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There are many situations in which two or more agents (e.g., human or com-

puter decision makers) interact with each other repeatedly in settings that can be

modeled as repeated games. In such situations, there is evidence that agents some-

times deviate greatly from what conventional game theory would predict. There are

several reasons why this might happen, one of which is the focus of this dissertation:

sometimes an agent’s preferences may involve not only its own payoff (as specified

in the payoff matrix), but also the payoffs of the other agent(s). In such situations,

it is important to be able to understand what an agent’s preferences really are, and

how those preferences may affect the agent’s behavior.

This dissertation studies how the notion of Social Value Orientation (SVO),

a construct in social psychology to model and measure a person’s social preference,

can be used to improve our understanding of the behavior of computer agents. Most

of the work involves the life game, a repeated game in which the stage game is chosen

stochastically at each iteration. The work includes the following results:



• Using a combination of the SVO theory and evolutionary game theory, we

studied how an agent’s SVO affects its behavior in Iterated Prisoner’s Dilemma

(IPD). Our analysis provides a way to predict outcomes of agents playing IPD

given their SVO values.

• In the life game, we developed a way to build a model of agent’s SVO based

on observations of its behavior. Experimental results demonstrate that the

modeling technique works well.

• We performed experiments showing that the measured social preferences of

computer agents have significant correlation with that of their human design-

ers. The experimental results also show that knowing the SVO of an agent’s

human designer can be used to improve the performance of other agents that

interact with the given agent.

• A limitation of the SVO model is that it only looks at agents’ preferences in

one-shot games. This is inadequate for repeated games, in which an agent’s

actions may depend on both its SVO and whatever predictions it makes of

the other agent’s behavior. We have developed an extension of the SVO con-

struct called the behavioral signature, a model of how an agent’s behavior over

time will be affected by both its own SVO and the other agent’s SVO. The

experimental results show that the behavioral signature is an effective way to

generalize SVO to situations where agents interact repeatedly.
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Chapter 1: Introduction

In game theory, it is generally assumed that all individuals satisfy a set of mathe-

matical assumptions known as decision-theoretic rationality — from which it follows

that an individual’s actions can be regarded as maximizing utility, the “currency”

for everything they want. In an economic context, the rational choice theory gives

rise to the concept of Homo economicus (or economic man) which suggest that the

ideal man is driven by self-interested economic calculation without considering the

consequences on others. It provides the central explanatory principle of many eco-

nomic theories and has generated a vast academic literature. On the other hand,

experiments in social and behavioral sciences show that humans rarely follow this

assumption. For instance, consider the Ultimatum Game, in which two players in-

teract to decide how to divide a sum of money that is given to them. The first

player proposes how to divide the sum between the two players, and the second

player can either accept or reject this proposal. If the second player rejects, neither

player receives anything. If the second player accepts, the money is split according

to the proposal. Existing experiments in this game show that the offers that are

issued or accepted are closer to a “fair” division of the money ($50 for each) than

the “rational” choice [1], and also involved a cultural component [2].

Indeed, it is widely accepted in social and behavioral sciences that players
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explicitly take into account the outcomes for other players when considering their

course of action. The choices people make depend, among other things, on sta-

ble personality differences in the manner in which they approach interdependent

others. This observation can be traced back to the seminal work by Messick and

McClintock [3] in which they presented a motivational theory of choice behavior

that considers both players’ payoffs in game situations. This theory was later called

the Social Value Orientation theory [4]. Most of the SVO based studies typically

recognize two opposing social value orientations: a proself and prosocial orientation.

A proself orientation is one that gives higher consideration to its own payoff, while

a prosocial orientation gives higher regards to the payoff of the agents he is inter-

acting with. The social orientation of a player is not an absolute value; it describes

a spectrum of possible behaviors, in which one end of the spectrum denotes proself

behavior and the other end denotes prosocial behavior. Note that in contrast to the

diversity of the SVO theory, the conventional rationality assumption dictates that

all individuals are proself, without any difference between one and another. As most

social or psychological traits, the claim that SVO is a fundamental personality trait

is supported by both biological and sociological findings [5]. Biological support also

can be found, among others, in Van Lange’s work [6] showing that the basic form

of SVO is visible early in life as part of a child’s temperament.

The purpose of this dissertation is to study how the notion of SVO can be

used to improve our understanding of the behavior of computer agents. Most of the

work involves the life game, a repeated game proposed by Bacharach [7] in which

the stage game is chosen stochastically at each iteration. The results of the work

2



are described in following paragraphs.

First, we use a combination of the SVO theory and evolutionary game theory to

study how an agent’s SVO affects its behavior in Iterated Prisoner’s Dilemma (IPD).

Our analysis provides a way to predict outcomes of agents playing IPD given their

SVO values. The evolutionary simulation results on IPD confirm previous findings

on evolution of cooperation, and provide new insights on the evolutionary process of

cooperative behavior in a society as well as on the emergence of cooperative societies.

Second, in the context of life game, we have developed a way to build a model

of agent’s SVO based on observations of its behavior. Our method of agent modeling

can be used to learn strategies and respond to others’ strategies over time, to play the

game well. Our experiments demonstrated that our SVO based agent outperformed

both standard repeated games strategies and a large set of peer designed agents.

Furthermore, our experimental work illustrates the importance of adaptive and fine-

grained opponent modeling, as well as the impacts that different trust adaptation

strategies have on the performance of the SVO agent.

Third, we have developed a way to quantify the social preferences of com-

puter agents, by adapting some concepts and techniques from social psychology.

We performed experiments showing that the measured social preferences of com-

puter agents have significant correlation with that of their human designers. The

experimental results also show that knowing the SVO of an agent’s human designer

can be used to improve the performance of other agents that interact with the given

agent.

Finally, a limitation of the SVO model is that it only looks at agent’s prefer-
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ences in one-shot games. This is inadequate for repeated games, in which an agent’s

actions may depend on both its SVO and whatever predictions it makes of the other

agent’s behavior. To use the SVO model effectively in repeated games, it is neces-

sary to extend the SVO model to take into account how an agent’s behavior will

change if it interacts repeatedly with various other kinds of agents. This dissertation

includes a way to adapt and extend the SVO construct by a behavioral signature, a

model of how an agent’s behavior over time will be affected by both its own SVO

and the other agent’s SVO. The experimental results show that the predictions using

behavioral signatures are highly correlated with the agents’ actual performance in

tournament settings. This shows that the behavioral signature is an effective way

to generalize SVO to situations where agents interact repeatedly.

1.1 Outline of Thesis

The contents of the rest of this dissertation are as follows:

Chapter 2 presents a more detailed description of the Social Value Orientation

(SVO) Theory and the Life Game. The Life Game is the game environment we used

in most of the work (Chapter 4, 5, and 6) in this dissertation.

Chapter 3 utilizes evolutionary game theory to study the evolution of cooper-

ative societies and the behaviors of individual agents in such societies. We present

a novel player model based on the SVO theory. Alongside the formal player model

we provide an analysis that considers possible interactions between different types

of individuals and identifies five general steady-state behavioral patterns.

4



Chapter 4 presents an agent model based on the SVO theory. Our method

of agent modeling can be used to learn strategies and respond to others’ strategies

over time, to play the game well. We provide extensive evaluations of our model’s

performance, both against standard agents from the game theory literature and

against a large set of life-game agents written by students in two different countries.

This chapter also suggests some properties for life-game strategies to be successful

in environments with such agents.

Chapter 5 presents a way to measure the social preferences of computer agents,

by adapting some concepts and techniques from social psychology. We perform

experiments to study the correlation between the social preferences of computer

agents and that of their human designers. This chapter also describes how to use

the SVO information of the human designers to improve the performance of other

agents that interact with the given agent.

Chapter 6 presents a way to extend the SVO model to a behavioral signature

that models how an agent’s behavior over multiple iterations will depend on both

its own SVO and the SVO of the agent with which it interacts. This chapter also

provides a way to measure an agent’s behavioral signature, and a way to use this

behavioral signature to predicting the agent’s performance.

The last chapter reviews the contributions of this dissertation and proposes

directions for future work.
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Chapter 2: Background and Related Work

This chapter gives a more detailed description of the Social Value Orientation (SVO)

Theory and the Life Game. The Life Game is the game environment we used in

most of the work (Chapter 4, 5, and 6) in this dissertation. We will also discuss

related work on agent modeling.

2.1 The Social Value Orientation (SVO) Theory

There is a substantial set of evidence from the social and behavioral sciences liter-

ature showing that players explicitly take into account the outcome for the other

player when considering their course of action [5]. Moreover, the choices people make

depend, among other things, on stable personality differences in how they approach

interdependent others. This observation can be traced back to the seminal work by

Messick and McClintock [3] in which they presented a motivational theory of choice

behavior that considers both players’ payoffs in game situations. This theory was

later denoted as the Social Value Orientation theory, which has since developed into

a class of theorems [4].

Most of the SVO based studies typically recognize two opposing social value

orientations: proself and prosocial orientations. A proself orientation is one that
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gives higher consideration to its own payoff; while a prosocial orientation gives

higher regards to the payoff of the agents he or she is interacting with. The social

orientation of a player is not an absolute value; it describes a spectrum of possible

behaviors, in which one end of the spectrum denotes proself behavior, and the

other end denotes prosocial behavior. Analysis of many SVO based experiments

reveal that most people are classified as cooperators (50%), followed by individualists

(24%), followed by competitors (13%) [5, p. 74]. 1

In contrast to the diversity of the SVO theory, the traditional rationality as-

sumption dictates that all individuals are proself, without any difference among

them. As most social or psychological traits, the claim that SVO is a fundamental

personality trait is supported by both biological and sociological findings [5]. Biolog-

ical support also can be found, among others, in Van Lange’s work [6] showing that

the basic form of SVO is visible early in life as part of a child’s temperament. The

development of the SVO from social interactions is supported by many works shown

in Au and Kwong review [5]. The validity of SVO based theorems, shown both in

laboratory and field studies, indicates that prosocial generally cooperate more and

show greater concern for the effect of their actions on the well being of others and

on the environment. For examples, McClintock and Allison [8] shows that proso-

cial students were more willing to contribute time to help others, and Joireman et

al. [9] that shows that prosocial participants tend to take more pro-environmental

and collective policies than self-interest actions.

Over the years, there have been significant advances on social dilemmas and

1The remaining 13% could not be classified as having a consistent SVO.
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various aspects of the social value orientations since the seminal work of Messick

and McClintock [3]. For example, Parks and Rumble [10] showed that different

aspects of the Tit-for-Tat strategy have different effects on the cooperation rates of

individuals with different SVO values. In addition, there were several other research

questions that considered some relaxation of the rationality assumption in their

solution, for instance, de Jong et al. [11] presented a computational model that

allows for achieving fairness in multi-agent systems. Their computational model

uses the Homo Egualis utility function that has been shown to adequately describe

human behavior in several games.

2.2 The Life Game Model

Many multi-agent domains involve human and computer decision makers that are

engaged in repeated collaborative or competitive activities. Examples include on-

line auctions, financial trading, and computer gaming. Repeated games are often

viewed as an appropriate model for studying these kinds of repeated interactions

between agents. In a traditional, game-theoretic repeated-game model, agents re-

peatedly play a game called the stage game. Many types of games can be used as

the stage game. For example, Axelrod’s famous Iterated Prisoner’s Dilemma (IPD)

competitions showed the emergence of cooperation, even though the rational domi-

nant equilibrium in a one-shot Prisoner’s Dilemma is to defect [12]. Maynard Smith

studied two-player Chicken Game with a population of Hawks and Doves [13], and

Skyrms studied the evolved population when individuals were playing the Stag-hunt
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game [14].

Each of these studies used a highly simplified game model in which the same

stage game was used at every iteration. In other words, they assumed that the

agents would interact with each other repeatedly in exactly the same environment.

However, as pointed out by Bacharach [7, p. 100], repeatedly playing the same

game is unlikely to be an accurate model of any individual’s life. In many real-life

situations, agents may interact with each other repeatedly in different environments.

As a more accurate model, Bacharach proposed the Life Game, in which an

individual plays a mixture of games drawn sequentially according to some stochastic

process from many stage games. Bacharach referred to the size and variety of this

set as the game’s ludic diversity (thus an ordinary non-stochastic repeated game

has minimal ludic diversity). The rich variety of stage games also allows agents to

express a larger spectrum of social preferences, resulting in an adequate playground

for agents of different personalities and behaviors. We believe this makes the Life

Game a better model for repeated interaction in different environments—so in this

dissertation we concentrate on studying social preferences of automated agents in

the Life Game of high ludic diversity.

In this dissertation, we model the life game as an iterated game in which

each stage game is a 2x2 normal-form game that is generated randomly by choosing

independent random values for the payoffs a, b, c, and d in the payoff matrix shown in

Figure 2.1. The payoffs a, b, c, d are chosen from a uniform distribution over the set

[0, 9]. At each stage, each agent knows the complete payoff matrix. After deciding

on the actions, each agent will be notified of the action chosen by the other agent.
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Player 2

2x2 symmetric game
A1 A2

A1 (a, a) (b, c)

Player 1
A2 (c, b) (d, d)

Figure 2.1: Stage game for the life game. The values a, b, c, d are generated randomly

as described in the text.

