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In this disseration, the author studies sequential Bayesian learning problems

modeled under non-Gaussian distributions. We focus on a class of problems called
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tins index policy. The Gittins index is computationally intractable and approxi-
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proach can be used to approximate the Gittins index.
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Chapter 1: Introduction to Optimal Learning

The field of optimal learning [1] studies the efficient collection of information

in stochastic optimization problems subject to environmental uncertainty. We are

surrounded by situations where we need to make a decision while we do not know

some or all of the relevant information needed. A few examples are given below.

• Business - We need to identify the best set of features to include on a new

smartphone to be released, e.g. iPhone 6. We can run market tests to collect

consumer response, but these tests are time-consuming and costly. While

information is not free and time is limited, how do we balance time, cost, and

the need for learning consumer demand when performing market tests?

• Energy - Finding optimal place for wind farms is no easy task. Wind conditions

can depend on microgeography - cliffs, valley, waters, and so forth. To find

the best locations, teams with sensors must be sent to make measurements.

Given the vastness of lands, how do we optimize the search process so as to

minimize the cost and labor? Moreover, wind conditions may variate across

seasons, making it necessary to visit a same place multiple times, which brings

more challenge to the job.
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• Healthcare - The first step in curing a disease usually involves finding a small

family of effective base molecules and testing the family of their variations.

Each test on one variation can take a day at high expense, while the per-

formance is uncertain. How do we design an efficient and economic testing

plan?

In such applications, we are facing problems where uncertainty is driven by

unknown probability distributions. While we learn about these unknown distribu-

tions by making measurements/observations/tests, we have an overall objective to

fulfill at the same time.

1.1 Problem Classification

Given the diversity of optimal learning problems, they can be classified based

on the following problem features.

• Online versus offline - Online problems are problems in which we learn form

experiences as they occur. For example, we might adjust the price of a product

on the Internet and observe the revenue. Every decision or move we make

incurs a payoff or cost, and therefore there is a balance between the cost of

learning and future benefits. In offline problems, we might be working in the

lab under a budget for making measurements and learning from unsuccessful

experiments at no cost. After this stage of learning is completed, we make a

decision to choose a design or a process that will be put into production.
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• Objectives - Problems differ in terms of what we are trying to achieve. Most

problems fit well into some minimization (on costs or losses) or maximization

(on revenue or payoff) problems. Sometimes, we may also be interested in

finding the best design, or finding something that is within some margin of

error around the best.

• Measurement decision - In some problems, we face a small number of choices,

e.g. drilling test wells to learn about the potential for oil or natural gas.

The number of candidate drilling places may be small, but each test can cost

millions. Alternatively, we may face big data problems, e.g. choosing 20 pro-

posals out of 100 that have been submitted. Each of these problems introduce

different computational challenges because of the size of the search space.

• Implementation decision - The ability to collect the best information depends

on what we do with the information once we have it. What to observe (mea-

surement decision) is closely related to what to implement (implementation

decision). In many cases, they are the same, e.g. finding the best alternative

and exploit it. Sometimes, they are different, e.g. we might measure a link in

a graph in order to choose the best path.

• What we believe - In many applications in business, medicine, and various

branches of engineering, the decision-maker is able to formulate a belief about

the unknown distributions, and gradually improve it using information col-

lected from expensive simulations or field experiments. We may start with

some knowledge about the system we study, which allows us to make reason-
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able assumptions about different choices. For example, we can put a normal

distribution of belief on an unknown quantity. This part will be specifically

covered in details in Section 1.3.

• Nature of a measurement - This is a part closely related to what we believe in

learning. Is the measurement observed with perfect accuracy? If not, do we

know the distribution of the error in taking the measurement?

In the field of optimal learning, assorted problems and applications share simi-

lar features, meaning that the general ideas and model frameworks behind them are

usually the same. In this dissertation, we focus on one particular family of problems,

the multi-armed bandit problem, but the implication of our study is not restricted

to this type.

1.2 The Multi-armed Bandit Problem

The multi-armed bandit problem [2] or the bandit problem is a fundamental

class of optimal learning problems that has inspired some of the pioneering work in

the field of optimal learning. Rather than being an important application itself, the

bandit problem is useful for helping us understand the basic idea behind optimal

learning problems.

Motivated by its name, the multi-armed bandit problem refers to pulling the

levers of a collection of slot machines, each with with a different winning probability.

Suppose that we face M slot machines and have money enough to play N rounds.

We denote our finite set of choices of machines by X = {1, 2, ...,M}, which is also
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called the decision space in optimal learning. If we choose to play machine xn ∈ X at

stage n = 0, 1, 2..., we collect single-period random winnings W xn
n+1 at the beginning

of stage n + 1, and the iteration goes on. For each machine x, the winnings from

playing it are generated from some common distribution fx, whose expected value

µx is unknown. We hope to maximize our total winnings at the end of the game.

Therefore, naturally we would like to estimate µx for each machine so that we can

invest our money on the best machine, while the only way to do this is by paying

to play the machines and learning from the outcomes. For this reason, we have

to balance the desire to search for the best machine with the overall objective to

accumulate as much wealth as possible. In practical use of the bandit model, the

competing “arms” or “alternatives” (slot machines in the original story) can be

different system designs, pricing strategies, or hiring policies.

To achieve our objective, we need a playing strategy that tells us which ma-

chine to play at each stage based on the information we collect up to that time.

Such a decision rule is called a measurement policy in optimal learning, denoted by

π. Let Fn be the sigma algebra generated by the first n decisions x0, x1, ..., xn−1

as well as the resulting rewards W x0
1 , ...,W xn−1

n , then a policy π is a sequence of

functions mapping Fn into X for each n. Let Π be the set of all such decision rules,

the objective function for the bandit problem can be written as

max
π∈Π

Eπ
N∑
n=0

γnµxn (1.1)

where 0 < γ < 1 is a pre-specified discount factor (like interest rate). In words, we

are looking for a playing strategy that yields the highest expected total discounted
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payoff. Throughout the entire dissertation, quantities are subscripted by the time

at which they become known; thus in the discrete time above, xn is chosen at

time n, but the output W xn
n+1 only becomes known at the beginning of next period.

Everything else, including policy information and choice of alternative, is put into

the superscript.

With the bandit problem formulated as an optimization problem, there are two

key issues that need to be addressed before it is solved. First, the mean rewards µx

are unknown. Therefore, we need a framework under which the mean rewards can

be evaluated or estimated. There are two different types of philosophy on looking

at it, through the frequentist perspective and the Bayesian perspective of statistics.

In this thesis, we apply the Bayesian perspective to learning problems, which is

described in Section 1.3. Secondly, the challenge of solving the bandit problem is

that the expected total discounted payoff cannot be calculated unless a decision

rule is stated first so that we know what to measure at each step. To this end,

the optimal control problem (1.1) is virtually impossible to solve. As a result, most

bandit literature starts from defining a measurement policy first, and then aims at

proving its optimality if possible. Many such heuristic policies will be introduced in

Section 1.4.

1.3 The Bayesian Perspective

Generally speaking, the core of every learning problem is a probabilistic state-

ment of what we believe about parameters that characterize the uncertainty in the
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problems we study. Such beliefs are influenced by observations, like in a bandit

problem we learn about the mean rewards µx from the outcomes of each machine.

There are two types of philosophy on how we charaterize such probabilistic beliefs,

the frequentist perspective and the Bayesian perspective [3].

The frequentist perpective models things under classic statistical framework,

and it is an approach that is most familiar to people with a background in in-

troduction level statistics courses. For example in the bandit problem in Section

1.2, under the frequentist view each machine is assumed to generate rewards from

some fixed underlying reward distribution with mean µx, which is seen as an un-

known constant. We can estimate the value of µx using classic statistical methods.

For example, method of moments or maximum likelihood estimates would be good

choices.

The Bayesian perspective casts a different interpretation on the estimates of

parameters, which is particularly useful in the context of sequential studies in opti-

mal learning. Under the Bayesian perspective, unknown parameters are character-

ized as random variables, which are believed to follow some prior distribution under

our initial beliefs. The initial belief describes our knowledge or subjective view on

the parameters before we make any observations. After a measurement is taken, we

update the prior distribution with the observation to form a posterior distribution,

which becomes the next prior distribution to the next measurement iteratively. This

dissertation is based entirely on the Bayesian perspective.

In the bandit problem, for each fixed arm x, the rewards W x
1 ,W

x
2 , ... are drawn

from a common sampling distribution with density fx (·;λx), where λx is an unknown
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parameter (or vector of parameters). The rewards are conditionally independent

given λx. Under the Bayesian perspective, the unknown parameter λx is modeled

as a random variable, and our beliefs about the possible values of the parameter at

time n are represented by the conditional distribution of λx given Fn.

For example, assume that the rewards are characterized by normal distribu-

tions. On one particular machine, while we drop the machine superscript x for

simplicity, the payoffs from playing it are generated by W ∼ N (λ, σ2
W ). The distri-

bution mean λ is unknown and what we are interested in learning, while the variance

σ2
W , which captures the variation in observation, can either be known or unknown

to us (it is actually not unrealistic to assume a known variance in many practical

applications, e.g. in finance practioners frequently use constant volatility models)

and in this example we assume it is known. Under the Bayesian perspective, we

start with a prior belief on λ by assuming that λ ∼ N(θ0, σ
2
0), which characterizes

our subjective belief on the mean. In practice, we usually approach problems with

some sort of prior knowledge, and when we do not, an uninformative prior can be

used, so the Bayesian prior requirement is quite adaptive.

After making the first observation W1, we can calculate by the Bayes formula
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that

P (λ ∈ dx|W1 = y) =
P (W1 = y|λ ∈ dx)P (λ ∈ dx)

P (W1 = y)

=

1√
2πσ2

W

e
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2σ2
W dy 1√
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2
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0

e
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2

(1.2)

We observe from (1.2) that the posterior distribution of λ is still normal with mean(
θ0
σ2
0

+ y
σ2
W

)
/
(

1
σ2
0

+ 1
σ2
W

)
and variance 1/

(
1
σ2
0

+ 1
σ2
W

)
. This relationship can be writ-

ten more concisely under the reciprocal of variance, which we define as the precision

β. Precision has an intuitive meaning, as smaller variance means less uncertainty

in the outcome and thereby more precise. Accordingly, we denote precisions by

βW = 1/σ2
W and β0 = 1/σ2

0. Then, (1.2) can be written as

P (λ ∈ dx|W1) =
β1√
2π
e−

1
2
β1(x−θ1)2 (1.3)

where β1 = β0 +βW and θ1 = (β0θ0 + βWW1) / (β0 + βW ). Similarly, after observing

Wn+1 in the (n+ 1)th iteration, the updated mean and precision of our belief on λ

are given recursively by

θn+1 =
βnθn + βWWn+1

βn + βW
(1.4)

βn+1 = βn + βW (1.5)

Relationship like this is called conjugacy [4], meaning that prior and posterior

distributions of parameters have the same type of distribution at all stages. In

words, equation (1.5) states that under the Bayesian perspective we become more
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certain of µ as more measurements are taken, and (1.4) characterizes the mean of

our belief as a weighted average of all observations and our initial belief. This is

why the sequential process of sampling and updating is also called learning. Since

(θn, βn) is a pair of sufficient statistics for the normal prior distributions, they fully

characterize our beliefs about λ. In Bayesian conjugate models, if there is a set of

sufficient statistics kxn for the conditional distribution of λx given Fn, like (θn, βn) in

this example, we call them the knowledge states. In the classic multi-armed bandit

model, parameters λx and λy are independent for any x 6= y, and likewise the single-

period rewards are independent across alternatives. Thus, our beliefs about all the

alternatives can be completely characterized by kn =
{
k1
n, ..., k

M
n

}
.

In this example, the sampling distribution of rewards and belief distribution of

parameters are both normal. Therefore it is called the normal-normal model. There

are not many conjugate pairs like this in Bayesian analysis. We will introduce

mainstream non-Gaussian conjugate models in Chapter 2, and they are the focus

of this dissertation. Beliefs based on conjugate priors are easy to store and update,

making such models useful for practitioners.

1.4 Measurement Policy

Central to the concept of optimal learning is the measurement policy. In gen-

eral, there are two types of policies, the deterministic ones and the sequential ones.

In a deterministic policy, we determine what to do before making any measurment,

whereas in sequential policies the decision on what to measure next may depend on
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past observations.

It’s possible to characterize the optimal measurement policy in the bandit

problem mathematically. Assume that we are in knowledge state kn after making n

measurements, the next observation Wn+1 will be used to update kn to kn+1. This

updating process can be seen as a transition function T

kn+1 = T
(
kn, xn,W

xn
n+1

)
(1.6)

Let V (kn) be the value of being in state kn, which is the objective function (1.1)

in the maximization problem. On an infinite time horizon, i.e. N = ∞, Bellman’s

equation characterizes the optimal decision by

V (kn) = max
x∈X

(C(kn, x) + γEV (kn+1(x)) |kn) (1.7)

where the quantity C(kn, x) captures the expected gain from playing arm x in state

kn. We let the solution to (1.7) be xn, and X∗(K) be the complete mapping from the

state space of all knowledge states K to the decision space of all alternatives/actions

X . We refer to the function X∗(K) as the optimal policy if it describes the solution

to (1.7) for all states kn ∈ K.

