

ABSTRACT

Title of dissertation: CROWDSOURCING DECISION SUPPORT:

FRUGAL HUMAN COMPUTATION FOR

EFFICIENT DECISION INPUT ACQUISITION

 Alexander J. Quinn

Doctor of Philosophy, 2014

Dissertation directed by: Professor Benjamin B. Bederson

Computer Science

When faced with data-intensive decision problems, individuals, businesses, and

governmental decision-makers must balance trade-offs between optimality and the high

cost of conducting a thorough decision process. The unprecedented availability of

information online has created opportunities to make well-informed, near-optimal

decisions more efficiently. A key challenge that remains is the difficulty of efficiently

gathering the requisite details in a form suitable for making the decision.

Human computation and social media have opened new avenues for gathering

relevant information or opinions in support of a decision-making process. It is now

possible to coordinate paid web workers from online labor markets such as Amazon

Mechanical Turk and others in a distributed search party for the needed information.

However, the strategies that individuals employ when confronted with too much

information—satisficing, information foraging, etc.—are more difficult to apply with a

large, distributed group. Consequently, current distributed approaches are inherently

wasteful of human time and effort.

This dissertation offers a method for coordinating workers to efficiently enter the

inputs for spreadsheet decision models. As a basis for developing and understanding the

idea, I developed AskSheet, a system that uses decision models represented as

spreadsheets. The user provides a spreadsheet model of a decision, the formulas of which

are analyzed to calculate the value of information for each of the decision inputs. With

that, it is able to prioritize the inputs and make the decision input acquisition process more

frugal. In doing so, it trades machine capacity for analyzing the model for a reduction in

the cost and burden to the humans providing the needed information.

CROWDSOURCING DECISION SUPPORT:

FRUGAL HUMAN COMPUTATION FOR

EFFICIENT DECISION INPUT ACQUISITION

By

Alexander J. Quinn

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2014

Advisory Committee:

Professor Benjamin B. Bederson, Chair

Associate Professor Hal Daumé III

Professor Jeffrey S. Foster

Associate Professor Atif Memon

Professor Ben Shneiderman

Professor Philip S. Resnik, Dean’s Representative

© Copyright by

Alexander J. Quinn

2014

Substantial portions of this document have been adapted from the following published

work in accordance with the ACM copyright policy.

Quinn, A. J. & Bederson, B. B.. (2014). AskSheet: Efficient Human Computation for

Decision Making with Spreadsheets. In Proceedings of the 2014 ACM Conference on

Computer Supported Cooperative Work - CSCW ’14. New York: ACM Press.

ii

Dedication

To my surrogate father, Will Shopes, whose decision 28 years ago to offer

tutoring in programming to an 8-year-old he had never met would set the course of my

life.

iii

Acknowledgements

This work would not have been possible without the enduring support and

generosity of a number of people around me. I simply could not have finished this

without them.

My mentor, Prof. Ben Bederson, has granted me the latitude to run with ideas—

even some crazy ones—while always giving me his encouragement, frank advice,

flexibility, and his time so that I could have the greatest possible chance of success.

Prof. Bederson has been a patient teacher, a staunch ally, and a good friend.

I am grateful to my other committee members—Prof. Atif Memon,

Prof. Ben Shneiderman, Prof. Hal Daumé III, Prof. Jeff Foster—for donating their time

to help make this document as strong as it can be. Each has supported me in a variety

of ways beyond this dissertation, as well.

All of the people who comprise the Human-Computer Interaction Lab (HCIL)

have been an inextricable part of everything I love about life and work throughout my

time in graduate school.

This dissertation is a direct reflection of many in-depth conversations with

current and former faculty and colleagues in the HCIL, the Department of Computer

Science, and beyond, including Dr. Nicholas Chen, Dr. Chang Hu, Prof. Lise Getoor,

Prof. Phillip Leslie, Piotr Mardziel, Jay Pujara, Dr. Yaron Shlomi, Keith Walker,

Prof. Tom Yeh, Prof. Ginger Zhe, and Ben Zou.

iv

None of my work could be accomplished if not for the efforts of more than 300

workers on Mechanical Turk who have done my tasks in earnest and sent me feedback

over the years, as well as the twenty-four anonymous participants in my field studies.

Finally, my wife (Akemi Quinn) and daughter (Alice Quinn) have both given

me constant comfort, love, and logistical support to allow me to follow my aspirations.

v

Table of Contents

Dedication ... ii

Acknowledgements .. iii

Table of Contents .. v

Chapter 1. Introduction ... 1

1.1. Problem .. 4

1.2. Objective .. 5

1.3. Solution .. 7

1.3.1. Frugal human computation ... 8

1.4. AskSheet (preview) .. 9

1.4.1. Example: Grocery stores .. 9

1.5. Motivating example ... 15

1.6. Listing the alternatives ... 17

1.7. Notation.. 19

1.8. Contributions.. 21

1.8.1. Thesis statement .. 21

1.8.2. Generalizable knowledge .. 21

1.9. Non-contributions .. 22

1.9.1. Data quality ... 22

1.9.2. Usability .. 23

Chapter 2. Related work ... 24

vi

2.1. Human computation and crowdsourcing ... 25

2.1.1. SmartSheet : Mechanical Turk from spreadsheets 26

2.1.2. TurKit : Mechanical Turk from JavaScript ... 28

2.1.3. Turkontrol : Decision-theoretic control .. 30

2.1.4. Qurk and CrowdDB .. 31

2.1.5. Efficient human computation .. 33

2.2. Spreadsheets ... 34

2.2.1. Relationship to programming languages .. 34

2.2.2. Interface construction.. 34

2.2.3. Collaboration and coordination ... 35

2.2.4. Prevalence ... 36

2.2.5. Optimization models ... 38

2.2.6. Decision modeling .. 39

2.2.7. Uncertainty .. 40

2.3. Decision-making .. 41

2.3.1. Benefit of information... 42

2.3.2. Decision support systems .. 43

2.3.3. Group decision support systems ... 43

2.3.4. Model-driven decision support systems .. 44

2.3.5. Multiple criteria decision making ... 44

2.3.6. Analytic hierarchy process and analytic network process 45

Chapter 3. AskSheet.. 48

vii

3.1. Parsing spreadsheet formulas ... 51

3.2. Prioritization .. 52

3.2.1. Operations ... 56

3.2.2. Example: =MAX(…) ... 56

3.2.3. Single-step assumption ... 59

3.3. Batching inputs for worker efficiency ... 60

3.4. Quantifying unstructured inputs .. 63

3.4.1. Prioritizing without known bounds ... 65

3.5. Quality control ... 66

3.6. AskSheet Assistant... 67

Chapter 4. Field studies... 70

4.1. Scope .. 70

4.2. Field trials with AskSheet .. 73

4.2.1. Field trial #1: Pediatrician .. 74

4.2.2. Field trial #2: Car shopping ... 77

4.2.3. Field trial #3: Smartphone shopping .. 80

4.2.4. Summary of AskSheet field trials ... 83

4.3. Survey of decision problems .. 83

4.4. Modeling study .. 86

4.5. Summary of field studies ... 90

Chapter 5. Enumerating alternatives ... 92

5.1. Background .. 94

viii

5.2. Relay .. 95

5.2.1. Real-time collaboration ... 97

5.3. Implementation .. 98

5.4. Field trials with Relay .. 99

5.5. Summary .. 101

Chapter 6. Discussion ... 103

6.1. Premise: data-driven analytical decisions ... 103

6.2. Limitations on applicability ... 104

6.2.1. Value: Effort to delegate (or not) ... 104

6.2.2. Performance: time to compute value of information 106

6.2.3. Efficiency and suitability: Expressiveness of model 109

6.3. Optimality .. 112

6.3.1. Dependence between formulas ... 113

6.4. More potential applications.. 115

6.4.1. Example: Vacation .. 115

6.4.2. Example: Reviewing conference paper submissions 116

6.5. Future work .. 118

Appendix A. Spreadsheet formula grammar accepted by AskSheet 122

Appendix B. Algorithms for task generation and management 123

B.1. Refreshing HITs .. 124

B.2. Receiving inputs .. 124

B.3. Assembling the input form .. 125

ix

B.4. Making batches ... 125

B.5. Enabling and disabling HITs ... 127

Appendix C. Algorithms for calculating utilities .. 129

C.1. get_output_distribution(…) ... 129

C.2. get_need_probabilities(…) ... 130

C.3. Calculating utility of each request ... 130

C.4. Binary operators (+ - * / = <> < > >= <=), output distribution 131

C.5. Comparison operators (= <> < <= > >=), need probabilities 132

C.6. Binary arithmetic operators (+ - * /), need probabilities 134

C.7. =SUM(…), output distribution ... 135

C.7.1. Running time, worst case ... 137

C.7.2. Running time, good case .. 140

C.7.3. Optimization with partial sum precalculation .. 141

C.8. =SUM(…), need probabilities .. 142

C.9. =MAX(…), output distribution ... 143

C.10. =MAX(…), need probabilities .. 144

C.11. =IF(…), output distribution ... 146

C.12. =IF(…), need probabilities .. 147

C.13. =ASK(…), output distribution ... 148

C.14. =ASK(…), need probabilities .. 149

C.15. =AND(…), output distribution ... 149

C.16. =AND(…), need probabilities .. 150

x

C.17. =OR(…), output distribution ... 151

C.18. =OR(…), need probabilities .. 152

C.19. =NOT(…), output distribution ... 153

C.20. =NOT(…), need probabilities .. 154

C.21. =INDEX(…), output distribution .. 154

C.22. =INDEX(…), need probabilities ... 155

C.23. =MATCH(…), output distribution .. 157

C.24. =MATCH(…), need probabilities ... 159

Appendix D. Raw results from survey of decision problems 161

D.1. Question text ... 161

D.2. Raw (verbatim) ... 162

D.3. Summarized (edited) ... 165

Appendix E. Modeling study models.. 168

E.1. “Options for Child Birth” .. 168

E.2. “Pediatrician” .. 169

E.3. “Baby Girl Name” ... 170

E.4. “New Home” ... 171

E.5. “Buying a new laptop” .. 172

E.6. “Which car to purchase” .. 173

E.7. “Dog Breeds”... 174

E.8. “Car Rental” .. 175

E.9. Dishwasher .. 176

xi

E.10. “Shaver” .. 177

Appendix F. AskSheet field trial results ... 178

F.1. Doctor #1 ... 178

F.2. Doctor #2 ... 179

F.3. Doctor #3 ... 180

F.4. Smartphone #1 ... 181

F.5. Smartphone #2 ... 182

F.6. Smartphone #3 ... 183

F.7. Car #1... 185

F.8. Car #2... 186

F.9. Car #3... 187

References ... 188

 1 of 196

Chapter 1. Introduction

When faced with important decisions—where the difference between good and

great has significant consequences—businesses, governments, and even some consumers

use models and systematic decision processes. These tools ground their choices in facts

and reason, and set the stage for positive outcomes. For example, in my former job with

Nordstrom, a major fashion retailer, I built spreadsheet-based decision models as part of a

large team tasked with deciding how many items to carry in each department (to keep

customers satisfied without inflicting choice overload), how many units of each item to

buy at a given time (to avoid running out of any item while minimizing loss from over-

buying), and so on. The quality of our decisions had a substantial impact on the

company’s profits. On a smaller scale, everyday purchasing decisions can sometimes

require countless hours researching options and details online. The reader has

undoubtedly had to make complex decisions. This might have involved elaborate data-

driven models and a large committee, or just a “gut” feeling after looking over the facts.

Regardless of the method or how many people are involved in the process, unless

we already know everything about the situation, deciding can entail considerable effort to

understand the problem, gather relevant information, and synthesize it to infer which

course of action would maximize the value of the end result—or at least maximize the

probability of an acceptable result. As Simon described in Theories of Bounded

Rationality (Simon, 1972), our cognitive deficiencies and limited view of the world

eventually push us to accept compromises leading to suboptimal outcomes, sacrificing a

measure of rationality as a pragmatic coping mechanism. This dilemma gives rise to

 2 of 196

satisficing, the strategy of optimizing the outcome offset by the cost of deciding (Simon,

1956). To be clear, satisficing is a compromise—accepting a suboptimal result in order

to mitigate the burden of making an ideal decision.

Solving this dilemma will require devising better ways for decision-makers to

manage the process so that they can make good decisions with less compromise. For

some tasks, decision support tools can help by guiding decision-makers through a method

that suits the task. Often, this involves creating a model describing the requirements and

rationale of the decision.

An entire industry is devoted to producing decision support tools, mainly for

business and government use, as well as some for consumers. However, spreadsheets are

a common choice, especially for ad hoc decision analysis and prototyping of new methods.

Many courses on decision support systems are taught based on the use of spreadsheets

(Power & Sharda, 2007). Spreadsheets can be used for a wide variety of decisions

(Ragsdale, 2014). In fact, even sophisticated programmers commonly use spreadsheets

for mission-critical applications (Grossman, Mehrota, & Özluk, 2007). Due to their

versatility and relatively wide use, I have adopted spreadsheets as the basis for the work

presented in this dissertation.

A common pattern is for an individual analyst to formulate the problem, create a

model, fill in the requisite information, develop a solution, and test the solution using the

spreadsheet (Figure 1). The cells in the spreadsheet generally contain a mixture of inputs

(raw data values) and formulas that calculate some analysis of the inputs. When the

inputs are not readily available, the analyst may solicit help from others within the

 3 of 196

organization or beyond, to search the web for specific information or enter detailed

subjective judgments, as needed to support the decision.

Part of the process of decision modeling entails acquiring the input data for the

model. This is the focus of my dissertation. For example, selecting a location for a

company headquarters would likely entail gathering data about each of the candidate cities,

possibly including details specific to the organization (e.g., presence of suppliers of

specialized materials needed by the company). For a complex scenario with many

choices and many attributes of interest, the amount of requisite data can be quite large,

requiring considerable human effort to gather.

If the amount of data required exceeds what an individual is willing or able to gather

alone, then the task can be split among a group of people working in different locations.

This has the advantage of distributing the possibly tedious task of searching for

information. In addition, some models may depend on specialized knowledge held by

Figure 1. This dissertation aims to improve the input data acquisition

step of the decision modeling process. This diagram was adapted from a

textbook on Managerial Decision Modeling (Balakrishnan, Render, &

Stair, 2006). Latter steps relating to analysis and implementation of the

results were omitted.

 4 of 196

only certain people. Distributing the process will enable participation by people with

different perspectives or areas of knowledge.

1.1. Problem

The problem addressed by this dissertation is that acquisition of input data by

distributed groups of humans is inherently inefficient because (a) distributed groups lack a

mechanism for judging which information is still needed; and (b) overhead is incurred in

order to integrate the contributions in the decision model.

Unlike an individual gathering information for a smaller decision, groups have no

mechanism for judging which information is still needed. An individual gathering

information for a smaller decision can use what has been learned so far to identify which

further information is most likely to affect the final result (i.e., features of interest) and

which is most likely inconsequential to the decision (i.e., minor features of an option that

appears unlikely to become the final choice). In contrast, groups have no central control

(i.e., a single brain), and thus cannot optimize the process in this way. Thus, a group

would waste a lot of effort looking at information that is inconsequential to the final

outcome.

Consider the aforementioned problem of selecting a location for a company

headquarters. Suppose each of the twenty-five members of a search committee is

responsible for researching one of the twenty-five cities under consideration. Each

member is asked to find forty attributes of interest to the company for their assigned city.

Collectively, the committee would need to look at all information about all of the options—

1000 data points in all. This is an inefficient use of the committee members' time. In

 5 of 196

contrast, an individual doing the same task at a smaller scale could likely eliminate many

of the options quickly based on partial information.

The other part of the problem is integrating the contributions in the decision model.

Once the 1000 data points have been collected, they must be analyzed. The information

will be entered in a spreadsheet model that will score each city according to some agreed-

upon criteria and select the city that most closely matches these criteria. The spreadsheet

also leaves a transparent rationale that can be easily communicated to other stakeholders

and audited later, if necessary. The model was created primarily by one of the committee

members, but now the 1000 data points must be entered. The other members do not have

direct access to the spreadsheet file. Even if the committee had used a web-accessible

spreadsheet (i.e., Google Sheets1, Microsoft SharePoint2, etc.), entering such a complex

data set would be vulnerable to data entry errors. Therefore, an additional process will

need to be devised to integrate the data points in the decision model, incurring overhead.

1.2. Objective

The objective of this dissertation is to develop an efficient method of acquiring

decision input data that can be directly integrated in a decision model. My focus is on

offloading the burden of input acquisition to paid workers hired through online labor

markets, such as Amazon Mechanical Turk.

1 Google Sheets – http://spreadsheets.google.com

2 Microsoft SharePoint – http://sharepoint.microsoft.com

 6 of 196

For purposes of this dissertation, I define decisions as not only conventional

decisions such as choosing a graduate school to attend or a city to locate a new company

headquarters in, but also group processes such as deciding which conference submissions

to accept for publication, finding a mutually convenient meeting time, evaluating graduate

admission applications, planning a multi-family vacation, or selecting a job applicant to

hire.

In the context of the broader decision-making process (Figure 1), this relates

exclusively to the input acquisition step. Decision science and decision support tools

comprise a mature field of work spanning disciplines as diverse as business, cognitive

psychology, behavioral economics, computer science, and civil engineering. A wide

range of tools, methods, and theories have been developed and studied over the past century

and beyond (Buchanan & O Connell, 2006). These are described in Related Work (page

24). This dissertation does not aim to develop any new theory or method for decision

making, or advance the fields of decision theory or decision support in any way, other than

by developing a more effective method of input acquisition.

 7 of 196

1.3. Solution

The solution I have developed integrates the decision model into a system for

collecting decision inputs from paid crowd workers in a way that leverages the formulas in

the user’s model to prioritize inputs by the likelihood that they will be needed to compute

the final result, and cull those that are not. The system is primarily designed for users

who are fluent with using spreadsheet formulas to model decision problems, though I will

also demonstrate how it can be used by users without knowledge of spreadsheets using an

alternate interface. (That interface is discussed in section 3.6 on page 67.)

Figure 2. This method is a means of accomplishing the input data

acquisition step from the process in Figure 1. This figure is adapted from

(Balakrishnan et al., 2006).

 8 of 196

This section will give a high-level view of the process, which is summarized in

Figure 2. The next section will give a concrete example, based on the system I developed.

To begin the process, the user (decision-maker) starts by defining the problem and

developing a model. In the model, the user will enter special request formulas in cells

where input data is needed. The parameters to the formulas include the range of values

that is expected for each input and a cost measure indicating the relative burden of

collecting each. Somewhere in the model, there must be a formula (or formulas) that

calculates a final result (e.g., a formula that returns the name of the city to which the

company should locate its headquarters, according to the model). I call this a root cell

because generally, it is a root of the dependency hierarchy within the spreadsheet. It

depends on other cells, including request formulas, but no other cell in the spreadsheet

depends on it. The user will also specify who should help, such as web workers, specific

co-workers, vendors, etc.

The system will prioritize the inputs so that the ones that are most likely to affect

the final result are requested first. The system will then send requests for input data to

the designated helpers, starting with the highest priority inputs first. As input data is

received, it is used to populate the inputs in the decision model, and the prioritization is

updated.

1.3.1. Frugal human computation

A key motivating idea is that when computers make requests to humans as a part

of a computation—a strategy called human computation—the requests should be

minimized. (Human computation is discussed in Section 2.1 on page 25.) Since CPU

time is almost always less expensive and more plentiful than human time and attention, it

 9 of 196

makes sense to optimize the overarching computation to use human capacity more frugally.

We assign a cost to each request and then try to minimize the total cost incurred in the

course of performing the computation.

In this case, the cost is the relative burden of gathering a given input, as estimated

by the user who created the model. The overarching computation is the calculation of the

root cells. This project uses frugal human computation in two ways: culling inputs and

prioritizing inputs.

1.4. AskSheet (preview)

In this section, I will give a brief overview of AskSheet, a system that I built to

study this method. Although this is logically a part of latter sections of this dissertation,

I am describing it here to give context to the sections that follow.

I will explain the use of AskSheet by way of a simplified illustration.

1.4.1. Example: Grocery stores

Andrew operates a catering business that needs to buy a substantial amount of food

each week—typically about 50 items totaling about $1,000. Depending on the week, any

of the 5 grocery stores nearby might have some of the items on sale. All of the grocery

stores make their weekly flyers available online in PDF format, but there is no API or

central database of current grocery prices. Any such database would have to contain

prices for every locality, and update them weekly as prices change. Therefore, Andrew

will hire web workers to search through the flyers for sale prices on the items so he can get

the best deal possible at a single store.

 10 of 196

Starting with a blank spreadsheet, he enters the needed grocery items, the names of

the stores, and some formulas. (For compactness, I will use only 9 items and 3 stores.)

Cells D11, E11, and F11 calculate the sums of the prices at each stores. Cell B12

calculates the minimum of those totals. Cell B13 selects the name of the store with the

lowest total. Note that =SUM(…), =MIN(…), =INDEX(…), and =MATCH(…) are

standard functions found in most spreadsheet applications; they are not specific to

AskSheet. The resulting model is shown in Figure 3.

In cells D2:F10 (columns D through F, rows 2 through 10), he will enter =ASK(…)

formulas. =ASK(…) formulas are specific to AskSheet, and indicate requests for

information.

Figure 3. In this example, a fictional user needs to determine which of

three grocery stores will have the lowest total price for each of the 9

grocery items listed.

 11 of 196

The formula in D2, equivalent to =ASK("$10 to $15"), means that Andrew

expects the 32 ounces of ground coffee to cost between $10 and $15. More details of the

=ASK(…) function parameters are given in Figure 20 (page 63).

Note that if the price ranges he supplied were too wide, the prioritization might be

less effective. The system might request the other value unnecessarily. On the other

hand, if the ranges were too narrow, it might stop too soon.

Next, he enters some instructions for the workers and other details the system needs

in order to post the tasks and manage the quality of the results (Figure 4). The

“Prioritization” slider controls how many inputs to include in each batch.

Based on the contents and structure of the spreadsheet, AskSheet automatically

generates a form for entering data (Figure 5). If Enforce bounds was selected in the setup,

then AskSheet will require that workers enter only values in the specified bounds. This

Figure 4. The setup screen is where users enter instructions to the

workers, as well as settings that affect the price paid and the structure of

the tasks.

 12 of 196

may enhance data quality in some cases (e.g., 5-star rating must be between 1 and 5) but

would not be appropriate for values like prices where values outside the bounds may be

possible, or even desirable (e.g., lower price than expected).

AskSheet posts the tasks and manages the entire process. Andrew can monitor

the progress from a dashboard (Figure 6). The braced expressions show the possible

range of output values for each cell. The shaded colors indicate the relative priorities of

the cells. Obtaining the dark green cells first would provide the greatest opportunity to

eliminate other cells. The system will request those inputs first, in order to reduce the

overall human effort—and hence, Andrew’s cost.

Figure 5. This form was automatically generated by AskSheet from the

spreadsheet model in Figure 3.

 13 of 196

As results are received, AskSheet recalculates the priorities based on the new

information, and posts new tasks, as needed. When enough data has been entered, it

displays the result of that formula calculated with the inputs given by the workers.

In this fictional illustration, 16 of the 27 inputs have been entered. The range of

possible totals for each of the stores has been constrained just enough that a winner can be

determined. The worst case (upper bound) of Store C ($68) would still be better than the

best case (lower bound) of either Store B ($71) or Store A ($85). The final state is shown

in Figure 7.

Figure 6. This is the state of the grocery model before any inputs have

been acquired. The dark green cells have been deemed the highest

priority. For visual contrast, this screen only distinguishes between

substantial differences in utility. Internally, utilities are continuous.

 14 of 196

A primary benefit of using AskSheet is that it does not need to fulfill all of the

requests. It is able to obtain a result that satisfies the user’s spreadsheet model, with only

partial information. This is similar to what individuals do when they have seen enough

information to make a decision, even without seeing every detail of every alternative. For

Andrew, this means lower cost and/or faster turnaround.

It is possible that the benefit of the information gathered by the crowd workers will

not be enough to justify the cost of hiring them. As with any time-saving tool, the user

must make that judgment before deciding to use it. Also, since tasks typically ask for

more than one input at a time, AskSheet might sometimes gather slightly more inputs than

necessary.

It should be emphasized that AskSheet does not depend on this particular decision

model. The user starts with a blank spreadsheet and creates a model based on their needs.

The example models in this paper are not part of AskSheet itself.

Figure 7. This is the state of the grocery model after enough inputs have

been received to calculate a conclusive result (Store C).

 15 of 196

1.5. Motivating example

Early inspiration for AskSheet came from a decision spreadsheet that I used when

shopping for a smartphone (Figure 8). I include it here because it illustrates both the value

of such modeling, even for small decisions, and the intuition behind the optimizations used

in AskSheet.

Figure 8. Manual simulation of minimum amount of data. Empty

green cells illustrate values that were not needed. No matter what score

is chosen for these cells (within the expected range of 0-10), the end result

is guaranteed to be the same. All empty shaded cells and “WINNER” are

in green. “LOSER” is in red.

 16 of 196

After some preliminary research to narrow the field to three top contenders, I

created a model comparing them on 25 attributes. Populating the 75 data points was a

time-consuming process.

Some of the attributes were readily available technical specifications, such as the

battery life (hours of talk time) and screen size (inches). Others were more obscure

attributes of interest to the individual buyer, such as boot time (seconds) and screen glass

durability. All attributes were converted to a desirability score: 0 for least desirable, 10

for most desirable (among these choices).

Starting with the original weights and scores, I substituted 0 in place of some scores

on the winner (Motorola Atrix) to simulate the worst case, if I did not already have that

data. I substituted 10 in place of several scores on the two losers (Apple iPhone 4 and

HTC Thunderbolt) to simulate the best case. If the best case of the losers cannot beat the

worst case for the current winner, the decision is final and data acquisition can be

terminated.

Using manual trial and error, I found that I only needed 50 of the 75 data points to

guarantee the same end result. In other words, AskSheet would save having to gather

33% of the data points.

The actual savings depends heavily on the specific weights. If all weights were

the same, the savings would be less. To test one other set of weights, I repeated the

exercise substituting uniformly distributed random numbers for the weights. They were

assigned to attributes in an order to guarantee the same relative ordering of the attributes.

I found that I could guarantee the same result with only 45 of the 75 data points. Thus, in

 17 of 196

this scenario with uniformly distributed random weights, AskSheet would save having to

gather 40% of the data points.

As a side effect of this exercise, one can see exactly which attribute made the

difference: compactness. This may initially seem unexpected, since the final winner and

the runner up both got 10 for that attribute. One might expect the two 10s to cancel each

other out. The important point is that this is a comparison between the worst case of the

winner versus the best case of the runner up. Adding in the rating for compactness

improved the Atrix’s worst case, without improving the iPhone’s best case. If they had

both gotten 0 for compactness, then more information would be required to guarantee a

consistent end result.

Although these reductions would be attractive in themselves, I expect the savings

to be much greater given a much larger, initially unfiltered field of choices. This would

save the user the effort of initial filtering and also reduce opportunities for suboptimal

decisions. For the above smartphone decision model, I had already identified three

alternatives that were comparable. That required a non-trivial effort to survey the roughly

25 options currently available in the US. Had I (or some user) started with an unfiltered

list, the model would have 625 inputs. Many could be “eliminated” quickly, since their

scores would be far lower than the top contenders.

1.6. Listing the alternatives

The smartphone example highlights the problem of gathering the list of alternatives,

an important aspect of input acquisition for decision making. This is a complementary

problem, but requires a different type of system design from AskSheet.

