothesis was tested 

using a decision tree classifier approach, informed by remote sensing-based data 

products developed within specific project objectives of this dissertation research. To 

answer the science question above, the project tasks were to: 
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1. Develop quantitative maps of woody plant cover annually from 1984 to 2008 and 

produce spatially explicit maps of woody plant cover change over the time period. 

2. Map burned areas from 1984 to 2008 in the study region.  

3. Map land use and land management in the study region. 

4. Map edaphic and topographic characteristics in the study region. 

5. Develop a decision tree approach to rank the influence of agents on woody plant 

cover change in the study region. 

6. Identify the dominant agent of woody plant cover change in the study region. 

7. Use woody plant cover and change maps to estimate carbon accumulation and 

density on the landscape. 

8. Determine voluntary market value of carbon and the economic viability of carbon 

trading versus cattle carrying capacity losses due to woody encroachment. 

 

1.3 Outline of the Dissertation 

This dissertation contains five chapters, including an introduction chapter, 

three body chapters, and a conclusion chapter (Figure 1-2). Each body chapter is 

ordered based on the project tasks described above, where objective 1 is discussed in 

chapter 2, objectives 2-6 are discussed in chapter 3, and objectives 7 and 8 are 

discussed in chapter 4. Chapters 3 and 4 build upon the work presented in chapter 2. 

The final chapter focuses on the implications of this research and provides future 

research directions. 
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Figure 1-2. Dissertation structure and work flow.  

Chapter 1 

Context of Woody Encroachment in Southeastern Arizona  

Semi-arid Grasslands 

Chapter 2 

Woody Plant Encroachment in Semi-arid Madrean Grasslands of 

Southeastern Arizona 

Chapter 3 

Assessment and Ranking of the Agents of Woody Plant Encroachment and 

Expansion in Southeastern Arizona 

 

Chapter 4 

Carbon Budget Accounting in a Woody Encroached Grassland: Use of Locally 

Derived Allometric Equations for Biomass and Carbon Accumulation 

Estimation and Associated Uncertainty 

Chapter 5 

Conclusions about Woody Encroachment, Agents of Woody Expansion, and 

Carbon Sequestration in Woody Encroached Grasslands 

Introduction, background, context, rational, research objectives, and 

dissertation structure 

Map woody plant cover annually; develop change, rate of change, and 

relative change maps; assess spatio-temporal patterns 

Map agents of woody plant cover change and site specific 

characteristics; rank the importance of each 

Use woody plant cover maps and allometric equations to derive carbon 

sequestration; discuss uncertainty; calculate value of carbon 

Summary of findings, major contributions, implications for rangeland 

management and carbon accounting, future work 
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Chapter 2 presents a method for mapping and monitoring changes in woody 

plant cover using spectral mixture analysis (SMA) and trend analysis on Landsat TM 

data. The algorithm takes advantage of regional phenological characteristics of 

senesced grass and green woody plant cover to extract the percentage of each pixel 

containing green vegetative cover annually, track the trend of the percentages from 

1984 to 2008, and compute the amount and rate of change as well as the change 

relative to the initial amount of woody plant cover over the time period. The woody 

plant cover change product generated in this chapter is central to the objectives of this 

dissertation and is used in the research discussed in chapters 3 and 4.    

Chapter 3 presents an analysis of the impacts of fire, anthropogenic, edaphic, 

and topographic agents on woody plant cover in Chihuahuan Desert grasslands. The 

analysis uses the Random Forests decision tree approach to rank the influence of each 

variable and determine the dominant agent of woody plant cover change in the region. 

The woody plant cover change product produced in chapter 2 is used as the response 

variable. Explanatory variable inputs include: number of times burned, grazing, soil 

texture, soil productivity, elevation, aspect, slope, and initial woody plant cover 

(chapter 2). Precipitation trends are discussed but not incorporated into the Random 

Forests analysis due to a lack of modeled data. Variable influence rankings are 

analyzed to better understand the degree to which each independent variable 

influences woody plant cover change and to identify the dominant agent of change.  

Chapter 4 builds on chapter 2 by applying cover to biomass and carbon 

equations to the initial and final woody plant cover maps in order to produce carbon 

storage and density estimates for the end of the study time frame as well as the 
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change over time. Two locally derived cover to biomass equations, one for fire 

affected areas and one for unaffected areas, are applied. In addition, this chapter 

explores the feasibility of entering the voluntary carbon markets given current prices. 

Chapter 5 provides a comprehensive summary of the dissertation and the 

methods and results presented in chapters 2-4. It discusses implications and 

opportunities provided by this research for rangeland management and carbon 

accounting in this region and similar ecosystems around the globe. It also discusses 

potential extensions of the algorithms developed and future research directions. 
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Chapter 2: Woody plant Encroachment in Semi-arid Madrean 

Grasslands of Southeastern Arizona 

2.1 Introduction  

Woody encroached grasslands cover approximately 40 percent of the Earth’s 

land surface (White et al. 2000). They account for 30-35 percent of the terrestrial net 

primary productivity (Field et al. 1998) and provide valuable ecosystem services, 

such as habitat and biodiversity, and support economic livelihoods, including 

livestock grazing. Managed grazing systems occupy approximately 25 percent of the 

global land surface and are the most extensive form of land use on the planet (Asner 

et al. 2004).  

Over the past 150 years, grasslands worldwide have been experiencing land-

cover change in the form of woody plant encroachment at the expense of grass cover, 

leading to diminished ecosystem processes and services and (Wessman et al. 2004). 

In the United States, woody plant expansion has affected over 35,000 sq km (84 

percent) of current and former grasslands (Gori and Enquist 2003). The shift in 

grassland species composition and increase in woody plant abundance has been 

documented extensively (e.g. Archer 1994; Van Auken 2000); however, woody plant 

cover dynamics and rates of change remain poorly understood. Spatially explicit 

identification of the presence or absence of change and quantification of the rate and 

amount of change are critical to understanding woody plant encroachment and 

making informed land management decisions. 
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The Madrean Archipelago ecoregion is one of the most biologically diverse 

systems in the world in terms of flora and fauna (Koprowski 2005).  It lies within the 

transition zone of the Chihuahuan and Sonoran Deserts and the Sierra Madre 

Occidental and Rocky Mountains, creating a complex landscape of merging 

ecosystems and forming a foundation for unique ecological interactions (Skroch 

2008). Grasslands within the Madrean Archipelago are highly managed systems 

supporting rich biodiversity and many endemic species. The grasslands provide a 

valuable economic resource for cattle-ranching livelihoods; 90 percent of the 

grasslands are open to grazing (McNab and Avers 1994). Madrean grasslands are 

threatened by the significant woody plant expansion that has occurred since the late 

1800s (Hastings and Turner 1965; Bahre 1991). As grass cover decreases, grassland 

fauna also decrease with the most notable decreases seen in bird species. Woody plant 

expansion has not occurred uniformly in space nor time, and the distribution, patterns, 

rates, and dynamics are poorly understood (Turner et al. 2003; Bock and Bock 2005). 

More information on the characteristics of woody plant expansion is needed to guide 

land management decisions, preserve biodiversity, and sustain economic livelihoods. 

Identification and quantification of change in aboveground woody plant 

biomass through direct sampling (e.g., field observation and collection for weighing) 

is time and labor intensive and, therefore, not feasible for regional scale and coarser 

studies. Remotely sensed data sources provide a comprehensive way to monitor land-

cover and land-use dynamics (Coppin et al. 2004). In particular, Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data offer a strong 

combination of spatial resolution, spectral bands, temporal resolution, and especially 
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time-series length for gathering more information on the characteristics of woody 

plant expansion in grasslands. With the full Landsat data archive freely available, the 

transition from dual-date change detection studies to more robust and temporally 

complete long-term trend analysis studies is made possible. 

One challenge with using satellite-based remotely sensed data for landscape 

scale studies is spatial resolution and resultant pixel size. Landsat, like many satellite-

borne sensor systems, has an instantaneous field of view (IFOV) large enough that 

most pixels contain mixtures of several land-cover types (Adams, Smith, and 

Gillespie 1993). Further, there is significant surface variability as woody plants 

establish and encroach. Crown diameter varies with plant age from < 1 m to 4 m and 

spatial distribution of woody plants within a pixel ranges from a single plant to plants 

dotting the landscape to patches of plants to near thicket stands depending on site-

specific conditions. This sub-pixel mixing dictates that pixel reflectance cannot be 

interpreted simply in terms of the properties of a single land-cover type (Townshend 

et al. 2000). Landscape reflectance is instead determined by variations at the pixel 

level in the proportions of each land-cover type (Asner 1998). 

To overcome this limitation, I use Spectral Mixture Analysis (SMA) to extract 

the per-pixel proportions of each land-cover type. SMA is a scene-independent sub-

pixel linear enhancement technique that decomposes the reflectance of each pixel into 

biophysically robust estimates of land-cover proportions based on the input reference 

spectra (Roberts et al. 1998). SMA proportions describe a physical property of the 

landscape, therefore lending themselves to interpretation based on established 

ecological knowledge in the region. SMA has proven to be an effective method for 
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land-cover type discrimination and change monitoring (Adams, Smith, and Johnson 

1986; Roberts et al. 1993; Townshend et al. 2000). SMA was originally developed in 

association with hyperspectral image analysis; however, the method also has been 

proven to work well on multispectral image analysis (Adams et al. 1995; Small 2001, 

2003). In addition, SMA has been applied with success to semi-arid and low biomass 

ecosystems (Elmore et al. 2000; Okin et al. 2001, Xiao and Moody 2005). Since its 

first use for change detection in the early 1990s, applications of SMA to land-cover 

change and trend analysis have become increasingly common (Adams et al. 1990; 

Rogan et al. 2002; Roder et al. 2008). Previous work in the Madrean Archipelago 

ecoregion demonstrated that SMA, coupled with trend analysis, is an effective tool 

for mapping post-fire woody plant recovery (O’Neal et al. 2005). 

My aim is to estimate changes in woody plant cover over a twenty-five year 

time period in a semi-arid grassland experiencing woody plant encroachment in order 

to better understand the rate and amount of change as well as the spatial variability of 

change across the landscape. My research objectives for this work are to: 1) map 

woody plant cover at the Landsat-scale using a spectral unmixing approach; 2) track 

changes over the twenty-five year time period; and 3) explore spatio-temporal 

characteristics of woody plant cover initial, final, and change amounts over twenty-

five years.   
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2.2 Methodology 

2.2.1 Study Area 

This study focuses on the Madrean Archipelago ecoregion (Omernik 1987), a 

part of the Basin and Range physiographic province (Fenneman and Johnson 1946). 

The ecoregion is composed of “mountain islands” among “desert seas” and is known 

as the Madrean Sky Island complex (Heald 1967; Warshall 1995). Elevation ranges 

from approximately 600 m to over 3000 m. Lowest elevations are comprised of 

Sonoran or Chihuahuan Desert scrub, which transition into semi-desert grassland and 

plains grassland, then into encinal woodlands and pine-oak forests, and finally into 

montane and subalpine forests (Whittaker and Niering 1965; Lowe 1972; Brown 

1994). Elevation and aspect control biome location and ecotone gradients, in 

conjunction with associated precipitation, temperature, and evapo-transpiration 

(Shreve 1942). I am interested for this study in both the Plains type and Chihuahuan 

semi-desert type grasslands located at intermediate elevations of 1300 m to 1600 m.  

Within the ecoregion, I focus on the grasslands within the Sonoita Valley and 

San Rafael Valley, near the intersection of Pima, Santa Cruz, and Cochise Counties in 

southeastern Arizona (Figure 2-1). The study area covers approximately 750 km
2
, 

extends northward 62 km from the United States-Mexico border, and lies 

approximately 75 km southeast of Tucson, Arizona, the nearest large metropolitan 

area. Mean annual precipitation ranges from 360 mm to 460 mm and is correlated 

strongly with elevation (Hibbert 1977; Osborn 1984). Approximately 50-60 percent 

of annual precipitation falls during the summer monsoon season from July through 
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September while the remainder falls during the winter months from November 

through April (Haney 1985; Bock and Bock 2000; McLaughlin et al. 2001). May and 

June, known as the dry monsoon season, are typically the driest months of the year 

with little or no precipitation. During this season, woody plants and succulents remain 

green, grasses senesce, soils remain dry, and few clouds are present, producing 

advantageous regional phenology for greater spectral distinctions and facilitating 

easier extraction of per-pixel abundance of woody plant cover. The primary woody 

plant species present in the study area is mesquite (Prosopis velutina) (Bock and 

Bock 2005) and the secondary species is burroweed (Isocoma tenuisecta); however, 

mesquite represents 90 percent of canopy area and 93 percent of woody biomass 

(Huang et al. 2007). Several other woody plant species, including juniper (Juniperus 

monosperma), Emory oak (Quercus emoryi), Arizona white oak (Quercus arizonica), 

and creosote (Larrea tridentata), are found in limited quantities in the upper (juniper 

and oaks) and lower (creosote) elevational ecotones present at the edges of the study 

area.   

The study area (Figure 2-1) was delineated using: A) a digital elevation model 

(DEM) expressed in meters; B) Biotic Communities of the Southwest GIS layers 

(Brown 1994); and C) The Nature Conservancy’s Arizona Grassland Assessment 

(Gori and Enquist 2003). The study area focuses on semi-desert and plains 

grasslands; therefore, large drainages were removed to avoid sacaton grasslands, large 

trees, and dense shrub thickets since they are not relevant to this study.  
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Figure 2-1. Study area boundary derived from: A) a digital elevation model (DEM) 

expressed in meters; B) Biotic Communities of the Southwest GIS layers; and C) The 

Nature Conservancy’s Arizona Grassland Assessment. 
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2.2.2 Data and Pre-processing  

I acquired one Landsat 5 Thematic Mapper (TM) path 35 row 38 image per 

year from 1984 through 2008 for a total of twenty-five years. Near-anniversary dates 

during the dry monsoon season in May and June were selected preferentially to 

reduce phenological and illumination differences that could affect trend analysis and 

subsequent change mapping (Table 2-1). The image stack was co-registered to ensure 

geometric correction to within 7 m and converted to surface reflectance values using 

the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

processing chain (Masek et al. 2006). This data pre-processing scheme ensures 

accurate spatial co-registration and precise per-pixel change tracking through the 

time-series, which facilitates the spectral unmixing and trend analysis approach. 
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Table 2-1. List of Landsat TM data used in this study with acquisition and 

illumination characteristics. 

 

Acquisition    Illumination  

Year Calendar 

Date 

Julian 

Date 

Time 

(GMT) 

Solar Zenith 

(deg) 

Solar 

Azimuth 

(deg) 

1984 20-Jun 172 17:20:26 27.84 99.42 

1985 9-Jul 190 17:22:02 28.76 101.18 

1986 10-Jun 161 17:15:57 28.57 99.72 

1987 29-Jun 180 17:16:55 28.98 98.83 

1988 14-May 135 17:22:26 28.51 109.79 

1989 18-Jun 169 17:19:53 27.90 99.44 

1990 21-Jun 172 17:12:13 29.62 97.83 

1991 23-May 143 17:14:38 29.31 104.61 

1992 10-Jun 162 17:15:29 28.65 99.55 

1993 29-Jun 180 17:14:28 29.58 98.40 

1994 15-May 135 17:11:33 30.69 106.83 

1995 19-Jun 170 16:58:03 32.53 95.50 

1996 5-Jun 157 17:04:20 30.87 98.49 

1997 23-May 143 17:20:42 27.93 105.88 

1998 27-Jun 178 17:30:04 26.15 101.40 

1999 30-Jun 181 17:29:51 26.39 101.50 

2000 16-Jun 168 17:28:26 26.04 101.37 

2001 3-Jun 154 17:32:24 25.13 104.94 

2002 21-May 141 17:28:49 26.58 108.69 

2003 8-May 128 17:27:09 28.55 114.01 

2004 11-Jun 163 17:33:23 24.84 103.26 

2005 14-Jun 165 17:39:35 23.64 104.28 

2006 1-Jun 152 17:44:24 22.67 108.96 

2007 3-May 123 17:46:41 25.91 122.55 

2008 6-Jun 158 17:39:58 23.53 105.96 

 

2.2.3 Spectral Mixture Analysis 

SMA estimates land cover proportions by modeling the spectral response of 

each pixel as a linear combination of spectral signatures (“endmembers”) (Rogan and 

Franklin 2001). Small (2004) found the dimensionality of Landsat TM data best 
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suited to spectral unmixing containing four endmembers. I evaluated image spectra to 

derive four image-based endmembers: green vegetation (mesquite thickets), non-

photosynthetic vegetation (senescent grasslands and reference spectra), soil (playa), 

and photometric shade (deep water [Adams et al. 1995]) (Figure 2-2). Although I use 

only the green vegetation endmember to estimate woody plant cover, the other 

endmembers are necessary to ensure accurate SMA model performance. 