As mentioned before, the equation (1.7) is virtually impossible to solve, even

for very small problems. Not surprisingly, the field of optimal learning consists pri-

marily of finding good heuristics. There are pros and cons of every measurement

policy, and thereby different policies are recommended for different problems, learn-

ing contexts, as well as objectives. We introduce some of the most popular policies

under the context of bandit problems, while their use is not restricted to bandits

and also generally apply to other optimal learning problems.
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• Pure Exploration - A typical pure exploration strategy samples each alterna-

tive with equal probability. In a bandit problem with M arms, each alternative

is sampled with probability 1/M . Pure exploration is not recommended for

bandit problems because it does not exploit the economic value of best alter-

natives currently available. Instead, it focus purely on estimating the value of

each choice. Therefore, pure exploration can be effective for offline learning

problems, especially when the number of alternatives is extremely large.

• Pure Exploitation - As opposed to pure exploration, pure exploitation exploits

the best alternative given current knowledge about our choices. For example

in the normal-normal bandit problem, after n iterations we would choose to

measure

xn = arg max
x∈X

θxn.

The pure exploitation policy is a natural fit for online problems. However,

while it seems to focus on the options that appear to be the best, it is very

easy to get stuck on some sub-optimal choices, while there might exist better

alternatives but we have little information about them.

• Epsilon-Greedy Exploration - This is a simple strategy introduced in [5] that

mixes the pure exploration and pure exploitation, so as to avoid the limita-

tions of them. When using this strategy, we explore with probability ε and

exploit with probability 1 − ε, where ε is a tunable probability value. The

problem with this mixed exploration/exploitation strategy is that ε must be

set subjectively for each application, and when we explore we sample from
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the entire population including the clearly suboptimal ones. This defect can

be mitigated by using a sequence of decreasing εn values rather than a fixed

one. At the begining of the experiement when we are lacking information, it

is better to explore. Therefore it is reasonable to use exploration probility εn

that declines with time, but not too quickly, otherwise we would easily get

stuck on one alternative. One way to implement this idea is by setting

εn = c/n

where 0 < c < 1. In this case, we would measure x conditionally with prob-

ability 1/M if we explore, and in the limit the number of times x will be

measured is
∞∑
n=1

c

nM
=∞

This assures that each alternative is measured infinitely often and learned

perfectly so that we won’t leave out an optimal choice by mistake. At the

same time, we also spend more time on the alternatives that we think are the

best.

• Knowledge Gradient - The name knowledge gradient [6] comes from the simple

idea of measuring the alternative that produces the greatest value of informa-

tion, i.e. ”maximize the increment of our knowledge”. In an M arm bandit

problem, suppose we are in knowledge state kn after n iterations and the value

of being in kn is Vn(kn). The next choice of measurement xn+1 will not only

yield an immediate economic reward, but also updates our beliefs and gener-

ates kn+1. We define the increment of knowledge, by choosing to measure x
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at time n+ 1, as

νKG,xn = E [Vn+1 (kn+1(x))− Vn(kn)|kn] (1.8)

and the knowledge gradient policy chooses to measure

XKG
n = arg

x∈X
νKG,xn (1.9)

The knowledge gradient or KG policy adapts widely to many offline and on-

line problems [7, 8, 9, 10], and it is known to be empirically competitive in

performance against other policies.

• Gittins Index - The crowning result of the bandit literature was created by

J.C.Gittins [11]. Gittins found a clever shortcut to solve the bandit problem

(1.1) on infinite time horizon. Instead of solving the dynamic control problem

in a multidimensional state space, it was possible to characterize the optimal

solution using an index policy. An index policy “rates” each alternative by

some index score at each iteration, and the alternative with highest index

score is played in each measurement. The Gittins index IGittins,xn is computed

by solving M single-dimensional problems. Gittins showed that in bandit

problems on infinite time horizon, i.e. when n → ∞, it is optimal to always

play the alternative with the highest Gittins index. However, the Gittins index

is difficult to compute. Fortunately, it has convenient scaling properties (see

Section 2.3) that allow its users to obtain the index values from a table of

standardized index values. Gittins have provided the tables for several most

commonly used reward types in [11]. When the total number of plays is finite
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in a bandit problem, the optimality proof of the Gittins policy breaks down.

This motivates other index policies like the upper confidence bounding policy

introduced below.

• Upper Confidence Bound - The upper confidence bounding or UCB policies are

a class of policies that has received considerable interest, especially in bandit

problems [12, 13, 14]. The UCB family works for many sampling distribution

types and is easy to implement. For example in normal-normal bandits, UCB

defines the index of alternative x to be

IUCB,xn = θxn + 4σW

√
log n

Nx
n

where Nx
n is the number of times arm x has been played up to and including

time n. The main reason that UCB policies became popular is because they

offer some sort of optimality property. If N measurements have been made

following the UCB policy, it is guaranteed that the average number of times

a suboptimal arm is played will be bounded below C logN for some constant

C. This order of number of times, O(logN), that we spent on suboptimal

alternatives, is known as a regret bound, namely the plays that we regret not

playing the optimal choice. It has been proved that this is the best possible

bound up to the choice of C on the regret bound.

1.5 The Challenge of Learning

Given the richness and diversity of problem classes and learning policies, the

major challege in solving optimal learning problems comes from the following few

15



aspects.

First, the primary challenge that almost every learning problem, especially

online ones, faces is the exploration vs. exploitation dilemma. For example in the

multi-armed bandit problem, each individual reward plays two roles: it contributes

immediate economic value, and it also provides information about the alternative

with the potential to improve future decisions. This trade-off between information

and reward arises in many optimal learning problems and applications where deci-

sions are made in real time, such as dynamic pricing or advertising placement in

e-commerce [15] or clinical drug trials with human patients [16]. The exploration vs.

exploitation issue has to be treated carefully while choosing or designing measure-

ment policies. Practically speaking, there are many policies, like UCB, that were

created with tunable parameters that control how much the policies lean toward

exploration or exploitation. While offering some power in control of the “style”, it

also makes the use of such policies more challenging since the tuning of parameters

is played by the user of the policy. It is common that the parameter needs to be

changed every time in solving a new problem, while the performance of the policy

can depend largely on the choice and is hence not robust.

Secondly, one important theoretical property in optimal learning is the con-

sistency of learning policies. If one specific alternative is measured infinitely often,

we will learn its mean perfectly by the law of large numbers, that is, the uncertainty

in our belief is gone and the underlying true mean value is known almost surely.

Consistency refers to a policy’s ability to measure the optimal alternative infinitely

many times over an infinite time horizon, so that we are guaranteed to find the truly
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optimal alternative eventually. To be consistent, it means that we won’t get stuck

on a suboptimal choice when using a policy. As more observations are made, the

policy will eventually guide us to the truly best choice in the decision space. Con-

sistency is not a property that only belongs to a policy itself, but it also depends

on the learning problem and model context where it is implemented. For example,

the KG policy is known to be consistent in Gaussian reward problems, while it is

not under some non-Gaussian models (see Section 2.2).

Thirdly, a concept that immediately accompanies consistency is the convergece

rate, a measurement of efficiency on consistent learning policies. Provided that a

measurement policy is consistent in some problem, we would be interested in the

speed that it finds the optimal alternative. This is evaluated by the number of

times a policy spends measuring suboptimal alternatives, and a most commonly

used measurement of such kind is the regret. In the bandit problem, we define the

regret value of a policy π as

Rπ(n) = Eπ
[

n∑
k=1

(
µx∗ − µxπk

)]

where x∗ = arg max
x∈X

µx is the true best alternative. So R is the expected loss in-

curred while not choosing the optimal alternative. This regret function grows with

the number of iterations N , and if there is an upper bound controlling its growth

speed, we call it the regret bound. The regret bound is a most straight-forward

way of measuring the covergence rate of learning policies. For bandit problems, it’s

been proved that the best regret bound a measurement policy can have is of order

O(logN), and one policy family that offers this order of regret bound is UCB. On
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the other hand, the KG policy doesn’t have a convergence rate result of any kind so

far, even though it’s been shown to perform very well empirically. Bull [17] made

an interesting first step to show KG convergence rate recently.

Fourthly, computational tractability is an important concern in using a learn-

ing policy. For example in the bandit problem, the optimal policy on infinite time

horizon is provided by the Gittins index, but it is computationally intractable as we

will see from Chapter 2. Fortunately, the Gittins index has scaling properties that

allow its users to easily solve the problem by referring to a table of index values to

standardized versions of the problems. On the other hand, the UCB policies use

indices that can be easily calculated. This is also partially why it received lots of

interest in this field.

Last but most importantly, as the motivation of this dissertation, more gen-

eralized models and distribution types other than Gaussian are needed in modern

studies of optimal learning. There has been a well-established pool of research avail-

able on models that are based on Gaussian distributions. While the non-Gaussian

models haven’t received as much attention, many applications require non-Gaussian

distributions to be used. For instance, the exponential and the gamma distributions

are popular for their positivity, and are thereby frequently used to model waiting

time, production level, price volatility, etc. The Bernoulli distribution is a natural

choice for modelling binary variables, while the beta distribution with a support

between zero and one fits well in modelling unknown probability values.
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1.6 Goal of this Dissertation

The main objective of this dissertation is to present our studies on optimal

learning problems under non-Gaussian distributions. We chooses to focus on the

bandit problem since it is a classic problem that has a clean characterization of the

optimal playing policy (see Chapter 2). What we learn from the bandit problem

also helps us understand other non-Gaussian learning problems.

Throughout this dissertation, we apply a Bayesian perspective and rely heavily

on conjugacy. Chapter 2 first summarizes the non-Gaussian conjugate models in

Bayesian analysis, and then we use one example to show that some mainstream

policies can have problems when applied to non-Gaussian distributions. Therefore

at the end of the chaper, we review a policy that is still optimal for non-Gaussian

bandit problems over infinite time horizon, the Gittins index policy. Although under

a clean characterization, the Gittins index is computationally intractable, which

motivates our research to develop a new theoretical and computational framework

for it.

In Chapter 3, we start by reviewing literature on Gittins index approxima-

tion for Gaussian problems. We are inspired to develop a novel framework for

non-Gaussian problems. The foundation of our approach consists of constructing

continuous-time, conditional Lévy processes that serve as probabilistic interpola-

tions of the discrete-time reward processes in the bandit problem. When this idea

was used in the Gaussian setting, the properties of Brownian motion allow for easy

standardization and numerical solution of stopping problems in continuous-time, un-
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der which the Gittins index can be approximated easily. Although these techniques

are not available in the non-Gaussian setting, we have shown that the analogous

stopping problems can be represented as free-boundary problems on PIDEs that

equate the characteristic and infinitesimal operators of the relevant value function.

In Chapter 4, we continue to apply our Chapter 3 results on two major non-

Gaussian models, the gamma-exponential and gamma-Poisson problems, and derive

the PIDEs that can be solved to approximate the Gittins indices in closed form.

Continued into Chapter 5, we prove more structural properties of the value func-

tions in these free-boundary problems, as well as the Gittins indices in continuous

time. Theses properties match with the discrete-time results and show that our

continuous-time results are consistent with existing discre-time results. At the end

of the chaper, we also present numerical illustrations showing the intuitive implica-

tions on how the free-boundary PIDE connects to the original Gittins index problem.

The framework we present in this dissertation can be intuitively extended and

incorporated into more general reward processes and stopping problems, such as

those in [18]. The value functions can easily accommodate different uses, while the

novel continuous-time interpolation and optimal stopping to free-boundary transi-

tion techniques remain the same in solving other problems.
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Chapter 2: Learning with Non-Gaussian Rewards

In the optimal learning literature, Gaussian assumptions are standard due to

advantages such as the ability to concisely model correlations between estimated

values [19, 20, 21, 22]. More recently, however, numerous applications have emerged

where observations are clearly non-Gaussian. The operations management literature

has recently studied applications in assortment planning [23, 24] where the observed

demand comes from a Poisson distribution with unknown rate. The challenge of

learning Poisson distributions also arises in dynamic pricing [25], optimal investment

and consumption [26], models for household purchasing decisions [27], and online

advertising and publishing [28]. The work by [29] studies a newsvendor problem

where a Bayesian gamma prior is used to model beliefs about an exponentially

distributed demand. The gamma-exponential model is also used by [30] in the

problem of learning signal-to-noise ratios in channel selection, and would also be

appropriate for learning service times or network latencies.

Motivated by applications like the above, we study non-Gaussian learning

problems in this disseration. Section 2.1 sets up the notation for our analysis and

introduces four major classes of non-Gaussian conjugate learning models. Among

them, the gamma-exponential model and the gamma-Poisson model will be used
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to demonstrate our research findings in Chapter 4. Section 2.2 provides additional

motivation for our study by showing that non-Gaussian problems can cause inconsis-

tent behavior in prominent learning policies. Section 2.3 reviews the Gittins index

policy for bandit problems. When the reward distributions are non-Gaussian, it

still solves the problem optimally on infinite time horizon, which is why we start

with this policy in our studies on non-Gaussian problems. The Gittins index has

its characterization as the solution to an optimal stopping problem, however, it is

computational intractable. This motivates one of the major contributions of this dis-

sertation, a novel thereotical and computational framework under continuous-time

interpolation presented in Chapter 3.

2.1 Non-Gaussian Learning Models

From [31], one can see that there are relatively few conjugate models that are

non-Gaussian, and of these, we present four classic Bayesian learning models where

the sampling densities are non-Gaussian.

Recall that in the bandit problem we consider, the sequence of conditional dis-

tributions of λ is characterized by the knowledge states (kxn)∞n=0, which is a sequence

of random vectors adapted to (Fn). We write

E
(
W x
n+1 | Fn

)
= m (kxn) (2.1)

for some appropriately chosen function m, so that m is the mean of the reward based

on our current belief. For convenience, we also let mx
∞ = E

(
W x
n+1

∣∣λx) be the “true

mean” of the single-period reward, which is the mean of the reward distribution
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when the true value of λx is known.