 18 of 196

AskSheet assumes a skeleton spreadsheet with a fixed set of row and column

headers. Based on the headers, the intended content of any given cell in the spreadsheet

is determined (e.g., gas mileage of Subaru Forester in cell G13). In contrast, when

making a list, the exact size of the list is not known in advance. Furthermore, the items

are likely to be found in arbitrary order. For example, it would be meaningless to ask

crowd workers to enter the 17th car available for sale.

In an important, but separate effort from AskSheet, I developed a system for

delegating the task of creating a list of alternatives—or any other list generated from

internet research—to paid crowd workers. Instead of integrating Relay with AskSheet, I

chose to develop it as a standalone application to demonstrate how this aspect of decision

input acquisition could be addressed, as a guide to future researchers who may want to

connect the ideas.

The system, called Relay, is described in Chapter 5 (page 92). It designed to

encourage a diverse set of list items while setting the conditions to minimize duplication.

The user of Relay enters a description of the type of items to gather. The system posts

tasks to Mechanical Turk that ask workers to think of search queries or other sources for

finding list items, and then enter some list items into a web form.

If Relay merely asked workers to enter list items, it is quite possible that many

workers would do the same web search and enter many of the same items. Therefore,

Relay shows workers the list of sources that have been checked so far, and allows them to

pick up where previous workers left off.

Since some duplication is inevitable, Relay employs an aggressive autosuggest

feature, such that when a worker begins to enter a list item, the system searches other items

 19 of 196

entered so far and offers to fill in details from existing items. This saves the worker time

while increasing the likelihood that that any duplicates will be spelled exactly the same so

that they can be trivially deduped by the software.

Relay does not work directly with spreadsheets. Instead, the results are returned

in the form of a web page. However, a user could easily copy and paste the list items

from the web page into a spreadsheet for use with AskSheet.

List-making is an important component of decision-making, so developing Relay

filled an important gap with respect to the user-facing aspects of this dissertation.

Nevertheless, the primary focus is on coordinating crowd workers to gather the inputs for

spreadsheet decision models.

1.7. Notation

AskSheet is based on spreadsheets, but the core idea is not actually dependent on

that particular notation. Spreadsheets were chosen as the initial implementation medium

just as one would choose a programming language for any other project. In fact, the same

decision models could be expressed in other programming languages or notations, and the

methods and algorithms could be adapted accordingly. Nevertheless, spreadsheets have

some features that make them especially convenient for applying this method:

 guaranteed to halt: Because spreadsheets do not support recursion or unbounded

loops, every spreadsheet program is guaranteed to halt (Sipser, 1997). In other

words, the calculation of the spreadsheet is guaranteed not to go into an infinite

loop. This allows the system to calculate, a priori, the set of possible outputs for

 20 of 196

every formula, which in turn is an important part of the optimizations that make

this strategy powerful.

 no side effects: Evaluation of a cell in a spreadsheet does not have any side effects.

Thus, the results will be the same no matter what order the cells are evaluated in,

and lazy evaluation can be employed without affecting the results.

 arbitrary parameter evaluation order: There is no stated guarantee as to the

order in which parameters to functions will be evaluated. My optimizations

exploit this extensively to reduce the overall number of inputs required to calculate

a final result.

 array-oriented constructs: Many functions used in spreadsheet formulas take

arrays as parameters (i.e., =MAX(A1:A20), =COUNTIF(A1:A20, ">30"),

etc.). These functions further enable opportunities for the prioritization

algorithms to manipulate evaluation order.

Spreadsheets support all of these features as part of their fundamental programming

model. However, I can imagine alternative implementations of the basic idea that would

use other programming models. For example, it might use a restricted subset of Python

or JavaScript that did not allow recursion or unbounded loops (i.e., foo(foo(a,b,c)), while,

do, etc.). The only firm requirements are that programs in the language be guaranteed to

halt, and that it have some opportunities for manipulating the order in which certain

operations are executed.

 21 of 196

1.8. Contributions

The primary contribution of this dissertation is a method for coordinating workers

to efficiently enter data to be supplied as the inputs to a spreadsheet decision model.

I developed AskSheet, a system that coordinates paid crowd workers to fill in the

inputs (blank cells) in a decision spreadsheet. To prioritize the inputs, it uses a static

analysis of user-provided spreadsheet formulas to calculate the value of information of

input. The typical application is to acquire the attribute values for a set of alternatives.

(Chapter 3)

I conducted a set of field studies to measure the effectiveness and applicability of

AskSheet. These include three field trials with three replications each, a survey of

decision problems, and a study of users modeling decision problems. (Chapter 4)

I developed Relay, a system that coordinates crowd workers to acquire a list of

alternatives meeting some given criteria. (Chapter 5)

1.8.1. Thesis statement

The thesis of this dissertation is that there is a class of data-driven decision

problems that can modeled with spreadsheet formulas, such that the

syntactic structure of the formulas can be leveraged to decompose the

process of gathering the inputs into parallel workflows by paid crowd

workers, and the inputs can be automatically prioritized so that a decision

result can be efficiently obtained with only a subset of the decision inputs.

1.8.2. Generalizable knowledge

The generalizable knowledge created by this dissertation includes (a) the

prioritization method used by AskSheet, (b) the framework for decomposing a decision

spreadsheet into independent tasks that are efficient to perform, (c) the interaction method

 22 of 196

used by Relay to decompose the curation of a list of undetermined length into independent

tasks that are efficient to perform, and (d) an exposition of the compatibilities and

incompatibilities of using paid crowd labor in a microtask format to acquire inputs for

decision models.

1.9. Non-contributions

1.9.1. Data quality

Data quality is mostly orthogonal to the core research problem of coordinating the

input acquisition process. Nevertheless, it is important to making the results useful, so I

have used established methods for managing quality with Mechanical Turk, including input

validation and mechanisms for aggregating multiple judgments either by consensus vote

or averaging (depending on the type of input).

The aggregation features that AskSheet supports solicit an arbitrary number of

responses in order to receive a single value. Research done by others uses elaborate

methods to determine the right number of judgments to request, determine the reason for

errors (e.g., carelessness, random clicking, ambiguity in the question, etc.), or manage

which workers seem to be most reliable (Dai, Weld, & others, 2010; Ipeirotis, Provost, &

Wang, 2010; Sheng & Provost, 2008). Quality control in human computation and

crowdsourcing is an active research area in itself, and not an area in which I claim to have

made any significant contribution. My focus is on coordinating independent workers to

support a decision process, and prioritizing which questions to ask in order to avoid

requesting inputs that are not needed. This challenge is orthogonal to that of ensuring that

 23 of 196

any given input contains an accurate value. (This is discussed further in section 4.1 on

page 70)

1.9.2. Usability

The focus of this work is on coordinating crowd workers to efficiently gather and

enter the inputs to spreadsheet decision models, which are taken as input to the system.

As such, the usability of the interface for creating and managing models in the system is

not a primary concern. AskSheet uses spreadsheet models that were created in an

unmodified commercial spreadsheet application (Google Sheets).

 The interface used to control AskSheet could conceivably be adapted for use by

general users. In fact, as part of a field study for this dissertation, I did create a feature

within AskSheet that allows users who are not familiar with spreadsheet formulas to create

decision models that can work with AskSheet. (See section 3.6 on page 67 and section

4.4 on page 86.) However, that tool was designed solely for the purpose of the study.

Usability for the requester (decision maker) is not an intended contribution.

AskSheet is however designed to streamline the activities of workers. To that end,

it balances the goal of gathering inputs in the most efficient order with the reality that

workers can be more efficient if they can gather several inputs from each web search

conducted.

 24 of 196

Chapter 2. Related work

This project is essentially an application of human computation and crowdsourcing

combined with some probabilistic optimization, to advance the problem of decision-

making.

Over the course of my dissertation work, I have had the privilege of discussing this

project with many colleagues from various areas of computer science, as well as other

Figure 9. The topic of this dissertation intersects with an especially wide

range of areas.

 25 of 196

disciplines. They had widely varying perspectives on what topics and related work would

be relevant. These are summarized in Figure 9, along with the areas of study that each

topic relates to, which often overlap. Even this omits work from information retrieval

(i.e., models of information foraging) and database systems (i.e., analogies with

probabilistic selectivity estimation).

My literature review is focused on a few guiding questions:

 What related projects exist?

 What are the capabilities and limitations of human computation and

crowdsourcing?

 What is the relationship of spreadsheets to programming languages?

 How are spreadsheets used?

 What are other methods of modeling the kinds of decisions this project pertains to?

2.1. Human computation and crowdsourcing

Human computation and crowdsourcing are closely related strategies for

accomplishing work that cannot be done with computers alone. Human computation,

defined as “… a paradigm for utilizing human processing power to solve problems that

computers cannot yet solve” (von Ahn, 2005), has been used for such tasks as image

tagging (Von Ahn & Dabbish, 2004), text editing (Bernstein et al., 2010), music genre

classification (Law, Von Ahn, Dannenberg, & Crawford, 2007), and translation (Hu,

Bederson, Resnik, & Kronrod, 2011). Essentially, it is the strategy of replacing

computers with humans. Crowdsourcing is different in that it replaces human workers

with members of public at large. Jeff Howe, who coined the term, defines crowdsourcing

 26 of 196

as “the act of taking a job traditionally performed by a designated agent (usually an

employee) and outsourcing it to an undefined, generally large group of people in the form

of an open call.” (Howe, 2006). The key difference is that human computation deals

primarily with prescribed work processes, as opposed to letting workers solve a problem

ad hoc. Also, with human computation, the tasks are generally things one would like a

computer to be able to do—i.e., translating text—as opposed to fundamentally human

tasks—i.e., writing a personal letter from scratch (Quinn & Bederson, 2011).

Since this project involves a prescribed process, everything here can be considered

human computation. However, some aspects may involve having web workers do jobs

that in-person labor would have otherwise performed. Such tasks can be considered

examples of both.

PeopleCloud is a system that was tested at IBM Research for harnessing large

numbers of in-house workers to do tasks in the spirit of crowdsourcing (Vukovic, Lopez,

& Laredo, 2010). The system provided mechanisms for allocating tasks to available

workers who possess the needed capabilities. The latter mechanisms could offer a useful

starting point for integrating AskSheet’s support for known individuals and groups within

an enterprise.

A few related projects in this area stand out as being especially relevant to

AskSheet.

2.1.1. SmartSheet : Mechanical Turk from spreadsheets

Currently, the most prominent use of crowdsourcing to populate data in

spreadsheets is SmartSheet, a commercial service. It provides an web-based spreadsheet-

like application and offers the ability to hire paid web workers to fill in data in the sheets

 27 of 196

(Figure 10). For example, given a spreadsheet about companies, SmartSheet works with

paid crowdsourcing marketplaces (i.e., Mechanical Turk) to fill in other information about

the companies, such as the mailing address, name of the company president, or other

information which the web workers can find by searching the web (Frei, 2009).

The most important distinction with AskSheet is that Smartsheet does not have any

facility for optimizing the use of the labor. Whereas the objective of SmartSheet is to fill

the entire grid, AskSheet will collect the least amount of data that will allow it to calculate

the result of the key formula(s) in the model. Also, despite the apparent similarity of the

tabular formats, the capabilities are different. AskSheet is based on a general purpose

spreadsheet, whereas SmartSheet is based on a spreadsheet-like application that does not

provide general computation.

 28 of 196

2.1.2. TurKit : Mechanical Turk from JavaScript

TurKit is a toolkit that simplifies the task of programming human computation

applications using Amazon Mechanical Turk. Applications are written in JavaScript, and

the entire process of posting tasks and collecting results is encapsulated in a single program.

If a program is run multiple times, the toolkit ensures that the tasks are not posted multiple

times. An example is shown in Figure 11.

Although both TurKit and AskSheet can be thought of as simplified programming

models for interacting with web workers, there are a few important distinctions between

the two projects.

Figure 10. Smartsheet uses a spreadsheet-like interface to specify jobs

to be completed using crowd labor. A requester specifies the row and

column headers. Information collected by crowd workers is populated

into the body cells. This figure was taken directly from (Agarwal 2009).

 29 of 196

First, AskSheet uses probabilistic optimizations to aggressively pursue

opportunities to avoid doing work. TurKit presumably observes the same evaluation

model as JavaScript, which allows for some short-circuit evaluation, but much less

aggressively. For example, AskSheet will attempt to optimize evaluation of a comparison

operator (i.e., A1<B1) to avoid having to evaluate one side of it in some cases. This is

enabled by the fact that AskSheet requires inputs to be bounded. Beyond this dissertation,

I hope that optimizations like the ones in AskSheet will allow different kinds of

programming, such as coding an algorithm in a naïve way that would otherwise be cost-

prohibitive, and relying on the optimizations to accomplish the same task with less work.

Second, TurKit is designed to work only with Mechanical Turk, whereas AskSheet

is designed to work with different kinds of human helpers. This in turn requires

specifying relative costs, even for helpers who are not directly paid for doing the tasks.

Doing so allows AskSheet to balance the use of different resources (i.e., trade-off between

20 paid tasks versus one request to a co-worker). I believe this will also allow AskSheet

ideas = []
for (var i = 0; i < 5; i++) {
 idea = mturk.prompt(
 "What’s fun to see in New York City?
 Ideas so far: " + ideas.join(", "))
 ideas.push(idea)
}
ideas.sort(function (a, b) {
 v = mturk.vote("Which is better?", [a, b])
 return v == a ? ‐1 : 1
})

Figure 11. This TurKit example program is used as an example in

Little’s paper about TurKit. It shows how to generate five ideas for

things to see in New York City, and then have workers sort the list by

pairwise voting. This snippet is quoted verbatim from (Little, Chilton,

Goldman, & Miller, 2010b).

 30 of 196

to support different kinds of workflows that require both (i.e., collecting objective data with

web workers and expert subjective ratings from co-workers).

Finally, TurKit is designed to support a more general programming model:

anything that can be coded in JavaScript. AskSheet is designed around the spreadsheet

programming paradigm, which does not allow for recursion or unbounded loops, for

example. By supporting these things naturally and cleanly, TurKit allows more advanced

workflows, such as sorting.

To summarize, TurKit supports a more general programming model with a

homogeneous workforce (only Mechanical Turk), while AskSheet supports a

heterogeneous workforce and a narrower programming model, which enables the

optimizations.

2.1.3. Turkontrol : Decision-theoretic control

Decision theoretic planning methods from artificial intelligence have been

leveraged to optimize the use of crowd labor to achieve sufficient degrees of quality for

tasks such as image processing (Dai et al., 2010). The system built by Dai et al, called

Turkontrol, builds on iterative crowd workflows that aim to maximize quality for such

tasks where result quality can be highly variable and difficult to measure (Little, Chilton,

Goldman, & Miller, 2010a). In contrast, AskSheet’s optimizations center on identifying

and eliminating tasks that do not need to be done at all, rather than manipulating result

quality. In the case of AskSheet, the kinds of tasks I anticipate would be sent to

anonymous web workers would be information gathering tasks, where iterative

improvement would be less of a factor.

 31 of 196

2.1.4. Qurk and CrowdDB

Whereas AskSheet is essentially applying a spreadsheet interface to working with

crowdsourcing channels, Qurk (Marcus, Wu, Karger, Madden, & Miller, 2011a, 2011b)

and CrowdDB (Franklin, Kossman, Kraska, Ramesh, & Xin, 2011) have applied a database

interface. Both projects allow a user to write SQL-like queries to be answered by web

workers, even including sort and join operations. The differences lie in their handling of

database features, such as foreign keys, and the range of relational operators supported.

Although the objective and mechanisms differ from AskSheet, they are similar in

that both use a declarative syntax and a goal-directed process to generate requests to

workers. The worker interfaces of the two projects are shown in Figures 12 and 13.

 (a) SELECT (b) CROWDEQUAL (c) CROWDORDER

Figure 12. CrowdDB enables the use of SQL syntax to specify queries

to crowds. A SELECT query will result in asking crowd workers to fetch

a specific piece of information. The CROWDEQUAL AND CROWDORDER

operators are used for joins and sorts, respectively. This figure was taken

directly from (Franklin et al., 2011).

 32 of 196

 SELECT squares.label
FROM squares

ORDER BY squareSorter(img)

TASK squareSorter(field) TYPE Rank:

 SingularName: "square"

 PluralName: "squares"

 OrderDimensionName: "area"

 LeastName: "smallest"

 MostName: "largest"

 Html: "<img src='%s' class=lgImg", tuple[field]

(a) Code for a sort operation in Qurk

(b) Comparison Sort interface

(c) Rating Sort interface

Figure 13. Qurk also enables using SQL to specify jobs for crowd workers. It is similar

in spirit to CrowdDB, but uses different approaches for managing multiple results from

workers, operators and optimizations. These figures are from (Marcus, et al 2012).

 33 of 196

2.1.5. Efficient human computation

Human computation is a paradigm for computation that delegates to humans parts

of the problem that computers cannot solve adequately (Quinn & Bederson 2011; von Ahn

2005). Often, it starts with the assumption that the requester has a set of questions for

which answers are desired. Many such systems aim to reduce the number of tasks that

workers are asked to perform by adjusting the number of judgments per question (Ipeirotis

et al., 2010; Sheng & Provost, 2008), the number of iterations on incremental improvement

jobs (Dai et al., 2010; Little et al., 2010a; Sheng & Provost, 2008; Trushkowsky, Kraska,

Franklin, & Sarkar, 2013), the strategy for decomposing tasks into subtasks (Bernstein et

al., 2010), or by delegating some tasks to machines (Quinn, Bederson, Yeh, & Lin, 2010).

AskSheet is different in that it optimizes the number of questions—akin to telling

the user, “No, actually you don’t need these ones.” A user shopping for a house might

ask for several facts about each of many homes for sale, but if AskSheet can determine that

some will not affect the user’s final choice, those questions will be culled, and not asked.

This notion of “efficiency” has been relatively unexplored.

AskSheet is built on the premise that human time is more precious and plentiful

than CPU time, and thus any opportunity to use machine cycles to reduce human burden is

a positive value proposition. Active learning (K. T. Chan, King, & Yuen, 2009), a

machine learning technique, does this to some extent, but its focus is on efficient training

of predictive models, as opposed to solving a single, monolithic problem, such as a

decision.

 34 of 196

2.2. Spreadsheets

2.2.1. Relationship to programming languages

Although often thought of as a business intelligence tool, spreadsheets can also be

considered an end-user programming system—and probably the most widely used in the

world. They are accessible for less technical users to get started, and offer a smooth

transition from basic models to more powerful ones, such as Monte Carlo simulation and

decision trees (Bodily, 1986).

Spreadsheets can be considered a declarative programming language because the

program (network of spreadsheet formulas and literals) specifies “what is to be computed,

but not necessarily how it is to be computed” (Lloyd, 1994). The “declarative” aspect is

important because it characterizes the manner in which spreadsheets are constructed.

More specifically, they are an instance of first-order functional programming (Abraham,

Burnett, & Erwig, 2008), a subset of declarative programming (Hanus, 1997). In fact,

many of the typical pedagogical examples often used to teach functional programming (i.e.,

Fibonacci sequences, Towers of Hanoi, generation of permutations, etc.) can actually be

performed using clever spreadsheet formulas (Casimir, 1992).

2.2.2. Interface construction

In addition to functional programming, spreadsheets were used as the basis for

much early work in end-user programming and interface construction tools. Gotfried and

Burnett demonstrated the “graphical definitions” technique which pairs gesture and direct

manipulation interactions with a spreadsheet-like application to enable the user to specify

objects. This was applied to tasks such as creating visualizations of data using custom

 35 of 196

shapes (Gottfried & Burnett, 1997). Hudson showed how the behavior of a GUI

application could be specified using a spreadsheet-like end-user programming system

based on cells and formulas. This allowed typical benefits of spreadsheets—visibility,

accessible control constructs, etc.—to be harnessed for other kinds of programming

(Hudson 1994). Even earlier, Myers used a spreadsheet-like model as the basis of a

graphical tool for specifying user interface constraints, with the goal of integrating it into

a larger interface builder (1991). Spreadsheets have also been cited as the inspiration for

other work in end-user programming that did not directly involve spreadsheets (Burnett et

al., 2001; Lai, Malone, & Yu, 1988).

Alternate representations have also been used for the spreadsheet formulas. Cox

and Smedley (1994) created an extension that allows the user to construct the computation

using Prograph, a visual programming language.

2.2.3. Collaboration and coordination

One of the earliest distributed spreadsheets was based on the UNIX sc spreadsheet,

and explored the technical challenges associated with maintaining consistency, even in the

face of concurrent edits by networked users (Palmer & Cormack, 1998). Even before

that, Nardi and Miller studied the ways in which users were collaborating using standard

single-user spreadsheet applications, either through asynchronous contributions, or by

working together at a single workstation (1990).

Recently, web-based spreadsheets, such as Google Sheets (http://docs.google.com),

Microsoft Excel Web App (http://office.microsoft.com/en-us/web-apps/), and EditGrid

(http://www.editgrid.com), have brought spreadsheet-based collaboration into mainstream

use. The Forms feature of Google Sheets goes further by integrating an online survey

 36 of 196

mechanism with the spreadsheet. Users define a table in the spreadsheet, create a survey

form using the provided interface, and send the form to their contacts. Each response to

the survey becomes a row of the spreadsheet.

Gilige et al are preparing a design of an enhanced environment for collaboration

using spreadsheets, starting with a study of user interface requirements (Ginige, Paolino,

Sebillo, Shrodkar, & Vitiello, 2010). Their system design deals with issues such as

conflict resolution, visibility, and update notifications (Ginige, Paolino, Sebillo, Tortora,

et al., 2010).

Whereas AskSheet is about coordinating complex human workflows using

spreadsheets, Fujima (2007) proposed how spreadsheets could be used to define

coordination among complex web applications.

2.2.4. Prevalence

Several studies of spreadsheet use and spreadsheet prevalence have been conducted

(Brown & Gould, 1987; Y. E. Chan & Storey, 1996; Hendry & Green, 1994; Lawson,

Baker, Powell, & Foster-Johnson, 2009; McGill & Klobas, 2005; Nardi & Miller, 1990).

However, none of these directly measured the prevalence of the specific style of modeling

that my research is based on. There is only indirect evidence, based on studies taken from

different populations and at different times.

One such study, conducted by the Spreadsheet Engineering Research Project

(SERP) at Dartmouth, surveyed 1,597 spreadsheet users at several organizations between

2005 and 2006 (SERP (Spreadsheet Engineering Research Project), 2006). The vast

majority of the respondents self-identify as spreadsheet experts (“extensive experience;

some expertise” or “very experienced; high expertise”). They reported creating

 37 of 196

spreadsheets using optimization (46.8%), simulation (30.6%), statistical analysis (60.3%),

and other techniques (25.9%). The percentages do not sum to 100% because some

respondents used multiple techniques.

The SERP data deals with expert use, but gives no insight as to the frequency of

spreadsheet use by the general population. In 2003, Microsoft claimed in a press release

that there were 400 million users of Excel worldwide (Microsoft Corporation, 2003).

However, the statement did not specify whether it was counting active users of Excel or all

installations of Microsoft Office, which includes Excel.

US Government data gives some additional insight. Between 1987 and 2003, the

US Bureau of Labor Statistics tracked use of spreadsheets and databases by American

workers as part of the Current Population Survey (Scaffidi, Shaw, & Myers, 2005; US

Bureau of Labor Statistics, 2001, 2003). The results (below) give some insight to the

historical use of spreadsheets in the workplace in the United States.

1989 “Do you use spreadsheets?” 10%

1997 “Do you use spreadsheets?” 30%

2001 “Do you use spreadsheets or databases?” 60%

2003 “Do you use spreadsheets or databases?” 64%

These data do not directly address the prevalence of spreadsheet modeling (i.e.,

with formulas), but they show that spreadsheets have been widely used in the past and are

probably widely used today. Unfortunately, the question phrasing was changed in 2001

to also encompass databases. Therefore, the most recent data do not directly reflect the

use of spreadsheets only.

 38 of 196

2.2.5. Optimization models

Spreadsheets, in their most elemental form, are merely a cell-flow oriented

programming system. However, many models require more advanced analysis

techniques, such as optimization or constraints satisfaction (Kirkwood, 1997; Ragsdale,

2014). These allow users with limited mathematical background to perform sophisticated

optimization calculations. Typically, the user specifies data in the worksheet and then

uses add-ons or advanced features in the spreadsheet application to specify the targets or

other parameters for the optimization.

The most common instance is the solver. The solver is a feature built-in to the

application that allows the user to minimize or maximize the value of one cell by changing

other cells specified by the user in a dialog box (Fylstra, Lasdon, Watson, & Waren, 1998).

Solvers are available in most if not all modern desktop spreadsheet applications, including

Microsoft Excel, OpenOffice Calc, Google Sheets.

A research prototype by Stadelmann demonstrated how constraints can be specified

for a spreadsheet. For example, one could specify that two cells must always be equal, or

that a cell must be greater than zero, simplifying some semantics that would otherwise be

awkward to represent with spreadsheet formulas (Stadelmann, 1993).

While the current system design for AskSheet does not involve a solver or any

constraint satisfaction functionality, both would be natural additions to the system in the

future. For example, when modeling a vacation plan, it would be natural to specify a

constraint that the cost and total time not exceed some values specified. Several other

examples I have considered would involve some sort of optimization.

 39 of 196

2.2.6. Decision modeling

This dissertation takes a broad definition of what constitutes a decision. However,

it includes some problems from traditional decision modeling, most often applied to

management science and operations research.

Numerous business textbooks teach methods of decision modeling using

spreadsheets as the primary tool (Baker, 2012; Kirkwood, 1997; Ragsdale, 2014; Seref,

Ahuja, & Winston, 2007; Tennent & Friend, 2011). Focusing more on the spreadsheet

development itself, a paper by Mather gives a framework and general method for the

development of spreadsheet-based decision models (Mather, 1999). It includes best

practices, such as separating out the inputs, outputs, constants, calculation internals, and

the critical logic of the model.

Some papers have explored specific applications. Ipsilandis detailed a

spreadsheet model for the problem of “multi-item vendor selection (MIVS)”. The

objective is to find the most cost-effective way to purchase m items from n different

vendors, including a fixed per-vendor handling cost. The combinatorial complexity

makes this a non-trivial integer linear programming problem. Nevertheless, the author

shows how it can be accomplished using spreadsheet formulas alone (Ipsilandis, 2008).

Nehzati addressed the problem of warehouse layout, another integer programming

problem from operations research. Their solution used Excel as a basis, but also used

Visual Basic for Applications (VBA) to handle graphical aspects of the user interaction

(Nehzati, Ismail, & Rashidi-Bajgan, 2010).

 40 of 196

Some applications use a combination of formulas and the Excel solver to solve

difficult optimization problems. Troutt shows how this can be applied to multi-criteria

optimization problems, such as budgeting (1991).

2.2.7. Uncertainty

AskSheet handles two types of uncertainty: missing information (not collected yet)

and untrusted information (from workers who might not provide good information). The

emphasis (and contribution) are entirely focused on the former, though the latter is a feature

of the implementation. Thus, literature about calculations and representations of

uncertainty in spreadsheets is especially relevant.

In one of the earliest uses of spreadsheets to express uncertainty, Lewis (1985) built

a prototype spreadsheet application that defines cells as constraints instead of values. A

constraint could be a single bound (i.e., >5), an interval (i.e., >3 and < 5), or a certain value

(i.e., =6). Instead of calculating the spreadsheet as normal, it uses Prolog to evaluate the

resulting system of constraints. Formulas in cells would result in a new set of constraints.

More recently, intervals have been used in conjunction with testing spreadsheets to

prevent errors (Ayalew, 2001). That work explicitly provided for interval-sets as well as

intervals. Interval-sets are needed because spreadsheets often contain conditionals

(=IF(c,a,b)) and other non-continuous functions.