 

 

Figure 2-2. Endmember spectra used in SMA. 
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SMA produces one image for each endmember depicting the per-pixel 

proportions of the corresponding land-cover type and one root mean-square error 

(RMSE) image for all endmembers indicating the endmembers’ goodness of fit 

within the SMA model. SMA uses the following linear equation that calculates a 

least-squares best fit for each pixel (Shimabukuro and Smith 1991): 





N

i

bbiib EF
1

,
 

where 
b  is the reflectance for each band (b), N is the number of endmembers, Fi is 

the abundance or fraction of each endmember i, bi ,  is the reflectance of endmember 

i at band b , and Eb  is the residual term at band b  (Roberts et al. 1998). Individual 

fractions are not constrained to unity and can be negative or super-positive (i.e., 

greater than 100 percent); however, well-constructed SMA models should produce 

physically reasonable endmember fractions without being constrained (Elmore et al. 

2000). SMA model performance and fit is assessed using the RMSE equation: 

2/1
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N

b
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where N is the number of bands and Eb is the residual or error for band b. Acceptable 

mixing model results usually have an overall RMS threshold error of ~1 percent of 

the dynamic range of surface reflectance values within an image (Roberts et al. 1998). 

If the RMSE values are too high and/or if there are many negative or super-positive 

values, then the endmembers are not representative of the scene components and/or 

an endmember is missing. 
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2.2.4 Validation Dataset 

In addition to using the RMSE to evaluate SMA model goodness-of-fit, I also 

validated woody plant cover measurements produced from SMA using measurements 

derived from a high spatial resolution image. The 1 m spatial resolution color infrared 

aerial photo was classified using Spectral Angle Mapper (SAM) classification (Kruse 

et al. 1993) with training areas derived from visual analysis and supported by data 

collected and photos taken during a field data collection trip. SAM enables 

comparison of image spectra to a known spectra or endmember. The algorithm 

considers both spectra as vectors and calculates the spectral angle between them. 

Since SAM only considers vector direction and ignores vector length, the algorithm 

can be used to compare images with different illumination conditions. Each 1 m pixel 

was classified as woody cover (1) or not woody cover (0) then resampled to 0.5 m 

pixels to accomplish accurate aggregation to Landsat resolution of 28.5 m. I then 

classified the fractional woody plant cover into four stratifications of fractional cover 

(0.0-0.1, 0.1-0.2, 0.2-0.3, and 0.3-0.4) and used a stratified random sampling scheme 

to select 440 pixels for validation. The number of pixels selected in each stratum for 

validation is proportionate to the total numbers found in the study area. The total 

number of pixels selected for validation was limited by the number of pixels available 

in the two higher strata and the need for random selection. 

2.2.5 Trend Analysis 

Trend analysis is a widely used method for extracting information on 

ecosystem dynamics over an extended period of time (Hostert et al. 2003). I used 
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trend analysis to track per-pixel fractional woody plant cover over the time-series in 

order to determine the amount of change, rate of change, and percent change relative 

to initial cover across the region and characterize spatial patterns of change. I used the 

green vegetation fractional images produced from SMA for all twenty-five years to 

produce one trend line with an initial and a final point for each pixel to calculate 

change values.  

I opted for a robust regression approach instead of a simple linear regression 

in order to account for known outliers in the dataset resulting from fire-affected and 

developed areas. Once the robust regression fit line was determined, I calculated the 

amount of woody plant cover change by subtracting the initial point on the trend line 

from the final point. The rate of change was calculated by taking the derivative of the 

trend line. The percent change relative to initial cover was calculated by dividing the 

amount of change by the initial point on the trend line. A pixel with 25 percent initial 

cover and 50 percent final cover over twenty-five years therefore has a change of 25 

percent (50 percent – 25 percent), a rate of change of 1 percent per year (25 percent/ 

25 years), and relative change of 100 percent (or a 100 percent increase over the 

initial cover). 

2.3 Results 

2.3.1 Spectral Mixture Analysis 

I produced four fractional land-cover images representing woody plant cover, 

grass cover, soil, and shade as well as the RMSE image for each year of the twenty-
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five year study period. The selected endmembers and SMA model produced good 

results with overall low RMSE values. Only the green vegetation image representing 

woody plant cover was used in the trend analysis. 

I assessed the goodness of fit of the selected endmembers within the SMA 

model using the RMSE images produced for each year along with an evaluation of 

the range of values produced for each endmember. Mean RMSE values for all years 

fall below the 1 percent threshold suggested by Roberts et al. (1998), indicating the 

endmembers selected are representative of the land cover in the study area and fit 

well within the mixture model. Some of the ranges extend past the 1 percent mark; 

however, these numbers are outliers attributed to urban features, ecosystem 

transitional areas, and recent fires. The selected endmembers were not intended to 

model building materials, paving materials, desert scrub species (e.g., creosote), char, 

or ash, and it is not feasible to remove extraneous materials manually from each 

image. In addition, the ranges of fractional values produced by each endmember are 

physically reasonable as defined by Roberts et al. (1998) as falling between -0.01 and 

1.01.  

I validated SMA-produced woody plant fractional cover against woody plant 

cover classified using a 1 m spatial resolution aerial photograph (Figure 2-3). 

Validation results show a strong relationship between the SMA and high resolution 

cover amounts with an R
2
 value of 0.90. The relationship is very strong for lower 

cover quantities; however, as woody plant cover values increase, the relationship 

shows more variability. While cover amounts range from 0 percent to 100 percent, I 

only validated cover amounts up to 40 percent since there were too few points above 
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40 percent to ensure selection by stratified random sample, points above 40 percent 

are outliers, and those points are not representative of the study area. In addition, 

there are fewer points evaluated in the 30 percent to 40 percent cover amounts since 

the study area was constrained to grasslands. The validation results show the 

fractional woody plant cover amounts are most accurate in the plains and higher 

elevation open grasslands where woody plant species are found in smaller quantity.  

 

Figure 2-3. Green vegetation fraction validation comparing the woody plant cover 

measurements produced using SMA for 2001 (X axis) to woody plant cover 

measurements derived from a high spatial resolution image from the same year (Y 

axis). 
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2.3.2 Trend Analysis 

I used the trend analysis to derive initial woody plant cover, final woody plant 

cover, amount of change from initial to final, rate of change, and change relative to 

initial cover. The majority of the study area experienced an increase in woody plant 

cover during the time period extending from 1984 until 2008. The amount of change 

ranges from -80 percent to 85 percent; however, most values fall between -2 percent 

and 10 percent and the highest concentration of values is at 5 percent increase in 

woody plant cover (Figure 2-4). This equates to rates of change between -0.08 

percent and 0.4 percent across the study area with the highest concentration of values 

at 0.2 percent increase in woody plant cover per year. Rates account for plant growth, 

increased foliage, and new establishment. The areas experiencing the largest increases 

are located in the open grassland areas, with some anomalously large (>500 percent 

 

 

Figure 2-4. Histogram of woody plant cover fractional change values.  
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change relative to initial cover) increases located in developed areas and representing 

residential landscaping. The areas experiencing the largest decreases are located in 

higher elevations with a mix of mesquite, juniper, and oak species, smaller drainages 

experiencing tree mortality, recently burned plots, and recently cleared, developing 

areas representing new neighborhoods, recently planted vineyards, and equestrian 

facilities. Vineyards and exurban development have become important additions to 

the local economy in recent years. Many drainages exhibit modest declines in woody 

plant cover, most of which were not burned. This decline could indicate a dropping 

water table caused by ongoing drought.  

 Spatial patterns and boundary lines are visible throughout the region and are 

attributable to development, fire scars, grazed and ungrazed adjacent lands, and 

adjacent differences in grazing management (Figure 2-5). Developed and developing 

areas show a checkerboard pattern of substantial increases and decreases resulting 

from landscaping choices and land clearing. Fires occurring early and late in the trend 

analysis bias woody plant cover change amounts positively and negatively, 

respectively, resulting in visible boundary lines. In addition, grassland areas in the 

eastern portion of the study area show small decreases in woody plant cover, likely 

due to Fort Huachuca’s prescribed fire program (Gebow and Hessil 2006). Ungrazed 

lands show a greater increase in woody plant cover than adjacent grazed lands due to 

lower initial woody plant cover and comparable final woody plant cover. Some 

grazed lands experience greater increases in woody plant cover than adjacent grazed 

lands, likely due to differences in rangeland management practices, such as grazing 

intensity, rotational practices, and the type of cattle operation (e.g., cow/calf or steer) 
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Figure 2-5. Amount of woody plant cover change expressed as the total amount of 

change in fractional cover over twenty-five years. Positive numbers represent 

increase and negative numbers represent decrease. 
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(Doug Ruppel, Ranch Foreman, Babacomari Ranch, personal comm., 20 June 2008). 

Initial woody plant cover in the study area ranges from 0 percent to 100 

percent with most values between 2 percent and 14 percent and the highest 

concentration of values at ~5 percent (Figure 2-6). Cover amounts show distinct 

patterns of influence from elevation, grazing, fire, and development (Figure 2-7). 

Elevational gradients are visible, with higher elevations containing substantially 

higher woody plant cover amounts than middle and lower elevations. Ungrazed areas 

contain relatively low woody plant cover as compared to surrounding grazed areas. 

Some grassland areas are open and contain 5 percent or less cover with the exception 

of drainage areas. A visual inspection of Landsat Multispectral Scanner System 

(MSS) data collected prior to 1984 does not reveal any fire activity in areas of low 

initial cover amounts. Drainages are well defined by the initial woody plant cover 

product, indicating healthy trees and shrubs and adequate water table height.   

 

Figure 2-6. Histogram of initial woody cover fractional amounts. 
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Figure 2-7. Initial fractional woody plant cover derived from the first point on the 

trend line. 
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Final woody plant cover in the study area ranges from 0 percent to 100 

percent with most values between 6 percent and 16 percent and the highest 

concentration of values at ~10.5 percent (Figure 2-8). Bock et al. (2007) reported 

mean woody plant cover of 8.5 percent with a standard error of 2.3 percent in 2003, 

which matches well with my range of values and 2003-adjusted peak histogram value 

of 9.5 percent computed using the 0.2 percent rate of change and the five-year 

difference between 2003 and 2008. Chopping et al. (2008) reported mean woody 

plant cover of 18.6 percent with a standard deviation of 5.6 percent in 2002 using 

Multi-angle Imaging Spectro-Radiometer (MISR) data, which is double my 2002-

adjusted peak histogram value of 9.3 percent. The key confounding factor in the 

comparison of these two woody plant cover products is a fire that occurred just a 

month before image acquisition for each supporting dataset. The Chopping et al. 

(2008) product shows substantially higher values than my product in the burned area 

(my estimates of ~9-11 percent cover versus their estimates of ~25-28 percent cover) 

but closer values in the surrounding area (~3-10 percent difference). Spatial 

distributions of cover amounts are similar outside the burned area. Chopping et al. 

(2008) finds 90 percent of their modeled values are within 0.05 of the true value. 

Differences in the two products are likely attributed to the structural versus spectral 

approach.  
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Figure 2-8. Histogram of final woody cover fractional amounts. 

 

Final woody plant cover amounts show a similar pattern as initial cover 

(Figure 2-9). Higher elevations still contain greater amounts of woody plant cover 

relative to the surrounding area; however, higher elevation final woody plant cover 

amounts show little change and remain close to initial woody plant cover amounts. 

Elevational gradients are still visible, but blend in with some lower elevation areas as 

woody plant cover increases across the study area. Ungrazed areas contain woody 

plant cover amounts similar to adjacent grazed areas, indicating that cover has caught 

up in ungrazed lands. The grazed area with initial low woody plant cover located in 

the center of the study area has also caught up to surrounding grazed areas. No large 

grassland areas remain with 5 percent or less cover. Fire scars are visible in the 

easternmost portion of the study area (Fort Huachuca) due to their frequent prescribed 

burn program. Development is more widespread and visible with alternating high and 

low woody plant cover values. Drainages are not as well defined, indicating that  
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Figure 2-9. Final fractional woody plant cover derived from the last point on the trend 

line. 
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woody plant cover is declining in the drainages and increasing in the surrounding 

areas. A few isolated areas contain very high woody plant cover amounts. The likely 

cause of this this high amount of shrub cover is soil type or texture. Browning et al. 

(2008) found the rate of woody plant cover increase in clayey soils was 50 percent 

faster than in sandy soils.  

The change in woody plant cover relative to initial cover ranges from -81 

percent to 68,500 percent with most values between -30 percent and 350 percent and 

the highest concentration of values at ~60 percent (Figure 2-10). Relative change in 

woody plant cover highlights areas undergoing drastic and minor changes with 

consideration for the amount of woody cover present at the beginning of the study 

time period (Figure 2-11). Higher elevations show the smallest relative increases as 

well as decreases in woody plant cover, with near zero and negative values, indicating  

 

 

Figure 2-10. Histogram of change in woody plant cover relative to initial cover 

fractional amounts. 
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a potential negative relationship between elevation and woody plant cover change 

during the study time frame. Recently burned areas located within the eastern portion 

of the study area (Fort Huachuca) also exhibit steady state and decreasing woody 

plant cover due to the dampening effect of a late year fire on the trend line. 

Developed and developing areas show some negative relative woody plant change 

cover values mixed with some drastic relative increases. The grassland areas showing 

the highest amounts of relative increase in the study area are the ungrazed areas and 

the Las Cienegas National Conservation Area located in the central-western portion 

of the study area, which is grazed. 
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Figure 2-11. Factional woody plant cover change relative to initial cover in times 

increased/decreased. 
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Confidence intervals (95%) for the change in woody plant cover dataset range 

from 0.5 percent to 19 percent with most values falling between 1 percent and 5 

percent and the highest concentration of values at ~2.5 percent (Figure 2-12). The 

lowest values located in the center of the study area match boundary lines also seen 

within initial woody plant cover (Figure 2-13). The highest values are located in the 

easternmost portion of the study area as well as drainages and some isolated patches 

in the center of the study area. The eastern portion of the study area is the location of 

the prescribed fire program described earlier. Fire causes non-monotonic change and 

increases variability in the points used to create the trend line. Drainages are affected 

by image acquisition date, timing of rainfall, and water table depth, leading to 

increased variability. The patches of high confidence interval values are attributed to 

areas developed or cultivated during the study time frame. 

 

 

Figure 2-12. Histogram of confidence interval values (95%) for the change in woody 

plant cover dataset. 
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Figure 2-13. Confidence interval values (95%) for the change in woody plant cover 

dataset. 
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2.4 Discussion 

Results of the trend analysis show woody plant cover is still increasing in the 

study area and has not yet reached dynamic stabilization. Sankaran et al. (2005) found 

that maximum woody plant cover in areas receiving less than 650 mm/year mean 

annual precipitation has a positive linear relationship with mean annual precipitation. 

The linear relationship predicts that the study area, with a mean annual precipitation 

range of 360 mm to 460 mm/year, would have a maximum woody plant cover range 

of approximately 35 percent to 45 percent. Glendening (1952) offers a converging 

line of evidence in an adjacent study area at an overlapping but lower overall range of 

elevation and precipitation with a predicted maximum woody plant cover of 

approximately 30 percent. Final woody plant cover amounts from the trend analysis 

show that cover in the study area has not yet reached predicted maximums. Based on 

the most common final woody plant cover from the trend analysis (~11 percent) and 

the most common rate of change (0.2 percent), maximum woody plant cover in this 

study area will be reached between the years 2128 (35 percent) and 2178 (45 

percent), excluding confounding natural and human impacts on the landscape.  

