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Variation in plant quality across space and time is considered a driv-

ing force behind the heterogeneous distribution of herbivorous insects on

their host plants. At the same time, herbivory itself can mediate ecosystem

processes that can cause feedbacks directly affecting plant quality. Here I

examine both of these processes in a primary successional system to ask

how insect herbivory can shape successional outcomes. I performed a three

year observational study to determine which host plant factors - stress,

vigor, and sex - were associated with insect herbivory by the poplar willow

weevil (Cryptorynchus lapathi) on Sitka willow (Salix sitchensis), a dioe-

cious pioneer shrub recolonizing Mount St. Helens after the ���� eruption.

I found that weevils prefer or perform best on vigorously growing willows

that are seasonally water stressed. This result highlights the need to inte-

grate hypotheses regarding insect response to stress and vigor into a single

phenologically based framework focusing on nutrient mobilization to early

insect herbivore life stages. I performed a field experiment involving leaf

litter from stems attacked and not by weevils to determine whether weevils



mediate nutrient cycling by altering willow leaf litter quality or resources

available in its root environment. I found that although weevils do not con-

sume leaves directly, stem herbivory is associated with a large reduction

in leaf phosphorus, which in turn decelerates phosphorus cycling on Mount

St. Helens. Lastly, I performed observational and experimental studies to

show that the large female bias seen in willow on Mount St. Helens is not

caused by weevil herbivory or other late acting ecological factors, but likely

result from biased seed sex ratios. Taken together, these results suggest that

weevil herbivory is retarding willow colonization in upland areas on Mount

St. Helens, possibly allowing for alternative successional trajectories.
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1
SEASONAL VARIAT ION IN THE ROLE
OF STRESS AND VIGOR ON
STEM-BORER HERBIVORY :
RECONCIL ING CONFL ICT ING
EVIDENCE

abstract

The plant stress and plant vigor hypotheses are widely used to explain

the distribution and abundance of insect herbivore response on their host

plants. Although it is recognized that these hypotheses are not strict alter-

natives, some studies have found simultaneous support for both hypothe-

ses for the same plant-herbivore interaction. In this study, I address the

question of how such simultaneous support is possible using dynamic site-

occupancy models in Bayesian framework. I quantify the oviposition and

larval feeding preferences of the poplar-willow weevil (Cryptorynchus lap-

athi L.) (Curculionidae: Coleoptera) on its dioecious host plant, Sitka willow

(Salix sitchensis Bong.) (Salicaceae: Malpighiales), on Mount St. Helens, in

relation to host plant habitat, sex, and vigor. I determined that weevil larvae

respond positively to water stress associated with a seasonal dry-down in

upland habitat, which supports the plant stress or pulsed stress hypotheses,

and disproportionately to large upland stems in relation to stem surface

area available for attack, supporting the plant vigor hypothesis. Weevils

also preferred to attack reproductive riparian stems, revealing that weevil

herbivory imposes an ecological costs on willow reproduction. Weevils did

not respond to host plant sex in a consistent way that could explain the
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large female bias in willow populations on Mount St. Helens, although I

find evidence of higher inducible defenses in female, as compared to male

plants, but only in upland habitat. The metapopulation dynamics of weevil

attack shows that colonization of new stems drives herbivory dynamics. Dis-

proportionate attack of large upland stems causes juvenilization of willow

plants, and possibly delays establishment of willow dominated upland sere.

I propose that the two oviposition windows that occur per generation allow

stem-borers to “double-dip”, as early larvae feed both as flush and senescent

feeders on willow depending on time of year. These results highlight the

overlapping nature of the plant stress and plant vigor hypotheses and the

need for a single integrative hypothesis that focuses on how stress changes

the quality of plant resources available to early instars.

�.� introduction

Variation in plant quality across space and time is considered a driving force

behind the heterogeneous distribution of herbivorous insects on their host

plant(s) (Louda and Collinge, ����; Crawley and Akhteruzzaman, ����;

Raupp and Denno, ����; Schultz, ����; Whitham and Slobodchikoff, ����).

Plant quality is determined in part by how host plants acquire and allo-

cate resources while under stress (Herms and Mattson, ����; Bazzaz et al.,

����; Chapin III et al., ����; Mooney, ����). Consequently, insect ecologists

have largely relied on two hypotheses, the plant stress hypothesis (White,

����, ����, ����, ����) and plant vigor hypothesis (Price, ����), to pre-

dict how herbivorous insects respond to stress-induced differences in plant
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quality. The plant vigor and stress hypotheses are considered endpoints on

a continuum of herbivore responses to plant stress, but this interpretation

is problematic as these hypotheses overlap conceptually. One commonality

that is often overlooked is that the plant stress and plant vigor hypothe-

ses are inherently phenology-based explanations for insect outbreaks. Both

make phenologically explicit assumptions about the age of the food resource

available to the herbivore and the age of the tissue the herbivore normally

feeds on. In addition, stress must coincide with the herbivore’s most vulner-

able life-stages in order to impact herbivore distribution and abundance.

Herbivory in response to host plant vigor and stress

The plant stress hypothesis predicts that herbivorous insect outbreaks should

be more likely on stressed plants (White, ����, ����, ����, ����). This is be-

cause herbivorous insects are usually nutrient-limited (Mattson, ����), and

stressed plants exhibit elevated concentrations of nitrogenous compounds,

such as amino acids and osmoprotectants, in their leaf and vascular tis-

sues (Brodbeck and Strong, ����; White, ����; Aspinall and Paleg, ����;

Kozlowski, ����; Hsiao, ����; Levitt, ����). In this case, stress is defined

as a transitory state, different from the norm of what a plant experiences,

and fundamentally different from chronic stress associated with persistent

resource scarcity (Larsson, ����). White (����; ����; ����) has repeatedly

emphasized that an herbivore’s performance on stressed plants depends

on the insect’s developmental stage and the type of tissue on which it

feeds. Both White (����; ����; ����) and Price (����) distinguish between
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flush-feeding herbivores, that feed on growing tissues that are resource sinks

for nutrients translocated within plants during active plant growth, from

senescent-feeding herbivores, that consume senescing tissues that are re-

source sources for nutrients remobilized within plants at the end of the grow-

ing season. White (����) argues that plant stress would benefit mainly the

earliest developmental stages of herbivores that normally feed on senescing

plant material, but not flush-feeding herbivores that consume new growth.

For many insect species, survivorship for the earliest developmental stage

is often the lowest of all life stages, and the inverse relationship between

an insect’s relative growth rate and ontogeny observed for many species is

likely to be an evolved response to minimize time spent in these early vul-

nerable stages (Zalucki et al., ����; Scriber and Slansky, ����). Plant stress,

which can prematurely initiate the host’s normal physiological program of

senescence and temporarily elevates its tissue nitrogen content, facilitates

a fast growth strategy for young senescent feeders to escape stage-based

mortality (White, ����, ����).

Although insect herbivore outbreaks associated with water stress have

been observed in natural systems, quantitative analyses and qualitative re-

views of experiments testing the plant stress hypothesis have provided in-

conclusive support (Huberty and Denno, ����; Koricheva et al., ����; Watt,

����; Larsson, ����; Brodbeck and Strong, ����; Mattson and Haack, ����;

Waring and Pitman, ����; White, ����). This disconnect has led to criti-

cism and refinements of this hypothesis based on the recognition that (�) for

any given stressor, plants have multiple physiological responses, (�) these re-

sponses vary by stress type, intensity, and duration, and (�) how and when

herbivores use stressed host plants dictate the cumulative effect this suite of
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responses has on herbivore fitness (White, ����; Huberty and Denno, ����;

Inbar et al., ����; Koricheva et al., ����; Herms and Mattson, ����; Mopper

and Whitham, ����; Price, ����; Larsson, ����; Gershenzon, ����; Larsson

and Tenow, ����; Mattson, ����; Hsiao, ����). The pulse-stress hypoth-

esis (Huberty and Denno, ����) incorporates some of these complexities

to predict the response of sub-guilds to intermittent or continuous water

stress, depending on whether their members feed on leaf or vascular tissue

and whether they possess or lack specific adaptations to overcome plant

defenses, leaf toughness, and reduced tissue water content. Experimental

evidence for the pulse-stress hypothesis has been inconclusive (Bauerfeind

and Fischer, ����; Grinnan et al., ����; Simpson et al., ����; Tariq et al.,

����; Walter et al., ����; Gutbrodt et al., ����; Paine and Hanlon, ����;

Krugner et al., ����; Mody et al., ����). One difficulty in reaching a consen-

sus here is that these studies often differ with respect to both the amount

of and interval between waterings, and whether herbivore utilization of the

experimental plants occurs simultaneously with the pulse stress treatments

or after plant have been allowed to recover.

The plant vigor hypothesis posits that herbivores prefer and perform

better on vigorous plant or plant parts due to a variety of mechanisms,

such as higher nutritional content, increased water content, and reduced

abscission risk (Price, ����; Price et al., ����a,b). A vigorous plant or plant

part is defined as one with an above-average growth rate or size relative

to the population mean (Price, ����). In this framework, a stressed plant

or plant part is one that has not achieved optimal size at maturity (Price,

����), which is a very different definition of stress from that in the plant

stress hypothesis. In contrast to senescent-feeders, flush-feeders should not
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respond positively to transitory plant stress as defined under the plant stress

hypothesis (White, ����). These insects are unlikely to be nutrient-limited

while feeding on vigorous plant tissues, and plant stress of this kind limits

the benefits these tissues provide herbivores by reducing plant growth rates

(White, ����; Cobb et al., ����; White, ����).

The linkage between herbivore preference and performance is strongly

emphasized under the plant vigor hypothesis because the majority of herbi-

vores feeding on vigorous tissues are either sessile or endophytic (Williams

and Cronin, ����; Price, ����), making a positive preference-performance

correlation necessary for these insects to have higher fitness on vigorous

tissues (Thompson and Pellmyr, ����). However, in a recent meta-analysis,

Cornelissen (����) shows that while experimental evidence largely supports

the preference component of the plant vigor hypothesis for certain guilds,

increased herbivore performance on vigorous plant or plant part is less fre-

quently tested and the results are equivocal. Many studies have demon-

strated that vigor is not the most important bottom-up factor determining

herbivore performance (Nyman et al., ����; Williams and Cronin, ����;

Fritz et al., ����; Rehill and Schultz, ����; Fritz et al., ����; Roininen

et al., ����; De Bruyn, ����; Kolehmainen et al., ����; Roininen et al.,

����; Tscharntke, ����; Craig et al., ����). In addition, the loose defini-

tion of vigor itself makes evaluating this hypothesis difficult for a variety of

methodological and conceptual reasons (Faria and Fernandes, ����). The

sink-competition hypothesis (Larson and Whitham, ����) addresses some

of these issues by adding a mechanistic basis to the plant vigor hypothe-

sis. In addition to the size of a plant part (resource sink) where galls are

located, this hypothesis incorporates the nature by which vascular feeders
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acquire nutrients to make galls, competition between sinks for resources,

and their interconnectedness in terms of vascular architecture. These last

two factors need not be restricted to phloem parasites; in this study I adopt

their framework for an herbivore that intercepts resources along the vascular

connections between sinks and sources.

The plant stress and plant vigor hypotheses differ in their definitions of

stress, implying that plants can simultaneously experience both transitory

and chronic stress (White, ����; Cobb et al., ����; Mopper and Whitham,

����; Price, ����). For example, plants growing in a nutrient-limited envi-

ronment may become drought stressed during summer, raising the possibil-

ity of additive or interactive effects between nutrient limitation and water

stress on herbivore attack. Furthermore, both hypotheses make the identical

predictions that flush-feeders should perform better on vigorously growing

plants not experiencing transitory stress whereas senescent-feeders should

prefer and perform better on mature plants that grew vigorously prior to

senescence (White, ����, ����; Price, ����).

Sex-biased herbivory in terms of host plant vigor and stress

For dioecious host plants, the plant stress and plant vigor hypotheses can

also explicitly connect herbivore feeding preferences to sexual dimorphism

in traits related to plant quality, stress susceptibility, and reproduction. Fe-

male plants typically allocate more resources to reproduction than males

(Delph, ����; Ågren, ����; Allen and Antos, ����; Lloyd and Webb, ����;

Putwain and Harper, ����), often incurring greater reproductive costs in
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the form of tradeoffs between reproduction and other plant functions (see

review by Obeso, ����), although these costs can sometimes be mitigated

(Delph et al., ����; Ågren, ����; Tuomi et al., ����; Cox, ����; Lloyd and

Webb, ����). These tradeoffs result in sexual dimorphism where females

often exhibit reduced vegetative growth rates, fewer and smaller leaves, re-

duced shoot lengths, and lower nitrogen concentrations in vegetative tissues

(Cornelissen and Stiling, ����) At the same time, females are usually bet-

ter defended than males, either as a physiological consequence of having

lower vegetative growth rates or because of selection pressure by herbi-

vores themselves (Cornelissen and Stiling, ����; Herms and Mattson, ����;

Jing and Coley, ����; Coley et al., ����). The commonly observed pattern

of male-biased herbivory in dioecious plants is usually attributed to these

sex-based differences in growth and defense (Cornelissen and Stiling, ����;

Ågren et al., ����). Although the rationale for linking sex-biased herbivory

to these dimorphic traits is identical to that behind the plant vigor hypoth-

esis (Price, ����), this hypothesis is rarely directly invoked in these studies

(but see Boecklen et al., ����).

Reproduction itself is a form of vigor from the herbivore’s perspective, as

reproductive structures increase the sink strength of plant parts on which

they are located (Dawson and Ehleringer, ����a,b; Kozlowski, ����). Her-

bivores that feed on these parts during plant reproduction, for example

directly below inflorescences, should be more abundant or perform better

due to the shunting of assimilates towards or reduced defenses in reproduc-

tive structures (Elmqvist et al., ����). However, to truly understand this it

is essential to compare herbivore preference or performance on vegetative
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to reproductive plant parts, where the reproductive structures themselves

are not consumed.

Females have also been shown to be more sensitive to environmental

stress than males (Dawson and Geber, ����; Houssard et al., ����; Daw-

son and Bliss, ����a,b; Zimmerman and Lechowicz, ����) This has led to

spatial segregation of the sexes in some species, with females usually preva-

lent in resource-rich habitat, as well as divergence between the sexes in

life history strategies for tolerating or avoiding stress (Dawson and Geber,

����; Bierzychudek and Eckhart, ����). Despite this, the degree to which

sex-differences in sensitivity to environmental stress and habitat preference

affect sex-biased herbivory has not been well explored. These sexual dimor-

phisms can be evaluated in the context of the plant stress hypothesis, to test

whether herbivore abundance is affected by a sex ⇥ environment interaction

(Boecklen and Hoffman, ����), or if the relationship between stress inten-

sity and herbivore response (sensu Larsson, ����) depends on host plant

sex (Inbar and Kark, ����).

Focus of study

If both the plant stress and vigor hypotheses can act in concert, then in-

stead of determining where an herbivore falls on the traditional stress-vigor

spectrum, the more relevant question to ask is how transitory and chronic

stresses change the quality of resources available by a host plant to the most

vulnerable life stages of its herbivores? Likewise, the close connection be-

tween sex-biased herbivory and the plant vigor and stress hypotheses raises
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the question of whether herbivore responses to transitory and chronic stress

depends on plant sex. In this study, I address these two broad questions

by examining the herbivory dynamics of the invasive poplar-willow wee-

vil (Cryptorynchus lapathi L.) (Curculionidae: Coleoptera) on Sitka willow

(Salix sitchensis Bong.) (Salicaceae: Malpighiales) on the Mount St. Helens

Pumice Plain, a �� km� primary successional landscape of rock and ash

formed and sterilized by pyroclastic flows during the ���� eruption. Mount

St. Helens provides an excellent system in which to examine the interplay

between insect herbivory and host plant vigor, stress, and sex. Resource

scarcity and stress can play large roles in structuring early successional

plant communities (Bishop, ����; Halvorson and Smith, ����; Del Moral

and Wood, ����; Wood and Del Moral, ����). Previous work has shown

that plant quality drives consumer-resource dynamics between Lupinus lep-

idus var. lobbii, a native nitrogen-fixing legume colonizing Mount St. Helens,

and its suite of Lepidopteran herbivores (Bishop et al., ����; Apple et al.,

����; Fagan et al., ����, ����; Fagan and Bishop, ����).

On the Pumice Plain, the poplar-willow weevil (hereafter weevil) pro-

duces two temporally distinct cohorts of larvae each generation, whose

youngest members differ in the type of tissue on which they feed: young fall

larvae are senescent-feeders whereas young spring larvae are flush-feeders.

Sitka willow (hereafter willow) is found in both riparian zones and dry

upland areas, where plants experience transitory water-stress throughout

the summer. This species is dioecious and the Pumice Plain population is

strongly female-biased in both riparian and upland habitats, but not spa-

tially segregated by sex. Weevils oviposit in willow stems each season, either

colonizing new stems, or re-attacking stems that survived attack from the
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previous generation. I tracked weevil larval herbivory in willow stems on

sexed plants in riparian and upland habitat over three successive seasons

on the Pumice Plain. I used dynamic site-occupancy models (Royle and

Kéry, ����; MacKenzie et al., ����) to investigate how weevils responded

to chronic and transitory stress and whether these responses varied by habi-

tat and sex. By treating stems as sites available for weevil attack each sea-

son, dynamic site occupancy models provided a flexible modeling framework

that allowed an examination of both the metapopulation dynamics of this

plant-insect interaction as well as the covariates that affected colonization

and re-attack. I asked the following specific questions:

�. Were rates of weevil colonization and re-attack of willow stems asso-

ciated with stem vigor? I investigated whether these rates differed for

reproductive as opposed to vegetative stems, how weevil colonization

scaled with respect to stem size and stem aboveground biomass (as

a metric of sink strength), and whether higher rates of weevil attack

was negatively associated with stem growth rates.

�. Were rates of weevil colonization and re-attack of willow stems associ-

ated with seasonal water stress and plant sex? I investigated whether

these rates differed for male and female plants growing in upland areas

as opposed to riparian zones, and the degree to which weevil responses

to stem-vigor depended on plant habitat and sex.

�. How were annual differences in the vigor of stems available for col-

onization and re-attack associated with the metapopulation dynam-

ics underlying weevil attack? I investigated how annual differences

in stem size and reproductive status, combined with their effects on
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colonization and re-attack, could explain the seasonally-observed her-

bivory patterns for stems of both sexes in upland areas and riparian

zones.

�. How did weevil larva abundance differ by habitat and time of ovipo-

sition? I investigated whether counts of weevil eggs and early instars

oviposited in the fall and spring cohorts differed between riparian

zones and upland areas.

�.� methods

Study System

Sitka willow is the dominant shrub species recolonizing the Mount St. He-

lens Pumice Plain (Figure �). Willow grows frequently in hydric habitats

near springs, perennial seeps, and watercourses while also occurring less fre-

quently in upland habitats (Figure �A). Field observations on the Pumice

Plain from ���� – ���� demonstrated that weevils were present at very

high densities and were the primary willow herbivores. Willow stem mor-

tality due to weevil herbivory was extremely high, ranging from �� – ��%

annually. Weevils were introduced to North America from Europe in the

����’s and are a common pest in poplar and willow plantations (Matheson,

����). Populations of C. lapathi worldwide have variable life histories that

depends on their geographic location, and can be either univoltine or semi-

voltine, with overlapping generations and a life cycle lasting up to three

years (Harris and Coppel, ����; Smith and Stott, ����; Matheson, ����).
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On the Pumice Plain, semi-voltinism enables adults to undergo two discrete

bouts of oviposition, once in later summer or early fall after adults eclose,

and the second in the following spring, after these same adults overwinter.

This results in two temporally distinct cohorts of larvae feeding within wil-

low stems each generation. Adults feed on leaves and stems but do minimal

damage. The first three weevil instars (hereafter, ‘early instars’) girdle di-

rectly underneath the bark, feeding on the cambium and phloem tissues. In

contrast, larger ‘late instars’ excavate galleys that penetrate the sapwood

and heartwood (Figure �B) (Harris and Coppel, ����; Matheson, ����). I

defined early instars as those that girdle in the cambium or phloem and late

instars as those that feed in xylem’s heartwood and sapwood. Early instars

from the summer larval cohort can be classified as senescent-feeders (inter-

cepting nutrients moving from senescing leaves towards the roots), whereas

those in the spring cohort are flush feeders (intercepting nutrients moving

from the roots to vegetative and reproductive buds). Gut dissection of late

instars taken from galleries revealed that larvae feed directly on wood. Lar-

vae kill the stems directly via girdling or indirectly by providing access

to fungal pathogens (Broberg et al., ����; Abebe et al., ����; Harris and

Coppel, ����; Primm, ����; Matheson, ����).

Observational studies examining the relationship between insect outbreaks

and plant stress have been criticized for their inability to eliminate con-

founding factors, mainly the direct effects of the environment on herbivore

development and their natural enemies (Koricheva et al., ����). Likewise,

experimental studies have been criticized for their difficulty in calibrating

experimentally imposed plant stress to match the natural stress herbivores

experience (White, ����; Koricheva et al., ����; Larsson, ����). I believe the
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Mount St. Helens willow-weevil system overcomes these drawbacks while of-

fering several distinct advantages. Top-down effects on weevils were unlikely

here; I observed no parasitoids known to utilize C. lapathi as a host (Broberg

et al., ����) and I found no evidence of parasitism on weevil larvae sampled

during the three year course of this study. The willow population on the

Pumice Plain undergoes an annual dry-down that conveniently serves as a

natural water stress experiment. During the course of this study, the months

of May and June were typically cool and wet, with abundant and consistent

precipitation, while July and August, were hot and dry with little overall

rainfall and long stretches of no precipitation (Figures A�,A�). Each year,

the upland willows experienced a dry-down during the summer months, as

reduced precipitation lowered soil water potential below field capacity, re-

sulting in repeated episodes of transitory water stress (Figure A�). Riparian

willows experienced higher temperatures and reduced relative humidity in

the summer months, but these effects were less severe (Figure A�). In addi-

tion, continuous watering by perennial streams ensured that soils remained

saturated throughout the summer months. During the summer dry-down,

weevil larvae fed internally in galleries located at the base of willow stems,

where they remained largely insulated from the direct effect of increased

temperature and reduced relative humidity. By monitoring weevil attack

of naturally grown willow, I was able to evaluate how weevils responded

to natural stress on mature woody host plants, something that would have

been extremely difficult to reproduce experimentally.
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Willow-weevil database

I tagged ��� Pumice Plain S. sitchensis plants early in ���� and tracked

their stems for three growing seasons (���� – ����). For upland habitat, I

selected plants along � km subsets of five �.� km permanent transects. These

transects form a grid overlaid on the Pumice Plain, with points along each

transect separated by ��� m and the distance between transects is ��� m

(Figure �). In ����, I sexed, if possible, and marked the five willow plants

nearest to each transect point that had at least one stem � �� mm in basal

diameter. The minimum stem size requirement was to insure that I only

tagged willow plants with stems large enough to be targeted by weevils. I

tracked marked non-reproductive plants in my study even though I could

not determine their sex initially, because flowering in future years would

allow us to later sex a subset of these plants. Individual upland plants could

usually be distinguished visually, but when plants were located very close

to one another, or when I was unable to see an obvious caudex due to burial

of stems by sediment, I traced shallow roots from each plant to group stems

by genet. For riparian habitat, I established paired riparian transects ���

– ��� m in length along both sides of three permanent streams dominated

by dense Salix and Alnus thickets (Figure �). Visual separation of stems by

genets was not possible due to the high density of Salix in riparian zones.