Player 2

Choosing sides game
A1=Left A2=Right

A1=Left (1, 1) (0, 0)

Player 1
A2=Right (0, 0) (1, 1)

Figure 2.2: Choosing the side of the road upon which to drive.

The two agents will play the games in succession, without knowing when the series

of games will end. We do not place any restrictions on the agents’ memory, and

they may record past matrices and the actions taken by both agents and use it in

their strategy.

Depending on the randomly chosen values of a, b, c, and d, each stage game

may or may not be an instance of a well-known social dilemma game (e.g., Prisoner’s

Dilemma, Chicken Game, Stag-Hunt [15], etc). Consequently, the semantics of the

actions are subjective and depend on the value of a, b, c and d. For example, if

a = 3, b = 0, c = 5 and d = 1 (a Prisoner’s Dilemma), then A1 and A2 can

be considered as “Cooperate” and “Defect.” This additional layer of uncertainty

might cause situation such as that when one agent considers a certain action to be
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a reasonably cooperative action, it will be captured as a competitive action in the

eyes of its opponent. Some instances (e.g., Figure 2.2) of the random games may not

have the notion of cooperation at all. Therefore, in addition to induce cooperation,

a good agent also needs to coordinate well with other agent in some of the games.

2.3 Related Work

Previous research in agent modeling has proposed modeling other agents by esti-

mating agents’ personalities. For example, Talman et al. [16] proposed a decision-

theoretic model that explicitly represents and reasons about agents’ personalities in

environments in which agents are uncertain about each others’ resources. Similar

to our SVO-based models, their agents can identify and negotiate with those who

are cooperative while avoiding those who are exploiter. Ya’akov Gal et al. [17] pro-

posed several new decision-making models that represent, learn and adapt to various

social attributes that influence people’s decision-making in a group of human and

computer agents.

Previous works on the Iterated Prisoner’s Dilemma typically used a policy to

model an agent [18–21]. A policy is a set of rules specifying the choice of C or D in

every round as a function of the history of the interaction so far. For example, well-

known strategies such as the famous tit-for-tat strategy [12] and Pavlov strategy [22]

can be modeled using the policy. However, extending the policy model to the life

game, which allows variations of interactions, raises the following difficulties. First,

from the semantic point of view, unlike the Prisoner’s Dilemma in which actions
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are labeled by “Cooperate” or “Defect”, in the life game the actions are not labeled

in advance. The agents will need to define themselves the semantic of each of the

actions in each round of the game. Consequently, the intentions behind the actions

might be misinterpreted due to semantic differences, which also complicates the

playing strategies. For example, what might look like a “Cooperate” action for one

agent, might be interpreted differently by another. Secondly, the semantic problems

might also result in ambiguity with respect to the intentions behind the actions, as

the agent cannot be sure whether an action is a result of an intentional strategic

decision, or due to semantic differences. On the contrary, our SVO-based models do

not require labeling actions in advance.

In most of the work (Chapter 4, 5, and 6) in this dissertation, in order to

provide a richer set of strategies to perform experiments, we collected a large set of

Peer Designed Agents (PDAs). Peer-Designed Agents have been recently used with

great success in AI to evolve and evaluate state-of-the-art agents for various tasks

such as negotiation and collaboration [23–25]. Lin et al. [23] provided an empirical

proof that PDAs can alleviate the evaluation process of automatic negotiators, and

help their designs. Efrat Manisterski et al. [24] studied how people design agents

for online markets and how their design changes over time. Their results show

that most human subjects modified their agents’ strategic behavior; for example,

they increased their means of protection against deceiving agents. Au et al. [25]

used agents written by students to study enhancing agent by combining a set of

interaction traces produced by other agents. In most of the work in this dissertation,

we used the same evaluation methodology that we collected a set of human-written
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agents and then investigate a better model and way to predict their behaviors and

have better interactions with them.

While using PDA’s instead of human is very attractive, there are also limi-

tations that must be taken into account. Elmalech and Sarne in [26] showed that

there are limitations for the ability to generalize results from one successful imple-

mentation of PDA-based systems to another. As such, the decision to prefer working

with PDAs instead of humans must dependent on the domain in question. Another

interesting result from the same authors suggests that the process of developing a

programmable strategy for a PDA might affect the behavior of its designer. There

are also some evidence of discrepancies between actual and reported human behav-

ior in various domains, in particular in metacognition research [27], however overall

the sum of evidence do show that PDA designers do manage to describe their strat-

egy in a way that reflects their real-life strategy. The work in this dissertation has

very limited exposure to these weaknesses of the PDA methodology, as most of our

results are, at least theoretically, independent from any specific domain.
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Chapter 3: Social Value Orientation Theory and Evolution of Coop-

eration

In this Chapter, we utilize a combination of SVO theory and evolutionary game

theory to study the evolution of cooperative societies and the behaviors of individual

agents (i.e., players) in such societies. We present a novel player model based on

the SVO theory. Alongside our formal player model we provide an analysis that

considers possible interactions between different types of individuals and identifies

five general steady-state behavioral patterns. We present evolutionary simulations

that confirm previous findings on evolution of cooperation, and provide new insights

on the evolutionary process of cooperative behavior in a society as well as on the

emergence of cooperative societies.

3.1 Introduction

We consider how cooperative societies evolve, given varying social tendencies of the

individuals. Evolution of cooperation between individuals has been studied for years,

most notably starting from the seminal work of Smith [28] and Axelrod [29]. The

underlying question can be summarized briefly as follows:

Why and how does cooperative behavior evolve in a Darwinian society
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where the survival of the fittest is the prominent behavioral rule?

Existing research on this question typically utilize game theory in order to analyze

highly simplified models of social dilemmas. Traditional game theory uses the ra-

tionality assumption, i.e., the assumption that human behavior is purely rational,

self-maximizing behavior [30]. However, this assumption has received wide criti-

cism from the behavioral science literature (e.g. [1]). For example, the Social Value

Orientation (SVO) theory [3, 4] conjectures based on many empirical studies, that

the social choices people make depend, among other things, on other people; in

particular on the stable personality differences between individuals.

We describe a new formalism for studying evolution of cooperation based on

the SVO theory. Our formalism captures in the player models the notion of varying

and persistent social orientations exhibited in human behavior. This enables a player

to reason about the relationships between the player’s social orientation and how

that player develops strategies when two players interact repeatedly in a game for

an unknown number of times.

We present theoretical results showing how players with different social ten-

dencies interact in a class of normal-form games. Our analysis revealed five general

stable state behavioral patterns that can be explained in terms of the players’ vary-

ing social orientation values.

Our experiments based on evolutionary simulations in the Iterated Prisoner’s

Dilemma (IPD) demonstrated the effects of social orientations on the evolution of

cooperative behavior in individual players and on the emergence of a cooperative
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society. One set of experiments showed that prosocial tendency increases with in-

creasing reward or with decreasing temptation, thus confirming previous intuitions

from [31].

In our experiments, we also found out that there are scenarios in which the

definition of cooperativeness from previous studies might lead to erroneous conclu-

sions. Previous works on the evolution of cooperation typically used the average

payoff of the society as a measure of of its cooperativeness: i.e., the higher the aver-

age payoff is, the more cooperative the society is thought to be [18–20]. However, it

does not happen in our model that while increasing the value of rewards or punish-

ments results in a similar increase in the average payoff, this does not result in the

emergence of the same kind of society. In particular in our experiments, increasing

mutual reward typically resulted in a cooperative society, but increasing mutual

punishment resulted in a divided society that includes two distinct clusters: one of

highly selfish players and the other of highly cooperative players.

3.2 Evolution of Cooperation

The studies for evolution of cooperation investigate how and under what conditions

individuals who pursue their own self-interest can cooperate with each other with-

out a central authority to force them to do so. Among the prominent approaches

to understanding the nature of cooperation is evolutionary game theory, which uses

evolutionary concepts such as fitness, replication and mutation to explain the emer-

gence of cooperation [12,28].
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Player 2

Prisoner’s Dilemma
Cooperate (C) Defect (D)

Cooperate (C) (3, 3) (0, 5)

Player 1
Defect (D) (5, 0) (1, 1)

Figure 3.1: The Prisoner’s Dilemma game.

Normal-form games are typically used to abstract many details at arise in

situations where cooperation among individuals are to be studied. The most widely-

used example of such games is the Iterated Prisoner’s Dilemma (IPD), an iterated

variant of the prisoner’s dilemma that is played repeatedly an unknown number of

iterations. IPD has been the most common model for social dilemmas between two

players and has been often used in order to study the evolution of cooperation.

Figure 3.1 presents the payoff matrix for Prisoner’s Dilemma, where two play-

ers are both faced with a decision to either cooperate (C) or defect (D). If the game

is played once, then defecting will provide a higher payoff regardless of whether the

other player cooperates or defects. However, if the game is played repeatedly for an

unknown number of times, cooperative behavior in an individual might emerge to

increase accumulated payoffs (see [32] for an overview).

Since Axelrod’s IPD tournament [12] that focused on generating winning

strategies in IPD, there has been a large body of research on the various aspects of

the basic IPD model: varying payoffs, number of players, and various population

and structural dynamics [32].

In this Chapter, we focus on a generalized form of Prisoner’s Dilemma game
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Player 2

2x2 symmetric game
Cooperate (C) Defect (D)

Cooperate (C) (R,R) (S, T )

Player 1
Defect (D) (T, S) (P, P )

Figure 3.2: Generalized form of the Prisoner’s Dilemma game, where S < P < R <

T and 2R > S + T .

(Figure 3.2, where S < P < R < T and 2R > S + T ). In the subsequent sections,

we describe a new formalism based on the SVO theory, for studying evolution of

cooperation. Previous works on the evolution of cooperation typically used the

average payoff of the population as a measure of the cooperativeness [18–20]. In

contrast, our formalism focuses on the social value orientations of the players and

uses the average social values of the society as a new measure of cooperativeness.

3.3 Our Model

We formalize the social-interaction space of the two players in a game, namely Player

x and Player y, as a two-dimensional Euclidean space, as illustrated in Figure 3.3.

The x-axis represents the accumulated total payoff of Player x and the y-axis rep-

resents that of Player y.

The social-orientation of a player, say Player x, is a unit vector ŝx such that

ŝx’s initial point is at the origin of the social-interaction space. We represent ŝx by

the angle, θ(x) between ŝx and the x-axis of the social-interaction space. Intuitively,

the social orientation of a player is a model of its tendency to adopt a prosocial or
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Figure 3.3: An Illustration of the social-interaction space of two players, x and y.

The x and y axes show the accumulated total payoff for Players x and y, respectively.

proself behavior in a game.

For example, when θx = 0 then Player x acts as a proself individual. If

θx = π/4, then this means that player is fair, i.e., it acts to balance the accumulated

total payoffs of two players. When θx = π/2, the player is purely prosocial, i.e., it

never attempts to maximize its own payoff, but rather it tries to increase the payoff

of the other player.

We define the state of the repeated game at any iteration point t as a vector

in the social-interaction space:

~gt = 〈px, py〉

where px is the accumulated total payoff that Player x receives from the start of the

game to the point t and py is that of Player y. Note that both players hold the same

game state that describes their accumulated total payoff, and it is the only variable

state that players remember and use for deciding what to do next.

Suppose Player x, takes an action, C or D, in the game, and Player x assumes
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Player y is a random player. Let ~gt be the current game state. There are two

possible expected state changes that can arise depending whether Player x takes the

action C or D:

E[x chooses C] = ~pC = 〈R + S

2
,
R + T

2
〉

E[x chooses D] = ~pD = 〈T + P

2
,
S + P

2
〉

Intuitively, the state ~pC is the expected change in the game state produced by the

average of the payoffs that Player x could get by playing C, given Player y chooses C

or D uniformly at random. This definition assumes that Player x’s model of Player

y is of a random player. In other words, Player x does not have any background

knowledge about the other player and it cannot store and learn from the other

player’s actions.

The expected successor game state, ~gt+1,A, given that Player x chooses an action

a ∈ {C,D} in the current game state ~gt is

~gt+1,A = ~gt + ~pA,

where ~pA is the expected amount of change in the state by doing an action A.

During the course of the game, each player aims to bring the game state closer

to its social-orientation vector, ŝx. In other words, each player aims to change the

game state based on its social preference. The differences between the orientations

of the players create the tensions in their social interactions – hence the social

dilemmas. Note that with the traditional rationality assumption, the players will

try to do utility-maximization on their own payoff. In other words, the theta equals

to zero and social orientation equals to 〈1, 0〉.
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We formalize the expected utility of a game state ~gt+1,A based on social orien-

tations of players as follows. Let ~gt be the current game state. The objective of

each player is to minimize the in-between angle δt,A (where A ∈ {C,D}) between

its own social-orientation vector ŝ (ŝx for Player x) and the expected utility vector

~gt+1,A = ~gt + ~pA. In other words, the utility of a game state ~gt+1,A for Player x can

be defined as cos δt,A, which can be computed as follows:

cos δt,A =
ŝ · ~gt+1,A

|~gt+1,A|
, A ∈ {C,D}

Thus, at each iteration t of the game, each player will choose an action at such that

at = argmaxA∈{C,D} cos δt,A

For example, consider the well-known Iterated Prisoner’s Dilemma (IPD) game

as depicted in Figure 3.1. Figure 3.4 shows how a fair player (i.e., θ = π/4) interact

with another player in an IPD game. For IPD, ~pC = 〈3
2
, 4〉, ~pD = 〈3, 1

2
〉. At

the beginning, ~g = 〈0, 0〉, δ0,C is smaller than δ0,D, therefore, the fair player will

cooperate at the first iteration. When the other player defects at the first iteration,

the game state becomes 〈0, 5〉, and δ1,D is smaller than δ1,C . Therefore, the fair

player defects at the second iteration. When the other player defects again, both

of them get 1 and the game state becomes 〈1, 6〉. δ2,D is smaller than δ2,C again,

therefore, the fair player defects until the other cooperates at some point after which

the payoffs of both players becomes balanced, i.e., ~g = 〈p, p〉 for some p. In other

words, a fair player in IPD game behaves exactly the same as the well-known Tit-

For-Tat (TFT) strategy.
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Figure 3.4: An example reaction of a fair player (Player x)

3.4 Analysis

We are interested in the dynamics of a player’s behaviors (strategies), based on its

social-orientation, over the course of its interaction with another player in a repeated

game. This section presents an exhaustive analysis of such dynamics based on the

model described earlier.