 The sensitivity of the trend line is biased toward disturbances or changes in 

the earliest and latest years of observation, while disturbances or changes in 

intermediate years produce little effect on the trend line and resultant change 

amounts. The more images or points used in the trend line, the less sensitive the 

model is to deviations and outliers in single images or points on the trend line. Hostert 

et al. (2003) found linear trend analysis based on thirteen images over twenty years to 
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be robust, with most change less than +/- 2.5 percent when removing an image at the 

beginning or end of the trend line.  

Catastrophic, short-term disturbances can have a more significant effect on the 

trend analysis. Fires can falsely enhance or dampen change amounts depending upon 

when the fire occurs during the trend analysis time frame. If the fire occurs early, the 

initial woody plant cover amount is dampened, post-fire recovery occurs, and then 

new growth occurs, all of which produces an enhanced trend line due to the lowered 

initial woody plant cover. If the fire occurs late, the final woody plant cover amount 

is dampened, thus negating growth observed during the trend analysis and dampening 

the change amount or even turning a positive trend negative. Fires in this region often 

defoliate or top-kill (i.e., kill all aboveground biomass but leave the roots alive to 

resprout) woody plants rather than killing them; therefore, recovery can range from a 

single growing season for defoliation to several years for a top-killed plant with a 

healthy, established root system. Post-fire recovery occurs at a faster rate than normal 

growth. The study region experienced over two-hundred fires spread out over the 

twenty-five year time period, with some pixels burning up to seven times. The effects 

of frequent burning and burn severity on post-fire recovery patterns remain poorly 

understood . We need to better understand disturbances and agents of change in 

woody plant cover as well as their persistence in order to better predict future woody 

plant expansion and cover amounts. 

Woody plant cover may be influenced by the impacts of climate change and 

associated changes in atmospheric chemistry. Donohue et al. (2013) found a gradual 

greening of arid regions around the globe from 1982 to 2010 due to carbon dioxide 
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(CO2) fertilization. They estimate the 14 percent increase in atmospheric CO2 

measured during the time period led to a 5 – 10 percent increase in green foliage in 

water-limited warm, arid environments. In addition, they measure an 11 percent mean 

global, biome-level increase of woody plant cover in the same environments using 

products developed from Advanced Very High Resolution Radiometer (AVHRR) 

data that measure greenness as a proxy for cover. However, greenness is impacted by 

increased foliage density, meaning the actual increase in woody plant cover due to 

plant growth and new establishment is potentially as low as ~1-6 percent once I 

account for the increased foliage densification. This adjusted increase amount 

matches well with the adjusted Landsat-scale, SMA-derived increase of 5.8 percent 

based on 5 percent increase for 1984-2008 and a 0.2 percent rate of change per year 

for the four additional years. While CO2 fertilization  and the resultant increase in 

foliage has increased greenness, it is unlikely to produce significant influence on the 

trend analysis and change fractions since the SMA model incorporated four 

endmembers representative of the scene and the green fractions were based on dense 

mesquite thickets.  

 

2.5 Conclusions 

This study provides the first spatially explicit, landscape-scale, long-term 

assessment of woody plant cover dynamics in the study region. The methodologies 

employed are well established and advantageous to change detection work in a region 

with disturbances and human impacts. The isolation of woody plant cover at the 



 

 

47 

 

Landsat scale is possible when SMA is applied to imagery collected during the dry 

monsoon, and trend analysis using annual images offers a stable and accurate 

approach to change detection. This approach is more stable than simple dual date 

methods (Coppin et al. 2004). Woody plant cover is still increasing across most of the 

study area with the exception of some higher elevation areas, recently burned areas, 

and human impacted areas. Climate change and resultant changes to atmospheric 

chemistry may influence the increase in woody plant cover through increased foliage 

and greening (Donohue et al. 2013).  

The foundation of land management and conservation programs relies on 

accurate, wide area estimates of woody plant cover. Indirect assessments using 

satellite and aerial remotely sensed data are the only feasible method for mapping and 

monitoring woody plant cover over large areas. The accuracy of current estimates 

could be improved upon by incorporating disturbance history information, conducting 

field work at set distance intervals and within ecotones to estimate woody plant 

species proportions in each location, assessing quantitatively the contribution of CO2 

fertilization and increased foliage density versus woody plant growth and new 

establishment, and adding high resolution satellite and airborne data resources. 

Increased ability to quantify amounts of and changes in woody plant cover on the 

landscape as well as the accuracy of measurements will benefit decision makers 

responsible for implementing land management protocols conducive to maintaining a 

productive and diverse landscape. 
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Chapter 3: Assessment and Ranking of the Agents of Woody 

Plant Encroachment and Expansion in Southeastern Arizona 

3.1 Introduction 

See section 1.1 for a complete description of the problem, context, and agents 

of woody plant cover change.  

My research objectives were to map and analyze a large suite of previously 

identified agents of woody plant cover change as well as the local site specific 

characteristics and rank the importance of each in determining the amount of woody 

plant cover change over a twenty-five year period.   

 

3.2 Methodology 

3.2.1 Study Area 

See section 2.2.1 and Figure 2-1 for a complete description of the study area. 

 

3.2.2 Overview of Agent Datasets 

 Using the scientific literature discussed in section 1.1 as a guide for selecting 

explanatory variables, I included in this study agents related to fire, human activity, 

soils, topography, historical influence, and precipitation. These agents are associated 

with woody plant encroachment most prominently within the literature and provoke 

the most debates regarding the most influential agent. Fire can be an important agent 
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for reducing woody plant cover given favorable burning conditions. I created two 

variables to represent fire: Burned/Unburned and Number of Times Burned in order 

to determine the importance of burning once, burning frequently, and not burning at 

all (within the study time frame). Human activity is another important agent which 

can serve to increase or decrease woody plant cover. I created two variables to 

represent human activity: Land Use and Land Management. Land Use generalizes 

human activity into broad categories (e.g., grazed, ungrazed, and developed), while 

Land Management represents the decisions made at the ownership level (e.g., grazing 

intensity, water conservation strategies, erosion control practices, etc.). Soils can also 

influence rates of woody encroachment. I generated three variables for soils: Soil 

Type, which is the specific type, Soil Productivity, which generalizes soil types into 

their normal year productivity values, and Soil Texture, which generalizes soil types 

into their dominant texture. Topography can also influence rates of woody 

encroachment (Franklin 1998), so I included Elevation, Slope, and Aspect variables 

to test for importance. Historical influence from past land use, land management 

decisions, and fire regime also impact woody plant cover amounts and rates of 

change. I use the Initial Woody Plant Cover product described in Chapter 2 as a proxy 

for historical influence and the resultant conditions present at the start of the study 

time frame. Finally, precipitation variability can increase or decrease the rate of 

woody encroachment, particularly winter precipitation totals (Neilson 1986; Weltzin 

and McPherson 1994; Archer et al. 1995; Brown et al. 1997). I examined annual, 

summer, and winter precipitation totals for the study area to better understand 

variability and trends. 
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3.2.3 Fire Agents: Burned/Unburned and Number of Times Burned 

The intended dataset for the fire analysis was the Monitoring Trends in Burn 

Severity (MTBS) burn scar product generated from Landsat TM and ETM+ data and 

developed jointly by the United States Geological Survey (USGS) Earth Resources 

Observation and Science (EROS) Data Center and the United States Department of 

Agriculture (USDA) Forest Service Remote Sensing Applications Center (RSAC) 

(Eidenshink et al. 2007). However, upon inspection of the data, two problems 

emerged: 1) The minimum mapping unit (MMU) is 1,000 acres (~405 ha) and larger 

than most of the fires in the study area; and 2) Only one of four fires in the study area 

that are at or above the MMU are detected. The lack of data in the project study area 

required me to develop my own fire dataset. 

I used the annual set of Landsat TM data from 1984 through 2008 to map fires 

on an annual basis in the study area. See section 2.2.2 for a complete description of 

the Landsat TM dataset. Since the Landsat dataset contains only one image per year 

and grassland ecosystems recover quickly from fire events, there exists a mix of fresh 

burn scars and scars in various stages of recovery for each year. I mapped the fresh 

scars from 1985 through 2008 using the differenced Normalized Burn Ratio (dNBR) 

approach (Lopez-Garcia and Caselles 2001) and the fresh burn scars from 1984 and 

the recovering scars from 1985 through 2008 using the Spectral Angle Mapper 

(SAM) algorithm (Kruse et al. 1993), following the previously established approach 

in Loboda et al. (2007). Recovering scars visible in the 1984 image were not mapped 
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as they were attributed to 1983 and therefore outside the study timeframe.  

I mapped the fresh burn scars from 1985 through 2008 using the dNBR 

approach. The concept of differencing TM bands 4 (0.76 – 0.96 µm) and 7 (2.08 – 

2.35 µm) was first introduced in Lopez-Garcia and Caselles (1991) and later defined 

as the dNBR by Key and Benson (2006) with the addition of the differencing 

element. The ratio highlights the change in surface reflectance that results from a fire 

event and was developed for the purpose of mapping burned areas, but has also been 

used somewhat controversially for burn severity mapping (Key and Benson 2006; van 

Wagtendonk et al. 2004; Epting et al. 2005; Roy et al. 2006). The Normalized Burn 

Ratio (NBR) equation for Landsat TM data is: NBR = ((Band 4 – Band 7) / (Band 4 + 

Band 7)). The dNBR is derived by differencing the pre- and post-fire NBR values 

(NBRpre-fire – NBRpost-fire). The dNBR threshold for determining burned and 

unburned pixels varied from year to year based on a visual assessment of the burn 

scars, but remained within the dNBR range used by the MTBS project. Since the 

differenced approach requires an image before the fire event, I was not able to map 

fires from 1984 using this approach. In addition, the recovering burn scars did not 

map well using this approach, despite being visually obvious. 

 I mapped the fresh burn scars from 1984 and the recovering burn scars from 

1985 through 2008 using SAM, an automated, spectral method for comparing image 

spectra to a known, defined endmember (Kruse et al. 1993). The method treats both 

image and endmember spectra as vectors and uses the vector direction to compute the 

spectral angle between them. The vector length is not used in order to remove 

sensitivity to illumination conditions. Each scar required customized endmember 
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development in order to account for differences in recovery. 

A total of 224 burn scars were mapped in the study area during the 25-year 

study time frame from 1984 through 2008, with fires occurring during every year 

except 1998. The burn scars were mapped conservatively, meaning low fire severity 

areas were omitted from the fire maps based on dNBR values and spectral 

characteristics. This threshold was set because areas mapped as low severity likely 

did not experience enough fire to impact live woody plants. Each burn scar was 

evaluated with a visual analysis (Roy et al. 2009), compared to the Landsat TM data 

for reference, and deemed accurate. All burn scars, even those in various stages of 

recovery, are visually identifiable in the Landsat TM data.  

In a double blind visual accuracy assessment, an independent analyst 

reviewed a set of 100 (50 burned and 50 unburned in all years except 1998, 100 

unburned in 1998 due to a lack of fire) random points to assign a burned or unburned 

designation to each point based on the visible changes in surface reflectance of the 

Landsat TM images in two consecutive years. This assessment resulted in an 

aggregate Cohen’s kappa of 0.87 for all years. However, one year (1994) had 

complete disagreement due to the presence of only a single burn scar which was not 

identified by the independent analyst. If this anomalous year is excluded, the 

aggregate Cohen’s kappa increases to 0.95 for all years. The range in individual year 

Cohen’s kappa values is 0.78 to 1.00 when excluding the anomalous year, with 1984, 

1987, 1990, 1998, 2004, and 2007 showing complete agreement and 2001 showing 

0.78 agreement. See Table 3-1 for the confusion matrix representing all years. 
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Table 3-1. Confusion matrix developed from the double blind visual accuracy 

assessment. 

 

  Independent Analysis 

 

  Burned Unburned Total 

Primary 

Analysis 

Burned 1108 92 1200 

Unburned 68 1232 1300 

Total 1176 1324 2500 

 

I developed a Number of Times Burned dataset from the burn scars showing 

the number of times each pixel burned and highlighting frequently burned areas. A 

substantial portion of the study area did not burn between 1984 and 2008. Only 29 

percent of the study area experienced any fire during the 25-year interval of this 

study. The dataset values range from 0 to 7, with 71 percent of the study area never 

burning, 23 percent burning once, 5 percent burning twice, 1 percent burning three 

times, and less than 0.4 percent burning four, five, six, and seven times (percentages 

do not sum to 100% due to rounding errors, Figure 3-1). Most of the central and 

eastern portions of the study area burned at least once, and the same area also 

contains the only examples of areas burned greater than three times. The areas burned 

greater than three times fall primarily within Fort Huachuca and are a result of the 

Fort’s prescribed fire program (Gebow and Hessil, 2006).  
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Figure 3-1. The number of times burned during the 25-year study time frame. 
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3.2.4 Anthropogenic Agents: Land Use and Land Ownership 

The Land Use and Land Ownership datasets are comprised of two publicly 

available grazing allotment GIS datasets combined with polygons developed from 

several ancillary sources. The grazing allotment GIS datasets are from the Arizona 

State Land Department Information Systems & Resource Analysis Division’s 

Arizona Land Resource Information System (ALRIS) (http://www.azland.gov/alris/) 

and from the Bureau of Land Management’s (BLM) geospatial data repository 

(http://www.blm.gov/az/st/en/prog/maps.html). The databases provide spatial and 

database information on publicly owned (U.S. Forest Service, BLM, and State of 

Arizona) grazing lands and grazing leases covering a large portion of the study area. 

However, the study area also contains privately owned grazed and ungrazed lands, 

publicly owned ungrazed land, and developed lands not included in the databases. I 

used a combination of websites, personal communication, the Landsat TM dataset, 

and high resolution multispectral imagery in Google Earth to create my own polygons 

covering the remaining portion of the study area (Table 3-2). The Land Ownership 

dataset maintains the detail of each individual ownership, lesseeship, management, 

and administration unit while the Land Use dataset generalizes the Land Ownership 

dataset into three categories of land use: grazed, ungrazed, and exurban development. 

The study area contains three different land uses: grazed, ungrazed, and developed. 

Approximately 74 percent of the study area is actively grazed, while 16 percent is left 

ungrazed and 10 percent is developed (Figure 3-2). The grazed areas 
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Figure 3-2. Land use categories. 
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Table 3-2. Ancillary websites and communication used to identify land ownership 

units not characterized in state and federal databases. Landsat data and Google Earth 

were used to delineate information derived from website and communication sources. 

 

Location Source 
Accessed 

Fort Huachuca http://huachuca-www.army.mil/ 
9/5/2013 

San Rafael State Park http://azstateparks.com/parks/SARA/index.html 
9/5/2013 

Las Cienegas 
http://www.blm.gov/az/st/en/prog/blm_special_a
reas/ncarea/lascienegas.html 

9/5/2013 

Empire Ranch http://www.empireranchfoundation.org/ 
9/5/2013 

Appleton Whittell 
Research Ranch 

http://researchranch.audubon.org/ 
9/5/2013 

Babacomari Ranch http://www.babacomariranch.com/ 
9/5/2013 

Lazy J2 Ranch http://www.lazyj2ranch.com/specifics.html 
9/5/2013 

Jelks and Pyeatt 
Ranches 

Dr. Linda Kennedy, Personal Communication 
1/28/2013 

Sonoita Valley Ranches 
http://www.blm.gov/az/st/en/info/nepa/environm
ental_library/arizona_resource_management.html 

9/5/2013 

San Raphael Valley 
Ranches 

http://www.zaycom.com/sanraf2.htm# 
9/5/2013 

Real Estate Listings http://www.patconnor.com/ranch.html 
9/5/2013 

 

 

 

 

represent a mix of public and private ownerships, while the ungrazed areas represent 

the Fort Huachuca military base, the Appleton-Whittell Research Ranch conservation 

research site, and the San Rafael State Natural Area, a former Spanish land grant 

ranch now owned by the State of Arizona for the purpose of historical preservation 

and maintaining a natural area. Fort Huachuca and the Appleton-Whittell Research 
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Ranch remained ungrazed for the duration of the 25-year study timeframe; however, 

the San Rafael State Natural Area was grazed until 1998. All ungrazed areas were 

overgrazed in the past. The developed areas are comprised of the census-designated 

places of Sonoita and Elgin, Arizona and include neighborhood developments, 

commercial areas, and small vineyards planted during the study timeframe. Limited 

development in the region is due, in part, to extensive conservation easements on the 

land. Developed land is excluded from further analysis as it is not a representative 

agent of change in woody plant cover. 