• Gamma-Exponential - In the gamma-exponential model, fx is (condition-

ally) exponential with unknown rate λx. Under the assumption that λx ∼

Gamma (ax0 , b
x
0), the conditional distribution of λx, given Fn, is also gamma

with parameters axn and bxn. From [31], we can obtain simple recursive rela-

tionships for the parameters, given by

axn+1 =


axn + 1 if xn = x

axn if xn 6= x,

(2.2)

bxn+1 =


bxn +W x

n+1 if xn = x

bxn if xn 6= x.

(2.3)

In the gamma-exponential model, kxn = (axn, b
x
n), and the mean function m is

given by m (kxn) = E
(

1
λx

∣∣Fn) = bxn
axn−1

.

• Gamma-Poisson - In the gamma-Poisson model, the sampling distribution fx

is conditionally Poisson with unknown rate λx. Again, we start with λx ∼

Gamma (ax0 , b
x
0), whence the posterior distribution of λx at time n is again

gamma with parameters axn and bxn, and the Bayesian updating equations are

now given by

axn+1 =


axn +W x

n+1 if xn = x

axn if xn 6= x,

(2.4)

bxn+1 =


bxn + 1 if xn = x

bxn if xn 6= x.

(2.5)
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Again, the decision-maker’s knowledge about λx at time n is represented by

kxn = (axn, b
x
n) with mean function m (kxn) = E (λx|Fn) = axn

bxn
.

• Pareto-Uniform - In the Pareto-uniform model, the sampling distribution fx is

conditionally uniform on the interval [0, λx]. We start with λx ∼ Pareto (ax0 , b
x
0)

with parameters a0 > 1 and b0 > 0, whence the posterior distribution of λx at

time n is again Pareto with parameters axn and bxn, and the Bayesian updating

equations are now given by

axn+1 =


axn + 1 if xn = x

axn if xn 6= x,

bxn+1 =


max

(
bxn,W

x
n+1

)
if xn = x

bxn if xn 6= x.

The decision-maker’s knowledge about λx at time n is represented by kxn =

(axn, b
x
n) with mean function m (kxn) = E

(
1
2
λx
∣∣Fn) = axnb

x
n

2axn−2
.

• Beta-Benoulli - In the beta-Bernoulli model, the sampling distribution fx is

conditionally Bernoulli with unknown success probability λx. We start with

λx ∼ Beta (ax0 , b
x
0), whence the posterior distribution of λx at time n is again

beta with parameters axn and bxn, and the Bayesian updating equations are now

given by

axn+1 =


axn +W x

n+1 if xn = x

axn if xn 6= x,

bxn+1 =


bxn +

(
1−W x

n+1

)
if xn = x

bxn if xn 6= x.
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Again, the decision-maker’s knowledge about λx at time n is represented by

kxn = (axn, b
x
n) with mean function m (kxn) = E (λx|Fn) = axn

axn+bxn
.

Note that, if x is observed infinitely often, we have m (kxn) → mx
∞ a.s. by

martingale convergence, as proved in Lemma 2.1.1 below.

Lemma 2.1.1. If x is measured infinitely often, then m (kxn)→ mx
∞ almost surely.

Proof: According to the fundamental assumptions under Bayesian perspective, λ is

an integrable random variable. By 4.7 in [32], the sequence (m (kxn)) is a uniformly

integrable martingale, whence the lemma is proved.

The four non-Gaussian models presented in this section appears very sim-

ilar to the normal-normal model, while the beliefs are all fully characterized by

a 2-dimensional knowledge state vector. However, when implemented in optimal

learning problems, non-Gaussian models can behave quite differently from Gaussian

and cause troubles, as we will see in the following section.

2.2 Difficulty with Non-Gaussian Rewards

We use one example to show that non-Gaussian problems create unexpected

theoretical challenges for mainstream policies like the knowledge gradient method.

In a multi-armed bandit problem, the KG policy [21] considers all the alter-

natives together and calculates the expected improvement

RKG,x
n = E

[
max
y
m
(
kyn+1

)
−max

y
m (kyn)

∣∣∣∣Fn, xn = x

]
(2.6)

that a single implementation contributes to an estimate of the value of the best
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alternative. This method (also known by the name “value of information”) has

received attention in the simulation community [see e.g. 33, for an overview], because

it is computationally efficient and often performs near-optimally in experiments.

If the rewards are Gaussian, the policy XKG (kn) = arg maxxR
KG,x
n is statis-

tically consistent [34], meaning that m (kxn)→ mx
∞ a.s. for every x. In other words,

the policy is guaranteed to discover the best alternative over an infinite horizon; this

property is leveraged by [21] to show the asymptotic completeness of information

in the bandit setting as γ ↗ 1. The consistency of knowledge gradient policies

has been shown in numerous settings where Gaussian rewards appear [35, 36, 37].

However, as we now show, this property does not hold for the gamma-exponential

learning model.

The work by [38] provides a closed-form solution of (2.6) for the gamma-

exponential problem, given by

RKG,x
n =



1

(axn−1)(Cxn)a
x
n−1

(
bxn
axn

)axn
if bxn

axn−1
≤ Cx

n

1

(axn−1)(Cxn)a
x
n−1

(
bxn
axn

)axn
−
(

bxn
axn−1

− Cx
n

)
if bxn

axn
≤ Cx

n <
bxn

axn−1

0 if Cx
n <

bxn
axn
,

(2.7)

where Cx
n = maxy 6=xm (kyn). We see immediately that it is possible to haveRKG,x

n = 0

even though V ar (λx|Fn) > 0. That is, the marginal value of a single observation of

x may be zero even when we are uncertain about λx. This behavior, which does not

arise in the Gaussian setting, is the cause of the inconsistency result. Essentially, if

the policy places zero value on alternative x, there may be a non-zero probability that

the policy will never measure x, which means that m (kxn) will not converge to the

true mean reward. The proof below uses the technique of continuous interpolation,
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used later in Section 3 to approximate Gittins indices.

Theorem 2.2.1. There exists a gamma-exponential problem for which the KG policy

has a non-zero probability of never measuring a particular alternative.

Proof: Consider a problem with two alternatives. For simplicity, let a1
0 = a2

0 = 2,

and choose b1
0, b2

0 such that b2
0 <

b10
2

. By (2.7), the KG policy will measure alternative

2. Our beliefs about alternative 1 will thus remain unchanged. Let E be the event

that

b2
n

a2
n − 1

<
b1

0

2
for all n ≥ 0.

Clearly, this is the event that we will never measure alternative 1. We show that

P (E) > 0. For notational convenience, let λ refer to the rate λ2 of alternative 2,

and let c =
b10
2

.

Define a continuous-time stochastic process (Xt)t≥0 as follows. Given λ, (Xt)

is a gamma process with shape parameter 1 and scale parameter λ. The increments

Xn+1 −Xn, n = 0, 1, ... are i.i.d. exponential with rate λ, the same as the random

rewards we collect when we measure alternative 2. The initial value of the process

is X0 = b2
0. Then, Xn has the same conditional distribution as b2

n, given λ. We now

observe that

P (E |λ) ≥ P

(
Xt

t+ 1
< c for all t ≥ 0

∣∣∣∣λ) = P (Xt < c (t+ 1) for all t ≥ 0|λ) .

(2.8)

Given λ, E is the event that (Xt) satisfies a certain condition at discrete points in

time, which contains the event that the condition is satisfied at all continuous times.
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If we can show that (2.8) is strictly positive when λ takes values in a non-negligible

set, applying the tower property will show that P (E) > 0.

Consider the case where λ > 1
c
. Now the last expression in (2.8) equals

P (Xt < c (t+ 1) for all t ≥ 0|λ) = P

(
inf
t≥0

Yt > −c
∣∣∣∣λ)

where Yt = ct−Xt and Y0 = −b2
0. Because (Xt) is a pure jump process that increases

a.s., (Yt) is a spectrally negative Lévy process (or a Lévy process whose jumps are

always negative). Because (Xt) is conditionally a gamma process, we must have

E(X1 −X0) = 1
λ

and hence E(Y1 − Y0) = c− 1
λ
> 0. In this case,

P

(
inf
t≥0

Yt > −c
∣∣∣∣λ) = E(Y1 − Y0)w(c+ Y0) = E(Y1 − Y0)w(c− b2

0) (2.9)

where w is called the scale function of the spectrally negative Lévy process (Yt); see

[39], p. 215. The expression E(Y1 − Y0) in (2.9) is due to the fact that ψ′(0+) =

E(Y1 − Y0) by the property of the moment-generating function, where ψ is the

Laplace exponent ψ(s) = logEes(Y1−Y0). Because w(x) > 0 for any x > 0, we have

shown that the conditional probability is strictly positive given values of λ in a non-

negligible set. Thus, there is a strictly positive probability that we will be stuck on

alternative 2 forever, and this alternative will always look worse than alternative

1.

The main value of this result is the insight that it provides into learning with

non-Gaussian rewards. In this setting, the theoretical guarantees of a well-studied

class of heuristics (also used to establish some asymptotic results in the online

setting) unexpectedly break down, suggesting that the only way to reliably gauge

28



the potential of an alternative is by looking over an infinite horizon, as the Gittins

policy does in the following section.

2.3 An Optimal Policy in Non-Gaussian Bandits

In the classical multi-armed bandit setting where the decision-maker’s beliefs

about the alternatives are mutually independent, the work by [11] shows that the

optimal strategy takes the form of an index policy. At each time stage, an index is

computed for each alternative independently of our knowledge about the others, and

the alternative with the highest index is implemented. The index can be expressed

as the solution to an optimal stopping problem [40]. Nonetheless, despite this con-

siderable structure [see e.g. 41, for additional scaling properties], which continues to

inspire new theoretical research on Gittins-like policies [42, 43], even the stopping

problem for a single arm is computationally intractable. This challenge has given

rise to a large body of work on heuristic methods, which typically make additional

assumptions on the reward distribution. It is especially common to require the

reward distributions to be Gaussian, or to have bounded support [see e.g. 14, for

examples of both].

We briefly summarize the characterization of the Gittins index policy, known

to optimally solve (1.1) when N =∞. For a more detailed introduction, the reader

is referred to Ch. 6 of [1]. Furthermore, [2] provides a deeper theoretical treatment

with several equivalent proofs of optimality for the policy.

The Gittins method considers each alternative separately from the others. Let
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k denote our beliefs about an arbitrary alternative, dropping the superscript x for

notational convenience. Consider a situation where, in every time stage, we have

a choice between implementing this alternative and receiving a known, determin-

istic “retirement reward” r. The optimal decision (implement vs. retire) can be

characterized using Bellman’s equation for dynamic programming. We write

V (k, r) = max {r + γV (k, r) ,E [W + γV (k′, r)|k]} , (2.10)

where W is the reward obtained from the implementation, and k′ is the future

knowledge state arising due to the new information provided by W . In our non-

Gaussian setting, k′ would be computed using equations like (2.2)-(2.3) or (2.4)-

(2.5). Because we do not update our beliefs when we collect the fixed reward, it

follows that, if we prefer the fixed reward given the knowledge state k, we will

continue to prefer it for all future time periods. Then, (2.10) becomes

V (k, r) = max

{
r

1− γ
,m (k) + γE [V (k′, r)|k]

}
. (2.11)

The Gittins index is a particular retirement reward value R(k) := r∗ (k) that

makes us indifferent between the two quantities inside the maximum in (2.11). In

the special case where the parameter λx is known, this retirement reward is equal

to the mean single-period reward, as shown in the following lemma. Although this

result is not directly of help in computing Gittins indices for unknown λx, we use it in

conjunction with our continuity analysis in Section 5.2 to establish initial conditions

for the numerical procedures developed later on.

Lemma 2.3.1. If the parameter λx is a known constant, the Gittins index of arm

x is mx
∞.
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Proof: If λx is known, there is no knowledge state, and (2.10) becomes

V (r) = max {r + γV (r) ,mx
∞ + γV (r)} ,

whence the result follows immediately.

Once Gittins indices have been computed, the policy

X∗n (kn) = arg max
x

R (kxn)

can be shown to be optimal for the objective in (1.1). Thus, the Gittins method

decomposes an M -dimensional problem into M one-dimensional problems, each of

which can be solved independently of the others. Furthermore, in the gamma-

exponential version of the problem (that is, where k = (a, b) and (2.2)-(2.3) are

used to update k), it has also been shown [41] that

R (a, b) = bR (a, 1) , (2.12)

meaning that Gittins indices only have to be computed for a restricted class of

knowledge states. Equivalently, if we can find b̃ (a) such that R
(
a, b̃ (a)

)
= 1, we

can use (2.12) to write

b̃ (a)R (a, 1) = R
(
a, b̃ (a)

)
= 1, (2.13)

whence R (a, b) = b
b̃(a)

.