We use the definition for the social-orientation of a player in the following

form. Let the two players be x and y, and their social-orientation angles be θx and

θy, respectively. We define the preference ratios for each player as rx = cos θx
cos θx+sin θx

and ry = cos θy
cos θy+sin θy

.

We define the following ratios for each action, C and D, in the Prisoner’s

Dilemma game: rC = R+S
(R+S)+(R+T )

and rD = T+P
(S+P )+(T+P )

. Intuitively, these ratios

describe the expected share of payoff that the first player will get by choosing C

and D, respectively. Since S < T (one of the conditions of Prisoner’s Dilemma), we

have rC < 0.5 < rD. In other words, this means that when a player defects, it is
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expected to get a larger share of the total payoff. 1

Let ~g = 〈px, py〉 be the current game state. We define the current ratios for

each player as gx = px
px+py

and gy = py
px+py

. In a steady state, Player x cooperates

whenever he is satisfied with his current ratio, i.e., his current ratio is greater than

or equal to his preference ratio (i.e., gx ≥ rx), or defects otherwise. Without loss of

generality, we assume rx ≤ ry. There are five possible cases in steady state:

Theorem 1. If ry ≥ rx > 0.5 (i.e., both are proself), both players always defect and

get P at each game in steady state.

Proof. When gx ≥ rx, Player x cooperates while Player y defects, so gx moves

toward S
S+T

< rx. When gx < 1− ry, Player x defects while Player y cooperates, so

gx moves toward T
S+T

> 1− ry. Otherwise, both players defect and gx moves toward

P
P+P

= 0.5.

For example, in an IPD game, let rx = 0.6 and ry = 0.7. This means that

Player x will always aim to get a share of 60% of the total payoff, while Player y

will aim to get a share of 70% of the total payoff. Therefore, both will never be

satisfied and will constantly defect to get a payoff of 1.

Theorem 2. If rx ≤ ry ≤ 0.5 (i.e., both are prosocial), both players always cooperate

and get R at each game in steady state.

1S < T is the only assumption required for the analysis. Note that this assumption is not

restrictive: many well-known games satisfy this condition, including the well-known Prisoner’s

Dilemma, Chicken Game, and Stag-Hunt [15].
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Proof. When gx < rx, Player x defects while Player y cooperates, so gx moves

toward T
S+T

> rx. When gx ≥ 1 − ry, Player x cooperates while Player y defects,

so gx moves toward S
S+T

< 1− ry. Otherwise, both players cooperate and gx moves

toward R
R+R

= 0.5.

For example, in an IPD game, let rx = 0.3 and ry = 0.4. This means that

Player x will aim to get a share of 30% of the total payoff, while Player y will aim

to get a share of 40% the total payoff. As such, they will both be easily satisfied,

and therefore always cooperate and get the rewards, i.e., 3.

Theorem 3. If rx < 0.5 and rx + ry = 1, there are two cases:

• when ry >
T

S+T
, Player x gets S while Player y gets T ;

• otherwise, Player x gets rx(T + S), and Player y gets (1− rx)(T + S).

Proof. The first case above immediately follows from the fact that when ry >
T

S+T
,

we will have the repeated sequence of Cooperate-Defect actions in all interaction

traces.

The proof for the second case is as follows. When gx < rx, Player x defects

while Player y cooperates, so gx moves toward T
S+T

> rx. When gx ≥ rx, Player x

cooperates while Player y defects, so gx moves toward S
S+T

< rx. In steady state,

they interact in a way that the ratio rx (and ry as well) is achieved, so Player x gets

rx(T + S) while Player y gets T + S − rx(T + S).

For example, in an IPD game, let rx = 0.4 and ry = 0.6. This means that

Player x will always aim to get a share of 40% of the total payoff, while Player y
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will aim to get a share of 60% of the total payoff. Therefore, they will try to grasp

the share alternatively. In a steady state, Player x gets 2 and Player y gets 3 at

each game on average.

Theorem 4. If ry > 1− rx > 0.5, there are two cases:

• when ry >
T

S+T
, Player x gets S while Player y gets T ;

• otherwise, Player x gets p̄x = SP−PT
(P−T )−(P−S) 1−rx

rx

, and Player y gets p̄y = p̄x
1−rx
rx

.

Proof. The proof for the first case is the same that of Theorem 3 above. The proof

of the second case is as follows. When gx < rx, both players defect and get P . When

gx ≥ rx, Player x cooperates and gets S and Player y defects and gets T . In steady

state, they will get (S, T ) or (P, P ) in each game in a way that rx is achieved. Let

nDD be the portion of the games resulted in DD, Player x gets p̄x and Player y gets

p̄y where p̄x = rx(p̄x + p̄y), p̄x = PnDD +S(1−nDD) and p̄y = PnDD + T (1−nDD).

Solving them, we can obtain the above formula.

For example, in an IPD game, let rx = 0.4 and ry > 0.6. Now we are in a

situation where there is lack of resources (as rx+ry > 1) and Player y is more proself

than Player x. As such, Player y will always defect, while Player x will sometimes

cooperate, and sometimes defect. In a steady state, Player x will get 10
11

and Player

y will get 15
11

at each game on average.

Theorem 5. If rx < 1− ry < 0.5, there are two cases:

• when rx <
S

S+T
, Player x gets S while Player y gets T ;
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• otherwise, Player x gets p̄x = p̄y
1−ry
ry

and Player y gets p̄y = TR−RS
(R−S)−(R−T ) 1−ry

ry

.

Proof. The proof for the first case is the same that of Theorem 3 above. The proof

of the second case is as follows. When gy < ry, Player x cooperates and gets S and

Player y defects and gets T . When gy ≥ ry, both players cooperate and get R. In

steady state, they will get (S, T ) or (R,R) in each game in a way that ry is achieved.

Let nCC be the portion of the games resulted in CC, Player x gets p̄x and Player y

gets p̄y where p̄y = ry(p̄x+p̄y), p̄x = RnCC+S(1−nCC) and p̄y = RnCC+T (1−nCC).

Solving them, we can obtain the above formula.

For example, in an IPD game, let rx < 0.4 and ry = 0.6. Then, as resources

are plentiful (as rx + ry < 1) and Player x is more prosocial than Player y, Player

x will always cooperate, while Player y will sometimes cooperate, and sometimes

defect. In a steady state, Player x will get 30
13

and Player y will get 45
13

at each game

on average.

3.5 Experiments

We have performed several experiments in order to investigate the emergence of

cooperative populations. These experiments involve evolutionary simulations on a

society of players and the simulations are designed based on social orientations of

individuals, as described below.

We used the replicator dynamics for evolutionary simulations [28]. We used the

well-known “infinite population” setup for initializing the population as described

in [18–20]. We randomly generated 10 theta values from the interval [0, π/2] and

26



assumed the size of a group with a particular θ value constitutes 10% of the entire

population.

In each generation, the players engaged in pairwise encounters, resulting in

a payoff for each of the players that is equal to the sum of the payoffs from each

individual round of the game. The expected values of the score of a player in

a pairwise game in steady state are described in the previous section. After each

generation, each player had a number of offspring that is proportional to its expected

total payoff. Each offspring had the same social-orientation value θ as its parent. If

the frequency of a group of players with a particular θ value drops below a threshold

0.001 then the group is discarded from the population.

On average, in every 100 generations, a small amount (frequency of 0.01) of

new randomly generated mutant players are introduced into the population. Each

simulation was performed for 10,000 generations, resulting a total of about 100

mutant strategies.

3.5.1 Prisoner’s Dilemma with Constant Payoffs

Figure 3.5 shows the average population θ and average population payoff of an evo-

lutionary process of over 105 generations in the Prisoner’s Dilemma (PD) game.

Here, the average payoff varies between P and R, which correspond to full defection

and full cooperation, respectively. At the beginning of the evolutionary simulation,

cooperative players in the population which have high θ values dominate the popula-

tion quickly. Then, proself players (with low θ value) emerge gradually to dominate

27



Figure 3.5: An evolutionary simulation of IPD. The top graph shows the average

theta per generation. The bottom graph shows the average payoff per generation.

after about 4000 generations. At around the 10000th generation, cooperative players

suddenly regain the majority of the population. This wave-like behavior between

cooperation and defection (prey-predator cycle), is a widely known phenomenon in

repeated PD games, that was observed under various conditions [19,20]. As can be

seen in Figure 3.5, similar behavior also emerges in our experiments with players

modeled by their social orientation values.

By examining the evolutionary traces, we found that this phenomenon is

caused by mutant players introduced in the population with θmutant ≈ π/4. These

fair players avoided the exploitation of proself players with θproself < π/4, and at

the same time cooperated with the other prosocial players with θprosocial > π/4. In

other words, the mutant players were using strategies similar to Tit-For-Tat.

Figure 3.6 illustrates the change of population frequencies of three types of

players (selfish, altruistic, and fair) without mutation. At the beginning, altruistic

players dominate the population. The theta value of an altruistic player is π/2; i.e.,

it will always cooperate. Therefore, it can be easily exploited and invaded by selfish
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Figure 3.6: Invasion of fair player.

players (θ = 0). When the altruistic players are extinct, selfish players can also

be invaded by a group of fair players who will cooperate among themselves. This

evolutionary pattern is similar to the one that emerges in the classical rational agent

model [33].

Our results shown in Figure 3.5 also suggested that after the fair player beats

the selfish player, the population enters a random drift period. Due to the random

mutation, the average theta of the population increases slowly to a point at which

there are many highly-cooperative players. Then, mutations introduce selfish players

into the populations and their numbers grow quickly until they dominate the entire

population. This pattern repeats at least until 107 generations. This ratifies previous

findings on evolutionary cycles of cooperation and defection [34], which shows that

our model based social orientations is capable of explaining those findings.
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3.5.2 Prisoner’s Dilemma with Varying payoffs

We also investigated the effects that different matrix values have on the result of the

evolutionary process and the resulting cooperative societies. In these experiments,

we varied one of the entries in the PD game matrix while keeping the others constant

with their original values as well as keeping the preference relations in the PD matrix,

i.e., S < P < R < T and 2R > S + T , so that the game will still be a PD game.

For each matrix generated in this way, we ran 20 evolutionary simulations with 105

generations in each run with a total of about 1000 mutant strategies.

Figure 3.7 shows the effect of varying R on the average theta and average

payoff of the population. We report the average of the data after 1000 generations

because often the majority of the groups of players did not emerge before that.

Increasing R provides added incentive to cooperate. Therefore, both the theta and

average payoff increase with R. Note that the payoff almost reaches the maximum

(i.e., R) after R = 4.7, i.e., it becomes always full cooperation when R is large

enough. The bottom graph shows the effect of R on the percentage of cooperative

agents which is defined by the portion of agents whose θ is greater than the π/4

(i.e., the θ of a fair player).

Figure 3.8 shows the effect of T on the average payoff and the cooperativeness

of the population. These results suggest that increasing T will lead to increase in

the incentive to defect. In any situation that can be modeled by a 2x2 game similar

to Prisoners’ Dilemma, which shows that there is a degradation in the cooperation

level. Therefore, both θ and payoff decrease when T increases.
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Figure 3.9 shows the effect of P on the average payoff and the cooperativeness

of the population. In general, the average payoff increases when P increases. How-

ever, unlike the case for R or T , the average of θ drops sharply when P is very large

compared to R. These results suggest that increasing P will lead to an increase in

the average payoff, but not increase the cooperativeness of the population. In other

words, using our model we are able to notice that there is no one-to-one correlation

between the observed average payoff and the society’s cooperativeness level. In this

case, using previously suggested models one could mistakenly reason that increasing

P and R has the same effect on the society, while with our new model the difference

in the true cooperativeness of the society is apparent by looking at the theta values

of its individuals.

3.6 Summary

We have described a formal model that combines game-theoretical analyses for co-

operation in Iterated Prisoner’s Dilemma with insights from social and behavioral

sciences. Our model is not claimed to be the most accurate account of social orien-

tations; rather, it is a simple model that takes the first step in the above direction.

Unlike existing models, this formalism captures the notion of prosocial vs. pro-

self orientations exhibited in human behavior and explicitly provides an abstract

representation for how a player develops its strategies in repeated games.