Representing uncertainty in spreadsheets is a challenge because the interface model

is based on the assumption that each cell represents a single, concrete value. Streit (2008)

showed how to augment the model so that users could add (and also remove) uncertainty

information to individual cells, and have it propagated through formulas.

 41 of 196

Although most of the above work uses intervals and/or interval-sets to represent

uncertainty, AskSheet uses discrete sets of possible values instead. Actually, an early

iteration used intervals and interval-sets. However, that made it difficult to reason about

the probability of various outputs because the interval sets do not contain information about

the relative probabilities of intervening values. Also, they are not well-suited to Boolean

values or integers with a small range of possible values. With a discrete set, it is possible

to assign a probability to each possible value. This approach is easier to implement, and

is acceptable because the algorithms used in AskSheet assume that inputs will be either

multiple choice or numbers of limited precision (i.e., integers, currency, etc.).

An alternative approach proposed by Lenz (2009) is to use multivariate Gaussian

distributions. This was described only briefly in theoretical terms and I am aware of no

further work on it.

2.3. Decision-making

The history of human decision-making is long and varied. It begins with

prehistoric Chinese and Greek use of mystic traditions to guide their decisions; continuing

with decisions on the fate of accused criminals in Greece; the development of mathematics,

probability, and scientific inquiry; the development of psychology and the awareness of

human cognitive processes; and finally modern computational tools for synthesizing all

available information to calculate a course of action, which a principled rationale indicates

will maximize the probability of an acceptable outcome (Buchanan & O Connell, 2006).

 42 of 196

2.3.1. Benefit of information

It would be nice to be able to prove a causal relationship between the use of modern

decision-making tools and the attainment of positive outcomes. Even the seemingly

obvious notion that the availability of information leads to better outcomes requires

thorough examination, and is not without exceptions.

A number of theories have modeled the benefit of information in specific instances

of decision-making in widely different academic contexts. Stigler’s Economics of

Information theory relates the value of information about different suppliers of goods, their

prices, the cost of search for them, and the benefit to a consumer, in terms of better pricing

(Stigler & Stigler, 1961). In artificial intelligence, Value of Information theory (originally

called information value theory) is used to model the value of individual inputs to an

information-gathering agent in order to achieve some goal with the minimum cost

(Howard, 1966; S. J. Russell & Norvig, 1995). Essentially, my prioritization algorithms

can be considered an instance of value of information theory, although I only learned of

this after they had been developed and integrated into AskSheet. Human-computer

interaction researchers have modeled information foraging behavior in terms of the cost

structure of accessing a given resource its initial perceived value (Chi, Pirolli, Chen, &

Pitkow, 2001; D. M. Russell, Stefik, Pirolli, & Card, 1993). These models have yielded

insights which have informed the design of information access interfaces to improve

efficiency, primarily for individual information seekers.

More recently, some popular books have touted counter-intuitive examples in

which people make better decisions when they have less information and worse decisions

with more (Gladwell, 2007; Schwartz, 2003). Such examples tend to be due to human

 43 of 196

cognitive deficiencies, such as an inability to quantify and compare by subjective

properties, or the tendency to be disproportionately distracted by familiar or emotionally

engaging attributes. Such cognitive deficiencies are not nearly as significant when

decisions are made using tools which aid in the quantification of information and force the

decision-maker to keep the various facets of the options in perspective with one another.

2.3.2. Decision support systems

Eom et al surveyed publications about 210 decision-support system applications

from 1995 to 2001 (S. Eom & Kim, 2005) The survey, which followed two previous

surveys covering 1971 to 1994(H. B. Eom & Lee, 1990; S. B. Eom, Lee, Kim, &

Somarajan, 1998) noted movement toward using decision support technologies to support

group processes, including institutional decisions, negotiation, web-based processes, and

decisions that span multiple organizations. It also noted increases in the integration of

knowledge management systems in decision support systems.

2.3.3. Group decision support systems

Group decision support systems (GDSS) are a class of decision support systems

that facilitate group consensus building, problem refinement, brainstorming, deliberation,

communication and other aspects of group problem solving processes (J. A. Y. F.

Nunamaker, Briggs, Mittleman, Vogel, & Balthazard, 1997; J. F. Nunamaker, Applegate,

& Konsynski, 1988). The aim of such systems differs from this dissertation because they

are inherently focused on the shared responsibility of the participants. Also, they assume

that all participants are involved not only in providing information, but also in shaping the

strategy for arriving at the final decision—and frequently even the initial definition of the

 44 of 196

problem. In contrast, my research assumes that an individual either formulates the

problem definition and decision strategy, or receives them as the output of some external

process. This dissertation is focused primarily on the process of acquiring the requisite

information to follow the strategy. It is conceivable that it could someday be integrated

into a GDSS, but that is outside of the scope of this dissertation.

2.3.4. Model-driven decision support systems

Model-driven decision support systems are a class of DSS that allow decision-

makers to use algebraic formulas, optimization models, and simulations to reach their

decision results (Power & Sharda, 2007). This includes a wide variety of specialized

applications. Spreadsheet applications would mostly accurately be characterized as “DSS

generators” because they essentially serve as a platform with which users create all kinds

of models for different types of applications. This dissertation is focused specifically on

decision support systems that are both model-driven and data-driven since the acquisition

of input data is a primary focus, and it is accomplished by leveraging the model.

2.3.5. Multiple criteria decision making

A large class of decision problems share a common high-level challenge: balancing

a set of criteria, often conflicting. These problems, collectively known as multiple

criteria decision making (MCDM), can be broken into multiple attribute decision making

(MADM) and multiple objective decision making (MODM) (Zanakis, Solomon, Wishart, &

Dublish, 1998).

MODM problems involve choosing from a continuous solution space, such as

deciding on a number or broader solution to a problem. It is generally more theoretical

 45 of 196

than MADM, with methods generally involving mathematical programming on continuous

spaces (Triantaphyllou, 2000).

MADM concerns choosing among a finite set of alternatives. Many such

problems can be represented by a decision matrix (Figure 14) at some point in the solution

process. There are many competing methods of solution. A few notable examples

include the weighted sums model (WSM), weighted products model (WPM), simple

additive weighting (SAW), analytic hierarchy process (AHP), ELECTRE, and TOPSIS

(Zanakis et al., 1998)

Because AskSheet’s optimizations essentially exploit the entropy differential

between the inputs and the outputs, I expect it to find more compelling applications for

MADM (finite, countable solution space) than for MODM (infinite, uncountable solution

space). This remains to be explored further. In any case, AskSheet is agnostic to the

particular method. A spreadsheet may be used to create models expressing many

different methods. The functionality added by AskSheet is not specific to any particular

modeling method within MCDM or otherwise. I am discussing MCDM here because it

encompasses some of the solutions one might want to implement with AskSheet.

2.3.6. Analytic hierarchy process and analytic network process

Key to solving any MCDM problem is eliciting the weights for each attribute and

scoring the alternatives according to each attribute. The analytical hierarchy process

(AHP) is a popular method that does both in a way that was designed to promote consistent,

well-reasoned decision results (Saaty, 1980).

The analyst starts by stating an objective and breaking it into a hierarchy of criteria

and sub-criteria. Then, she makes a series of pairwise comparisons among the criteria,

 46 of 196

judging the relative importance of each. Next, she makes similar comparisons among all

relevant values of for each criterion. Finally, a tool uses this information to rank the

alternatives by the expected benefit from each. The calculation involves solving an

eigenvector problem.

AHP has been used with a wide variety of decision problems, including not only

the canonical choice and prioritization problems, but also budgeting, benchmarking and

strategic planning (Forman, Gass, & Smith, 2001; Vaidya & Kumar, 2006). A

generalization of AHP, the analytic network process (ANP), allows for more flexible

representations of the decision, accounting for dependency and feedback between criteria

and alternatives (Saaty & Hall, 1999). For example, one might want to assign more

weight to criteria that better differentiate the alternatives.

AskSheet does not support AHP or ANP. They are normally performed using

specialized tools, rather than spreadsheets. Moreover, it would likely be difficult to

devise the needed optimization algorithms for the eigenvector calculations. I am

Figure 14. This prototypical decision matrix illustrates a pattern used for

many models that I have used with AskSheet. This figure was taken

directly from (Zanakis et al., 1998).

 47 of 196

discussing AHP and ANP here because they are well-known methods of solving many of

the same types of decision problems that AskSheet aims to solve. Furthermore, they have

seen some success at generating stable consensus (Vaidya & Kumar, 2006), making them

a method of interest for structured decision making in groups. However, group use is not

the primary impetus of AHP and ANP, as it is for AskSheet, and there is no assumed

support for coordination or optimization of the input acquisition process.

 48 of 196

Chapter 3. AskSheet

This chapter will explain the implementation of AskSheet. I will begin with an

overview of the architecture (Figure 15) before covering the prioritization itself.

Figure 15. AskSheet sits between Amazon Mechanical Turk and Google

Sheets. The boxes on the left are web pages that are accessed by the user

(decision maker) or workers. The ones on the right are backend modules.

AskSheet

workers

user
(decision maker)

loader

valve

CrowdLib

menu

results

form

prioritizer

setup

URL of sheet

 AST

options

create decision sheet

URL

options

 sheet status

 sheet status

 utilities

 formulas

 requests, roles

 requests

inputs

 # of HITs to
post

 commands

inputs

 form URL

 49 of 196

The first step to creating a new decision project is to create a spreadsheet in Google

Sheets, an online spreadsheet and collaboration service. AskSheet presumes that the user

(someone with a decision to make) is competent enough with spreadsheet formulas to

create a model of their decision.

Next, the user enters the URL of the spreadsheet document she created into the

AskSheet menu page (Figure 16). This page also shows other models that have been

created, and provides typical tools for copying and deleting models, viewing the results, or

returning to the source spreadsheet.

The loader module in the backend retrieves the formulas of the spreadsheet from

Google Sheets using a public API. Those formulas are parsed into ASTs and then joined

on cell references to create a structure that covers the entire spreadsheet model. (An

example is given later in this chapter. The full grammar is given in Appendix A.)

A limitation of my implementation is that once the model has been imported, it is

fixed. The user is not able to make changes to the weights or labels after that point.

In addition to the formulas, the loader also retrieves an HTML-formatted version

of the spreadsheet. It will later modify this to create the input forms used by workers.

Figure 16. The menu page shows all of the user’s decision models.

 50 of 196

The loader analyzes the spreadsheet formulas using parameters to the =ASK(…)

formulas (Figure 20, page 63) to determine how many separate types of tasks there are (i.e.,

gathering details from separate web sites in parallel). Using this information, the setup

page (Figure 17) elicits information about the tasks, such as the instructions, estimated time

to complete each task, target price per hour, batch size, and so on. This is the basic

information needed by the prioritizer and other aspects of the system.

Prioritization will be covered in depth in the next section. Its primary role is to

calculate the utility of each of the =ASK(…) formulas (decision inputs). The valve

module of the backend is responsible for forming coherent batches of inputs and deciding

when to post more jobs to Mechanical Turk.

Although at any given time, there is usually only one cell that is the top priority,

AskSheet allows multiple roles to be active at a time for the sake of enhancing turnaround

time. A role is a separate branch of workflow with its own instructions. Normally, it

entails gathering a particular type of information and/or from a particular source. At any

given time, a role can be marked as active or inactive. At each step, the valve makes a

role active if its highest utility batch of inputs has a combined utility in the top 25% of all

batches of inputs. Once active, a role becomes inactive only when its highest utility batch

of inputs has a combined utility in the bottom 50%. In other words, it allows a worker to

keep working even if the task they are working on is no longer the absolute top priority,

but it stops them if it becomes a below-average priority. If the user has elected only one

judgment per input, then at each step, the valve ensures that there is exactly one HIT

available or in progress for each active role.

 51 of 196

The CrowdLib module is a general purpose module that I created for working with

Mechanical Turk. It wraps the public API of the service in a clean API, and keeps a local

database to track the state of all jobs in Mechanical Turk’s systems.

As the results are entered by workers, AskSheet receives real-time updates. The

user can view the status using the results page (see section 1.4 on page 9).

Algorithms for the above processes can be found in Appendix B (page 123).

3.1. Parsing spreadsheet formulas

When a decision model is imported, AskSheet retrieves the formulas from Google

Sheets using a public API. The formulas are then parsed using a spreadsheet formula

parser that I developed as part of the implementation. The parser accepts a subset of the

grammars accepted by Google Sheets and Microsoft Excel, with the addition of the

=ASK(…) formula. Among features not supported are array formulas (e.g.,

Figure 17. The setup page is where the user (decision maker) enters

instructions to workers, as well as details that affect the amount workers

will be paid and how their task will be structured.

 52 of 196

=SUM(IF(A1:A100=B1:B100, 1, 0))), array literals (e.g., {"good",

"great", "excellent"}), and cross-sheet cell references (e.g., Sheet1!A1).

The full grammar accepted by AskSheet is given in Appendix A (page 122).

3.2. Prioritization

The most important component of AskSheet is the prioritizer. To illustrate how it

works, I will refer to this trivial model.

 A B C

1 =ASK(“1 to 5”) =ASK(“1 to 10”) =IF(A1 < B1, “true”, “false”)

The first step is to parse each formula into an abstract syntax tree (AST). These

trees are joined wherever there is a cell reference, resulting in a structure like this.

By analyzing the dependence relationships between cells, the planner can infer

which cells the user is likely to care about (e.g., the =INDEX(…) function in cell B10 of

the grocery shopping example). I call these the roots of the resulting graph because they

depend on other cells, but other cells do not depend on them. The root of this trivial model

is C1.

The goal is to find an ordering of the requests that will minimize the expected cost

of evaluating the model—finding a result for all root cells. I think of the cost of an

ordering as the expected sum of the costs from all requests that would be fulfilled (i.e., not

 53 of 196

eliminated) if they were gathered in that order. I define the resulting expected model cost

of fulfilling a particular request as the expected cost of evaluating the entire model, if that

request were fulfilled next. This cost should be regarded as a heuristic.

(In this section, I will refer to =ASK(…)functions as requests or r since i (inputs)

would be confusing as a variable name.)

An advantage of using spreadsheets for this work is that the order of evaluation for

most operations is effectively arbitrary. Often, evaluating operands in one order can yield

a higher probability of eliminating one of the others by short-circuit evaluation or some

form of lazy evaluation. This is the fundamental advantage that AskSheet exploits.

When evaluating the comparison in the =IF(…) function, one could evaluate A1

and B1 in either order: (A1, B1) or (B1, A1). To prioritize, AskSheet considers the

range of possible values for A1 and B1, from the =ASK(…) formulas. My implementation

treats every possible value as equally probable. In other words, each cell—and in fact

each node of the AST of each cell—is represented as a random variable with a discrete

uniform distribution 3.

3 The choice of the uniform distribution is imperfect, but inevitable. For the common types of data used

in these decision models, there is no well-established default. I considered using a normal distribution,

but data on product ratings from commercial web sites indicates that they are not normally distributed, and

it depends on the subject matter. For prices, I discussed with Prof. Phillip Leslie, a professor of

economics at UCLA who is an expert on pricing. He said that there is no well-established default

distribution for product prices. The logistic distribution is commonly found in the literature for

convenience of those calculations, but he said the uniform would work just as well. For AskSheet, I felt

that uniform was the most neutral.

 54 of 196

Suppose we choose the latter and evaluate B1 first. If the request in B1 receives

any of the values 6, 7, 8, 9, or 10, then the comparison A1 < B1 must be true, no matter

which value A1 receives. Also, if B1 is 1, then A1 < B1 must be false. Therefore, we

would only need A1 if B1 turns out to be 2, 3, 4, or 5. In other words, Pr(need A1 | have

B1) = 0.4.

On the other hand, if we evaluate A1 first, no matter what the value, we will need

B1. Thus, Pr(need B1 | have A1) = 1.0.

Based on the above, we can say that the resulting expected model cost of fulfilling

A1 first is 2.0 because if A1 is fulfilled next, we will definitely need both B1 (cost=1) and

A1 (cost=1) with probability 1.0. The resulting expected model cost of fulfilling B1 is

1.4 because we will need A1 with probability 0.4 and we will need B1 will probability 1.0.

More generally, for any model M we will calculate the expected resulting model

cost of fulfilling each request that the root cells depend on. Sorting by that will give the

final ordering. The resulting expected model cost is calculated as:

E(C(𝑀)) = ∑ C(𝑟)Pr(𝑀 needs 𝑟)

𝑟∈𝑟𝑒𝑞𝑠

… where C(r) is the cost specified in the ASK(…)function parameters, reqs is the

set of all requests in the model, C(M) is the cost of evaluating the model, and Pr(M needs

r) is the probability that evaluating every root in the model will require fulfilling request r.

That can in turn be expressed as the probability that any root node will need request r.

Pr(𝑀 needs 𝑟) = 𝑃 (⋁ 𝑛 needs 𝑟

𝑛 ∈𝑟𝑜𝑜𝑡𝑠

)

 55 of 196

The probability that a particular node n needs a request r is calculated recursively:

 If n is a request and n = r, then P(n needs r) = 1.

(Every request node needs itself.)

 If n is a request and n ≠ r, then P(n needs r) = 0.

(A request node never needs any other nodes.)

 For any other node type, the probability is:

Pr(n needs r)=Pr(⋁ 𝑜𝑝 needs 𝑟 ∧ 𝑛 needs 𝑜𝑝

𝑜𝑝∈𝑂𝑝𝑠𝑛

)

… where Opsn is the set of operands (i.e., child nodes) to n.

For simple arithmetic operations, P(n needs op)=1 for all of the operands, since an

arithmetic operation cannot be calculated without all of its operands (except for a few

special cases, such as multiplication by zero). For example, to calculate a + b, you need

both a and b, regardless of the bounds or distributions.

AskSheet prioritizes the requests by the conditional expected model cost

E(C(M | acquire r next)), conditioned on acquiring each request r next. It is equivalent to

the this utility function:

U(𝑟) = E(C(𝑀)) − E(C(𝑀) | 𝑟 next)

In essence, this is the expected overall savings if we acquired r next, versus

choosing parameters randomly at every step.

Note that the cost is based on marginal probabilities over all possible values of other

inputs in the model. The calculations assume parameters are evaluated in random order by

 56 of 196

default. (For =IF(…), the condition is always evaluated first since it would not make sense

to evaluate the value parameters first.)

For operations that can potentially be optimized to eliminate requests—including

the comparison operators, =MIN(…), =MAX(…), =IF(…), and many others—calculating

the probability that the node needs each operand generally entails calculating the output

distribution (probability mass function) of the node—every possible output value and its

probability relative to the decision inputs (random variables). Some examples are shown

in the table below.

3.2.1. Operations

AskSheet supports a small but important subset of core spreadsheet formulas:

=IF(…), =MAX(…), =MIN(…), =SUM(…), =AND(…), =OR(…), =NOT(…),

=INDEX(…), =MATCH(…), and operators (+, -, /, *, =, <, <=, <>, >=, >). Efficient

algorithms for calculating the output distribution and need probabilities are specific to each

these.

In addition, Figure 18 illustrates the output distributions with a series of simple

examples. The calculation for the output distribution of =MAX(…) is shown below. All

of the algorithms are given in detail in Appendix C (page 129).

3.2.2. Example: =MAX(…)

The output distribution for =MAX(…) is the joint distribution of possible values the

formula could take, for all possible values of its parameters.

 57 of 196

Since =MAX(…) is synonymous with the kth order statistic for a discrete random

variable with k possible values, we can use the probability mass function for discrete order

statistics:

Pr(max = 𝑘) = Pr(max ≤ 𝑘) − Pr (max < 𝑘)

=Pr(⋀ 𝑜𝑝 ≤ 𝑘

𝑜𝑝∈𝑂𝑝𝑠𝑛

) − Pr(⋀ 𝑜𝑝 < 𝑘

𝑜𝑝∈𝑂𝑝𝑠𝑛

)

 58 of 196

 A B

1 1 Pr(A1=1) = 1

2 “Chocolate” Pr(A1 = “Chocolate”) = 1

3 =ASK(“1 to 3”) Pr(A3=1) = 1/3

4 =ASK(“1 to 3”) Pr(A4=1) = 1/3

5 =ASK(“1 to 3”) Pr(A5=1) = 1/3

6 =A3 * 2 Pr(A3=2) = 1/3
Pr(A3=4) = 1/3
Pr(A3=6) = 1/3

7 =A3 + 2 Pr(A3=3) = 1/3
Pr(A3=4) = 1/3
Pr(A3=5) = 1/3

8 =A6 + A7 Pr(A8=5) = 1/9
Pr(A8=6) = 1/9
Pr(A8=7) = 2/9
Pr(A8=8) = 1/9
Pr(A8=9) = 2/9
Pr(A8=10) = 1/9
Pr(A8=11) = 1/9

9 =MAX(A3:A5) Pr(A9=1) = 1/9
Pr(A9=2) = 7/9
Pr(A9=3) = 19/9

10 =SUM(A3:A5) Pr(A10=3) = 1/9
Pr(A10=4) = 3/9
Pr(A10=5) = 6/9
Pr(A10=6) = 7/9
Pr(A10=7) = 6/9
Pr(A10=8) = 3/9
Pr(A10=9) = 1/9

11 =A4=A5 Pr(A11=TRUE) = 1/3
Pr(A11=FALSE) = 1/3

12 =A5 > 1 Pr(A12=TRUE) = 2/3
Pr(A12=FALSE) = 1/3

13 =AND(A11, A12) Pr(A13=TRUE) = 2/9
Pr(A13=FALSE) = 7/9

14 =NOT(A13) Pr(A14=TRUE) = 7/9
Pr(A14=FALSE) = 2/9

15 =IF(A4=1, “one”, “two”) Pr(A15=”one”) = 1/3
Pr(A15=”more”) = 2/3

16 1 “una”

17 2 “dos”

18 3 “tres”

Figure 18. This table illustrates the output distributions of various

functions by example. The algorithms used to calculate each of these are

described in Appendix C (page 129).

 59 of 196

3.2.3. Single-step assumption

AskSheet considers only the effects of the next input acquired, and greedily

acquires whichever maximizes overall expected cost savings. In many value of

information applications, this can diminish optimality, especially for those that optimize

cost and another utility function .

Within the above assumptions, the single-step assumption does not affect

AskSheet. We will explain with this example.

If either A1, A2, or A3 were chosen first, then the expected model cost would be

3.88. However, choosing B1, B2, or B3 first would reduce that to 3.61, for a utility of

0.27. (These were calculated by AskSheet, and will not be derived here.) Below, the

dashboard is annotated with all of the utilities.

Although the pair of (A1, B1)—or (A2, B2) or (A3, B3)—could eliminate the other

four cells, AskSheet does not know this. Nevertheless, optimality is not affected, as we

will see.

 A B C

1 =ASK("0 to 1") =ASK("0 to 100") =AND(A1=0, B1=0)

2 =ASK(“0 to 1”) =ASK("0 to 100") =AND(A2=0, B2=0)

3 =ASK(“0 to 1”) =ASK("0 to 100") =AND(A3=0, B3=0)

4 =OR(C1:C3)

 A B C

1 {0…1} U=0.00 {0…100} U=0.27 {false…true}

2 {0…1} U=0.00 {0…100} U=0.27 {false…true}

3 {0…1} U=0.00 {0…100} U=0.27 {false…true}

4 {false…true}

 60 of 196

Suppose we enter 0 in cell B1. Then, A1 gets the highest utility since it could

eliminate the remaining cells. Taking A1 next, the expected model cost would be 2.28,

versus 3.01 if B2 or B3 were chosen next, or 3.22 if A2 or A3 were next.

The result is the same as if the pair had been selected together. More generally,

because utility is based on marginal probabilities over all other values, there is no extra

value to selecting pairs (or n-tuples) together, as long as the input with single highest utility

is acquired at each step.

In practice, it is often more efficient to gather a few related inputs at once. This

can affect optimality, although the user can control that tradeoff in the setup panel. If the

user had set batch size to 2, B1 and B2 would have been acquired first.

3.3. Batching inputs for worker efficiency

Up to now, this discussion has assumed that that inputs are acquired one at a time.

However, in most cases, that would be inefficient for a worker because loading a new HIT

and checking the instructions has overhead. It would be more efficient for workers to

have more than one input in each task. To support this, AskSheet actually batches inputs

that involve the same type of activity (e.g. searching for fuel economy specifications) and,

where possible, the same source information (e.g., pages about a single car model).

A batch is a set of inputs—typically no more than a few—that are shown to a worker

within a single HIT. The user sets the batch size in the settings panel. (An example of

 A B C

1 {0…1} U=0.93 0 {false…true}

2 {0…1} U=0.00 {0…100} U=0.21 {false…true}

3 {0…1} U=0.00 {0…100} U=0.21 {false…true}

4 {false…true}

 61 of 196

a batch and the corresponding settings panel was shown in the grocery example on in

section 1.4.1 page 12.)

To create a batch of length n, AskSheet follows the following process:

1. Sort inputs by the following parameters:

a. itemLabel (parameter to =ASK(…); typically a decision alternative)

b. utility

c. row number of cell

d. column number of cell

2. Form as many n-length batches as possible from the sorted inputs.

3. Sort the batches by the sum of the utilities of the inputs in each batch.

The result is a set of batches which minimize the number of decision alternatives

that a worker has to focus on in a given task, while secondarily maximizing the utility of

the inputs from each batch. It balances the inherent trade-off between optimizing the

worker’s focus in any given task and optimizing the order in which the inputs are acquired.

The benefit of this scheme is illustrated in Figure 19.

 62 of 196

In addition to grouping inputs by itemLabel, the parameters to =ASK(…) also

allow it to split the job into multiple roles (HIT Types) which are run in parallel 4. (See

Figure 20, page 63.) The example below illustrates how the job of gathering information

to find an acceptable pediatrician is split into four separate roles which run in parallel.

4 The original vision for AskSheet also included the idea of coordinating crowd workers and trusted co-

workers working in parallel in support of the same decision process. Although I ultimately narrowed the

scope of my dissertation work to include only crowd workers on Mechanical Turk, this broader vision is

still an integral part of the AskSheet architecture, as evidenced by the recipientSpec parameter to the

=ASK(…) function. In the future, AskSheet could be extended such that recipientSpec parameter

would accept other contact details (e.g., email addresses, instant messaging handles, SMS text message

numbers, social network connections, etc.). Requests for assistance would be automatically sent via those

channels, just as they are posted to Mechanical Turk now.

(a) With just one input per task would mean that a worker would waste effort

going back to the site for each task. (BAD)

(b) If inputs were strictly prioritized by utility, workers would waste effort

going back and forth between different web sites. (BAD)

(c) Because the =ASK(…) formulas in this model specify the store name

as the itemLabel parameter, AskSheet is able to group inputs by store,

to balance worker efficiency with the prioritization of the inputs. (GOOD)

Figure 19. AskSheet’s batching uses the =ASK(…) parameters to enhance a

worker’s efficiency within a given task. In the example shown, the grocery

stores (columns) are the alternatives, and the prices of items are the attributes.

 63 of 196

3.4. Quantifying unstructured inputs

Up to this point, we have discussed only models where all inputs are either numbers

or discrete choices. AskSheet handles unstructured, non-numeric inputs using a method

we call text scoring. It leverages the “score” input type mentioned in the =ASK(…)

parameters (Figure 20).

To enable a global view across tasks and/or workers, AskSheet asks subsequent

workers to compare the features on the car model they have researched together with the

text descriptions entered in up to four prior tasks. Figure 21 shows this comparison with

two prior values.