Yet, even with this structure, the problem remains computationally intractable:

it is difficult to compute R (a, 1) or b̃ (a) for arbitrary a. Efficient approximation

methods have been developed for the Gittins indices under Gaussian rewards, and
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they inspired us to develop a continuous-time interpolation for non-Gaussian re-

wards, under which the Gittins index has a novel characterization and can be solved

under PIDEs.
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Chapter 3: A Novel Framework for Non-Gaussian Bandits

In the Gaussian setting, a recent stream of work by [44], [45], and [46] has

approximated the Gittins index for one arm by formulating an optimal stopping

problem on a Brownian motion with unknown drift, a continuous-time process that

serves as a probabilistic interpolation of the sequence of Gaussian rewards collected

from the arm. By making the connection between Brownian motion and the heat

equation [47], one can formulate and numerically solve a free-boundary problem

[48] to approximate the Gittins index. On the other hand in the non-Gaussian

setting, there has been a stream of research on multi-armed bandit problems driven

by Lévy processes [49, 50, 51, 52]. They consider bandit models where rewards

are generated in continuous time from Lévy processes, and constructed alternative

characterization of the Gittins index under Wiener-Hopf decomposition of Lévy

processes. However, under the Bayesian perspective in our research, the reward

distributions are characterized by unknown random parameters and our beliefs on

them evolve over time. The dependency of belief of sampling distribution on the

information collected from a path of rewards requires the interpolation process to

have increments that are generally non-stationary and non-independent, hencefully

not Lévy.
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These studies inspired one of our major contributions in this dissertation. In

the non-Gaussian bandit problem, we interpolate the reward sequence in the non-

Gaussian problems with conditional Lévy processes. Under this continuous-time

interpolation, the relevant optimal stopping problems for characterizing Gittins in-

dices can be recast into free-boundary partial integro-differential equations. Section

3.1 first reviews the continuous-time interpolation technique developed for Gaus-

sian bandits. Section 3.2 summarizes the theory of conditional Lévy processes, and

uses it to formulate the continuous time interpolation of rewards. We derive the

continuous-time analog to the Gittins index equation (2.11) under this interpola-

tion, similar to that used by [44, 45] in studying Gaussian problems. Section 3.3 uses

methods in [53] to recasts it into PIDEs, which can be used to solve for the Gittins

indices. The Gittins indices obtained from such a continuous-time interpolation can

be used to approximate the Gittins indices in the original discrete-time problems.

3.1 Continuous-time Interpolation of Gaussian Rewards

The stream of research approximating Gittins indices for Gaussian rewards

begins with the work by [44], which proposed the following idea. For arbitrary x (in

the following, we again drop the superscript x for convenience as in Section 2.3), the

discrete-time process (Wn)∞n=1 of single-period rewards with unknown mean µ and

known variance σ2 is replaced by a continuous-time process (Xt)t≥0. The process

(Xt) is constructed in such a way that, for integer t, the increment Xt+1−Xt has the

same distribution as the single-period reward Wt+1. Therefore, (Xt) can be viewed
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as a probabilistic interpolation of (Wn). In the Gaussian setting, (Xt) is condition-

ally a Brownian motion with unknown drift µ and known volatility σ. Under the

Bayesian perspective, we start with prior belief µ ∼ N(θ0, β0), and while given Ft

the conditional distribution of µ is N(θt, βt), where θt = (β0θ0 +Wt) / (β0 + t) and

βt = β0 + t. For integer values of t, the beliefs on µ match with (1.4)-(1.5) in the

discrete-time normal-normal model.

Let c be a continuous-time discount factor (lower c corresponds to higher γ in

discrete time). The formulation of the Gittins index in (2.11) can be extended to

continuous time and written as the solution R to the optimal stopping problem

R

∫ ∞
0

e−ctdt = sup
τ≥0

Eπ
[∫ τ

0

e−ctdWt +R

∫ ∞
τ

e−ctdt

]
(3.1)

= sup
τ≥0

Eπ
{
E
[∫ τ

0

e−ctdWt +R

∫ ∞
τ

e−ctdt|Ft
]}

(3.2)

= sup
τ≥0

Eπ
[∫ τ

0

θte
−ctdt+R

∫ ∞
τ

e−ctdt

]
(3.3)

= sup
τ≥0

Eπ
[

1

c
θ0 −

1

c
(θτ −R) e−cτ

]
The equation (3.1) states that the Gittins index in continuous time is a re-

tirement cash flow that makes the player indifferent between receiving it constantly

forever and receiving it after playing the machine optimally up to some stopping

time. In the next line (3.2), under taking iterated expectation (also known as the

tower property of expectation) conditioned on Ft, we are left with the conditional

mean values θt. Then, we perform integration by parts in (3.3).

Under a time change, by making s = (cβt)
−1 and Z(s) =

(
θ0 − θ(cs)−1−β0

)
/
√
c,

it can be easily shown that Z(s), 0 < s ≤ s0 is a standard Brownian motion in the

−s scale, where s0 = (cβ0)−1 and Z(s0) = 0. By letting z0 = (R− θ0) /
√
c, the
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stopping problem on R is written as

z0e
−1/s0 = sup

0<s≤s0
E
[
e−

1
s (Z(s) + z0)

]
(3.4)

Therefore, R is a solution to the original stopping problem if and only if z0 is a

solution to the stopping problem (3.4) on standard Brownian motion. In [44], a

corrected binomial method due to Chernoff and Petkau [54] was used to simulate

standard Brownian paths to solve (3.4), with a representation of the optimal value

function given in [55] to initialize the the algorithm. Then, a closed form function

can be fitted to approximate the stopping boundary obtained from the solution,

which provides a formula for calculating the Gittins index by using the knowledge

state vector (θ, β) as inputs. These continuous-time index values serve as an ap-

proximation to the Gittins index in the original discrete-time problem.

3.2 Continuous-time Interpolation of Non-Gaussian Rewards

In non-Gaussian reward problems, we construct a continuous-time process (Xt)

in the same way that, for integer t, the increment Xt+1 − Xt has the same distri-

bution as the single-period reward Wt+1. Given λ, the discrete time rewards are

i.i.d, so we use a conditional Lévy process with increments that are conditionally

independent and stationary. For the gamma-exponential problem, (Xt) is condi-

tionally a gamma process given λ [see e.g. 32, for a definition], with exponentially

distributed increments over unit intervals. Similarly in the gamma-Poisson problem,

(Xt) is conditionally a Poisson process.

The major challenge in studying non-Gaussian reward problems under this in-

36



terpolation technique is that we cannot exploit the time-change properties of Brow-

nian motion to “standardize” the problem, as was done before in the Gaussian

reward case. Therefore, we develop an alternate method based on equating the

infinitesimal and characteristic operators [53] of value functions in an optimal stop-

ping problem. We then obtain free-boundary problems on partial integro-differential

equations (PIDEs), which can be solved numerically to approximate the Gittins in-

dex. The solutions to these equations are shown to possess intuitive properties, such

as continuity and monotonicity, that are known to hold for classic bandit problems

in discrete time.

By a conditional Lévy process, we mean a process (Xt) whose conditional law,

given some random variable λ, is that of a process with stationary and independent

increments. In this section, we follow the theoretical characterization of conditional

Lévy processes introduced in [56].

Let (Xt) be a real-valued stochastic process that will later serve as the continuous-

time interpolation of cumulative rewards without discounting. The parameter λ is

a random variable (or random vector) whose conditional distribution given Ft char-

acterizes our belief on λ at time t. While conditioned on λ, the process (Xt) has

stationary and indepedent increments. Such a process is a conditional Lévy process.

Under the context of non-Gaussian conjugate models, we further restrict (Xt)

to increasing and right-continuous pure jump processes, mainly because the gamma-

exponential and gamma-Poisson problems fall into this category. The method below

does apply to general stochastic processes, but this is not as useful for interpolation

purposes in Bayesian bandit problems.
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The dependence of Xt on λ is described as

Xt = X0 +

∫
[0,t]×R+

zµ(ds, dz) (3.5)

where µ is conditionally (given λ) a random measure on R+×R+ with mean measure

ν(λ, dz)ds, satisfying
∫
R+ ν(λ, dz)(z∧1) <∞ for all λ [for details on random measure

and mean measure, see Ch. 6 in 32]. The unconditional intensity measure of µ at

time t, that is, the intensity given Ft but not given λ, is written as ν̄t(dz)ds =

E [ν(λ, dz)|Ft] ds.

Intuitively, this definition states that a conditional Lévy process has “two lay-

ers of randomness”. The conditional mean measure ν characterizes the infinitesimal

behavior of the process, given a value of λ, as that of a Lévy process. The un-

conditional intensity measure ν̄ further removes the randomness in the belief on λ

by integrating over its distribution. Thus, ν̄ can be described as “the mean of the

conditional mean measure”.

With the reward process (Xt) set up as a continuous-time conditional Lévy

process, the Gittins logic can be extended to the continuous-time setting similarly

as in (3.1). The Gittins index R is the particular value of r such that

r

∫ ∞
0

e−csds = sup
τ

E
[∫ τ

0

e−csdXs + r

∫ ∞
τ

e−csds

]
, (3.6)

where τ denotes a stopping time and c is the continuous-time discount factor. This

expectation is evaluated given some initial state k at time 0, which is the starting

time when the index is calculated. We omit this dependence from the notation

and take the present time to be zero without loss of generality. This formulation

is equivalent to the one in (2.11); see e.g. [40] or [45] for more details. As before,
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discounted rewards are collected from the process (Xt) until time τ , at which point

we collect the fixed retirement reward R until the end of time. If (3.6) holds, we are

indifferent between stopping immediately and running the process until the optimal

stopping time τ .

3.3 Optimal Stopping Problems to Free-boundary Problems

Technically speaking, when the rewards are non-Gaussian, the process can

still be embedded in Brownian motion [57], but the time change is random and

computationally intractable. Instead, we will apply a new approach based on [53].

We manipulate the continuous-time Gittins index set up in (3.6) as follows:

0 = sup
τ

E
[∫ τ

0

e−csdXs −
∫ τ

0

e−csrds

]
= sup

τ
E
[∫

[0,τ ]×R+

e−cszµ(dz, ds)−
∫ τ

0

e−csrds

]
= sup

τ
E

[∫ τ

0

e−cs
(∫

R+

zν(λ, dz)− r
)
ds

+

∫
[0,τ ]×R+

e−csz [µ(dz, ds)− ν(λ, dz)ds]

]
(3.7)

= sup
τ

E

[∫ τ

0

e−cs
(∫

R+

zν(λ, dz)− r
)
ds

+

∫
[0,τ ]×R+

e−cszE [µ(dz, ds)− ν(λ, dz)ds|Fs]

]
(3.8)

= sup
τ

E
[∫ τ

0

e−cs
(∫

R+

zν(λ, dz)− r
)
ds

]
= sup

τ
E
[∫ τ

0

e−cs
(∫

R+

zE (ν(λ, dz)|Fs)− r
)
ds

]
(3.9)

= sup
τ

E
[∫ τ

0

e−cs
(∫

R+

zν̄s(dz)− r
)
ds

]
(3.10)
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In (3.7) we use a compensating technique by adding and subtracting ν(λ, dz). Then.

the random measure µ is cancelled in (3.8), by taking iterated conditional expected

values (also called the tower property). We then use the tower property again in

(3.9). Notice that
∫
R+ zν̄s(dz) is the mean of the infinitesimal increment of the pro-

cess. For a classic Lévy process, where λ is a known constant and has no dependency

on Fs, the term
∫
R+ zν(dz) is called the compensator of the process [58].

We denote
∫
R+ zν̄t(dz) by mt to emphasize that this quantity serves the same

role as m(kn) in (2.1). Then, (3.6) in continuous time can be written as,

sup
τ

E
[∫ τ

0

e−cs (ms − r) ds
]

= 0 (3.11)

which we will refer to as the “calibration equation” throughout this dissertation.

We also introduce notation for the LHS of (3.11),

V (t,m) := sup
τ

E
[∫ τ

0

e−cs (ms − r) ds
]

(3.12)

Recall that the expectation in (3.12) is evaluated given some initial state at time

0, and we dropped it for simplicity. As we observe from models such as (2.2)-(2.5),

the pair (t,m), representing a time parameter and a mean parameter, is a set of

sufficient statistics for the distribution of λ given Ft (these statistics are standard

for all the models described in [2]). Therefore, V (t,m) indicates that our initial

knowledge is characterized by (t,m). In this value function, r is a fixed constant

value and the Gittins index R is the particular value of r that makes V = 0. If we

are currently in a knowledge state (t,m), it suffices to solve for the value r such that

V (t,m) = 0 to obtain the Gittins index value. On the other hand, if we fix r, the
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set of (t,m) for which V (t,m) = 0 is precisely the set of states that have r as the

Gittins index.

We now construct a free-boundary problem for V by equating the characteristic

and infinitesimal operators of V . In this approach, we rely on the mild condition

that (mt) is a càdlàg strong Markov process. As we will see from calculating mt

explicitly for gamma-exponential and gamma-Poisson problems in Chapter 4, this

assumption is reasonable and generally satisfied in the context of Bayesian conjugate

models.

The characteristic operator of V is defined as

LcharV (t,m) = lim
U↓{m}

EV (tτUc ,mτUc )− V (t,m)

E (τUc)
, (3.13)

where U is an open set that contains m, and τUc is the hitting time of the set U c

for the process (mt). That is,

τUc = inf {t ≥ 0 : mt ∈ U c}

is the first time at which (mt) leaves the set U . First we consider the value function

at the moment when τUc occurs, and then we shrink U down to the singleton {m}.

The concept of the characteristic operator dates back to [59]. The value func-

tion V = E
[∫ τ

0
e−cs (ms − r) ds

]
is analogous to a killed version of the Lagrange

problem introduced in Ch. 6 of [53], where the value function is of the form∫ τ
0
e−Λ(s)L (ms) ds. The characteristic operator in the Lagrange problem can be

explicitly calculated, and (3.13) is given in closed form in the following result.

Lemma 3.3.1. If (mt) is a càdlàg strong Markov process, the characteristic operator

41



of V is given by

LcharV (t,m) = cV (t,m)− (m− r) . (3.14)

Proof: The lemma follows from (7.2.8) in [53]. In a killed Lagrange problem on the

value function
∫ τ

0
e−Λ(s)L (ms) ds, by inserting Λ(s) = cs and L (ms) = ms − r, we

obtain the desired results in the lemma.

The infinitesimal operator Linf (also called the generator of V ) is derived using

Itô’s lemma. Our goal is to obtain an expression

V (t,mt) = V (0,m0) +

∫ t

0

LinfV (s,ms) ds+ Yt, (3.15)

where (Yt) is a martingale formed by adding and subtracting a continuous compen-

sator to the jump component of V [see 58, for an exposition of this idea].