We have presented theorems showing how players with different social tenden-

cies interact. Our theorems identify five general steady-state behavioral patterns,
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that can be explained in terms of the players’ social orientation values. We have also

performed an experimental evaluation of our model using evolutionary simulations

in the well-known IPD game. The results of the experiments demonstrated that our

model captures the well-known behavior patterns in IPD. Furthermore, it allows

modeling richer behavior patterns since it does not depend on the particular game

matrix.

When we varied the payoffs in the game matrix while keeping the preference re-

lations intact in the PD game, one set of experiments showed that prosocial tendency

increases when the reward (i.e., R) of the game increases or when the temptation

(i.e., T ) decreases. Another set of experiments identified a class of scenarios in

which the evolution simulations produced a population that is not socially-oriented

toward cooperation, whereas the average payoff of the population is still high. This

result is contrary to the implicit assumption of all previous works that considered

cooperative populations, that the high-payoff was assumed to be an indicator for co-

operativeness. Our experiment showed that social orientations in a population could

be a more realistic representation of the cooperativeness of the entire population.
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Figure 3.7: Top graph: effect of R on average payoff. Middle graph: effect of R on

average theta. Bottom graph: effect of R on the percentage of cooperative agents.
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Figure 3.8: Top graph: effect of T on average payoff. Middle graph: effect of T on

average theta. Bottom graph: effect of T on the percentage of cooperative agents.
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Figure 3.9: Top graph: effect of P on average payoff. Middle graph: effect of P on

average theta. Bottom graph: effect of P on the percentage of cooperative agents.

35



Chapter 4: Strategies Using SVO model for The Life Game

Standard repeated-game model involve repetitions of a single stage game (e.g., the

Prisoner’s Dilemma or the Stag Hunt); but it is clear that repeatedly playing the

same stage game is not an accurate model of most individuals’ lives. Rather, indi-

viduals’ interactions with others correspond to many different kinds of stage games.

In this chapter, we concentrate on discovering behavioral strategies that are

successful for the life game, in which the stage game is chosen stochastically at each

iteration. We present an agent model based on Social Value Orientation (SVO)

theory. We provide extensive evaluations of our model’s performance, both against

standard agents from the game theory literature and against a large set of life-game

agents written by students in two different countries. Our empirical results suggest

that for life-game strategies to be successful in environments with such agents, it

is important (i) to be unforgiving with respect to trust behavior and (ii) to use

adaptive, fine-grained opponent models of the other agents.

4.1 Introduction

In the standard repeated-game model, a set of agents repeatedly play a game called

the stage game. Many different games can be used as the stage game. For example,

36



Axelrod’s famous Iterated Prisoner’s Dilemma competitions showed the emergence

of cooperation, even though the rational dominant equilibrium in a one-shot Pris-

oner’s Dilemma is to defect [12]. Maynard Smith studied two-player Chicken game

with a population of Hawks and Doves [13], and Skyrms studied the evolved popu-

lation when individuals were playing the Stag-hunt game [14].

Each of the above studies used a simple game model in which the same stage

game was used at every iteration. However, as discussed in Section 2.2 repeatedly

playing the same game is unlikely to be an accurate model of any individual’s life.

As a more accurate model, Bacharach proposed the Life Game, in which an individ-

ual plays a mixture of games drawn sequentially according to some stochastic process

from many stage games. We formally described the Life Game in Section 2.2. In

this chapter, we concentrate on discovering behavioral strategies that are successful

in life games. These games pose difficulties when trying to describe a successful

strategy. For example, well-known strategies such as the famous tit-for-tat strat-

egy cannot be used verbatim, because not all iterations will have actions in which

the actions correspond to “Cooperate” and “Defect.” The complexity of the game

dictates a large, complex strategy space, but our objective is to discover important

general properties that characterize successful strategies.

The most relevant piece of literature to our study is a recent paper [35] where

the authors presented an equilibrium analysis for the emergent of cultures when

playing multiple games. Nevertheless, they were not concerned with the success

of individual strategies, and assumed a predefined set of 6 games with explicitly

labeled actions to avoid the semantic problem.
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This chapter makes the following contributions. We propose a behavioral

model for agents in the life game, based upon a prominent social-preference the-

ory called Social Value Orientation theory (SVO). We also refine and extensively

evaluate our model using a large set of peer-designed agents written by students in

two different countries. Our empirical results suggest that an unforgiving strategy

performs better than a tit-for-tat-like strategy. That is, in stage games where there

are analogs of “Cooperate” and “Defect” (as in the Prisoner’s Dilemma), if another

agent chooses the “Defect” action rather than the “Cooperate” action, then we

should expect them to behave similarly in future iterations, and choose our actions

accordingly. The empirical work also demonstrates the importance of an adaptive,

fine-grained set of opponent models in successful strategies.

4.2 Strategies for the Iterated Prisoner’s Dilemma

There have been many studies on iterated games in the game theory literature. The

most famous example is the Iterated Prisoner’s Dilemma (IPD) (see Figure 3.1),

which is an iterated variant of the Prisoner’s Dilemma that is played repeatedly

an unknown number of iterations. The Prisoner’s Dilemma is a widely used model

for social dilemmas between two agents and has been often used to study theories

of human cooperation and trust. The intriguing characteristic of the IPD is that

while game theory analysis for a single iteration suggests that rational agents should

“Defect”, cooperation often emerges when the number of iterations is unknown.

One of the first interesting questions with respect to the IPD was the discovery
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and description of successful IPD strategies. These strategies and their properties

were meant to help enrich the theoretical biology/evolutionary discussion on various

mechanisms that complement the Darwinian process (for instance: reciprocity, kin

selection, group selection). An important milestone was the completion of two

publicly open IPD tournaments that were run by Robert Axelrod in the early 80s

[12]. In his tournament, each strategy was paired with each other strategy for

200 iterations of a Prisoner’s Dilemma, and scored on the total payoffs accumulated

through the tournament. The winner of the first tournament was Anatol Rapoport’s

tit-for-tat strategy, which simply cooperates on the first iteration of the game, and

then repeats the other agent’s action from the previous iteration. Surprisingly, the

same tit-for-tat strategy was also the winner in the second tournament.

Axelrod, in his post tournaments analysis, discovered that greedy strategies

tended to do very poorly in the long run while cooperative strategies did better.

Furthermore, by analyzing the top-scoring strategies in the tournament, Axelrod

presented several properties that describe successful strategies: nice (cooperate,

never be the first to defect), provocable to both retaliation and forgiveness (return

defection for defection, cooperation for cooperation), non-envious (be fair with your

partner), and clarity (don’t try to be tricky). Since Axelrod’s IPD tournaments,

there has been an extensive research on finding and describing successful strategies

[22,36].

As our main focus of this chapter is the life game, in which a different stage

game can be played at each iteration, there is one crucial assumption behind the

above strategies: they assume that the semantic of the actions is a common knowl-
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edge to all agents. For example, in order to reciprocate or retaliate, a tit-for-tat

agent needs to know the semantic of the previous action of the other agent from

the perspective of the other agent. This assumption is valid for IPD, because the

semantic (Cooperate and Defect) is clearly defined for all agents. However, in the

life game, which is the main focus of this chapter, this assumption is no longer valid.

As we will see below (in Section 4.3), most known strategies simply cannot be gen-

eralized to the complex world of the life game, and consequently, new ones must be

defined.

4.3 Strategies for the Life Game

The IPD competition was an important cornerstone for studying the evolution of

cooperation and led to some interesting game strategies. However, extending the

model to the life game, which is a more realistic description of the interactions in

a society, raises the following difficulties. First, from the semantic point of view,

unlike the Prisoner’s Dilemma in which actions are labeled by “Cooperate” or “De-

fect”, in the life game the actions are not labeled in advance. The agents will need

to define themselves the semantic of each of the actions in each round of the game.

Consequently, the intentions behind the actions might be misinterpreted due to se-

mantic differences, which also complicates the playing strategies. For example, what

might look like a “Cooperate” action for one agent, might be interpreted differently

by another. Secondly, the semantic problems might also result in ambiguity with

respect to the intentions behind the actions, as the agent cannot be sure whether
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an action is a result of an intentional strategic decision, or due to semantic differ-

ences. As such, successful strategies might require holding some form of opponent

model that can be reasoned upon for issues such as mutual trust, cooperation and

counter strategies.

Player 2

Stag Hunt
A1=Stag A2=Hare

A1=Stag (2, 2) (0, 1)

Player 1
A2=Hare (1, 0) (1, 1)

Figure 4.1: The Stag Hunt game models two individuals go out on a hunt. If an

individual hunts a stag, he must have the cooperation of his partner in order to

succeed. An individual can get a hare by himself, but a hare is worth less than a

stag.

To illustrate the problem, consider two tit-for-tat-like agents (x and y) playing

in a repeated game of Stag Hunt (Figure 4.1). Suppose both of them want to

cooperate (hunt stag together) in the Stag Hunt game, but x does not want to

cooperate in the Prisoner’s Dilemma (while y still want to cooperate). If x and

y play in repeated sequence of only Stag Hunt games, they will cooperate with

each other forever. However, the cooperation in Stag Hunt may not emerge if we

have a mix of Prisoner’s Dilemma and Stag Hunt games. For example, if the first

game is Prisoner’s Dilemma and the second game is Stag Hunt, when x defects

y in the first game, y retaliates by “defecting” in the Stag Hunt game (i.e., hunt

Hare). Therefore, x will also retaliate in the next game that may lead to a chain of
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unnecessary retaliation.

The aforementioned difficulties as well as others bring about the need for

strategies that are far more complex than the ones that came out of research on the

traditional IPD. Intuitively, simple strategies such as tit-for-tat cannot be directly

applied to the life game due to the labeling problem mentioned above. Our first

step in developing a strategy was to look in the social and behavioral sciences lit-

erature and examine the behavioral theories that guide human behaviors in similar

situations.

4.4 Social Value Orientation Agent Models

According to the SVO theory (described in Section 2.1), the choices people make

depend, among other things, on stable personality differences in the manner in

which they approach interdependent others. SVO regards social values as distinct

sets of motivational or strategic preferences with the weighting rule depending on

the weights w1 and w2 of agents’ payoffs:

Utility = w1 ×my payoff + w2 × other’s payoff

• Altruistic agent maximizes other agent’s outcome.

(w1 = 0, w2 = 1)

• Cooperative agent maximizes joint outcome.

(w1 = 1, w2 = 1)

• Individualistic agent maximizes its own outcome.
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(w1 = 1, w2 = 0)

• Competitive agent maximizes its own outcome relative to other.

(w1 = 1, w2 = −1)

• Adverse agent minimizes other agent’s outcome.

(w1 = 0, w2 = −1)

In order to promote cooperation, both agents need to be prosocial. As men-

tioned in [29], “An excellent way to promote cooperation in a society is to teach

people to care about the welfare of others”. However, due to possible differences

in the semantic of the games, both agents should have some way to assess mutual

trust in order to deal with cases in which the different semantic interpretation were

the cause of cooperation breakdown (as oppose to intentional breakdown). In other

words, both agents need to believe that the other agent is prosocial. From the

social and behavioral literature we learn that social value orientations significantly

accounts for variation in trust and reciprocity. Specifically, prosocial individuals

reciprocate more as the trust increases, while proself reciprocate less as the trust

increases [37]. People with a natural inclination to cooperate are at the same time

vulnerable to being exploited.

The agent model that will be developed in our suggested agent will be based

on the above insights from the social and behavioral sciences. The following sections

describe the agent model for the three most common social orientations in real world:

cooperative, individualistic, and competitive.
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4.4.1 Cooperative Model

A cooperative agent is one whose goal is to maximize (to some degree) the joint

outcome of both agents. In the context of 2x2 symmetric games, a fully cooperative

agent will choose A1 if a > d and A2 if a < d. In IPD, the ALL C strategy, which

always cooperates with others, can be regarded as a fully cooperative strategy. To

account for the varying degrees of prosocial tendencies and cope with the aforemen-

tioned semantic problem, we need to be able to differentiate between different types

of cooperative behavior. To do so we define the class of mutual-benefit games:

Definition 1 (Mutual-Benefit game). a mutual-benefit game is a 2x2 symmetric

game in which there exist an unique action Ai such that the joint outcome is maxi-

mized when both agent choose Ai. Action Ai will be denoted as a cooperative action.

The varying degrees of prosocial tendencies suggest that different agents may

want to restrict their cooperation to specific classes of mutual-benefit games. In

general, agents with higher prosocial orientations will tend to cooperate on a larger

subset of mutual-benefit games, as long as they believe that the other agent is also

cooperative. We now present a possible classification to mutual-benefit games:1

1. a 6= d and max(a, d) > max(b, c)

2. a 6= d and max(a, d) ≥ max(b, c)

1Note that the presented classification is one possible example of coping with the semantic prob-

lem. Naturally, a finer classification might allow the agent to distinguish between finer behavioral

differences.
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3. a 6= d and max(a, d)× 2 > b+ c

4. a 6= d and max(a, d)× 2 ≥ b+ c

In this classification, type τ is a subset of type τ + 1. For example, the Stag

Hunt game (Figure 4.1) is a member of all of the above types, while the Prisoner’s

Dilemma (Figure 3.1) is a member of types 3 and 4 only.