Within the three land uses, the study area contains 36 distinct land ownership 

units determined by ownership and long-term lesseeship (Figure 3-3 a,b). Ownership 

in the region is represented by the military base (Fort Huachuca), federal lands 

(Bureau of Land Management and U.S. Forest Service), state lands (state parks and 

general holdings), non-profits (The Nature Conservancy), privately owned ranches, 

commercial businesses other than ranching, and private dwellings. Most of the federal 

and state lands are leased for grazing and/or mineral rights, although a small 

percentage is administered for conservation and historical preservation purposes. 

Neighborhood developments and commercial areas within the census-designated 

places of Sonoita and Elgin, Arizona are grouped into common land ownership units 

since they have common land cover and maintenance. The smallest land ownership 

unit is 1 km
2
 (privately owned) and the largest is 228 km

2
 (federally owned). The 

largest privately owned land ownership unit is the Babacomari Ranch, a former 

Spanish land grant, at 113 km
2
.  Some areas are defined as unknown ownership where 

land records could not be obtained. The Land Ownership dataset is used to better 
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understand spatial variability in woody plant cover change within the other agent of 

change datasets. 

Land ownership units allow for a distinction between how common land uses 

are managed in an operational setting and differences in decision making. Examples 

of decisions and perspectives represented include: grazing intensity, grazing rotation, 

animal units, livestock operation type (cow and calf versus steer), livestock type, 

length of time ungrazed, mechanical and chemical thinning, prescribed burning, let 

burn versus extinguish policies, drought management practices, erosion control 

practices, water runoff management, water conservation landscaping, location and 

number of watering holes, private versus public ownership, ownership versus 

lesseship, for profit versus non-profit, and commercial versus conservation.    
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Figure 3-3a. Land ownership units based on land ownership and lesseeship. 
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Figure 3-3b. Land ownership legend. 
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3.2.5 Edaphic Agents: Soil Texture and Soil Productivity 

I used the United States Department of Agriculture (USDA) Natural 

Resources Conservation Service (NRCS) Soil Survey Geographic Database 

(SSURGO) version 2.1 digital soil survey spatial data 

(http://soildatamart.nrcs.usda.gov, accessed 11/27/2011), sections AZ667 (Santa Cruz 

and Southeastern Pima Counties), AZ669 (Southeastern Pima County), and AZ671 

(Cochise County) to create the Soil Texture and Soil Productivity datasets. SSURGO 

is the most detailed level of soil geographic data and is field verified. The SSURGO 

data is divided into small subsections with some mismatch of the map unit symbol 

(MUSYM) attribute between edges where subsections meet due to slight variances in 

classification categories (e.g., difference in classification and/or difference in level of 

classification detail) and schemes (e.g., text versus numerical identifier). AZ669 and 

AZ671 both use a numerical classification scheme and AZ667 uses an alphabetical 

abbreviation system. Polygons for AZ667 and AZ669 align well, allowing for an easy 

match of numerical and abbreviation classification schemes and further supported by 

reference to the supporting Physical Soil Properties and Map Unit Description 

documentation. A few minor mismatches between AZ667 and AZ671 were resolved 

in favor of the AZ667 dataset in all cases except for those where the AZ671 dataset 

contained 75% or more of the total polygon area. AZ669 and AZ671 share a very 

short border containing only three adjacent polygons, all of which matched in 

classification.  

I classified 66 soil types based on the soil name attribute using the MUSYM 
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attribute and the associated Physical Soil Properties and Map Unit Description 

documentation. I used the soil type and associated Physical Soil Properties to 

generate the Soil Texture dataset. Soil Texture values represent a continuum of clay 

content in the soil and are given in ranges of percent content. In addition, I used the 

soil type and associated Rangeland Productivity and Plant Composition to create the 

Soil Productivity dataset. Productivity values are based on the Total Dry-Weight 

Grass Production attribute for a normal year (as opposed to a favorable or 

unfavorable year) and are given in units of pounds of grass per acre and converted to 

units of kilograms of grass per hectare. The Total Dry-Weight Grass Production 

metric has no relationship to woody plants or woody plant encroachment; however, 

soils with higher grass productivity could favor greater increases in woody plant 

cover due to nutrient content and composition. 

The study area contains three distinct ranges of clay content and associated 

soil texture: 0% - 14% (sandy soils), 15% - 34% (loamy soils), and 35% + (clayey 

soils) (Figure 3-4). The area is comprised of predominantly clayey soils, with 47% of 

the study area containing a clay content of 35% or higher. The remaining area 

consists of 38% loamy soils and 15% sandy soils. The western and southern portions 

of the study area contain the highest levels of clay. In addition, there is a range of 

normal year total dry-weight productivity values of 617 to 5,612 kg/ha, with a mean 

of 1,272 kg/ha and a mode of 1,459 kg/ha (Figure 3-5). The valley in the southern 

portion of the study area has overall lower productivity values than the rest of the 

study area. The far eastern portion of the study area, the area containing the eastern 

portion of Fort Huachuca which experienced frequent fire due to their prescribed fire  
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Figure 3-4. Soil texture by clay content. 
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Figure 3-5. Normal year total dry-weight soil productivity. 
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program, has the highest overall productivity values of non-drainage areas with a 

normal year productivity value of 2,245 kg/ha. Drainages have the overall highest 

productivity values in the study area, with values ranging from 2,020 to 5,612 kg/ha.  

 

3.2.6 Topographic Agents: Elevation, Slope, and Aspect 

I developed the three topography datasets (Elevation, Slope, and Aspect) 

using Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) 

data. Slope and Aspect were derived from the DEM using a standard DEM Extraction 

algorithm. 

Elevation ranges from 1291 m to 1634 m with a mean elevation of 1480 m 

and a mode elevation of 1483 m (Figure 3-6). Elevation begins to increase sharply at 

the higher elevation edges of the study area bordering the Sky Islands. Slope ranges 

from 0 percent to 46 percent with a mean of 4.5 percent and a mode of 3 percent 

(Figure 3-7), indicating a predominantly flat to rolling hills topography. Aspect 

ranges from 1 degree to 360 degrees (Figure 3-8), with a predominantly southern 

exposure.  
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Figure 3-6. Elevation expressed in meters. 
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Figure 3-7. Slope expressed in percent. The upper level of the color ramp represents 

slope values of 18 to 46 percent, which comprise approximately 1 percent of the 

study area, collectively. 
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Figure 3-8. Aspect expressed in degrees. 
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3.2.7 Historical Impacts Agent: Initial Woody Plant Cover 

 I used the Initial Woody Plant Cover product described in section 2.3.2 as 

proxy for historical impacts in the study area. Amounts of and spatial variability in 

initial woody cover is representative of historical land use and land management 

decisions as well as natural events. Initial woody plant cover ranges from 0 percent to 

100 percent with most values falling between 0 percent and 14 percent (see Figure 2-5 

and section 2.3.2). Higher elevations contain greater woody plant cover amounts than 

middle and lower elevations. Some portions of the study area are open grasslands and 

contain 5 percent or less woody plant cover with the exception of drainage areas. 

Developed areas exhibit a pattern of adjacent more extreme high and low woody plant 

cover amounts due to agriculture/landscaping, land clearing, and impervious surfaces. 

Drainages contain higher woody plant cover amounts than surrounding grasslands, 

indicating healthy plants and adequate water table height. 

 

3.2.8 Precipitation Data and Analysis 

 Precipitation in the study area and surrounding region is correlated strongly 

with elevation (Hibbert 1977; Osborn 1984). A little more than half of total annual 

precipitation occurs during the summer monsoon from July through September while 

the remainder occurs from November through April (Haney 1985; Bock and Bock 

2000; McLaughlin et al. 2001). Summer precipitation is driven by the monsoon and 

typically results in highly localized cells producing heavy rainfall in short, intense 

pulses, with a substantial amount of water running off the landscape in areas with 
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terrain relief. The intense precipitation pulses drive the grass greenup in the region. 

Winter precipitation is characterized by more widespread and gentler rainfall that 

soaks into the ground and recharges aquifers that supply water to the deep tap roots of 

woody plants as well as wells that support people, cattle, and agriculture in the 

region. El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) 

cycles have strong, phase-dependent relationships with winter precipitation totals in 

the region, and woody plant growth is correlated with these totals (Neilson, 1986). El 

Niño years lead to increased winter precipitation in the region while La Niña years 

lead to decreased precipitation. During the study time frame, 1986, 1991, 1994, 1997, 

2002, and 2006 were El Niño years and 1988, 1995, 1998, and 2007 were La Niña 

years.  

In recognition of the importance of precipitation and associated water 

availability on woody encroachment, several available gridded and non-gridded 

climate data records were examined. While preference was given to gridded datasets 

to support per pixel spatially explicit analysis, an assessment of the datasets revealed 

a number of limitations which precluded their use in this study. I examined and 

compared the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) monthly climate dataset (Daly et al. 1994; Daly et al. 2008) and the Daymet 

daily climate dataset (Thornton et al. 1997) to determine the best dataset for the study 

area. Both datasets are generated using a digital elevation model (DEM), ground 

climate station data, and linear regression to interpolate between climate stations. 

PRISM uses a hybrid approach incorporating expert knowledge of meteorology, 

physiography, and biology with statistical methods while Daymet uses a strictly 
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statistical approach. Daymet offers a more comparable gridded resolution of 1 km 

(versus 4 km for PRISM), but PRISM has been shown to be more accurate (Scully, 

2010). I found the Daymet data contained a substantial number of artifacts resulting 

from the modeling process within the study area, including bullseye patterns 

surrounding climate stations, elevational gradients throughout the entire study area 

during localized summer rainfall events, and instances of a single value across the 

entire study area. The PRISM dataset did not contain these artifacts; however, the 4 

km grid size proved to be too coarse for the size of the study area and too generalized 

for an area with substantial topographic relief over a small spatial area. My 

conclusion was that I could not use either dataset in this study. 

Instead, I used the long term data record from the National Climatic Data 

Center’s (NCDC) Canelo 1 NW climate station located in Canelo, Arizona near the 

center of the study area at an elevation of 1527 m and covering the years 1982 

through 2006. This is the only climate station data located within the study area and 

with records that cover the study time frame. Other nearby stations are located at 

substantially higher and lower elevations than the study area. Since elevation is 

strongly correlated with precipitation (Hibbert 1977; Osborn 1984 [Table 3-3]), I am 

unable to use these stations in the analysis. Therefore, I was only able to look at a 

temporal analysis for a single data point rather than a spatial map of trends which 

would allow greater analysis of the impacts of precipitation variability on woody 

plant cover change. For this reason, I was not able to include the precipitation 

analysis in the statistical analysis to determine agent rankings. I split the precipitation 

dataset into three components: annual precipitation, summer precipitation (July 
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through September) and winter precipitation (the remaining months) based on the 

local precipitation regime.  

 

Table 3-3. Relationship between elevation and precipitation in mountainous regions 

of the Southwestern United States adapted from Osborn, 1984. 

 

 

Winter (r)  Summer (r) Annual (r) 

Excess Stations 0.83 0.90 0.87 

Deficit Stations 0.49 0.57 0.59 

Transition Stations 0.42 0.82 0.67 

All Stations 0.49 0.68 0.62 

 

Annual precipitation from 1982 to 2006 ranges from 196 mm to 607 mm, with 

a mean of 376 mm (Figure 3-9). Summer precipitation ranges from 87 mm to 381 mm, 

with a mean of 237 mm. Winter precipitation ranges from 27 mm to 234 mm, with a 

mean of 138 mm. There is substantial variation year to year in each category. The trend 

lines for each category show a decline over the 24-year time period indicative of the 

ongoing drought in the greater region, with a greater decline in winter precipitation than 

in summer precipitation. This indicates that the monsoon is still functioning to bring 

rainfall to the region, but that the winter storm systems are either not producing as 

much precipitation or are missing the study area. Decreased winter precipitation could 

lead to future mortality first of younger woody plants with shallower roots and later of 

established woody plants as water tables drop below the depth of mature tap roots. 

However, the mean increase in woody plant cover of 5 percent across the study area 

(see section 2.3.2) indicates that woody plant encroachment is still occurring and plants 

are proliferating. 
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Figure 3-9. Annual, summer, and winter precipitation totals and trends at the NCDC’s 

Canelo 1 NW climate station. 

 

 

In addition, a switch to a predominantly intense precipitation event regime, such 

as that which is occurring due to the greater declines in winter precipitation, could favor 

long term increases in woody plant cover even with an overall decline in precipitation 

totals. Kulmatiski and Beard (2013) compared two sets of plots, with the first set 

receiving precipitation in fewer but more intense events and the second set serving as a 

control and receiving the same amount of precipitation in a greater number of less 

intense events. The set of plots with fewer but more intense precipitation events showed 
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similar and in some cases slower growth as compared to the control plots for the first 

15 months of the study. However, at around 15 months, the growth patterns changed 

and the experimental plots showed substantially greater growth than the control plots 

(Figure 3-10). The increased growth is due to changes to plant physiology, 

predominantly the increased number of roots, especially at shallow and medium range 

depths (Figure 3-11).  

 

 

Figure 3-10. From Kulmatiski and Beard (2013). Woody plant growth in control plots 

(blue symbols) and plots receiving fewer, larger precipitation events (red symbols). 

 



 

 

76 

 

 

Figure 3-11. From Kulmatiski and Beard (2013). The number of roots observed in 

control plots (blue symbols) and plots receiving fewer, larger precipitation events (red 

symbols). 

 

 

However, this study did not take into account run off present during intense 

precipitation events in areas with terrain relief. Future work in the dissertation study 

area examining links between intense precipitation events, slope, and spatial variability 

in woody plant cover change amounts could provide additional insight into plant 

responses to a changing precipitation regime. 

 

3.2.9 Response Variable: Change in Woody Plant Cover over 25 Years 

I used the Change in Woody Plant Cover product described in section 2.3.2 as 

the response variable in this research. The change in woody plant cover ranges from   

-80 percent to 85 percent with most values falling between -2 percent and 11 percent 

(see Figure 2-4 and section 2.3.2). The largest increases are located in open grassland 
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areas and developed areas, while the largest decreases are located in higher elevations 

where the study area shifts to a different ecosystem with species not as fire resistant 

as mesquite, drainages exhibiting tree mortality, recently burned areas, and cleared 

land in developed areas. The effects of fire are visible. 

 

3.2.10 Data Pre-Processing and Correlation Analysis 

I co-registered the datasets to precision within 7 m in order to ensure 

locational precision and facilitate accurate per pixel analysis of response and 

explanatory variables. Next, I checked the response variable and explanatory 

variables for correlation using the Pearson product moment correlation coefficient (r) 

and Spearman’s rank correlation coefficient (ρ) due to the mix of categorical and 

continuous variables. A special case of Pearson’s, Point Biserial, was used for 

correlations involving the dichotomous nominal grazing subset of the Land Use 

dataset. The correlation analysis showed no highly correlated independent variables 

and only two explanatory variables as moderately correlated: Grazing and Number of 

Times Burned with a 0.43 r coefficient (Table 3-4). This is due to 100 percent of 

areas burning four or more times and 98 percent of areas burning 3 times falling 

within the ungrazed category. In addition, Initial Woody Plant Cover is highly 

correlated with the response variable, Woody Plant Cover Change, with a r 

coefficient of -0.74 and a ρ coefficient of -0.73. 
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Table 3-4. Correlation analysis results including the response variable (Δ). Pearson’s r 

coefficients are located in the upper right diagonal and Spearman’s ρ coefficients are 

located in the lower left diagonal. 