Recall that in discrete time models such as (2.2)-(2.5), the mean process (mt)

is expressed by t and Xt in simple closed form. We now assume that mt can be

written as g(t,Xt) for some continuous function g with first-order derivatives. In

Chapter 4, we will explicitly derive g and show that this assumption is satisfied in

gamma-exponential and gamma-Poisson problems.

Lemma 3.3.2. If (mt) can be written into the form mt = g(t,Xt) for some contin-

uous function g with first-order derivatives, the infinitesimal operator of V is given

by

Linf (t,m) = Vt + gtVm +

∫
R+

[V (t, g(t,Xt + z))− V (t, g(t,Xt))]ν̄t(dz). (3.16)
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Proof: The proposition follows from the calculation

V (t,mt)

= V (0,m0) +

∫ t

0

∂V

∂s
(s,ms)ds+

∫ t

0

∂V

∂m
(s,ms)dm

c
s +

∑
0<s≤t

[V (s,ms)− V (s,ms−)] (3.17)

= V (0,m0) +

∫ t

0

∂V

∂s
(s,ms)ds+

∫ t

0

∂V

∂m
(s,ms)dm

c
s

+

∫
[0,t]×R+

[V (s, g(s,Xs + z))− V (s, g(s,Xs))]µ(ds, dz)

= V (0,m0) +

∫ t

0

∂V

∂s
(s,ms)ds+

∫ t

0

∂V

∂m
(s,ms)

∂g

∂s
ds (3.18)

+

∫
[0,t]×R+

[V (s, g(s,Xs + z))− V (s, g(s,Xs))] ν̄s(dz)ds

+

∫
[0,t]×R+

[V (s, g(s,Xs + z))− V (s, g(s,Xs))] (µ(ds, dz)− ν(λ, dz)ds+ ν(λ, dz)ds− ν̄s(dz)ds)

= V (0,m0) +

∫ t

0
LinfV (s,ms) ds+ Yt

In (3.17), we use Itô’s lemma for jump-diffusion processes [see 60, Ch. 6, Theorem

31.5], and mc
s denotes the continuous part of ms, after removing all jumps. Since

ms = g(s,Xs) and Xs is a pure jump process, we have dmc
s = ∂g

∂s
ds. In (3.18), we

applied a compensator technique and put the component with respect to the random

measure µ into an Ft-martingale Yt. Note that, for T ≥ t, the tower property implies

that

E [YT |Ft]

= Yt + E

[∫
[t,T ]×R+

[V (s, g(s,Xs + z))− V (s, g(s,Xs))] [µ(ds, dz)− ν(λ, dz)ds+ ν(λ, dz)ds− ν̄s(dz)ds]

∣∣∣∣∣Ft

]

= Yt + E

[∫
[t,T ]×R+

[V (s, g(s,Xs + z))− V (s, g(s,Xs))]E [µ(ds, dz)− ν(λ, dz)ds|Fs]

∣∣∣∣∣Ft

]

+E

[∫
[t,T ]×R+

[V (s, g(s,Xs + z))− V (s, g(s,Xs))]E [ν(λ, dz)ds− ν̄s(dz)ds|Fs]

∣∣∣∣∣Ft

]
= Yt

Therefore, the infinitesimal operator LinfV is,

LinfV (t,m) =
∂V

∂t
(t,m)+

∂g

∂t
(t,Xt)

∂V

∂m
(t,m)+

∫
R+

[V (t, g(t,Xt + z))− V (t,m)] ν̄s(dz)
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which yields the result in the lemma.

Essentially, the characteristic and infinitesimal operators are two different ex-

pressions for the derivative of V based on Kolmogorov theory and Itô calculus.

Under general arguments [53], the two operators exist and coincide. By matching

them, we obtain a free-boundary problem on a PIDE as a consequence of the above

derivations. For notational convenience, we denote the partial derivative ∂V
∂t

by Vt

and similarly with respect to other variables.

Theorem 3.3.3. If (mt) is a strong Markov càdlàg process and can be written

as g(t,Xt) for some continuous function g with first order derivatives, the value

function V (t,m) solves the free-boundary problem

Vt (t,m) + gt (t,Xt)Vm (t,m) +

∫ ∞
0

[V (t, g(Xt + y))− V (t,m)] ν̄t(dy) = cV (t,m)− (m− r)

V (t,m∗ (t)) = 0

where m∗ (t) is an unknown stopping boundary curve. For every point on the stop-

ping boundary, the Gittins index R (t,m∗ (t)) is equal to r.

Proof: According to the characteristic operator and infinitesimal operator shown

in Lemmas 3.3.1 and 3.3.2, the theorem follows from Ch. 7.2 in [53].

We have assumed a fixed retirement reward r in this PIDE. Thus, the solution

of the PIDE does not immediately yield a Gittins index R (t,m) for an arbitrary

knowledge state (t,m). However, the stopping boundary curve m∗ describes the set

of all knowledge states whose Gittins index is exactly equal to r. In general, out

method applies to all infinitely divisible reward distributions, by their connection

to Lévy processes [60], while shifting and scaling properties of Gittins indicies are

only offered in distributions with location and scale parameters respectively [11].
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Therefore, it is sufficient to compute any Gittins index for the gamma-exponential

problem via (2.13) by solving only one PIDE under r = 1, while for other non-

Gaussian models that do not equip with scale parameters, a family of PIDEs for

different r values would need to be solved.
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Chapter 4: Gittins Indices in Major Non-Gaussian Models

Among the non-Gaussian conjugate models introduced in Section 2.1, three are

most commonly studied in the bandit literature: the gamma-exponential model, the

gamma-Poisson model, and the beta-Bernoulli model. The setting of beta-Bernoulli

has been relatively well-studied [16, 61], and we do not explore it here. By contrast,

the gamma-exponential and gamma-Poisson models have received the least amount

of theoretical attention in the bandit literature. Therefore, we now apply the general

result of Theorem 3.3.3 to characterize Gittins indices for exponential and Poisson

rewards. Section 4.1 covers the gamma-exponential problem, whereas Section 4.2

covers the gamma-Poisson problem.

4.1 Exponential Reward Problems

In the gamma-exponential problem, our continuous-time interpolation (Xt) is

a gamma process with shape parameter 1 and unknown scale parameter λ. We

begin by assuming λ ∼ Gamma (a0, b0), reflecting the decision-maker’s prior beliefs.

Letting Ft be the σ-algebra generated by the path of (Xt) up to time t, we find that

the conditional distribution of λ given Ft is still gamma with posterior parameters

at = a0 + t, bt = b0 +Xt,
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as in (2.2)-(2.3). For convenience, we may also use the notation kt = (at, bt). The

value function V (t,m) for the gamma-exponential problem can also be written as

V (a,m) under a shift of variable for simplicity as at = a0 + t.

Theorem 4.1.1. The value function V (a,m) in gamma-exponential problem solves

the free-boundary problem,

Va (a,m)− m

a− 1
Vm (a,m) +

∫ ∞
0

[V (a,m+ z)− V (a,m)]
1

z

(
m

m+ z

)a

dz = cV (a,m)− (m− r)

V (a,m∗ (a)) = 0

where m∗ (a) is an unknown stopping boundary curve. For every point (a,m) on

this stopping boundary, the Gittins index R(a,m) is equal to r.

Proof: This can be shown through explicit calculation based on the PIDE in The-

orem 3.3.3. In the conditional Lévy process we use to model exponential rewards,

the conditional mean measure given λ is ν(λ, dy) = e−λy/y, the same as in a gamma

process, and the distribution of λ given Ft is Gamma(at, bt). Therefore, the uncon-

ditional mean measure ν̄t(dy) is calculated as

ν̄t(dy) =

∫ ∞
0

e−λy

y
· b

at
t λ

at−1e−btλ

Γ(at)
dλdy

=

(
bt

bt + y

)at 1

y
dy

and

mt =

∫ ∞
0

yν̄t(dy)

=

∫ ∞
0

(
bt

bt + y

)at
dy

=
bt

at − 1
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Therefore, mt = g(t,Xt) = b0+Xt
a0+t−1

and ∂g
∂t

= − b0+Xt
(a0+t−1)2

= − mt
at−1

. Also,∫
R+

[V (t, g(t,Xt + y))− V (t, g(t,Xt))]ν̄t(dy)

=

∫
R+

[
V

(
t,
bt + y

at − 1

)
− V

(
t,

bt
at − 1

)](
bt

bt + y

)at 1

y
dy

=

∫
R+

[V (t,mt + z)− V (t,mt)]

(
mt

mt + z

)at 1

z
dz

where the last equality is obtained by using a change of variable z = y
at−1

.

In the exponential reward problem, as well as the Poisson reward problem to

be discussed in Section 4.2, we use integration by parts to reduce the free boundary

partial integro-differential equation results from Theorem 3.3.3 to a simpler version.

First, we simplify the value function,

V (a,m) = sup
τ

E
∫ τ

0

e−cs (ms − r) ds

= sup
τ

1

c
E
[
(m− r)− e−cτ (mτ − r) +

∫ τ

0

e−cs
d

ds
ms

]
,

Observe that

d

ds
ms =

d

ds

b0 +Xs

a0 + s− 1
= − b+Xs

(a+ s− 1)2ds+
1

a+ s− 1
dXs.

We take the expectation of this quantity, whence

E
∫ τ

0

e−cs
d

ds
m (as, bs)

= −E
∫ τ

0

e−cs
(

b0 +Xs

(a0 + s− 1)2

)
ds+ E

∫ τ

0

e−csE
[

1

a0 + s− 1
dXs

∣∣∣∣Fs]
= −E

∫ τ

0

e−cs
(

b0 +Xs

(a0 + s− 1)2

)
ds+ E

∫ τ

0

e−cs
(

b0 +Xs

(a0 + s− 1)2

)
ds

= 0.

Consequently, (3.11) can be rewritten as

1

c

[
sup
τ

E
[
e−cτ (r −mτ )

]
+m− r

]
= 0. (4.1)
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We define a new value function G(a,m) := sup
τ
E [e−cτ (r −mτ )] = cV (a,m)−

m+ r for fixed r, and plug it into Theorem 4.1.1 to obtain the following equivalent

free boundary problem.

Proposition 4.1.2. The value function G (a,m) in the gamma-exponential problem

solves the free-boundary problem

Ga (a,m)− m

a− 1
Gm (a,m) +

∫ ∞
0

[G (a,m+ z)−G (a,m)]
1

z

(
m

m+ z

)a
dz = cG (a,m)

G (a,m∗ (a)) = r −m∗ (a)

where m∗ (a) is an unknown stopping boundary curve. For every point (a,m) on

this stopping boundary, the Gittins index R(a,m) is equal to r.

Proof: By substituting V (a,m) = 1
c

[G(a,m) +m− r] in Theorem 4.1.1, we get

Va (a,m)− m

a− 1
Vm (a,m) +

∫ ∞
0

[V (a,m+ z)− V (a,m)]
1

z

(
m

m+ z

)a
dz

=
1

c
Ga (a,m)− 1

c

m

a− 1
[Gm (a,m) + 1] +

1

c

m

a− 1

+
1

c

∫ ∞
0

[G (a,m+ z)−G (a,m)]
1

z

(
m

m+ z

)a
dz

=
1

c

[
Ga (a,m)− m

a− 1
Gm (a,m) +

∫ ∞
0

[G (a,m+ z)−G (a,m)]
1

z

(
m

m+ z

)a
dz

]
and

cV (a,m)− (m− r) = G(a,m)

while on the stopping boundary, [G(a,m) +m− r] /c = 0.

The formulation in Proposition 4.1.2 is equivalent to the more intuitive one

in Theorem 4.1.1 where LinfV = LcharV and the value function equals zero on the

stopping boundary. We will use it for proving structural properties and for numerical

convenience in Chapter 5.
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4.2 Poisson Reward Problems

In the gamma-Poisson problem, the continuous-time interpolation (Xt) is a

Poisson process with unknown rate λ. Again, we assume λ ∼ Gamma (a0, b0), let

Ft be the σ-algebra generated by the path of (Xt) up to time t, and update the

posterior parameters using

at = a0 +Xt, bt = b0 + t,

as in (2.4)-(2.5).

Similar to in Section 4.1, we get the following free boundary PIDE through

calculating mt explicitly.

Theorem 4.2.1. The value function V (b,m) in the gamma-Poisson problem solves

the free-boundary problem,

Vb (b,m)− m

b
Vm (b,m) +

[
V

(
b,m+

1

b

)
− V (b,m)

]
m = cV (b,m)− (m− r)

V (b,m∗ (b)) = 0

where m∗ (b) is an unknown stopping boundary curve. And, for every point (b,m)

on this stopping boundary, the Gittins index R(b,m) is equal to r.

Proof: It suffices to show through explicit calculation based on the PIDE in The-

orem 3.3.3. In the conditional Lévy process we use to model exponential rewards,

the conditional mean measure given λ is identical to that of a Poisson process

ν(λ, dy) = λδ1, where δ1 is the Dirac delta function, and the distribution of λ given
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Ft is Gamma(at, bt). Therefore, the mean measure intensity ν̄t(dy) is calculated as

ν̄t(dy) =

∫ ∞
0

λ · b
at
t λ

at−1e−btλ

Γ(at)
dλδ1dy

=
at
bt
δ1dy

and

mt =

∫ ∞
0

yν̄t(dy)

=
at
bt

=
a0 +Xt

b0 + t

Therefore, mt = g(t,Xt) = a0+Xt
b0+t

and ∂g
∂t

= − a0+Xt
(b0+t)2

= −mt
bt

. Also,∫
R+

[V (t, g(t,Xt + y))− V (t, g(t,Xt))]ν̄t(dy)

=

∫
R+

[
V

(
t,
at + y

bt

)
− V

(
t,
at
bt

)]
at
bt
δ1dy

=

[
V

(
t,mt +

1

bt

)
− V (t,mt)

]
mt

whence the theorem is proved.