To ensure that marked plants represented different individuals, I searched

for plants at � m intervals, and sexed and marked only plants that had at

least one stem � �� mm in basal diameter and whose stems all could be

clearly traced back to its caudex.
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I tagged all stems � �� mm in basal diameter on each tagged plant

that originated from the ground or caudex (defined as �st order stems) and

tracked these stems until their death or the conclusion of the study. Weevils

generally oviposit near the base of �st order stems and near the branching

points of large side branches on these stems (defined as �nd order stems).

Consequently, I tagged �nd order stems above �� mm (upland) and �� mm

(riparian) in basal diameter to ensure consistent survey effort for weevil

larval presence across a gradient of stem architectural complexity. Each

spring, newly recruited �st and �nd order stems that met the size criteria

were tagged and added to my study. Stems were removed from the study a

year after their death, which was either due to stem-borer attack or, in a few

cases, undetermined. New plants were added to my study during the second

year of sampling to offset the high mortality caused by weevil herbivory.

Appendix B details my method for quantifying willow stem topologies.

I visited all living tagged stems twice each season for up to three years

and recorded annual survivorship, basal diameter, reproductive status and

allocation, and the presence or absence of weevil larval herbivory. Reproduc-

tive data were collected each spring during flowering. During the season’s

second visit in late summer, I measured each stem’s basal diameter with

calipers and recorded its fate, scoring the stem as “alive” if it possessed any

living foliage and “dead” if all foliage had senesced prematurely or if the

stem was broken. During the season’s second visit, two observers indepen-

dently surveyed weevil larval herbivory on each stem by searching for exit

holes at the base of borer galleries. These herbivory surveys were timed to

occur as larvae were pupating and exit holes were easier to find because of

exuded frass (Figure �B). Larvae detected in stems during a survey were
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oviposited one of two time periods: �) in the late summer or early fall of

the previous year, after adults from the previous generation eclosed, or �)

the current year’s spring, after these same adults had overwintered. While

the herbivory surveys were non-destructive, allowing us monitor stems over

multiple seasons, they precluded the counting of larvae within each stem.

Instead, I scored herbivory as a binary state: � if any evidence of weevil

larval herbivory was detected and � otherwise. I assessed the efficacy of my

herbivory surveys by destructively harvesting sacrificial stems after survey-

ing them to determine whether weevil larvae were truly present. Although

my false positive rate became negligible after minimal observer training, the

false negative rate (i.e., failure to detect larvae within the stems) remained

a persistent issue. Below, I detail the statistical methods used accommodate

this imperfect detection, allowing us to separate lack of detection from true

absence of weevil larvae within a stem.

True basal stem diameters cannot be directly observed due to routine

measurement error associated with positioning the calipers correctly on the

stem. These errors have been shown to increase in size as basal diame-

ter increases (Rüger and Condit, ����) and resulted in either negative or

positive-but-unusually large annual growth rates for some stems. To correct

for this, I used a Bayesian model with informed priors for both the annual

stem growth increments and measurement error. Appendix C details my

method for imputing unobserved and adjusting observed basal diameters.

In summary, I monitored and included in my database ���� stems on ���

plants for up to three years. For each plant, I recorded its habitat and sex

as the plant–level stress and sex covariates. For each stem, I recorded its

annual size (BD) as the stem-level vegetative vigor covariate, fate (S), as
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well as two independent surveys for weevil larvae presence or absence (w).

In ���� and ����, I recorded the annual reproductive status (RA), as the

stem-level reproductive vigor covariate, and relative growth rate (RGR), to

capture the potential negative effect of weevil herbivory on stem growth.

Appendix D illustrates my method for pooling stems to calculate the stem-

level covariates.

Weevil phenology database

I harvested ��� stems from untagged S. sitchensis plants in both riparian

zones and upland areas on the Pumice Plain over two successive growing

seasons. Harvesting occurred at weekly or biweekly intervals from June

through October ���� and then again from June through August ����. In

this way, I captured three discrete cohorts of weevil larvae. The first larval

cohort was oviposited in the spring of ���� by the generation of weevils

whose adults eclosed in summer of ����. This was followed by two additional

larval cohorts that were oviposited in the fall of ���� and the spring of ����

by the generation of weevils whose adults had eclosed in the summer of

����. I haphazardly selected plants, randomly choosing a single stem per

plant that was roughly �� – �� mm in basal diameter. I processed stems

within � – � days of their collection, first by carefully removing their bark

and inspecting its underside for weevil eggs and early instars. I then split

stems longitudinally from basal to distal end with a chisel and hammer.

Once a stem was split, I carefully searched it for late instars, pupae, and

adults. I counted individuals in each of these life stages in all stems.
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Effects of plant and stem factors on weevil herbivory

I conducted three analyses to address my four study questions. For my first

two questions, I used the willow-weevil database to estimate the effects of

stem-level and plant-level covariates on weevil larval herbivory, given imper-

fect detection of weevil larvae within stems. At the stem–level, I focused on

vigor covariates and relative growth rate, whereas at plant–level, I focused

on stress and sex covariates. Willow stems could have been in one of three

’states’ during an herbivory survey: �) the stem may be occupied by wee-

vil larvae that were detected by the observer, �) the stem may be free of

weevil larvae, or �) the stem may be occupied by weevil larvae, that were

undetected. Failure to account for imperfect detection biases estimates of

the stem– and plant–level covariates hypothesized to affect weevil herbivory

towards zero, and covariates that affect both detection and occupancy be-

come confounded. Not only did my herbivory surveys suffer from imperfect

detection, but the detection rate likely depended on stem size (it was easy to

miss exit holes on large stems, as these tended to have many side branches)

and plant habitat (it was often physically impossible to visually inspect all

sides of a stem in the densely thicketed riparian zones) (Figure �A), two

covariates I hypothesized to affect weevil herbivory.

I repeated my herbivory surveys within a short period of time, short

enough to ensure that the stem did not change state between the repeated

samples. This repeatability allowed us to meet my first objective using site-

occupancy models. These models separate stem states (�) and (�) by mod-

eling an observation process (which determines whether weevil larvae are
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observed if present in a stem) that is hierarchically linked to the underlying

biological process (which governs whether or not the stem is occupied by

weevil larvae). Treating stems as sites, I used a Bayesian implementation of

Royle and Kéry’s (����) hierarchical dynamic site-occupancy model,

Biological Observational

Pr(W, zj[i],k | wj[i],s,k) µ Process ⇥ Process ⇥ Priors, (�)
Model Model

where W is a �� element vector of coefficients used to parameterize the

biological and observational models based on covariates from my willow-

weevil database, z is a vector of the true occurrence of weevil larvae in

stems, and w is a vector of the observed weevil larvae in stems from my

herbivory surveys. The subscript j indexes plants j = (1...277), the subscript

i indexes stems (i = 1...1998), the subscript k indexes years (k = 1...3), and

the subscript s indexes weevil herbivory surveys (s = 1...2) in the kth year

on the ith stem of the jth plant.

Biological process model

The biological process model assumed the true occurrences of weevil larvae

in stems (z) were independently and identically distributed (i.i.d) Bernoulli

random variables, conditional on the probability of weevil larvae attack (y),

where z = 1 when a stem was occupied by weevil larvae and z = 0 when
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it was unoccupied. I amended Royle and Kéry’s (����) biological process

model,

1998

’
i=1

Bern
⇣

zj[i],k=1 | yj[i]Sj[i],k=1

⌘
⇥

3

’
k=2

Bern
⇣

zj[i],k |
h
zj[i],k�1fj[i],k + (1 � zj[i],k�1)gj[i],k

i
Sj[i],k

⌘
, (�)

by also conditioning (z) on the fate of each stem (S), where S = 1 when

the stem was alive and tagged S = 0 when the stem was dead or not yet

recruited to the plant. This binary indicator suppressed the terms in the

likelihood where stems did not exist or were too small to be attacked. In

year k = 1, y was estimated directly. In contrast, the dynamics that govern

a stem’s probability of weevil attack in years (k = 2...3) were represented by

a metapopulation model, where y was a function of z in year k � 1 and two

vital rates: the colonization rate (g), defined as the probability that weevil

larvae attacked a stem unattacked the previous year, and the persistence

rate (f), defined as the probability that weevils attacked a stem already

attacked the year prior by the previous weevil generation and referred to

hereafter as re-attack. This Markovian process, in combination with the

fate of the stem (S), determined which term, colonization or re-attack, was

operative in the model for a given stem in years (k = 2...3). For example,

S = 0 in year k � 1 for a newly recruited stem, forcing z = 0 in year k � 1
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and the occurrence of weevil larvae to depend solely on the colonization

rate in year k.

I investigated the association between the stem-occupancy model’s state

variables (y, g, f) and host plant vigor, relative growth rate, stress, and sex

by using generalized linear mixed models with both stem- and plant-level

predictors. At the stem-level, I estimated the weevil attack (y) or vital rates

(g, f) for the i
th

stem on the j
th

plant as,

logit(yj[i]) = ayj+(by1RMj+by2RFj+by3UMj+by4UFj)BDj[i],k=1 (�)

logit(gj[i],k) = agj+(bg1RMj+bg2RFj+bg3UMj+bg4UFj)RAj[i],k+ (�)

(bg5RMj+bg6RFj+bg7UMj+bg8UFj)BDj[i],k+

(bg9RMj+bg10RFj+bg11UMj+bg12UFj)RGRj[i],k

logit(fj[i],k) = afj+(bf1RMj+bf2RFj+bf3UMj+bf4UFj)RAj[i],k+

(bf5RMj+bf6RFj+bf7UMj+bf8UFj)BDj[i],k+

(bf9RMj+bf10RFj+bf11UMj+bf12UFj)RGRj[i],k, (�)

where the above logit-link functions included one or more of the following

stem-level covariates: stem reproductive status (RA), a discrete variable

that equaled one when a stem was reproductive and zero otherwise, stem

size (BD), a continuous variable standardized across all stems in all years to

have a mean of one and a standard deviation of zero, and stem growth rate

(RGR), a continuous variable standardized across all stems in years k = 2...3
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to have a mean of one and a standard deviation of zero. I assumed that

while the effect of the stem-level covariates did not vary across plants, the

habitat and sex of the plant on which the stem was found did affect weevil

attack in the initial year, and also affected colonization and re-attack rates

in later years. To capture these varying effects, I used four plant-level binary

predictors that each equaled one (for one of the four groups based on plant

habitat and sex), riparian-male (RM), riparian-female (RF), upland-male

(UM), and upland-female (UF), and zero otherwise. These four predictors

interacted with each stem-level covariate. Representing each of the state

variables (y, g, f) from Equations �–� with a dot and generically referring

to them as weevil attack rates, the parameters b.1 � b.4 were the expected

effects of reproduction on weevil attack rates, on the logit scale, for each sex

in riparian zones and upland areas. The parameters b.5 � b.8 and b.9 � b.12

specified the slopes of the logit-linear relationship between weevil attack

rates and stem size and relative growth rate, respectively, for each sex in

riparian zones and upland areas. Each linear predictor included j = 1...277

plant-specific intercepts that represented the baseline probability of weevil

attack, on the logit scale, for an average-sized non-reproductive stem of

average growth on the j
th

plant.
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At the plant-level, the j = 1...277 plant-specific intercepts used in Equa-

tions �-� were constrained to come from the normal distributions, whose

hyperparameter means were conditional on plant habitat and sex:

277

’
j=1

Normal
�
ayj | µy = hy1RMj + hy2RFj + hy3UM + hy4UFjsy

�
(�)

277

’
j=1

Normal
⇣

agj | µg = hg1RMj + hg2RFj + hg3UM + hg4UFj, sg

⌘
(�)

277

’
j=1

Normal
⇣

afj | µf = hf1RMj + hf2RFj + hf3UM + hf4UFj, sf

⌘
. (�)

Using the same notation as above, the parameters h.1 � h.4 were the hy-

perparameter means for each sex in riparian zones and upland areas. Plant

habitat and sex affected weevil attack rates in two different ways; at the

stem-level, the effect of each vigor covariate could vary depending on the

habitat and sex of the plant on which a stem was found (Equations �-�),

while in the plant-level, the baseline probability of weevil attack for each

plant was drawn from a distribution whose mean depended on its habitat

and sex (Equations �-�).

Observational process model

The observational process model (Equation �) was linked to the biological

process model through the assumption that the observations of weevil larvae

in stems (w) were i.i.d. Bernoulli random variables conditional on the true
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occurrences of weevil larvae in stems (z) and the probability these larvae

are detected in my survey (p),

1986

’
i=1

2

’
s=1

3

’
k=1

Bernoulli
⇣

wj[i],s,k | zj[i],k pj[i],k

⌘
, (�)

where w = 1 when a larvae was observed in a stem and w = 0 when

they were not observed. Based on my experience surveying in the field, I

estimated the probability of weevil detection in the i
th

stem on the j
th

plant

as in the s
th

survey of the k
th

year as,

logit
⇣

pj[i],k

⌘
= ap1 + bp2PHj + bp3BDj[i],k + bp4PHjBDj[i],k, (��)

where the logit link function included the covariates stem size (BD) and

plant habitat (PH). The intercept ap1 represented the detection probability,

on the logit scale, for an average-sized stem found in riparian habitat. The

parameter bp2 was the deviation from bp1 in the detection probability due to

the stem being surveyed in upland habitat. The parameter bp3 specified the

slope of the logit-linear relationship between the detection probability and

stem size for riparian stems, whereas the parameter bp4 was the deviation

from bp3 in the detection probability due to the stem being surveyed in

upland habitat.
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Estimation and model evaluation

I estimated the posterior distributions for all parameters (W) and stem

states (z) in my hierarchical stem-occupancy model (Equation �) using

Markov chain Monte Carlo (MCMC) methods implemented in JAGS �.�.�

(Plummer, ����a) with the rjags package (Plummer, ����b) in the R com-

puting environment (R Development Core Team, ����). I chose all priors

to be noninformative:

8

’
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byt | 0, s = 102
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’
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⇥
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�
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Uniform(sg | 0, 100)Uniform
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I computed three chains for each parameter, all with different initial values.

After a burn-in period of ���,��� iterations, I accumulated ��,��� sam-

ples from each chain, keeping every ��th sample. I evaluated convergence

through visual inspection of trace plots to assure stationarity and homoge-

neous mixing, and by using the diagnostics of Gelman (Brooks and Gelman,

����). I assessed model fit with posterior predictive checks comprised of two
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test statistics appropriate for binary response data (M. Kéry, personal com-

munication):

Tobs =
1998

Â
i=1

3

Â
k=1

(Â2
s=1 wobs

j[i],s,k � Â2
s=1 w̄j[i],s,k)

2

Â2
s=1 w̄j[i],s,k

(��)
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Â
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3

Â
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(Â2
s=1 wrep

j[i],s,k � Â2
s=1 w̄j[i],s,k)

2

Â2
s=1 w̄j[i],s,k

, (��)

where w was the expected number of surveys per stem where weevils were

observed, wobs was the observed number of surveys per stem where wee-

vils were observed, and wrep was the simulated number of surveys per stem

where weevils were observed from my stem occupancy model’s posterior

predictive distribution. Using these test statistics, I confirmed that the

Bayesian p-value, defined as the probability that the simulated data were

more extreme than the observed data, was indicative of a good model fit

(Gelman et al., ����). The Pearson correlation coefficient between the two

continuous stem-level covariates in my stem-occupancy model, stem size

and relative growth rate, was small, suggesting that collinearity between

my explanatory variables was not an issue. I examined the degree of over-

lap between these two continuous covariates to insure that the data ranges

for which I made inferences were due to direct support from the data and

not model extrapolation (Gelman and Hill, ����). Appendix E details the

posterior predictive checks.
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Hypothesis testing

I purposefully chose to fit only my global model and retained all covari-

ates regardless of their effect sizes. I justify this approach by noting that

the covariates were selected intentionally as part of my original survey de-

sign to test long-standing biological hypotheses regarding how plant vigor,

stress, and sex affect insect herbivory. The model’s structure was also cho-

sen based on biological considerations, specifically to account for the non-

independence of stems found on the same plant and to understand how the

effects of the stem-level covariates were context-dependent with respect to

plant habitat and sex. While this resulted in a large number of parameters,

the size of the willow weevil dataset provided the needed replication for pa-

rameter estimation. I recognize that ignoring model uncertainty renders my

inferences conditional upon my chosen model, however my specific a priori

interest in each parameter trumps the need for a model selection approach.

I assessed the importance of the stem-level covariates reproductive sta-

tus and relative growth rate to the vital rates (g, f) by examining their

standardized model coefficients on the logit scale. For each stem-level co-

variate in Equations �–� I tested four additional hypotheses by computing

derived quantities from the posterior distributions of the model coefficients

(Gelman and Hill, ����). Within each sex, I tested whether the effects dif-

fered between riparian zones and upland areas. Likewise, within each habi-

tat I tested whether the effects differed between male and female stems.
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For the plant-level covariates, habitat and sex, in Equations �–�, I com-

puted similar derived quantities. Modeled coefficients at the stem-level and

all derived quantities were considered unimportant to the processes being

modeled if the Bayesian ��% credible interval of their posterior distributions

overlapped zero, and important otherwise. A positive effect for reproductive

status was interpreted as support for the plant vigor hypothesis, whereas

an important positive effect of habitat at the plant-level was interpreted as

support for the plant stress hypothesis. The stem-level effects could be con-

text dependent with respect to habitat and plant sex. Important sex-based

differences for any of the stem-level covariates or an important sex effect at

the plant-level was considered evidence of sex-biased herbivory.

I relied on three allometric relationships to determine whether weevils

responded positively to vegetative vigor. First, I investigated how stem sink

strength scaled with respect to stem size. I estimated the scaling coeffi-

cient for upland vegetative sink strength (which I assumed was propor-

tional to aboveground biomass) with respect to basal stem diameter as

B = pc1(BD)n1 , where B is aboveground stem biomass, BD was stem

basal diameter, n1 was the scaling coefficient, and c1 was a proportionality

constant. Nutrients are translocated through the cambium, making the the

flux of nutrients to aboveground vegetative structures proportional to the

basal stem stem diameter such that F = B/p(BD) = c1(BD)n1�1, where

F equals nutrients · time�1 · area�1. In September ����, I harvested one
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stem each on �� Pumice Plain upland plants, where plants were selected

in a haphazardous manner from three randomly chosen sites, and stems

were selected using a stratified approach based on basal diameter to cap-

ture the range of upland stem sizes available for weevil colonization. I was

unable to collect riparian stems or enough large upland stems to properly

estimate allometry of upland stems available for re-attack. Prior to harvest-

ing I recorded basal diameters (BD) as described for tagged stems in my

willow-weevil database. I dried stems in a drying oven at �� C for one week

prior to weighing each stem’s biomass (B). I used regression analysis to esti-

mate the scaling coefficient (n1) as the slope of the log-linear relationships

between stem biomass and stem size. I estimated the slope using Markov

chain Monte Carlo (MCMC) methods implemented in JAGS �.�.� (Plum-

mer, ����a) with the rjags package (Plummer, ����b) in the R computing

environment (R Development Core Team, ����). I chose all priors to be

non-informative and computed three chains for each parameter, all with

different initial values. After a burn-in period of �,��� iterations, I accu-

mulated �,��� samples from each chain, keeping every sample. I evaluated

convergence through visual inspection of trace plots to assure stationarity

and homogeneous mixing, and by using the diagnostics of Gelman (Brooks

and Gelman, ����). I used residual plots to confirm that variances between

groups and years were homogeneous. I used the posterior distribution of the
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scaling coefficient (n1) to estimate the scaling coefficient for stem nutrient

flux (n1 � 1) as a derived quantity.

Second, I used the stem size coefficients from Equations �–� to estimate

the scaling coefficients for the expected number of weevil larvae colonizing

or re-attacking stems with respect to stem size in both habitats. While late

instars feed in a stem’s interior, oviposition and feeding by early instars

feeding occurs in the cambium near a stem’s base, regardless of its basal di-

ameter, making my stem size measurements proportional to the portion of

a stem’s surface area utilized by early instars. I assumed that the expected

number of weevil larvae per stem (l) were i.i.d. Poisson random variables

such that Pr(0) = epHc2(BD)n2 , where Pr(0) was the probability of a stem

not being colonized or re-attacked over successive seasons by weevil larvae,

BD was stem basal diameter, n2 was the scaling coefficient, c2 was the prod-

uct of the proportionality constant, and H and the maximum height from

the base of a stem or branching point where early weevil instars are found. I

used the Hmisc package (Harrell Jr, ����) to compute weighted ��% quan-

tiles (where the weights are explained in section �.�) that delineated the

range of stem sizes available for colonization and re-attack in each habitat.

I then estimated each scaling coefficients (n2) as the slope of the double

logarithmic linear relationship between these complementary probabilities

and stem size. For riparian stems available for re-attack, this relationship

was nonlinear and I used piecewise regression in the segmented package

��



(Muggeo, ����) to estimate a single break point (BDb) and two separate scal-

ing coefficients. Third, I estimated the scaling coefficients for the expected

weevil density colonizing upland stems with respect to stem nutrient flux as

l = c3Bn2/(1�n1). I used the point estimate of the stem sink strength scaling

coefficient (n1), as the precision of this estimate was very high compared to

(n2). By retaining all samples from the stem size posterior distributions, I

propagated the uncertainty in the my stem size model coefficients through-

out this process, enabling us to construct ��% Bayesian credible intervals

for all scaling coefficients. All analyses were carried out in the R computing

environment (R Development Core Team, ����). A positive weevil response

to vegetative vigor required disproportionate scaling of weevil attack and

sink strength to stem size (n1 > 1, n2 > 1) and and proportional scaling of

weevil attack with respect to nutrient flux (n2/(1 � n1) � 1). I justify my

rationale for this approach to measuring vegetative vigor in section �.�.