In many types of symmetric games cooperation is beneficial for both agents

in the long run. However, there are two major problems. First, a cooperative agent

may subject to exploitation by the other agents. Second, the trustworthiness of the

other agent is unknown at the beginning. Those problems will be addressed in the

following trust mechanism.

We define the trustworthiness of an agent as follow: The trustworthiness of an

agent is λ if and only if the agent cooperates in all mutual-benefit games of type τ .

It is easy to notice that it is riskier to cooperate in type τ + 1 games than in type τ

games. Accordingly, the type number of a mutual-benefit game can be considered

as the trustworthiness requirement of the game in order to cooperate with the other

agent. An agent will need higher trust levels to cooperate in type τ +1 games, while

trustworthiness of zero reflects an agent that does not cooperate at all.

Recall that according to Axelrod’s analysis of the IPD competition, a “nice”

strategy helps to promote cooperation. Accordingly, our trust model will assume

that the other agent is trustworthy at the beginning, and will remain so as long

as it cooperates in all mutual-benefit games. Specifically, with the mutual benefit

games classification presented above, we initialize the trustworthiness level of the
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other agent to 4.

To minimize exploitation, the trustworthiness of the other agent should be

decreased whenever a defect-like action is observed. Suppose the current trustwor-

thiness of the other agent is λ. Whenever the other agent defects in a mutual-

benefit game of type τ , we update λ by λ = min(λ, τ − 1). For example, if the

trustworthiness of an agent is updated to 3, then our agent will cooperate only in

mutual-benefit games from type 1 to 3, but not type 4. This allows the agent to

maximize the amount of cooperation, while minimizing exploitation.

When an untrusted agent (with low trustworthiness) try to establish coopera-

tion in some mutual-benefit games, one may forgive it (increase its trustworthiness)

or not forgive it (trustworthiness remains unchanged). We parameterize these be-

haviors by a forgiving threshold, f : The trustworthiness of an agent can be restored

back to λ when f cooperative actions in a game of type λ were observed. In IPD,

a SVO agent with f = 1 will behave like tit-for-tat. If f = ∞, an untrusted agent

can never be trusted again. In other words, the trustworthiness of other agent is

monotonically decreasing. This replicates the grim trigger strategy in IPD, which

upon defection responds with defection for the remainder of the iterated game.

4.4.2 Individualistic Model

According to the SVO theory, an individualistic agent will try to maximize its own

outcome. However, the information that an agent x is a self maximizing agent is

insufficient to model and predict its behavior, as its behavior will depend on its
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belief about the strategy of the other agent y. For instance, its actions might be

different if it assumes y picks its actions randomly, or tries to intentionally decrease

x’s payoff.

To cope with this problem, we suggest using two-level agent modeling. In this

model, when an individualistic agent x is playing with another agent y, x behavior

depends on the second-level model – model of y from x’s perspective. With that

assumption, x can construct a best response strategy.

These behavior models will be input to the algorithm beforehand and will

depend on the underlying game. We hypothesize that a larger and more diverge

set of predefined models, will allow the SVO agent to better adapt its behavior

(this will be explicitly tested in Section 4.5). For the life game, we can suggest

the following types of second-level model which represents the simplest forms of

opponent reasoning in this domain: adversary, altruistic, random, and recursive.

We also present the best response strategy to each of them.

Player 2

Chicken game
A1=Swerve A2=Straight

A1=Swerve (4, 4) (3, 5)

Player 1
A2=Straight (5, 3) (0, 0)

Figure 4.2: The Chicken game models two drivers, both headed for a single lane

bridge from opposite directions. The first to swerve away yields the bridge to the

other. If neither agent swerves, the result is a potentially fatal head-on collision.

We illustrate it by following example: an individualistic agent x is playing the
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Chicken game (Figure 4.2) with y.

• Adversary model - x assumes that y wants to minimize its outcome. Then,

it reasons that (1) y will choose A2 if x chooses A1; (2) y will still choose A2 if

x chooses A2. The payoffs are (3, 5) and (0, 0) respectively, and x will choose

A1. In other words, x best response is to be playing a maximin strategy.

• Altruistic model - x assumes that y is wants to maximize x’s outcome. Then,

it reasons that (1) y will choose A1 if x chooses A1; (2) y will still choose A1 if

x chooses A2. The payoffs are (4, 4) and (5, 3) respectively, and x will choose

A2. In this case x’s best response strategy is the maximax strategy.

• Random model - x assumes y is purely random with 50% chance for both

A1 and A2. This can happen, for example, in cases where it does not have

enough information. The expected payoff of choosing A1 is a+b
2

= 3.5, and of

choosing A2 is c+d
2

= 2.5. x will choose A1 only if a+b
2
> c+d

2
, and choose A2

otherwise. Therefore, x will choose A1 in the Chicken game. We will call x is

playing a maxi-random strategy.

• Recursive model - Finally, x can assume that y is any kind of agent described

above. x will first predict y action using that assumption, and then choose

an action to maximize its own payoff. In other words, in terms of traditional

game theory, given a game, x’s strategy is the best response to the assumed

y’s strategy. For example, x can assume that y is an individualistic agent with

random opponent assumption (i.e., y uses the maxi-random strategy). From
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the previous paragraph, we know that y will choose A1 in the Chicken game.

Therefore, x will also choose A1 in order to maximize its own payoff. We will

call x is playing a maxi-maxi-random strategy.

4.4.3 Competitive Model

According to the SVO theory, a competitive agent will try to maximize (to some

degree) its own outcome with respect to the other agent. In the context of 2x2

symmetric games, this amounts to maximizing the payoff differences of both agents,

and will choose A1 if b > c and A2 if b < c.

When we sum up the total payoffs for each agent in a tournament of a group

of agents, a competitive strategy is not necessary the best one. For example, in

the IPD competition, a competitive agent acts like a ALL D agent which always

defects. If there are only two agents, ALL D always perform at least as good as

the other agent. However, ALL D performs poorly in a group of tit-for-tat agents,

because the group of tit-for-tat agent will cooperate with each other and obtains a

huge amount of payoff from the cooperation [29].

4.4.4 The Combined SVO Agent Modeling Strategy

Based on the SVO agent models present above, we propose a SVO agent modeling

strategy for playing with other agent in the life game. The complete procedure for

our SVO agent is shown in Figure 4.3. Since we assume that all agents does not

have any prior knowledge about the other agent, the SVO agent does not know the
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Procedure SvoAgentPlayingLifeGame

Input and Notation:

gt, gt−1 = current, and previous game matrix

A = previous opponent’s action

M = current set of candidate opponent models

λ = current trustworthiness of the opponent

τ(g) = trustworthiness requirement of g

C(g) = cooperative action of g if g is a mutual-benefit game, ∅ otherwise

Output: An action for the current game gt

Begin procedure

(1) Update opponent’s trustworthiness and models (when A 6= ∅ and gt−1 6= ∅).

If C(gt−1) 6= ∅ and λ ≥ τ(gt−1) and A 6= C(gt−1), then λ← τ(gt−1)− 1

Increase the counters of all models (in M) which correctly predict A for gt−1.

(2) Choose and return an action for the current game gt.

If C(gt) 6= ∅ and λ ≥ τ(gt), then return C(gt).

Else

m← the most accurate model in M

If i ≤ 5 or accuracy of m < 70%, then return maxi-random action of gt.

Else return the best response to m’s prediction in the game gt.

End procedure

Figure 4.3: Procedure for a (unforgiving) SVO agent playing a game gt at t-th

iteration in a life game.
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social orientation of the other agent. The agent will start with some default models,

and will estimate the orientation of other agent from the history of interactions.

As we mentioned before, the agent starts by assuming that the other agent is

cooperative for all types of mutual-benefit games. For non-mutual-benefit games,

the cooperative agent model is not applicable. For those games, the SVO agent

initially assumes the other agent is random (i.e., no social orientation at all) and

will use the maxi-random strategy for the first few games. After accumulating

some interaction histories, the agent will learn the true trustworthiness (i.e., λ in

Figure 4.3) and social orientation of the other agent, and will adapt and utilize it

to the best of its capacity.

Similarly to humans, as long as there is some degree of cooperation, our agent

will cooperate with others as much as they cooperate with it. However, when the

trust model suggests that the other agent is not cooperative in some mutual-benefit

games or the game itself is a non-mutual-benefit game, one should refer to a dif-

ferent state of mind to achieve its goal while avoiding exploitation. To better

estimate whether the other agent is an individualistic agent (under the different

predefined models), or a competitive one, we incorporated opponent modeling tech-

niques. Specifically, the SVO agent will use a model-and-counter strategy, which

first approximates what strategy the other agent uses and then counters that strat-

egy. First, it creates and maintains a pool of possible individualistic or competitive

models (i.e., M in Figure 4.3). In this chapter, we consider the following five non-

cooperative opponent models described before:
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1. Competitive

2. Individualistic with maximin assumption

3. Individualistic with maximax assumption

4. Individualistic with maxi-random assumption

5. Individualistic with maxi-maxi-random assumption

Each model has a counter variable for counting the number of correct predic-

tions. If the previous action of the other agent matches the prediction of one of the

model, our agent will increase the counter of that model by one. The model with

the highest counter is considered as the most accurate model (i.e., m in Figure 4.3).

However, if the top counter is small (e.g., less than 70% of the total) when com-

pared with the total number of counted game, our agent will assume the opponent

is a random agent instead of the model with the highest count, and will use the

maxi-random strategy. After knowing the most accurate model of our opponent,

our agent will try to counter that strategy by maximizing its own payoff using that

opponent model, i.e., it first predicts opponent’s action using the opponent model,

and then it chooses an action which maximizes its own payoff assuming that the

other agent will choose the predicted action (i.e., A in Figure 4.3).

4.5 Experiments and Results

In this section our goal is to evaluate the performance of our SVO agent and investi-

gate the properties of successful strategies in the life game. As such, we implemented
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an automated SVO based agent and in order to evaluate its performance we imple-

mented the following agents that represent well-known strategies in the game theory

literature:

1. Nash agent – chooses pure Nash equilibrium strategy if it’s unique; else plays

mixed Nash equilibrium strategy.

2. Maximin agent – maximizes its min. possible payoff.

3. Minimax agent – minimizes other agent’s max. payoff.

4. Minimax-regret agent – minimizes its worst-case regret (difference between

actual payoff and the payoff had a different action been chosen).

5. Random agent – probability 1/2 of either action.

To the best of our knowledge, the above standard strategies represent the best

available strategies from the literature of repeated games, which are applicable to

the life game. As discussed earlier, other strategies such as the successful tit-for-tat

cannot be generalized and used in the life game.

Due to the novelty of the life game, and in order to provide a richer set of

strategies to evaluate the SVO agent, we collected a large set of students’ agents /

Peer Designed Agents (PDAs). PDAs have been recently used with great success in

AI to evolve and evaluate state-of-the-art agents for various tasks such as negotiation

and collaboration [23–25]. Lin et al. provided an empirical proof that PDAs can

alleviate the evaluation process of automatic negotiators, and facilitate their designs

[23].
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To obtain a large collection of students’ agents, we asked students in several

advanced-level AI and Game theory classes to contribute agents. To attain a richer

set of agents, we used two different universities in two different countries: University

of Maryland in the USA, and Bar-Ilan University in Israel. The students were told

that their agent would compete against all the agents of the other students in the

class (once against each agent in a round-robin fashion). The instructions stated

that at each iteration, they will be given a symmetric game with a random payoff

matrix of the form shown in Figure 2.1. Following Axelrod’s methodology, we did

not tell the students the exact number of iterations in each life game. The total

agent’s payoff will be the accumulated sum of payoffs with each of the other agents.

For motivational purposes, the project grade was positively correlated with their

agents overall ranking based on their total payoffs in the competition. Overall, we

collected 48 agents (24 from the USA and 24 from Israel).

4.5.1 Evaluating the SVO agent

The first experiment was meant to assess the competence of the suggested SVO based

agent. The version that was used in this experiment was with f = ∞ (unforgiving

trust method), in which following a (perceived) defection and a consequent lost of

trust level, it cannot be recovered.

We ran tournaments with the unforgiving SVO agent and all the other agents

in the test set. Since the test set is composed of 53 agents (48 students’ agents + 5

standard strategies), the total number of participant in each run of the competition
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Table 4.1: Average payoffs and rankings of the SVO agent, standard agents and top

three students’ agents

Agent Rank and (Avg Payoff)

SVO agent 1 (5.836)

The best students’ agent 2 (5.831)

The 2nd best students’ agent 3 (5.792)

The 3rd best students’ agent 4 (5.789)

Minimax regret agent 6 (5.695)

Maximin agent 35 (5.453)

Nash agent 43 (5.271)

Random agent 52 (4.351)

Minimax agent 54 (3.954)
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is m = 54. The tournament is similar to Axelrod’s IPD tournaments [12] and

the 2005 IPD tournament [38]. Each participant played against every participant

including itself (thus a tournament among m agents consists of m2 iterated games).

The number of iterations in one life game was set to n = 200. In each experiment,

we calculated the average payoff per game for each agent. Since the values in the

payoff matrix are chosen uniformly from [0, 9], the expected average payoff of a

random agent who played with another random agent is 4.5. In order to have a fair

comparison, we used the same sequence of random games for each of the pairs in the

experiment. We repeated the experiment 100 times using different random seeds,

so each average payoff is an average of 100× n×m payoffs, where n is the number

of iterations in each life game and m is the number of participating agents. Hence,

each average payoff is computed from averaging the payoffs of 1080000 games.