Again, we use integration by parts to simplify the value function to get

V (b,m) =
1

c

[
sup
τ

E
[
e−cτ (r −mτ )

]
+m− r

]
= 0. (4.2)

By defining G(b,m) := sup
τ
E [e−cτ (r −mτ )] = cV (b,m) − m + r for fixed r and

replacing V in Theorem 4.2.1, we obtain the equivalent free boundary problem for

the gamma-Poisson problem.

Proposition 4.2.2. The value function G (b,m) in the gamma-Poisson problem

solves the free-boundary problem,

Gb (b,m)− m

b
Gm (b,m) +

[
V

(
b,m+

1

b

)
− V (b,m)

]
m = cG (b,m) (4.3)

G (b,m∗ (b)) = r −m∗ (b)
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where m∗ (b) is an unknown stopping boundary curve. For every point (b,m) on this

stopping boundary, the Gittins index R(b,m) is equal to r.

The proof is same as that of Proposition 4.1.2 and we omit it here. Unfortu-

nately, the scaling properties of the Gittins index are not as straightforward in the

gamma-Poisson problem as they are in the gamma-exponential problem. However,

in the following section, we derive new scaling properties for the gamma-Poisson

problem.
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Chapter 5: Structural Properties of the New Approach

Continued from Chapter 4, in this chapter we provide more theoretical results

on the structure of the Gittins index for the two non-Gaussian problems in continu-

ous time. We focus on two major aspects. Section 5.1 considers scaling properties,

primarily for the gamma-Poisson problem. Section 5.2 investigates the continuity

and monotonicity of the Gittins index and value function, and concludes the theo-

retical analysis with an asymptotic convergence result. These theoretical properties

provide us more insights on how the Gittins index, an indifference indexing rule,

prices the value of a state via looking at its intrinsic value and uncertainty. Also,

these properties match with the discrete-time results shown in [2, 62], showing that

our results exhibit the correct structure established in the theory. At the end of

this chapter, we also provide a numerical example to show the intuition behind our

approach. Then, we conclude the dissertation with a brief discussion of the value

and implications of our studies.

Throughout this chapter, we abuse notation slightly by writing value func-

tions V , G, and the Gittins index R as a function of (t,m), (a,m), or (b,m), as

is convenient. Most results apply to both gamma-exponential and gamma-Poisson

problems, and therefore we use (t,m) most of the time. We will specifically use
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(a,m) or (b,m) in proofs when needed. When we hold a parameter constant, we

omit it in the argument, e.g. V (m) denotes the value function V (t,m) while we

hold t constant. We use the subscript r for value functions, e.g. Vr(t,m), to denote

that they are calculated given that fixed r value. This notation facilitates writing

our proofs in this chapter.

5.1 Distributional and scaling properties

We begin with two computational results on the predictive distributions ap-

pearing in the gamma-exponential and gamma-Poisson problems. These results are

used in the proofs of some structural properties in this section, and later on help us

to create initial conditions for PIDE solution procedures. The proofs can be found

in the Appendix.

Lemma 5.1.1. In the gamma-exponential model, the predictive distribution of Xt
b0

,

given F0, is the beta-prime distribution with parameters t and a0.

Lemma 5.1.2. In the gamma-Poisson model, the predictive distribution of Xt, given

F0, is the generalized negative binomial distribution with parameters a0 and t
b0+t

.

Next, we establish scaling properties of the Gittins index for both non-Gaussian

problems. Theorem 5.1.3 extends the result of (2.12) to the continuous-time setting,

where the Gittins index is defined to be the value of r that solves (3.6); we include

this proof for completeness. We then derive two different scaling properties for the

gamma-Poisson problem. For the gamma-Poisson problem, we also emphasize the

dependence of R on the discount factor c, as this plays a role in the scaling prop-
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erties. To our knowledge, Theorem 5.1.4 is the first known scaling result for the

gamma-Poisson problem.

Theorem 5.1.3. In the gamma-exponential problem, the Gittins index satisfies

R (a, b) = bR (a, 1).

Proof: We factor b0 out of the calibration equation (3.11) of the Gittins index by

b0 to obtain

sup
τ

E
[∫ τ

0

e−cs (ms − r) ds
]

= sup
τ

E
[∫ τ

0

e−cs
(

b0 +Xs

a0 + s− 1
− r
)
ds

]
= b0 sup

τ
E

[∫ τ

0

e−cs

(
1 + Xs

b0

a0 + s− 1
− r

b0

)
ds

]
(5.1)

= 0

The factor b0 in (5.1) can be dropped since (5.1) equals zero. By applying the

scaling properties of the gamma process and gamma distribution, we see that the

process
(
Xt
b0

)
has the same law as a conditional gamma process with the prior λ ∼

Gamma (a0, 1). Then, if R balances (3.11), it follows that the index R
b0

balances the

calibration equation for a gamma-exponential problem starting from the knowledge

state (a0, 1). Thus, R (a, b) = bR (a, 1), as required.

Theorem 5.1.4. In the gamma-Poisson problem, the Gittins index satisfies the

scaling property

R (m, b, c) =
1

σ
R

(
σm,

b

σ
, σc

)
for all σ > 0.
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Proof: We consider the calibration equation for the gamma-Poisson problem and

write

sup
τ

E
[∫ τ

0

e−cs (ms − r) ds
]

= sup
τ

E
[∫ τ

0

e−cs
(
a0 +Xs

b0 + s
− r
)
ds

]
= sup

τ
E

[∫ τ

0

e−cs

(
a0 +Xs

b0
σ

+ s
σ

− rσ

)
d
( s
σ

)]
. (5.2)

Letting t = s
σ

and Yt = Xσt, we rewrite (5.2) as

sup
τ

E
[∫ τ

0

e−cs(ms − r)ds
]

= sup
τ

E

[∫ τ
σ

0

e−cσt

(
a0 +Xσt

b0
σ

+ t
− rσ

)
dt

]

= sup
τ

E

[∫ τ

0

e−cσt

(
a0 + Yt
b0
σ

+ t
− rσ

)
dt

]

Observe that τ
σ
, where τ is a stopping time for Xt, is a stopping time for Yt,

and Yt defines a conditional Poisson process with rate σλ, which is equivalent

to a conditional Poisson process with the prior λ ∼ Gamma
(
a0,

b0
σ

)
. This sug-

gests a comparison with the calibration equation under discount factor cσ and

prior λ ∼ Gamma
(
a0,

b0
σ

)
, which yields the desired scaling property R (m, b, c) =

1
σ
R
(
σm, b

σ
, σc
)
.

Corollary 5.1.5. From Theorem 5.1.4, it follows that

R (m, b, c) =
1

b
R (mb, 1, bc) = cR

(m
c
, bc, 1

)
.

Thus, we can scale either b or c to 1, but the other parameter will also be changed.

For the gamma-exponential problem, any Gittins index can be obtained by

computing a family of stopping boundaries corresponding to r = 1 for each value of
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c. In the gamma-Poisson problem, we can standardize the discount factor, but it is

necessary to construct a family of curves indexed by b and m. Since the value of c is

fixed throughout a given bandit problem, while the values of a and b change in each

time step, the gamma-exponential problem will be less computationally intensive.

5.2 Continuity and monotonicity

In this section, we study various continuity and monotonicity properties of the

value functions Vr(t,m), Gr(t,m), R(t,m).

We are interested in continuity and monotonicity mainly for providing more

intuitions on the Gittins index as an indifference pricing rule. By showing that

the value functions and index values are monotonic on time parameter t and mean

parameter m, we provide more insights on the fact that the index policy assigns

higher value to states with higher belief mean m (intrinsic value or immediate payoff

that can be exploited) and more uncertainty under smaller t (potential gain from

exploration). Even though the non-Gaussian problems we study involve processes

with jumps, the feature that, the Gittins index analyzes the expected payoff when

an alternative is optimally played, suggests that the index change continuously with

respect to the state parameters t and m (a continuous mean field).

Another use of results in this section has to do with the numerical solution

of the PIDEs in Section 5.3. Recall from Lemma 2.3.1 that R (∞,m) = m. That

is, mt → m∞ a.s. by the law of large numbers, where m∞ is the true mean reward

(e.g. for the gamma-exponential problem we have m∞ = 1
λ

where λ is the true
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rate value). Consequently, if our estimate of the mean at time infinity is m, this

means that the true mean reward is equal to m, and the Gittins index must also

equal this value. The monotinicity and continuity properties of r eventually imply

that R (at,mt) converges to the true mean m∞. It follows that, for a fixed r, the

stopping boundary curves m∗ (a) and m∗ (b) in Theorems 4.1.1-4.2.2 will converge

to r as a and b grow large, providing us with initial estimates of values at the

stopping boundary for large time values. The continuity of the Gittins index for

discrete-time problems has been studied e.g. by [63]. Such proofs typically use

induction arguments that do not apply in continuous time. We mostly consider

continuous-time problems, but we also provide new discrete-time results.

First, we recall that the predictive distributions of Xt have been given in

Lemmas 5.1.1 and 5.1.2. In computing Vr(t,m), Gr(t,m), R(t,m), only information

in the current knowledge state (t,m) is used, so when we write mt we are implying

the predictive distribution of (mt) conditioned on F0. We adopt this viewpoint

throughout the following analysis. Starting with the next result, we will repeatedly

compare two arbitrary prior knowledge states. Let (mt) denote the process starting

with the prior parameters (t0,m0), and let (m′t) denote the process starting with

(t′0,m
′
0).

Our proofs in this section are heavily based on stochastic dominance theory

[64, 65], also used by [62] to establish discrete-time results. We shall follow the

notation used in [64] and will use the usual stochastic order ≤st, the convex order

≤cx, and the increasing convex order ≤icx. For random variables X and Y , X ≤st

Y if fX(c)/fY (c) is decreasing in c. Also, X ≤cx Y (respectively, X ≤icx Y ) if
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Eφ(X) ≤ Eφ(Y ) for all convex functions (respectively, convex and increasing) φ.

Useful properties that we will use include the equivalent definition X ≤st Y if

FX ≥ FY [1.2.1 in 64], the implication ≤icx⇒≤cx when EX = EY , and the coupling

techniques that will be re-stated into Lemmas 5.2.2 and 5.2.3 in this section.

Lemma 5.2.1. The two following stochastic order properties hold for predictive

mean processes, for every t:

mt ≥st m′t if m0 ≥ m′0 and t0 = t′0 (5.3)

mt ≥cx m′t if m0 = m′0 and t0 ≤ t′0 (5.4)

Proof: We prove (5.3) first. It suffices to show that, when m0 ≥ m′0 and t0 = t′0,

we have Fmt ≤ Fm′t .

For the gamma-exponential problem, t0 = t′0 implies a0 = a′0, and we denote

this common value by a. By Lemma 5.1.1 we have

P (mt ≥ m) = P

(
b0 +Xt

a+ t− 1
≥ m

∣∣∣∣a,m0

)
= 1− F

(
m · (a+ t− 1)

m0 · (a− 1)
− 1

)

and

P (m′t ≥ m) = P

(
b′0 +Xt

a+ t− 1
≥ m

∣∣∣∣a,m′0)
= 1− F

(
m · (a+ t− 1)

m′0 · (a− 1)
− 1

)

where F is the cdf of the Beta′ (t, a) distribution. When m0 ≥ m′0,

m · (a+ t− 1)

m0 · (a− 1)
≤ m · (a+ t− 1)

m′0 · (a− 1)
.
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and therefore P (mt ≥ m) ≥ P (m′t ≥ m), i.e. Fmt ≤ Fm′t .

For the gamma-Poisson problem, t0 = t′0 implies b0 = b′0, and we denote this

common value by b. By Lemma 5.1.2 we have

P (mt ≥ m) = P

(
a0 +Xt

b+ t
≥ m

∣∣∣∣b,m0

)
= 1− F (m · (b+ t)−m0b)

and

P (m′t ≥ m) = P

(
a′0 +Xt

b+ t
≥ m

∣∣∣∣b,m′0)
= 1− F ′ (m · (b+ t)−m′0b)

where F is the cdf of the generalized negative binomial (GNB) distribution with

parameters m0b and t
b+t

, and F ′ is the cdf of GNB
(
m′0b,

t
b+t

)
. When m0 ≥ m′0,

F (m · (b+ t)−m0b) ≤ F ′(m · (b+ t)−m0b)

≤ F ′(m · (b+ t)−m′0b),

whence P (mt ≥ m) ≥ P (m′t ≥ m) as required.

Secondly, we prove (5.4). We first consider the gamma-exponential case; the

gamma-Poisson version can be shown in exactly the same way.

In the gamma-exponential case, (5.4) assumed that m0 = b0
a0−1

=
b′0

a′0−1
= m′0,

which we denote by m, and a0 ≤ a′0. We prove convex dominance by showing

mt =

(
b0 +Xt

a0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
≥cx

(
b′0 +Xt

a′0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
(5.5)

≥cx
(

b′0 +Xt

a′0 + t− 1

∣∣∣∣λ ∼ Gamma(a′0, b
′
0)

)
(5.6)

= m′t
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We observe that

(
b0 +Xt

a0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
=

(
b0 +mt+ (Xt −mt)

a0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
= m+

1

a0 + t− 1
(Xt −mt|λ ∼ Gamma(a0, b0))

and similarly

(
b′0 +Xt

a′0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
= m+

1

a′0 + t− 1
(Xt −mt|λ ∼ Gamma(a0, b0))

where (Xt −mt|λ ∼ Gamma(a0, b0)) is a random variable with zero mean. If we

write Yt := (Xt −mt|λ ∼ Gamma(a0, b0)), then to prove (5.5) it suffices to show

m+
1

a0 + t− 1
Yt ≥cx m+

1

a′0 + t− 1
Yt.