Effect of willow habitat and sex on weevil metapopulation dynamics

My third study question asked how annual changes in the size, relative

growth rate, and reproductive status of stems available for colonization or

re-attack were associated with annual weevil attack and vital rates for male

and female stems in riparian zones and upland areas on the Pumice Plain.

I retained posterior distributions from my stem-occupancy model for each
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stem’s annual predicted state variables (y, g, f). Using these posterior dis-

tributions, I computed derived quantities representing annual weevil attack

and vital rates for each of the four groups based on plant habitat and sex.

I tested habitat and sex effects using the same approach as in my stem-

occupancy model. Within each sex, I tested whether each of the predicted

state variables differed between riparian zones and upland areas. Likewise,

within each habitat I tested whether each of these state variables differed

between male and female stems. In similar fashion, I also tested for yearly

differences for each group.

I used weighted linear regressions for stem size and relative growth rate,

and binomial linear regression for stem reproductive status to determine

how each of these covariates varied annually with respect to plant sex and

habitat for two pools of stems: �) those not attacked the previous year and

therefore available for colonization or �) those attacked the previous year

and therefore available for re-attack. To determine to which of these two

pools a stem belonged in a given year, I retained the posterior distribution

from my stem-occupancy model for the stem’s predicted state (z) in the

previous year and computed its mean. I used this mean value as the basis

for including or excluding the stem from a pool (when its value equaled one),

or to weight the influence the stem should have on the regression estimates

(when its value was between zero and one). For reproductive status, I ex-

cluded or included stems using the observed weevil surveys in the previous
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year, as there was no convenient way to weight individual observations in a

binomial linear model. All six regressions had eight binary predictors that

each equaled one (for one of the four groups based on plant habitat and

sex), riparian-male (RM), riparian-female (RF), upland-male (UM), and

upland-female (UF), in ���� or ���� and zero otherwise. I log-transformed

stem size and relative growth rate as these distributions had all positive

values and were heavily skewed. I tested habitat, sex, and year effects on

these three covariates using the same approach as for the annual attack and

vital rates. I estimated parameter values for each regression using Markov

chain Monte Carlo (MCMC) methods implemented in JAGS �.�.� (Plum-

mer, ����a) with the rjags package (Plummer, ����b) in the R computing

environment (R Development Core Team, ����). I chose all priors to be

non-informative and computed three chains for each parameter, all with

different initial values. After a burn-in period of �,��� iterations, I accu-

mulated �,��� samples from each chain. I evaluated convergence through

visual inspection of trace plots to assure stationarity and homogeneous mix-

ing, and by using the diagnostics of Gelman (Brooks and Gelman, ����).

I used residual plots to confirm that variances between groups and years

were homogeneous.
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Effect of willow habitat and weevil phenology on weevil oviposition

My fourth study question was to determine whether counts of weevil larvae

or eggs within stems differed by habitat between the two temporally dis-

tinct larval cohorts: senescent-feeding early instars oviposited in late sum-

mer/early fall and flush-feeding larvae oviposited in the spring. To remove

the confounding effects of habitat differences in weevil colonization or re-

attack rates, I conditioned my data by only retaining attacked stems from

the weevil phenology database for analysis. To separate individuals by lar-

val cohort, I assumed that �) eggs or early instars found in late summer/

early fall were unlikely to have been oviposited in the spring of the current

year, and �) eggs or early instars found in the late spring were unlikely to

have been oviposited the previous year. I analyzed the count data for eggs

and early instars separately, using a series of Poisson t-tests to determine

whether the expected number of eggs or early instars per stem differed by

habitat in June and July of ����, September and October of ����, and

June and July of ����. I tested and corrected for over-dispersion in the

count data by adding a normally distributed random effect to the linear

predictor for the Poisson rate parameter (Millar, ����). For each t-test,

I estimated the posterior distributions for its three parameters, the inter-

cept, the habitat effect, and the variance of the random effect term, using

Markov chain Monte Carlo (MCMC) methods implemented in JAGS �.�.�
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(Plummer, ����a) with the R�jags package (Su and Yajima, ����) in the

R computing environment (R Development Core Team, ����). I chose all

priors to be non-informative and computed three chains for each parameter,

all with different initial values. After a burn-in period of ��,��� iterations,

I accumulated ��,��� samples from each chain, keeping every �th sample.

I evaluated convergence through visual inspection of trace plots to assure

stationarity and homogeneous mixing, and by using the diagnostics of Gel-

man (Brooks and Gelman, ����). I used posterior predictive checks based

on actual and replicated squared residuals and residual plots to confirm

each model’s assumptions and fit.

�.� results

Detection of weevil larvae within stems

Although the probability of detecting weevil larvae in stems was quite high,

the detection rate was affected by covariates also important to the biological

process model (Equation �). The detection rate was ��% (��% CI: ��%,

��%) for average sized upland stems and ��% (��% CI: ��%, ��%) for

average sized riparian stems. Both habitat and stem size had an effect on

the detection rate, with the effect of stem size varying by habitat. For

average sized stems, the detection rate was ��% lower than in riparian zones
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(��% CI: �%, ��%) than in upland areas. Stem size had a positive effect on

the detection of weevils in upland stems, where a one standard deviation

increase in stem size (centered around the average upland stem size) was

associated with a ��% increase in weevil detection (��% CI: �%, ��%). In

comparison, a one standard deviation increase in stem size (centered around

the average riparian stem size) was associated with a �% increase in weevil

detection (��% CI: �%, �%).

Weevil colonization of previously unattacked stems

In order of importance, colonization by weevil larvae was associated with

plant habitat, stem size, reproductive status, and relative growth rate (Fig-

ure �A). In riparian zones, weevils successfully colonized flowering stems

more often than non-reproductive ones, but reproduction did not have an

effect on weevil colonization rates in upland areas (Figures �A, �A). For

riparian stems of average size and growth rate, reproduction increased expo-

sure to weevil colonization by ��% (��% CI: ��%, ��%). Weevils responded

positively to stem size in both habitats, but how colonization scaled with re-

spect to stem surface area differed by habitat. For riparian stems, expected

weevil density per stem was invariant with respect to its surface area for

stems below ��.� mm in basal diameter (��% CI: ��.�, ��.�), whereas for

stems above this size weevil density scaled proportionately with respect to

��



stem surface area (Figure �A). In contrast, expected weevil density per up-

land stem was disproportionately higher than would be expected by chance,

given the stem’s surface area available for attack (Figure �A). For coloniz-

able upland stems, stem sink strength scaled disproportionately with respect

to stem size, while expected weevil density per stem scaled proportionately

to nutrient flux (Figure �). Weevil colonization was negatively correlated

with fast-growing stems, but this effect was smaller than that of stem size

(Figure �A). For upland stems of average size, an increase of one standard

deviation in relative growth rate (centered around the average upland rela-

tive growth rate) was associated with a ��% reduction in weevil colonization

(��% CI: �%, ��%). In contrast, for upland stems of average relative growth

rate, a one standard deviation increase in stem size (centered around the

average upland stem size) was associated with a ��% increase in weevil col-

onization (��% CI: ��%, ��%). The marginal effect of upland habitat on

weevil colonization for stems of average relative growth rate was positive

for all observed stem sizes both above and below the overall mean stem size

(��.�� mm) (Figure �A). This result was only possible if there was an effect

of habitat itself at the plant-level, beyond any differences between habitats

due to the interaction between habitat and stem size. I did not observe

any sex effects at the plant- or stem-level. Weevil responses to stem size,

reproduction, and relative growth rate were often habitat-dependent, but
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were the same for each sex within habitats (Figure �A). Average plant-level

baseline colonization rate did not vary by sex (Figure �A).

Weevil re-attack of previously attacked stems

Unlike colonization, re-attack of stems by weevil larvae from year to year

was largely invariant to stem size (with the exception of female upland

stems) and relative growth rate, but was positively associated with plant

habitat, riparian reproduction, and plant sex, in order of importance (Figure

�B). In riparian zones, weevils successfully re-attacked flowering stems more

often than non-reproductive ones, but reproduction did not affect weevil

re-attack in upland areas (Figures �B, �B). For riparian stems of average

size and growth rate, reproduction increased exposure to weevil re-attack

by ��% (��% CI: �%, ��%). The poorer precision of the coefficient for

the effect of riparian flowering for males as compared to females caused

its Bayesian ��% credible interval to overlap zero. However, because the

coefficient itself was similar in magnitude to that for females, and there

was no sex-effect, I inferred that reproduction increased exposure to weevil

re-attack for both sexes in riparian zones. Weevil re-attack was positively

associated with increased stem size for female upland stems only (Figure

�B), but male and female attack did not scale differently with respect to

stem surface area and I pooled their results. For riparian stems, expected
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weevil density per stem were invariant to its surface area, whereas in upland

habitat weevil density was disproportionately lower than would be expected

by chance based on stem surface area (Figure �B). Male upland plants had

higher baseline levels of attack as compared to female upland plants. For

non-reproductive upland male stems of average relative growth rate and

size, plant sex increased this baseline exposure to weevil attack by ��%

(��% CI: �%, ��%). For stems of below average size, this sex effect was even

greater given the stronger logit-linear relationship between weevil re-attack

and stem size for female as compared to male stems. The marginal effect of

upland habitat on weevil re-attack for stems of average relative growth rate

was positive for all observed stem sizes both above and below the overall

mean stem size (Figure �). As in the case of weevil colonization, this result

was only possible if there was an effect of habitat itself at the plant-level,

beyond any differences between habitats due to the size-dependent re-attack

rates for female upland stems.

Willow habitat and sex differences

Stems available for colonization or re-attack differed considerably by habitat

and year, and to a lesser degree by sex, in their stem-level covariates (Table

�,�). In ���� and ����, upland stems available for weevil colonization or

re-attack tended to be smaller, faster-growing, and flowered less frequently
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than riparian stems (Table �,�). In either habitat, stems available for weevil

colonization in ���� tended to be larger in size, slower-growing (with the

exception of riparian male stems whose relative growth rate remained un-

changed across years), and flowered more frequently than stems available

for colonization stems in ���� (Table �). Stems available for re-attack in

���� flowered more frequently than their counterparts in ����, however dif-

ferences in their size and relative growth rate between years did not show a

clear pattern and varied depending on habitat and sex (Table �). For each of

the stem-level covariates, there were isolated cases of sex differences within

habitats for certain years. In ����, upland female stems available for weevil

colonization were slightly larger than male stems, whereas riparian male

stems available for re-attack were much larger than female stems (Table

�,�). Although upland male stems flowered more than female stems in ����,

upland reproduction was not a plant trait that weevils responded to (Table

��, Figure �). In ����, male and female stems available for colonization or

re-attack did not differ in stem size or frequency of reproduction in either

habitat (Table �,�).

Weevil metapopulation dynamics

Whereas upland stems were attacked more frequently each year than ri-

parian stems, stems in both habitats showed similar inter-annual trends
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that unambiguously mirrored inter-annual variation in colonization rates

(Figure �). The largest difference in annual weevil attack rates was due to

habitat, as upland stems were attacked ��% more (��% CI: ��%, ��%) than

riparian stems across sexes and years. Colonization rates were ��% greater

(��% CI: ��%, ��%) in upland areas than in riparian zones across sexes

and years. Re-attack rates were ��% greater (��% CI: ��%, ��%) in upland

areas than riparian zones for males across both years, although for females

there was no difference between habitats in either year. While colonization

rates differed across years, male and female re-attack rates were stable and

did not differ from one another by habitat or year. In ����, low weevil col-

onization in both riparian zones and upland areas reduced annual attack

by weevil larvae on stems in both habitats (Figure �). This change was

more pronounced in upland areas, which showed an ��% reduction (��%

CI: �%, ��%) in attack rates compared to a �% (��% CI: �%, ��%) drop in

riparian zones. In ����, colonization rates increased in both habitats, and

overall weevil attack rates in both habitats rose to their ���� levels (Figure

�). In addition to the male difference in re-attack rates between habitat, I

observed two other sex-differences in weevil metapopulation dynamics: up-

land female stems were colonized �% more than male stems ���� (��% CI:

�%, ��%) and female stems were attacked �% more (��% CI: �%, ��%) than

male stems in ����.
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Willow habitat and weevil phenology affect weevil oviposition

Weevil preference was greater for upland as compared to riparian stems for

the fall senescent-feeding larval cohort, but these differences were attenuated

for the preceding and following flush-feeding spring larval cohorts (Figure

�). For individuals oviposited in the late summer and early fall of ����, the

expected number eggs per stem was �.� times greater (��% CI: �.��, �.�)

for upland stems than for riparian stems, whereas the expected number of

early instars per stem was �.� times greater (��% CI: �.�, �.�) for upland

stems than for riparian stems (Figure �). For individuals that oviposited in

the spring of ���� and ����, the differences in expected number of early

instars between habitats were reduced in magnitude, or eliminated, in the

case of eggs in ���� (Figure �).

�.� discussion

Towards quantifying vigor for herbivores that live between sinks and sources

Vigorous plants (or plant parts) are defined as those that are greater than

the population average in terms of size or relative growth rate, whereas

plants of below average size are considered chronically stressed (Price, ����).

Using this definition to evaluate the plant vigor hypothesis requires careful
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consideration of size measurements relative to herbivore phenology, avoiding

circular inferences when herbivory itself affects host plant relative growth

rates, and properly interpreting how herbivory metrics scale with respect to

sink strength and size. Traditionally, vigor comprises two components, size

and relative growth rate, both of which are positively associated host plant

quality (Price, ����). When these traits are correlated, the relationship be-

tween herbivore attack and size is conditional on the time of sampling. For

example, herbivores may preferentially oviposit in small, fast-growing stems

which then outgrow larger, slower-growing stems during larval development

(Faria and Fernandes, ����). Sampling stem size only at the time of eclo-

sion would avoid this problem, but only if all plants or plant parts present

during sampling were also previously available for attack (Faria and Fer-

nandes, ����), and if herbivory does not have a large impact on growth

rate. Herbivory can affect plant growth directly, by removing tissue or by

causing physical damage that disrupts physiological processes, or indirectly

through trade-offs between growth and defense (Herms and Mattson, ����),

although these effects can potentially be compensated for (McNaughton,

����). If herbivory impedes growth, it is not possible to make strong infer-

ences about herbivore response to plant vigor using only size data (see San-

tos and Almeida-Cortez, ����; White, ����; Santos et al., ����). I avoided

sampling issues by tracking all available stems on tagged willow plants over

multiple seasons, adding and tracking new stems prior to when they were
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large enough for weevil attack, and bracketing the portion of each weevil

generation where larvae inhabit willow stems with measurements of stem

size. To separate the negative effect of weevil herbivory on relative growth

rate from the attractive effect of willow stem size on herbivore presence,

I included both stem size and relative growth rate in my stem-occupancy

model.

Willow stems grew slower when colonized by weevil larvae (Figure �A),

whereas re-attacked stems did not show similar reductions in relative growth

rate (Figure �B) but grew slower than previously un-attacked stems (Table

�,�). This suggests that weevils have an immediate and lasting effect on

willow stem growth, weakening stems beyond just the initial year of attack

regardless of re-attack in future years. This is not unexpected, given the

observed intensity of weevil attack and resulting stem mortality, and the

degree to which girdling damage from weevil feeding impairs stem physi-

ological functioning. Reduction in growth rate might also be affected by

activation of dormant buds along along the base of attacked stems. Stems

that survive weevil attack tend to become branchier, and resources devoted

to these later stems likely precludes growth along the �st order or tagged

�nd order stems I used to calculate relative growth rates.

Higher rates of herbivory on larger plants or plant parts does not, in and

of itself, provide conclusive support for the plant vigor hypothesis. I suggest

it is necessary to determine how herbivore attack of plants or plant parts
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(sinks) scales with respect to sink size (the unit area or unit volume of sink

available to the herbivore), and with respect to the sink strength (the flux

of nutrients into the sink). The sink competition hypothesis provides a way

to structure this question for herbivores that feed directly on plant sinks,

and can be extended to those herbivores, such as C. lapathi larvae, that

intercept nutrients moving through the vascular system to sinks located

more distantly (Larson and Whitham, ����). Sink strength is not just a

function of sink size, but also the ratio of sinks to sources in independent

plant units (IPU’s), defined as portions of a plant that are autonomous

from one another due to vascular architecture (Larson and Whitham, ����;

Watson and Casper, ����). Consequently, I treated each stem as an IPU

and assumed fluxes of nutrients through the bark at the base of the stem

was proportional to the total amount of aboveground biomass supported by

that stem, i.e., the sum of all sinks on a stem. By feeding in localized areas

of the bark, early weevil instars intercepted nutrients that were translocated

seasonally between roots, bark and leaves. Although weevil larvae were not

sedentary, movement was slow and required consumption of the bark itself.

In this way, weevil larvae were limited to a greater degree by the flux of

nutrients in their local environment than by the total area of bark available

as a resource. Given this, three conditions must be met to confirm that

weevil larvae responded positively to stem vigor:
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�. Herbivore attack must scale disproportionately with respect to sink

size. This ensures that larger stems were not attacked more simply

because they were larger (Faria and Fernandes, ����).

�. Sink strength must scale disproportionately with respect to sink size.

Isometric scaling of a stem’s canopy, in terms of its aboveground

biomass, to its basal diameter would cause nutrient flux to remain

constant across stem sizes. This would preclude weevil larvae from ex-

periencing differences in plant quality in their local environment with

respect to stem size.

�. The scaling coefficient for herbivore attack with respect to sink nutri-

ent flux must be = 1. A scaling coefficient of < 1 indicates that over

some range of stem sizes, weevil larvae did not respond to willow stem

vigor.

Note that one can omit conditions (�) and (�) in the special case where

herbivores feed exclusively on the entire sink and that sink is the only one

located within an IPU.

Weevil attack and leaf biomass of colonizable upland stems scaled dispro-

portionately with stem size (satisfying conditions � and �), while the distri-

bution of weevil larvae within these stems scaled proportionately to bark nu-

trient fluxes (satisfying condition �) (Figure �). For riparian plants, observed

herbivory of larger stems is likely due to stems simply being larger, whereas

for upland plants larger stems might be of higher quality due to higher sink
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strength caused by an increased number of vegetative buds. These results

are consistent with weevil herbivory patterns observed at other locations in

its geographic range, suggesting that stem vigor is likely to be a generally

important factor for C. lapathi host plant preference or performance. For

example, in a survey of of C. lapathi attack patterns on �� Salix species

across �� sites in British Columbia, Broberg and Borden (����) found dis-

proportionately higher attack of larger Salix stems than would be expected

by chance. In addition, weevil colonization rates were higher on reproduc-

tive, as opposed to vegetative, riparian stems (Figure �). Reproductive buds

serve as strong nutrient sinks as well (Dawson and Ehleringer, ����a,b; Ko-

zlowski, ����) and contribute positively towards stem sink strength. Taken

together, these results show that weevil larvae responded positively to veg-

etative vigor when colonizing upland willow stems and reproductive vigor

when colonizing or re-attacking riparian willow stems. Differences in wil-

low phenology and reproductive allocation between habitats in relation to

weevil phenology could be responsible for the effects of reproductive and

vegetative vigor. Willow flowered in upland areas on the Pumice Plain from

roughly late May to early June, and females set seed by early July. In ripar-

ian zones, willow reproductive phenology was usually, perhaps delayed due

to lingering snow that accumulates during winter in stream beds. Riparian

stems flower more frequently than upland stems (Table �,�) and their repro-

ductive allocation (quantified in terms of number of catkins, catkin mass,
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and catkin nitrogen and phosphorus concentrations) greatly exceeded re-

productive allocation by upland stems (unpublished data). It is possible

that compared to upland areas, reproduction in riparian zones was better

synchronized with weevil oviposition, resulting in large nutrient pulses bet-

ter timed with early instar feeding within stems. My results suggest that

weevils imposed an ecological cost on reproduction for riparian willows by

making flowering stems more susceptible to weevil attack and possibly more

apparent to weevils (Prins et al., ����; Courtney, ����). Ecological costs

associated with reproduction remains a largely unexplored topic, despite

its importance as a selective force on plant life-history (Miller et al., ����;

Obeso, ����; Klinkhamer et al., ����). Although weevil larvae do not feed

directly on reproductive structures (compared to other studies of ecologi-

cal costs imposed by herbivorous insects; Miller et al., ����; Rose et al.,

����), weevil herbivory probably imposes a demographic cost on flowering

riparian plants. Weevil attack impacts stem growth rates both in the year

of attack and future years (Table �,�, Figure �), as well as changing stem

architecture. Once attacked, a riparian stem becomes more susceptible to

re-attack in future years (Figures �,�). These factors are likely to reduce

future reproductive allocation and seed viability.
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Simultaneous support for plant vigor and stress hypotheses

I found that weevil herbivory was positively associated with both vegetative

and reproductive vigor, and with the seasonally water-stressed upland habi-

tat. Simultaneous support for the plant vigor and plant stress hypotheses

has been observed in other systems, generally where flush-feeding herbivores

prefer or perform better on the most vigorous plants or plant parts in xeric

habitat, as opposed to those in mesic locations. For example, Fernandes

et al. (����) found that while the abundance of Aciurina trixa galls on

rabbitbrush (Chrysothamnus nauseous) was much greater for plants in dry

compared to moist sites, females preferred to oviposit and galls developed

more frequently in the longest shoots on plants in dry sites (Fernandes,

����). A similar pattern was observed for various undescribed Cecidomyi-

idae galling species on Goncalo alves (Astronium fraxinifolium) leaves found

in harsh cerrado compared to moist forest understory (Jesus et al., ����).

Despite outbreaks of pinyon sawflies (Neodiprion edulicolis) occurring most

frequently in populations of water-stressed pinyon pine (Pinus edulis), N.

edulicolis females reared on watered and fertilized trees within these popula-

tions had the greatest reproductive potential (Mopper and Whitham, ����).

In these cases, mortality factors differed between and within habitats, with

different selective forces simultaneously shaping herbivore distribution pat-

terns at different scales. At the habitat scale, predation risks and plant
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defensive responses were lower in xeric as opposed to mesic habitat (Fer-

nandes and Price, ����; Fernandes, ����; Mopper et al., ����), yet within

xeric habitat, flush-feeders preferred or performed better on vigorous plants

or plant parts for reasons predicted by the plant vigor and plant stress

hypotheses (White, ����, ����; Price, ����; White, ����).