Each subsequent worker who does the task adds some new descriptions and is

shown some prior descriptions for reference. To reconcile all of the scores, AskSheet

scales and translates all of the scores for a particular field onto a common coordinate system

Figure 20. The =ASK(…) formula parameters are at the core of the

strategy for partitioning inputs into efficient tasks. The

recipientSpec parameter reflects an earlier vision for AskSheet, but

is not currently used 4.

 64 of 196

(i.e., offset and scale). This is analagous to if all of the scores were in different unknown

units, and there were just a few measurements of the same quantity with which to convert

the units of one to another.

Two common scores would be sufficient if the information were perfect. A

challenge is that workers may disagree on the relative score of items, and the values on the

slider may not be precise, in the absence of more reference points. Therefore, it collects

up to four comparative scores with each task in order to accumulate redundant information

and use the method of least squares to solve for the set of scale factors and offsets that

gives the best fit (Figure 22).

This strategy was adopted to allow a richer set of models including inputs that

would otherwise be difficult to quantify. However, it is not intended to be primary basis

of a model. A more thorough study of text scoring and its statistical properties would

needed to fully understand its ability to reconcile scores from different contributors.

Figure 21. Text scoring interface

 65 of 196

3.4.1. Prioritizing without known bounds

Another challenge is that there is no way to specify bounds a priori for such

unstructured quantities. To solve this, at each step, after reconciling the scores received

so far, AskSheet estimates how much of the total space has been seen so far.

This is accomplished using maximum spacing estimation (MSE) (Ranneby, 2013),

a method of estimating properties of a distribution based on a limited sample. The MSE

formula for uniform distributions gives us an estimate of the global maximum and

minimum (e.g., Relative to cars seen so far, what is the most spacious car on the consumer

market?).

𝑚𝑎𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑛 ∙ 𝑚𝑎𝑥𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛 − 1

𝑚𝑖𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑛 ∙ 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −𝑚𝑎𝑥𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛 − 1

These formulas are derived in (Cheng & Amin, 1983, p. 397). Although this relies

on our presumption of uniform distribution—unlikely to be accurate for these fields—the

effect is what we need: The bounds narrow as more inputs are received. From that, we

calculate a scale factor and offset that are applied to all scores in a given field.

𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟 =
1.0

𝑚𝑎𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 −𝑚𝑖𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑜𝑓𝑓𝑠𝑒𝑡 = −𝑚𝑖𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ∙ 𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟

That pushes all values toward the middle of the space from 0.0 to 1.0. The

prioritization assumes a minimum and maximum of 0.0 and 1.0, respectively, so this

 66 of 196

effectively causes the prioritization to assume greater and/or lesser values may still exist.

As more values are received, this margin is decreased gradually.

This approach while straightforward, is necessary to enable a richer set of models

using a variety of types of data. It is not necessary to discover the absolute maximum or

minimum for any one attribute. Eventually, with enough data, one decision alternative in

the decision will prevail.

3.5. Quality control

AskSheet includes a few mechanisms for controlling quality. First, in the setup

screen, the user can request multiple judgments. The judgments can be aggregated by

averaging (for subjective ratings) or voting (for objective information).

AskSheet optimizes this, as well, requesting judgments incrementally. For

example, if the user requests five judgments and the first three agree, it will not request

any more. In fact, it only requests one at a time because there is always a chance that the

Figure 22. In this minimal example, text scores from two workers who

each scored three items are aligned.

 67 of 196

input might be eliminated by the optimizations. This approach was inspired by Get

Another Label (Sheng & Provost, 2008), although it is far simpler than that system.

In addition to multiple judgments, AskSheet uses the input specification to validate

the format and range of the inputs. In the setup screen, the user may specify that blanks

not be allowed (i.e., all inputs required) and/or that ranges must be enforced (or not).

With these options, the form does not allow submission until the inputs conform.

3.6. AskSheet Assistant

Since users' experience with spreadsheets may vary widely, I constructed a form-

based interface that allows users to create spreadsheet models by simply entering their

criteria and a list of alternatives. This was an early goal for my dissertation, and became

the basis of a field study that will be described in section 4.4 (page 86).

The interface is simple, yet powerful enough to express a wide range of models

based on a weighted sum, constraints, or both. To create a model, the user follows the

following steps:

1. Enter a title for the decision

2. Decide on the basic model type:

a. first match will find any alternative that meets the user's baseline requirements

b. best match will maximize a weighted sum

3. Enter the decision criteria. A criterion may be any of the following:

a. integer (with specified bounds)

b. currency (with specified bounds)

c. yes/no

 68 of 196

d. true/false

e. 5-star rating

f. choice (translates to drop-down control)

g. relative (using method described in section 3.4 on page 63)

4. Enter a list of the alternatives.

Using this information, AskSheet Assistant constructs a spreadsheet (not shown to

the user), which is automatically loaded into AskSheet. A screenshot of the interface is

shown in Figure 23.

The alternative labels will become row headers. Criteria labels will become

column headers. For the first match option, it will use an =AND(…) formula to determine

if all of the constraints for a row have been met and then use an =OR(…) to determine if

any of the rows meets all of the constraints. Since AskSheet uses short-circuit evaluation,

it will stop as soon as any row meets all of the criteria. For the best match case, it uses a

simple weight sum using =MAX(…) and =SUM(…). If constraints are given along with

weights, then it uses an =IF(…) to force the sum to zero whenever the constraints are

violated.

 69 of 196

Figure 23. AskSheet Assistant allows a user with no spreadsheet experience to create a

spreadsheet decision model.

 70 of 196

Chapter 4. Field studies

This chapter will detail several field studies that I conducted to understand the

efficiency and applicability of AskSheet. As with other complex systems, there are a

number of ways AskSheet could be measured or evaluated. Therefore, I preface the

discussion of the studies and results with a discussion of scope and how I decided which

questions to address.

4.1. Scope

There are six factors that I believe would affect the success of AskSheet. The

studies in this chapter will focus solely on the first two; the third will be covered in section

6.2.2 (page 106).

1. efficiency – Does the prioritization method result in a substantial reduction in the

number of inputs that must be acquired? How much time and money are required to

reach a decision result?

2. applicability – Can the system process models of real decisions that users care about?

3. performance – Can the request priorities be computed within time constraints that are

compatible with the needs of the workflow? (Since the prioritization must be

calculated in real-time whenever a worker submits new inputs, I aim for a maximum

of 30 seconds.) Performance is covered in in section 6.2.2 (page 106).

 71 of 196

The remaining three factors are not evaluated because they are orthogonal to the

scope of my intended contribution: a method for coordinating workers to efficiently enter

data that are then used as input to a spreadsheet model.

Each of these factors would clearly affect the value of any implementation as a

product. I believe the most natural way to evaluate any of these three factors would be in

isolation from the rest of AskSheet.

4. worker usability – Is the worker interface quickly learnable so that the barrier to begin

working is minimal? Does it support efficient input? For a worker, the time to do a

task consists of (a) understanding the instructions, (b) finding and interpreting the

requested data from some external source, and (c) entering the requested data into the

form. An ideal interface would minimize (a) and (c).

The tasks posted by AskSheet are among many on Mechanical Turk that ask workers

to find information online and enter it into a form. This is one of the most common

applications of Mechanical Turk. The form fields and task structure used by

AskSheet are not significantly different from any other such tasks.

Worker usability is also impacted by the quality of instructions that the requester

(decision maker) enters after importing a new model. However, those instructions are

part of the input to AskSheet. Thus, any evaluation that measures the quality of the

instructions would be a reflection of the system itself.

5. requester usability – Is the interface for requesters (decision makers) sufficiently

learnable so that this barrier to using the system is minimized?

 72 of 196

AskSheet includes web interfaces for importing decision models, entering the setup,

and monitoring the results. However, these interfaces were designed primarily for my

use, and for communicating the capabilities and functional semantics of the system by

way of screenshots in this dissertation and related publications. The usability of this

interface does not impact the ability of the system to coordinate workers to acquire

decision inputs.

6. robustness – Are the decision results returned sound and dependable?

The correctness of a decision result depends on two factors: (a) the suitability of the

requester’s decision model to the problem and (b) the accuracy of the inputs. To

calculate the decision result, AskSheet simply substitutes the acquired inputs for the

corresponding =ASK(…) formulas and then calculates the values of the other formulas

that depend on them.

(a) The suitability of the model depends on the user’s ability to express their decision

problem in spreadsheet formulas.

(b) The accuracy of the inputs is generally a function of many factors: the clarity of

instructions, task difficulty, accuracy of the information at the web sites workers visit,

strenuousness of the qualification requirements5 I impose on the tasks, random chance

(which workers choose to do the task at a given time), and the number of judgments

and aggregation method selected by the requester when the user imported the model.

5 Qualification requirements are a feature of Mechanical Turk that lets requesters limit access to their tasks

by the reputation and experience of the workers. For example, it is possible to limit tasks to only workers

who have done at least n tasks, or whose prior submissions were accepted by the requesters at least m% of

the time.

 73 of 196

Any evaluation that measured—or was confounded by—the clarity of the instructions,

the difficulty of finding and interpreting the requested information, or the accuracy of

the web sites they visit would not be an accurate reflection of how well AskSheet

coordinates workers to gather the inputs. All of these factors are active targets of

current research in crowdsourcing and human computation, and are most effectively

studied in isolation from a complex system such as AskSheet.

While my implementation includes features for aggregating multiple judgments—by

consensus or averaging—those features were not used in these field studies. Instead,

I chose to run the trials with only one judgment per input. Although multiple

judgments can be expected to improve the accuracy of inputs, it also leads to results

that are more difficult to explain clearly. For example, when aggregating by

consensus of 3 workers, AskSheet initially requests two judgments, and then requests

the third only if the first two do not agree. If after only one has been received, an

input from another worker causes the first input to be culled, the first judgment is

wasted. Then, expressing the proportion of inputs that were eliminated (the percent

saved) becomes unnecessarily complicated. Thus, since the accuracy of the inputs is

not a focus of my dissertation, I elected to work with only one judgment.

For all of these reasons, I have chosen to explicitly exclude robustness of the result

from the scope of my contribution and, in turn, this evaluation.

4.2. Field trials with AskSheet

The field trials in this section were based retrospectively on actual decision

problems in my own life that had entailed a substantial effort (e.g., a few hours) to gather

 74 of 196

the details. In each case, I created a spreadsheet model in Google Sheets, loaded it into

AskSheet, and used workers on Mechanical Turk to gather the decision inputs. Since

minor details were changed for simplicity or privacy (e.g., my health insurance provider),

I describe each in the form of an anecdote with a fictional name.

For each of the models, I ran the system three separate times in order to observe

any variations. Some variation in cost, uptake, and efficiency (reduction of inputs) is

normal and expected due to the availability of workers at a given time, the competence of

the particular workers who accept my task, or random issues with timing.

4.2.1. Field trial #1: Pediatrician

Alan needs to find a pediatrician for his daughter. He values information from

doctor rating sites but does not trust one site alone. Recognizing that these sources alone

would not be sufficient to find the best pediatrician, he will be satisfied to find one that

matches his basic requirements:

Figure 24. Model for field trial #1 (pediatrician)

 75 of 196

 Average rating at RateMDs.com is at least 4 stars.

 Average rating at HealthGrades.com is least 80% positive.

 The doctor accepts Alan's insurance, CareFirst.

 Driving to the office takes no more than 20 minutes.

I tested this scenario using the model in Figure 24. The root formula in F53 simply

evaluates whether any of the doctors conforms. Recall that Alan will be satisfied with

any doctor who meets his minimum criteria. Thus, AskSheet’s task is ostensibly just to

determine whether any doctor satisfies the criteria. Once any doctor has been confirmed

to fit the criteria, the value of F53 will be TRUE, and no more inputs are needed. Columns

B, C, D, and E each becomes a separate role (HIT Type) which runs in parallel.

Note that my implementation of AskSheet requires the user to fill in the row labels

in the model. For this example, I found a list of pediatricians online. Chapter 4 details

a method that I developed later for enumerating the alternatives for decision problems such

as this.

The results were as follows. More detail can be found in Appendix F (page 178).

 #1 #2 #3

inputs required 36 of 200 108 of 200 64 of 200

completion time 47 minutes 55 minutes 42 minutes

cost $5.67 $19.49 $11.94

of workers 6 13 10

worker time, total 58 minutes 160 minutes 108 minutes

hourly rate $5.89 $7.33 $6.61

decision result Sharon Towns Sharon Towns Sharon Towns

Although efficiency—eliminating inputs that will not affect the final result—is an

important goal of AskSheet, it would be a mistake to put too much emphasis on the percent

of inputs that were needed. Because this model selects the first match, it will stop

http://www.ratemds.com/
http://www.healthgrades.com/

 76 of 196

acquiring inputs as soon as a match is found. Thus, if I even if I had added 100,000

doctors’ names instead of just 50, it would still need the same number of inputs to find a

match.

All tasks paid $0.63 for 4 inputs, except that in #2 and #3, the RateMDs task offered

$1.25 for 4 inputs. That was due to my error when setting up the tasks. AskSheet asks

for a time estimate for each task, and I mistakenly entered 10 minutes instead of 5 minutes

for RateMDs. From that estimate, it calculates the price per task. This does not appear

 77 of 196

to have had a significant impact on uptake, as measured by the number of workers who did

each type of task.

 #1 #2 #3

RateMDs 2 workers 4 workers 3 workers

HealthGrades 3 workers 5 workers 3 workers

CareFirst 1 workers 3 workers 2 workers

driving time 2 workers 6 workers 5 workers

4.2.2. Field trial #2: Car shopping

The use of text scoring is illustrated by the following scenario. Jay is shopping

for a new car and has these criteria:

Figure 25. Model for field trial #2 (car)

 78 of 196

 Hatchback with 4-wheel-drive

 Good fuel efficiency

 Wheel base about 100 inches (similar to Jay’s former car)

 Abundance of modern safety features

 Seats 5 adults comfortably (for long car trips)

As before, Jay creates a spreadsheet model. The last two criteria are difficult to

quantify. Although they are somewhat subjective, Jay will write his criteria and ask

workers to simply specify how well each car model fits what he wants. The model is

shown in Figure 25 (page 77).

Workers are given two car models to research at a time. For safety features, they

are asked to write a textual description of how spacious they think the inside of the car

would be, as it would relate to traveling with 5 adults. They are instructed to look for

photographs of the interior or other metrics that would help. The first worker is asked to

compare the two models based on which seems to be most spacious. A similar course

was used to compare by safety features (Figure 21).

The results were as follows. The features task paid $0.50 for 6 inputs while the

others paid $0.50 for 4 inputs.

 #1 #2 #3

inputs required 62 of 120 60 of 120 72 of 120

completion time 114 minutes 193 minutes 139 minutes

cost $7.50 $7.50 $8.00

of workers 12 7 6

worker time, total 95 minutes 122 minutes 130 minutes

hourly rate $4.75 $3.70 $3.69

decision result Subaru Outback Toyota Camry Hyundai Tuscon

 79 of 196

The inconsistency of the decision result is due to differences in the way workers

scored the safety and spaciousness of models, as well as some inputs that were not

consistent between the repetitions. All of the inputs are reproduced in Appendix F on

page 185. Differences in individual inputs may be due to a variety of factors, including

misunderstanding the instructions, careless mistakes, or even incorrect information at the

web sites the workers used to find information.

In general, a standard strategy for obtaining accurate inputs from crowd workers is

to request multiple judgments and aggregate them using either consensus (voting),

averaging, or other methods. Although AskSheet supports that feature, I chose not to

enable it for these field trials because accuracy is outside the scope of my contribution, and

enabling that feature would significantly complicate the other metrics that I wanted to

report. (See the discussion about "robustness" on page 72.)

In examining the inputs, I found a case where multiple judgments would not have

helped. In trial #1, the Toyota Camry was eliminated because the worker entered that the

model does not have a hatchback option. In trials #2 and #3, the workers indicated that a

hatchback option is available. Since AskSheet asks workers to enter the URL where they

found the information, I was able to check the sources that the workers used. The page

cited by the worker in trial #1 contains an abundance of detailed information about the

2013 Toyota Camry, including photos and descriptions of six variations ("trims") of the

Toyota Camry, none of which is a hatchback 6. The worker in trial #2 cited a page from

the Kelley Blue Book web site (a popular resource for car information) that refers to a

6 https://autos.yahoo.com/toyota/camry/2013/

 80 of 196

"2013 Toyota Camry Hatchback" next to a photo of a sedan 7. The worker in trial #3

entered sources for the other three models included in the task, but the sources did not

directly relate to the Toyota Camry.

From the manufacturer's web site, I learned that the worker in trial #1 is correct.

While a history of that model shows that a hatchback was available in earlier model years 8,

none of the web pages cited by the workers mention that.

The problem of how to elicit correct answers in crowdsourced data collection

would best be studied in isolation from AskSheet. Possible approaches could include

effective ways of aggregating multiple judgments, guidelines for communicating

instructions, or algorithms for estimating the reliability of individual workers. All of

these are orthogonal to the central research problem that this dissertation addresses: how

to coordinate workers to efficiently enter data for use as input to a spreadsheet model.

(See the section on "robustness" in section 4.1 on page 70.)

4.2.3. Field trial #3: Smartphone shopping

Another example I have used throughout the project development is comparison

shopping. Using a spreadsheet, a user can model their exact personal preferences, and

include details that might not be important to all shoppers. The simplest way to model

this is with a weighted sums model, which depends on the =MAX(…) and =SUM(…)

formulas. Web workers can be employed to search the web for details about the

alternatives.

7 http://www.kbb.com/car-pictures/2013-toyota-camry-hatchback-pictures/?id=382994

8 http://www.edmunds.com/toyota/camry/history.html

 81 of 196

I created a model to compare seven leading smartphones by the following criteria:

 Weight=1: screen size, material, appearance, CPU cores

 Weight=2: physical shutter button, camera megapixels

 Weight=4: battery talk time, storage potential, RAM

For appearance, it was set up to ask workers to look at a photo of the phone and

compare based on the scale of “solid” to “cheap-looking”. As in the example of car

shopping, I separated this unstructured input into a separate role. Because it had a

relatively low weight, it was prioritized low and ultimately not utilized for this field trial.

Since this is a more time-intensive task for workers (and I set it to pay a higher reward),

this demonstrates how prioritizing inputs can save worker effort. Which cells will be

needed cannot be predicted in advance.

The features task paid $0.50 for 6 inputs while the others paid $0.50 for 4 inputs.

The results were as follows.

 #1 #2 #3

inputs required 40 of 63 44 of 63 62 of 63

completion time 80 minutes 111 minutes 75 minutes

cost $8.00 $8.80 $13.30

of workers 4 9 5

worker time, total 65 minutes 82.7 minutes 125 minutes

hourly rate $7.37 $6.38 $6.39

decision result Samsung Galaxy S4 Samsung Galaxy S4 (inconclusive)

 82 of 196

In the third iteration, workers left 10 fields blank. In the AskSheet setup screen,

the user (decision-maker) can decide whether all inputs are required or not. That

effectively specifies whether it will allow a worker to enter blanks or not. In some cases,

blanks are normal since sometimes an item cannot be found or the information is not

available. At that point, the worker will have already spent time trying so as a rule, I pay

for the task unless there is evidence of a significant effort to cheat. The effect in this case

is that AskSheet was unable to reach a conclusive decision result. However, even in such

a case, AskSheet displays to the user the relative probability that each alternative would be

the decision result if all inputs were available. A screenshot of this is shown in Figure 40

(page 184).

Figure 26. Model for field trial #3 (smartphone). Note that C11 could be

shorter if AskSheet supported =SUMPRODUCT(…). It would become:
=C2/15*4 * SUMPRODUCT(B3:B10, C3:C10)

 83 of 196

4.2.4. Summary of AskSheet field trials

The three field studies each generated decisions in about 1-2 hours for between

$5.67 and $8.00, while paying workers between $4.75 and $7.38 per hour. This shows what

I believe to be a financially and temporally viable process.

All of these were consumer-oriented decisions based on models that I created. In

the next chapter, I will discuss some of the factors that determine the applicability of this

method to decisions with more inputs and/or institutional complexity.

4.3. Survey of decision problems

The field trials demonstrated that AskSheet works as it is designed to, but they did

not establish whether there are any potential users with decision problems that might be

amenable to AskSheet—or potentially some other crowd-driven decision input acquisition

system. Therefore, I conducted a web-based survey to validate whether gathering

decision inputs is actually a prevalent problem for any substantial set of users 9.

Respondents were asked to list 3-5 types of decisions they find especially time-

consuming. As results were received, I adjusted the wording of the question slightly to

convey the idea of data-driven, time-consuming tasks—without giving any concrete

examples that would bias the responses. The exact wording of the three versions of the

question are reproduced in Appendix D (page 161) 10.

9 The survey was approved by the University of Maryland Institutional Review Board (IRB) under

application #346307-1. All respondents agreed to an informed consent form, which explicitly gave

permission for their responses to be used verbatim in future communications.

10 Respondents were also asked questions about spreadsheet competence and demographics, but those

details are omitted here because they do not yield any insights that would value this dissertation. They

were originally intended for my use in recruiting future study participants, a goal that I later abandoned.

 84 of 196

It should be emphasized that this was not designed to yield statistically significant

insights about any population. The objective was to produce a list of examples of decision

problems people find time-consuming.

It was advertised only by social network web sites, once in April 2013 and again in

May 2014. Respondents were offered a 1 in 20 chance of winning a $20 gift card.

A total of fifteen (15) valid survey responses were received (excluding blank,

mostly blank, and fraudulent responses). The responses are reproduced verbatim in

appendix . Among the 15 survey responses were 53 entries marked as decision problems.

I removed 12 that were clearly not decision problems (e.g., “writing lessons”,

“gathering information”, “doing taxes”, etc.). I then manually edited the remaining 41

items for clarity and grouped them into twelve topics (e.g., finances, car, etc.), as shown in

Figure 27 (page 85).

Finally, I classified them according to whether they meet a baseline set of criteria

for applicability to input acquisition by crowd workers:

 might take over 1 hour if done normally (i.e., without crowdsourcing)

 could be expressed in terms of spreadsheet formulas

 primary obstacle to deciding is the acquisition of publicly available information

 85 of 196

 potentially applicable inapplicable examples

travel which hotel to stay in ways to get together with family

finances financial decisions (purchases,

account management, tax forms)

 living arrangements as I age

 investments, e.g. stocks, other

paper assets, real estate, etc.

 which insurance company for

home, car, and life insurance

 (all are potentially applicable)

food where or what to eat can take an

hour for me

 choosing a place to eat lunch

 what to make for dinner

 which vegetables to buy at the

super market

car which car to buy

 buying a new car

 whether we can afford a new

car

other which new name for my business

 which breed of a dog to adopt

 deciding what to say/not say in

emails

reading

material

(none are potentially applicable) what papers to read takes time

finding them/reading abstracts

 what book to read next

 gathering papers to read

time

management

(none are potentially applicable) whether or not some project

 ordering tasks in my day

 the order of my routine when I

wake up or arrive home

coordinating

people

(none are potentially applicable) scheduling a meeting for others

 decisions in a committee

home which place to move to requires a

lot of asking around

 which house to buy (x2)

 buying a new home

purchasing which vendor to order from

 which system to purchase

 (all are potentially applicable)

setting goals requirements for a project choosing a research topic

technology which expensive items to buy

(electronics, furniture) takes a lot of

time reading and comparing items

 what software to use requires a lot

of reading and asking friends

 which new technology to buy

 which cell phone provider to use

 online shopping for electronics.

 (all are potentially applicable)

Figure 27. Examples of time-intensive decision problems were gathered in a

survey. I manually edited them for clarity, categorized by topic, and classified

by potential amenability to some form of crowd-supported input acquisition.

 86 of 196

Based on the examples classified as "potentially applicable" above, we can see that

many would depend heavily on publicly available information (i.e., details that could be

gathered by crowd workers), but may also depend on personal preferences or social

agreement. A weakness of my approach is that it does not integrate the latter factors.

However, these data also indicate a number of specific application areas in which AskSheet

or some future system could someday be deployed.

4.4. Modeling study

Another question that arises in relation to the viability of AskSheet is whether users

are actually able to model their problems in a way that the system could work with.

Conversely, one could ask this question: Is AskSheet applicable to real decision problems

of ordinary users?

To address this question, I recruited nine adults from existing contacts (friends,

acquaintances, and extended family) to create decision models that could be used with

AskSheet 11. Since a given participant's experience and competence with spreadsheet

formulas may be hard to predict, I had the participants use AskSheet Assistant (see section

3.6 on page 67) to create their models. Even so, that interface requires some explanation,

so I met with each participant by in person or by phone and worked with them throughout

the entire process, which lasted about one hour each. None of the participants is currently

a programmer, although three have had some prior programming experience.

11 The modelling study was approved by the University of Maryland Institutional Review Board (IRB)

under application #601000-1. All respondents agreed to an informed consent form, which explicitly gave

permission for their responses to be used verbatim in future communications.

 87 of 196

The interface of AskSheet Assistant ensured that all models met the technical

requirements of AskSheet and some practical requirements of working with crowd

workers. All models were able to be imported into AskSheet. However, they were not

run with Mechanical Turk because none of the participants had time in the 1-hour study

period to write instructions sufficiently clear for crowd workers to follow reliably.

A total of ten models were created, with one participant voluntarily creating a

second model after the conclusion of the session. All of the models are reproduced in

Appendix E on page 168.

The topics of the models were as follows: 12

 “Options for child birth” – Eight (9) child birth methods (e.g., “Hospital

Scheduled Induction without Epidural”, etc.) are compared using a weighted sum

of nine (9) attributes, with “Safety for the baby” (weight=10) and “Less stress for

the baby” (weight=9) as the highest weighted items. No Boolean constraints were

used.

 “Pediatrician” – Nine (9) pediatricians in the Washington, DC area (e.g., “Dr.

Scott D. Wissman, MD”) are compared using a weighted sum of five (5) attributes

with “Patient satisfaction” (weight=10) and “Years of experience” (weight=9) as

the highest weighted items. No Boolean constraints were used.

 “Baby girl name” – Eight (8) female baby names (e.g., “Bianca”, “Jennifer”) are

compared using a weighted sum, with “No one notorious has same name (serial

12 The model titles in quotation marks are quoted verbatim from the text participants entered into the form.

The participant who created the model for choosing a dishwasher did not enter a title.

 88 of 196

killer, thief, etc.)” (weight=50) as the highest weighted. No Boolean constraints

were used.

 “New home” – Ten (10) condominiums in Laural, MD and Beltsville, MD (e.g.,

“9408 Nicklaus Ln #88, Laurel, MD 20708”) are compared using a weighted sum

of four (4) attributes with “driving time to University of Maryland, College Park

20740” (weight=4) as the highest weighted. No Boolean constraints were used.

 “Buying a new laptop” – Three (3) laptop computers (e.g., “ASUS X750JA-DB71

17.3-Inch Laptop (Dark Gray)”) are compared using a weighted sum of features

with price (weight=-50) as the highest weighted. In addition, Boolean constraints

were used to require a screen size of at least 13 inches, a price of less than $1500,

and an average buyer rating of at least 4 stars.

 “Which car to purchase” –Three (3) car manufacturers (“Honda”, “Toyota”, and

“Hyundai”) are compared by price and reliability, with a Boolean constraint that a

reliability rating must be at least 4 out of 5 stars. This participant seemed

distracted. The model was much less detailed than the others.

 “Dog Breeds” – Fourteen (14) dog breeds (e.g., “Siberian Husky”, “Shibu Inu”)

are compared using a weighted sum with “known for intelligence/trainability”

(weight=5), “typical height and length in inches” (weight=5), and “known for being

affectionate and loyal” (weight=5) as the highest weighted. In addition, Boolean

constraints were used to require a typical height of between 18 and 30 inches and a

typical weight of between 30 and 60 pounds.