By Theorem 1.5.18 in [64], for a zero mean random variable X, aX + b ≤icx cX + d,

when 0 ≤ a ≤ c and b ≤ d. Since 1
a0+t−1

≥ 1
a′0+t−1

, we have

(
b0 +Xt

a0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
≥icx

(
b′0 +Xt

a′0 + t− 1

∣∣∣∣λ ∼ Gamma(a0, b0)

)
,

and then ≥cx follows from the fact that they have equal means, whence (5.5) is

proved.

Next, (5.6) follows from Theorem 3.A.21 in [65]. It suffices to prove the con-

dition of the theorem that, for every convex function φ, E
[
φ(Xt

∣∣ 1
λ
)
]

is convex in 1
λ

for gamma-exponential problem, and E [φ(Xt|λ)] is convex in λ for gamma-Poisson.
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In the gamma-exponential case, for all θ ≥ θ′ and α ∈ (0, 1),

E
[
φ

(
Xt

∣∣∣∣1λ = αθ + (1− α)θ′
)]

= E
{
φ

[(
Xt

∣∣∣∣1λ = αθ

)
+

(
Xt

∣∣∣∣1λ = (1− α)θ′
)]}

(5.7)

= E
{
φ

[
α

(
Xt

∣∣∣∣1λ = θ

)
+ (1− α)

(
Xt

∣∣∣∣1λ = θ′
)]}

(5.8)

≤ E
[
αφ

(
Xt

∣∣∣∣1λ = θ

)
+ (1− α)φ

(
Xt

∣∣∣∣1λ = θ′
)]

(5.9)

= αE
[
φ

(
Xt

∣∣∣∣1λ = θ

)]
+ (1− α)E

[
φ

(
Xt

∣∣∣∣1λ = θ′
)]

in which (5.7) and (5.8) are due to scaling properties of the gamma distribution,

and (5.9) is due to φ being convex. Therefore, Theorem 3.A.21 of [65] holds, whence

(5.6) is proved.

With (5.5) and (5.6) shown, (5.4) is proved (the gamma-Poisson case is proved

in exactly the same way and we omit it).

Before we provide our first monotonicity result, we restate two results from

[64] for completeness. These results are also known as the “coupling” techniques.

Lemma 5.2.2. If (mt) ≥st (m′t) for all t, there exist two processes (m̂t) and (m̂′t)

defined on the same filtration Ft that are identical in distribution to (mt) and (m′t),

and m̂t ≥ m̂′t almost surely [64, Theorem 1.2.4].

Lemma 5.2.3. If (mt) ≥cx (m′t) for all t, there exist two processes (m̂t) and (m̂′t)

defined on the same filtration Ft that are identical in distribution to (mt) and (m′t),

and E (m̂t|m̂′t) = m̂′t [64, Theorem 3.4.2].

We will repeatedly use these coupling techniques when proving monotonicity

and continuity properties in the rest of this section. When we take two initial
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states (t0,m0) and (t′0,m
′
0) that generate two predictive mean processes mt and m′t

satisfying stochastic dominance ≤st or convex dominance ≤cx, Lemmas 5.2.2 and

5.2.3 give us two processes defined on the same filtration with a.s. dominance or the

conditional expectation property, respectively. We will denote these two coupled

processes by m̂t and m̂′t. When we take a sequence of states (t1,m1), (t2,m2),...,

that all dominate or are dominated by some state (t,m), each state in the sequence

can be coupled with (t,m), and we denote the coupled process of (tk,mk) by m̂k
t .

Theorem 5.2.4. V (m) is increasing in m, and G(m) is decreasing in m.

Proof: Assume that m0 ≥ m′0 and t0 = t′0. Then, Lemma 5.2.2 gives us two

processes defined on the same filtration with a.s. dominance. The processes (mt)

and (m̂t) are identically distributed, as are (m′t) and (m̂′t). Using the arguments of

[66], the values of V and G, as well as the optimal stopping time τ , depend only on

the law of mt. This result is also given in [67]. Therefore,

sup
τ

E
[
e−cτ (r −mτ )

]
= sup

τ
E
[
e−cτ (r − m̂τ )

]
,

sup
τ

E
[∫ τ

0

e−cs(ms − r)ds
]

= sup
τ

E
[∫ τ

0

e−cs(m̂s − r)ds
]
.

This allows us to write V and G using m̂t and m̂′t, which provides the almost sure

dominance necessary to complete the proof, that is, m̂t (ω) ≥ m̂′t (ω) for a.e. ω. We
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calculate

Vr(m
′
0) = sup

τ
E
[∫ τ

0

e−cs(m′s − r)ds
]

= sup
τ

E
[∫ τ

0

e−cs(m̂′s − r)ds
]

= sup
τ

E
[∫ τ

0

e−cs(m̂s − r)ds+

∫ τ

0

e−cs(m̂′s − m̂s)ds

]
≤ sup

τ
E
[∫ τ

0

e−cs(m̂s − r)ds
]

= Vr(m0)

and

Gr(m0) = sup
τ

E
[
e−cτ (r − m̂τ )

]
= sup

τ
E
[
e−cτ (r − m̂′τ ) + e−cτ (m̂′τ − m̂τ )

]
≤ sup

τ
E
[
e−cτ (r −m′τ )

]
= Gr(m

′
0),

as required.

The monotonicity results for V and G can be used to obtain similar results for

the stopping boundaries of the PIDEs, as well as the Gittins indices. Below, we find

that the Gittins index is increasing in the mean parameter m, matching the result

of [62] for discrete time.

Proposition 5.2.5. The stopping boundaries m∗r (t), indexed by the retirement re-

ward r, are ordered and do not cross. That is, m∗r ≥ m∗r′ for r ≥ r′.
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Proof: Let m∗r be the stopping boundary corresponding to r and take r′ ≤ r. Then,

sup
τ

E
[∫ τ

0

e−cs(ms − r′)ds
]

= sup
τ

E
[∫ τ

0

e−cs(ms − r) + e−cs(r − r′)ds
]

≥ sup
τ

E
[∫ τ

0

e−cs(ms − r)
]

= 0.

Therefore, Vr′(m
∗
r) ≥ 0. By monotonicity in Theorem 5.2.4, we get m∗r ≥ m∗r′ .

Corollary 5.2.6. From Proposition 5.2.5, it follows that the Gittins index R is

increasing in m.

With the monotonicity in m proved, we are now able to show that R is con-

tinuous in m.

Theorem 5.2.7. R(m) is continuous in m.

Proof: Monotonicity in Corollary 5.2.6 guarantees the existence of lim
ε→0−

R(m + ε)

and lim
ε→0+

R(m + ε) provided R(m) is finite, and it suffices to show that they are all

equal, i.e. lim
ε→0−

R(m+ ε) = lim
ε→0+

R(m+ ε) = R(m).

First, we prove left-continuity. For any fixed t, we take an infinite increasing

sequence of values {mk} converging to m from the left, and denote the corresponding

Gittins indices R(t,mk) by Rk. We also denote the Gittins index corresponding

to (t,m) by R. Then, taking the limit of both sides of (4.2) yields lim
k→∞

Rk =

lim
k→∞

mk + lim
k→∞

GRk(mk). We denote lim
k→∞

Rk by R̄. By Proposition 5.2.5, R̄ ≤ R.
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Now we show that R̄ ≥ R.

R̄ = lim
k→∞

mk + lim
k→∞

GRk(mk)

= m+ lim
k→∞

GRk(mk)

= m+ lim
k→∞

sup
τ
E
[
e−cτ (Rk −mk

τ )
]

= m+ lim
k→∞

sup
τ
E
[
e−cτ (Rk − m̂τ + m̂τ − m̂k

τ )
]

(5.10)

≥ m+ lim
k→∞

sup
τ
E
[
e−cτ (Rk − m̂τ )

]
(5.11)

≥ m+ sup
τ

lim
k→∞

E
[
e−cτ (Rk − m̂τ )

]
(5.12)

= m+ sup
τ

[
E
(
e−cτ (R̄− m̂τ )

)
+ lim

k→∞
E
(
e−cτ (Rk − R̄)

)]
= m+ sup

τ
E[e−cτ (R̄− m̂τ )]

In (5.10), we used the coupling technique in Lemma 5.2.2 to map the predictive

processes mt and mk
t onto the same filtration and obtain almost sure dominance,

which provides the inequality (5.11). Equation (5.12) is due to

sup
τ
E
[
e−cτ (Rk − m̂τ )

]
≥ E

[
e−cτ (Rk − m̂τ )

]
for every k and therefore

lim
k→∞

sup
τ
E
[
e−cτ (Rk − m̂τ )

]
≥ lim

k→∞
E
[
e−cτ (Rk − m̂τ )

]
for each τ . This yields

lim
k→∞

sup
τ
E
[
e−cτ (Rk − m̂τ )

]
≥ sup

τ
lim
k→∞

E
[
e−cτ (Rk − m̂τ )

]
Therefore, we have

m− R̄ + sup
τ
E
[
e−cτ (R̄− m̂τ )

]
= sup

τ
E
[∫ τ

0

e−cs(ms − R̄)ds

]
≤ 0 (5.13)
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By

VR(m) = sup
τ
E
[∫ τ

0

e−cs(ms −R)ds

]
= 0

we have

0 = sup
τ
E
[∫ τ

0

e−cs(ms −R)ds

]
= sup

τ
E
[∫ τ

0

e−cs(ms − R̄ + R̄−R)ds

]
≤ sup

τ
E
[∫ τ

0

e−cs(ms − R̄)ds

]
+ (R̄−R)sup

τ
E
[∫ τ

0

e−csds

]

which by (5.13) leads to

(R̄−R)sup
τ
E
[∫ τ

0

e−csds

]
≥ −sup

τ
E
[∫ τ

0

e−cs(ms − R̄)ds

]
≥ 0

Since sup
τ
E
[∫ τ

0
e−csds

]
≥ 0, we have (R̄ − R) ≥ 0 and therefore R̄ ≥ R, whence

left-continuity is proved.

Right-continuity can be proved in a similar way. For any m and t fixed, take

an infinite increasing sequence of values {mk} converging to m from the right, and
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under the same notation we show R̄ ≤ R.

R̄ = lim
k→∞

mk + lim
k→∞

GRk(mk)

= m+ lim
k→∞

GRk(mk)

= m+ lim
k→∞

sup
τ
E
[
e−cτ (Rk −mk

τ )
]

= m+ lim
k→∞

sup
τ
E
[
e−cτ (Rk − m̂τ + m̂τ − m̂k

τ )
]

≤ m+ lim
k→∞

sup
τ
E
[
e−cτ (Rk − m̂τ )

]
= m+ lim

k→∞
sup
τ
E
[
e−cτ (R̄− m̂τ +Rk − R̄)

]
≤ m+ lim

k→∞
{sup

τ
E
[
e−cτ (R̄− m̂τ )

]
+ sup

τ
E
[
e−cτ (Rk − R̄)

]
}

= m+ lim
k→∞

sup
τ
E
[
e−cτ (R̄− m̂τ )

]
+ lim

k→∞

[
(Rk − R̄)sup

τ
E
(
e−cτ

)]
= m+ sup

τ
E
[
e−cτ (R̄− m̂τ )

]
This shows that VR̄(m) = sup

τ
E
[∫ τ

0
e−cs(ms − R̄)ds

]
≥ 0, and therefore

0 ≤ sup
τ
E
[∫ τ

0

e−cs(ms − R̄)ds

]
= sup

τ
E
[∫ τ

0

e−cs(ms −R +R− R̄)ds

]
≤ sup

τ
E
[∫ τ

0

e−cs(ms −R)ds

]
+ (R− R̄)sup

τ
E
[∫ τ

0

e−csds

]

which leads to

(R− R̄)sup
τ
E
[∫ τ

0

e−csds

]
≥ 0

whence right continuity is proved.

Lemma 5.2.8. The Gittins index R(t,m) is monotonically decreasing in t, while

holding m fixed.
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Proof: Under the convex order provided in (5.4), the proposition follows directly

from Theorem 5.4 in [68].

Theorem 5.2.9. R(t) is continuous in t.

Proof: Monotonicity in Lemma 5.2.8 guarantees the existence of lim
ε→0−

R(t+ ε) and

lim
ε→0+

R(t + ε) provided R(t) is finite, and it suffices to show that they are all equal,

i.e. lim
ε→0−

R(t+ ε) = lim
ε→0+

R(t+ ε) = R(t).

First, we prove left-continutity. For any m fixed, take an infinite increasing

sequence of values {tk} converging to t from the left, and denote corresponding

Gittins indices R(tk,m) by Rk. We denote lim
k→∞

Rk by R̄. By Proposition 5.2.5, we

have R̄ ≤ R. Now we show that R̄ ≥ R.