Although studies are sparse or taxonomically limited, wood-borers show

similar patterns to herbivores from other guilds that respond simultaneously

to both host plant stress and vigor. Increased performance on water-stressed

host trees is usually associated with reduced plant defenses, whereas pos-

itive responses to large or fast-growing plants or plant parts are seen for

borers whose larvae spend part of their life cycle as flush-feeders. At the

guild-level, wood borers respond positively to plant stress (see reviews by

Huberty and Denno, ����; Koricheva et al., ����; Larsson, ����). Several

studies have documented increased bark beetle (Scolytidae) and longhorn

beetle (Cerambycidae) abundance and survivorship on stressed Pinus and

Eucalyptus hosts, respectively (Caldeira et al., ����; Hanks et al., ����;

Dunn and Lorio, ����; Hanks et al., ����; Sjodin et al., ����; Miller et al.,

����; Lorio and Hodges, ����). These results have generally been attributed

to reductions in constitutive or inducible host plant defenses under water-

stress, namely oleoresin exudation pressure (which physically prevents tree

access by Scolytid beetles; Hodges and Lorio, ����), bark moisture (which

drowns Cerambycid eggs or young larvae; Hanks et al., ����, ����), and
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hypersensitivity response (which dissuades herbivory by causing necrosis

in the cells surrounding scolytid larval galleries; Christiansen et al., ����).

Far fewer studies have examined how wood-borers respond to plant vigor

(Cornelissen et al., ����). Of these, Feller and Mathis (����) found that

the stem-boring cerambycids (Elaphidion mimeticum and other Elaphidion

sp.) responded positively to plant vigor, as these herbivores were more abun-

dant on red mangrove (Rhizophora mangle) experimentally fertilized with

phosphorus or naturally growing on local nutrient hotspots. Similarly, the

shoot-boring moth Hypsipyla robusta, whose early instars are flush-feeders

within growing shoots, occurred in greater abundance on taller red cedar

(Toona ciliata) trees (Cunningham and Floyd, ����; Verma and Kaul, ����).

I hypothesize that stress-induced differences in the nutritional quality

of bark consumed by C. lapathi early instars were responsible for weevil

herbivory dynamics being simultaneously associated with both host plant

stress and vigor. I base this hypothesis on the following points:

�. There is little evidence to suggest that the reductions in host plant de-

fenses that cause wood-borers to show greater abundance on stressed

plants were important factors in C. lapathi ’s preferential colonization

and re-attack of seasonally water-stressed S. sitchensis. Sap flow did

not cause early instar larval drowning or egg pitching in well-watered

Populus hybrid clones attacked by C. lapathi, and the most susceptible

clones had the highest bark water content during C. lapathi oviposi-
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tion (Broberg et al., ����). Although resistant poplar hybrid clones

displayed C. lapathi early instar larval antibiosis (Broberg and Bor-

den, ����; Broberg et al., ����), a detailed investigation of known

susceptible and resistant clones found no clearly defined differences in

primary and secondary metabolites, suggesting that resistance likely

involves a non-salicylate mechanism (Broberg et al., ����). There is

one reported case of hypersensitivity in Salix, where the gall midge

Dasineura marginemtorquens induces hydrogen peroxide production

in galled Salix viminalis leaves (Höglund et al., ����). Hypersensitivity

responses to insect herbivores are somewhat rare, and are mainly re-

stricted to sessile-feeders that cannot physically evade such responses

(Fernandes, ����). Although C. lapathi early instars are endophytic,

their girdling indicates they do move around in the bark while feeding.

�. Early instars often represent the most vulnerable of insect life-stages,

and in the case of C. lapathi this is likely the case as well (Broberg

and Borden, ����; Zalucki et al., ����). Early instars typically have

the highest relative growth rate and consumption rate, but the lowest

gross growth efficiency of all larval stages (Scriber and Slansky, ����).

In many invertebrate species, food nitrogen content is positively corre-

lated with gross growth efficiency, a limiting factor on relative growth

rate (Mattson, ����). Unsurprisingly, early instars show greater selec-

tivity for high quality foods, and increased mortality for early, but not
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later, instars, with reductions in plant quality (see reviews by Zalucki

et al., ����; Scriber and Slansky, ����). Larval antibiosis observed

in resistant hybrid poplar clones prevented xylem penetration by C.

lapathi, indicating that weevil early instars are highly susceptible to

bark conditions (Broberg and Borden, ����).

�. Plant quality should be especially important to early instars of wood

borers because faster growth lowers mortality due to mandibular wear

by reducing the time interval between molts (Raupp and Denno, ����).

This problem should be exacerbated for young larvae, as their mandibles

are less effective for consuming woody plant tissues (Bergvinson et al.,

����). Weevil larvae harvested from willow stems during the course

of this study showed high amounts of mandibular wear and a large

proportion of mandibles from collected individuals were in apposition,

rendering them unable to feed (unpublished data).

�. Bark nutrient content on stressed trees was associated with higher

colonization rates of the bark beetle Phoracantha semipunctata on

blue gum (Eucalyptus globulus) (Caldeira et al., ����) and emerald

ash borer (Agrilus planipennis) on green ash (Fraxinus pennsylvanica)

and black ash (Fraxinus nigra) (Chen et al., ����). Also, one of the

two Populus clones susceptible to C. lapathi herbivory had elevated

levels of nitrogen, total carbohydrates, and protein during the time
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females normally oviposited, suggesting that nutrient content may be

important to early instar survival (Broberg et al., ����).

�. C. lapathi preferentially attack stressed plants in dry sites across

their geographic range. Broberg and Borden (����) found that the

intensity of weevil attack on Salix scouleriana in British Columbia

increased drastically on sites that experienced summer drought. In

North Dakota, Salix planifolia populations that experienced high lev-

els of C. lapathi herbivory occurred in dry locations, but weevil pres-

sure was released when these sites received increased soil moisture

(Froiland, ����). Similar patterns of increased C. lapathi attack on

stressed trees were observed in other studies (Kistek, ����; Woods

et al., ����).

Weevil adult eclosion occurred late each summer, and coincided with the

seasonal dry-down experienced by upland plants (Figures A�,A�). These

adults mated and oviposited their first cohort of offspring before overwin-

tering in the leaf litter beneath willows. After hatching, early instars fed in

stems prior to overwintering themselves. This feeding occurs at the end of

the growing season, when deciduous plants typically re-mobilize leaf nitro-

gen and phosphorus, exporting amino acids and phosphate via the phloem

to perennating structures, such as stems and roots, where it is stored during

winter as protein or inorganic phosphorus (Cooke and Weih, ����). While

no information exists on nutrient remobilization in S. sitchensis, von Fircks

��



et al. (����) found that Salix dasyclados translocated roughly ��-��% of its

leaf nitrogen and ��% of its leaf phosphorus at conclusion of the growing

season into stem bark for winter storage. Early instars from this cohort,

could be characterized as senescent-feeders, intercepting nutrients moving

through the phloem away from senescing leaves. Upland plants experiencing

transitory water stress are predicted by the plant stress hypothesis to be of

higher host plant quality to senescent-feeders than riparian plants, leading

to preferential oviposition or higher performance by early instars in upland

plants (White, ����, ����, ����). Higher weevil colonization and re-attack

rates in upland stems (Figure �), a higher overall level of weevil attack on

upland stems in all years (Figure �), and greater numbers of eggs and early

instars found in upland stems for the fall cohort only (Figure �), supported

the predictions of the plant stress hypothesis for weevils ovipositing in the

late summer and early fall.

After exiting diapause in late spring, adults oviposited a second cohort

of offspring before dying. Oviposition of and feeding by early instars in

this second cohort of offspring coincides with flowering and vegetative bud

burst, but not conditions of drought stress (Figures A�,A�). Early instars

from this early season larval cohort, can be characterized as flush-feeders,

intercepting nutrients being translocated through the phloem from roots

and stems to vegetative and reproductive buds (Cooke and Weih, ����; von

Fircks et al., ����). Large reproductive stems would be predicted by the
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plant vigor hypothesis to be of higher host plant quality to flush-feeders

than small vegetative stems (White, ����; Price, ����). Weevils would pref-

erentially oviposit in such stem, and early instars would show higher per-

formance thereon. Disproportionate colonization of upland stems based on

size (Figure �), proportional scaling of expected larval density with respect

to stem nutrient flux (Figure �), and a colonization and re-attack preference

for reproductive, as opposed to vegetative, riparian stems (Figure �), sug-

gest that the numbers of reproductive and vegetative buds were positively

associated with weevil colonization. These results supported the predictions

of the plant vigor hypothesis for weevils oviposited in the spring.

The simultaneous response of weevils to willow vigor and water-stress

highlights how the plant stress and vigor hypotheses are, at their core, phe-

nological explanations for herbivorous insect abundance dynamics. Both

assume synchronization of host plant resources with the stage of an herbi-

vore’s population that has the largest impact on its intrinsic rate of growth

(usually early instars) as a necessary condition for stress to affect herbivore

population dynamics. White refers to insects that change feeding mode over

the course of their life-cycle as “double-dippers” (White, ����). C. lapathi

is a different kind of double-dipper, as its semi-voltinism, combined with

host plant conditions at the times of oviposition, resulted in a portion of

its offspring being senescent feeders while others are flush-feeders. I suggest

this alternating feeding mode as the reason why weevil response to both
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transitory water stress and chronic nutrient stress was consistent with the

predictions of both the plant stress and vigor hypotheses.

In general, herbivorous insects simultaneously responding to host plant

stress and vigor, such as the weevil-willow interaction examined in this

study, do more than highlight the false dichotomy of the plant stress and

plant vigor hypothesis (White, ����). They raise the issue that these hy-

potheses are being over-extended in regards to predicting herbivore response

to stress. The plant stress and plant vigor hypotheses were originally con-

ceived to explain how stress affects nutrient availability to herbivores. I

disagree with White (����) that other host physiological responses, such as

changes in water content or turgor pressure (see reviews by Huberty and

Denno, ����; Larsson, ����), should not also be considered as part of the

plant or pulse stress hypotheses. These physiological responses are relevant,

as they dictate whether herbivores can physically access enhanced nutrient

availability in plant tissues experiencing transitory stress or metabolically

benefit from increased plant quality once these tissues are consumed. How-

ever, the degree to which stress affects trophic interactions and plant de-

fenses (excluding the case of nutrient quality as a form of plant defense)

should remain outside the domain of these hypotheses. In the case of plant

defense, there is already a substantial body of theory devoted to explain-

ing plasticity in physical and chemical defenses due to acute environmental

stress or chronic resource scarcity (Herms and Mattson, ����). A better
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approach would be to consider plant defenses and nutrient quality as si-

multaneous factors affecting herbivorous insect response to stress, as op-

posed to subsuming defense responses within the stress/vigor paradigm.

Also, the plant stress and vigor hypotheses should be integrated into a

single framework regarding herbivore response to stressed host plants. This

integrated hypothesis need not be new, but rather a combination of the sink-

competition hypothesis (Larson and Whitham, ����), which has added a

mechanistic basis to the original plant vigor hypothesis, and, in the case of

water stress, the pulse-stress hypothesis (Huberty and Denno, ����), which

focuses on how herbivores deal with several plant responses to stress besides

nutrient remobilization.

Effects of sex-biased herbivory were limited

Dioecious host plants often experience sex-biased herbivory, with the com-

mon pattern being that males suffer greater damage than females (Cornelis-

sen and Stiling, ����; Ågren et al., ����). In this study, sex-biased weevil

attack was caused by two phenomena: �) sexual dimorphism in traits related

to plant quality (stem size and reproductive status), and �) sexual dimor-

phism in weevil response to plant quality (due to unknown third-party traits

that differ between the sexes). For example, female host plants may grow

faster early in the growing season to compensate for the high reproductive
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cost of fruit production (see review by Obeso, ����). As a result, for stems

of any given size, flush-feeding weevil larvae may prefer or perform better on

the sex whose allocation to vegetative growth is better synchronized with

their larval development. My stem-occupancy model allowed us to parse

these two phenomena for both weevil colonization and re-attack of willow,

and scale their effects up to the Pumice Plain willow population.

I observed limited sexual dimorphism in the stem-level vigor covariates,

stem size and frequency of reproduction, and weevil response to stem size

and reproductive frequency did not vary by sex, except in the case of re-

attack of upland stems. This lack of a sex-difference in weevil response to

reproduction is counter-intuitive considering there were large differences in

nutrient allocation to reproduction between male and female riparian wil-

lows. However, it is possible that nutrients needed for setting seed were

remobilized from leaves and shoots near reproductive structures (Bañuelos

and Obeso, ����), and were not accessible to early weevil instars feeding

at the base of stems. In upland areas, the disproportionate increase in wee-

vil colonization with respect to stem size was the same for both male and

females (Figure �), implying that constitutive defenses (measured as the

complement of the colonization probability) do not differ by sex. This result

is contrary to the often observed male-biased herbivory in Salix (Boecklen

et al., ����; Hjältén, ����; Danell et al., ����; Boecklen et al., ����; Al-

liende and Harper, ����; Elmqvist et al., ����; Danell et al., ����, but see
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Mosbacher et al., ����; Fritz et al., ����; Kopelke et al., ����; Predavec

and Danell, ����). However, this is the first study of sex biased herbivory

in Salicaceae by stem-borers and sex biased herbivory in Salix has been

shown to depend greatly on herbivore species (Boecklen et al., ����). In

contrast, female upland stems had lower levels of re-attack than males, im-

plying that delayed inducible defenses (measured as the complement of the

re-attack probability) do differ by sex (Figure �B). This effect was habitat-

specific, with males differing in induced resistance between riparian and

upland zones, whereas female induced resistance remained the same in each

habitat. Overall, my results are consistent with the pattern of male-biased

herbivory observed in the few papers that have studied inducible defenses

(Mooney et al., ����).

Sex-biased herbivory at the host-plant population level reflects the cumu-

lative effects of sexual dimorphism in plant quality traits as well as herbivore

response to these traits. These combined effects need not be reinforcing. In

my case, higher colonization rates on upland female stems in ���� (due to

their being larger than upland male stems), offset greater delayed inducible

defenses. (Table �, Figure �). Sex-biased herbivory has been implicated as a

cause of biased sex ratios (Elmqvist et al., ����) often observed in dioecious

plant populations (Allen and Antos, ����; Bierzychudek and Eckhart, ����;

Lloyd and Webb, ����). However, this can be difficult to establish, as sex-

based differences in reproductive costs (Allen and Antos, ����; Elmqvist
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et al., ����) and spatial segregation of sexes can contribute to such biases.

It is unlikely that sex-biased weevil herbivory caused the female bias in

willow numbers on the Pumice Plain. Indeed, over the three years of my

study, I only observed sex-biased herbivory at the population level once (in

����, and that was in the opposite direction from expectations with females

attacked more than males). Instead, I argue that weevil attacks were driven

not by sex per se but by the ’availability’ of willow stems. Annual variation

in stem availability is, in turn, driven by the sex-dependent demographic

processes of willow, which hinge on reproductive allocation, reproductive

costs, and compensatory mechanisms. Both the demographic and metapop-

ulation dynamics governing herbivory must be simultaneously modeled to

infer if sex-biased herbivory results in sex-biased populations (Ågren et al.,

����).

Weevil resource regulation differs by habitat

Weevil attack dynamics differed considerably between plants in riparian

zones and upland areas, resulting in contrasting resource regulation patterns

and potentially altering successional trajectories. Annual weevil attack in

each habitat was cyclical, with a reduction in attack rates in ���� followed

by a recovery in ���� (Figure �A). This was caused by a lower colonization

rate in ���� due to small stem sizes and a low rate of riparian flowering
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(Table �, Figure �). In ����, stems available for colonization had become

larger and riparian flowering was more frequent, and colonization increased

in both habitats (Table �). Rates of re-attack remained constant across

years, indicating that colonization is the dynamic process driving annual

variation in weevil herbivory.

The importance of weevil colonization highlights the role resource reg-

ulation plays in weevil herbivory dynamics on the Pumice Plain. Weevil

attack on upland willow stems results in the juvenilization of willow plants,

as stem-boring sustains a positive feedback cycle that replenishes the pool

of stems available in future years for later weevil generations on the same

plant (Craig, ����; Craig et al., ����). Weevil attack caused stems to become

branchier, as lateral stems increased in size on attacked stems that survived

until the next growing season. Weevil attack also activated dormant buds

on the caudex of attacked plants resulting in �st order stem recruits. In con-

trast to other examples of juvenilization caused by phytophagous insects

(see review by Craig, ����), weevil resource regulation did not immediately

benefit weevil larvae the following year, as stems usually take two or more

seasons to become large enough to be attacked. This lag effect was responsi-

ble for cyclical weevil herbivory patterns observed in upland areas, and, to

a lesser extent, riparian zones. Studies of resource regulation for wood bor-

ers are extremely limited (Duval and Whitford, ����; Utsumi and Ohgushi,

����), making generalizations difficult. Utsumi and Ohgushi (����) found
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that the the swift moth Endoclita excrescens, which bores out stems in var-

ious willow species, removes apical dominance without feeding on directly

apical buds. I found a similar pattern of attack, as weevil larvae galleries oc-

curred at the base of stems or at nodes, yet apical dominance was released.

Moreover, the pattern of auxiliary bud activation observed in relation to

weevil damage is consistent with both hormonal disruption (Utsumi and

Ohgushi, ����) and direct stimulation from physical damage, an otherwise

adaptive response in Salicaceae to flood damage (Karrenberg et al., ����).

In riparian zones, newly recruited stems were colonized much less fre-

quently be weevils than in upland areas (Figure �) and the colonization

rate did not vary much with size (Figure �). This change in weevil coloniza-

tion as compared to upland areas had a profound effect on willow density

and structure, as riparian stems grew to a size where stem-level tolerance

for weevil herbivory became more important than plant-level resource regu-

lation by weevils through juvenilization. I attribute this difference in stem

mortality to lower densities of weevil larvae in riparian stems, as senescent

feeding fall cohort was largely restricted to seasonally water stressed upland

stems (Figure �). These contrasting colonization patterns underpin the pro-

nounced differences in willow spread on the Pumice Plain. In riparian zones,

willows form dense canopies and are the dominant woody shrub. In upland

areas, often only a few meters away, willow plants are sparse and shrubby.

Other studies of primary succession have found that fast-growing compet-
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itive woody plants, such as willow, become established before giving way

to seres dominated by slower-growing stress-tolerant woody plants (Walker

and Chapin, ����; Walker et al., ����). It is likely that the juvenilization

of upland willows by weevils is delaying the establishment of a willow dom-

inated sere, allowing for alternative community trajectories.

Why detection matters in plant herbivore studies

Since their introduction a decade ago, statistical methods accounting for de-

tection errors in observational studies (MacKenzie et al., ����; Tyre et al.,

����; MacKenzie et al., ����) have become widely used throughout ecol-

ogy. One exception is insect population ecology, where few studies have

modeled detection when investigating questions of occurrence or dynamics

(Chiari et al., ����; Govindan et al., ����; Russo et al., ����; Kéry et al.,

����; Sileshi, ����). Instead, detection is usually assumed to be perfect in

observational studies of insect herbivory, despite the fact that insects are

often cryptic and easy to miscount. When the detection rate is < 1, species

distribution models are modeling the apparent, as opposed to true, species

distribution, which biases estimates of occupancy or vital rates towards zero

(Kéry et al., ����). Even low levels of non-detection biases the estimated

relationship between these state variables and model covariates, reducing

parameter precision (Gu and Swihart, ����). Furthermore, model covari-
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ates that are also confounded with detection leads to biased predictions of

species distributions (Kéry et al., ����). This last issue may be crucial for

studies that focus on how vegetation architecture and texture affect insect

herbivore abundance, as these factors are also likely to be confounded with

detection of insects in experimental plots or survey sites.

My study provides a cautionary tale of why it is important to model de-

tection even when the detection rate was very high, in my case over ��%

in both upland and riparian habitat for stems of average size. Detection of

weevil larvae in riparian zones was lower than in upland areas due to fact

that in the riparian zone (where the cramped, tangled complex of stems

impeded both movement and visibility) observers had a difficult time in-

specting all portions of a stem for evidence of weevils (Figure �). Upland

willows grew more sparsely and plant architecture was less complicated al-

lowing observers easy access to all sides of a stem. In addition, stem size

had a large positive effect on detection rates for upland stems, but less so

for riparian ones. Detection was likely correlated with underlying weevil lar-

vae abundance in stems; large upland stems had many exit holes and large

amounts of frass making detection relatively easy. For smaller stems, the

observer might have to locate very few or even a single exit hole. The interac-

tion between habitat and size on detection was consistent with the fact that

the scaling coefficient for expected larval density in riparian stems was small

(Figure �), meaning there were fewer cases in riparian zones of large stems
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riddled with exit holes. Despite the high detection rates in both habitats,

if I had assumed that detection was perfect, I would have predicted that

weevil larvae were not disproportionately attacking larger upland stems. As

a consequence, I would have inferred that weevil larvae did not respond

to vegetative vigor, a finding which would have substantially changed the

conclusions of this study.
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Table �: Mean stem size, relative growth rate, and flowering frequency for male and
female stems in each habitat each year that are available for colonization by
weevils. Geometric means are reported for stem size and relative growth rate.
Error bars represent Bayesian ��% credible intervals of posterior distributions
of the group means. The first set of letters is for pairwise comparisons between
male and female stems within habitats and years. The second set of letters is
for pairwise comparisons between riparian and upland stems within sexes and
years. For stems in each sex and habitat, I compare mean values across years.
Different or bolded (in the case of comparisons across years) letters indicate that
the ��% credible interval of the posterior distribution of the difference between
the two means being compared does not overlap zero.

Colonization

Habitat Sex ���� ����

Si
ze

Riparian Male ��.�� (��.�� – ��.��) a,a ��.�� (��.�� – ��.��) a,a

Riparian Female ��.�� (��.�� – ��.��) a,a ��.�� (��.�� – ��.��) a,a

Upland Male ��.�� (��.�� –��.��) a,b ��.�� (��.�� – ��.��) a,b

Upland Female ��.�� (��.�� –��.��) b,b ��.�� (��.�� – ��.��) a,b

R
G

R

Riparian Male �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) a,a

Riparian Female �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) b,a

Upland Male �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b

Upland Female �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b

F
lo

w
er

in
g

Riparian Male �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) a,a

Riparian Female �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) a,a

Upland Male �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b

Upland Female �.�� (�.�� - �.��) b,b �.�� (�.�� – �.��) a,b
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Table �: Mean stem size, relative growth rate, and flowering frequency for male and
female stems in each habitat each year that are available for re-attack by weevils.
Geometric means are reported for stem size and relative growth rate. Error bars
represent Bayesian ��% credible intervals of posterior distributions of the group
means. The first set of letters is for pairwise comparisons between male and
female stems within habitats and years. The second set of letters is for pairwise
comparisons between riparian and upland stems within sexes and years. For
stems in each sex and habitat, I compare mean values across years. Different or
bolded (in the case of comparisons across years) letters indicate that the ��%
credible interval of the posterior distribution of the difference between the two
means being compared does not overlap zero.