 

ρ \ r Δ Initial Slope Elev Aspect Grazing 

Soil 

Prod 

Soil 

Tex 

Num 

Burn 

Δ 1 -0.75 -0.14 -0.09 0.08 0.09 0.03 -0.20 -0.06 

Initial -0.73 1 0.15 0.27 -0.10 -0.12 -0.04 0.19 0.05 

Slope -0.13 0.12 1 -0.03 -0.03 0.02 -0.15 0.25 0.00 

Elev -0.10 0.27 -0.02 1 0.02 0.06 -0.11 -0.11 -0.08 

Aspect 0.08 -0.10 -0.01 0.02 1 0.11 -0.09 0.00 -0.09 

Grazing   

    
1 -0.22 -0.19 -0.43 

Soil Pr 0.07 -0.09 -0.13 -0.16 -0.09 

 
1 -0.22 0.12 

Soil Tx -0.20 0.20 0.22 -0.06 0.01 

 

-0.32 1 0.15 

# Burn -0.06 0.07 0.03 -0.12 -0.08 

 

0.07 0.15 1 

 

 

3.2.11 Agent Importance Ranking with Random Forests 

Machine learning algorithms, such as decision trees (Breiman 1984), support 

vector machines (Mountrakis et al., 2011), neural networks (Mas and Flores 2008) 

and ensemble classifiers (Breiman 1996), provide a useful and accurate method for 

analyzing large dimensional, complex, non-linear, and hierarchical data spaces and 

interactions (Hansen et al. 1996; Rogan et al. 2003). Machine learning algorithms do 

not make assumptions about the relationships between explanatory and response 

variables and do not rely on data distribution assumptions and, therefore, are more 

effective, efficient, and accurate alternatives to parametric algorithms (Foody 1995; 

Olden et al. 2008). Decision trees partition the dataset recursively using rules based 

on the best explanatory variable until a terminal node is reached (De’ath and 

Fabricius 2000). Ensemble classifiers, such as Random Forests (Breiman 2001), use 
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random samples to produce repetitive multiple classifications or regressions of the 

same dataset with replacement, meaning some data may be used more than once and 

other data never used (Friedl et al. 1999). This process achieves greater classifier 

stability, increases the accuracy of results, and prevents sensitivity to noise and/or 

overtraining (Pal and Mather 2003).  

Random Forests tests a random subset of explanatory variables at each node 

based on a user defined parameter (mtry, usually one third of the total number of 

variables) in order to produce randomness in the best split selection (Prasad et al. 

2006). A user defined number of classification or regression trees (ntrees) are built 

from bagging (bootstrap aggregating) samples for each tree and random subsets of 

explanatory variables at each node. After bagging samples have been selected, the 

remaining data (usually one third of the original dataset) become the out of bag 

(OOB) observations and are input to each tree in order to produce predictions of the 

response variable and calculate OOB error estimates (Breiman 2001). This step 

reduces the possibility of overfitting within the classifier by creating an unbiased 

estimation of the generalization error and averaging the error over the defined number 

of trees. Random Forests outputs the percent variance in response variable explained 

as an overall measure of the explanatory power of the predictor variables. In addition, 

a percent increase in mean square error (MSE) is output for each explanatory variable 

to indicate the increase in error when the variable was left out. This error is used to 

rank the importance of each explanatory variable in predicting the response variable 

(Breiman 2001); however, there is recent debate on the best measures for producing 

variable rankings from the Random Forests model (Strobl et al. 2009; Nicodemus 
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2011). 

Since the study area dataset was too large to run in its entirety, I used a non-

geographic random sampling scheme to split the dataset into four data subsets 

containing no overlapping points. I then further split each of the four datasets into two 

groups containing 70 percent and 30 percent of the data for model training and model 

validation, respectively. The 70 percent were run as a regression to train the Random 

Forests classifier and to identify agent importance, and the 30 percent were run as a 

classification to produce predictions of the response variable (woody plant cover 

change) to be compared to observed values. This step is used as an independent test 

of the classifier and the measure of percent variance explained. Next, I ran Random 

Forests on each of the four data subsets to produce predictions, percent variance 

explained, and variable rankings from the percent increase in mean square error 

(MSE). I then took the mean of the values produced from the four data subsets as a 

final result and used the four data subset values to produce error bars on the mean 

values, providing valuable information on the impacts of sampling. The details of the 

Random Forests model runs are described below. 

I constructed a series of Random Forests models using the Random Forests 

package for R for the change in woody plant cover described in section 2.3.2 using 

the fire, anthropogenic, edaphic, topographic, and historical impacts explanatory 

variables described above. The purpose of this series of models was to test the 

robustness of the method, the sensitivity of the models to changes in input 

parameters, and the stability of the explanatory variable importance rankings. I used 

as metrics for this series of tests the percent variance in woody plant cover change 
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explained by each model as well as the explanatory variable importance rankings and 

percent increase in MSE values for each explanatory variable. Percent variance 

explained is a pseudo r
2
 value calculated using the equation r

2 
= 1 – MSE / var (y), 

where MSE is the mean square error between observed values (y) and OOB 

predictions (Breiman 2001). Explanatory variable importance rankings are based on 

the percent increase in MSE values for each explanatory variable, which are 

calculated on removal of an explanatory variable from OOB predictions. A large 

increase in error upon explanatory variable removal indicates high importance, and 

the error values can be evaluated relative to one another to determine importance 

rankings among all explanatory variables (Breiman 2001). 

First, I tracked the decrease in mean residual error with an increasing number 

of trees (ntrees) ranging from 40 to 501. I chose 501 as a maximum due to limitations 

imposed from a large dataset size (10 datasets with over 1 million points per dataset) 

and limited computational power as well as a desire to test both odd and even 

numbers of trees. The ties created by an even number of trees are broken at random 

and there are no ties with an odd number of trees. I found that 100 trees served as a 

threshold for where percent variance explained and predictive power stopped 

increasing and explanatory variable rankings remained stable in rank order. I did not 

find any differences between odd and even numbers of trees. Next, I experimented 

with the number of explanatory variables sampled at each node split (mtry). I started 

with the default value of one third of the total number of explanatory variables (3 

based on the 8 explanatory variables) and then experimented with higher and lower 

values while also varying the number of trees. The combination offering the highest 
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percent variance explained by the model was 100 trees and 3 explanatory variables 

sampled at each node split. In addition, I tested the influence of the random number 

generator (setseed) on the percent variance explained and stability of explanatory 

variable importance rank order in order to test model sensitivity to basic 

parameterization. I did find some minor differences in explanatory variable 

importance rank order among variables with similar percent increase in MSE values. 

For example, rank order swapped between Slope and Aspect depending upon the 

number input to the random number generator. This finding indicates the need for 

consideration of the relative percent increase in MSE values in addition to the 

importance rank order of explanatory variables. Close percent increase in MSE values 

can lead to swaps in importance rank order of explanatory variables. 

 

3.3 Results 

3.3.1 Random Forests 

Overall, the sensitivity analysis showed the tests conducted had little impact 

on the stability of explanatory variable importance rankings. The explanatory 

variables selected produced stable rankings and explained 66 percent variance in 

woody plant cover change. There were some differences in the rank order produced 

by the different random samples; however, the rank order shifts were minor and only 

affected variables already very close in value for the percent increase in MSE. For 

this reason, I used a mean value from all four data subset runs as the final result and 
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incorporated the variation in the four data subset runs as a measure of error.  

The percent variance explained remained relatively stable through the sensitivity 

analysis with a mean value of 66 percent and a range of 65 percent to 66 percent over 

the four subsets. Figure 3-12 plots the observed woody plant cover change values 

from O’Neal et al. (2013) versus the predicted woody plant cover change values from 

the Random Forests analysis. The plot shows a pattern of horizontal lines due to the 

observed values being rounded to the nearest percent. The slope indicates that the 

observed and predicted values are close to the same, and the equation indicates 

slightly higher values for predicted than observed. The r
2
 from the comparison of 

observed to predicted values is nearly identical to the mean percent variance 

explained calculated by Random Forests. 

 

Figure 3-12. Observed values versus predicted values from Random Forests. 
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The explanatory variable rankings and percent increase in MSE values 

remained relatively stable for all four data subsets. Figure 3-13 shows the explanatory 

variables in rank order using the mean percent increase in MSE over the four subsets 

and error bars indicating the range of values for the four subsets. Initial Woody Plant 

Cover is by far the most important explanatory variable, with a twofold increase over 

the second ranked explanatory variable. The Number of Times Burned and Elevation 

explanatory variables rank second and third with some overlap in their error bars and 

potential overlap in importance depending upon sampling. Grazing ranks fourth with 

a slight overlap in error bars with Aspect and Slope, which have nearly identical 

percent increase in MSE values and rank as fifth and sixth, respectively. Soil 

Productivity ranks seventh and Soil Texture round out the list as the least important 

variables in determining the amount of woody plant cover change. 

I ran an additional analysis on this dataset with Initial Woody Plant Cover, the 

most important explanatory variable, removed. The rank order changed, with 

Elevation and Aspect exhibiting similar percent increase in MSE values and ranked 

first and second, respectively. Soils Productivity and Slope are nearly identical in 

value and ranked third and fourth, respectively. Number of Times Burned and 

Grazing are a close fifth and sixth rank, and Soil Texture is a distant last. The most 

notable changes are the decrease in importance of Number of Times Burned and the 

increase in importance of Soil Productivity. The percent variance explained drops to 

only 24 percent when Initial Woody Plant Cover is excluded, indicating the 

importance of woody plant cover at the start of the time series analysis in determining 

the amount of change to occur. 
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Figure 3-13. Explanatory variable rankings. 

 

 

3.3.2 Analysis of Agent Rankings 

 The correlation analysis (Table 3-4) provides a good general assessment of 

variable suitability for statistical analysis, but does not fully describe the relationships 

between variables and does not show the data distribution. In order to better 

understand the data distribution, I created scatter plots of each explanatory variable 

against the response variable (Woody Plant Cover Change) (Figure 3-14). Only Initial 

Woody Plant Cover versus Change in Woody Plant Cover shows any kind of obvious 

relationship with a negative trend. All categories within Number of Times Burned  
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Figure 3-14. Scatter plots of Change in Woody Plant Cover plotted against the 

explanatory variables. 
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center around the same Change in Woody Plant Cover values. There is a band of mid-

range elevations from 1400 m to 1525 m that contains most of the extreme values of 

Woody Plant Cover Change, but again, no obviously skewed categories. Grazing 

shows values of 1 (Grazed) are skewed toward positive and higher change amounts 

while values of 2 (Ungrazed) are skewed toward lower and negative change amounts. 

Aspect and Slope do not exhibit any visible relationship in the scatter plots and were 

not ranked highly in the Random Forests analysis. Soil Productivity and Soil Texture 

exhibit some skewed values; however, those values represent only a small portion of 

the dataset and do not explain much variability. 

 Given the strong relationship in the correlation analyses, I plotted Change in 

Woody Plant Cover versus Initial Woody Plant Cover in order to better understand 

the relationship and trend (Figure 3-15). The chart shows a negative linear 

relationship between the two variables with a R-squared valued of 0.62. This explains 

why Initial Woody Plant Cover is ranked as the most important variable and with 

such a large margin over the other variables. The momentum of woody encroachment 

and expansion at the initial point of the time series as shaped by historical land 

management and fire events is a critical determinant of the amount of woody plant 

cover change that will occur. However, the relationship is counter-intuitive as areas 

with higher cover have higher growth momentum from established root systems and 

increased recruitment. Areas of higher initial woody plant cover and lower or 

negative amounts of change are almost exclusively located in higher elevations, 

suggesting a relationship between woody plant cover change and precipitation and 
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potentially water table depth. 

Number of Times Burned is the second highest ranked variable in the Random 

Forests analysis, but the 2D scatter plot (Figure 3-14) does not show a clear 

relationship. Figure 3-16 shows a 3D histogram of Number of Times Burned and 

Woody Plant Cover Change illustrating single-modal distributions, peaks at similar  

Woody Plant Cover Change values, and small sample size for Number of Times   

Burned greater than 2. There is a decline in the amount of increase in woody plant 

cover as Number of Times Burned increases starting with three times burned, 

indicating that frequent fire can slow woody plant growth. 

 

 

Figure 3-15. The relationship between Initial Woody Plant Cover and Woody Plant 

Cover Change using binned mean values. 
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Figure 3-16. 3D histogram of Number of Times Burned and Woody Plant Change. 

 

 

Elevation is the third highest ranked variable from the Random Forests 

analysis and contains overlapping error bars with Number of Times Burned. I 

generated a 3D histogram of Elevation versus Change in Woody Plant Cover in order 

to better understand the data distribution and relationship (3-17). The peaks in the 

histogram show a pattern of increasing and positive change amounts with decreasing 

elevation. Smaller and negative Woody Plant Cover Change amounts are associated 

with higher elevations.  
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Figure 3-17. 3D histogram of Elevation versus Change in Woody Plant Cover. 

 

Grazing is the fourth highest ranked variable. Figure 3-18 shows a 3D 

histogram of Woody Plant Cover Change versus Grazing categories where 1 

represents grazed areas and 2 represents ungrazed areas. Both categories contain 

single-modal distributions with peaks at similar Woody Plant Cover Change values. 

Table 3-5 highlights the relationship between Number of Times Burned and Grazing. 

All data points that burned four times or more and 98 percent of data points that 

burned three times occurred within the ungrazed category. This is predominantly the 

result of the aggressive prescribed fire program at Fort Huachuca. The majority of the 

grazed area did not burn at all, while the majority of the ungrazed area burned at least 

once.    
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Figure 3-18. 3D histogram of Grazing versus Change in Woody Plant Cover. 

 

 

 

Table 3-5. Analysis of Grazing categories per each value of Number of Times Burned 

including the number of points and percentage of the category and dataset. 

Percentages do not all add to 100 due to rounding errors. 

 

#Fires 
Grazed Ungrazed Totals 

#Pix %Grazed #Pix %Ungrazed #Pix %Tot 

0 541929 79 40431 27 582360 70 

1 132490 19 62840 43 195330 23 

2 11617 2 31979 22 43596 5 

3 95 0 8971 6 9066 1 

4 0 0 2719 2 2719 0 

5 0 0 789 1 789 0 

6 0 0 60 0 60 0 

7 0 0 5 0 5 0 
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When conducting additional analyses on the remaining explanatory variables, 

Aspect, Slope, Soil Productivity, and Soil Texture, no additional obvious trends or 

patterns appeared. 

 

3.4 Discussion 

The Initial Woody Plant Cover is the most important explanatory variable and 

served as a proxy for historical impacts and land history by providing a starting point 

of woody cover based on that history. Past land use, human decision making, and fire 

history, in addition to static variables such as topographic and edaphic characteristics, 

all contribute to the spatial variability seen in initial cover. Further, initial woody 

plant cover can influence meaningfully the increase seen over the following 25-year 

time period through growth of individual plants and increased chances of new 

recruitment between patches. However, the landscape will eventually reach dynamic 

stabilization and woody plant cover will level out. Sankaran et al. (2005) found that 

mean annual precipitation has a linear relationship with maximum woody plant cover. 

Based on this relationship, the study area will eventually reach dynamic stabilization 

at 35 to 45 percent woody plant cover (see sections 2.3.2 and 2.4). However, there 

will be spatial variability in the time taken to reach stabilization due to other 

controlling factors. 

Areas with lower initial woody plant cover also had the largest increases in 

woody plant cover and are highlighted well in section 2.3.2 and particularly in Figure 

2-11 showing the change in woody plant cover relative to initial cover. The largest 
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area exhibiting substantial increases in woody plant cover relative to initial cover in 

the northern-central-western portion of the study area is grazed land shared by two 

land ownership units (Cienega Creek and Vera Earl), where the Vera Earl Ranch was 

historically part of Cienega Creek (also known as Las Cienegas National 

Conservation Area and formerly known as the Empire Ranch). The BLM purchased 

both land management units in 1988 for preservation as a conservation area while still 

used for grazing purposes. This change in ownership and management regime could 

have contributed to the notable increases in woody plant cover with reduced grazing 

on the landscape after a century of overgrazing. Browning and Archer (2011) found 

that removal of livestock promoted woody plant proliferation relative to grazed areas. 