 89 of 196

 “Car rental” – Twenty (20) car rental arrangements (e.g., “Fox – San Jose Airport

(Airport Code: SJC)”) are compared using a weighted sum with “Pick-up car rental

location offers one-way rental to airport code SNA” (weight=1.0) as one the highest

weighted, although all but “Availability on Saturday OR Sunday OR Monday”

(weight=0.5) were weighted as 1.0.

 Dishwasher – Nine (9) dishwasher models (e.g., “Asko D5634XLHS”) are

compared using only Boolean constraints and no weights. For example, “has

stainless steel door” must be “Yes”.

 “Shaver” – Ten (10) shavers (e.g., “Wahl Professional 8-61”) are compared using

a weighted sum with “close shave” (weight=6) and “cordless” (weight=5) as the

highest weighted.

All of these models were about real-life scenarios, some of them recently past and

some of them prospective. In most cases, I used the pediatrician example (section 4.2.1)

to explain how it works. At least three of the participants were previously familiar with

my work.

Some participants strongly tended toward weighted sums (for negotiable criteria).

Others strongly tended toward constraint-based decisions (for strict requirements),

seemingly independent of the subject matter..

One participant found it unintuitive to enter weights without a preset range, noting

that it was most natural to have the weights add up to a total of 100. Other participants

found weights from 1-5 or 1-10 to be natural.

AskSheet is agnostic to the content of the model, so in order to minimize some

attributes (e.g., price) while maximizing the rest, it is necessary to enter a negative weight.

 90 of 196

One participant found the reasoning to be non-obvious. Another said it was odd, but easy

to follow.

While this information is not generalizable beyond these participants, it suggests

that future decision interfaces might give users options for how to specify the relative

importance of attributes, including the range and the direction (minimize or maximize).

It should be emphasized that this was not designed as a controlled study. The

primary goal was to accumulate a collection of illustrations that outline some of the

capabilities of the system. The usability of the system was not a target of investigation.

While this interface was sufficient for purposes of the study, I can envision future interfaces

that could give users greater flexibility and be usable without any training or explanation.

This study demonstrated that some users are indeed able to describe their real

decision problems in a way that can be imported into AskSheet. The models

demonstrated that some users are even able to create plausible data-driven decision models

about deeply personal topics such as childbirth and baby naming. I do not expect anybody

would use AskSheet or any other crowd system to make such decisions exclusively, the

models demonstrate that such problems have significant data-intensive subproblems that

could possibly be aided by offloading some parts of the task to crowd workers.

4.5. Summary of field studies

The studies in this chapter do not answer every possible question about AskSheet,

but they validate some key characteristics. First, AskSheet can be used to coordinate

workers to efficiently acquire inputs that are then used as input to a spreadsheet model.

That was the primary goal.

 91 of 196

In addition, the survey of decision problems supplied a set of decision problems

that illustrate some of the areas in which crowd workers could be used to gather decision

inputs. The modeling study elicited much greater detail about participants’ decision

problems, demonstrating that users are able to describe even highly personal decision

problems such as child birth and naming in terms of attributes and alternatives, and in a

form that AskSheet is able to work with.

 92 of 196

Chapter 5. Enumerating alternatives

The examples in the preceding chapters all assume that the user of AskSheet will

be responsible for entering the alternatives them from some existing list. However, in

many cases, this is not the case for people making decisions, such a list is not available.

Listing the alternatives is an important part of decision input acquisition, although

accomplishing it with crowd labor demands a different approach from AskSheet.

In the case of AskSheet, the number of rows and columns is fixed at the time the

user imports the spreadsheet. For each specific cell, there is an understanding of what

data is supposed to be entered—a right answer. When making a list, the number of items

is not known in advance, and they might come in any order. For example, in the problem

of choosing a car, how many types of car are available for sale in the US? If the list were

in a spreadsheet, what should cell A12 (the 11th car) be? Clearly, coordinating crowd

workers to enumerate the alternatives demands a different kind of system support.

This section focuses on the problem of creating lists. While it was motivated my

work with AskSheet, I have considered a wide range of subject matter. Consider the

following tasks:

 List all researchers actively involved in online learning.

 List all news articles about the ethics of GMO foods.

 List all donut shops in the San Francisco Bay Area.

 List all health departments in the US, whether at the city, county, or national level.

 93 of 196

In each of these cases, the number of list items is not known in advance.

Furthermore, creativity and knowledge are needed to find a good of web sites to check, and

the right search terms, filters, and so on, in order to have the best chance of finding most/all

of the items.

A naïve approach to this problem would be to post a task asking each worker to

enter a certain number of list items. Then, the items could be deduped using

computational techniques from the domain of entity resolution and text processing, or even

crowd-based techniques (Wang, Kraska, Franklin, & Feng, 2012).

The limitations of such an approach are obvious. Since each worker would be

approaching the problem from the beginning, they would likely start by doing many of the

same searches and checking many of the same sites. The diversity of workers would lead

to some variation, but there would be little to force them to think of less obvious sources

to draw on. Thus, the resulting list would contain a large amount of duplication.

Even if every worker checked different sources, there would still be duplication due

to the same item listed in different places. Variation in spelling and synonyms mean that

eliminating the duplication after the items are entered would be a computational challenge

in itself. Rather than resolve those after the fact, I have designed a list entry task that

allows workers to collaborate on choosing sources and entering items.

The process of making such a list individually would generally involve viewing

several sources that list related items (i.e., web sites, search results, documents, etc.), and

filtering for the items that match the exact criteria needed. An individual would not enter

duplicate items because she would remember what was entered before. Also, she would

 94 of 196

have an incentive to visit a diverse set of sources in order to maximize the number of unique

items obtained for the effort.

Relay is a general system I have built for coordinating paid crowd workers on

Amazon Mechanical Turk to create lists. It aims to translate some of these individual

strategies into an interface that enables a group of independent workers to achieve similar

results. Although I opted to develop Relay as a standalone application, not directly

integrated with AskSheet, it demonstrates an approach to this aspect of decision input

acquisition so that future researchers could build from the two ideas.

5.1. Background

This work builds on the foundation of several related projects. Zhang et al

introduced the idea of crowdsourcing in the presence of global constraints in the domain

of travel planning (Zhang et al., 2012). They used a simple autocomplete to reduce

duplication of inputs, but it was not a main focus of the work.

Creating ranked lists from search results has also been explored by Parameswaran

in the DataSift system (Parameswaran, Teh, Garcia-Molina, & Widom, 2013). In that

system workers formulate queries for a particular search engine and then filter them by

some given criteria. However, since the items are coming from a single data source, the

issues I am most concerned with—diversity of sources and deduplication—are not relevant

to DataSift. Two recent efforts have used a database interface to express a range of

database-like operations on an existing dataset (Franklin et al., 2011; Marcus et al., 2011b).

On the surface, some of the simpler queries could resemble specifications to Relay—

selecting all “records” meeting certain criteria. However, they operate on existing data.

 95 of 196

Wang et all have used workers on Mechanical Turk for deduplication of existing

datasets, in the context of entity resolution. However, they did not consider methods for

minimizing the initial input of duplicates (Wang et al., 2012).

The task of list-making can be thought of as a form of collaborative search.

Collaborative search has been well-explored for collocated searchers (Amershi & Morris,

2008; Morris & Horvitz, 2007; Morris, Lombardo, & Wigdor, 2010), but not in the context

of crowd workers collaborating (i.e., building off each other’s contributions) from different

locations.

The process of making a comprehensive list could be a precursor to creating a

taxonomy, a task that has recently been covered by the Cascade system (Chilton, Little,

Edge, Weld, & Landay, 2013).

5.2. Relay

To start the process of creating a list, the requester enters a short noun phrase that

the system uses in the worker interface, and a set of fields, which become the column

headers in the worker’s interface, as well as the output data (Figure 28).

 96 of 196

Workers decide on a source from which to find list items. They are asked to

specify exactly where and how they found the items, so that the list items can be associated

with their source (Figure 29). That allows for verification of the work (to discourage

cheating) and also may be useful information for an end-user.

Another reason for asking workers to specify their sources is so that if a source

contains more items than one worker wants to enter at one time, he may stop part-way

through and leave the rest for a future worker. In that case, the worker gives some brief

instructions at the end about how to continue and how much work remains (Figure 30).

This enables an alternative to finding a new source: Workers can also choose from

such existing sources that have been started by prior workers. The workers can continue

extracting list items from a source, taking turns, as needed until the source has been

exhausted (and hence the name Relay).

Figure 28. Job specification interface

 97 of 196

As a worker enters list items, the system constantly checks the server for possible

duplicates, based on the text entered so far in a particular row. An existing result is

suggested if each of the fields in the current input row is a subset of an existing record,

irrespective of spacing and punctuation.

5.2.1. Real-time collaboration

If the worker finds that something he is entering is already in the list, he can simply

click the link to have it automatically fill the input row (Figure 31). This reduction in

work gives the worker an incentive to use the feature. It also ensures consistent spelling

of the matching fields, so that it can easily detect duplicates or related items

programmatically.

This simple mechanism represents a step toward enabling implicit real-time

collaboration between the workers. If worker A types “Abcdef” in the first cell of a row

and workers B begins typing “Abc” just a minute later, worker B will be able to benefit

from the work worker A has just done. This can go both ways. Each worker’s browser

constantly keeps the server updated with everything they have entered so that the automatic

suggestions can benefit from everyone’s contributions.

Note that this notion of “real-time” crowdsourcing is distinct, and probably

complementary to the real-time crowdsourcing introduced by Bernstein et al (Bernstein,

Brandt, Miller, David, & Link, 2013), which minimizes the response time after a requester

posts a task. That time is not a goal of Relay.

 98 of 196

5.3. Implementation

Relay is implemented as a web application coded in Python and JavaScript. To

ensure performance of the automatic filtering, that data is kept in memory at all times.

The entire process continues until a target list size (specified by the requester) has

been reached. Until then, the system automatically posts new tasks as results are received,

so that there are always a few tasks in progress at any given time.

The price of a task is calculated based on a per-item price. Workers may continue

beyond the minimum required number of list items, and they will be paid the remainder as

a bonus in the Mechanical Turk system.

In addition to a price per item, the requester also specifies which fields are keys

(always unique for a given entity) and which fields are components of a compound key

(the combination always unique). When the process finishes—whenever the requester

(user) chooses to stop it—Relay uses these keys to group entries that are deemed to be the

same entity based on that guidance from the requester.

To generate the suggestions, the JavaScript code periodically sends the current state

of the input form back to the server. The server checks all existing entries for that form

Figure 29. Source specification interface

 99 of 196

(even if not yet submitted) and matches any row where every field in the user’s form row

is a prefix of a field in an existing row, ignoring punctuation, whitespace, and empty fields.

The system does not incorporate traditional quality management techniques

(Ipeirotis et al., 2010). With Relay, the goal is not an accurate answer to some question,

but simply an enumeration from a diverse set of possible list items. For most of the list-

making applications I have considered, a requester inspecting the list would likely be

effective enough that I consider more sophisticated measures optional. Also, workers are

required to specify exactly where they found data, so spot-checking can be effective. At

any rate, quality has not been a focus of our efforts and is not intended as a contribution.

Whenever the user (requester) views the results, Relay automatically dedupes

collapses perfectly duplicate rows, and groups near-duplicates. A row will be perfectly

duplicate if the worker has used the suggestion to automatically fill in an existing entry.

In addition, during the setup phase of Relay, the user can specify any field as a key and/or

a key component. Any two rows having any key the same or all key components the same

will be reduced to one.

5.4. Field trials with Relay

I have tested Relay on a few examples:

 ramen noodle shops in Kobe, Japan

 news articles and blog posts about food safety from 2010 to 2013

 professors who do research about online education

 100 of 196

I ran the system on these three problems for about three hours. In the table below,

"gross" refers to the total number of entries including duplicates, "net" refers to the number

of entities after Relay's automatic deduplication, and "good" refers to the number of truly

unique entities, as determined using a thorough manual check.

 yield cost hourly rate

ramen shops

entered 105 $0.15 / entry

$6.95 / hour net 71

$0.28 / good item

good 69

professors…

entered 155 $0.20 / entry

$6.91 / hour net 137

$0.27 / good item

good 131

articles…

entered 661 $0.20 / entry

$13.93 / hour net 434

$0.32 / good item

good 420

Figure 30. Giving instructions to the next worker

 101 of 196

This evaluation shows that Relay is able to elicit lists of varying sizes for arbitrary

topics. However, I did not investigate that specific sources of duplication, or the degree

to which the various features of Relay contributed to avoiding duplicates, encouraging

duplicates that can be automatically detected, and promoting completeness (through a

variety of sources). Since Relay is only a minor component of my dissertation, I consider

such an in-depth evaluation to be out of scope.

5.5. Summary

Relay represents a step toward crowd-powered systems that enumerate new

datasets rather than operating on existing ones. I believe the task of list-making is one

that will have practical benefits for consumers, businesses, researchers, and other types of

users and organizations. It might even be applied as a first step in a literature review in

an unfamiliar area.

The examples mentioned in this chapter are a scant subset of the kinds of lists that

people make—and that could be generated using Relay. Many lists have a fundamental

hierarchy embedded. For example, to list all of the health departments conducting

restaurant inspections in the United States, one would need to check at the state, county,

and city levels. In some cases, a county may handle all inspections for their area, except

for select cities. In the future, I could envision augmenting Relay with more explicit

support for such search processes.

 102 of 196

Beyond this task, I believe there is significant potential for bringing crowds together

in ways that preserve the traditional independence of the crowd workers, while also

enabling them to build off one another in richer ways that just iterative improvement or n-

tier review processes.

Relay is not directly integrated with AskSheet. However, it could be used to

create a list of alternatives in the course of creating a model to be used with AskSheet.

Figure 31. Prior list items are shown beside the editing interface.

Clicking these saves the worker keystrokes and enables us to connect

duplicate or related entries since they will have same spelling.

 103 of 196

Chapter 6. Discussion

The field trials in section 4.2 (page 73) demonstrated the efficiency of AskSheet for

delegating the acquisition of inputs for selecting a car, a smartphone, and a doctor, while

the modeling study in section 4.4 (page 86) showed the applicability of the approach to an

even wider variety of subject matter that users are able to model. However, even these

span a significantly more constrained problem domain than what I initially envisioned.

When I began this work, I had expected the method could be applied to more

complex institutional decisions, such as screening job applicants, selecting materials for a

museum exhibit, or deciding what products a department store should offer in the coming

season. Since I have significant personal experience making models for such decisions,

I felt confident that any criteria can be modeled.

Through the process of designing, implementing, and testing my implementation,

AskSheet, I have come to understand the interactions between some inherent aspects of

working with crowds, computational problems, and the limits of explicit modeling of

decisions (i.e., in spreadsheets).

6.1. Premise: data-driven analytical decisions

Before proceeding, it should be noted that this work is inherently intended for

decisions for which the primary task is to gather and analyze information about the

alternatives to determine which best conforms to some pre-established criteria. Thus, it

excludes gut decisions and spreadsheets that serve only to store and display information to

 104 of 196

help a user arrive at a gut decision. It also excludes decision models that primarily exist

to simulate the dynamic properties of a situation.

I have focused primarily on consumer decisions. However, this method could also

include business decisions, such as choosing a location for a new office, a venue for an

event, or identifying job applicants who meet the criteria. For business decisions, a record

of the rationale is often desirable. Some individuals also prefer to make decisions in this

way, especially if there will be long-term ramifications.

6.2. Limitations on applicability

This section will discuss the factors that influence the applicability of AskSheet to

various types of decision problems. I will focus primarily on general issues that affect

not only my implementation (AskSheet), but other future systems for delegating decision

input acquisition to crowd workers. For simplicity, I will assume that the notation is

always a spreadsheet, even though other notations are possible.

6.2.1. Value: Effort to delegate (or not)

In general, when deciding whether to delegate work, a key consideration is the

effort to delegate versus the effort to not delegate (i.e., to do the work yourself).

In this context the effort to delegate includes the following:

 Create an explicit model of the decision. Although we may think we know what

is important and other aspects of our decision logic, creating an explicit model takes

an extra level of effort. This effort is greatest when the criteria are nuanced,

complex, or difficult to express in spreadsheet notation. This will also depend on

the decision maker’s level of comfort with spreadsheet formulas.

 105 of 196

 Write unambiguous instructions. Writing clear instructions is always a

challenge in any domain. Creating instructions for Mechanical Turk can be

especially challenging because as a requester, I do not know the background of the

workers who will read and interpret the instructions. If workers misunderstand, it

will influence the results. It takes extra effort to author instructions that are

specific enough to avoid ambiguity and yet concise enough to suit workers' desire

to minimize the overhead of reading them. This effort can be especially great for

scenarios that require some domain knowledge (e.g., knowing what the “wheel

base” of a car means).

The effort to not to delegate normally entails the following:

 Search for information (alone). For decisions that depend on sorting through a

lot of information or if the information is spread across many sources, this may be

onerous.

 Analyze the information. This could be done mentally, using pen and paper, a

spreadsheet, or other tools, depending on the type and quantity of data.

The above factors influence whether it would be worth the effort to delegate the

information acquisition part of a decision process to crowd workers using a model-driven

system like AskSheet—instead of the decision maker doing that work alone. These

factors do not restrict what can be done.

 106 of 196

6.2.2. Performance: time to compute value of information

Perhaps the greatest limiting factor affecting the applicability of the AskSheet

method is the time to compute the priorities. For purposes of this discussion, I define

“performance” as the practical capability to perform a computation (calculating the value

of information for each of the inputs).

Unlike most of the other factors mentioned in this section, this is largely

implementation dependent. However, as I will explain below, some of the calculations

that would be needed for my implementation to support more interesting models have no

known polynomial time algorithm.

In my implementation, models with =MAX(…) and =MIN(…) formulas are

tractable only in modest sizes (i.e., up to around 30-40 parameters). This affects weighted

sums models, a common type of decision model.

The running time for the prioritization depends entirely on the formulas in the

model. Even for the weighted sums model, a perfect expression of the complexity is

elusive because it depends on the number of possible values in the output distribution of

each =SUM(…) function.

Consider the absolute simplest weighted sums model: identical operands each

depending on one identical request and no weights.

 A B C

1 =ASK(“1 to 6”) =ASK(“1 to 6”) =SUM(A1:B1)

2 =ASK(“1 to 6”) =ASK(“1 to 6”) =SUM(A2:B2)

3 =MAX(C1:C2)

In order to calculate the distribution for the =MAX(…), it must first calculate the

distribution of each =SUM(…). The number of distinct values in the output distribution

 107 of 196

is the factor that will influence the running time of the =MAX(…) so that is what we care

about. For this model, it can be thought of as the number of unique sums from rolling

two 6-sided dice. One could imagine asking workers to role dice and enter the values into

a form. From two dice, there are 11 possible sums. For 100 dice, there are 501 possible

sums.

In this good case, the number of distinct sums is bc – b + 1, for b=«number of

operands» (i.e., dice) and c=«number of possible values per operand» (e.g., sides per die).

That corresponds to a running time of O(c2b2) to calculate the output distribution of a

=SUM(…) function. (Each of these claims is proven in Appendix C.7 on page 135.)

In terms of the weighted-sum model, let a=«number of alternatives», b=«number

of attributes», and c=«number of possible values for each input».

Since a weighted-sum model has one =SUM(…) per alternative, the above must be

repeated once for each alternative. To calculate the utilities, it must calculate this

repeatedly: once for each request that the =SUM(…) depends on (supposing that request

were acquired next) × once for each possible value of that request (supposing the selected

request received that value). This is because it considers the effect if each request were

chosen next, but the utility must be averaged over the effect of each possible value of the

request.

There are ab requests each having c possible values, so we have a running time of

O(a2b2c3) to calculate the output distribution for each of the sums in the model. This is

the dominant factor, so this is the running time for calculating the prioritization. Using

the optimization outlined in Appendix C.7.3 (page 141), this can be reduced to O(a2b2c2)

 108 of 196

by calculating the =SUM(…) output distribution once for each register instead of once for

each request × each value of the request.

To understand the running time more practically, I measured the time to prioritize

inputs in several WSM models. All weights were set equal to 1 (the best case) and we

assumed 5 levels for every attribute. This represents a decision where all attributes are

scored from 1 to 5 and are equally important. As a spreadsheet, it would occupy a × b

cells, plus the labels.

These were run on a desktop computer with an Intel model i7-3770K

3.50 GHz CPU and 32 GB RAM using the Python 2.7 interpreter. The results are shown

in Figure 32.

This time is important because when a worker submits a form, the prioritization

must be recalculated in real-time, before the answers are accepted. AskSheet only posts

a small number of tasks (HITs) at a given time, to avoid collecting responses that will not

be needed. To make this possible, as a worker submits a form, it recalculates the

prioritization and, if more inputs from that role (HIT Type) are still needed, it posts another

task—all before accepting the worker’s data. The prioritization cannot be calculated until

the data the worker is submitting has been entered into the model. Thus, it would not be

possible to run them while the worker is working.

 number of attributes

n
u
m

b
er

 o
f

al
te

rn
at

iv
es

 5 10 15 20 25

10 0.1 0.5 1.1 2.0 2.9

20 0.6 2.2 4.7 8.2 12.0

30 1.5 5.3 11.8 20.9 30.9

40 2.9 10.6 23.4 42.8 61.9

50 5.0 18.3 41.6 73.8 108.8

Figure 32. Time (secs.) to prioritize a benchmark model based on the sum

of 5-star ratings for each alternative.

 109 of 196

To reduce the recalculation time, it could keep the state from the last calculation,

and then update the output distributions and need probabilities incrementally.

Recalculation time is most important since it affects the delay that workers experience

when submitting the form.

To improve the initial calculation time, I am aware of several untapped

opportunities for optimizing the code. Using dynamic programming, I previously

improved performance of calculations for the =SUM(…) operation. I believe a similar

approach could be used for other operations.

For some operations, I have not found computationally feasible algorithms for

calculating output distributions and need probabilities. These include =RANK(…) and

=LARGE(…) (pick nth largest value). To support those, and also increase the number of

parameters that can be supported with the current set of operations, one possibility would

be to approximate the probabilities by random sampling. However, this is complicated by

the large number of parameters. I have not attempted to implement this.

Finally, since AskSheet is implemented in pure Python, these times could be

improved by a constant—but substantial—factor by porting critical modules to C and

splitting the calculations acrosss multiple CPU cores. The algorithms are extremely

parellelizable because they compute the probabilities for a large number of scenarios.

6.2.3. Efficiency and suitability: Expressiveness of model

In this case, I define efficiency as the savings from culling inputs (determining that

they are not needed) relative to the potential total cost if it were to acquire all inputs. If

all inputs have the same cost, then it is the proportion of inputs that were culled (determined

 110 of 196

not to be needed). This affects the degree to which the AskSheet method could

outperform existing systems such as SmartSheet, which gather all of the inputs.

Suitability is the degree to which the decision result would likely reflect the user’s

actual values about the decision relative to the actual possibilities in the world (i.e., did it

actually pick the best one). While this would be difficult to measure, there are some

factors that clearly have an effect. Recall that AskSheet is actually just calculating a value

for the root cells in the spreadsheet; it is agnostic to whether the spreadsheet is about a

decision or something else. None of these factors influence the accuracy of that result.

However, if the system cannot support models that are expressive enough to discern

between an excellent alternative and an ideal one, then ultimately the user may miss the

ideal, settling for mere excellence.

I would not expect the AskSheet method to achieve the same level of efficiency

that an individual would achieve doing the work alone. There are several reasons for this,

but center around the expressiveness of the model. An individual decision-maker has the

benefit of reliable tacit knowledge of the situation and her criteria. These issues can be

summarized as follows:

 Model is typically an imperfect representation of criteria. For the kinds of

models shown in the field trials, the formulas probably do not fully express the

decision maker’s values about the situation. For example, in the smartphone

example (page 80), perhaps RAM is only important if the camera has a large

megapixel count since the RAM is primarily used for manipulating photos. Many

such nuances are conceivable. Many could be expressed with more complex

formulas, but creating those formulas comes at a cost.

 111 of 196

 Cannot satisfice—always aims for a perfect decision. There is no allowance

for accepting an approximate result (i.e., a suboptimal decision result), even if the

benefit to the user of the more precise answer is far outweighed by the cost of

acquiring more information. For example, even if the system found an option that

results in a score that is 99% as much as that maximum possible score (e.g., a nearly

perfect car), it would continue acquiring information until it could infer that no

other alternative could result in a higher score.

 Unaware of domain-specific relations (e.g., memory ~ CPU). AskSheet has no

way of knowing if two attributes are inherently related. Consider the smartphone

example again. Ideally, if it finds that one option has the minimum amount of

RAM, it should adjust the probability distribution of the CPU for that alternative

(e.g., model) to reflect a low likelihood of a powerful CPU. However, AskSheet

(my implementation) has no knowledge of such relationships and no way for the

user to specify them. While a future incarnation of the idea could provide such a

facility to the user—and I considered doing so myself—it would impose a

significant burden on the user, which would ultimately offset the overall value of

AskSheet.

 Bounds may be inaccurate. The bounds specified by the user may in many cases

be mere estimates of the highest or lowest values the user would expect. For

example, the user may not be aware that newer smartphones come with more RAM

can store up to 160 GB (total including a micro SD card). The effect is that the

system might stop too soon.

 112 of 196

Despite the above limitations, AskSheet still provides a significant increase in

efficiency versus any existing technology. The only current practically useful service for

gathering inputs in support of data-driven decisions in SmartSheet. As I discussed in

section 2.1.1 (page 26), it allows a user to enter the row and column headings, and use

Mechanical Turk to fill in the values. With SmartSheet, there is virtually no way to

control the order in which inputs are acquired.

6.3. Optimality

In this discussion, optimality is the computational property of an implementation—

as opposed to the more human-oriented properties above—of being able to maximize the

efficiency, given an input model and settings. Full optimality would be achieved only if

a few simplifying assumptions were satisfied. They are listed below. To the extent these

are violated, optimality may be diminished.

 Inputs are presumed to be uniformly distributed and mutually independent.

This affects the calculated output distributions, which are used to calculate need

probabilities. For =MAX(…), AskSheet effectively prioritizes inputs for the top

contenders in order to rapidly differentiate which is the maximum. This

assumption may lead to inaccurate selection of the top contenders.

 Bounds given in =ASK(…) formulas are presumed accurate. If there are

actual values outside the bounds (e.g., lower price than anticipated), it may stop too

soon.

 113 of 196

 Each cell is referenced by at most one node. This is the problem of dependence

between formulas described below. It can lead to gathering more inputs than

necessary.

 At each step, only one input is acquired from one worker. The batching

mechanism described above violates this. However, making tasks more efficient

for workers may reduce overall cost and completion time. The user controls this

tradeoff via the =ASK(…) parameters and the setup.

6.3.1. Dependence between formulas

The algorithms that calculate output distribution and need probabilities use only

local information (i.e., at the level of a particular function or operator), so they cannot

detect dependence between cells. For example, in this simple model, AskSheet should

detect that A1 and B1 refer to the same quantity, and thus elimincate A1,

i.e., Pr(need A1)=0.0.

The problem is that when analyzing the condition in C1, it has no knowledge of the

relationshiop between A1 and B1. Although it calculates that both A1 and A2 have the

same distribution (discrete uniform, 1 to 10), it cannot detect the dependence between the

two, and so it fails to eliminate A1.

In my experience, the most common area where this issue is apparent is with

comparison operators, as well as spreadsheet functions that depend on comparisons

internally, such as table lookups. For example, in the grocery shopping example above,

 A B C

1 =ASK("0 to 10") =A1*1 =IF(A1=B1, "same", "different")

 114 of 196

the system will continue to calculate the entire total cost for a store, even though the actual

number is not needed to determine which store is the winner.