Re-attack

Habitat Sex ���� ����

Si
ze

Riparian Male ��.�� (��.�� – ��.��) a,a ��.�� (��.�� – ��.��) a,a

Riparian Female ��.�� (��.� – ��.��) b,a ��.�� (��.�� – ��.��) a,a

Upland Male ��.�� (��.�� – ��.��) a,b ��.�� (��.�� – ��.��) a,b

Upland Female ��.�� (��.�� – ��.��) a,b ��.�� (��.�� – ��.��) a,b

R
G

R

Riparian Male �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,a

Riparian Female �.�� (�.�� – �.��) b,a �.�� (�.�� – �.��) a,a

Upland Male �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b

Upland Female �.�� (�.�� – �.��) b,b �.�� (�.�� – �.��) a,b

F
lo

w
er

in
g

Riparian Male �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) a,a

Riparian Female �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) b,a

Upland Male �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b

Upland Female �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b
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Figure �: Distribution of primary volcanic deposits and disturbance zones of the ����
Mount St. Helens eruptions (Adapted from Swanson and Major, ����). The
Pumice Plain is the eastern lobe of the pyroclastic flow and the Windy creek
deposit. I denoted the upland transects (hatched lines) and riparian transects
(solid lines) along which I tagged plants for my willow-weevil surveys.
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A.

B.

Figure �: (A) Salix growing densely along narrow perennial riparian zones and sparsely
in seasonally dry upland habitat in ����. (B) Visible damage to willow stems
from C. lapathi larval galleries. Pictured are exit holes packed with weevil frass
from galleries excavated in a S. sitchensis stem by C. lapathi larvae in ����.
Photographs courtesy of Charlie M. Crisafulli.
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A.

B.

Figure �: (A) Mating C. lapathi adults in spring ���� near galleries excavated by weevil
larvae oviposited in summer ���� by adults from the same generation. Early
instars oviposited in spring ���� were flush-feeders while those from the previ-
ous summer were senescent feeders. (B) Damage to S. sitchensis stems from
C. lapathi larval galleries. Pictured is a late stage weevil larvae just prior to
pupation in summer ����. Photographs courtesy of Charlie M. Crisafulli.
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Figure �: Mean (open circle) with ��% credible intervals (thin lines) and ��% credible
intervals (thick lines), of each coefficient’s posterior distribution from the stem-
occupancy model fitted to observed weevil herbivory data from ����-���� for
(A) colonization and (B) re-attack. Credible intervals that overlap zero are
grayed out (except for intercepts). Intercepts are the plant-level hyperparam-
eter mean colonization or re-attack rates for vegetative stems of average size
and growth rate on male and female plants in riparian zones and upland areas.
All stem-level parameters represent habitat and sex specific effects. Reproduc-
tion is the effect of stem flowering, RGR is the effect of stem relative growth
rate, and size is the effect of stem size. All parameters are on the logit scale.
Along the vertical axis I display four pairwise comparisons for each covariate
(including the intercept). The first set of letters is for pairwise comparisons
between male and female stems within habitats. The second set of letters is for
pairwise comparisons between riparian and upland stems within sexes. Differ-
ent letters indicate that the ��% credible interval of the posterior distribution
of the difference between the two parameters being compared does not overlap
zero.
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Figure �: Mean (A) colonization and (B) re-attack annual rates by weevils on vegetative
(white bars) and reproductive (gray bars) stems of average size and growth
rate within each habitat. Means were calculated as derived quantities from the
stem-occupancy model coefficients. Error bars represent Bayesian ��% credible
intervals of posterior distributions of the means. Asterisks indicate that the
��% Bayesian credible interval of the posterior distribution for the effect of
reproduction (measured as the difference in attack rate between vegetative
and reproductive stems) does not overlap zero.

��



Sc
al

in
g 

C
oe

ffi
ci

en
t

0
1

2
3

4

Weevil Attack Sink Strength Nutrient Flux Weevil Attack
Surface Area Sink Size Sink Size Nutrient Flux

A.

Sc
al

in
g 

C
oe

ffi
ci

en
t

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Riparian Riparian Upland Riparian
Colonization Colonization Re−attack Re−attack
< 32.7 mm > 32.7 mm

B.

Figure �: (A) Mean scaling coefficient of expected weevil larval density per stem with re-
spect to stem surface area, stem sink strength with respect to stem size (basal
diameter), stem nutrient flux with respect to stem surface area, and expected
weevil larval density with respect to stem nutrient flux for upland vegetative
stems available for colonization. (B) Mean scaling coefficients for riparian vege-
tative stems available for colonization for stems below and above the estimated
break point (��.� mm in basal diameter) and for upland and riparian vegetative
stems available for re-attack. Upland and riparian colonization and re-attack
rates were calculated for stems of average relative growth rate in each habitat
and were averaged across sex prior to estimating the scaling coefficient. Cred-
ible intervals containing one (the dotted line) indicate proportional scaling.
Credible intervals greater than one indicate disproportionate scaling, whereas
credible intervals containing one indicate proportional scaling. The credible in-
terval in (B) containing zero indicates expected weevil larval density per stem
is invariant with respect to size. Error bars represent ��% credible intervals of
the posterior distributions of the scaling coefficients.
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Figure �: Mean annual (A) colonization and (B) re-attack rates by weevils on upland
(solid) and riparian (dotted) stems of average relative growth rate in each
habitat with respect to size. Vital rates were calculated as derived quantities
from the stem-occupancy model coefficients. In each habitat, vital rates were
averaged over male-vegetative, male-flowering, female-vegetative, and female-
flowering stems for each size. Vital rates are shown over range of stems sizes
available in each habitat for colonization and re-attack. Error bars represent
��% credible intervals of the posterior distributions of the vital rates.
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Figure �: Mean annual attack and vital rates for male (solid) and female (dotted) stems
in riparian zones and upland areas on the Pumice Plain. All means were calcu-
lated as derived quantities from the stem-occupancy model state parameters.
Error bars represent ��% credible intervals of the posterior distributions of
these derived quantities. Letters indicate pairwise comparisons between years.
Different letters indicate that the ��% credible interval of the posterior dis-
tribution of the difference between the two means being compared does not
overlap zero. Asterisks indicate that the ��% Bayesian credible interval of the
posterior distribution for the effect of sex does not overlap zero. Gray lines
represent observed annual attack rates.
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Figure �: Expected number of (A) early weevil instars and (B) weevil eggs in attacked
riparian (white) and upland (gray) stems from three distinct larval cohorts on
the Pumice Plain. All means were calculated as derived quantities from Poisson
t-tests. Error bars represent ��% credible intervals of the posterior distributions
of these derived quantities. Asterisks indicate that the ��% Bayesian credible
interval of the posterior distribution for the effect of habitat does not overlap
zero.
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2
WHAT CAUSES FEMALE B IAS IN THE
SECONDARY SEX -RAT IO OF SAL IX
S ITCHENS I S COLONIZ ING A
PRIMARY SUCCESS IONAL
LANDSCAPE?

abstract

Sex ratios of Salix populations are often female-biased, although the mech-

anisms behind this bias are not well understood. Such biases are especially

important for dioecious species in primary succession, as skewed sex ratios

can introduce genetic or demographic bottlenecks affecting their ability to

successfully invade new areas. I determined the riparian and upland sec-

ondary sex ratios of three populations of Salix sitchensis (Sitka willow), a

dioecious pioneering woody shrub currently colonizing Mount St. Helens

after the ���� eruption, where two of the populations are found on spatially

distinct primary successional surfaces and the third is a nearby relictual

population serving as their seed source. For one of these populations, I

tracked the mortality and flowering intensity of ��� S. sitchensis riparian

and upland plants over three seasons. I quantified the amount of nitrogen,

phosphorus, and carbon allocated to reproduction at the plant level for

each sex in each habitat to test whether reproductive effort could result

in sex-biased mortality that would bias Salix sitchensis secondary sex ra-

tios. I also performed a field experiment, creating artificial streams to test

whether vegetative expansion along riparian corridors via willow ramets was

��



sex-biased. I found a consistent 2 : 1 female bias in all three populations,

with no evidence of spatial segregation of the sexes by habitat or differences

in sex ratio between the source population and the sink populations. De-

spite female S. sitchensis allocating more N, P, and C to reproduction in

both riparian and upland habitat, there was no difference in adult mortality

between the sexes. Lastly, the establishment rate of S. sitchensis vegetative

ramets did not differ between the sexes, indicating that vegetative expan-

sion was not injecting additional bias into secondary sex ratios in riparian

zones. I suggest that secondary sex ratios in S. sitchensis depend on early

acting genetic factors affecting the seed sex ratio, sex-biased germination,

or seedling mortality, as opposed to late acting ecological factors.

�.� introduction

Dioecy (separate male and female individuals) occurs in a small but widely

distributed number of angiosperm taxa, evolving independently multiple

times from an ancestral cosexual state (Charlesworth, ����; Heilbuth, ����;

Renner and Ricklefs, ����). Natural dioecious plant populations often ex-

hibit some form of biased sex ratio, typically measured as a sex-based differ-

ence in the frequency of flowering ramets (Field et al., ����a; Sinclair et al.,

����; Delph, ����). Of the cases where sex ratios are biased, the norm ap-

pears to be for male-bias, with female bias occurring half as often, and

restricted mainly to clonal shrubs with abiotic pollen dispersal (Field et al.,

����a; Sinclair et al., ����). What has remained unclear are the cause and

maintenance of biased sex ratios, specifically does sex bias occur early on,
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as genetic or molecular factors alter the (primary) seed sex ratio, or later,

as ecological factors affect the (secondary) sex ratio of the post-germination

phase of a plant’s life cycle, or both?

A diverse array of early-acting mechanisms have been advanced to explain

deviations from �:� in primary sex ratios of dioecious plant populations, as

predicted under the null models of negative frequency-dependent selection

proposed by Düssing (Edwards, ����) and Fisher (����). These range from

pre-zygotic factors, such as gametic viability selection (the certation hy-

pothesis; Stehlik et al., ����; Stehlik and Barrett, ����, ����; Taylor et al.,

����; Conn and Blum, ����; Rychlewski and Zarzycki, ����; Correns, ����),

X-chromosome meiotic drive (Taylor and Ingvarsson, ����), Y-chromosome

degradation (Stehlik et al., ����; Smith, ����), and sexual conflict (the

restorer hypothesis; Werren and Beukeboom, ����; Taylor, ����), to post-

zygotic factors, such as sex-based differences in seed viability. In addition,

ecological factors affecting reproduction and dispersal can result in evolu-

tionary stable biased seed sex ratios. For example, sib mating is predicted

to cause female-biased seed sex ratios, while local resource competition can

lead to a male-biased primary sex ratio when pollen dispersal distances ex-

ceed seed dispersal distances(de Jong et al., ����; Bulmer and Taylor, ����;

Maynard Smith, ����). Despite the potential importance of all these early-

acting factors, limited data exists on seed sex ratios due to the length of

time required to grow seed to sexually mature adults and the logistic diffi-

culties in minimizing mortality during this process (but see Stehlik et al.,

����; de Jong et al., ����; de Jong and Meijden, ����; Taylor et al., ����;

Alström-Rapaport et al., ����).
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Late-acting ecological factors are rooted in the difference in reproductive

allocation between the sexes, which in turn give rise to sexual dimorphisms

in non-reproductive traits known to affect the frequency and distribution of

each sex in a population at multiple spatial scales. Females typically allo-

cate greater amounts of carbon or total biomass to reproduction than males,

which can in turn lead to higher reproductive costs, such as delayed age of

or size at first flowering, less frequent flowering, higher mortality following

reproductive events, and lower rates of clonal growth (Obeso, ����; Delph,

����). These first three reproductive costs can cause male-bias in secondary

sex ratios measures of flowering genets (Field et al., ����a; Barrett et al.,

����). However, male allocation to reproduction may be higher than females

for other resource currencies, such as nitrogen, raising the possibility that

resources limiting plant growth are sex-specific (Ashman and Baker, ����;

Antos and Allen, ����; Chapin, ����). Such differences could lead to higher

reproductive costs for males, especially in dioecious species where males al-

locate large amounts of nitrogen to pollen production (Harris and Pannell,

����). In addition to early acting factors associated with pollen dispersal

distance, higher male reproductive costs associated with pollen production

may also be responsible for female-biased secondary sex ratios often ob-

served in dioecious plants that disseminate pollen via wind (Field et al.,

����a; Sinclair et al., ����). Females can display greater sensitivity to envi-

ronmental stress than males (Escarré et al., ����; Popp and Reinartz, ����;

Zimmerman and Lechowicz, ����), causing broad-scale geographic variation

in secondary sex-ratios as females are found less frequently in harsher sites

(Li et al., ����; Espírito-Santo et al., ����; Marques et al., ����; Pickering

and Hill, ����; Grant and Mitton, ����). Male bias in less favorable envi-
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ronments is also seen at finer spatial scales, as the sexes often segregate

by habitat (based on water availability) (Bierzychudek and Eckhart, ����).

This spatial segregation of the sexes (SSS) could be due to differential mor-

tality between the sexes as a direct reproductive cost (Bierzychudek and

Eckhart, ����), habitat specialization as an adaptive response to overcome

high reproductive costs (Dawson and Ehleringer, ����b; Dawson and Bliss,

����b), or niche partitioning as a means to reduce intersexual competition

(Mercer and Eppley, ����; Ågren, ����; Cox, ����; Freeman et al., ����).

The act of colonization itself can also alter seed and secondary sex ratios

through founder effects, and such sex biases can be persistent, depending

on the degree of isolation between source and sink populations and the

frequency of seed rain and establishment events (Field et al., ����b). De-

spite this, studies examining how the sex ratios of colonizing dioecious plant

populations change over time in primary or early secondary succession or

comparing sex ratios between source and sink populations are extremely

limited (Litrico et al., ����; Alliende and Harper, ����; Faliński, ����). In

colonizing populations (especially during primary succession) vegetative re-

production is often an important driver in species expansion (Walker and

Del Moral, ����; Krasny et al., ����). While sex bias in clonal expansion

of woody plants is well documented (see review by Obeso, ����), no stud-

ies have examined whether sexual dimorphism exists in the establishment

rate of asexual propagules in dioecious woody species, a phenomena that

has the potential to regularly distort population secondary sex ratios. Veg-

etative expansion via asexual propagules is common in colonizing riparian

woody plants, where ramets severed during flooding events root out down-

stream of parent plants or in drier sites on nearby floodplains (Karrenberg
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et al., ����; Krasny et al., ����). Sex-ratio bias, either in a colonizing pop-

ulation’s founding members or their offspring, can have important genetic

and demographic consequences for colonizing plant populations invading

new habitats. Skewed sex ratios can reduce the effective population size,

causing genetic bottlenecks that limit the ability of a population to adapt

to a new environment and increase the role of drift over selection (Sinclair

et al., ����; Barrett et al., ����). Biased secondary sex ratios can also in-

troduce demographic bottlenecks, resulting in strong strong Allee effects

and increasing the risk of local extinction (Xia et al., ����; and sensu Elam

et al., ����; van Kleunen and Johnson, ����).

In this study, I examined the adult genet secondary sex ratios of three

populations of Salix sitchensis Bong. (Sitka willow), a dioecious pioneering

woody shrub currently colonizing Mount St. Helens after the ���� eruption,

and investigated whether late acting ecological factors could be responsible

for any observed sex ratio biases. The ���� eruption involved a complex set

of geophysical forces that acted singularly or in combination to radically

transform a ��� km� area supporting forest, riparian and meadow habitats

to a complex mosaic of disturbance types that differed dramatically in the

types and abundance of biological legacies remaining in the post-eruption

environment (Foxworthy and Hill, ����; Lipman and Mullineaux, ����). At

one end of the disturbance gradient are areas immediately north and west of

the crater where all vestiges of life were removed (debris avalanche and py-

roclastic flow zones). A region of intermediate disturbance involved leveled

forests with scattered and often isolated refugia that collectively contained

most species assumed to be present in the pre-eruption landscape, but at

vastly reduced abundances (blowdown zone). At the other extreme, beyond

��



the impacts of the lateral blast, the eruption buried the understory com-

munity but plant survivorship was high(Dale et al., ����). Here, I focus on

S. sitchensis populations colonizing different disturbance zones (pyroclas-

tic flow, debris avalanche and blowdown zones) that represent a gradient

of disturbance intensities and biological legacies, as well as other environ-

mental conditions. S. sitchensis in the blowdown zone serves as the initial

seed source for Sitka willow colonizing the debris avalanche and pyroclastic

flow, providing a unique opportunity to compare the sex ratios of two sink

populations with their source population. I ask five questions: (�) Are the

populations of S. sitchensis colonizing three disturbance zones on Mount

St. Helens sex-biased? (�) Do S. sitchensis populations in these three dis-

turbance zones exhibit spatial segregation of the sexes between upland and

riparian habitat? For S. sitchensis colonizing the most heavily disturbed re-

gion, the pyroclastic flow, is sexual dimorphism in (�) adult survivorship, or

(�) vegetative spread through severed ramets responsible for any observed

sex bias seen in each habitat, and (�) does nutrient and carbon reproductive

allocation differ by sex and habitat?

�.� methods

Species description

Salix sitchensis is the dominant shrub species recolonizing Mount St. He-

lens after the ���� eruption. S. sitchensis grows densely in hydric habitats

near springs, perennial seeps, and watercourses while also occurring less fre-
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quently in upland habitat. In upland areas on the pyroclastic flow, flowering

occurs over a period of several weeks in late May to early June, just prior

to leaf emergence. Flowering in riparian zones on the pyroclastic flow is

delayed by � – � weeks, while flowering occurs earlier in the lower elevation

debris avalanche and blowdown zones. Salix is dual pollinated by wind and

insects, although which mechanism predominates depends on the species

and abiotic conditions during flowering (Tamura and Kudo, ����; Sacchi

and Price, ����; Argus, ����). For S. sitchensis colonizing Mount St. He-

lens, I do not know whether wind or insect pollination is more responsible

for successful fertilization, but I have observed several unknown species of

Diptera visiting flowers of S. sitchensis shrubs on the pyroclastic flow. S.

sitchensis sets seed in early July on the pyroclastic flow, and seeds are dis-

persed by wind and running water (Karrenberg et al., ����; Johnson, ����).

Seeds are short-lived, non-dormant, and depend critically on favorable mi-

crosites for germination (Densmore and Zasada, ����). S. sitchensis also

spreads asexually via underground runners and severed stems, and this lat-

ter form of propagule dispersal may be a necessary step in the colonization

of new areas (Moggridge and Gurnell, ����; Karrenberg et al., ����).

Adult genet survivorship and catkin production

I tagged ��� S. sitchensis plants in ���� on the pyroclastic flow and moni-

tored their demography for three growing seasons (���� – ����). In upland

habitat, I selected plants at ��� m intervals along � km subsets of four �

km + one � km permanent transects. These transects form a grid overlaid
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on the pyroclastic flow, with each separated by a distance of ��� m (Figure

��). In ����, I sexed (if possible) and marked the five S. sitchensis plants

nearest to each transect point that had at least one ramet � �� mm in

basal diameter. The minimum stem size requirement was to insure that I

only tagged adult willow plants. I tracked marked non-reproductive plants

in my study even though I could not determine their sex initially, because

flowering in future years would allow us to later sex a subset of these plants.

Individual upland plants could usually be distinguished visually, but when

plants were located very close to one another, or when I was unable to see

an obvious caudex due to burial of stems by sediment, I traced shallow roots

from each plant to group ramets by genet. In riparian habitat I established

paired riparian transects ��� – ��� m in length along both sides of three

permanent streams dominated by dense Salix and Alnus thickets (Figure

��). Visual separation of ramets by genets was not possible due to the high

density of Salix in riparian zones. To ensure that marked plants represented

different individuals, I searched for plants at � m intervals, and sexed and

marked only plants that had at least one ramet � �� mm in basal diameter

and whose ramets all could be clearly traced back to its caudex. I visited all

plants twice each season for up to three years. In June of ���� and ����, I

recorded the whether or not the plant was flowering, and, if so, the number

of catkins produced. In August of each year, I recorded plant survivorship

and ramet basal diameter. Plants were scored as “alive” if they possessed

any ramets with living foliage and “dead” otherwise. For each plant, I stan-

dardized its annual catkin production by plant size by dividing the total

catkins produced by the sum of the ramet basal diameters each year.
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Adult genet sex ratios

I conducted S. sitchensis genet sex surveys in ���� on the pyroclastic flow

along the same transects used for tagging and monitoring adult plants. I

conducted similar surveys in riparian and upland habitat on the debris

avalanche and blowdown zone. For all surveys, I scored plants that had at

least one stem � �� mm in basal diameter as male, female, or unknown (non-

reproductive) based on observations of catkins. To insure that I surveyed

individual upland genets, I employed the methodology described in the

previous section for tagging upland plants. On the pyroclastic flow I scored

all adult plants within �� m of each surveyed upland transect point. In the

debris avalanche and blowdown zone I established two (blowdown zone) or

three (debris avalanche) band transects (��� m ⇥ �� m) in upland areas and

scored all plants meeting the minimum size requirement within these bands.

For riparian plants, I surveyed genets in three (pyroclastic flow and debris

avalanche) or two (blowdown zone) riparian areas in each disturbance zone.

Riparian transects varied in length from ��� – ��� m in length, depending on

the stream length. The high density of Salix riparian thickets precluded us

from sexing all adult genets individually along riparian transects. Instead, I

randomly selected a single stem at � m intervals on each side of the stream,

a distance great enough to safely assume that stems came from different

genets. If the selected stem was non-reproductive, I traced it back to its

caudex and searched for catkins on the genet’s other stems to identify its

sex. If no other stems were flowering I scored the plant as unknown (non-

reproductive).
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Catkin biomass and nutrient content

I collected catkins from male and female upland and riparian S. sitchensis

plants on the pyroclastic flow, selecting only male catkins whose flowers

had reached reproductive maturity but had not yet lost their pollen to

wind or pollinators and female catkins whose seeds had matured but had

not yet dispersed. Due to the shortness of these phenophases and the spa-

tial and temporal heterogeneity in S. sitchensis flowering observed on and

between individual plants on Mount St. Helens, collection was done oppor-

tunistically along a subset of the transects used for the genet sex surveys.