By taking limit on both sides of the calibration equation yields

0 = lim
k→∞

VRk (ak,m)

= lim
k→∞

sup
τ
E
[∫ τ

0

e−cs
(
mk
s −Rk

)
ds

]
= lim

k→∞
sup
τ
E
[∫ τ

0

e−cs
(
m̂k
s −Rk

)
ds

]
= lim

k→∞
sup
τ
E
[∫ τ

0

e−cs
(
m̂k
s − m̂s + m̂s −R +R−Rk

)
ds

]
≥ sup

τ
lim
k→∞

E
[∫ τ

0

e−cs
(
m̂k
s − m̂s + m̂s −R +R−Rk

)
ds

]
= sup

τ

{
lim
k→∞

E
[∫ τ

0

e−cs
(
m̂k
s − m̂s

)
ds

]
+ E

[∫ τ

0

e−cs (m̂s −R) ds

]

+
(
R− R̄

)
lim
k→∞

E
∫ τ

0

e−csds

}

= sup
τ

{
lim
k→∞

E
[∫ τ

0

e−csE
(
m̂k
s − m̂s|m̂s

)
ds

]
+
(
R− R̄

)
lim
k→∞

E
∫ τ

0

e−csds

}
=

(
R− R̄

)
lim
k→∞

E
∫ τ

0

e−csds (5.14)
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By Lemma 5.2.1, m̂t ≤cx m̂k
t for every t, and hence E

(
m̂k
s − m̂s|m̂s

)
= 0 by Lemma

5.2.3, leading to equation (5.14). Therefore R − R̄ ≤ 0, whence left continuity is

proved.

Right-continuity can be proved in a similar way. For any m and t fixed, take

an infinite increasing sequence of values {tk} converging to t from the right, and

under the same notation we show R̄ ≤ R. By taking limit on both sides of the

calibration equation yields

0 = lim
k→∞

VRk (ak,m)

= lim
k→∞

sup
τ
E
[∫ τ

0

e−cs
(
mk
s −Rk

)
ds

]
= lim

k→∞
sup
τ
E
[∫ τ

0

e−cs
(
m̂k
s −Rk

)
ds

]
= lim

k→∞
sup
τ
E
[∫ τ

0

e−cs
(
m̂k
s − m̂s + m̂s −R +R−Rk

)
ds

]
≤ lim

k→∞

{
sup
τ
E
[∫ τ

0

e−cs
(
m̂k
s − m̂s

)
ds

]
+ sup

τ
E
[∫ τ

0

e−cs (m̂s −R) ds

]

+ (R−Rk) sup
τ
E
∫ τ

0

e−csds

}

= lim
k→∞

{
sup
τ
E
[∫ τ

0

e−csE
(
m̂k
s − m̂s|m̂k

s

)
ds

]
+
(
R− R̄

)
sup
τ
E
∫ τ

0

e−csds

}
=

(
R− R̄

)
sup
τ
E
∫ τ

0

e−csds

whence right-continuity is proved.

Theorem 5.2.10. The Gittins index lim
t→∞

R(t,m) = m for each m fixed, and R(t,mt)

converges to m∞ as t→∞ almost surely.

Proof: By Theorem 5.2.7 and 5.2.9, R(t,m) is continuous in (t,m). As t → ∞,

mt → m∞ almost surely. Therefore, the theorem follows from Lemma 2.3.1.
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5.3 Numerical Illustrations

Recall from Chapter 3 that, it suffices to solve only one PIDE in 4.1.2 under

r = 1 for the gamma-exponential problem to obtain all Gittins indices under its

scaling property. In this section, we use it as a numerical example to illustrate the

main insights of the theoretical properties of the framework we developed throughout

this dissertation. We will observe intuitively how the Gittins index is found when

the solution surface of a PIDE hits the stopping boundary.

Solving the problems in Theorems 4.1.2 and 4.2.2 numerically poses a sub-

stantial challenge, because we do not know the stopping boundary or even the exact

value of V at any point, making it difficult to define suitable initial conditions. We

implement an approximation that gives a lower bound on the value function, based

on a one-stage stopping rule (also used by [46]). For deterministic B ≥ 0, define the

stopping time τB as follows. Starting from an initial set of parameters at time 0,

we observe the process (Xt) until time B. If mB < r, we retire, and if mB ≥ r, we

continue running the process until infinity. We then calculate the value achieved by

τB, given by the quantity

ḠB = E[e−cB(r −mB)+], (5.15)

and use supB ḠB to approximate the value of G for the prior parameters. For both

gamma-exponential and gamma-Poisson models, (5.15) can be computed in closed

form, and supB ḠB is relatively easy to calculate numerically. The proofs of the

following results are given in the Appendix.
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Proposition 5.3.1. In the gamma-exponential model,

ḠB = e−cB
b0

A+ 1

∫ A

0

F (s)ds

where A = r(a0+B−1)
b0

− 1, and F is the cdf of a Beta prime distribution with param-

eters B and a0.

Proposition 5.3.2. In the gamma-Poisson model,

ḠB =
e−cB

b0 +B

[∑
k≤A

F (K)− (dAe − A)F (bAc)

]
where A = rb0 + rB − m0b0, and F is the cdf of a generalized negative binomial

distribution with parameters a0 and B
b0+B

.

We use these results to calculate the initial conditions at (a,m) for fixed a

and all m > 0. The following figures illustrate the one-stage stopping rule and the

search for a lower bound more intuitively, through a gamma-exponential example

with r = 1 and c = 0.05. First, Figure 1(a) shows that the approximation ḠB is

unimodal for B ∈ [0, 20] with a = 50 and m = 1. The maximum value of this

curve is then implemented as an approximation for G(a,m) with a = 50 and m = 1.

Figure 1(b) shows the results of this procedure for all m values, with a = 50 fixed.

The bold line segment shows that the initial-value approximation is close to the

stopping trigger value r − m with high precision when m is low. The tail curve

approaching zero shows where the approximation starts to deviate from r −m. In

the stopping problem, the section in bold would correspond to the stopping region,

while the other section corresponds to the continuation region.

Using the lower bound to approximate the initial value of G, we solve the PI-

DEs numerically using Euler’s finite difference schemes. It is preferable to calculate
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(a) Initial value (b) One-stage searching

Figure 5.1: Demonstration of initial values obtained from the one-stage searching

method

the initial value approximation for large time values, since the quality of the lower

bound supB ḠB is much better when the relevant time parameter (a or b) is large.

The PIDEs can be modified to express the dynamics for moving backward in time

rather than forward. Figure 2(a) demonstrates the solution surface to the PIDE for

r = 1, c = 0.05, and the initial value approximation (the right edge of the surface)

with a = 50. The surface was created by propagating the initial value curve from

Figure 1(a) from a = 50 backward to a = 1. The solution surface is stopped and

cut off when it hits the tilted plane G(a,m) = r − m. The curve is the stopping

boundary, a projection of the surface values on this hitting plane onto the (a,m)

plane. Figure 2(b) shows boundary curves for several values of r, all with initial

conditions set at a = 50. Each of these curves represents the set of all knowledge

states whose Gittins index is precisely equal to the given r value; for any knowledge
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(a) Solution surface (b) Stopping Boundaries

Figure 5.2: Stopping boundaries of the value function and 2D plots for different r

values

state above the curve, we prefer to continue collecting rewards from the process

(Xt), whereas for any knowledge state below the curve, we prefer to stop and accrue

the fixed reward r instead.

We briefly mention some properties of the solution to the PIDE. We can see

that the stopping boundary m∗(a) described by Theorems 3.3.3 and 4.1.2 should

converge to the retirement value r as the time parameter becomes large. Therefore,

the curves in Figure 2(b) behave as expected, increasing over time but remaining

dominated by their r values. We also note that the boundary curves appear to be

concave; the slight bumps close to a = 50 are due to numerical issues stemming from

proximity to the initial value. It is clear that the key to such procedures is the ability

to find good boundary curves. However, the results in Figure 2 demonstrate that

the numerical solution behaves in accordance with our intuition about the problem.
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5.4 Conclusion

We have presented a theoretical framework that can be used to approxi-

mate the computation of optimal policies for multi-armed bandit problems with

non-Gaussian rewards. The foundation of our approach consists of constructing

continuous-time, conditional Lévy processes that serve as probabilistic interpola-

tions of the discrete-time reward processes in the bandit problem. This idea was

previously used in the Gaussian setting, where the properties of Brownian motion

allow for easy standardization and numerical solution of a stopping problem in

continuous-time. Although these techniques are not available in the non-Gaussian

setting, we have shown that the analogous stopping problems can be represented

as free-boundary problems on PIDEs that equate the characteristic and infinitesi-

mal operators of the relevant value function. We have also proved the structural

properties of the value functions in these free-boundary problems, as well as the

Gittins indices in continuous time. Theses properties match with the discrete-time

results and show that our results exhibit the correct structure established in the

theory. We also presented numerical illustrations showing the intuitive implications

on how the free-boundary PIDE connects to the original Gittins index problem. Our

approach is especially promising in the gamma-exponential case, where the Gittins

index enjoys scaling properties.

While this is outside the scope of the dissertation, the framework we have

presented can be intuitively extended and incorporated into more general reward

processes and stopping problems, such as those in [18]. The value functions can
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easily accommodate different uses, while the interpolation and optimal stopping to

free-boundary transition techniques remain the same.
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Chapter Appendix:

In this appendix, we include all proofs of lemmas and theorems that were not

included in the main body of this paper.

Proof of Lemma 5.1.1: In the gamma-exponential model, Xt ∼ Gamma(t, λ),

and λ ∼ Gamma (a0, b0) given F0. Therefore, the predictive distribution of Xt is

P (Xt ∈ dx) =

∫ ∞
0

b0(b0λ)a0−1e−b0λ

Γ(a0)

λ(λx)t−1e−λx

Γ(t)
dλdx

=
Γ(a0 + t)ba0xt−1

Γ(t)Γ(a0)(x+ b0)a0+t

∫ ∞
0

(x+ b0)a0+tλa0+t−1e−(x+b0)λ

Γ(a0 + t)
dλdx

=
Γ(a0 + t)ba00 x

t−1

Γ(t)Γ(a0)(x+ b0)a0+t
dx

=
Γ(a0 + t)ba00

Γ(t)Γ(a0)
· xt−1

(x+ b0)a0+t
dx

=
Γ(a0 + t)

Γ(t)Γ(a0)
·

(
x
b0

)t−1

(
1 + x

b0

)a0+td

(
x

b0

)

=
1

Beta(t, a0)

(
x
b0

)t−1

(
1 + x

b0

)a0+td

(
x

b0

)
,

which is the beta-prime density with parameters t and a0, i.e. Xt
b0
∼ Beta′(t, a0).

Proof of Lemma 5.1.2: In the gamma-Poisson model, Xt ∼ Poisson(λt), and
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λ ∼ Gamma (a0, b0) given F0. Therefore, the predictive distribution of Xt is

P (Xt = k) =

∫ ∞
0

b0(b0λ)a0−1e−b0λ

Γ(a0)
e−λt

(λt)k

k!
dλ

=
tk

k!

∫ ∞
0

ba00 λ
a0+k−1e−(b0+t)λ

Γ(a0)
dλ

=
tk

k!
· Γ(a0 + k)

Γ(a0)
· ba00

(b0 + t)a0+k

=
Γ(a0 + k)

k!Γ(a0)

(
b0

b0 + t

)a0 ( t

b0 + t

)k
,

which is the generalized negative binomial pmf with parameters a0 and t
b0+t

.

Proof of Proposition 5.3.1: Starting from initial (a0, b0) at time 0, we make a

decision at fixed time B based on (aB, bB): stop if bB
aB−1

< r and continue sampling

to infinity if bB
aB−1

≥ r.

By Lemma 5.1.1, if we define YB := XB
b0

, then YB ∼ Beta′(B, a0). Therefore,

E

[
e−cB

(
r − bB

aB − 1

)+
]

= E

[
e−cB

(
r − b0

1 + YB
a0 +B − 1

)+
]

= e−cBE
[(
r − b0

1 + YB
a0 +B − 1

)
I{
YB≤

r(a0+B−1)
b0

−1}
}]

= e−cB

{(
r − b0

a0 +B − 1

)
F

(
r(a0 +B − 1)

b0

− 1

)

− b0

a0 +B − 1
E
[
YBI{YB≤ r(a0+B−1)

b0
−1
}]}

= e−cB

[(
r − b0

a0 +B − 1

)
F

(
r(a0 +B − 1)

b0

− 1

)

− b0

a0 +B − 1

(
r(a0 +B − 1)

b0

− 1

)
F

(
r(a0 +B − 1)

b0

− 1

)]

+ e−cB
b0

a0 +B − 1

∫ r(a0+B−1)
b0

−1

0

F (s)ds

= e−cB
b0

a0 +B − 1

∫ r(a0+B−1)
b0

−1

0

F (s)ds
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where F (s) is the cdf of Beta′(B, a0). By denoting A = r(a0+B−1)
b0

− 1 , we obtain a

simple form below,

E

[
e−cB

(
r − bB

aB − 1

)+
]

= e−cB
r0

A+ 1

∫ A

0

F (s)ds

whence the proposition is proved.

Proof of Proposition 5.3.2: By Lemma 5.1.2, XB ∼ NB
(
a0,

B
b0+B

)
. Under the

“one-stage” stopping rule, the value V̄B is computed as

E
[
e−cB (r −mB)+] = E

[
e−cB

b0 +B
(rb0 + rB −m0b0 −XB)+

]
=

∑
k≤rb0+rB−m0b0

e−cB

b0 +B
(rb0 + rB −m0b0 − k) · f(k)

where f(k) is the pmf of NB
(
a0,

B
b0+B

)
. If we denote A := rb0 + rB − m0b0 and

apply summation by parts, we get the simple form of V̄B

E
[
e−cB (r −mB)+] =

Ae−cB

b0 +B
F (bAc)− e−cB

b0 +B

∑
k≤A

k · f(k)

=
Ae−cB

b0 +B
F (bAc)− e−cB

b0 +B

[
dAe · F (bAc)−

∑
k≤A

F (k)

]

=
e−cB

b0 +B

[∑
k≤A

F (k)− (dAe − A)F (bAc)

]

whence the proposition is proved.
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l’institut Henri Poincaré, B26(2):331–355, 1990.
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