These issues do not arise with tree-structured models (i.e., each cell referenced by

at most one formula). They only arise in DAG-structured models, because the local

information used by the probability calculations does not provide information on these

relationships.

A potential solution would be to simplify the formulas algebraically before

calculating need probabilities for comparison operators. Software libraries exist for

performing such algebraic manipulation (Joyner, Čertík, Meurer, & Granger, 2012).

When algebraic simplification determines two nodes to be the same quantity, then

the output distribution of the equality operator will be Pr(node=True)=1.0. More

generally, for any equality operation a=b, instead of calculating Pr(a=b) directly, it would

convert the expression to a–b=0, algebraically simplify the expression for a–b, and then

calculate the probability distribution of the reduced form of a–b. In the example above,

the expression A1=B1 would be reduced as follows:

A1 - B1

A1 - (A1 * 1)

A1 – A1

0

 115 of 196

This could be applied to functions that inherently involve comparison operations

(e.g., table lookups), following a strategy similar to symbolic evaluation, a technique used

in software testing (Cheatham, Holloway, & Townley, 1979).

These solutions might not fully eliminate the issue of dependence, which affects

any calculation of conjunctions (A ∧ B) or disjunctions (A ∨ B). However, it would

reduce the effect on the prioritizations.

6.4. More potential applications

In this section I outline two use cases that illustrate my vision for this project, and

briefly discuss why these are not technically feasible with my implementation.

6.4.1. Example: Vacation

Vicky wants to take a vacation sometime in March for a few days. She has three

destinations in mind, with a preference for Puerto Rico. Cost is important, too.

She makes a table of the travel dates that are compatible with her work schedule,

and her preference (1 to 10) for each. She does the same for the candidate destinations.

Elsewhere, she enters weights that describe what aspects are important to here.

Finally, she uses formulas to make a table of every combination of destination, departure

date, and duration along with a calculated score for each combination.

 116 of 196

At the top, a result formula displays the best option of all.

The large number of combinations makes this infeasible with my current

implementation. With a future version, Vicky could direct workers to check various

travel web sites to find the best airfares, hotels, and other features for each location, date

and duration. If the hotels at a destination are expensive, it would skip checking airfares

for any of her listed dates.

6.4.2. Example: Reviewing conference paper submissions

The XYZ conference follows a simple review process. It initially assigns three

reviewers per paper. For those that are borderline, it adds more until a consensus forms.

This could be modelled as accepting any paper where the median of five scores is

at least 4.0 out of 5.0. If the first three are more (or less) than 4.0, then no more are

needed.

 117 of 196

They could have structured the process in other ways. For example, to target a

25% acceptance rate, it could accept every paper in the top 25 percentile, as this model

illustrates:

To accept a specific number of papers (e.g., to fit the number of rooms), the

RANK(…) function could be used as follows:

In each case, once there was enough information to be sure the process was

complete, it would stop requesting reviews.

 118 of 196

Note that since the submissions are confidential, reviewers would of course be

trusted experts, not web workers. Also, the scores would be entered on a private, controlled

web site.

All of the above variants on the paper reviewing model are believed to be

technically infeasible due to the inability to calculate the probability distribution of order

statistics for non-identically distributed random variables.

6.5. Future work

In this dissertation, I have developed and studied a method for coordinating workers

to efficiently enter data to be supplied as the inputs to a spreadsheet decision model. In

the course of designing, building, and studying AskSheet—as well as the companion

system, Relay—I have come to understand several important general challenges that would

be valuable to address in the future.

 Move beyond Mechanical Turk. Although the foundation for much of the

contemporary research on human computation and crowdsourcing, the semantics

of working with Mechanical Turk can be constraining. For example, it is difficult

to select workers with knowledge of a particular topic. The key benefit of working

with Mechanical Turk is that it already has a substantial base of workers on the site

every day, so it makes it easier to launch parallel workflows at any time. Thus,

with a less populated labor pool, turnaround might be slower, and it might be harder

to achieve the additional efficiency afforded by having parallel workflows.

 Improve interfaces for describing the types of inputs. Writing clear

instructions takes work. For AskSheet, any ambiguity in the instructions or the

 119 of 196

description of fields (i.e., row or column headings) can lead even the best worker

to enter information that was not expected, thus resulting in a poor end result. This

is a significant hurdle that was not explored in this work, but is of importance to

practically all crowdsourcing projects.

 Investigate interactions with quality control mechanisms. As I stated in 4.1

(page 70), I chose to exclude the accuracy of the inputs—and hence the robustness

of the decision result—from the scope of this dissertation. However, a true

realization of the potential benefits of crowd labor for decision input acquisition

would naturally require a reliable means of ensuring that the inputs are correct so

that the outputs can be depended on. This largely depends on the ongoing research

in the area of quality management. However, to the extent that gathering multiple

judgments affects the ability of a system to efficiently coordinate workflows, that

interaction should be explored, as well.

 Develop methods for calculating value of information on order-related

functions of random variables. For example, if there were a tractable algorithm

for the rank or median of a random variable within some array, AskSheet could be

applied to a richer set of models, such as those sketched in section 6.4 (page 115).

I attempted to solve these problems directly and by approximation but ultimately

found that they are open problems in mathematics (Glueck & Karimpour-Fard,

2008).

 Apply similar methodology to more robust decision methodologies. For

example, the analytical hierarchy process generally provides better quality

 120 of 196

decision results than weighted sums models. However, calculating a decision

result with AHP entails the solution of eigenvalue problems, which is well beyond

the mathematical capabilities of AskSheet.

 Develop robust methods of eliciting non-numeric values that are inter-

consistent. The method of text scoring and reconciliation that I introduced in

section 3.4 (page 63) was essentially a stopgap to allow me to proceed with core of

my work.

 Enable the machine to infer the implicit relationships between attributes. (i.e.,

CPU is high when memory is high) or else directly elicit them from the user.

For small models run in isolation, this would be difficult to achieve without

increasing the cost beyond a comfortable level. One solution would be to develop

a future system that would track prices and other details about the alternatives

across multiple models, and estimate these associations through automated

inference. Alternatively, a future system could have an interface for the user to

specify such associations based on tacit knowledge of the domain.

 Develop labor markets—or new ways of tapping into existing ones—that make

it easier to tap into workers’ existing domain knowledge. A persistent

challenge when writing instructions for crowd workers is that it is difficult to

predict what they will know. For example, when creating the smartphone

example, I had to take care that the units for RAM would not be misconstrued. If

I am expecting gigabytes and the user enters 512 (megabytes), that alternative may

incorrectly end up as the decision result (winner).

 121 of 196

Tackling these challenges would have value not only for AskSheet but for other

efforts in the realm of crowdsourcing, decision support, and probabilistic computation.

 122 of 196

Appendix A. Spreadsheet formula grammar accepted by AskSheet

This grammar describes the set of formulas that AskSheet supports. The functions

accepted are a small subset of what major spreadsheet applications accept. Also, it does

not support array formulas, cross-sheet references, or array literals (e.g., {1, 2, 3}).

However, it has been sufficient to enable a wide variety of spreadsheet models to be run

with AskSheet.

cell ::= ''

 | number

 | str_bare

 | formula

 | 'ASK(' (cmp_expr ','){0,5} cmp_expr ')'

 | 'HYPERLINK(' expr ',' expr ')'

number ::= '-'? [0-9]+ ('.' [0-9]+)?

str_bare ::= [^=] .*

str_quoted ::= '"' ([^"]|'""')* '"'

formula ::= '=' expression

cellref_a1 ::= '$'? [A-Z]+ '$'? [1-9][0-9]*

cellref_rc ::= 'R' rc_index 'C' rc_index

rc_index ::= [1-9][0-9]*

 | '[' [1-9][0-9]* ']' | ''

cmp_expr ::= (add_expr cmp_op)? add_expr

cmp_op ::= '<' | '>' | '<=' | '>=' | '<>' | '='

add_expr ::= (add_expr ('+' | '-'))* mul_expr

mul_expr ::= (mul_expr ('+' | '-'))* fun_expr

fun_expr ::= 'MIN(' arg_list ')' | 'MAX(' arg_list ')'

 | 'SUM(' arg_list ')' | 'NOT(' expr ')'

 | 'AND(' arg_list ')' | 'OR(' arg_list ')'

 | 'INDEX(' expr ',' expr ',' expr ')'

 | 'MATCH' expr ',' arr_expr ',' expr ')'

arr_expr ::= cellref_rc ':' cellref_rc

 | cellref_a1 ':' cellref_a1

 | pri_expr

pri_expr ::= '(' expr ')'

 | cellref_rc | cellref_a1

 | str_quoted | number

arg_list ::= (arg_list ',')* expr

Figure 33. Full grammar of spreadsheet formulas accepted by AskSheet

 123 of 196

Appendix B. Algorithms for task generation and management

Chapter 3 (page 48) described the implementation of AskSheet in terms of the

components of the system and some specific aspects that are central to the contribution of

this dissertation. This appendix augments that chapter with explicit algorithms for the

key operations in AskSheet. The algorithms for calculating utilities—generally more

mathematical—are covered in Appendix C (page 129).

The Python-like pseudocode used to describe the algorithms is not the same as the

AskSheet source code. Each of the functions below was specifically written for purposes

of illustration. These deliberately omit details that are not core to understanding the

process, such as database access, multiple judgments per input, web application logic,

worker tracking, payment, models with multiple root cells, certain edge cases, caching,

optimization, and fine tuning for consistency between runs. The names used here do not

necessarily match the real code.

The actual AskSheet implementation consists of about 29,000 lines of my code

(83% Python, 10% JavaScript, 5% HTML-Python templates, 2% CSS), 199 Python

classes, and two SQLite databases containing 29 tables. This includes the CrowdLib

library, which I created to simplify working with the Mechanical Turk API. Since many

details of the implementation are routine programming, I have endeavored to distill out the

core algorithms that enable AskSheet to coordinate workers to efficiently gather inputs to

decision spreadsheets.

 124 of 196

B.1. Refreshing HITs

When a model is first started, AskSheet calculates the utilities for each request and

then enables or disables HITs, as needed.

def refresh(model):

 # model ------ object containing spreadsheet formulas

 utilities = get_utilities(model.root) # p. 130

 # returns a dictionary {request:utility}

 batches_by_role_name = make_batches(model, utilities)# p. 125

 # returns a dictionary {role_name:[request, request, …], …}

 enable_or_disable_hits(batches_by_role_name) # p. 127

 # Decide which roles should be available for workers to work

 # on (or not), and then post or cancel HITs, as needed.

B.2. Receiving inputs

When a worker submits a form, the inputs are saved and the prioritization is

recalculated before refreshing the HITs, as before. All of this is done in real-time when

the worker presses the Submit button on the form. The reason is that AskSheet is designed

to minimize the number of HITs posted at a given time, to avoid having more workers

gather inputs that may not turn out to be necessary.

At its core, the procedure for receiving inputs is simple:

def on_input(inputs, model):

 # inputs -- a dictionary of {addr:v, ...} where `addr` is the

 # cell address of a request (e.g., "B16") and `v`

 # is the value that was entered by a worker.

 for addr,v in inputs.items():

 request = model.requests[addr] # instance of AskFunction

 request.value = v

 refresh(model) # p. 124

 125 of 196

The actual implementation has standard logic for aggregating multiple judgments,

either by consensus (i.e., vote of k workers) or by averaging. For multiple judgments, a

value is only assigned to a request once enough judgments have been received.

B.3. Assembling the input form

When a worker accesses a HIT via the Mechanical Turk web site, an input form

provided by AskSheet is displayed inside an IFRAME element. The selection of which

requests to display in the form is delayed until the moment it is accessed. With multiple

roles, it is possible that inputs from a worker on one role may change the priorities and

alter which requests should be shown for another role.

def make_form(model, role_name)

 # model ------ object containing spreadsheet formulas

 #

 # role_name -- as passed to ASK(…) functions; in this case it

 # is referenced by the CGI parameters when the

 # worker accesses the IFRAME in the HIT.

 utilities = get_utilities(model.root) # p. 130

 batches_by_role_name = make_batches(model, utilities) # p. 125

 top_batch = batches_by_role_name[role_name][0]

 return render_form(top_batch)

 # render_form(…) is not shown in this document.

B.4. Making batches

Each form that a worker accesses consists of a set of requests. The number of

requests is set by the decision maker in the setup screen. The algorithm for forming

batches represents a tradeoff between strict adherence to the priority order versus the need

to allow workers to gather inputs in an order that is efficient with respect to the web sites

 126 of 196

that must be visited. For example, gathering four specifications about the same car model

would probably be more time-efficient than gathering the same attribute about four

different cars.

def make_batches(model, utilities):

 # model ------ object containing spreadsheet formulas

 #

 # utilities -- dictionary {r:u} where `r` is a request

 # (instance of AskFunction) and u is the expected

 # savings if `r` were acquired next

 #

 # Returns ---- dictionary {rn:batches} where rn is a role_name

 # (as passed to ASK(…)) and batches is a list of

 # lists of requests (instances of AskFunction),

 # sorted by the sum of the request utilities

 # Group requests by role.

 buckets = {role_name:[] for role_name in model.role_names}

 for r in model.requests:

 buckets[r.role_name].append(r)

 # Initialize empty structure

 batches_by_role_name = {rn:[] for rn in model.role_names}

 # Form the batches

 for role_name in model.role_names:

 batch_size = model.role_settings[role_name].batch_size

 # Temporarily sort requests by decision alternative

 # (itemLabels) first, and then by utility (descending order).

 requests = buckets[role_name]

 sort_fn = lambda r:(r.item_labels, -utilities[r], r.row, r.col)

 requests.sort(key=sort_fn)

 # Create batches

 for i in range(len(requests)):

 # Start a new batch, if needed.

 if i % batch_size == 0:

 batches_by_role_name[role_name].append([])

 127 of 196

 # Add the i'th request to the current batch.

 batches_by_role_name[role_name][-1].append(requests[i])

 # Sort batches by the sum of the utilities of their requests

 batch_key_fn = lambda batch:sum(-utilities[r] for r in batch)

 batches_by_role_name[role_name].sort(key=batch_sort_fn)

 return batches_by_role_name

B.5. Enabling and disabling HITs

AskSheet is unlike most applications of Mechanical Turk in that instead of posting

many related HITs at once, AskSheet posts a minimal number of HITs at a time. When

the decision maker has requested only one judgment per input—the assumption throughout

this appendix—this means that AskSheet allows only one HIT for a given role to be active

at any given time. That prevents other workers from entering inputs that may turn out to

be unneeded.

def enable_or_disable_hits(utilities, batches_by_role_name):

 # utilities ------------- (same as parameter to make_batches)

 #

 # batches_by_role_name -- (as returned by make_batches)

 COMBINED_UTILITY_PERCENTILE_THRESHOLD_TO_ENABLE_FORM = 0.80

 COMBINED_UTILITY_PERCENTILE_THRESHOLD_TO_DISABLE_FORM = 0.20

 role_names = batches_by_role_name.keys()

 # Get all batches

 batches = [batch for role_name in role_names

 for batch in batches_by_role_name[role_name]]

 # Get all batch utilities, sorted in ascending order

 batch_utilities_all = [sum(utilities[r] for r in batch)

 for batch in batches]

 batch_utilities_all.sort()

 128 of 196

 # If the max utility batch for a role is at least this much,

 # and it's not already active, then enable it.

 threshold_to_enable = len(batch_utilities_all) * \

 COMBINED_UTILITY_PERCENTILE_THRESHOLD_TO_ENABLE_FORM

 threshold_to_disable = len(batch_utilities_all) * \

 COMBINED_UTILITY_PERCENTILE_THRESHOLD_TO_DISABLE_FORM

 for role_name in role_names:

 top_batch = batches_by_role_name[role_name][0]

 batch_utility_max = sum(utilities[r] for r in top_batch)

 active = amt_manager.has_active_hits(role_name)

 if not active and batch_utility_max >= threshold_to_enable:

 # If the highest utility batch for this role is in the top

 # 20%ile of all batches (all roles), but it has no active

 # HITs, then post one to begin or resume work on this role.

 amt_manager.post_hit(role_name)

 elif active and batch_utility_max <= threshold_to_disable:

 # If the highest utility batch for this role is in the

 # bottom 20%ile of all batches (all roles), but it has an

 # an active HIT, then cancel it to halt work on this role.

 amt_manager.cancel_all_hits(role_name)

 elif active:

 # If the role is already active (i.e., a worker just

 # submitted a form), then add another HIT so s/he can

 # continue working on it.

 amt_manager.post_hit(role_name)

 # The amt_manager functions are not shown in this document.

 129 of 196

Appendix C. Algorithms for calculating utilities

The prioritization method used by AskSheet starts with the algorithm for

calculating utilities. That algorithm depends on the algorithms for calculating need

probabilities, which in turn usually relies on the algorithms for calculating output

distributions (probability mass function, or PMF). These algorithms are different for

every supported spreadsheet operation. In effect, AskSheet includes a spreadsheet that

treats every cell as a discrete random variable. This appendix will describe these

algorithms for every operation supported by AskSheet.

As in Appendix B (page 123), the Python-like pseudocode used to describe the

algorithms is not the same as the AskSheet source code. While there is some high-level

correspondence, each function has been aggressively pared down from the actual

implementation code. For example, most caching logic and routine optimizations have

been omitted and external helper functions inlined, unless integral to understanding the

algorithm.

C.1. get_output_distribution(…)

The get_output_distribution(next, value) method of each

operation calculates the probability mass function (PMF).

It returns a Distribution class which can be referenced as a tuple of 2-tuples

(value, probability) sorted by value, but with some methods useful for calculating

probabilities. For example, the output distribution of =ASK("1 to 6") (equivalent to

 130 of 196

rolling a 6-sided die one time) would be expressed as Distribution((1, 0.166),

(2, 0.166), (3, 0.166), (4, 0.166), (5, 0.166), (6, 0.166)).

The next and value parameters refer to a condition on which the probability

distribution will be based. With each invocation, we suppose that the request next were

fulfilled next and that it receives the value value.

C.2. get_need_probabilities(…)

The get_need_probabilities(next, value) method of each operation

calculates, for each request that the operation depends on, the probability that the request

will be needed to calculate the result of the operation, marginalized over all possible values

of other requests.

It returns a dictionary associating each descendent request with the probability that

it will be needed. For example, if cells A1 and A2 contain requests r1 and r2 (=ASK(…)

formulas), respectively, and C1 contains =IF(1>0, A1, A2), the need probabilities of

C1 would be {r1: 1.0, r2: 0.0).

The next and value parameters have the same meaning as for the

get_output_distribution(next, value) method; they refer to a condition on

which the need probabilities will be based. As a rule, Pr("operation needs next") = 1.0.

C.3. Calculating utility of each request

The algorithm below applies to a simplified case in which the decision model has

only one root (cell with no ancestors and one or more =ASK(…) formulas as descendants).

The running time is O(ab²), where a=«average number of possible values for each

request», and b=«number of requests that the root depends on».

 131 of 196

def get_utilities(root):

 # Return a dictionary with the relative utility of each request

 # that the given root note depends on.

 base_needs = root.get_need_probabilities(next=None, value=None)

 utilities = {}

 for r in root.requests:

 cost_if_r_next = 0.0

 for (v, p_r_eq_v) in r.get_output_distribution():

 needs = root.get_need_probabilities(next=r, value=v)

 for r_o in root.requests:

 if r_o is r:

 p_need_r_o = 1.0

 else:

 p_need_r_o = needs[r_o]

 cost_if_r_next += p_need_r_o * p_r_eq_v * r_o.cost

 base_cost = 0.0

 for r_o in root.requests:

 base_cost += base_needs[r] * r_o.cost

 utilities[r] = base_cost - cost_if_r_next

 return utilities

C.4. Binary operators (+ - * / = <> < > >= <=), output distribution

For addition, the distribution for the sum of two random variables is the convolution

of their distributions. Using dynamic programming, this can be done in

O(|lhs.odist|·|rhs.odist|) time, where |lhs.odist| refers to the number of unique values the

left-hand side could take, and likewise for the right-hand side.

The running time is O(a+b+cd), where a=«time to calculate output distribution of

the left-hand side», b=«time to calculate output distribution of the right-hand side»,

c=|lhs.odist| (number of distinct possible values in left-hand side), and d=|rhs.odist|.

class AddOperator(BinaryOperator):

 @memoize

 132 of 196

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 lhs_odist = self.lhs.get_output_distribution(next, value)

 rhs_odist = self.rhs.get_output_distribution(next, value)

 odist_dict = {} # initially represent as a dictionary

 for v_lhs,p_lhs in lhs_odist:

 for v_rhs,p_rhs in rhs_odist:

 v_result = v_lhs + v_rhs # or other operator: -, *, /

 p_result = p_lhs * p_rhs

 # Presume lhs and rhs to be indepdendent

 # Initialize to 0.0, if necessary

 if not sum_dist.has_key(v_result):

 odist_dict[v_result] = 0.0

 odist_dict[v_result] += p_result

 # Each way of reaching this result is distinct, so

 # these cases are indeed mutually exclusive.

 odist = sorted(odist_dict.items())

 return Distribution(odist)

For the other binary operators (- * / = <> < <= > >=), the calculation is the

same, but with the line v_result = v_l + v_p changed to use the appropriate

operator instead of +.

C.5. Comparison operators (= <> < <= > >=), need probabilities

For the comparison operators, we consider a request needed if and only if either

operand needs it and that operand itself is needed. To evaluate when an operand is

needed, we calculate the probability that it would be needed if the other side of the operator

were acquired first.

 133 of 196

The running time is O(a+b+c+d+e), where a=|lhs.odist|, b=|lhs.odist|, c=|requests|,

d=«average time to calculate the output distribution of either of the operands», and

e=«average time to calculate need probabilities of either of the operands».

class ComparisonOperator:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 lhs_needs = self.lhs.get_need_probabilities(next, value)

 rhs_needs = self.rhs.get_need_probabilities(next, value)

 lhs_odist = self.lhs.get_output_distribution(next, value)

 rhs_odist = self.rhs.get_output_distribution(next, value)

 lhs_values = lhs_odist.get_values()

 rhs_values = rhs_odist.get_values()

 # Calculate Pr(need lhs) and Pr(need rhs)

 # Equal or Not-Equal operators

 if self.symbol == "=" or self.symbol == "<>":

 p_need_rhs = sum(p for v,p in lhs_odist

 if v in rhs_odist.values)

 p_need_lhs = sum(p for v,p in rhs_odist

 if v in lhs_odist.values)

 # Greater-Than or Less-Than-Or-Equal operators

 elif self.symbol == ">" or self.symbol == "<=":

 p_need_rhs = sum(p for v,p in lhs_odist

 if rhs_odist.min_value >= v > rhs_odist.max_value

 p_need_lhs = sum(p for v,p in rhs_odist

 if lhs_odist.min_value > v >= lhs_odist.max_value

 # Less-Than or Greater-Than-Or-Equal operators

 elif self.symbol == "<" or self.symbol == ">=":

 p_need_rhs = sum(p for v,p in lhs_odist

 if rhs_odist.min_value <= v < rhs_odist.max_value)

 p_need_lhs = sum(p for v,p in rhs_odist

 if lhs_odist.min_value < v <= lhs_odist.max_value)

 134 of 196

 needs = {}

 for r in self.requests:

 # Calculate Pr(need lhs ∧ lhs needs r)

 if lhs_needs.has_key(r):

 need_r_for_lhs = lhs_needs[r] * p_need_lhs

 # Presume "need lhs" and "lhs needs r" are independent

 else:

 need_r_for_lhs = 0.0

 # Calculate Pr(need rhs ∧ rhs needs r)

 if rhs_needs.has_key(r):

 need_r_for_rhs = rhs_needs[r] * p_need_rhs

 # Presume "need rhs" and "rhs needs r" are independent

 else:

 need_r_for_rhs = 0.0

 p_need_r = need_r_for_lhs + need_r_for_rhs - \

 need_r_for_lhs * need_r_for_rhs

 # Presume "need r for lhs" and "need r for rhs" independent

 if p_need_r > 0:

 needs[r] = p_need_r

 needs[next] = 1.0

 return needs

C.6. Binary arithmetic operators (+ - * /), need probabilities

The intuition for finding the need probabilities for binary arithmetic operators is

that the operator needs a request if and only if either operand needs it. This algorithm is

the same for all four binary arithmetic operators, except that in the case of multiplication

and division, if either operand is always 0 (e.g., numeric literal or input that has already

been acquired), then it reports needing no requests other than the request given by the next

parameter. (AskSheet does not handle division-by-zero errors.)

 135 of 196

The running time is O(a+b), where a=«average time to calculate need probabilities

of either of the operands» and b=|requests|.

class BinaryOperator:

 @memoize

 def get_need_probabilities(self, next, value):

 # Need request if either operand needs it

 lhs_needs = self.lhs.get_need_probabilities(next, value)

 rhs_needs = self.rhs.get_need_probabilities(next, value)

 needs = {}

 for r in self.requests:

 if r is next:

 needs[r] = 1.0

 else:

 if lhs_needs.has_key(r):

 needs[r] = lhs_needs[r]

 else:

 needs[r] = 0.0

 if rhs_needs.has_key(r):

 needs[r] += rhs_needs[r] - needs[r] * rhs_needs[r]

 # Presume "lhs needs r" and "rhs needs r" independent

 return needs

C.7. =SUM(…), output distribution

The obvious difference between =SUM(…) and the addition operator is that

=SUM(…) accepts an arbitrary number of arguments. Thus, one way to calculate the PMF

would be to repeatedly apply the method used by the addition operator, as follows:

class SumFunction:

 @memoize

 def calculate_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 odist = self.operands[0].get_output_distribution(next, value)

 136 of 196

 odist_dict = dict(odist)

 # this will accumulate each additional operand

 for op in self.operands[1:]: # "outer loop"

 op_odist = op.get_output_distribution(next, value)

 for v_lhs,p_lhs in odist_dict.items(): # "middle loop"

 for v_rhs,p_rhs in rhs_odist: # "inner loop"

 v_result = v_lhs + v_rhs

 p_result = p_lhs * p_rhs

 # Presume lhs and rhs to be indepdendent

 # Initialize to 0.0, if necessary

 if not odist_dict.has_key(v_result):

 odist_dict[v_result] = 0.0

 odist_dict[v_result] += p_result

 # Each way of reaching this result is distinct, so

 # these cases are indeed mutually exclusive.

 odist = sorted(odist_dict.items())

 return Distribution(odist)

There are two main factors that make this expensive. First,

add_distribution(…), which is already O(|lhs.odist|·|rhs.odist|), must be performed

len(self.operands)-1 times. At each step, |lhs.odist| is the number of unique

sums that can be made with the possible values of the operands seen so far. Below, I

elaborate on the running time of that. Second, all of this will be executed once for every

possible value of every descendent request. Later in this section, I will describe an

optimization that I use to mitigate that (see section C.7.3 on page 141).

 137 of 196

The running time can vary widely depends heavily on the operands. As I will

show below, it can be O(mn) in good cases, but O(mn) in a theoretical worst case.

C.7.1. Running time, worst case

The worst case for a =SUM(…)having n operands each up to m possible values each

is O(mn). This running time is extremely unlikely to arise in practice but serves as an

upper bound. Below, I show how that running time is derived.

The body of the “middle loop” is executed once for every distinct sum value for the

operands processed so far. When all of the operands are identically distributed, there may

be many ways to reach a given sum value, so the number of distinct values is limited. It

is akin to the problem of counting the number of distinct sums that could result from rolling

n 6-sided dice. The worst case uses an unlikely arrangement of operands from which each

sum value can be generated only one way. The proof below is based on just two sets of

integers, representing the respective sets of possible values from two operands.