For upland S. sitchensis, I harvested � – � catkins per plant from �� male

plants (June ����) and �� female plants (July ����) located within a band

�� m in width centered on the transect points whose length matched the

start and end point used in the genet sex surveys. For riparian S. sitchensis,

I harvested a similar number of catkins from �� male and �� female plants

(July ����) along two of the pyroclastic flow riparian transects. I dried all

catkins with �� – �� hours of collecting at ��°C for � – � days in a drying

oven prior to weighing. I ground catkins using a Retsch ball grinder, pool-

ing catkins by plant. I determined catkin %P by mass by placing a known

mass (⇠ � mg) of dried, ground leaf material in a muffle furnace at ���°C

for two hours (Miller, ����), followed by colorimetric analysis using the am-

monium molybdate method (Clesceri et al., ����). I combusted samples for

carbon and nitrogen elemental analysis with an elemental analyzer (ECS

����, Costech Analytical, Valencia, CA). I separated N
�

and CO
�

gases with

a �.� m GC column (��°C) and analyzed for total area with a continuous
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flow isotope ratio mass spectrometer (Delta PlusXP, Thermofinnigan, Bre-

men) or thermal conductivity detector on the elemental analyzer (Brenna

et al., ����).

Ramet establishment experiment

To test whether asexual colonizing ability is sex-biased, I created artificial

streams to experimentally mimic conditions where S. sitchensis spreads veg-

etatively through severed stems. In the spring of ����, I harvested ��� S.

sitchensis ramets (�� males and �� females) in three locations on the pyro-

clastic flow that had high densities of flowering willow plants. I selected a

single living ramet per genet whose basal diameter ranged from �.� – �.� cm

and was free of insect attack and other signs of cankers or injuries. I removed

all side branches, trimmed cuttings to a length of �� – ��� cm, and stored

them submerged in cold water for several days prior to planting in an exper-

imental plot located on the pyroclastic flow just south of Forsyth Creek’s

initial branch point on the northeast flank of Mount St. Helens (��.������°

N, ���.������° W, elevation ���� m). This plot contained two dried rill beds

�� m apart, each roughly � m wide, �� m long, and several cm in depth (Fig-

ure ��). I used a gravity-fed irrigation system to continually deliver water

from nearby Forsyth Creek to each rill at a rate of ���� – ���� L/hr during

the dry summer months of July - early September from ���� – ����. The

slope of the experimental plot and topography of the rills channeled the

irrigated water in such a way as to create two artificial streams when these

rills were watered. Using a completely randomized design, I planted equal
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numbers of male and female ramets centered along both streams random-

ized by sex and source location, where each ramet was separated by �� cm.

I inserted ramets to a depth of at least �� cm and sprayed them twice an-

nually with the broad spectrum pyrethroid bifenthrin (Onyx™ insecticide)

to prevent stem attack by the poplar-willow weevil (Cryptorynchus lapathi

L.), the primary willow herbivore on Mount St. Helens. To minimize elk

browse, which is common during the late fall, I constructed an electrified

fence around both streams. I allowed ramets to establish over two seasons

and in August ���� scored each ramet as “alive” or “dead” based on the

presence of living shoots and foliage.

Data analysis

I used Bayesian binomial generalized linear models to estimate male and fe-

male survivorship in ���� of the riparian and upland adult pyroclastic flow

plants tagged in ����, male and female survivorship in ���� of the ramets

planted in the establishment experiment, and riparian and upland flowering

genet sex ratios of flowering plants (the proportion of flowering genets that

were female) in each disturbance zone. I used Bayesian linear regressions to

estimate male and female catkin production in ���� and ���� on reproduc-

tive adult plants, and average plant catkin biomass, %C, %N, and %P in

each habitat. I estimated the posterior distributions for all parameters in all

models using Markov chain Monte Carlo (MCMC) methods implemented in

JAGS �.�.� (Plummer, ����a) with the rjags package (Plummer, ����b) in

the R computing environment (R Development Core Team, ����). I chose
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all priors to be noninformative and computed three chains for each param-

eter, each with a different initial value. After a burn-in period of ��,���

iterations, I accumulated �,��� samples from each chain. I evaluated con-

vergence through visual inspection of trace plots to assure stationarity and

homogeneous mixing, and by using the diagnostics of Gelman (Brooks and

Gelman, ����) and assessed model fits with posterior predictive checks (Gel-

man et al., ����). I used residual plots to confirm that variances between

groups were homogeneous, where appropriate.

All models were means-parameterized, and I computed derived quanti-

ties as the difference between two parameters’ posterior distributions, or, in

the case of reproductive allocation, as the difference between the product

of several parameters’ posterior distributions. I considered the effect of sex,

habitat, or disturbance zone to be important if the Bayesian ��% credible in-

terval of the derived quantity’s posterior distribution did not overlap zero,

and otherwise unimportant. I computed derived quantities to answer the

five questions outlined in the Introduction. �) To test whether S. sitchensis

colonizing three disturbance zones on Mount St. Helens were sex-biased, I

calculated the habitat-specific effects of disturbance zone on flowering genet

sex ratio. �) To test whether S. sitchensis exhibited spatial segregation of

the sexes between upland and riparian habitat, I calculated the effects of

habitat on the flowering genet sex ratio for each disturbance zone. �) To

test whether S. sitchensis adult survivorship on the pyroclastic flow was

sex-biased or differed by habitat, I calculated the simple effects of sex and

habitat on adult survivorship. �) To test whether S. sitchensis asexual colo-

nization was sex-biased, I calculated the effect of sex on ramet survivorship.

Lastly, �) to test whether S. sitchensis investment in reproduction is sex-
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ually dimorphic or differed by habitat for different resource currencies, I

calculated the simple effects of sex and habitat on catkin-level and plant-

level reproductive allocation. In this last case, allocation to reproduction

is first computed as the product of catkin mass, catkin production, and

concentration of N, P, and C.

A substantial number of genets surveyed were non-reproductive, poten-

tially biasing the population genet sex ratio if the non-reproductive class

was disproportionately one sex. Taking advantage of the ���� reproductive

data collected on tagged pyroclastic flow plants, I employed Bayes’ Theorem

to calculate the unconditional proportion of pyroclastic flow S. sitchensis

genets in riparian and upland habitat that were female as,

P(F) =
P(F | R) P(R)

P(R | F)
, (��)

where P(R) is the probability that a plant was reproductive, P(R | F) is

the probability that a reproductive plant was female, and P(F | R) is the

flowering genet sex ratio. I used Bayesian binomial generalized linear mod-

els to estimate P(R) and P(R | F) in the same manner as described above.

I computed the population genet sex ratio, P(F), as a derived quantity,

incorporating the uncertainty in my estimates of the probabilities on the

right-hand side of Equation ��. Alternatively, I could have used P(R) from

the flowering genet survey itself. However, the degree to which the popu-

lation sex ratio departs from the flowering sex ratio is determined by the

ratio of P(R) to P(R | F). Temporal heterogeneity in S. sitchensis flowering

on Mount St. Helens could artificially influence this ratio, given that the

pyroclastic flow genet sex survey was conducted later in the growing sea-
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son than the reproductive survey of tagged plants. I computed the effect of

habitat on population genet sex ratio as a derived quantity to test whether

S. sitchensis exhibited spatial segregation of the sexes between upland and

riparian habitat on the pyroclastic flow.

�.� results

S. sitchensis flowering genet sex ratios were female-biased approximately

2 : 1 in the riparian and upland habitats of all three disturbance zones (Fig-

ure ��). Within each habitat, there was no evidence that flowering genet

sex ratios differed across disturbance zones (Figure ��). Within each dis-

turbance zone, flowering S. sitchensis did not exhibit spatial segregation of

sexes across habitats (Figure ��). The population genet sex ratios on the

pyroclastic flow were almost identical to the flowering sex ratios observed

in each habitat with no evidence of spatial segregation of the sexes, as ��%

of the adult genets in riparian and upland habitat were female (riparian

��% CI: ��%, ��%, upland ��% CI: ��%, ��%). Adult survivorship of S.

sitchensis adult plants on the pyroclastic flow was extremely high and not

sex-biased in either riparian or upland habitat (Figure ��). Similarly, the

asexual colonizing ability of S. sitchensis ramets via severed stems did not

vary by plant sex, as roughly equal fractions of experimentally planted male

and female ramets established in the artificial streams (Figure ��). In ����,

catkin production differed neither by sex nor habitat, but in ���� riparian

females produced ��% (��% CI: �%, ��%) more catkins than riparian males

and ���% (��% CI: ��%, ���%) more catkins than upland females (Figure
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��). Male catkins had higher concentrations of N and P than female catkins

in riparian and upland habitat, but female catkins were substantially larger

(Table �). At the plant-level, females allocated more resources to seed set

than males did to flowering across all resource currencies measured (C, N,

and P) in ���� and ���� (Figure ��).

�.� discussion

Biased population sex ratios can be caused by genetic or ecological factors

that occur sequentially during the life cycle of an organism, and by the act

of colonization itself (Field et al., ����b; Stehlik et al., ����; de Jong et al.,

����; Obeso, ����; Delph, ����; Bulmer and Taylor, ����; Maynard Smith,

����; Lloyd and Webb, ����; Smith, ����; Correns, ����; Darwin, ����).

Surveys of flowering genet sex ratios, which typically examine the adult

reproductive stage due to ease of sex determination, reflect the cumulative

effect of these potential biases. Such surveys make it difficult to disentangle

the magnitude and direction of individual effects that function as series of

filters as a population cohort moves from gametophyte to adult plant. For

example, an observed female bias in a population where females experience

higher adult mortality than males could be due to sex-biased adult mortality

but also to an (unobserved) female bias in the seed sex ratio or seedling

mortality. The use of long-term demographic modeling has been proposed

as strategy for understanding how sex-based differences in life-history traits

affect secondary sex ratios (Ågren et al., ����; Waser, ����). However, this

task becomes difficult when a population is not at equilibrium, such as for
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pioneering dioecious plants that are colonizing new areas where sex bias may

be partially determined by the high levels of stochasticity associated with

the act of colonization itself. Despite the inability to self-fertilize, dioecious

plants are well suited as early colonizers, as they often are wind-dispersed,

rely on wind or generalist insect pollinators, and produce large quantities

of seed due to their long lifespans (Pannell, ����).

In this study I quantified the secondary sex ratios of three S. sitchensis

populations currently colonizing Mount St. Helens, two populations occu-

pying two distinct primary successional landscapes and one relictual popu-

lation that served as their initial seed source. In all three disturbance zones,

I observed a strong 2 : 1 female bias (Figure ��), similar to other studies of

secondary sex ratio bias in Salix (Myers-Smith and Hik, ����; Hughes et al.,

����; Ueno et al., ����; Dudley, ����; de Jong and Meijden, ����; Predavec

and Danell, ����; Rottenberg, ����; Alström-Rapaport et al., ����; Dawson

and Bliss, ����b; Alliende and Harper, ����; Elmqvist et al., ����; Craw-

ford and Balfour, ����; Faliński, ����), but inconsistent with the generally

observed trend (outside of Salix ) that male plants are more common than

female plants on highly disturbed or stressful sites (Li et al., ����; Espírito-

Santo et al., ����; Marques et al., ����; Pickering and Hill, ����; Grant and

Mitton, ����). Researchers have advanced a variety of explanations to ex-

plain the consistent female sex ratio bias in Salix, ranging from differential

mortality due to herbivory, to spatial segregation based on stress gradients,

to group selection. Here I investigated potential sexual dimorphism in re-

productive allocation, adult mortality, and vegetative reproduction through

severed stems as possible explanations for the observed secondary sex ra-

tios. In addition, I examined differences between habitats as well as source
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and recipient S. sitchensis populations to determine if spatial segregation

of the sexes or the colonization process itself causes variation in secondary

sex ratios. While I recognize that these efforts can only provide an incom-

plete picture of the causes and maintenance of sex bias these populations,

I am able to rule out several factors that are not strong contributors to the

consistent female bias in this system.

Reproductive allocation and adult mortality

Sex-biased mortality as a consequence of differing reproductive costs, ei-

ther directly or indirectly through sex-biased herbivory, is often implicated

as a mechanism underlying biased secondary sex ratios in dioecious plants

(Obeso, ����; Delph, ����; Ågren et al., ����; Åhman, ����; Allen and

Antos, ����; Lovett-Doust and Lovett-Doust, ����; Lloyd and Webb, ����;

Waser, ����). Typically, females plants allocate more biomass to reproduc-

tion than males (see review by Obeso, ����), resulting in male-biased sec-

ondary genet sex ratios (Field et al., ����a; Sinclair et al., ����). How-

ever, Field et al. (����a) hypothesized that in the case of dioecious species

with wind-dispersed pollen, male allocation to reproduction could possi-

bly exceed females when other resource currencies are considered (Harris

and Pannell, ����), resulting in female-biased secondary sex ratios. I found

no support for sex-biased reproductive allocation or mortality influencing

S. sitchensis secondary sex ratio bias. Although male catkins were more

nutrient-rich than female catkins, the larger size and more numerous pro-

duction of female catkins resulted in female S. sitchensis on the pyroclastic
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flow allocating more N, P, and C to reproduction than do males (Figure ��,

Table �). Despite greater female allocation to reproduction, I did not observe

sex-biased mortality for established genets on the pyroclastic flow (Figure

��). Higher reproductive allocation in terms of biomass, N, and P have been

observed in natural populations of other Salix species (Dudley, ����; Ueno

and Seiwa, ����; Turcotte and Houle, ����). While greater female repro-

ductive costs have been documented experimentally in Salix alaxensis (Fox

and Stevens, ����), investigations from correlative phenotypic studies into

reproductive costs in other Salix species have provided mixed results (Ueno

et al., ����; Ueno and Seiwa, ����; Obeso, ����; Turcotte and Houle, ����;

Åhman, ����; Alliende and Harper, ����; Dawson and Bliss, ����b).

Interestingly, in cases with data on secondary sex ratios and reproductive

allocation for the same Salix population, the results are consistent with my

findings of a female-biased secondary sex ratio despite greater female re-

productive allocation (Ueno et al., ����, ����; Dudley, ����; Ueno and

Seiwa, ����; Turcotte and Houle, ����). This disparity suggests that �) sex

ratio bias in Salix is likely to occur in earlier life stages, such as the ga-

metophyte, seedling, or juvenile plants, and �) compensatory mechanisms

employed by female Salix species to offset reproductive costs help reduce

sex-biased mortality in reproductively mature plants. For example, female

Salix sachalinensis and Salix integra, both commonly found in riparian ar-

eas in Northern Japan, compensated for relatively higher reproductive costs

compared to males by increasing the resource gathering capacity of vegeta-

tive shoots through a variety of physiological mechanisms (Tozawa et al.,

����; Ueno et al., ����; Ueno and Seiwa, ����).
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Colonization signature

Colonization of new areas by dioecious plant species, either at the edge

of species’ ranges or when habitat becomes available through disturbance,

can potentially alter colonizing population seed and secondary sex ratios

from those in their source populations (Field et al., ����b; Barrett et al.,

����). The sex ratio of dioecious species’ initial colonists are the result of

stochastic draws from their donor population’s sexual or asexual propagules,

whose sex ratios may well differ from one another. These draws can be few

in number, even a single chance event, and the number of colonizing indi-

viduals may be small, leading to high variability in the sex ratios of early

colonizing plant populations. Founder effects are especially pronounced in

primary successional seres. Individuals colonizing these landscapes are often

long distance colonists , and persistent, as early colonists may often remain

non-reproductive for long periods of time and colonization events can be

very rare (Walker and Del Moral, ����). Founder effects alter genetic con-

trols over the seed sex ratio produced by a colonizing population’s initial

members. This can occur when (in the case of nuclear sex determination)

only a subset of sex-determining alleles are either introduced into or drift

to fixation in small colonizing populations, and epistasis or dominance is

lost (sensu Naciri-Graven and Goudet, ����; Willis and Orr, ����).

The sex ratios of colonizing S. sitchensis populations on two spatially

distinct primary successional surfaces, the pyroclastic flow and the debris

avalanche, were initially governed by the seed sex ratio of relictual S. sitchen-

sis plants in the blowdown zone that survived the ���� eruption (pers.
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comm. C. Crisafulli). On both the pyroclastic flow and debris avalanche,

establishment first occurred in riparian zones shortly after the eruption

(����–����), after which these colonizers expanded vegetatively along ri-

parian corridors (pers. comm. C. Crisafulli). Although Salix seed rain from

the blowdone zone was high (Wood and del Moral, ����), the limited avail-

ability of "safe sites" resulted in only a small number of mass synchronous

colonization events. These events, which occurred in years with cool, wet

summers, were responsible for S. sitchensis spread into dry upland areas

(pers. comm. C. Crisafulli). In this way, these three Salix populations resem-

ble a paired island-mainland system, with limited but recurrent colonization

due to establishment barriers, despite consistent seed rain (del Moral and

Jones, ����).

The genet sex ratios of mature adults from these three populations were

all equally female-biased (Figure ��). This congruity occurred even though

all three populations differ from one another in terms of the relative impor-

tance of disturbance frequency, vegetative reproduction along riparian corri-

dors from fragmentation, ecological constraints on invading adjacent upland

habitat, and historical contingencies associated with the ���� eruption. It

is possible that the genetic or ecological factors discussed below obviated

differences in sex ratio due solely to the colonization process. Alternatively,

the colonization signature on sex ratio bias may have been erased through

continued immigration onto the debris avalanche and pyroclastic flow from

the blowdown zone. However, even if such events transpired, the consistent

female bias still suggests that the process of colonization itself does not have

a strong persistent effect on S. sitchensis secondary sex ratios.
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Vegetative reproduction

Pioneering populations in primary successional environments often succeed

using vegetative reproduction (Walker and Del Moral, ����). For exam-

ple, vegetative expansion was the main contributor to Salix spread into

upland areas or riparian zones subject to frequent flooding during primary

succession along an Alaskan river floodplain (Krasny et al., ����). Sexual

dimorphism in the establishment rate of asexual propagules, such as severed

stems, would bias a colonizing population’s secondary sex ratios towards the

sex that spreads better vegetatively in habitat. Episodic flooding caused by

heavy rain events onto snow are the primary source of post-eruption distur-

bance, although the effects were felt most strongly on the debris avalanche

(pers. comm. C. Crisafulli). A single ���-year flooding event (����) relo-

cated all riparian zones in the Clearwater drainage, resulting in vast areas

of fragmented Salix stems on the debris avalanche and the pyroclastic flow

near Spirit Lake, a portion of which subsequently established. Smaller �-year

flash-flood events scoured riparian areas in both of these disturbance zones,

causing further stem fragmentation and re-establishment (pers. comm. C.

Crisafulli). I did not find experimental evidence for sexual dimorphism in

the establishment from severed stems based on my artificial stream experi-

ment, indicating that asexual reproduction should not inject additional sex

ratio biases during colonization (Figure ��). To my knowledge, this is the

first study that has tested for sexual dimorphism in vegetative expansion,

despite its importance as a means of spread in colonizing Salix populations.

While I experimentally excluded sex-biased vegetative establishment in ri-
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parian habitat, I did not investigate whether vegetative reproduction in

upland areas is sex-biased, as all the experimentally planted ramets were

well-watered during the dry summer months.

Spatial segregation of sexes

Although male Salix plants are more drought-tolerant and more abundant

in drier upland sites compared to females (Dudley, ����; Dawson and Bliss,

����b), I did not find evidence for moisture-related spatial segregation of

the sexes in any of the three disturbance zones, as the sex ratios did not

differ between riparian and upland habitat (Figure ��). These results are

largely consistent with other studies that find no evidence or weak support

for spatial segregation of the sexes along a gradient perpendicular to ripar-

ian corridors (Hughes et al., ����; Ueno et al., ����; Ueno and Seiwa, ����;

Alliende and Harper, ����). It is possible that S. sitchensis on Mount St.

Helens are segregating with respect to some other niche dimension (such

as nutrient availability; Dudley, ����) or that different ecological processes

may be at work in each habitat (for example, competitive exclusion in

one habitat or differential juvenile mortality in the other). However, an

additional explanation might be that the process of upland invasion by

S. sitchensis is so heavily dependent on microsite availability and seasonal

weather conditions as to preclude sex-biased mortality during establishment.

If S. sitchensis must establish in years where conditions are less stressful,

sex-differences in stress tolerance may have a weak effect on survival. This

type of colonization process is consistent with the low observed Salix mor-
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tality in both upland and riparian areas (Figure ��) as well as Salix mass

establishment events historically observed on the pyroclastic flow and debris

avalanche (pers. comm. C. Crisafulli).

Early acting factors implicated

Secondary sex ratios in S. sitchensis colonizing Mount St. Helens may de-

pend on either early acting genetic factors affecting the seed sex ratio, or

a sex-bias in seed viability or seedling mortality, as opposed to late act-

ing ecological factors. Sex determination in Salix appears to be genetic

and not environmentally controlled (Alström-Rapaport et al., ����). None

of the ��� tracked S. sitchensis plants demonstrated diphasy or produced

hermaphroditic flowers over the three year course of my study. Sex chromo-

somes have not been observed in Salix, and the seed sex ratios in experi-

mentally controlled crossings of Salix viminalis clones were best explained

by a multi-locus autosomal sex determination (Alström-Rapaport et al.,

����, ����). Lack of sex chromosomes precludes a variety of early acting

mechanisms known to bias seed sex ratios, such as certation, X-chromosome

meiotic drive, and Y-chromosome degradation. Seed sex ratio bias for dioe-

cious plants where sex determination is under autosomal control is predicted

to be the summation of two offsetting phenomena that can lead to different

evolutionary stable biased seed sex ratios (de Jong and Klinkhamer, ����;

de Jong and Meijden, ����; de Jong et al., ����). High levels of sib mating

associated with low seed dispersal can cause female-biased seed sex ratios

(Maynard Smith, ����), while increased pollen relative to seed dispersal
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distance may reduce local resource competition and promote a male-biased

seed sex ratio (Bulmer and Taylor, ����). Although reported seed sex ratios

do not generally support the predictions based on pollen and seed dispersal

distance, the lack of sex chromosomes in Salix may minimize intragenomic

conflict that has been proposed to cause conflicting results in other taxa

(see de Jong and Klinkhamer, ����). For example, of the two studies on

Salix seed sex ratios, both report strong female bias (de Jong and Meijden,

����; Alström-Rapaport et al., ����). Although Salix seeds may disperse

great distances, S. sitchensis on the pyroclastic flow are heterogeneously

distributed because successful establishment hinges on seeds landing in fa-

vorable microsites, and could result in high levels of sib mating due to

clumping. Also, pollen dispersal distances are likely to be reduced by the

wet weather conditions on Mount St. Helens that regularly coincide with

pollen availability (Che-Castaldo et al., Chapter �).