It is unlikely that the large increase in woody plant cover was driven by a fire 

occurring immediately before the start of the study time frame in 1984 since an 

adjacent area burned early in the study time frame but does not exhibit the same 

accelerated amount of increase in woody plant cover relative to initial cover. The 

immediate surrounding area also shows elevated levels of increase in woody plant 

cover relative to initial cover and could indicate a relationship with soil texture since 

there is one soil texture covering the majority of the area discussed (clayey). 

Browning et al. (2008) found that clayey soils resisted woody plant encroachment 

longer than sandy soils, but once woody plants established in clayey soils the rate of 

increase in percent cover was 50 percent faster than in sandy soils. Another area with 

substantial increases in woody plant cover relative to initial cover is located in the 

very center of the study area and covering one of the few ungrazed areas, the 

Appleton-Whittell Research Ranch. This finding also supports the results of 
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Browning and Archer (2011) regarding removal of livestock leading to increased 

woody plant cover relative to grazed areas. 

The areas showing declines in or steady levels of woody plant cover are 

located within higher elevation ecotones, areas that burned 3 or more times, and areas 

that burned near the end of the time series. The higher elevation ecotones contain 

woody plant species which are not as fire tolerant as mesquite and with higher fire-

induced mortality rates. Fire leaves a longer lasting impact in this transition zone and 

in higher elevations containing woodland and forest species. In addition, higher 

elevations have greater distance to underground aquifers. The region is in a prolonged 

drought that continues to worsen, as illustrated in Figure 3-9, which could contribute 

to mortality among less drought tolerant woody plant species. The areas burning 3 or 

more times are located almost exclusively within the easternmost portion of the study 

area in Fort Huachuca and are the result of prescribed fire, illustrating the ability of 

frequent fire to maintain current levels of or reduce woody plant cover.  

In addition, areas burned near the end of the time series artificially dampen 

change in woody plant cover values by lowering the Final Woody Plant Cover values 

on the trend line while areas burned near the beginning of the time series artificially 

enhance change in woody plant cover values by lowering the Initial Woody Plant 

Cover values on the trend line. In the latter case, the change in woody plant cover 

values are further enhanced by the combination of woody plant recovery plus growth 

and recruitment. This dampening and enhancement effect gives valid although 

somewhat misleading results when considering only the study time frame and the 

non-monotonic increases in woody plant cover when fire is present in the ecosystem. 
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A Time Since Last Burned variable would be useful to counteract the artificial effects 

of fires occurring early and late in the trend line on change in woody plant cover 

values. However, without extensively sampled tree ring analysis, this variable is 

impossible to develop for areas unburned during the study time frame from 1984 to 

2008 given the limited fire history data prior to 1984, the lack of fire history data 

prior to the Landsat MSS record, and fast post-fire recovery of grassland ecosystems. 

Future work could include a subset of the entire dataset which includes only those 

points that burned during the 25-year time period in order to better understand the 

impacts of fire and better characterize woody plant cover change with respect to burn 

and recovery cycles. 

The Number of Times Burned variable and its rank as the second most 

important explanatory variable illustrate the importance of fire in maintaining open 

grasslands. Frequent fire is an important process for maintaining open grasslands as it 

kills young woody plants on the landscape. However, larger woody plants are less 

affected by fire, with damage usually limited to defoliation and top killing. Defoliated 

woody plants recover fully in the following growing season, while top killed woody 

plants require more time to grow woody components but grow more quickly than 

young woody plants given their established root system. In addition, fire impacts are 

lessened as woody plants gain in size and area across the landscape. Older woody 

plants are more likely to survive a fire, decreased amounts of grass (fine fuels) are 

available to carry the fire across the landscape, and woody plants often establish 

patches which serve to further protect individual plants. Increasing woody plant cover 

coupled with increasing average plant size, grazing to reduce fine fuels, and fire 
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suppression policies all work together to lessen fire occurrence and spread in the 

region. Within the study area and with the exception of one location, all areas that 

burned more than two times were the result of prescribed fire programs. Many of the 

areas burning just one time were also the result of prescribed fire.  

Elevation ranks third in explanatory variable importance from Random 

Forests with substantial overlap in error bars with Number of Times Burned. The 3D 

histogram (Figure 3-17) shows a clear relationship between higher elevations and low 

amounts of change and declines in woody plant cover. Elevation is strongly 

correlated with precipitation totals and temperature and is therefore also strongly 

correlated with species range. Elevation is also related to distance from water table.  

Grazing ranks fourth in explanatory variable importance from Random 

Forests and is also somewhat correlated with Number of Times Burned (Tables 3-4 

and 3-5). The variables are related in terms of the location of an aggressive prescribed 

fire program and resultant higher fire frequency values falling exclusively within the 

ungrazed category. While the prescribed fire program represents human decision 

making rather than a natural relationship, the fine fuels found on the ungrazed lands 

facilitate fire spread and increase the potential for fire temperatures hot enough to 

cause woody plant mortality.    

Aspect and Slope are nearly tied for fifth and sixth, respectively, as 

explanatory variables and do not exhibit any apparent relationship with each other, 

the other explanatory variables, or Change in Woody Plant Cover. Due to study area 

constraints, the slope values are limited to predominantly flat land and gently rolling 

hills thereby limiting the effects of both Slope and Aspect. While Aspect contains 
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values representing full variation, the effects of Aspect in areas with rolling hills is 

limited. 

Soil Productivity and Soil Texture were found to be the least important 

explanatory variables. Since the variables are derived from the same data but not 

highly correlated, the low rank indicates that soil characteristics are not important in 

explaining variability in Woody Plant Cover Change in the study area. This finding is 

counter to that of Browning (2008) and suggests the influence of the other variables 

as well as the decisions that go into managing the land may override the influence of 

soils. 

 While the precipitation data could not be incorporated into the Random 

Forests analysis, the station data still provides valuable information on trends in the 

region. The precipitation data illustrate the ongoing and worsening drought in the 

region through the negative trend lines. The greater decline in winter precipitation is 

of particular concern since this gentler rainfall is the primary source of aquifer 

recharge. Summer rain falls as intense pulses and, therefore, most water runs off the 

landscape in areas with topographic relief. As winter precipitation lessens, the water 

tables in the area begin to fall. This impacts annual and perennial stream flow, 

wetland (cienegas) areas, wells and water resources for humans and cattle, and woody 

plants. Woody plants at higher elevations would be more susceptible to decline from 

a dropping water table due to their increased distance from the water table and 

physiological constraints of tap root depth. This could be the reason for the declines 

in woody plant cover seen primarily at higher elevations. The overall decline in 

precipitation will be a detriment to cattle ranching, conservation, and developments in 
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the region as water scarcity will reduce economic viability and biodiversity.  

 

3.5 Conclusions 

 This study provides the first comprehensive regional assessment of the agents 

of woody plant encroachment in the study area. Random Forests provides a robust 

method for testing the relative importance of the explanatory variables and 

determining the percent variance in woody plant cover change explained. The legacy 

of past land use, decision-making, and fire regimes and resultant Initial Woody Plant 

Cover at the start of the study time period in 1984 is the most influential explanatory 

variable in determining the amount of woody plant cover change. The Number of 

Times Burned (fire frequency) is the second most important explanatory variable. 

Given favorable burning condition and fuels, fire serves to kill young woody plants 

and defoliates and top kills larger plants, thus slowing growth. However, removal of 

larger plants from the landscape requires human action. Elevation is the third most 

important explanatory variable and is highly correlated with both precipitation and 

vegetation communities in the region and related to water table depth. Higher 

elevations experienced smaller change amounts and decreases in woody plant cover 

while middle and lower elevations experienced the greater increases. Grazing is also 

influential in explaining variability in Woody Plant Cover Change and shares a 

relationship with Number of Times Burned. Aspect and Slope are limited due to study 

area constraints and are relatively unimportant variables in explaining the change in 

woody plant cover. Soil Productivity and Soil Texture are also relatively unimportant 
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in explaining Woody Plant Cover Change in the study area.  

The addition of a precipitation dataset to this analysis would likely increase 

the percent variance in woody plant cover change explained. Annual, summer, and 

winter totals as well as lagged effects would provide potentially useful explanatory 

variables in the Random Forests analysis. In addition, these variables would be 

particularly important in predicting future woody plant cover change as drought 

worsens in the region and desertification processes begin to move higher in elevation. 

The large distances between climate data collection stations, significant topographic 

relief, and lack of accurate fine resolution spatial modeled climate data make local 

scale assessments of the impacts of climate variability impossible at this point in time 

in this region. However, region-specific improvements to the existing modeled 

climate datasets could produce more accurate results to facilitate future local scale 

studies on the impacts of climate variability and change. 

In addition to precipitation data, improvements in mapping fires, fire history, 

and land management decisions could help to better explain woody encroachment and 

the spatial variability of rates of change in the study area. Small fires, such as 

prescribed fires and fires that threaten exurban development or an economic resource 

and are extinguished quickly, are common in the study area as well as the region in 

general; however, small fires are omitted from currently available regional (Landsat-

based MTBS) and global (MODIS suite, etc.) fire products. This omission contributes 

to uncertainty in woody encroachment cover at broader scales and limits our 

understanding of the effects of fire on woody encroachment. Fire history, including 

burn severity, is another important factor in explaining woody encroachment; 
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however, fire history data is limited in the region to the Landsat data record and land 

owner anecdotes. Tree ring analysis of older mesquite stands in the study area could 

be useful in developing a fire history for the study area which could then be used to 

develop a Years Since Last Burned explanatory variable for the Random Forests 

model. Improved maps of land management decisions, including discrete maps of 

individual management topics such as fire policy (let burn versus extinguish), 

mechanical and chemical thinning locations and dates, grazing patterns, etc., could 

improve the explanatory power of the Random Forests model and boost the percent 

variance in woody plant cover change explained by the model and agents. However, 

survey level data would be required from land owners and leasers in order to develop 

these maps. Surveys of land owners of areas that experienced exceptionally high and 

low amounts of woody plant cover change from 1984 to 2008 would be of particular 

interest in order to better understand which land management decisions are increasing 

and decreasing the rate of woody encroachment in the study area. 

In addition to improvements in fire and decision making explanatory 

variables, future work might also focus on forecasting future projections of woody 

plant cover. The predictive capabilities of the Random Forests classifier are a useful 

tool for predicting spatial trajectories of woody encroachment, expansion, and patch 

dynamics until dynamic stabilization is reached. Forecasting would need to be 

stepped in order to incorporate feedbacks from disturbances and non-monotonic 

growth. This work would provide the time frame in which dynamic stabilization will 

be reached as well as an economic forecast for the viability of cattle ranching in the 

region as woody plant cover increases and grass productivity decreases. In addition, 



 

 

101 

 

forecasts offering multiple trajectories of rates of woody plant cover increases based 

on variations in fire frequency and land management decisions could be useful in 

decision making processes. An easy to use, scenario-based predictive tool also could 

be useful to land managers in the region to help them better understand the long term 

impacts of their decision making on the landscape. In addition, this work could be 

linked to the carbon cycle to help reduce uncertainty in the category of woody plant 

encroachment. This research provides a clearer picture of the processes at work in the 

region and highlights the complexity of understanding ecological change within a 

coupled natural and human system. 
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Chapter 4: Carbon Accounting in a Woody Encroached 

Grassland: Assessing the Feasibility of the Voluntary Carbon 

Markets for Individual Land Owners 

 

4.1 Introduction 

 Grasslands and rangelands are a significant contributor to the global carbon 

cycle: they account for approximately 30 to 35 percent of terrestrial net primary 

productivity (Field et al., 1998) and contain more than 33 percent of the above- and 

belowground carbon reserves globally (Allen-Diaz, 1996). Woody encroachment in 

grasslands has been occurring worldwide over the past 150 years, leading to increased 

carbon accumulation on the landscape (Archer et al., 2001; Wessman et al., 2004). 

Woody encroachment has affected over 35,000 sq km, or approximately 84 percent, 

of grasslands in the United States (Gori & Enquist, 2003). Follett et al. (2001) 

estimate the net carbon sequestered by grasslands to range from 0.0175 to 0.0905 

petagrams of carbon per year. Houghton et al. (1999), Pacala et al. (2001), and 

Houghton (2003a) estimate woody encroachment contributes 18 to 34 percent, or 

0.06 to 0.13 petagrams, of carbon per year to the continental carbon sink in North 

America. In addition, Pacala et al. (2001) found woody encroachment tends to 

increase biomass carbon density by more than 1,000 kilograms of carbon per hectare 

per year while Houghton et al. (1999) found this value to be much lower with an 
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upper limit of 555 kilograms of carbon per hectare per year. Within the First State of 

the Carbon Cycle Report (SOCCR), Pacala et al. (2007) and Conant et al. (2007) 

estimate as much as 0.12 petagrams of carbon per year are accumulating in woody 

encroached arid and semi-arid lands of North America based on findings from 

Kulshreshtha et al. (2000), Hurtt et al. (2002), Houghton and Hackler (1999), and 

Houghton et al. (1999). In this context, the North American carbon sink is currently 

estimated to be around 0.505 petagrams of carbon per year, with woody 

encroachment constituting 24 percent of that sink, and is the second largest 

contributor behind forests at 46 percent (Pacala et al. 2007). The increase in woody 

plant abundance has been studied (Archer, 1994; Van Auken, 2000), but the resultant 

impact on terrestrial carbon cycling remains poorly understood and previously 

presented broad scale generalizations in the literature are controversial in terms of the 

large range of values estimated and substantial uncertainty present (House et al., 

2003). 

Increases in woody plant abundance comprise a significant but highly 

uncertain portion of the terrestrial carbon cycle (Houghton et al., 1999; Pacala et al., 

2001; Schimel et al., 2001; Houghton, 2003 a,b). This uncertainty arises from the 

limited accounting of the rate and spatial extent of woody plant encroachment and 

associated increase in biomass and carbon density on the landscape (Houghton, 

2003a) as well as the coarse scale of data and models used to generate global and 

continental scale estimates (Pan et al., 2011). In addition, fire events and intensive 

land treatment and management activities can reduce or reverse carbon accumulation 

(Cline et al., 2010). Pacala et al. (2007) within the SOCCR finds woody 
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encroachment to have the largest uncertainty relative to sink/source estimate of all 

carbon sink estimates in North America, so large that the uncertainty is greater than 

100 percent of the estimated sink value and ranges from being the second largest sink 

to a small source for carbon (Figure 4-1). 

 

 

Figure 4-1. Figure from King et al. (2007) within the SOCCR illustrating North 

American carbon sources and sinks in million tons of carbon per year in 2003. Error 

bars reflect uncertainty in estimates and define the range of values which include the 

actual value with 95 percent certainty (Pacala et al., 2007 within the SOCCR). 

 

The ability to quantify the magnitude of increase in woody plant abundance 

and resultant carbon density is key to assessing current regional-scale carbon pools 

and predicting future carbon pools under pressure from changing land management 

practices, disturbance regimes, and climate. In addition, knowledge of presence or 

absence of change and rates of change are critical to understanding the changing state 

of individual grasslands.  Specifically, as biomass accumulation and carbon uptake 

are generally the greatest in developing stands of woody plants and plateau in mature 
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stands (Hurtt et al., 2002), it is likely that carbon uptake rates will be different in 

grasslands that are in transition due to woody plant encroachment, stabilizing, or 

reached equilibrium with maximum woody plant cover. Woody plant encroachment 

in North American grasslands began in the mid to late 1800s and, therefore, some 

areas may be approaching or may have already reached maximum levels of cover or 

density and carbon sink saturation (Browning et al., 2008) if confounding 

disturbances have not occurred, such as fire and mechanical thinning. Spatially 

explicit identification of change and quantification of the amount of change are 

critical to understanding woody plant encroachment, reducing uncertainty in carbon 

cycle accounting, and supporting voluntary carbon trading markets. 