Table 4.1 shows average payoffs and rankings of the SVO agent, standard

agents and the top three students’ agents. The SVO agent has the highest average

payoff (significant at p < 0.05), and so it ranked number one. Because the standard

agents are not adaptive, and cannot learn from the history of interactions, their

performances are bad in general, except the minimax regret agent. The minimax

regret agent performed well in the tournament, unexpectedly. One possible reason

is that it does not have any assumption on its opponent, and focus on minimizing

its own possible regret.

The performances of the top students’ agents are very close to our SVO agent.

In our post-experiment analysis, we found that most of them are doing some sort

of opponent modeling by counting (i.e., similar to our counting method), but none
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Table 4.2: Evaluating trust adaptation – Results

Agent Rank and (Avg Payoff)

in Each Tournament

Unforgiving SVO agent (f =∞) 1 (5.836)

Forgiving SVO agent (f = 1) 6 (5.689)

Forgiving SVO agent (f = 2) 5 (5.722)

Forgiving SVO agent (f = 3) 5 (5.744)

Forgiving SVO agent (f = 4) 5 (5.757)

of them are modeling the other agent using trust or SVO. Moreover, in contrast to

the SVO algorithm which is relatively short and simple, their algorithms are much

longer and complicated.

4.5.2 Evaluating Trust Adaptation: to forgive or not forgive?

As mentioned in Section 4.4.1, our agent trust adaptation approach can be set using

the f parameter. We would like to study if a forgiving approach is a better-suited

approach in repeated stochastic 2x2 symmetric games. As such, we varied the f

parameter from the unforgiving approach (f = ∞) to SVO agents with different

forgiveness thresholds, and ran four additional tournaments for each forgiving SVO

agent (f = 1, 2, 3, 4). The methodology to evaluate an agent P was to run a tourna-

ment with P and all the other agents in the test set. In other words, for each SVO

agent P , we reran the previous tournament with the original SVO agent replaced

by P .
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Table 4.3: Evaluating the Individualistic Opponent Models – Results

Agent Rank and (Avg Payoff)

in Each Tournament

SVO agent 1 (5.836)

Maxi-maxi-rand-only agent 2 (5.800)

Maxi-rand-only agent 5 (5.721)

Maximin-only agent 5 (5.700)

Maximax-only agent 9 (5.681)

As we can see in Table 4.2, the average payoffs of all of the forgiving agents

are lower than that of the unforgiving agent (significant at p < 0.05). This result is

interesting as it may contradict to some extent the “forgiving” property of successful

strategies in IPD as described by Axelrod. On the other hand, there is a possible

confounding factor in our experiments. In particular, we have some preliminary

results suggesting that the students’ agents (against which we tested our agents)

behaved in ways that were correlated with some of the personality characteristics of

the students who wrote those agents. As those students were primarily young males,

it is possible that the students’ agents constituted a biased sample. We observed

that if a student’s agent defects on another agent at the beginning of the life game,

it is very likely that it will defect again later. Therefore, the risk and cost of a

forgiving approach is high, which probably explains the decrease in performance.

58



4.5.3 Evaluating the Individualistic Opponent Models

One of our hypotheses during the model’s construction was that a larger set of op-

ponent models would provide a more refined playground to differentiate and classify

different models, which in turn will allow the agent to provide better responses to

their strategies. To investigate the significance of each component of individualis-

tic model, we implemented four simplified versions of the SVO agent, where each

contained a single, predefined opponent model:

1. Maximin-only agent – uses the maximin model for individualistic agent mod-

eling.

2. Maximax-only agent – uses the maximax model for individualistic agent mod-

eling.

3. Maxi-rand-only agent – uses the maxi-random model for individualistic agent

modeling.

4. Maxi-maxi-rand-only agent – uses the maxi-maxi-random model for individu-

alistic agent modeling.

We tested the above four agents by running four additional tournaments for

each of them. Table 4.3 shows the average payoffs and rankings of the four agents

in each of the tournament, as well as the complete SVO agent. We can see that the

average payoffs of all of the four simplified agents are less than that of the complete

SVO agent (significant at p < 0.05). These results ratify our hypothesis that a
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single individualistic opponent model is not refined enough for successful opponent

modeling.

4.5.4 Evaluating Robustness to Number of Iterations

Figure 4.4: Average payoffs at each iteration (smoothed by moving window average).

To investigate the performance of the SVO agent at different number of it-

erations, we recorded the average payoffs the agent obtained at different iteration

in the tournament. Figure 4.4 shows the trends of the average payoffs of the SVO

agent, the best students’ agent and the best standard agent (i.e., the minimax regret

agent). With an increasing number of iterations, both SVO agent and the best stu-
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dents’ agent obtained higher payoffs and level off after about 60th iteration, while

the payoff of the minimax regret agent remains the same most of the time. The

increase is probably due to the fact that both SVO agent and the best students’

agent are doing opponent modeling. With an increase in the number of interactions,

the modeling will be more accurate, and so they can better coordinate with their

opponents to get higher payoffs. On the contrary, the minimax regret agent does

not change its strategy, so its performance remains unchanged most of the time.

The payoff of the SVO agent is low at the beginning of the life games, because it

begins by applying the “nice” strategy towards all other agents. If the other agent

is non-cooperative, the SVO agent may be exploited for the first few mutual-benefit

games, and lose some payoffs at the beginning. However, its performance catches

up quickly and outperforms others after the 20th iteration, because it will stop co-

operating with the defectors and keep cooperating with the cooperators. The best

students’ agents do not have trust modeling and cannot fully cooperate with others,

so it cannot get the full benefit from mutual cooperation. Therefore, the SVO can

obtain higher payoff in long run, while the other agents cannot.

4.5.5 Analyzing the Trustworthiness of the students’ agents

With this analysis we seek to explore the trustworthiness of the students’ agents that

were written by students, and investigate the significance of each mutual-benefit

game type. We did as follows: each of the students’ agents played against our

SVO agent. While in game, at each iteration, the distribution of all five types of
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Figure 4.5: Distribution of trustworthiness of the students’ agents at each iteration.

cooperative agents was recorded. Figure 4.5 shows the portion of the five types of

cooperation classification at each iteration. At the beginning, as we mentioned in

Section 4.4.4, the SVO agent assumed that all the other agents are trustworthy, so

100% of them are of the type 4 (most trustworthy). However, the population of type

4 cooperation drops quickly as most of the agents start defecting in mutual-benefit

games. Therefore, the population of the others, less trustworthy agents, increases

quickly. The fastest population growth is of type 0 agents, which are not cooperative

at all. After 50th iteration, the distribution starts to stabilize. At the end, the whole

population consists of 74.8% type 0 agent, 13.8% type 1 agent, 7.3% type 2 agent,
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0% type 3 agent, and 4.1% type 4 agent. This also shows that our classification of

cooperative agent is effective. For example, without that classification, we would

expect our agent to fail to cooperate with those 25.2% cooperative agents.

4.5.6 Evaluating the Benefit of Cooperation

Figure 4.6: Average payoffs at each iteration (smoothed by moving window average).

According to Axelrod’s analysis [12], cooperation is a crucial aspect of success-

ful strategies in the IPD tournament. While this hypothesis seems highly intuitive

and had many justifications from theoretical biology, in this experiment we went

examined this hypothesis explicitly.
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To study the amount of the benefit of cooperation, we implemented a paranoid

variant of the SVO agent, which do not trust other agent at any time. The paranoid

SVO agent assumes that all of the other agents are non-cooperative (type 0), so it

will not try to cooperate with other at all. In other words, we eliminated the “nice”

property of the SVO agent so it does not trust anyone at any time.

We test our original SVO agent, the paranoid SVO agent, and the best stu-

dents’ agent with the test set agents. The average payoffs of all three agents are

recorded at each iteration. Figures 4.6 shows the trends of their average payoffs.

With the increasing number of iterations, all agents obtained more payoffs in gen-

eral and level off after 60th iteration. It is because all of the three agents are doing

opponent modeling. When there is enough history of interaction, the modeling will

be more accurate, and so they can better coordinate with their opponent to get

more payoffs. The payoff of the original SVO agent is low at the beginning of the

repeated games, because it will try to be nice to all other agents at the beginning.

If the other agent is non-cooperative, the SVO agent may be exploited for the first

few mutual-benefit games, and lose some payoffs at the beginning. Its performance

catches up quickly and outperforms others after 20th iteration, because it will stop

cooperating with the defectors and keep cooperating with the cooperators. The

other two agents do not fully cooperate with others, so they cannot get the benefit

from mutual cooperation. Therefore, they cannot obtain higher payoff in long run.

64



4.6 Summary

In this chapter we have described several new challenges posed by the life game

poses, for example, strategies that work well in conventional iterated games cannot

be used directly. In order to develop a successful strategy for the life game, we

utilized SVO theory, a motivational theory for human choice behavior. Our method

of agent modeling can be used to learn strategies and respond to others’ strategies

over time, to play the game well. Our experiments demonstrated that our SVO based

agent outperformed both standard repeated games strategies and a large set of peer-

designed agents. Furthermore, our experimental work illustrates the importance of

adaptive and fine-grained opponent modeling, as well as the impacts that different

trust adaptation strategies have on the performance of the SVO agent.
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Chapter 5: Modeling Agents using Designers’ Social Preference

According to the SVO theory (discussed in Section 2.1), there is evidence that in

interactions with others, humans have preferences that depend partly on a stable,

measurable personality trait called Social Value Orientation (SVO). Thus, if a hu-

man writes an agent to act as the human’s delegate in a multi-agent environment,

one might expect the agent’s behavior to be influenced by the human designer’s

SVO. In this chapter, we present experimental evidence that show that the social

preferences of computerized agents correlate positively with the social preferences of

their human designers. We also show that the human designers’ social preferences

can provide useful predictions of their agents’ behaviors.

5.1 Introduction

Human social preferences have been shown to play an important role in many areas

of decision-making; e.g., interaction in labor markets [39], bilateral or small-group

bargaining [40,41], social welfare considerations [42]. The social preferences depend

partly on a stable, measurable personality trait called a human’s Social Value Ori-

entation (SVO) (Section 2.1). In multi-agent systems, agents are often written by

humans to serve as their delegates when interacting with other agents. Thus, one

66



might expect an agent’s behavior to be influenced by the SVO of its human de-

signer. The purpose of this chapter is to explore the correlation between the social

preferences of human designers and theirs computer agents.

There are many methods to gauge human social preferences or even person-

alities, as it is well studied in social psychology. Several measurement methods for

quantifying variations in SVO across individuals have been developed [6, 43,44]. In

addition to taking a psychology test that may be impractical in some situations,

personality of humans can also be estimated by social media, where users present

themselves to the world, revealing personal details and insights into their lives. For

example, Golbeck et al. [45,46] presented methods by which a user’s personality can

be accurately predicted through the publicly available information on their Face-

book or Twitter profile. Trust and distrust between users in social network can also

be accurately computed by an inference algorithm [47].

To obtain the social preferences of computer agents, we needed to have some

measurement methods. Quantifying the social preferences of computer agents presents

several challenges. The tests that were designed for humans cannot be easily con-

verted to automated agents. For instance, an agent that was constructed to play

in a simple repeated game cannot provide answers to questions out of the game

contexts, such as “what will you do in this situation?” More precisely, human SVO

is usually measured by one-shot games by giving the following instruction: “you

have been randomly paired with another person whom we refer to simply as other.

You will never knowingly meet or communicate with this other, nor will (s)he ever

knowingly meet or communicate with you.” In this chapter, we propose to use ideas
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and techniques derived from SVO theory to measure computer agents’ social pref-

erence. To the best of our knowledge, this is the first attempt to quantify the social

preference of computer agents using a theory from social psychology, and we will

explore the challenges and provide some ideas to address that challenge.

We collected a set of students’ agents playing life game and conducted psycho-

logical SVO based evaluation to get the corresponding SVO value of the human who

constructed the agent. We estimated the social preference of computer agents by the

proposed methods, and studied the correlation. The results show that the SVO of

human designer is highly correlated with the social preference of the corresponding

agent.

We also show the value of having the SVO of the designer of other agents by

presenting an application of using that information on agent modeling. Specifically,

we take the life game automated agent described in Chapter 4 and improve it by

using the knowledge of the SVO of the human delegator of the agent whom it is

playing against. The improvement mainly comes from a more accurate initial agent

model that can help the agent avoiding exploitation by some selfish agents.

To sum up, our main goal was to explore the correlation between the Social

Value Orientation of computer agents, and the human who designed them. As such

our main results can be summarized as follows:

• We explore, discuss, and provide a solution to the question of how SVO tests

that were designed for humans can be used to evaluate agents’ social prefer-

ences (Section 5.3).

68



• We show that in our example domain (the life game) there is a high positive

correlation between the social preferences of agents and their human designers

(Section 5.4.1).

• We exemplify how the SVO information of the designer of computer agents

can be used to improve the performance of some other agents playing against

those agents (Section 5.5).