In addition to female-biased seed sex ratios, sex-biased seed germination

and seedling mortality could also drive secondary sex ratios. Studies of

Salix seed sex ratios report no differences between the sexes in seed viability

(de Jong and Meijden, ����; Alström-Rapaport et al., ����). However, these

studies were conducted in such a way as to maximize germination rate for

obvious reasons, making it difficult to infer whether sex bias in seed viability

exists in natural settings. Male-biased seedling herbivory by small mammals

has been proposed as a mechanism explaining female-biased Salix secondary

sex ratios, leading to the prediction that in Salix populations where small

mammal herbivory is high, willow populations should be more female-biased

(Hjältén, ����; Danell et al., ����; Elmqvist et al., ����; Danell et al., ����).

I did not find evidence for such differential sex ratios on the pyroclastic
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flow, as small mammal subnivean herbivory is high in riparian zones, but

almost non-existent in nearby upland areas, and yet the willow genet sex

ratios remain nearly identical (Figure ��). I hypothesize that the strong S.

sitchensis adult genet female bias observed in all habitats and disturbance

zones on Mount St. Helens is caused by female bias in the seed sex ratio. This

testable conclusion is similar to those derived in other studies of secondary

sex bias in several other willow species (Myers-Smith and Hik, ����; Ueno

et al., ����), suggesting that female-biased seed sex ratios are common, if

not the norm, within Salix.
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Table �: Mean number of catkins per mm of stem basal diameter in ���� and ����,
catkin nutrient content (%C, %N, and %P), and mass by habitat and sex for
S. sitchensis plants or catkins from the pyroclastic flow. Error bars represent
Bayesian ��% credible intervals of posterior distributions of the group means.
The first letter in each pair is for pairwise comparisons between male and female
plants or catkins within each habitat. The second letter in each pair is for
pairwise comparisons between riparian and upland plants or catkins within each
sex. When present, different letters indicate that the ��% credible interval of the
posterior distribution of the difference between the two means being compared
does not overlap zero.

Habitat N Male Female

��
�� Riparian ��,�� �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) a,a

Upland ��,�� �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,a

��
�� Riparian ��,�� �.�� (�.�� – �.��) a,a �.�� (�.�� – �.��) b,a

Upland ��,�� �.�� (�.�� – �.��) a,b �.�� (�.�� – �.��) a,b

%
C Riparian ��,�� ��.�� (��.�� – ��.��) a,a ��.�� (��.�� – ��.��) b,a
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Figure ��: Distribution of primary volcanic deposits and disturbance zones of the ����
Mount St. Helens eruptions (Adapted from Swanson and Major, ����). I de-
noted upland (red lines) and riparian (blue lines) transects along which genet
sex surveys were conducted in ����, and in the case of the pyroclastic flow,
where plants were tagged and monitored from ����–���� and catkins were
collected in ���� and ����.
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Figure ��: Layout of the ramet establishment experiment in summer ����, just after
measuring ramet survivorship. The colored flags mark surviving ramets in
the eastern rill.
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3
THE EFFECT OF WILLOW
STEM-BORER HERBIVORY ON
L ITTER NUTRIENT CONTENT ,
DECOMPOS IT ION RATE , AND
NUTRIENT CYCL ING

abstract

Herbivore mediated nutrient cycling has been shown to both inhibit plant

succession in highly productive environments dominated by plant species

able to tolerate herbivory, and promote succession in unproductive environ-

ments where palatable species are preferred over unpalatable ones. However,

few studies have examined the ecosystem consequences of insect herbivory

on ecosystem processes in primary successional environments, where pio-

neering or ruderal plant species invade areas characterized by extreme nu-

trient limitation. At the same time, studies of herbivore mediated nutrient

cycling in insects has been almost entirely restricted to folivorous herbi-

vores. I quantified the effect of stem-boring insect herbivory by larvae of

Cryptorynchus lapathi (the poplar-willow weevil) on the leaf litter nutrient

quality Salix sitchensis (Sitka willow), a dioecious pioneering woody shrub

currently colonizing Mount St. Helens after the ���� eruption. I performed

a field experiment to quantify the effect of leaf litter type, weevil frass, and
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root zone environment on litter decomposition rate using litter bags and the

NH+
4 , NO�

3 , and PO+
4 nutrient supply rate using ion exchange resin. I found

that stems attacked by weevils were associated with a ��% reduction in the

phosphorus content of leaf litter and a ��% reduction in the mass of individ-

ual leaves. Leaf litter from attacked plants decomposed ��% faster than leaf

litter from unattacked stems or leaf litter from attacked stems mixed with

frass. The differences in leaf litter nutrient composition were reflected in nu-

trient supply rates, as resin available PO+
4 was three times higher for leaves

from unattacked stems as compared to leaves from attacked stems. I suggest

that weevils either prefer or perform better in drought stressed stems that

have prematurely remobilized foliar P, or that stem damage from herbivores

has prevented P translocation during the growing season or remobilization

at the end of the growing season. I conclude that weevil herbivory is decel-

erating nutrient cycling for P, a nutrient known to limit plant growth on

Mount St. Helens, and is this is likely accelerating successional change.

�.� introduction

During terrestrial primary succession, plant community establishment oc-

curs simultaneously with soil development (Gill et al., ����; Halvorson and

Smith, ����; Jenny, ����), and numerous studies have focused on their

interaction (see Vitousek, ����; Lichter, ����; del Moral and Bliss, ����;

Gorham et al., ����; Vitousek and Reiners, ����). Independently, a recent

body of literature has highlighted the importance of feedbacks between

aboveground and belowground communities mediated by plant physiolog-
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ical responses to herbivory and by herbivores themselves (Bardgett et al.,

����; Bardgett and Wardle, ����; Chapman et al., ����; Wardle, ����; Hob-

bie, ����). These studies on herbivory feedbacks have focused on either low

nutrient environments dominated by stress-tolerant plant species (Ritchie

et al., ����; Pastor and Naiman, ����; Bryant et al., ����; Leibold, ����;

Pastor et al., ����; Naiman et al., ����) or nutrient-rich environments dom-

inated by fast growing plant species (Chapman et al., ����; Singer and

Schoenecker, ����; Belovsky and Slade, ����; Ritchie et al., ����; Hobbie,

����; Holland et al., ����; Chapin et al., ����; McNaughton, ����) and has

led to two general hypotheses concerning herbivore effects on plant succes-

sion (Ritchie et al., ����). In communities where plants preferred by herbi-

vores have the capacity to replace lost tissues by increasing nutrient uptake

and relative growth rate, consumption of plants can increase the quality

and quantity of decomposer resources. This can accelerate nutrient cycling,

as the physiological changes in plants due to herbivory and the elimination

of high quality animal waste initiates a positive feedback that continues to

accelerate nutrient cycling, plant production, and competitive dominance

of these plants (Singer and Schoenecker, ����; Ritchie et al., ����). Con-

versely, in communities dominated by slow-growing, unpalatable plants or

where palatable plants are unable to tolerate herbivory, consumption of

palatable plants should decrease decomposer resource quality and quantity.

This can decelerate nutrient cycling, increasing the proportion of litter from

unpalatable plants which decomposes more slowly, further decreasing the

consumed plant’s ability to regrow lost tissue. This also initiates a positive

feedback that continues to decelerate nutrient cycling, reducing palatable
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plant production, and increases environmental stress until palatable plants

are unable to persist (Singer and Schoenecker, ����; Ritchie et al., ����).

Aboveground-belowground interactions are poorly understood in terres-

trial primary succession despite their fundamental importance to commu-

nity development and successional dynamics (Van der Putten et al., ����).

Studies of herbivore-mediated nutrient cycling in primary successional would

provide a unique perspective, as these environments are typically extremely

nutrient poor, but are inhabited by plant communities comprised of both

fast-growing pioneer species as well as stress tolerant ruderal species (Walker

and Del Moral, ����; Chapin et al., ����; del Moral and Wood, ����; Walker

and Chapin, ����; Walker et al., ����; Connell and Slatyer, ����). Given this

general lack of knowledge about the ecosystem consequences of herbivory in

primary succession, I examine how herbivory by larvae of the poplar-willow

weevil (Cryptorynchus lapathi L.) (Curculionidae: Coleoptera) on Sitka wil-

low (Salix sitchensis Bong.) (Salicaceae: Malpighiales) on the Mount St.

Helens Pumice Plain, a �� km� primary successional landscape of rock

and ash formed and sterilized by pyroclastic flows during the ���� erup-

tion, affects nutrient cycling and litter decomposition, two key ecosystem

processes. Alteration of these processes by herbivory would have profound

implications for plant-available inorganic nutrients and community develop-

ment in successional landscapes. At Mount St. Helens, nutrient limitation

drives the spread of both native and invading plants and their herbivores

(Fagan et al., ����, ����; Bishop, ����; Fagan and Bishop, ����). I address

two specific questions: �) Is C. lapathi herbivory associated with differences

in S. sitchensis leaf litter nutrient quality and mass? �) Does C. lapathi

frass, the root environment of S. sitchensis attacked by C. lapathi, and S.
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sitchensis leaf litter from stems attacked by C. lapathi accelerate or deceler-

ate leaf litter decomposition rates and the nutrient supply rate of nitrogen

and phosphorus to plants?

�.� methods

Study System

Salix sitchensis (hereafter willow) is the dominant shrub species recoloniz-

ing the Mount St. Helens Pumice Plain, but is being attacked heavily by

C. lapathi (hereafter weevils). Willow grows frequently in hydric habitats

near springs, perennial seeps, and watercourses while also occurring less

frequently in upland habitats. Field observations on the Pumice Plain from

���� – ���� demonstrated that weevils were present at very high densities

and were the primary willow herbivores. Willow stem mortality due to wee-

vil herbivory was extremely high, ranging from �� – ��% annually. Adults

feed on leaves and stems but do minimal damage. The first three weevil

instars girdle directly underneath the bark, feeding on the cambium and

phloem tissue. In contrast, later instars excavate galleys that penetrate the

sapwood and heartwood. Larvae kill the stems directly via girdling or indi-

rectly by providing access to fungal pathogens (Broberg et al., ����; Abebe

et al., ����; Harris and Coppel, ����; Primm, ����; Matheson, ����).

Willow provides large amounts of annual litter inputs on the Pumice

Plain, which often collects directly beneath willow plants forming discrete

resource hotspots. Weevil larval herbivory likely affects both the quantity
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and quality of stem and leaf litter inputs. Without herbivory, leaves are

shed each fall. However, after being attacked, leaves senesce prematurely

and stems often break off and fall to the ground during the growing season.

Herbivore-induced alterations in leaf and stem quality, as well as changes

in root exudation patterns and fine root turnover, provide a possible mech-

anism for changes in nutrient supply rates as a consequence of herbivory

(Bardgett et al., ����; Bardgett and Wardle, ����; Chapman et al., ����;

Wardle, ����; Belovsky and Slade, ����). In addition to these direct conse-

quences of herbivory, stem-borers also generate large quantities of frass that

accumulate beneath plants over the course of the growing season (Figure

��). Other studies of insect frass have shown that the relatively labile forms

of carbon and nitrogen in frass affect nutrient cycling rates over very short

times scales (Frost and Hunter, ����, ����).

Leaf Litter Nutrient Composition

In fall ����, I harvested leaves after senescence but before abscission from

attacked (n = 25) and unattacked (n = 25) stems on naturally established

willow plants growing on the Pumice Plain, and collected current year weevil

frass from exit holes on attacked stems and from beneath attacked plants.

I homogenized the leaves by type (attacked vs. unattacked), before drying

the leaf litter and frass at ��°C for � days in a drying oven. To compare

leaf nutrient content between these two types, I sampled leaves at random

(n = 5) from the homogenized attacked and unattacked leaf litter pools

for chemical analysis. I randomly selected leaves from these same pools to
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compare leaf mass (n = 10, 8). I ground leaves for chemical analysis using

a Retsch ball grinder and determined leaf %P by mass by placing a known

mass (⇠ � mg) of dried, ground leaf material in a muffle furnace at ���°C

for two hours (Miller, ����), followed by colorimetric analysis using the

ammonium molybdate method (Clesceri et al., ����). I combusted samples

for carbon and nitrogen elemental analysis with an elemental analyzer (ECS

����, Costech Analytical, Valencia, CA). I separated N
�

and CO
�

gases with

a �.� m GC column (��°C) and analyzed for total area with a continuous flow

isotope ratio mass spectrometer (Delta PlusXP, Thermofinnigan, Bremen)

or thermal conductivity detector on the elemental analyzer (Brenna et al.,

����). Using the remaining leaf litter, I inserted � g of dried leaves from

either attacked or unattacked stems into �� cm x �� cm plastic litter bags

with a mesh size of � mm�. I passed the weevil frass through #� and #��

mesh filters to remove non-frass material. All litter bags and frass were dried

periodically and stored in the open air until the following summer.

Experimental Design

I used a completely randomized split plot design to experimentally test

whether willow responses to weevil herbivory (specifically altered leaf litter

quality and root exudation and fine root turnover dynamics) affected litter

decomposition rates and the nutrient supply rates of N and P to plants. In

the spring of ����, I marked �� willow plants in a designated experimental

site on the pyroclastic flow south of Forsyth Creek’s initial branch point

on the northeast flank of Mt. St. Helens (��.������° N, ���.������° W, el-
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evation ���� m). I randomly selected half of the tagged plants and applied

bifenthrin, a synthetic pyrethroid insecticide sold as Onyx™ (FMC Inc.),

used at a concentration of �.�� ml active ingredient/L of water, until stems

were dripping, as recommended on the product label. I sprayed stems in late

June or early July and late August, when weevils were observed oviposit-

ing. I did not control for water addition because spraying was minimal

relative to recent rainfalls. The treatment did not eradicate existing infes-

tation, but completely prevented subsequent attack. Onyx™ is a blend of

bifenthrin (C
��

H
��

CIF
�

O
�

), sulfonate salts, nonylphenol ethoxylate, stan-

dard paraffinic solvents and esters of glycerin, and contains no fertilizer

constituents (FMC ProSolutions, personal communication). Therefore it is

unlikely to cause any sustained stimulation of growth in nutrient-limited

soils, nor could I find any literature reports of direct effects on plant growth.

Because bifenthrin is non-systemic and I focused my spray on stems during

a specific seasonal window, the pesticide treatment was unlikely to strongly

impact other arthropods or vertebrate herbivores (such as elk, Cervus ela-

phus) associated with willow. On �� June ����, I randomly selected whole

plots within the experimental site that were either root environments be-

neath sprayed plants (n = 5), root environments beneath unsprayed plants

whose stems were currently attacked by weevil larvae (n = 5), or plant inter-

spaces outside the rooting environment of any plants (n = 5). Within each

whole plot, I established four sub plots at intervals of �� degrees around

the center point of each plant or interspace. For all plants, I selected sub

plots that were far enough from the plant so as to not be near pre-existing

leaf litter and frass that had naturally accumulated beneath these plants

but still within the root environment based on the plant’s dripline. I ran-
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domly assigned to each sub plot either a litter bag with willow leaves from

stems that were not attacked (n = 15), a litter bag with willow leaves from

stems that were attacked (n = 15), a litter bag with willow leaves from

stems that were attacked placed on top of � g of weevil frass (n = 14), or

an empty litter bag (n = 15) (Figure ��B). I placed � g of cation–anion

exchange resin (Amberlite IRN-��� ion-exchange resin) in �.� cm circular

discs enclosed on both sides with ��� micron nylon mesh cut into small �.�

mm thick plexiglass sticks (hereafter resin stick) �� cm beneath each litter

bag (Figure ��A). I accomplished this by digging several centimeters away

from each litter bag and inserting the resin stick parallel to the litter bag

before replacing the excavated soil (Figure ��C). I used this technique in or-

der to collect and replace resin sticks without disturbing the soil above and

around the slit containing the resin stick itself. In total I emplaced three

sets of resin sticks beneath each litter bag over the course of this experi-

ment (�� June ���� – �� Sep ����), with the first set for summer ����, the

second set for fall ���� through spring ����, and the third set for summer

����. On �� Sep ����, I collected the last set of resin sticks and the litter

bags. I immediately dried the litter bag contents at ��°C for � days in a

drying oven prior to weighing the remaining leaf material. I extracted the

resin with ��� ml of � M KCl and analyzed the extracts colorimetrically for

NH+
4 , NO�

3 , and PO+
4 (Westco SmartChem ��� Discrete Analyzer, Unity

Scientific, Brookfield, Conn., USA). For the first and second time period,

NO�
3 concentrations were usually below detection threshold and I excluded

these data from my analysis.
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Data Analysis

All data analyses were generated using SAS statistical software, version

�.� by the SAS Institute (����). I used t-tests to compare attacked and

unattacked leaf litter mass, C, N and P concentrations (PROC REG). I

used separate mixed model ANOVAs to measure the effect of root environ-

ment (whole plot factor), litter type (sub plot factor), and their interaction

on �) willow leaf litter decomposition rate and �) NH+
4 , NO�

3 , and PO+
4 sup-

ply rates in each time period (PROC MIXED). For all analyses, I treated

plot as a random effect nested within root environment, and I used the

Satterthwaite method to calculate the degrees of freedom and the variance

components covariance structure. For the litter decomposition response vari-

able, I calculated the decomposition rate constant for willow leaf litter as

X0/X1.184 = e�k·1.184, where X
�

is the mass (g) of the leaf litter prior to the

experiment, X
�.���

is the mass (g) of the leaf litter at the conclusion of

the experiment, and k is the decomposition rate constant expressed in �/

year (Karberg et al., ����). For nutrient supply rate response variables, I

used the mass (g) of each ion recovered per g of ion exchange resin in each

time period. Of the ��� ion exchange resin observations, I excluded three

observations due to mold that had grown in the extractant solution and

five observations as extreme values prior to analysis. I did not exclude any

of the willow leaf litter observations. I used a significance level of P  .��

for all omnibus F-tests due to the high microsite variability associated with

soil nutrient studies in nutrient-limited environments (Gill et al., ����) and

a significance level of P  .�� for all mean comparisons. If the interaction
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term in a mixed model was significant, I conducted planned comparisons

between a subset of the least square cell means using protected LSD tests

(LSMEANS option). If the interaction term in a mixed model was not signif-

icant, I removed it from the model. Conditional on its F-value being signif-

icant in the additive model, I conducted planned comparisons of the main

effect marginal group means means using protected LSD tests (LSMEANS

option). For all analyses, I visually determined that the variances were ho-

mogenous by plotting the residuals versus the predicted values, and checked

for normality using normality probability plots and residual histograms.

�.� results

Weevil herbivory had a positive effect on willow leaf litter decomposition

under attacked and unattacked plants and on bare ground, but only in

the absence of weevil frass. Leaves from attacked stems decomposed ��%

faster than either leaves from unattacked stems or leaves from attacked

stems placed over weevil frass, while root environment did not affect the

decomposition rate constant (Table �, Figure ��). Weevil herbivory was

associated with differences in willow leaf litter nutrient content, which in

turn affected nutrient supply rates, but these effects depended on the root

environment, season, and nutrient identity. Leaves from stems attacked by

weevil larvae were smaller than leaves from unattacked stems (��.� ± ��.�

mg vs. ���.� ± ��.� mg; t-student=�.��, df = ��, P <.���). While leaves

from attacked and unattacked stems had similar %C (��.�� ± .��% vs. ��.��

± .��%; t-student=�.��, df=�, P=.��) and %N (�.�� ± .��% vs. �.�� ±
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.��%; t-student=�.��, df=�, P=.��), leaves from attacked stems had roughly

half the %P as leaves from unattacked stems (.�� ± .���% vs. .�� ± .���%;

t-student=�.���, df=�, P=<.���). Resin available NH+
4 did not differ by

root environment or litter type during either the initial summer (Jul ����

– Aug ����) the litter bags were emplaced, or the following summer (Jul

���� – Aug ����) (Table �). From Sep ���� – Jun ����, resin available

NH+
4 was higher under both attacked and unattacked plants as compared

to bare ground, but there was not an effect of litter type (Table �, Figure ��).

Resin available NO�
3 was below detection limits until the second summer

of the experiment (Jul ���� – Aug ����), where there was an interaction

between root environment and litter type (Table �). However, there were

no differences in any of the biologically meaningful planned comparisons,

other than a slightly lower amount of resin available NO�
3 under attacked

leaf litter as compared to bare ground (Figure ��). Resin available PO+
4 did

not differ by root environment or litter type during either the initial summer

(Jul ���� – Aug ����) the litter bags were emplaced, or the following summer

(Jul ���� – Aug ����) (Table �). From Sep ���� – Jun ����, there was an

interaction between root environment and litter type for resin available

PO+
4 (Table �), as in the root environment of attacked plants there was

roughly three times as much PO+
4 available under leaf litter from stems not

attacked by weevils as compared to under leaf litter from attacked stems or

bare ground (Figure ��A). This effect was not seen in the root environment

of plants not attacked by weevils or in interspaces between plants (Figure

��B,C).
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�.� discussion

Litter nutrient content and decomposition rate

While studies connecting the effect of insect herbivores on foliar chemistry

with leaf litter quality and decomposition rates are more limited in compari-

son to those for mammalian browsers, folivorous insects can both accelerate

and decelerate litter decomposition rates (Ibanez et al., ����; Frost et al.,

����; Uselman et al., ����; Sariyildiz et al., ����; Schweitzer et al., ����;

Chapman et al., ����) This is likely due to two opposing effects concerning

plant responses to leaf herbivory (Chapman et al., ����). In evergreens, her-

bivory causes a disruption of a plant’s ability to reabsorb nutrients into the

stem or roots prior to leaf abscission, increasing litter nutrient quality and

decomposition rates (Uselman et al., ����; Sariyildiz et al., ����; Chapman

et al., ����). For example, herbivory by the moth Dioryctria albovittella

and scale Matsucoccus acalyptus on Pinus edulis needles is hypothesized to

accelerate senescence or damage vascular tissue, preventing pines from re-

claiming nutrients prior to litterfall and resulting in increased high quality

litter and faster decomposition (Chapman et al., ����). In comparison, in

deciduous trees secondary metabolites can decrease litter quality and slow

decomposition rates (Ibanez et al., ����; Frost et al., ����; Schweitzer et al.,

����).