The objective of this chapter was to estimate woody plant biomass and carbon 

density and changes in biomass and carbon density from 1984 to 2008 within a semi-

arid grassland and determine the economic value of carbon stocks on the voluntary 

market. To achieve this objective, I applied a cover to biomass equation for 

aboveground biomass, a root:shoot ratio for belowground biomass, and a carbon 

equation for carbon density to the woody plant cover amounts generated in Chapter 2. I 

then calculated the value of the carbon stocks based on market prices and land 

ownership units. Given the focus of the thesis on woody plant cover, carbon density in 

grass biomass and soils are not accounted in this case study. 
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4.2 Methodology 

4.2.1 Study Area 

This research investigates woody encroachment and carbon storage in the 

Plains type and Chihuahuan semi-desert type grasslands within the study area. Mean 

annual precipitation between the elevations of 1300 m to 1600 m ranges from 360 

mm to 460 mm and is correlated strongly with elevation (Hibbert, 1977; Osborn, 

1984). The dominant woody plant species is mesquite (Prosopis velutina) (Bock & 

Bock, 2005), representing 90 percent of canopy area and 93 percent of woody 

biomass (Huang et al., 2007). For a more complete description of the study area, see 

section 2.2.1. 

 

4.2.2 Data 

The initial and final woody plant cover maps generated in Chapter 2 were 

used as inputs for carbon accounting. Initial and final woody plant cover amounts are 

used in lieu of the change in woody plant cover amounts due to the non-linear effects 

of the logarithmic equation used for biomass estimation. For a complete description 

of these products, see section 2.3.2. 

 

4.2.3 Biomass and Carbon Density Estimation 

Biomass and carbon density can be estimated over large areas by applying 

appropriate equations to vegetation cover amounts derived from remotely sensed 
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data. I computed aboveground biomass using a set of cover to biomass equations 

developed for mesquite (Prosopis velutina) in a site located approximately 10 km 

from the study area and in a comparable elevation. The biomass equations used were 

B=5.96(% cover) for unburned areas and B=0.09e
9.22(% cover)

 for burned areas (Huang 

et al., 2007). I used the fractional woody plant cover values from the initial and final 

points derived from the trend analysis as inputs to the equation and then calculated 

the change in resultant aboveground biomass values in order to take into account the 

non-linear nature of the logarithmic equation. I then applied a root:shoot ratio of 0.33 

(Ansley et al., 2007) to the results of each equation  to estimate initial, final, and 

change in total biomass. Finally, I calculated carbon density by applying the 

Intergovernmental Panel on Climate Change’s (IPCC) equation of C = B x CF (IPCC, 

2006) where C is carbon in kg, B is biomass in kg, and CF is a carbon factor constant 

of 0.47 determined by the IPCC guidelines for estimating carbon stocks (IPCC, 2006) 

and agreed upon by Browning et al. (2008) and representing the weighted average of 

carbon content in woody material, leaves, and dead components. Figure 4-2 

represents the functions of the two cover to biomass equations with root:shoot and 

carbon equation applied. 

Once the carbon density was calculated over the study area, I divided the area 

into Land Ownership units using the dataset from Chapter 3 and evaluated the change 

in carbon from 1984 to 2008 in each ownership unit as well as the carbon density at 

the end of the time series. I then calculated the market value of the carbon in each 

Land Ownership unit using the rates of change from Chapter 2 and current voluntary 

market prices. 
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Figure 4-2. Carbon density functions using cover/biomass equations from Huang et 

al. (2007) and root:shoot ratio.  

 

4.3 Results 

 The two cover to biomass equations produce different carbon density amounts 

in burned and unburned areas with substantially lower amounts in previously burned 

areas (Figure 4-3). Spatial distribution patterns within each equation mimic those seen 

in the final woody plant cover product discussed in section 2.3.2. 
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Figure 4-3. Carbon density at the end of the study timeframe developed using the 

cover to biomass equations from Huang et al. (2007), root:shoot value, and carbon 

factor. 
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 Carbon density amounts were divided into Land Ownership units (Figure 3-

3a,b) and the amount of change over the 25-year time frame was summed over each 

ownership unit (Figure 4-4). The variation in carbon between land ownership 

categories is driven primarily by the size of each unit and the proportion of area 

burned within each one. Unit 29 is Cienega Creek and represents the largest increase 

in carbon during the study time frame. It is one of the largest ownership units in terms 

of areal extent and contains some of the highest increases in woody plant cover (see 

Figures 2-5 and 2-11). Unit 15 is the San Rafael land grant and is the second highest 

increase. It is also covers a large areal extent with very little fire and relatively higher 

increases in woody plant cover. Unit 3 is Fort Huachuca, another very large areal 

extent unit. However, it contains a much lower increase in carbon due to frequent 

burning. Unit 14 has the smallest increase in carbon due to small areal extent and a 

burn near the end of the study time frame. 
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Figure 4-4. Change in carbon stocks per land ownership unit for the Huang et al. 

(2007) equations. The top chart shows the full ranges while the bottom chart focuses 

on the smaller values. Values represent totals for each Land Ownership unit. See 

Figure 3-3a,b for Land Ownership associated with each category. 
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 The voluntary carbon markets and trading prices determine if current carbon 

density and future potential in the study region is economically viable as a 

commodity with consideration for lost livestock carrying capacity and fire policies to 

protect permanency. Carbon is sold on the voluntary markets in units of 100 to 1,000 

tonnes of carbon dioxide equivalent; however, brokers are available to facilitate 

smaller sales. At the peak in summer 2008, carbon was trading for $7.34/tC on the 

Chicago Climate Exchange (Figure 4-5). However, that value crashed to $0.05/tC by 

the time the exchange was purchased by the Intercontinental Exchange and eventually 

closed. In 2013, the global average price in the voluntary markets was $4.90/tC 

(Peters-Stanley and Gonzalez 2014).  

 

Figure 4-5. Carbon trading prices per metric ton on the former Chicago Carbon 

Exchange (now the Intercontinental Exchange). Source: www.theice.com (last 

accessed 4/17/2014). 
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Table 4-1 shows carbon stocks, density, and value by land ownership unit 

based on the final woody plant cover product. The columns represent the Land 

Ownership unit, the area in hectares, the total amount of carbon in tonnes, the carbon 

density in tC/ha, and the annual value (additionality) estimate based on the rate of 

change in woody plant cover for each Land Ownership unit and the global average 

price from 2013. The study area stored almost 250,000 tC in woody plant cover at the 

end of the study time frame in 2008. However, at current low carbon trading prices, 

the value of annual additional carbon accumulation on the landscape for each 

individual land ownership unit is not enough to balance the loss in profit from 

reduced forage, the increased need to suppress fire in order to maintain permanency, 

and monitoring, reporting, and verification (MRV) requirements.  

Carbon densities are very low across the study area and range from 1.7 to 4.7 

tC/ha with a density of 3.3 tC/ha over the entire study area. Low values are not 

surprising given the small percentage of woody plant cover and the exclusion of grass 

carbon content. Trumper et al. (2009) estimated vegetative carbon storage in desert 

and dryland shrubs to range from 2 to 30 tC/ha and grasslands to store around 8 

tC/ha. These values are the lowest of all ecosystems described. Gibbs (2006) used the 

GLC2000 Land Cover Product to update the carbon storage product from Olson et al. 

(1985) (Table 4-2). Again, grass and shrub classes have the lowest carbon densities at 

9 tC/ha (medium density) and are relatively insignificant.  
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Table 4-1. Carbon stocks, density, and value by ownership. 

Final Carbon Stocks, Density, and Value 

Land Ha C(T) TC/Ha Ann Value 

1 2,685 4,589 1.7 $45 

2 5,714 18,204 3.2 $178 

3 8,224 18,998 2.3 $186 

4 1,222 3,961 3.2 $39 

5 1,265 4,918 3.9 $48 

6 569 1,400 2.5 $14 

7 1,946 4,922 2.5 $48 

8 194 516 2.7 $5 

9 3,690 15,496 4.2 $152 

10 565 1,381 2.4 $14 

11 436 1,736 4.0 $17 

12 1,606 6,225 3.9 $61 

13 1,381 5,753 4.2 $56 

14 84 140 1.7 $1 

15 7,053 27,101 3.8 $266 

16 429 2,003 4.7 $20 

17 4,985 20,184 4.0 $198 

18 86 368 4.3 $4 

19 1,399 3,107 2.2 $30 

20 1,631 7,162 4.4 $70 

21 4,247 12,299 2.9 $121 

22 556 2,447 4.4 $24 

23 485 2,015 4.2 $20 

24 263 1,112 4.2 $11 

25 1,692 6,993 4.1 $69 

26 591 2,220 3.8 $22 

27 493 1,651 3.3 $16 

28 264 1,035 3.9 $10 

29 10,723 36,587 3.4 $359 

30 782 1,485 1.9 $15 

31 2,114 7,837 3.7 $77 

32 223 611 2.7 $6 

33 364 733 2.0 $7 

34 1,698 5,676 3.3 $56 

35 683 2,094 3.1 $21 

36 4,638 14,522 3.1 $142 

Sum 74,978 247,480 3.3 $2,425 
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Table 4-2. Carbon density sorted by Medium Density adapted from Gibbs (2006). 
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4.4 Discussion 

While the North American carbon sink resulting from woody encroachment is 

large compared to other sinks, the carbon density in woody encroached grasslands is 

relatively low. Grasslands cover a large proportion of North America and most 

grasslands are experiencing woody encroachment, leading to significance at the 

broader scale and relevance within carbon cycle research. However, local scale work 

at the land ownership and decision level reveals insignificance in terms of the amount 

of carbon stored per year and the value of that carbon on the voluntary markets. 

Additionality and permanence requirements paired with low market prices make the 

voluntary carbon markets an unattractive option for most land owners. 

The primary objective of land owners within the study area is to maximize 

forage and carrying capacity without overtaxing the land in order to keep cattle 

ranching a profitable business. Voluntary market prices would need to be high 

enough to replace lost profit from a lower carrying capacity. In addition, permanence 

requirements would need to be negotiated in cases of naturally occurring fire. Cattle 

grazing and MRV requirements pair well because grazing suppresses fire spread, but 

good land stewardship (avoiding intense grazing) and the rotational grazing regimes 

used in the study area leave areas with high enough grass biomass to facilitate fire 

spread. MRV requirements should not encourage intense grazing practices as a way 

to prevent fire spread. 

If voluntary market prices climb enough to replace lost carrying capacity, then 

accurate and precise regional woody plant cover monitoring, carbon estimation, and 
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predictive modeling for growth forecasting will be imperative to MRV programs. The 

use of ground-derived cover to biomass equations paired with satellite-derived cover 

estimates for carbon accounting presents several sources of uncertainty. Chave et al. 

(2004) discuss four categories of error when applying equations for biomass 

estimation: error in cover measurement, error due to choice of equation, sampling 

uncertainty related to plot size, and representativeness of plots selected. The range of 

carbon densities produced by the burned and unburned equations reflects the effects 

of landscape variability, disturbance, uncertainty in equations, and scaling up from 

plot scale to landscape scale and beyond on error propagation in broader remote 

sensing assessments of carbon storage. This finding highlights the impact of natural 

local scale variability when applied to broad area general assessments.  

Catastrophic disturbances that serve to reset growth, such as fire, can have a 

greater impact on carbon accumulation (Hurtt et al., 2002) and introduce error and 

uncertainty to carbon estimates derived from generalized cover to biomass equations. 

Huang et al. (2007) found that generic cover to biomass algorithms overestimate 

woody biomass on burned sites and underestimate woody biomass on unburned sites 

due to differences in size-class distribution of woody plants and plant burn recovery 

strategy. Burned plants reestablish canopy area more quickly than biomass, therefore 

requiring a modified algorithm for computing an accurate measurement of biomass 

and carbon. However, burn severity varies from fire to fire, within a single fire, and in 

areas burned multiple times during recovery, and thus creates a complex landscape 

not easily generalized into a single or set of equations. Light Detection and Ranging 

(LiDAR) and Multi-angle Imaging Spectroradiometer (MISR) data could provide 
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vegetation structure information necessary to identifying size-class distribution and 

post-fire recovery stage without requiring time intensive in situ observations. Gibbs et 

al. (2007) found ground based inventories, LiDAR derived measurements, and very 

high resolution airborne optical sensor measurements to have the lowest levels of 

uncertainty in estimating carbon stocks. 

In addition to catastrophic disturbances, site specific conditions can also affect 

spatial variability of carbon accumulation. Browning et al. (2008) and Hughes et al. 

(2006) found that increases in woody plant biomass and carbon differed between soil 

types. Browning et al. (2008) found that woody plant biomass was 1.4 times greater 

on clayey soils than on sandy soils, which has implications for the development of 

cover to biomass equations with attention to soil type and texture as well as broad 

scale assessments of carbon uptake using soil type and texture as input data. 

 Estimates from Sankaran et al. (2005) indicate the study area will reach 

dynamic stabilization between 35 percent to 45 percent woody plant cover. The peak 

of the histogram for initial woody plant cover (1984) in the study area was ~5.25 

percent and for final woody plant cover (2008) was ~10.5 percent with a rate of 

change of ~0.2 percent per year (O’Neal et al. 2013). At this rate, with no 

disturbance, and based on the Huang et al. (2007) equations shown in Figure 4-2, the 

study area will reach a maximum range of 13 t/ha (35 percent) to 17 t/ha (45 percent) 

of carbon. While these carbon densities are higher than the comparative shrublands 

listed in Table 4-2, they are still considerably lower than the other ecosystems listed. 

The maximum carbon potential would be reached between the years 2128 (35 

percent) and 2178 (45 percent) without disturbance. 
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4.5 Conclusions 

Voluntary carbon markets rely on robust programs for accurate, wide area 

estimates of woody plant cover and associated carbon. Indirect assessments using 

satellite and aerial remotely sensed data are the only feasible method for mapping and 

monitoring carbon storage over large areas. Accurate and precise regional carbon 

estimation along with predictive modeling for growth forecasting will be imperative 

to the success of carbon programs. More representative equations are needed for areas 

experiencing disturbance events in order to improve accuracies. It is necessary for 

future research to understand local scale processes and patterns in order to better 

predict future increases in woody plant abundance and resultant carbon, reduce 

uncertainty in carbon accounting, and provide stable assessment for voluntary carbon 

markets. 

 The Random Forests model described in section 3.3.1 could be used to 

produce year by year future predictions of woody plant cover and associated carbon 

in the region and calculate losses in livestock carrying capacity. This could then be 

integrated into an economic model for better analysis of commodity prices and 

voluntary market trends. However, given low prices in the voluntary markets and 

rising beef prices, it is not likely that that economics of voluntary carbon trading are a 

worthwhile venture at this time. This conclusion can be applied to any region with 

slow woody plant growth and resultant low annual increases in carbon.  
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Chapter 5: Conclusions about Woody Encroachment, Agents of 

Woody Expansion and Proliferation, and Carbon Sequestration 

in Woody Encroached Grasslands 

 

5.1 Overview 

The goal of this dissertation was to quantify woody plant encroachment within 

the study area, determine the most important agents of woody plant encroachment 

and expansion, produce carbon stock and density estimates, and determine the value 

of those estimates on the voluntary carbon market. This final chapter summarizes the 

context of this research, reviews the major research findings and contributions, 

outlines future work directions needed to better understand woody encroachment and 

carbon dynamics, and discusses future policy implications. 

 

5.2 Contextual Summary 

Woody plant encroachment and proliferation, particularly in dryland 

ecosystems, has significant impacts on and implications for the livestock industry, 

conservation interests, and carbon cycling. Broad scale estimates of woody 

encroachment amounts and rates, above- and belowground biomass amounts and 

associated carbon stocks and density, and soil carbon dynamics are all highly 
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uncertain in terms of totals, rates of change, and agents of change (King et al. 2007). 

Woody plant cover amounts, density, structure, and patch dynamics vary spatially and 

temporally within an ecosystem, between different vegetation types and dominant 

species, and based on grazing, fire history, elevation, and past and current land 

management decisions and site specific characteristics (Bock and Bock 2005). 