5.2 Measuring Human Social Preferences

There are many measurement methods proposed by social psychologist for measuring

human SVO [6,43,44,48]. To measure SVO of a person x, x is usually asked a series

of questions in which he needs to select between certain distributions of resources,

some amount to himself/herself, and some amount to be allocated to some other

randomly determined person y. The examiner will ask x to imagine that the points

involved with the decisions have value to you: specifically, the more of them you

accumulate the better. Similarly, x needs to imagine that the other person y feels

about his/her own points the same way. It is told that x and y will remain mutually

anonymous during and after the decision is made, and there is nothing y can do to

affect x in any way. In other words, it is an one-shot game. Hence the choice made

by x is not a strategic decision, but rather this is a one-shot individual decision

under certainty. Nonetheless this choice has a social dimension, as x’s action will

affect y’s behavior and x is aware of this potential effect.

For example, one well-known technique for measuring SVO used in social psy-
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Choose between:

A: pself,i(A) for me, and pother,i(A) for other

B: pself,i(B) for me, and pother,i(B) for other.

Figure 5.1: Format of i-th decision task of the ring measurement questionnaire

Choose between:

A: 26 for me, and 97 for other

B: 38 for me, and 92 for other.

Figure 5.2: A sample decision task used by the ring measurement questionnaire

chology is the Ring measure [43]. Typically, the ring measure involves a series of 24

decision tasks between two options. Figure 5.1 shows the format of each decision

task. The participants are told to be randomly paired with another person whom

the question refers to as “other.” In the decision task, the participants will be mak-

ing choices by circling the letter “A” or “B” on a response sheet. The participants’

choices will produce points/money for themselves and the other. The options involve

combinations of own outcome and other outcome. A sample decision task used by

the ring measurement questionnaire is shown in Figure 5.2.

Adding up the chosen amounts separately for the self and for the other player

provides an estimation of the weights assigned by the participant to own and other’s

payoffs. These weights are used to estimate the SVO angle (θ) of the participant by

the formula below:

SVO angle = θ = arctan(

∑
pother,i(ri)∑
pself,i(ri)

), where ri = i-th response (5.1)

All angles between 112.5◦ and 67.5◦ were classified as altruistic; those between
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67.5◦ and 22.5◦ were classified as cooperative; those between 22.5◦ and 337.5◦ as

individualistic, and angles between 337.5◦ and 292.5◦ as competitive. 1 [43]

Since the total number of points a participant receives on each decision problem

is determined by the combination the choices of both participants, the participants

are in fact playing the following symmetric game for the i-th decision problem:

Player 2

A B

A pself,i(A) + pother,i(A) pself,i(A) + pother,i(B)

Player 1
B pself,i(B) + pother,i(A) pself,i(B) + pother,i(B)

For example, the sample decision task mentioned above can be written as the

following symmetric game:

Player 2

A B

A 123 118

Player 1
B 135 130

There are several other techniques for measuring social preferences, such as the

decomposed game measure, the triple dominance measure, and the slider measure.

In a decomposed game, participants choose between three options that offer points

to the self and another person. The most commonly used measure of SVO is the

1The boundary between cooperative and individualistic is 45◦+0◦

2 = 22.5◦. Other boundary

angles can be derived similarly.
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9-item triple-dominance measure. Typically, participants are classified as one of

three orientations (cooperators, individualists, or competitors) if they make 6 out of

9 choices consistent with the orientation. Like the ring measure, the slider measure

can help us estimate the SVO angles of participants; and it has been reported that

the slider measure has better test-retest reliability [49]; but as described in the next

section, Ring measure is the only one that can be adapted for use in a repeated-game

setting.

5.3 Measuring Agents’ Social Preferences

In order to model the behavior of an agent, we would like to have a precise quanti-

tative measurement (like SVO angle) on computer agents. For example, a Maximin

agent maximizes its worst-case payoff, so its SVO angle always equals to 0◦. A Min-

imax agent minimizes other agent’s best-case payoff, so its SVO angle always equals

to −90◦. Except for Ring method, all the other measurement methods cannot be

transformed into 2x2 games, so they cannot be used to measure social preferences of

computer agents playing 2x2 games (e.g., life game). Therefore, we use a modified

version of Ring method to measure social preference of agents.

Although the choice questions in Ring measurement can be presented as 2x2

normal form games, most of the payoff values of the game matrices are not valid

for the life game model we used. In the life game model we used, the payoff values

must be in the range [0, 9]. To apply Ring measurement on automated agents, we

modified the game matrices to GRing by downsampling, scaling, and translating, so
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that all payoff values will sit within [0, 9].

Another problem is that the agents were designed for repeated game. Even if

an agent has a fixed SVO in general, its actions toward a specific agent may depend

on its past experience of that agent. For example, an agent that is normally coop-

erative might behave aggressively toward another agent that behaved aggressively

toward it in the past. SVO measurements do not capture this influence on an agent’s

behaviors, because SVO measurements are always done on one-shot games against

an abstract and anonymous opponent. This non-repetitive interaction assumption

is not valid in most multi-agent environments. In the environment we used, the

repeated interaction is modeled by a repeated game with unknown number of iter-

ations.

In repeated games, an agent’s social preference can be influenced not only by

the agent’s own SVO, but also by how the agent reacts to the other agent’s SVO.

For example, let x be an agent whose SVO is 45◦ (i.e., it prefers equal payoffs for

both agents) and y be a memoryless agent whose SVO is 0◦ (i.e., y cares only about

maximizing its own payoff in the current iteration). If x and y interact repeatedly,

then after repeated observations of y’s behavior, x might decide that the best way

to equalize both agents’ cumulative payoffs might be for x to try to maximize its

own payoff at each iteration. Consequently, if we perform a Ring measurement of x

after it has had many interactions with y, x’s “apparent” SVO value may be closer

to 0◦ than 45◦. We will call this x’s para-SVO against y.

The para-SVO, θn(x|y), of agent x at the n-th iteration with tester agent

y is measured by applying the modified Ring measurement on the agent at the
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(n + 1)-th iteration after it interacted with the tester agent y for n iterations. In

this chapter, we use a random agent as the tester agent y. 2 The parameter n is

introduced, because we would like to measure social preference, which might change

during the interactions, at a specified iteration. Our measurement algorithm uses the

behavioral data of the agent at the last iteration, therefore the para-SVO represents

just the latest social preference of the agent after n games. Figure 5.3 shows the

complete procedure for measuring θn(x|y) using the modified game matrices GRing.

It will get the responses from the testee agent at the last game which is one of the

games in GRing, and then calculate the para-SVO using Formula (5.1). We verified

the validity of the measurement by applying it on some simple agents with known

para-SVO angles (e.g., para-SVO angles of maximin, minimax, and a prosocial agent

are 0◦, −90◦, and 45◦ respectively).

5.4 Experiments on Measuring Agents’ para-SVO

In this section, we will present some results on the relationship between social pref-

erences of agents and that of their designers. We collected a set of peer-designed

agents (PDAs) by asking students in several advanced-level AI and Game theory

classes to contribute agents. The students were told that their agent would compete

against all the agents of the other students in the class (once against each agent in

a round-robin fashion). We also asked the students to complete a questionnaire for

measuring their SVO [43,50].

2In the next chapter, we futher extend the notion of para-SVO by having a special set of tester

agents.
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Procedure MeasureParaSvo

Input:

n = number of random games (before measurement)

r = number of runs

GRing = set of games of modified Ring measurement

Output:

para-SVO of x with a tester agent y after n random games

Begin procedure

px ← 0 /* px = total payoff of agents using x’s strategy */

py ← 0 /* py = total payoff of agents using y’s strategy */

Repeat for r times:

For each game g in GRing:

create new agents x′ and y′ which use the same

strategies of x and y respectively

pair up x′ and y′ for a repeated game with n

random games and then g as the last game

px ← px + (last gain of x′ due to x′’s last action)

py ← py + (last gain of y′ due to x′’s last action)

End For

End Repeat

Return arctan(
py
px

)

End procedure

Figure 5.3: Procedure of measuring para-SVO of an agent x with a tester agent y

after n random games.
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Figure 5.4: SVO of 28 students.

We collected 28 agents with SVO of the corresponding designer. Figure 5.4

shows the SVO distribution of all 28 students. 21 of them are cooperative (67.5◦ >

SVO angle > 22.5◦ [43]), and 7 of them are individualistic (22.5◦ > SVO angle

> −22.5◦).3

5.4.1 Agent-human SVO Correlation

We used the modified ring method presented in Section 5.3 to measure the para-SVO

of all computer agents using different tester agents, and then calculated the Pearson

3It skews toward cooperative orientation, possibly because we collected the data from students

voluntarily responding to our survey.
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Figure 5.5: Correlation of human SVO and agents’ para-SVO.

correlation of the agents’ social preferences and human SVO. Figure 5.5 shows the

correlation of human SVO and agents’ para-SVO measured by the modified ring

method using different tester agents.

The x-axis of Figure 5.5 is the number of iterations (n) used for measuring

the agent SVO. The correlation at the first iteration is about 0.4, and then rises

to about 0.55, which is considered high in behavioral sciences [51], for several iter-

ations. After reading the source codes of the agents, we found that some students

wrote some codes for the first iteration only. In other words, they hard coded some

initial behaviors that may be different from other iterations. Figure 5.5 shows that
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the correlation between agents’ para-SVO and human SVO rises to a peak at sec-

ond iteration, and then decreases and level off for the rest of the repeated game.

From examining the code, we found that many of the agents try to build a model of

the other agent in the game, based on the history of interactions. As the game pro-

gresses, such an agent’s behavior will come to depend partly on the social preference

of the designer, and partly on the agent’s predictions of the other agent’s behavior.

We surmise that this effect is responsible for the correlations shown in Figure 5.5.

5.4.2 Stationary vs. Non-stationary Strategies

The guess of the previous subsection motivated us to classify and investigate the

agents based on the complexity of their strategies. We divided the agents’ strategies

into two groups, stationary and non-stationary, according to the variance of their

para-SVO:

1. For agents using stationary strategy, given a tester agent, their para-SVOs

remain the same all the time, because their choices at each iteration depend

only on the payoff matrix of current game. They usually have shorter and

simpler codes. For example, some students’ agents use a simple competitive

strategy that choose action A1 when b > c, and choose action A2 otherwise.

We have about 12 agents using stationary strategy among those students’

agents, and the correlation is approximately 0.6 (p¡0.05).

2. For agents using non-stationary strategy, given a tester agent, their para-SVOs

change as the game progresses, because their choices at each iteration depend
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Figure 5.6: Correlation between human SVO and agents using non-stationary strat-

egy.

on the previous history of the interactions. They may build predictive models

of some kind and make some strategic decisions based on the model. For exam-

ple, some students’ agents estimate the probability of the other agent choosing

some kind of action in different situations, and then respond accordingly.

Figure 5.6 shows the correlation of human SVO and para-SVO of agents using

non-stationary strategy. Comparing with the correlation for agents using stationary

strategy (≈ 0.6 for all iteration), the correlation for agents using non-stationary

strategy is lower (ranging from -0.4 to 0.4). This is consistent with our previous
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guess that para-SVOs of agents using non-stationary strategies correlate less with

the social preferences of their designers.

5.5 Utilizing the SVO Information

There are many possible applications of utilizing the SVO information. Having the

SVO information, we can predict the behaviors of the other agents in various situa-

tions, and our agents can interact with them in some better ways. For example, our

agent can avoid possible exploitation by agent that is probably competitive. On the

other hand, if we know that the other agent is possibly cooperative according to the

SVO information, our agent can possibly increase mutual benefits by working closely

with the other agent. If the other agent is neither competitive nor cooperative, our

agent can start with some safe actions and learn a more accurate model of the other

agent from interaction. Using that kind of strategy, we can develop a collaborative

agent to enhance safety and productivity by utilizing the SVO information.

In this section, we present two examples that use the SVO information. First,

we show how we can use the SVO information to composite two simple and non-

adaptive agents to form a better non-adaptive agent. Second, we present how we

can improve an adaptive agent [52] by using the SVO information.

5.5.1 Compositing a Non-adaptive Agent

In this subsection, we present a way to use the data of other agents’ designer to

combine two simple agents to form a better agent. The two agents we used are
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social agent and maximin agent. Both of them are non-adaptive that they do not

apply any agent-modeling technique during the game. Social agent always chooses

an action that maximizes the sum of payoff of itself and other, so its SVO angle is 45◦

and it performs better if the other agent is also cooperative. Maximin agent always

chooses an action that maximizes its own minimum possible payoff, so its SVO angle

is 0◦ and it can avoid being exploited by other non-cooperative (individualistic or

competitive) agents.

It would be better if we can combine the advantage of both agents in following

way: if the other agent is cooperative, our agent will act like the social agent to

gain the benefit of mutual cooperation; if the other agent is non-cooperative, our

agent will act like the maximin agent to avoid being exploited by them. However,

as we do not know the exact social preference of other agents before interacting

with them, we propose to approximate the social preference of the other agents by

the SVO of their designer. In other words, if the SVO of other agent’s designer is

in the cooperative range (≥ 22.5◦), our agent will act like a social agent; otherwise

(< 22.5◦), our agent will act like a maximin agent.