Here, I investigate how stem borers, which do not feed directly on leaves

but rather along the vascular tissues responsible for nutrient translocation

to and from leaves, affect leaf litter quality and decomposition. I find that
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while weevil herbivory is associated with reduced leaf litter P and mass (log-

ically resulting in reduced litterfall), litter decomposition rates are highest

for leaves from attacked stems decomposing in the absence of frass (Figure

��). In short, weevil herbivory accelerates decomposition of willow leaf lit-

ter, although the leaf litter itself is of reduced quality. I hypothesize that

differences in litter quality could occurs for several reasons: �) weevils may

target stems that are experiencing summer drought stress that are prema-

turely remobilizing nutrients (White, ����, ����, ����, ����), �) plants may

be able to reabsorb nutrients in response to weevil herbivory prior to stem

death, or �) weevil herbivory may reduce leaves from acquiring nutrients

in the first place. These hypotheses may not be mutually exclusive, as the

response of stem boring insects to stressed plants could be occurring simulta-

neously with their physiological disruption of nutrient translocation. This

question could be addressed by experimentally tracking seasonal changes

in leaf chemistry in attacked and unattacked leaves, something I did not

attempt in this study.

Herbivore mediated nutrient cycling

Herbivores can alter nutrient cycling rates by changing the quantity of re-

source available to decomposers in the root environment of attacked plants

(through fine root turnover and alteration of root exudation patterns) and

the quality of resources (through changes in plant litter nutrient content;

Bardgett and Wardle, ����). Plant nutrient supply as measured by resin

sticks showed that the reduced P content of leaf litter from attacked stems
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translated into reduced availability of PO+
4 to plants during the fall through

spring following the deployment of the leaf litter bags (Figure ��A). While

I did not observe differences in nutrient supply rates between attacked an

unattacked plants for N or P, the root environment x litter type interac-

tion indicated that the effects of litter quality occurred only under attacked

plants while plants not attacked by weevil larvae and in open areas PO+
4

supply rates did not differ (Figure ��B,C). Since the majority of plants in

upland areas of the Pumice Plain are attacked by weevils, this reduction

in PO+
4 availability is likely to be a widespread phenomena. Although frass

did not have a positive effect on litter decomposition rates, it did appear

to attenuate the reduction in PO+
4 availability as there was no difference

between resin available PO+
4 under leaves from unattacked stems and leaves

from attacked stems placed over frass. Frass can enhance nutrient decompo-

sition and immobilization, but these effects depend on the ratio of litter to

frass as well as the nutrient quality of the frass itself (Kagata and Ohgushi,

����a,b). While insect frass is often recycled quickly and made available to

plants in the same season it is generated (Frost and Hunter, ����), weevil

frass is of low nutrient content, as it is largely undigested wood (unpublished

data), raising the question of the degree to which it could enhance nutri-

ent cycling rates even when present in very large quantities. These results

suggest that weevil herbivory was associated with (and perhaps causes) de-

celerated nutrient cycling on the Pumice Plain with respect to P, a limiting

nutrient for net primary production in this system.

���



Successional consequences

Weevil herbivory on willow is likely accelerating succession in upland areas

on the Pumice Plain from from areas dominated by willows to those com-

posed primarily of Alnus. This is accomplished through preferential weevil

herbivory on willow over Alnus sinuata, a common woody species on Mount

St. Helens that has already encroached on willow in many of the Pumice

Plain riparian zones. The transition from a willow to alder dominated sere

has been observed in other primary successional systems, and is attributed

to differences in species life history traits as well as mammalian herbivory

(Bryant, ����; Bryant and Chapin, ����; Walker and Chapin, ����; Walker

et al., ����; Bryant et al., ����). In contrast, on Mount St. Helens, prefer-

ential weevil herbivory on willow over alder is causing the juvenilization of

willow plants in upland areas (Che-Castaldo, chapter �), resulting in plants

of reduced size and competitive ability. Weevil mediated nutrient cycling

reinforces this negative effect on willow biomass by decelerating the cycling

of PO+
4 under attacked plants. While other studies of herbivore nutrient

cycling in primary succession have found positive effects of herbivory on lit-

ter quality and decomposition, surprisingly this has translated into slowing

soil development (Classen et al., ����, ����). While this may be occurring

on the Pumice Plain in the short term, the potential willow-to-alder transi-

tion should significantly increase the nitrogen supply to this nutrient poor

landscape, having broad scale community and ecosystem level consequences.

In primary succession on Alaskan silt bars, alder N-fixation adds roughly

��% of total N found in these developing soils (Kielland and Bryant, ����;
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Figure ��: C. lapathi frass accumulates beneath attacked S. sitchensis plants during the
growing season. During the fall, both attacked and unattacked S. sitchensis

leaves collect under these plants forming resource hotspots.

Kielland et al., ����), and it seems probable that alder will have a similar

affect on the Pumice Plain. This highlights the fact that soil development

in primary succession depends both on positive feedback loops associated

with nutrient cycling as well as the identity of new species that come to

dominate as a result.
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Table �: Split-plot ANOVAs for the effect of root environment (whole plot), leaf litter
type (sub plot), and their interaction on willow litter leaf decomposition constant
(k) and nutrient supply rates for NH+

4 , NO�
3 , and PO+

4 . All degrees of freedom
are based on Sattherthwaite approximations and significant F-values (P < .10)
are denoted with an asterisk.

Response Period Start Period End Effect DF (n/d) F-Value Pr > F

k �� Jun ���� – �� Sep ����
root env. �/��.� �.�� �.��

litter type �/�� �.�� �.��*

NH+
4 �� Jun ���� – �� Sep ����

root env. �/��.� �.�� �.��

litter type �/��.� �.�� �.��

NH+
4 �� Sep ���� – �� Jul ����

root env. �/��.� �.�� <.��*

litter type �/��.� �.�� �.��

NH+
4 �� Jul ���� – �� Sep ����

root env. �/��.� �.�� �.��

litter type �/��.� �.�� �.��

NO�
3 �� Jun ���� – �� Sep ����

root env. �/��.� �.�� �.��

litter type �/��.� �.�� �.��

interaction �/��.� �.�� �.��*

PO+
4 �� Jun ���� – �� Sep ����

root env. �/��.� �.�� �.��

litter type �/��.� �.�� �.��

PO+
4 �� Sep ���� – �� Jul ����

root env. �/��.� �.�� �.��

litter type �/��.� �.�� �.��

interaction �/��.� �.�� �.��*

PO+
4 �� Jun ���� – �� Sep ����

root env. �/��.� �.�� �.��

litter type �/��.� �.�� �.��
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A.! B.!

C.!

Figure ��: A) Resin stick made of plexiglass containing a cutout disk where ion exchange
resin is inserted between two pieces of nylon mesh. B) Experimental layout for
a replicate located in the interspace between plants. C) Method for emplacing
and removing the resin stick from beneath the litterbags.
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Figure ��: Mean willow leaf litter decomposition rate constant (k) of leaves from stems
attacked by weevils, leaves from stems not attacked by weevils, and leaves
from stems attacked by weevils placed on top of weevil frass. Bars show least
square means and error bars represent ��% confidence intervals. Letters show
significant differences (P < .05) in pairwise comparisons between the leaf
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Figure ��: Mean NH+
4 recovered from resin sticks emplaced from �� Sep ���� – �� Jul

���� in the root environment beneath willow plants attacked by weevils, willow
plants not attacked by weevils, and in bare interspaces between plants. Bars
show least square means and error bars represent ��% confidence intervals.
Letters show significant differences (P < .05) in pairwise comparisons between
the rooting zone treatment levels pooled across the litter type treatment levels.
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Figure ��: Mean NO�
3 recovered from resin sticks emplaced from �� Jul ���� – �� Sep

���� in A) under the litter type treatments in the root environment of at-
tacked plants, B) under the litter type treatments (excluding attacked plus
frass) in the root environment of plants not attacked by weevils, C) under
the litter type treatments (excluding attacked plus frass) in the interspaces
between plants, D) under leaf litter from stems attacked by weevils across the
root environment treatments, E) under leaf litter from stems not attacked by
weevils across the root environment treatments, and F) under bare ground
across the root environment treatments. Bars show least square means and
error bars represent ��% confidence intervals. Letters show significant differ-
ences (P < .05) in pairwise comparisons for all means within each panel.
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Figure ��: Mean PO+
4 recovered from resin sticks emplaced from �� Sep ���� – �� Jul

���� in A) under the litter type treatments in the root environment of at-
tacked plants, B) under the litter type treatments (excluding attacked plus
frass) in the root environment of plants not attacked by weevils, C) under
the litter type treatments (excluding attacked plus frass) in the interspaces
between plants, D) under leaf litter from stems attacked by weevils across the
root environment treatments, E) under leaf litter from stems not attacked by
weevils across the root environment treatments, and F) under bare ground
across the root environment treatments. Bars show least square means and
error bars represent ��% confidence intervals. Letters show significant differ-
ences (P < .05) in pairwise comparisons for all means within each panel.
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APPENDIX A : PUMICE PLA IN ENVIRONMENTAL

CONDIT IONS

I recorded temperature, relative humidity, precipitation, and soil volumetric

water content on the Pumice Plain during the course of my study (����–

����) using:

• �� HOBO® U�� temperature/relative humidity data loggers located

at � paired riparian and upland sites

• the Spirit Lake SNOTEL (Site Number: ���)

• � Decagon® EC-� soil moisture sensors in a �� m x �� m upland plot

near Forsyth Creek
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Figure A�: (A) Average monthly precipitation on the Pumice Plain from ���� – ����.
Precipitation data were recorded by the Spirit Lake SNOTEL (Site Number:
���). (B) Average monthly maximum daily temperature and (C) minimum
daily relative humidity for riparian zones (white bars) and upland areas (gray
bars) on the Pumice Plain from ���� - ����. These data were recorded using
�� HOBO® U�� temperature/relative humidity data loggers located at �
paired riparian and upland sites. Error bars on (B) and (C) represent ± �
standard deviation.
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Figure A�: Soil water potential measured at a depth of �� cm (black lines) and daily
precipitation (gray lines) during a portion of the (A) ���� and (B) ����
summer dry-downs on the Pumice Plain. Soil volumetric water content was
recorded hourly using � Decagon® EC-� soil moisture sensors in a �� m
x �� m upland plot. Volumetric water content was converted to soil water
potential using a soil release curve estimated from soil cores taken in this
plot. Precipitation data were recorded by the Spirit Lake SNOTEL (Site
Number: ���).
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APPENDIX B : QUANTIFY ING WILLOW STEM

TOPOLOGY

I treated willow plants as nested sets of stems. First order stems originated

from the ground or caudex (which may be elevated above the soil due to

erosion). Higher order stems are initiated from axillary buds, each located

between a leaf and stem one order lower. This representation designated

consistent and interpretable sites (branches) that weevils may have been

attacked with a simple set of assignment rules that worked for all willow

topologies observed in my sample. An nth order stem was defined as a stem

that branched from an nth – � order stem. This process continued for n

orders until the current annual growth (CAG) of any first order stem was

reached. CAG, which I defined as the plant tissue extending from the previ-

ous year’s terminal bud scar to an active meristem, was the only portion of a

S. sitchensis stem that had living leaves attached during the growing season.

Several methodological issues arose while implementing this approach:

�. At a branch point, it was sometimes difficult or misleading to identify

the nth order stem from the nth + 1 order stem based on branch orien-

tation or bud scars. This difficulty arose because the terminal branch

did not always grow in a straight line, and older axillary and terminal

bud scars were sometimes difficult to distinguish from one another. If

an nth order stem was elk browsed or damaged from weevil attack, a
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higher order stem often outgrew the damaged stem, such that, after

several seasons, the higher order stem resembled the nth order stem.

Alternatively, the damaged nth order stem later broke off at or near the

branching point with the new dominant higher-order stem. For these

reasons, I defined a �st order stem as a trace along a branch from

caudex to tip that follows the thickest route at any branching point.

The same rule applied to all higher-order stems. Thus, my geometri-

cal representation of a stem did not necessarily reflect its historical

growth process.

�. It was sometimes difficult to determine whether a stem originating

close to the ground did so from caudex or was a �nd order stem located

close to the base of a �st order stem. In such cases, the determining

factor was to decide whether weevil attack on one stem could influence

mortality of the other by damaging woody tissue below the second

stem. If so, then one is a �nd order stem from the other. In the case

where a stem appeared to split evenly into two equally sized stems

near the caudex, I treated both as �st order stems.

�. Some �st order stems included both dead and living tissue. These

types of stems were separated into two groups, one where higher-

order stems originated from epicormic buds near the base of the �st

order stem following severe damage to the stem, and the other where

higher-order stems originated from axillary buds following abortion or

removal of the apical shoot. In the first group, the damaged portion of

the stem was treated as new caudex and all higher-order stems were

re-categorized as order n-�. In the second group, the stem orders were
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not re-categorized, but the damaged portion was excluded from size

calculations based on basal diameters. Stems in both of these groups

were excluded from all analyses.

�. Additional plants were added in ���� to offset stem mortality. These

were included in my hierarchical stem-occupancy model by pooling

their ���� data with the ���� data from the remaining plants and so

on. I did this because colonization and re-attack for any stem could

not be estimated without knowing whether the stem was attacked in

the previous year (the occupancy estimate from ���� in my model). I

were able to artificially categorized the added plants because I did not

estimate year-specific covariates on colonization and re-attack. These

plants were excluded from the calculation of annual occupancy, colo-

nization, and re-attack by plant habitat and sex.
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APPENDIX C : EST IMATION OF ADJUSTED BASAL

DIAMETERS

I modified Rüger and Condit’s [�] statistical methodology to estimate rou-

tine errors associated with caliper measurements of willow stem basal diam-

eters. In ����, two independent observers conducted paired basal diameter

measurements on willow stems of various sizes. I assumed that the routine

measurement error was a linear function of the true, but unobservable, basal

diameter. This was consistent with my experience in the field where it was

usually more difficult to correctly position the calipers around the bases of

large stems due to their complex geometries, whereas the bases of smaller

linear stems were more conducive to accurate measurements. To estimate

how this routine error changes with respect to stem size, I used the simple

Bayesian model,

Pr (a, b, z | x) µ
103

’
i=1

2

’
j=1

N
⇣

xi[j] | µ = zi, s = a+ bzi

⌘
⇥ (�)

uniform (a | 0, 100)⇥ uniform (b | 0, 100)

where x is a vector of untransformed basal diameters, a and b are regression

coefficients, and z is vector of true basal diameters. The subscript i indexes

stems (i = 1...103) and the subscript j indexes measurements (j = 1, 2) on

the ith stem. Priors were chosen to be positive and uninformative uniform

distributions. I obtained posterior distributions from the model using a hy-
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brid Markov chain Monte Carlo (MCMC) algorithm implemented in the R

computing environment [�], where parameter values were sequentially up-

dated, as in the Gibbs sampler, whereas the acceptance criterion depended

on the likelihood ratios, as in the Metropolis–Hastings algorithm [�,�,�].

I used a normal proposal distribution, whose mean was the value of the

given parameter in the current iteration and whose standard deviation (step

width) was adjusted during the burn-in period such that the acceptance rate

remained roughly ��% [�]. Three chains were computed for each parameter

with different initial values. I used a burn-in period of ��,��� iterations,

after which I accumulated ��,��� samples from each chain. I assessed con-

vergence through visual inspection of trace plots to assure stationarity and

homogeneous mixing, and by using the diagnostics of Gelman [�].

For some stems in my study, basal diameter measurements across years

yielded either negative or abnormally large positive growth increments, both

of which were biologically unreasonable. I did not wish to exclude these

stems from my study, nor did I wish to employ arbitrary rules to correct

these data artifacts. Instead, I relied on my prior beliefs about growth in-

crements and routine measurement error to adjust the observed basal diam-

eters such that all growth increments were positive and biologically feasible.

To accomplish this, I used the over-parameterized Bayesian model,

zi,j = b1,jT1,j + b2,jT2,j + b3,jT3,j (�)

Pr (b
1

, b
2

, b
3

, z | x,a,b) µ
3

’
i=1

N

’
j=1

N
�
xi,j | zi,j, s = a+ bzi,j

�
⇥ (�)

N

’
j=1

uniform
�
fi1,j | 0, 100

�
⇥
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3

’
i=2

N

’
j=1

gamma
⇣

bi,j | ks[j], qs[j]

⌘
⇥

N (a | 1.152, .299)⇥

N (b | .0298, .0186) ,

where x is a vector of untransformed basal diameters, b
1

is a vector of

true stem diameters, b
2

and b
3

are vectors of growth increments, and z is a

vector of adjusted basal diameters of the same dimension as x. The subscript

i indexes years (i = 1...3), the subscript j indexes stems (j = 1...N) in the

ith year, and the subscript s indexes groupings of stems (s = 1...8) based

on their genet’s sex and habitat and the transition years (Table C�). N is

the total number of tracked �st and �nd order stems in my study. The first

binary indicator (T1) equal one if a stem was alive in the ith year and zero

otherwise. The remaining two binary indicators, T2 and T3, equal one if the

stem was alive during the transition between years i and i � 1 and zero

otherwise.

The posterior distributions of a and b from Equation � enter as fixed nor-

mal priors in Equation �. The priors for b
1

were positive and uninformative

uniform distributions. I used informed gamma distributions for all b
2

and

b
3

priors, where the maximum likelihood estimates of the shape (k) and

rate (q) parameters were computed for all observed positive growth incre-

ments in each of the s groups (Table C�) using the fitdistrplus package [�]

in the R computing environment [�]. Whereas this informed prior was based

on observed and not true basal diameters, the routine measurement error

associated with these measurements should not have led to overly biased

growth increments. All the informed priors in my model were derived from
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my field data and represented my best belief about the growth rates of Salix

stems in my study and the routine errors associated with measuring their

basal diameters. Equation � combined these prior beliefs with the observed

sequence of basal diameter measurements for any given stem to insure that

all growth increments were positive and to reduce overly large growth in-

crements by partially attributing such observations to measurement error.

I illustrate this correction method for two stems whose observed sequence

of basal diameters was biologically inconsistent due to measurement error

(Figure C�). In addition, Equation � used the informed priors to predict

basal measurements for the year prior to tagging for stems recruited to

plants in ���� and ����, when stems were smaller than my minimum basal

diameter requirement for tracking. This avoided setting basal diameters in

years prior to tagging to zero or some other arbitrary value. Equation �

also predicted any missing basal diameter data in the few cases where basal

diameters were accidentally not recorded for a tagged stem in a given year.

This imputation was done for ��% of the ���� relative growth rate calcu-

lations and ��% of the ���� relative growth rate calculations. The number

of imputations in ���� is higher as I did not tag �nd order upland stems in

����.

I estimated posterior distributions for all basal diameters
�
zi,j

�
using

Markov chain Monte Carlo (MCMC) methods implemented in JAGS �.�.�

[�] with the R�jags package [�] of the R computing environment [�]. Three

chains were computed for each parameter with different initial values. I

used a burn-in period of �,��� iterations, after which I accumulated �,���

samples from each chain. I assessed convergence through visual inspection

of trace plots to assure stationarity and homogeneous mixing, and by using
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the diagnostics of Gelman [�]. For each basal diameter
�
zi,j

�
, I used the pos-

terior distribution’s mean in the calculation of the adjusted basal diameter

(referred to in the main text as “ stem basal diameter”) and relative growth

rate covariates for all pooled individual plant units included in Equation �

in the main text.
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Table C�: Group-level maximum likelihood estimates of the shape (k) and rate (q) pa-
rameters governing the informed gamma priors for b

2

and b
3

. These were
computed from all observed positive growth increments in each of the s groups
(each group’s sample size is indicated by n). Groupings were based on stem
habitat, sex, and transition years.

s Habitat Sex Transition ks qs n

� Upland Male ����–���� �.��� �.��� ���

� Upland Female ����–���� �.��� �.��� ���

� Upland Male ����–���� �.��� �.��� ���

� Upland Female ����–���� �.��� �.��� ���

� Riparian Male ����–���� �.��� �.��� ���

� Riparian Female ����–���� �.��� �.��� ���

� Riparian Male ����–���� �.��� �.��� ���

� Riparian Female ����–���� �.��� �.��� ���
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Figure C�: Observed (gray) and adjusted (black) basal stem diameters for (A) a stem
with a negative growth increment from ����–���� and (B) a stem with a
missing ���� stem diameter measurement. Black circles and error bars rep-
resent the mean and ��% credible intervals of the adjusted stem diameter
posterior distributions from Equation �.
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APPENDIX D : AGGREGATING WILLOW STEMS

We pooled the data for each �st order stem and its associated �nd order

stems to create the individual plant units (hereafter “stem”). We summed a

stem’s �st and �nd order basal diameters and number of catkins each year to

calculate the annual basal diameter, in millimeters, and catkin count as met-

rics for stem size and reproductive allocation, respectively (Figure D�). For

each year, we created a binary indicator that equaled one if flowering stems

had � 3 catkins, and zero otherwise. After examining cumulative frequency

plots of the number catkins per stem, we chose this cutoff to group stems

that committed only superficially to reproduction with non-reproductive

stems, as opposed to with those that invested heavily in flowering. We cal-

culated the relative growth rate (yr�1) for each stem as the difference in

the log of stem size from year t to year t + 1 for the sum of the �st order

stem and any �nd order stems alive during the second visit of year t and

first visit of year t + 1. For each observer, a stem was scored as attacked if

the presence of weevils was detected on any of its �st or �nd order stems.
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Figure D�: Diagram of willow stem surveyed in summer of year t and spring of year t+ 1.
This stem had two �nd order stems (�) and (�). In year t the stem size would
be calculated as the sum of basal diameters of the �st order stem (�) and the
two �nd order stems (�) and (�). In year t + 1, the stem size would exclude
the dead �nd order stem (�). The relative growth rate would be calculated as
the difference in the log of stem size where in both years only stem (�) and
stem (�) are included in this calculation, as stem (�) is dead in year t + 1.
In both years, we would score the stem as attacked, as weevil larvae were
observed in either the �st order stem or any of its �nd order stems.
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APPENDIX E : STEM-OCCUPANCY MODEL
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Figure E�: Posterior predictive checks of the dynamic stem occupancy model (Equation
�). Test statistics were calculated from the observed data plotted against test
statistics calculated from simulated data bracket a line with intercept � and
slope = �, indicating adequate model fit. The proportion of points above the
line give the Bayesian P value (Pb). Values of Pb near � or � indicate lack of
fit.
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