Claim: The set of distinct sums from two sets of integers A and B, each of

arbitrary length, may have as many as |A|∙|B| elements, but no more. More formally,

Let SumSet(S1 + … + Sn) = {x1 + … + xn | xi ∈ Si , 1 ≤ i ≤ n}

 A ⊂ ℤ

 B ⊂ ℤ

∃ A,B : |SumSet(A+B)| = |A|∙|B| "… as many as …"

∀ A,B : |SumSet(A+B)| ≤ |A|∙|B| "… but no more."

 138 of 196

Proof: We will prove that for some A and B of arbitrary length, |SumSet(A, B)|

= |A| ∙ |B|. Since each element in SumSet(A, B) is the sum of an element from A and an

element from B, there cannot be any more than |A|∙|B| combinations. To prove that it is

possible to have such a worst case with |A|∙|B| distinct sums, consider the following

construction.

Let A and Bi be non-empty sets of positive integers (A ⊂ ℤ+, Bi ⊂ ℤ+)

Let bi+1 = max(SumSet(A + Bi)) + 1

Let Bi+1 = Bi + {bi+1}

bi+1 ∉ Bi by definition of bi

{bi+1} ⋂ |Bi| = Ø

|Bi+1| = |Bi| + 1 by definition of Bi+1

∀ x, x ∈ SumSet(A + Bi) x < bi by definitions of bi, A, Bi

∀ x, x ∈ SumSet(A + {bi+1}) x > bi by definitions of bi, A

SumSet(A + Bi) ⋂ SumSet(A + {bi+1}) = Ø

|SumSet(A + Bi)| = |SumSet(A + Bi)| + |SumSet(A + {bi+1})|

SumSet(A + Bi+1) = SumSet(A + Bi+1) ⋃ SumSet(A + {bi+1})

|SumSet(A + Bi+1)| = |SumSet(A + Bi)| + |A|

|SumSet(A + B)| = |A| whenever |B|=1 by definitions of bi, A, Bi

Let B0 = {1}

|B0| = 1 by definition of B0

|SumSet(A + B0)| = |A|

 139 of 196

|SumSet(A + B1)| = |SumSet(A + B0)| + |A|

 = |A| + |A|

 = 2 ∙ |A|

|SumSet(A + B2)| = |SumSet(A + B1)| + |A|

 = 2 ∙ |A| + |A|

 = 3 ∙ |A|

…

|SumSet(A + Bk)| = |SumSet(A + Bk-1)| + |A|

 = (k + 1) ∙ |A|

Since |B0| = 1 and |Bi+1| = |Bi| + 1, then by induction, |Bk| = k + 1. Therefore,

|SumSet(A + Bk)| = (k + 1) ∙ |A|

 = |Bk| ∙ |A|

 = |A| ∙ |Bk| ⃞

Based on the above proof, we know that after folding in the second operand to the

=SUM(…), len(odist) could be as much as len(operands[0]) *

len(operands[1].odist). More generally, after processing the ith operand,

len(odist) could be as much as ∏ len(operands[j].odist)0≤𝑗≤𝑖 . Thus, in the

worst case, a =SUM(…)with n operands each having up to m possible values may have as

many as mn items in its output distribution.

 140 of 196

The body of the outer loop (page 136) is executed n-1 times. In the ith pass, the

body of the middle loop is executed mi times. For each pass through the body of the

middle loop, the body of the inner loop is executed m times. In total, the body of the inner

loop is executed (m + m2 + … + mn-1)(m) = (m²)(n-1)(n-2) times. Thus, the worst case

running time for calculating the output distribution for =SUM(…) is O(mn).

C.7.2. Running time, good case

The worst case bound described above is based on a contrived construction. For

decision models, the terms of the sum typically have distributions that are either identical

or at least very similar.

For a “good” case13, consider a =SUM(…) with n identical operands, each being

=ASK("1 to m"). Such a model would correspond to a weighted sums model where

every input is a 5-star rating (i.e., m=5) with no weights. This can be represented as

follows:

Suppose A = {1, 2, …, m}.

 Let SumSets(nA) = SumSets(S + S +⋯+ S⏟
𝑛

)

SumSets(A) = {1, …, m}

SumSets(2A) = {2, …, 2m}

SumSets(3A) = {3, …, 3m}

SumSets(nA) = {n, …, nm}

13 I do not know if this is the best case or not.

 141 of 196

|SumSets(nA)| = nm – n + 1

Since this corresponds to the number of times the body of the “middle loop” is

executed, the running time for calculating the output distribution will be O(nm²).

As in the worst case, the body of the outer loop (page 136) is executed n-1 times,

but for the good case, in the ith pass, the body of the middle loop is executed mi times. For

each pass through the body of the middle loop, the body of the inner loop is executed m

times. In total, the body of the inner loop is executed (m + 2m + … + (n-1)m)(m) = (m²)(n-

1)(n-2) times. Thus, the running time for calculating the output distribution for =SUM(…)

in the good case is O(m²n²).

The complexity depends heavily on the specifics of the model. At any rate,

profiling has shown that this is a significant part of the time AskSheet spends prioritizing

many models. Therefore, I have added some optimization.

C.7.3. Optimization with partial sum precalculation

As with all operations, the output distribution must be calculated repeatedly for

different conditions: once for every request (next), and for every value (value) of that

request. Typically, only one operand changes each time. Therefore, AskSheet

precomputes and caches the output distribution for the sum of all but one operands—for

each operand. For a model with n operands (op1, op2, …, opn), it precomputes n partial

sums.

 op2 + op3 + op4 + … + opn

op1 + op3 + op4 + … + opn

op1 + op2 + op4 + … + opn

 142 of 196

op1 + op2 + op3 + … + opn

op1 + op2 + op3 + op4 + opn

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

op1 + op2 + op3 + op4 + …

 All of these partial sums can be computed in running time proportional to what

would be required to calculate the output distribution for a single scenario (i.e., one

combination of next and value). To get each of the sums op1 + … + opi (0 ≤ i < n), it

effectively follows the same algorithm (page 136) but saves a copy of odist_dict at

the end of each pass through the outer loop. For op1 + … + opi (0 ≤ i < n), it effectively

does the same, but visiting the operands in the reverse order. With those pre-calculated,

then for any =SUM(…) of which no more than one operand depends on any given request,

each additional scenario can be calculated by simply adding in whichever operand depends

on next. This entails a single pass through the body of the outer loop instead of n passes,

which improves the overall running time for some important model types (See the

discussion of performance and overall running time in section 6.2.2 on page 107.)

C.8. =SUM(…), need probabilities

The calculation of need probabilities for =SUM(…) is relatively simple compared

to its output distribution. It needs a request if and only if any of its operands needs it.

The running time is O(ab+ac) where a=|operands|, b=«number of requests each operand

depends on», and c=«average time to calculate output distribution of an operand».

class SumFunction:

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 143 of 196

 needs = {}

 for op in self.operands:

 op_needs = op.get_need_probabilities(next, value)

 for r,p_op_needs_r in op_needs:

 if not needs.has_key(r):

 needs[r] = 0.0

 needs[r] += p_op_needs_r - p_op_needs_r * needs[r]

 needs[next] = 1.0

 return needs

C.9. =MAX(…), output distribution

The key idea is that Pr(result = v) = Pr(all operands ≤ v) – Pr(all operands < v) for

any v among the set of possible output values. This is because for the maximum to be v,

no operand may be greater than v, but at least one must be equal to v. Since =MAX(…) is

the same as the first order statistic, this formula is consistent with the formula for the

probability mass function for order statistics on discrete random variables (Casella &

Berger, 2002, pp. 227–228). The running time is O(ab+ac) where a=|operands|,

b=«average time to calculate the output distribution of an operand», c=«average number

of distinct values found in any operand».

class MaxFunction:

 @memoize

 def get_output_distribution(self, next=None, value=None):

 # The interface for this method is given on page 129.

 op_odists = "list of output dists of every operand"

 min_val = max(d.min_val for d in op_odists)

 out_vals = "sorted list of all operands’ vals ≥min_val"

 op_odist_cursors = [0 for _ in op_odists]

 p_each_op_lt_v = [0.0 for _ in op_odists]

 p_each_op_le_v = [0.0 for _ in op_odists]

 144 of 196

 for v in out_vals:

 p_all_lt_v = 1.0

 p_all_le_v = 1.0

 for op_idx in range(len(op_odists)):

 op_odist = op_odists[op_idx]

 op_odist_cursor = op_odist_cursors[op_idx]

 p_op_lt_v = p_each_op_lt_v[op_idx]

 p_op_le_v = p_each_op_le_v[op_idx]

 while op_odist_cursor + 1 < len(op_odist) and \

 op_odist[op_odist_cursor + 1] <= v:

 op_odist_cursor += 1

 _v,_p = op_odist[op_odist_cursor]

 p_op_lt_v += _p

 if _v == v:

 p_op_le_v += _p

 # Each value is a distinct, mutually exclusive case

 op_odist_cursors[op_idx] = op_odist_cursor

 p_each_op_lt_v[op_idx] = p_op_lt_v

 p_each_op_le_v[op_idx] = p_op_le_v

 p_all_lt_v *= p_op_lt_v

 p_all_le_v *= p_op_le_v

 # Presume that all operands are independent

 # ***** KEY FORMULA ******

 p_eq_v = p_op_le_v - p_op_lt_v

 odist.append((v, p_eq_v))

 return Distribution(odist)

C.10. =MAX(…), need probabilities

The key idea is that we need a request if we need any operand that needs it. We

need an operand if there is any possibility that it will be greater than the output value.

Stated differently, for any v in the set of possible output values, we need every operand of

 145 of 196

which the maximum possible value is greater than v. In addition, we need one operand

of which the value is v. The running time is O(ab + ac + ad) where a=«number of

operands», b=«average number of distinct output values for any operand», c=«average

time to calculate the output distribution of an operand», d=«average number of requests

per operand».

A known flaw in this algorithm is that for each value v, it chooses one operand (the

value owner) arbitrarily as the one that is needed whenever the value of the =MAX(…) is v.

That might result in a small, unjustified bias for some requests over others.

class MaxFunction:

 @memoize

 def get_need_probabilities(self, next=None, value=None):

 # The interface for this method is given on page 130.

 # Calculate "value owners" for each possible value

 val_owners = {}

 for op in operands

 op_odist = op.get_output_distribution(

 r_suppose_next=r_suppose_next, r_val=r_val)

 op_max = op_odist.max_value

 for v,p in op_odist:

 if v not in val_owners or val_owners[v][1] < op_max:

 val_owners[v] = op

 # Calculate Pr(op needs r) for every operand op and request r

 for op in self.operands:

 if op.requests == (next,):

 p_need_op = 1.0

 else:

 op_odist = op.get_output_distribution(next, value)

 op_max = op_odist.max_value

 if not val_owners.has_key(op_max):

 # Never needed ... The fact that op_max has no value

 # owner implies that this operand always less than the

 # minimum possible value of at least one other operand

 146 of 196

 p_need_op = 0.0

 elif val_owners[op_max] is op:

 # Need this operand only when MAX is less than or equal

 # to the least possible value for this operand

 p_need_op = odist.probability_le(op_min)

 else:

 # Same as the previous case, but < instead of <=

 p_need_op = odist.probability_lt(op_min)

 # Calculate Pr(MAX needs r) for each request r

 for op in self.operands:

 op_needs = op.get_need_probabilities(next, value)

 for r,p_op_needs_r in op_needs.items():

 needs[r] += p_need_op * p_op_needs_r

 # Presume that operands are independent and only one may

 # depend on a given request (i.e., "op1 needs r" is

 # mutually exclusive with "op2 needs r"). This will be

 # true for tree-structured models but not for some others

 return needs

C.11. =IF(…), output distribution

The syntax is of an =IF(…) function is as follows:

=IF(condition, value_if_true, value_if_false)

Its output distribution is the sum of value_if_true and value_if_false

weighted by the respective probabilities that condition is true or false. The running

time is O(a + b + c + d + e) where a, b, and c are the times to calculate the output of the

three operands (respectively), d=«number of distinct possible values of

value_if_true», and e=«number of distinct possible values of value_if_false».

class IfFunction:

 @memoize

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 147 of 196

 cond_odist = self.cond.get_output_distribution(next, value)

 # Output distribution of the result of the =IF(…)

 odist_dict = {}

 # Add in case of when condition=True

 val_if_t_odist = self.value_if_true.get_output_distribution(

 next, value)

 for v,p in val_if_t_odist:

 odist_dict[v] = p * cond_odist[True]

 # Presume condition and value_if_true are independent

 # Add in case of when condition=False

 val_if_f_odist = self.value_if_false.get_output_distribution(

 next, value)

 for v,p in val_if_f_odist:

 if not odist_dict.has_key(v):

 odist_dict[v] = 0.0

 odist_dict[v] += p * cond_odist[False]

 # Mutually exclusive because condition is either T or F

 # Presume condition and value_if_true are independent

 # Return the distribution in the usual format

 odist_dict = sorted(odist_dict.iteritems())

 return Distribution(odist_dict)

C.12. =IF(…), need probabilities

The =IF(…) function needs a request that value_if_true depends on if and

only if condition=True, and likewise for requests that value_if_false depends

on. Running time is O(a + b + c + d) where a=«time to calculate the output distribution

of the condition», b=«average time to calculate the need probabilities any of the

operands», c=«number of distinct possible values of value_if_true», and d=«number

of distinct possible values of value_if_false».

class IfFunction:

 148 of 196

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 needs = {}

 cond_odist = self.cond.get_output_distribution(next, value)

 p_true = cond_odist[True]

 p_false = cond_odist[False]

 cond_needs = self.cond.get_need_probabilities(next, value)

 for (op,p_need_op) in ((self.value_if_true, p_true),

 (self.value_if_false, p_false),

 (self,cond, 1.0)):

 op_needs = op.get_need_probabilities(next, value)

 for r,p_op_needs_r in op_needs.items():

 if not needs.has_key(r):

 needs[r] = 0.0

 p_need_r_for_op = p_need_op * p_op_needs_r

 needs[r] += p_need_r_for_op - p_need_r_for_op * needs[r]

 return needs

C.13. =ASK(…), output distribution

As a premise of AskSheet’s design, every =ASK(…) formula has a discrete uniform

distribution. In principle, this encompasses every possible value that could be entered

into the input form, within the range given by the parameters. An earlier version of the

AskSheet implementation used every possible value. For example, =ASK("1 to 5")

would have 5 possible values, but =ASK("$1.00 to $5.00")would have 501

possible values. For performance reasons, the implementation now uses sampling with a

configurable sample size (currently set to 5). Samples are taken at uniform intervals and

then rounded as appropriate (e.g., for integer inputs). The running time is O(|samples|),

or O(1) if you consider the number of samples as a constant.

class AskFunction:

 @memoize

 149 of 196

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 odist = []

 if next is self:

 odist.append((value, 1.0))

 else:

 p = 1.0 / len(self.samples)

 for v in self.samples:

 odist.append((v, p))

 return Distribution(odist)

C.14. =ASK(…), need probabilities

An =ASK(…) formula needs itself if and only if it has not yet been fulfilled. As

usual, any request passed as a condition (next) is also needed. The running time is O(1).

class AskFunction:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 needs = {}

 if not self.is_stable:

 needs[self] = 1.0

 needs[next] = 1.0

 return needs

C.15. =AND(…), output distribution

The output distribution is simply the conjunction of the output distributions of every

operand. As usual, we presume all operands are independent, even though that may not

always be the case for non-tree-structured models. The running time is O(ab) where

a=|operands| and b=«average time to calculate the output distribution of any of the

operands».

class AndFunction:

 @memoize

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 150 of 196

 p_all_t = 1.0

 for op in self.operands:

 op_odist = op.get_output_distribution(next, value)

 p_all_t *= op_odist.probability_true

 # Presume all operands are independent

 p_any_f = 1.0 - p_all_t

 return Distribution(((False, p_any_f), (True, p_all_t)))

C.16. =AND(…), need probabilities

Assume the operands were chosen at random. The probability that a given

operand is needed is the probability that evaluation does not stop due to short-circuit

evaluation before it is chosen. The running time is O(ab + ac) where a=|operands|,

b=«average time to calculate the output distribution of any of the operands», and

c=«average time to calculate the output distribution of any of the operands».

class AndFunction:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 # Check if any operand is guaranteed to always be False

 # e.g., due to inputs already received

 is_short_circuited = False

 for op in self.operands:

 odist = op.get_output_distribution(next, value)

 if odist.probability_false == 1.0:

 is_short_circuited = True

 break

 if not is_short_circuited:

 num_ops = len(self.operands)

 p_each_op_allows = []

 for op in self.operands:

 op_odist = op.get_output_distribution(next, value)

 p_op_is_true = op_odist.probability_true

 151 of 196

 p_each_op_allows.append(0.5 * p_op_is_true + 0.5)

 # To keep this linear, accumulate forwards then backwards

 p_cumulative = 1.0

 p_need_each_op = []

 for i in xrange(num_ops): # 0 ... num_ops-1

 p_need_each_op.append(p_cumulative)

 p_cumulative *= p_each_op_allows[i]

 p_cumulative = 1.0

 for i in range(num_ops-1, -1, -1): # num_ops-1 ... 0

 p_need_each_op[i] *= p_cumulative

 p_cumulative *= p_each_op_allows[i]

 needs = {}

 for i in range(num_ops): # 0 ... num_ops-1

 op = self.operands[i]

 op_needs = op.get_need_probabilities(next, value)

 for r,p_op_needs_r in op_needs.items():

 if not needs.has_key(r):

 needs[r] = 0.0

 p_need_op = p_need_each_op[i]

 p_need_r_for_op = p_op_needs_r * p_need_op

 needs[r] += p_need_r_for_op - p_need_r_for_op*needs[r]

 return needs

C.17. =OR(…), output distribution

The output distribution is the probability that any of the operands is true.

AskSheet calculates this as the inverse of the probability that every operand is false, under

the presumption that all operands are independent of one another. The running time is

O(ab) where a=|operands| and b=«average time to calculate the output distribution of any

of the operands».

class OrFunction:

 @memoize

 def get_output_distribution(self, next, value):

 152 of 196

 # The interface for this method is given on page 129.

 p_all_f = 1.0

 for op in self.operands:

 op_odist = op.get_output_distribution(next, value)

 p_all_f *= op_odist.probability_false

 # Presume all operands are independent

 p_any_t = 1.0 - p_all_f

 return Distribution(((False, p_all_f), (True, p_any_t)))

C.18. =OR(…), need probabilities

The strategy for =OR(…) is the essentially the same as for =AND(…). A request

is needed if—while selecting operands at random—an operand that depends on the request

is chosen before a true value is encountered. The running time is O(ab + ac) where

a=|operands|, b=«average time to calculate the output distribution of any of the operands»,

and c=«average time to calculate the output distribution of any of the operands».

class OrFunction:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 # Check if any operand is guaranteed to always be True

 # e.g., due to inputs already received

 is_short_circuited = False

 for op in self.operands:

 odist = op.get_output_distribution(next, value)

 if odist.probability_true == 1.0:

 is_short_circuited = True

 break

 if not is_short_circuited:

 num_ops = len(self.operands)

 p_each_op_allows = []

 for op in self.operands:

 op_odist = op.get_output_distribution(next, value)

 153 of 196

 p_op_is_false = op_odist.probability_false

 p_each_op_allows.append(0.5 * p_op_is_false + 0.5)

 # To keep this linear, accumulate forwards then backwards

 p_cumulative = 1.0

 p_need_each_op = []

 for i in xrange(num_ops): # 0 ... num_ops-1

 p_need_each_op.append(p_cumulative)

 p_cumulative *= p_each_op_allows[i]

 p_cumulative = 1.0

 for i in range(num_ops-1, -1, -1): # num_ops-1 ... 0

 p_need_each_op[i] *= p_cumulative

 p_cumulative *= p_each_op_allows[i]

 needs = {}

 for i in range(num_ops): # 0 ... num_ops-1

 op = self.operands[i]

 op_needs = op.get_need_probabilities(next, value)

 for r,p_op_needs_r in op_needs.items():

 if not needs.has_key(r):

 needs[r] = 0.0

 p_need_op = p_need_each_op[i]

 p_need_r_for_op = p_op_needs_r * p_need_op

 needs[r] += p_need_r_for_op - p_need_r_for_op*needs[r]

 return needs

C.19. =NOT(…), output distribution

The output distribution of =NOT(…) is just the distribution of its sole operand with

the values true and false swapped. The running time is O(a + b) where a=«time to

calculate the output distribution of the operand» and b=«number of distinct possible values

that the operand could take».

class NotFunction:

 @memoize

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 154 of 196

 op_odist = self.arg.get_output_distribution(next, value)

 odist = []

 for v,p in op_odist:

 v = not v

 odist.append((v, p))

 odist.sort()

 return Distribution(odist)

C.20. =NOT(…), need probabilities

The =NOT(…) function needs all requests that its sole operand depends on. The

running time is O(«time to calculate the need probabilities of the operand»).

class NotFunction:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 return self.arg.get_need_probabilities(next, value)

C.21. =INDEX(…), output distribution

The =INDEX(…) function is used to look up values in a data table, usually in

conjunction with the =MATCH(…) function. The syntax is as follows:

=INDEX(array, row_number, column_number)

For example, =INDEX(A1:C10, 4, 3) would return the value of cell C4. The

output distribution is a marginal probability distribution of the value of the selected cell,

over all possible cells that could be selected.

The running time is O(a + b + abc + abd) where a=«number of distinct possible

values of row_number», b=«number of distinct possible values of row_number»,

c=«average time to calculate the output distribution of any of the cells in array that

row_number or column_number might point to», and d=«average number of distinct

 155 of 196

possible values in the output distribution of any of the cells in array that row_number

or column_number might point to».

class IndexFunction:

 @memoize

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 row_odist = self.row_num.get_output_distribution(next, value)

 col_odist = self.col_num.get_output_distribution(next, value)

 odist_dict = {}

 for row_num,row_num_p in row_odist:

 for col_num,col_num_p in col_odist:

 cell = self.array.get(row_num, col_num)

 cell_odist = cell.get_output_distribution(next, value)

 for v,p in cell_odist:

 if not odist_dict.has_key(v):

 odist_dict[v] = 0.0

 odist_dict[v] += p * col_num_p * row_num_p

 # Mutually exclusive because only one cell can be

 # selected, and it can have only one value

 dist_items = sorted(odist_dict.items())

 return Distribution(odist_dict)

C.22. =INDEX(…), need probabilities

The =INDEX(…) function always needs its row_number and

column_number operands and any requests that they may depend on. For other cells,

the need probability is the marginal probability that the cell is selected by the values of

row_number and column_number.

The running time is O(a + b + abc + abd) where a=«number of distinct possible

values of row_number», b=«number of distinct possible values of row_number»,

 156 of 196

c=«average time to calculate the need probabilities of any of the cells in array that

row_number or column_number might point to», and d=«average number of

descendent requests of any of the cells in array that row_number or

column_number might point to».

class IndexFunction:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 row_odist = self.row_num.get_output_distribution(next, value)

 col_odist = self.col_num.get_output_distribution(next, value)

 # Add in the needs due to cells

 needs = {}

 for row_num_v,row_num_p in row_odist:

 for col_num_v,col_num_p in col_odist:

 cell = self.array.get(row_num_v, col_num_v)

 p_need_cell = row_num_p * col_num_p

 cell_needs = cell.get_need_probabilities(next, value)

 for r,p_cell_needs_r in cell_needs.items():

 if not needs.has_key(r):

 needs[r] = 0.0

 p_need_r_for_cell = p_cell_needs_r * p_need_cell

 needs[r] += p_need_r_for_cell - \

 p_need_r_for_cell * needs[r]

 # Add in the needs due to the row_num parameter

 row_needs = self.row_num.get_need_probabilities(next, value)

 for r,p in row_needs.items():

 if not needs.has_key(r):

 needs[r] = 0.0

 needs[r] += p - needs[r] * p

 # Add in the needs due to the col_num parameter

 col_needs = self.col_num.get_need_probabilities(next, value)

 for r,p in col_needs.items():

 if not needs.has_key(r):

 needs[r] = 0.0

 157 of 196

 needs[r] += p - needs[r] * p

 return needs

C.23. =MATCH(…), output distribution

The =MATCH(…) function is used to search a row or column for a particular value.

The syntax is as follows:

=MATCH(key, array, match_type)

key ≔ value to search for

array ≔ row or column to search in

match_type ≔ always 0; obscure feature of Microsoft Excel14

It returns the first cell number (i.e., column number or row number) within the array

where the key was found. The cell number is 1-based. The =MATCH(…) function is

often used in conjunction with =INDEX(…) to perform table lookups.

Since it returns the first cell number where the key matched, the output distribution

calculation cannot ignore order entirely. The calculation can be summarized as follows:

Pr(MATCH = n) = Pr(“nth cell = key” ⋀ “key did not match in cells 1 to (n-1)”)

14 In Microsoft Excel and other spreadsheet applications that use the same syntax, the match_type

parameter to =MATCH(…) may be 1 (default), 0, or -1.

• =MATCH(…, 0) returns the first cell number with a value equal to key.

• =MATCH(…, 1) returns the cell number with the largest value less than or equal to key.

• =MATCH(…, -1) returns the cell number with the smallest value greater than or equal to key.

 158 of 196

The running time is O(a + bc + bd), where a=«time to calculate output distribution

of key», b=«number of cells in array», c=«average time to calculate output distribution

of any of the cells in array», and d=«average number of distinct possible values in the

output distribution of any of the cells in array».

class MatchFunction:

 @memoize

 def get_output_distribution(self, next, value):

 # The interface for this method is given on page 129.

 odist = []

 key_odist = self.key.get_output_distribution(next, value)

 p_not_matched_yet = 1.0

 p_matched_any = 0.0

 cell_num = 0 # will be 1-based

 for cell in self.array.cells:

 cell_odist = cell.get_output_distribution(next, value)

 cell_num += 1 # 1-based

 # Pr(MATCH = cell_num)

 p_key_eq_v = 0.0

 for v,p_cell_eq_v in cell_odist:

 # Pr(cell = key)

 p_key_eq_v = key_odist.get(v, default=0.0)

 p_cell_eq_key_eq_v = p_key_eq_v * p_cell_eq_v

 # Presume cell and key are independent

 p_cell_num += p_cell_eq_key_eq_v * (1.0 - p_matched_any)

 p_matched_any += p_cell_eq_key_eq_v

 # Mutually exclusive because p_matched_any refers only

 # to potential matches prior to examining this cell and

 159 of 196

 # possible value

 odist.append((cell_num, p_cell_num))

 return Distribution(odist)

C.24. =MATCH(…), need probabilities

The =MATCH(…) function always needs the key parameter and any requests that

it depends on. The output distribution can be used to determine the probability that a

given cell—and its descendent requests—will be needed. Recall that =MATCH(…)

returns the cell number of the first cell in the array that matches the key parameter.