Biomass and carbon content also vary spatially based on site specific conditions, land 

management, and disturbance history, even in adjacent areas with similar woody 

plant cover amounts (Huang et al. 2007, Browning et al. 2008). Fire and human 

management of the landscape, such as prescribed fire, suppression policies, 

mechanical and chemical removal of woody plants, grazing intensity, and grazing 

rotation, influence stand structure, plant ages, plant allometry, and patch dynamics 

which in turn influence biomass and carbon content for a particular woody plant 

cover amount.  

Current assessments of woody encroachment within the carbon cycle are 

overgeneralized and indirect (Pacala et al. 2001; Houghton et al. 2003a). The problem 

of understanding woody encroachment and subsequent changes in carbon density is 

particularly difficult in that local level information needs to be incorporated with 

broad scale assessments. Accumulations of carbon within woody plants represent a 

significant increase in carbon storage over open grasslands given their large area; 

however, woody plants may be lost through land management practices and natural 

disturbances (Conant et al. 2007). Simple bottom up approaches using satellite 

imagery to detect levels of changes in greenness are not enough to fully characterize 

woody plant and carbon dynamics. Instead, greenness measures need to be 
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incorporated with additional spatial data, including three dimensional stand structure 

data to assess size-class distributions and dominant species to determine the best 

equations (Gibbs et al 2007). 

While grasslands and shrublands have relatively low carbon densities, the 

large areal extent of these systems translates to significance in total global carbon 

storage (Houghton et al. 1999). Woody encroachment has the largest uncertainty of 

all the carbon sink estimates in North America, so large that the uncertainty is greater 

than 100 percent of the estimated sink value and ranges from being the second largest 

sink to a small source for carbon (King et al. 2007). The science community needs 

more certain estimates of the role of woody encroachment (in addition to forest 

resources) within the carbon cycle in order to better model cycling and predict future 

atmospheric carbon and temperature rises. In addition, governmental agencies, 

international organizations, and voluntary markets need improved estimates in order 

to determine emissions standards, develop better carbon credit and offset programs, 

and encourage greater participation in the voluntary markets. 

 

5.3 Major Findings and Contributions 

The research in this dissertation supports my original hypothesis, Fire is the 

most influential control on woody plant cover and associated carbon stocks in the 

study region, followed by grazing, precipitation variability, and site specific 

conditions, to be partially correct. While initial woody plant cover is the most 

important predictor variable for influencing the change in woody plant cover, fire is 
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the second most important agent and more important than grazing. In addition, 

elevation is the third most important agent and much more influential than other 

topographic characteristics and soil characteristics. I was not able to incorporate 

precipitation variability into the statistical analysis due to a lack of suitable spatial 

data and the limitation of only a single data collection station located within the study 

area. However, elevation is highly correlated with precipitation, ranked as the third 

most influential variable, and related to species composition. In addition to the 

hypothesis, this research shows that although woody encroached grasslands as a 

whole have a significant contribution to the global carbon cycle, entry into the 

voluntary carbon markets is not feasible given the highly fragmented land ownership 

scale, low carbon density, and low market prices. 

The goal of chapter 2 was to develop annual maps of woody plant cover from 

1984 to 2008, produce spatially explicit maps of woody plant cover change, rate of 

change, and change relative to initial cover, and assess positive versus negative trends 

and spatial variability in direction and amount within the study area. This work 

addressed the challenge of quantifying and characterizing woody encroachment in the 

region and locating pockets of exceptionally high increases as well as declines. This 

research found the study area experienced an overall trend of increasing woody plant 

cover with the peak of the histogram at a 5 percent increase and most values ranging 

between -2 to 11 percent, which matches well with the findings from Bock et al. 

(2007). This translates to a peak rate of change of 0.2 percent increase per year and a 

peak relative increase of 92 percent, meaning woody plant cover nearly doubled in 

the region over twenty five years. Given current rates of increase but excluding 
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disturbance events, the region will likely reach the Sankaran et al. (2005) projected 

maximum woody plant cover of 35 to 45 percent between the years 2128 and 2178. 

The woody plant cover change maps and change relative to initial cover maps 

highlighted areas with significantly higher and lower change amounts. These areas 

are of particular interest in terms of understanding agents and influential factors of 

woody encroachment. Some of the highest and lowest change amounts occur in 

developed and developing areas. They are the result of land clearing, building, 

vineyard planting, and landscaping and are outliers which do not explain the 

influence of agents and conditions of change on the landscape. Excluding the outliers, 

the greatest relative increases occur within the Appleton-Whittell Research Ranch, 

Cienega Creek, and the Vera Earl Ranch. The fence lines of these ownership units are 

clearly visible in the change maps, indicating human influence. The greatest relative 

decreases do not exhibit the same fence line patterns and instead occur in higher 

elevations, higher elevation drainages, frequently burned areas, and recently burned 

areas. The recently burned areas are an outlier in this case since the late time series 

fires artificially reduce the change amounts. 

The goal of chapter 3 was to build on chapter 2 and rank and assess the 

importance of agents and conditions defined by the scientific literature in driving 

woody plant cover change in the study area and determine the most important agents 

and conditions. The conceptual model from chapter 1 (Figure 1-1) identifies the 

agents and conditions and associated directionality of woody plant cover change. In 

this research, I was able to test the impacts and rank the influence of fire (number of 

times burned), grazing (grazed/ungrazed), topography (elevation, slope, and aspect), 
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and soils (soil texture and productivity) on woody plant cover change. In addition, I 

was able to add in an initial cover variable to represent the growth trajectories set in 

place by past and ongoing agents. However, I was not able to test some key agents, 

including drought, levels of grazing intensity, and differences between prescribed fire 

and natural fire, due to a lack of data. I also was not able to test historical agents of 

change, including freeze events, prairie dogs, and wood cutting, due to a lack of 

incident during the study timeframe. However, any spatial/temporal variability 

resulting from these agents is captured in the initial woody plant cover dataset. 

The biggest question posed by the conceptual model is the directionality of 

influence of grazing (as opposed to no grazing) in the study area. This question is a 

source of contention in the scientific literature (see Chapter 1 for greater discussion) 

and includes nuanced discussion on levels of grazing intensity, grazing management 

plans such as rotation, and linked impacts with fire spread. In addition to management 

specifics and related fire impacts, site characteristics and human decision making are 

also relevant considerations in answering this question in order to hold variables 

constant between compared areas. For example, topography, soils, and initial woody 

plant cover would ideally be the same in a comparative study of woody plant cover 

changes in grazed and ungrazed lands. In addition, the areas would have similar 

decisions about prescribed fire, thinning, etc. This could be achieved in future work 

by using a stratified sampling scheme and removing outliers. 

In my study area, the rate of increase in woody plant cover was found to be 

lower in ungrazed lands than in grazed lands; however, ungrazed lands are a 

relatively small areal proportion and have a higher proportion of areas burned once, 
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more than once, and near the end of the time series. There was no apparent 

relationship between fire events and El Nino Southern Oscillation (ENSO) Cycles 

within the study area; however, the extended drought in the region could mask ENSO 

effects. If the three ungrazed land ownership units are considered individually against 

all grazed lands, the largest one (Fort Huachuca containing frequent fire from the 

prescribed fire program) has a lower increase in woody plant cover, the medium sized 

one (Appleton-Whittell containing a fire from late in the time series) has a higher 

increase in woody plant cover, and the smallest one (San Rafael Natural Area 

containing almost no fire) has a lower increase in woody plant cover than grazed 

areas and is as low as the area with frequent fire. The largest one with frequent fire 

and lower increases performs as expected, but the medium one still shows large 

increases even when the trend is dampened by the late time series fire and the small 

one seems to have another mechanism in place for slowing the increase in woody 

plant cover. Grazing history and use of fire are key differences between the three 

sites. Cattle were removed from Fort Huachuca in 1930, Appleton-Whittell in 1969, 

and San Rafael in 1998. The aggressive prescribed fire program at Fort Huachuca has 

kept the post-grazing increases in woody plant cover in check. In addition, the fire 

frequency has prevented many mesquite plants from reaching sizes that are not easily 

killed by fire. The reliance on mostly natural and infrequent fire in the Appleton-

Whittell site has not been effective in slowing the increase in woody plant cover and 

has allowed individual plant sizes to reach sizes large enough to survive fires. This is 

apparent in the low mortality rate seen in the late time series fire via field sampling 

and post-fire greenup signal. The San Rafael site serves as a hybrid grazed/ungrazed 
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site since cattle were removed during the study time frame. The lower increase in this 

study area appears to be a result of land management practices from when the site 

was grazed.  

When I examine the Appleton-Whittell (medium) ungrazed example against 

the neighboring grazed site (Babacomari Ranch) with the same fire patterns, the 

amount of increase in woody plant cover is approximately double in the ungrazed site 

as compared to the grazed site. Since this comparison holds more variables constant 

than the study area wide comparison of grazed to ungrazed areas, I conclude that 

grazing decreases the rate of increase in woody plant cover but does not reduce 

woody plant cover in my study area. This comparison exercise and conclusion also 

supports my hypothesis and Random Forests analysis results that fire is the most 

influential agent of change on woody plant cover when compared to grazing and 

precipitation (elevation).  

In terms of rankings, this research found initial woody plant cover, 

representing the legacy of disturbance and land use and land management decisions, 

is the most influential variable by a factor of two. This is likely due to the fact that 

woody encroachment started in the 1800s and the momentum of historical 

disturbances and land use and land management decision making had already set 

current woody encroachment patterns as of the start of this study timeframe. Areas of 

higher initial woody plant cover and lower or negative amounts of change are almost 

exclusively located in higher elevations, suggesting a relationship between woody 

plant cover change and precipitation and potentially water table depth. The negative 

relationship between initial woody plant cover and change in woody plant cover is 
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present in both burned and unburned sites. The number of times an area was burned 

and elevation are ranked second and third respectively with overlapping error bars. 

There is a negative relationship between the number of times burned and the change 

in woody plant cover as well as between elevation and the change in woody plant 

cover. Elevation is highly correlated with precipitation and also potentially linked to 

drops in the water table through distance from the water table. Grazing is also 

moderately important and somewhat related to the number of times burned.  

Aspect, slope, soil productivity, and soil texture are relatively unimportant 

agents in this region. Aspect and slope have little influence despite demonstrated 

impacts by Franklin (1998). This is likely due to data resolution missing smaller land 

shaping projects for erosion and water control as well as due to limitations on ranges 

in slope occurring in this landscape of flat and gently rolling topography and related 

impacts on aspect. The soil variables had no influence on woody plant cover change. 

Higher productivity values and clay content do not appear to cause increases in 

woody plant cover in the study area despite the findings of Browning et al. (2008) in 

an adjacent study area. This could be due to productivity values all being generally 

low and confounding factors masking the influence of clay content. 

The goal of chapter 4 was to build on woody plant cover estimates from 

chapter 2 and determine the carbon density in the study area and the viability of 

individual land owners selling carbon credits on the voluntary carbon markets. 

Carbon density is very low in the study area, lower than global estimates for similar 

ecosystems (Table 4-2) which are, in turn, lower than estimates for all other 

ecosystems. Given low density, small ownership units, and low trading prices, there is 
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no incentive for land owners to sell carbon credits on the voluntary market, especially 

when considering additionality and permanency requirements for voluntary carbon 

market participation and aggregator costs. However, the issue of understanding and 

accurately estimating carbon storage in woody encroached grasslands is still 

significant in terms of carbon cycle research due to the large areal extent of 

grasslands and shrublands on the planet. Gibbs et al. (2007) found ground based 

inventories, LiDAR derived measurements, and very high resolution airborne optical 

sensor measurements to have the lowest levels of uncertainty in estimating carbon 

storage. More research on developing, testing, and generating error bars for cover to 

biomass equations paired with incorporating disturbance history (fire and 

anthropogenic) and stand structure information from LiDAR or MISR data within a 

decision tree classifier would reduce uncertainty substantially and produce more 

robust estimates of carbon storage for better understanding of the carbon cycle and 

North American carbon sink.  

This dissertation provides a view of woody encroachment within a 

representative semi-arid grassland study area, including long term change, influential 

agents, carbon estimates, and voluntary carbon market value. This regional scale 

holistic and detailed view is an important intermediate link between ground based 

work and broad scale assessments and is key to characterizing, understanding, and 

rectifying error in broader scale assessments and reducing uncertainty in the carbon 

cycle. This work responds to statements within the scientific literature focusing on 

woody encroachment within the carbon cycle for better information on the spatial 

extent of woody expansion, rates of change, increases in biomass/carbon storage, and 
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impacts of disturbance events and soils on biomass and cover relationships. 

 

5.4 Limitations 

 The most important limitation on this study is the lack of precipitation data. 

Precipitation totals, particularly winter precipitation totals, as well as drought length 

and severity and climate change are established agents of woody plant cover change 

(VanDevender and Spaulding,1979; Neilson 1986). Without these variables, the 

percent variance explained from the Random Forests model is likely limited and the 

interactions with other agents and conditions of change cannot be fully characterized. 

 

5.5 Future Research 

This research has highlighted several important directions for future research 

in the course of trying to better understand the agents and implications of woody 

encroachment.  

First, the addition of precipitation data is key to understanding changes in 

woody plant cover in the region. Given the lack of suitable spatial precipitation data 

and the incomplete local climate station data, a locally specific modeled dataset based 

off the limited station data will be necessary to fulfill this need. A spline model such 

as the one presented in Rehfeldt (2006) could provide a useful method for creating the 

dataset necessary to understand the impacts of lagged precipitation, winter rains, 

drought length and severity, and climate change. Given the prolonged drought in the 
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region, the addition of precipitation data may provide a better idea of water table 

depth and better explain the declines in woody plant cover seen in the higher 

elevations and drainages that are not a result of fire. 

Second, it is necessary for future research to understand the agents as well as 

the pattern of change in order to better predict future increases in woody plant 

abundance and resultant carbon storage, reduce uncertainty in carbon accounting, and 

provide stable assessment for voluntary carbon markets. In addition, it is 

recommended that future broader scale studies recognize the importance of 

understanding local scale processes in order to achieve accurate assessments. This 

includes a better understanding of the specific agents in each ecosystem as well as 

their feedbacks, amplified effects, and cause and effect actions. In particular, it 

includes better mapping of disturbance history and current and past land management, 

which may require survey level data. The science community needs more research on 

the factors affecting woody encroachment and a better understanding of woody 

encroached ecosystem function within the framework of the carbon cycle.  

Third, attempts to map broad scale woody plant biomass and carbon using 

moderate and coarse resolution spectral approaches alone for cover measurements 

contain substantial uncertainty unless they are tailored to regional specifics. Spectral 

approaches have limitations due to the lack of structural information which is 

necessary to characterize species composition and stand structure as a result of 

disturbance history. LiDAR and MISR would offer improved accuracy by better 

characterizing the three dimensional aspects of woody plants on the landscape (Gibbs 

et al. 2007). Further, LiDAR or MISR combined with multi-spectral data would offer 
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even more precise and accurate measurements and characterizations of woody plant 

cover on the landscape. For example, they could provide better information on woody 

plant size and susceptibility to fire and species composition for more accurate carbon 

estimation. These measurements and characterizations, once validated with in situ 

measurements, would provide an excellent population to be used for training a 

methodology for improving the results of woody plant cover mapping using 

multispectral data alone. In addition, a correlation could be developed between the 

LiDAR/MISR and hyper/multispectral results and multispectral only results in order 

to promote more accurate results in years prior to and missing LiDAR and MISR 

data. In lieu of LiDAR data, land management and disturbance history information 

derived from ranch records and tree ring analysis could be used to model stand 

structure. Structural information is a key component in reducing uncertainty in 

biomass estimates derived from remotely sensed data. 

This thesis provides valuable contributions to the carbon cycle scientific 

community and land managers in terms of better quantifying woody encroachment 

and expansion and resultant carbon density on the landscape, addressing uncertainty 

in the most uncertain component of the North American carbon sink, clarifying the 

importance and roles of agents of woody plant cover change, and determining the 

economic value of carbon in low biomass systems. It also opens doors for future work 

at broader scales, predictive analyses of future expansion, and improvements to 

voluntary carbon market MRV programs. 
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