The running time is O(a + bc + bd), where a=«time to calculate output distribution

of this function», b=«number of cells in array», c=«average time to calculate the need

probabilities of any of the cells in array», and d=«average number of descendent requests

of any of the cells in array».

class MatchFunction:

 @memoize

 def get_need_probabilities(self, next, value):

 # The interface for this method is given on page 130.

 odist = self.get_output_distribution(next, value)

 odist_dict = dict(odist) # convert to dictionary {v => p}

 # Initialize needs

 needs = {}

 for r in self.requests:

 needs[r] = 0.0

 cell_num = 0 # 1-based

 for cell in self.array.cells:

 cell_num += 1 # 1-based

 if odist_dict.has_key(cell_num):

 p_need_cell = odist_dict[cell_num]

 160 of 196

 cell_needs = cell.get_need_probabilities(next, value)

 for r,p_cell_needs_r in cell_needs.items():

 p_need_r_for_cell = p_cell_needs_r * p_need_cell

 needs[r] += p_need_r_for_cell - \

 p_need_r_for_cell * needs[r]

 # Presume "need r for this cell" and "need r for

 # a prior cell" to be independent (but not necessarily

 # mutually exclusive).

 key_needs = self.key.get_need_probabilities(next, value)

 for r,p_key_needs_r in key_needs.items():

 needs[r] += p_key_needs_r - p_key_needs_r * needs[r]

 # Presume "need r for key" and "need r for ≥1 cell(s)" to

 # be independent (but not necessarily mutually exclusive)

 needs[next] = 1.0

 return needs

 161 of 196

Appendix D. Raw results from survey of decision problems

D.1. Question text

Version 1

Version 2

List 3-5 types of decisions that you find especially time consuming (i.e., time spent

sifting through information, gathering input from others, etc.). These could be

personal or work-related decisions.

List 3-5 types of decisions that you find especially time-consuming (i.e., time spent

sifting through information, gathering input from others). These could be

personal or work-related, past or present.

 162 of 196

Version 2

D.2. Raw (verbatim)

1. Deciding where or what to eat can take an hour for me

2. Deciding whether or not some project I do is acceptable takes a lot of time

3. deciding which place to move to requires a lot of asking around

4. Deciding what papers to read takes a lot of time finding them/reading abstracts

5. Deciding which expensive items to buy (electronics, furniture) takes a lot of time

reading and comparing items

6. Deciding what software to use requires a lot of reading and asking friends

7. hotel to stay in

List 3-5 types of decisions that you find especially time-consuming (i.e., time spent

sifting through information, gathering input from others). These could be

personal or work-related, past or present.

Examples:

 Deciding which ____ to ____ requires looking up a lot information from

various web sites.

 Deciding which ____ to ____ requires a lot of asking around.

 Deciding when/what/where/whether to ____ takes time to dig through web

sites for details.

 Deciding when/what/where/whether to ____ requires consulting a lot of

people.

 ...

 163 of 196

8. airline to use

9. vendor to order from

10. which system to purchase

11. what the requirements are for a project

12. Writing lessons

13. doing taxes

14. and buying a house

15. Buying new technology

16. Job search

17. Going on vacation

18. Buying a new home

19. financial decisions (purchases, account management, filing out tax forms, etc.)

20. decisions in a committee

21. choosing a place to eat lunch

22. Buying a home.

23. Buying a Car.

24. Deciding on a new Cell phone providers.

25. Deciding on a new name for my business.

26. Choosing the most suitable insurance company for home, car, and life insurance

27. Choosing appropriate for our way of breed of a dog to adopt

28. Making decision whether we can afford a new car

29. Ordering tasks in my day

30. Choosing a research topic

 164 of 196

31. Gathering papers to read

32. scheduling a meeting for others

33. deciding what to say/not say in emails

34. planning an outing (and collecting all of the information needed

35. even if it's just me going)

36. what to make for dinner

37. which vegetables to buy at the super market

38. the order of my routine when I wake up or arrive home (optimizing repetitive tasks

takes time

39. so I don't have to take the time once I'm home).

40. Medical disability paperwork

41. resume and cover-letter preparation

42. and lately online shopping for electronics.

43. Gathering information

44. planning implementation of new concepts

45. evaluating the effectiveness of outcomes.

46. gathering information of a domain that I am not familiar with,

47. gathered information leads me to even bigger area to understand,

48. gathered information does not follow the structure I had in my mind

49. buying a new car

50. living arrangements as I age

51. ways to get together with family

52. deciding what to put in answer to this question

 165 of 196

53. what book to read next

54. investments, e.g. stocks, other paper assets, real estate, etc. (seriously time-

consuming)

55. travel arrangements, the destination, and then the accommodations and transport.

D.3. Summarized (edited)

A. Food

1. what to make for dinner

2. which vegetables to buy at the super market

3. where or what to eat can take an hour for me

4. choosing a place to eat lunch

B. Home

1. which place to move to requires a lot of asking around

2. which house to buy

3. buying a new home

4. which house to buy

C. Research reading

1. what papers to read takes a lot of time finding them/reading abstracts

2. what book to read next

3. gathering papers to read

D. Technology

1. which expensive items to buy (electronics, furniture) takes a lot of time

reading and comparing items

2. what software to use requires a lot of reading and asking friends

 166 of 196

3. which new technology to buy

4. which Cell phone provider to use

5. online shopping for electronics.

E. Travel

1. which hotel to stay in

2. which airline to use

3. going on vacation

4. ways to get together with family

5. planning an outing

6. travel arrangements, the destination, and then the accommodations and

transport

F. Purchasing (general)

1. which vendor to order from

2. which system to purchase

G. Car

1. which car to buy

2. whether we can afford a new car

3. buying a new car

H. Finances

1. financial decisions (purchases, account management, filing out tax forms,

etc.)

2. living arrangements as I age

3. investments, e.g. stocks, other paper assets, real estate, etc. (seriously time-

 167 of 196

consuming)

4. which insurance company for home, car, and life insurance

I. Time management

1. whether or not some project I do is acceptable takes a lot of time

2. ordering tasks in my day

3. the order of my routine when I wake up or arrive home (optimizing

repetitive tasks takes time so I don't have to take the time once I'm home).

J. Coordinating people

1. scheduling a meeting for others

2. decisions in a committee

K. Setting goals

1. what the requirements are for a project

2. choosing a research topic

L. Other

1. which new name for my business

2. which breed of a dog to adopt

3. deciding what to say/not say in emails

 168 of 196

Appendix E. Modeling study models

E.1. “Options for Child Birth”

 169 of 196

E.2. “Pediatrician”

 170 of 196

E.3. “Baby Girl Name”

 171 of 196

E.4. “New Home”

 172 of 196

E.5. “Buying a new laptop”

 173 of 196

E.6. “Which car to purchase”

 174 of 196

E.7. “Dog Breeds”

 175 of 196

E.8. “Car Rental”

 176 of 196

E.9. Dishwasher

 177 of 196

E.10. “Shaver”

 178 of 196

Appendix F. AskSheet field trial results

F.1. Doctor #1

Figure 34. This screenshot is truncated. The original contained 50 doctors. No data

was collected for the rest. The result is Dr. Shaaron Towns, the first one with true in the

OK column. The formulas are shown in Figure 24 on page 74.

 179 of 196

F.2. Doctor #2

Figure 35. This screenshot is truncated. The original contained 50 doctors. No data

was collected for the rest. The result is Dr. Shaaron Towns, the first one with true in the

OK column. The formulas are shown in Figure 24 on page 74.

 180 of 196

F.3. Doctor #3

Figure 36. This screenshot is truncated. The original contained 50 doctors. No data

was collected for the rest. The result is Dr. Shaaron Towns, the first one with true in the

OK column. The formulas are shown in Figure 24 on page 74.

 181 of 196

F.4. Smartphone #1

Figure 37. The decision result is “Samsung Galaxy S4”. The formulas are shown in

Figure 26 on page 82.

 182 of 196

F.5. Smartphone #2

Figure 38. The decision result was “Samsung Galaxy S4”. Although the label is cut

off, the value under “Best Score” indicates a range of “101…102” which corresponds to

the S4 model. The formulas are shown in Figure 26 on page 82.

 183 of 196

F.6. Smartphone #3

Figure 39. Due to a worker who entered blanks for several inputs, no final decision was

reached. The possible ranges indicate that the Samsung Galaxy S4 would most likely be

the result. The formulas are shown in Figure 26 on page 82.

 184 of 196

Figure 40. Based on the information entered for the third repetition of the smartphone

example, the probability of the Samsung Galaxy S4 being chosen in the end is 0.534.

That model was the decision result (winner) in the other two repititions.

 185 of 196

F.7. Car #1

Figure 41. The decision result was “Subaru Outback” although this was different on

each of the three times this model was run due to some differences in the inputs that were

entered. The formulas are shown in Figure 25 on page 48.

 186 of 196

F.8. Car #2

Figure 42. The decision result was “Toyota Camry” although this was different on each

of the three times this model was run due to some differences in the inputs that were

entered. The formulas are shown in Figure 25 on page 48.

 187 of 196

F.9. Car #3

Figure 43. The decision result was “Toyota Camry” although this was different on each

of the three times this model was run due to some differences in the inputs that were

entered. The formulas are shown in Figure 25 on page 48.

 188 of 196

References

Abraham, R., Burnett, M., & Erwig, M. (2008). Spreadsheet programming. In B. Wah

(Ed.), Wiley Encyclopedia of Computer Science and Engineering (pp. 2804–2810).

John Wiley & Sons, Inc.

Amershi, S., & Morris, M. R. (2008). CoSearch. In Proceeding of the twenty-sixth annual

CHI conference on Human factors in computing systems - CHI ’08 (p. 1647). New

York, New York, USA: ACM Press. doi:10.1145/1357054.1357311

Ayalew, Y. (2001). Spreadsheet Testing Using Interval Analysis. Klagenfurt University.

Baker, K. R. (2012). Optimization modeling with spreadsheets. John Wiley & Sons.

Balakrishnan, N., Render, B., & Stair, R. M. (2006). Managerial decision modeling with

spreadsheets. Prentice Hall.

Bernstein, M. S., Brandt, J., Miller, R. C., David, R., & Link, C. (2013). Crowds in two

seconds : Enabling realtime crowd-powered Accessed Crowds in Two Seconds :

Enabling Realtime Crowd-Powered Interfaces.

Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman, M. S., Karger, D. R.,

… Panovich, K. (2010). Soylent: a word processor with a crowd inside. In

Proceedings of the 23nd annual ACM symposium on User interface software and

technology (pp. 313–322).

Bodily, S. E. (1986). Spreadsheet Modeling as a Stepping Stone. Interfaces, 16(5), 34–

52.

Brown, P. S., & Gould, J. D. (1987). An experimental study of people creating

spreadsheets. ACM Transactions on Information Systems (TOIS), 5(3), 258–272.

doi:10.1145/27641.28058

Buchanan, L., & O Connell, A. (2006). A brief history of decision making. Harvard

Business Review, 84(1), 32. Retrieved from http://thegrcbluebook.com/wp-

content/uploads/2013/02/A-Brief-History-of-Decision-Making-by-Leigh-Buchanan-

and-Andrew-OConnell.pdf

Burnett, M. M., Atwood, J. W., Djang, R. W., Reichwein, J., Gottfried, H. J., & Yang, S.

(2001). Forms/3: A first-order visual language to explore the boundaries of the

spreadsheet paradigm. Journal of Functional Programming, 11(2), 155–206.

 189 of 196

Casella, G., & Berger, R. L. (2002). Statistical Inference (Second Edi.). Pacific Grover,

CA: Duxbury.

Casimir, R. J. (1992). Real programmers don’t use spreadsheets. In ACM SIGPLAN

Notices (Vol. 27, pp. 10–16). ACM. doi:10.1145/130981.130982

Chan, K. T., King, I., & Yuen, M. (2009). Mathematical Modeling of Social Games

Playing / Having Fun.

Chan, Y. E., & Storey, V. C. (1996). The use of spreadsheets in organizations:

Determinants and consequences. Information & Management, 31(3), 119–134.

doi:10.1016/S0378-7206(96)00008-0

Cheatham, T. E., Holloway, G. H., & Townley, J. A. (1979). Symbolic evaluation and the

analysis of programs. Software Engineering, IEEE Transactions on, (4), 402–417.

Cheng, R. C. H., & Amin, N. A. K. (1983). Estimating parameters in continuous

univariate distributions with a shifted origin. Journal of the Royal Statistical Society.

Series B (Methodological), 45(3), 394–403. Retrieved from

http://www.jstor.org/stable/2345411

Chi, E. H., Pirolli, P., Chen, K., & Pitkow, J. (2001). Using information scent to model

user information needs and actions and the Web. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 490–497). New York, New

York, USA: ACM Press. doi:10.1145/365024.365325

Chilton, L. B., Little, G., Edge, D., Weld, D. S., & Landay, J. A. (2013). Cascade. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems -

CHI ’13 (p. 1999). New York, New York, USA: ACM Press.

doi:10.1145/2470654.2466265

Cox, P. T., & Smedley, T. J. (1994). Using visual programming to extend the power of

spreadsheet. In Proceedings of the workshop on Advanced visual interfaces (pp.

153–161). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=192343

Dai, P., Weld, D. S., & others. (2010). Decision-theoretic control of crowd-sourced

workflows. In Twenty-Fourth AAAI Conference on Artificial Intelligence.

Eom, H. B., & Lee, S. M. (1990). A survey of decision support system applications

(1971--April 1988). Interfaces, 20(3), 65–79.

Eom, S. B., Lee, S. M., Kim, E. B., & Somarajan, C. (1998). A survey of decision

support system applications (1988-1994). Journal of the Operational Research

Society, 49, 109–120. Retrieved from http://www.jstor.org/stable/3009977

 190 of 196

Eom, S., & Kim, E. (2005). A survey of decision support system applications (1995–

2001). Journal of the Operational Research Society, 57(11), 1264–1278.

doi:10.1057/palgrave.jors.2602140

Forman, E. H., Gass, S. I., & Smith, R. H. (2001). The Analytic Hierarchy Process – An

Exposition 1, 49(4), 469–486.

Franklin, M. J., Kossman, D., Kraska, T., Ramesh, S., & Xin, R. (2011). CrowdDB:

answering queries with crowdsourcing. In Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data (pp. 61–72).

Frei, B. (2009). Paid crowdsourcing: Current state & progress toward mainstream

business use. Retrieved from Smartsheet.com

Fujima, J., Yoshihara, S., & Tanaka, Y. (2007). Web application orchestration using

Excel. In Proceedings of the IEEE/WIC/ACM International Conference on Web

Intelligence (pp. 743–749). Ieee. doi:10.1109/WI.2007.136

Fylstra, D., Lasdon, L., Watson, J., & Waren, A. (1998). Design and use of the Microsoft

Excel Solver. Interfaces, 28(5), 29–55.

Ginige, A., Paolino, L., Sebillo, M., Shrodkar, R., & Vitiello, G. (2010). User

requirements for a web based spreadsheet-mediated collaboration. In Proceedings of

the International Conference on Advanced Visual Interfaces (pp. 133–136).

Ginige, A., Paolino, L., Sebillo, M., Tortora, G., Romano, M., & Vitiello, G. (2010). A

Collaborative Environment for Spreadsheet-Based Activities. In Visual Languages

and Human-Centric Computing (VL/HCC), 2010 IEEE Symposium on (pp. 273–

274). Ieee. doi:10.1109/VLHCC.2010.55

Gladwell, M. (2007). Blink: The power of thinking without thinking. Hachette Digital,

Inc.

Glueck, D., & Karimpour-Fard, A. (2008). Fast computation by block permanents of

cumulative distribution functions of order statistics from several populations.

Communications in Statistics - Theory and Methods, 37(18). Retrieved from

http://www.tandfonline.com/doi/abs/10.1080/03610920802001896#.U8V4h_nlqPU

Gottfried, H. J. H. J., & Burnett, M. M. M. (1997). Graphical definitions: making

spreadsheets visual through direct manipulation and gestures. In Proceedings of the

1997 IEEE Symposium onV isual Languages (VL) (pp. 246–253). IEEE Comput.

Soc. doi:10.1109/VL.1997.626590

Grossman, T. A., Mehrota, V., & Özluk, Ö. (2007). Lessons from Mission-Critical

Spreadsheets. Communications of the Association for Information Systems, 20(1),

1009–1042.

 191 of 196

Hanus, M. (1997). A unified computation model for functional and logic programming.

In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (pp. 80–93).

Hendry, D. G., & Green, T. R. G. (1994). Creating, comprehending and explaining

spreadsheets: a cognitive interpretation of what discretionary users think of the

spreadsheet model. International Journal of Human-Computer Studies, 40(6), 1033–

1065.

Howard, R. (1966). Information Value Theory. IEEE Transactions on Systems Science

and Cybernetics, 2(1), 22–26. doi:10.1109/TSSC.1966.300074

Howe, J. (2006, June). The rise of crowdsourcing. Wired Magazine, (14). Retrieved from

http://sistemas-humano-computacionais.wikidot.com/local--files/capitulo:redes-

sociais/Howe_The_Rise_of_Crowdsourcing.pdf

Hu, C., Bederson, B. B., Resnik, P., & Kronrod, Y. (2011). MonoTrans2 : A New Human

Computation System to Support Monolingual Translation, 1133–1136.

Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality management on Amazon

Mechanical Turk. Proceedings of the ACM SIGKDD Workshop on Human

Computation - HCOMP ’10, 64. doi:10.1145/1837885.1837906

Ipsilandis, P. G. (2008). Spreadsheet modelling for solving combinatorial problems: The

vendor selection problem. In Proceedings of European Spreadsheet Risks Interest

Group (EuSpRIG) (pp. 95–107).

Joyner, D., Čertík, O., Meurer, A., & Granger, B. E. (2012). Open source computer

algebra systems: SymPy. ACM Communications in Computer Algebra, 45(3/4),

225–234.

Kirkwood, C. W. (1997). Strategic decision making. Duxbury Press Belmont, CA.

Lai, K.-Y., Malone, T. W., & Yu, K.-C. (1988). Object lens: a “spreadsheet” for

cooperative work. ACM Transactions on Information Systems (TOIS), 6(4), 332–

353. doi:10.1145/62266.62276

Law, E. L. M., Von Ahn, L., Dannenberg, R. B., & Crawford, M. (2007). TagATune: A

Game for Music and Sound Annotation. In ISMIR (Vol. 3, p. 2). Retrieved from

http://www.cs.cmu.edu/~elaw/papers/ISMIR2007.pdf

Lawson, B. R., Baker, K. R., Powell, S. G., & Foster-Johnson, L. (2009). A comparison

of spreadsheet users with different levels of experience☆. Omega, 37(3), 579–590.

doi:10.1016/j.omega.2007.12.004

 192 of 196

Lenz, H. J., & Berlin, F. U. (2009). Spreadsheet Computation with imprecise and

uncertain Data, 8421.

Lewis, C. (1985). Extending the spreadsheet interface to handle approximate quantities

and relationships. In ACM SIGCHI Bulletin (Vol. 16, pp. 55–59).

Little, G., Chilton, L. B., Goldman, M., & Miller, R. C. (2010a). Exploring iterative and

parallel human computation processes. In Proceedings of the ACM SIGKDD

Workshop on Human Computation - HCOMP ’10 (pp. 68–76). New York: ACM.

doi:10.1145/1753846.1754145

Little, G., Chilton, L. B., Goldman, M., & Miller, R. C. (2010b). Turkit: human

computation algorithms on mechanical turk. In Proceedings of the 23nd annual

ACM symposium on User interface software and technology (pp. 57–66).

Lloyd, J. W. (1994). Practical advantages of declarative programming. In Joint

Conference on Declarative Programming, GULP-PRODE (Vol. 94, p. 94).

Retrieved from

ftp://138.100.11.74/pub/papers/PARFORCE/second_review/D.WP3.1.M2.3.ps.Z

Marcus, A., Wu, E., Karger, D., Madden, S., & Miller, R. (2011a). Human-powered Sorts

and Joins. Proc. VLDB Endow., 5(1), 13–24. Retrieved from

http://dl.acm.org/citation.cfm?id=2047485.2047487

Marcus, A., Wu, E., Karger, D. R., Madden, S., & Miller, R. C. (2011b). Crowdsourced

databases: Query processing with people.

Mather, D. (1999). A framework for building spreadsheet based decision models. Journal

of the Operational Research Society, 70–74.

McGill, T. J., & Klobas, J. E. (2005). The role of spreadsheet knowledge in user-

developed application success. Decision Support Systems, 39(3), 355–369.

doi:10.1016/j.dss.2004.01.002

Microsoft Corporation. (2003). Microsoft Launches Visual Studio Tools for the Microsoft

Office System. Retrieved May 11, 2014, from http://www.microsoft.com/en-

us/news/press/2003/oct03/10-

13vstoofficelaunchpr.aspx?Search=true&mstLocPickShow=False

Morris, M. R., & Horvitz, E. (2007). SearchTogether. In Proceedings of the 20th annual

ACM symposium on User interface software and technology - UIST ’07 (p. 3). New

York, New York, USA: ACM Press. doi:10.1145/1294211.1294215

Morris, M. R., Lombardo, J., & Wigdor, D. (2010). WeSearch. In Proceedings of the

2010 ACM conference on Computer supported cooperative work - CSCW ’10 (p.

401). New York, New York, USA: ACM Press. doi:10.1145/1718918.1718987

 193 of 196

Myers, B. a. (1991). Graphical techniques in a spreadsheet for specifying user interfaces.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(pp. 243–249). New York, New York, USA: ACM Press.

doi:10.1145/108844.108903

Nardi, B. A., & Miller, J. R. (1990). An ethnographic study of distributed problem

solving in spreadsheet development. In Proceedings of the 1990 ACM conference on

Computer-supported cooperative work (pp. 197–208).

Nehzati, T., Ismail, N., & Rashidi-Bajgan, H. (2010). Developing Spreadsheet Based

Decision Support System to Solve Warehouse Layout Problem.

Nunamaker, J. A. Y. F., Briggs, R. O., Mittleman, D. D., Vogel, D. R., & Balthazard, P.

A. (1997). Lessons from a Dozen Years of Group Support Systems Research: A

Discussion of Lab and Field Findings. J. of Management Information Systems,

13(3), 163–207.

Nunamaker, J. F., Applegate, L. M., & Konsynski, B. R. (1988). Computer-Aided

Deliberation: Model Management and Group Decision Support: Special Focus

Article. Operations Research, 36(6), 826–848.

Palmer, C. R., & Cormack, G. V. (1998). Operation transforms for a distributed shared

spreadsheet. In Proceedings of the 1998 ACM conference on Computer supported

cooperative work (pp. 69–78).

Parameswaran, A., Teh, M. H., Garcia-Molina, H., & Widom, J. (2013). DataSift: An

Expressive and Accurate Crowd-Powered Search Toolkit. In First AAAI Conference

on Human Computation and Crowdsourcing. Retrieved from

http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7500

Power, D. J., & Sharda, R. (2007). Model-driven decision support systems: Concepts and

research directions. Decision Support Systems, 43(3), 1044–1061.

doi:10.1016/j.dss.2005.05.030

Quinn, A. J., & Bederson, B. B. (2011). Human Computation : A Survey and Taxonomy

of a Growing Field. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI ’11) (pp. 1403–1412). ACM.

Quinn, A. J., Bederson, B. B., Yeh, T., & Lin, J. (2010). Crowdflow: Integrating machine

learning with mechanical turk for speed-cost-quality flexibility. Better Performance

over Iterations.

Ragsdale, C. T. (2014). Spreadsheet Modeling and Decision Analysis: A Practical

Introduction to Business Analytics (7th ed.). Cengage Learning.

 194 of 196

Ranneby, B. O. (2013). The Maximum Spacing Method . An Estimation Method Related

to the Maximum Likelihood Method, 11(2), 93–112.

Russell, D. M., Stefik, M. J., Pirolli, P., & Card, S. K. (1993). The cost structure of

sensemaking. In Proceedings of the INTERACT’93 and CHI'93 conference on

Human factors in computing systems (pp. 269–276).

Russell, S. J., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach (Vol. 2,

pp. 487–490). Prentice hall Englewood Cliffs.

Saaty, T. L. (1980). The Analytic Hierarchy Process.

Saaty, T. L., & Hall, M. (1999). Fundamentals of the analytic network process.

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users and end

user programmers. In 2005 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC) (pp. 207–214). IEEE. doi:10.1109/VLHCC.2005.34

Schwartz, B. (2003). The Paradox of Choice. Ecco.

Seref, M. H., Ahuja, R., & Winston, W. (2007). Developing spreadsheet-based decision

support systems. Dynamic Ideas.

SERP (Spreadsheet Engineering Research Project). (2006). Retrieved from

http://mba.tuck.dartmouth.edu/spreadsheet/product_pubs_files/SERPSurveyResults.

doc

Sheng, V. S., & Provost, F. (2008). Get Another Label ? Improving Data Quality and

Data Mining Using Multiple , Noisy Labelers Categories and Subject Descriptors.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological

Review, 63(2), 129–138. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/13310708

Simon, H. A. (1972). Theories of Bounded Rationality. In C. B. McGuire & R. Radner

(Eds.), Decision and Organization (Vol. 1, pp. 161–176). North-Holland Publishing

Company.

Sipser, M. (1997). Introduction to the theory of computation (p. 396). PWS Pub. Co.

Retrieved from

http://books.google.com/books/about/Introduction_to_the_theory_of_computatio.ht

ml?id=cXcpAQAAMAAJ&pgis=1

Stadelmann, M. (1993). A spreadsheet based on constraints. In Proceedings of the 6th

annual ACM symposium on User interface software and technology (pp. 217–224).

 195 of 196

Stigler, & Stigler, G. J. (1961). The Economics Of Information. Journal of Political

Economy, 69(3), 213–225.

Streit, A., Pham, B., & Brown, R. (2008). A spreadsheet approach to facilitate

visualization of uncertainty in information. Visualization and Computer Graphics,

IEEE Transactions on, 14(1), 61–72. doi:10.1109/TVCG.2007.70426

Tennent, J., & Friend, G. (2011). Guide to business modelling (Vol. 89). John Wiley &

Sons.

Triantaphyllou, E. (2000). Multi-criteria decision making methods. Springer.

Troutt, M. D., Tadisina, S. K., & Clinton, R. J. (1991). Interactive optimization aspects of

electronic spreadsheet models for design and planning. Journal of the Operational

Research Society, 42(5), 349–355.

Trushkowsky, B., Kraska, T., Franklin, M. J., & Sarkar, P. (2013). Crowdsourced

Enumeration Queries. In Proceedings of the 29th IEEE International Conference on

Data Engineering (ICDE).

US Bureau of Labor Statistics. (2001). Current Population Study. Retrieved May 11,

2014, from http://www.bls.gov/cps/ciuaw.pdf

US Bureau of Labor Statistics. (2003). Current Population Study. Retrieved from

http://www.bls.gov/news.release/pdf/ciuaw.pdf

Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of

applications. European Journal of Operational Research, 169(1), 1–29.

doi:10.1016/j.ejor.2004.04.028

Von Ahn, L. (2005). Human Computation. Carnegie Mellon University.

Von Ahn, L., & Dabbish, L. (2004). Labeling images with a computer game. In

Proceedings of the SIGCHI conference on Human factors in computing systems (pp.

319–326). New York, New York, USA: ACM Press. doi:10.1145/985692.985733

Vukovic, M., Lopez, M., & Laredo, J. (2010). PeopleCloud for the Globally Integrated

Enterprise, 109–114.

Wang, J., Kraska, T., Franklin, M. J., & Feng, J. (2012). CrowdER: crowdsourcing entity

resolution. Proceedings of the VLDB Endowment, 5(11), 1483–1494. Retrieved from

http://dl.acm.org/citation.cfm?id=2350229.2350263

Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision

making: A simulation comparison of select methods. European Journal of

Operational Research, 107(3), 507–529. doi:10.1016/S0377-2217(97)00147-1

 196 of 196

Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., & Horvitz, E. (2012). Human

computation tasks with global constraints. In Proceedings of the 2012 ACM annual

conference on Human Factors in Computing Systems - CHI ’12 (p. 217). New York,

New York, USA: ACM Press. doi:10.1145/2207676.2207708