We implemented the simple agents and the proposed composite agent de-

scribed above, and compared their performance in tournaments (10000 runs) with

the 28 students’ agents. Figure 5.7 and 5.8 shows the average payoffs when the

simple agents play with 21 agents written by cooperative human and 7 agents writ-

ten by individualistic human. Social agent performs better with agents written by

cooperative human, while maximin agent performs better with agents written by

individualistic human. This is so because human SVO is a good approximation of
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Figure 5.7: Performance of the simple agents playing with 21 agents written by

cooperative humans.

the social preference of the agents. Figure 5.9 shows the average payoffs when the

three agents playing with all 28 students’ agents. It shows that the average payoff

of the composite agent is (almost, except one point) always higher than both simple

agents, because it has the strengths of both agents in different situations. The re-

sult also shows that the performances of the simple and composite agents drop when

there is more iterations. It is because some students’ agents apply agent-modeling

technique that they can easily exploit agents using stationary strategies (including

the simple and composite agents) after they have enough interaction data. As we
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Figure 5.8: Performance of the simple agents playing with 7 agents written by

individualistic humans.

shown in Section 5.4.2, if the other agents use non-stationary strategy, designers’

SVO is not enough to model them later in the game. We still need agent-modeling

techniques during interaction to being exploited by those agents.

5.5.2 Improving an Adaptive Agent

In this subsection, we show a way to use the data of other agents’ designer to improve

an adaptive agent that apply agent-modeling techniques. We use the adaptive life

game agent described in Chapter 4. [52] The agent is an automated agent for the
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Figure 5.9: Performance of the simple and composite agents.

life game which performs agent-modeling using an agent model based on the Social

Value Orientation (SVO) theory. In this subsection, we exemplify a way to modify

that agent with the newly discovered SVO correlation results, by providing it the

SVO data of other agent’s designer.

Since the original adaptive agent does not have any prior knowledge about

the other agent, the agent does not know the social preference of the other agent.

Therefore, the agent will start with some default models, and will estimate the

orientation of other agent from the history of interactions. More precisely, the agent

starts by assuming that the other agent is fully cooperative. After accumulating
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some interaction histories, the agent will learn the true social orientation of the other

agent, and will adapt and use it to the best of its capacity (for example, if the other

agent is cooperative, the agent will also be cooperative). To minimize exploitation,

the estimated trustworthiness of the other agent is decreased whenever a defect-

like action is observed. There are five types of trustworthiness: type 0 (fully non-

cooperative), 1, 2, 3, and 4 (fully cooperative). Agents with higher trustworthiness

will tend to cooperate on a larger subset of games.

Although it can prevent future exploitation by decreasing the estimated trust-

worthiness of the other agent whenever a defect-like action is observed, it cannot

prevent the initial exploitation of non-cooperative agents. Avoiding initial exploita-

tion is importance, especially when the expected number of iteration is small. We

propose to use the SVO information of the designer of other agent to minimize the

exploitation by selfish agent. If the designer of other agent has higher SVO angle,

the higher initial estimated trustworthiness of the agent. More precisely, instead of

initializing the estimated trustworthiness (λx) of other agent (x) to fully coopera-

tive (4), we initialize it according to the agent designer’s SVO (θx) using following

formula:

λx = max(min(

⌊
θx
10

⌋
, 4), 0)

In other words, we have a higher λx value for an agent x written by a designer

having higher SVO angle θx.

To evaluate the performance improvement of the agent with the help of the
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Figure 5.10: Performance of agents playing with all 28 students’ agents.

human SVO data, we implemented a forewarned adaptive agent described above,

and evaluated its performance in tournaments (10000 runs) with students agents.

Figure 5.10 shows the average payoffs the agents at different iteration when they

play with all 28 students’ agents. Figure 5.11 and 5.12 shows the average payoffs

when they play with 21 agents written by cooperative human and 7 agents written

by individualistic human.

The payoff of the original agent is very low at the beginning, because it begins

by assuming the other agent is fully cooperative and so applying the “nice” strategy

towards all other agents. If the other agent is non-cooperative, the original agent
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Figure 5.11: Performance of agents playing with 21 agents written by cooperative

humans.

may be exploited for the first few games, and lose some payoffs at the beginning. On

the other hand, the forewarned adaptive agent has higher payoff at the beginning,

because it prevents some of the exploitation by having a more accurate initial model.

That is also the reason why the payoff difference is very large in Figure 5.12, but

small in Figure 5.11. It also shows that the advantage of forewarned adaptive agent

mainly comes from avoiding being exploited by agents written by individualistic

human. The Human SVO data can help the agent to estimate the trustworthiness

of other agents, rather than learning through interaction.
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Figure 5.12: Performance of agents playing with 7 agents written by individualistic

humans.

Comparing Figure 5.11 and 5.12, the average payoff obtained is higher when

the adaptive agents are playing with students’ agents written by cooperative hu-

mans, because those agents also tend to be more cooperative that give us benefit

of mutual cooperation. This shows that maintaining cooperation with cooperative

agents is very important.

With an increasing number of iterations, both agents’ performances improve

and converge. It is probably because both agents are doing agent modeling. With

more interaction data, the modeling will be more accurate, and so they can better
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predict other agents’ action to get higher payoffs. For example, even though the

original agent always starts with being nice, when it knows more about the other

agents, it will stop cooperating with the defectors and keep cooperating with the

cooperators.

In summary, there are at least three main factors for a good life game agent: (1)

apply agent-modeling techniques during interaction; (2) start with a more accurate

model; (3) maintain mutual cooperation with other agents if possible.

5.6 Summary

We have developed a way to measure the social preferences of computer agents,

by adapting some concepts and techniques from social psychology. In our study

of agents that were designed to play a repeated stochastic game (the life game),

we have found a strong correlation between the agents’ social preferences and the

social preferences of their human designers. We have shown that this correlation

can be used to make useful predictions of what choices an agent will make over the

course of a game, and have shown that these predictions can be used to improve the

performance of other agents that interact with the given agent.
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Chapter 6: Predicting Agents’ Behavior by Measuring their Behav-

ioral Signature

The original SVO model was limited to one-shot games, and assumed that each

individual’s behavioral preferences remain constant over time—an assumption that

is inadequate for repeated-game settings, where an agent’s future behavior may

depend not only on its SVO but also on its observations of the other agents’ behavior.

We extend the SVO model to take this into account. Our experimental evaluation,

on several dozen agents that were written by students in classroom projects, show

that our extended model works quite well.

6.1 Introduction

Many multi-agent domains involve human and computer decision makers that are

engaged in repeated collaborative or competitive activities. Examples include online

auctions, financial trading, and computer gaming. Repeated games are often viewed

as an appropriate model for studying these kinds of repeated interactions between

agents. Compared to one-shot games, repeated games are much more complex as

they allow agent to adapt their behavior between the rounds. The relevant literature

contains many demonstrations of how an agent’s behavior can change as it develops
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a better understanding of the other agents’ behavior. [21,53–56]

In order to model the behavior of an agent and predict its performance, we

adapt and extend a construct, Social Value Orientation (SVO), from social psy-

chology [4]. SVO theory assumes that in interpersonal interactions, an individual’s

choices depend not only on his/her own payoffs but also on his/her preferences for

the other individual’s payoff, and that these preferences remain stable over time.

SVO theory provides a way to measure these preferences, and experimental valida-

tions of these measurements on human subjects.

If a human writes an agent to act as the human’s delegate in a multi-agent

environment, one might expect the computerized agent to have social preferences as

well. Knowing an agent’s social preference would make it possible to make informed

guesses about the agent’s future actions.

A critical limitation of the SVO model is that it only looks at agent’s prefer-

ences in one-shot games. This is inadequate for repeated games, in which an agent’s

actions may depend on both its SVO and its model of the other agent’s behavior.

To use the SVO model effectively in repeated games, it is necessary to extend the

SVO model to take into account how an agent’s behavior will change if it interacts

repeatedly with various other kinds of agents.

Our contributions in this chapter are as follows. First, we extend the SVO

model by developing a behavioral signature, a model of how an agent’s behavior

over time will be affected by both its own SVO and the other agent’s SVO. Second,

we provide methods for using behavioral signatures to predict agents’ performance.

Third, we present experimental results using agents that students wrote to compete
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in repeated-game tournaments. The experimental results show that our predictions

are highly correlated with the agents’ actual performance in tournament settings.

This shows that our proposed model is an effective way to generalize SVO to situa-

tions where agents interact repeatedly.

6.2 Behavioral Signature

In repeated games, an agent’s social preference can be influenced not only by the

agent’s own SVO, but also by how the agent reacts to the other agent’s SVO. For

example, let x be an agent whose SVO is 45◦ (i.e., it prefers equal payoffs for both

agents) and y be a memoryless agent whose SVO is 0◦ (i.e., y cares only about

maximizing its own payoff in the current iteration). If x and y interact repeatedly,

then after repeated observations of y’s behavior, x might decide that the best way to

equalize both agents’ cumulative payoffs might be for x to try to maximize its own

payoff at each iteration. Consequently, if we perform a Ring measurement of x after

it has had many interactions with y, x’s “apparent” SVO value may be closer to 0◦

than 45◦. We called this x’s para-SVO against y in Chapter 5. In this chapter, we

will define a behavioral signature for x to be a vector Θn(x) that includes x’s SVO

and a collection of para-SVO values for x against several different “constant-SVO

agents”:

Θn(x) = 〈θ0(x), θn(x|C−90), θn(x|C−80), θn(x|C−70), ..., θn(x|C90)〉,

where θ0(x) is x’s SVO, and θn(x|Cφ) is x’s para-SVO at the n-th iteration when x
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plays with the agent Cφ defined below.

Each agent Cφ is a memoryless agent whose SVO is φ degrees. Cφ always tries

to maximize the quantity pself cosφ + pother sinφ, where pself is it’s expected payoff

and pother is other agent’s expected payoff if Cφ plays against an agent that chooses

each action with equal probability.1 For example, if φ = 0 and the game matrix is

the one shown in Figure 2.1, the Constant-SVO agent will choose A1 if a+b > c+d,

otherwise it will choose A2.

The para-SVO, θn(x|Cφ), of agent x at the n-th iteration with tester agent

Cφ is measured by applying the modified Ring measurement on the agent at the

(n + 1)-th iteration after it interacted with the tester agent Cφ for n iterations.

Figure 5.3 shows the complete procedure for measuring θn(x|Cφ) using the modified

game matrices GRing (tester agent y = Cφ).

If we know the behavioral signatures of two agents x and y, we can estimate

the cumulative payoff when x and y play with each other. Below, we describe and

evaluate two methods, E0(x, y) and En(x, y), for estimating x’s average payoff when

it plays with y for N iterations (where N > n). Both methods use a EC function to

approximate the payoff. EC [φ1, φ2] is the payoff of Constant-SVO agent Cφ1 when it

plays with another Constant-SVO agent Cφ2 for N total number of iterations. Note

that EC [φ1, φ2] can be computed quickly because the Constant-SVO agents are very

simple.

1The “equal probability” assumption is needed to calculate the expect payoff for each action.

It can be shown that this assumption is compatible with the para-SVO measurement.
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E0 estimation:

E0(x, y) = EC [θ0(x), θ0(y)]

En estimation:

En(x, y) = EC [θn(x|Cβ), θn(y|Cα)],

where α = θ0(x) rounded off to the nearest tens digit, and β = θ0(y) rounded

off to the nearest tens digit.

The first method uses (initial) SVO values of x and y as the input to EC .

The second method uses a more sophisticated input that involves the behavioral

signatures of both agents.2 Note that E0(x, y) is a degenerated case of En(x, y)

when n = 0, because all elements in the behavioral signature equal to SVO of the

agent when n = 0.

6.3 Experiments

For our experimental evaluation, we used a large collection of agents that were

written by students in several advanced-level AI and Game Theory classes. In each

case, the students wrote their agents to compete in a round-robin tournament among

all the agents in their class. To attain a richer set of agents, the classes were held

at two different universities in two different countries: one in the USA, and one in

Israel.

2We also tested another method which uses multiple substitutions. The experimental results

are very similar to the second method (which only one substitution).

94



Our experimental studies involved measuring the agents’ behavioral signatures,

playing round-robin tournaments among the entire set of agents, and comparing the

agents’ performance with the predictions made by our model. To eliminate random

favorable payoff variations, we randomized the series of games, and used the same

series between all agents in the population. The instructions stated that at each

iteration, they will be given a symmetric game with a random payoff matrix of

the form shown in Figure 2.1. Following Axelrod’s methodology, we did not tell

the students the exact number of iterations in each life game. The total agent’s

payoff will be the accumulated sum of payoffs with each of the other agents. For

motivational purposes, the project grade was positively correlated with their agents

overall ranking based on their total payoffs in the competition. Overall, we collected

71 agents (47 from the USA and 24 from Israel).

6.3.1 Measuring Agents’ Behavioral Signatures

We use the para-SVO measurement procedure (shown in Figure 5.3) to find the

behavioral signatures of all students’ agents. Figure 6.1 shows the distribution of

(initial) SVO of students’ agents.3 While most of them are individualistic (to dif-

ferent degrees), there were some who had competitive and cooperative orientations.

Figure 6.2 shows the average, over all of the students’ agents, of the para-SVO

value θ10(x|Cφ). Recall that θ10(x|Cφ) is agent x’s para-SVO value at 10th iteration

against a memoryless agent Cφ whose SVO is φ degrees. Notice that the average

3SVO of x is measured by testing x with one-shot games, i.e., it is equals to the initial para-SVO

of x.
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Figure 6.1: Distribution of students’ agents’ SVO.

para-SVO of the students’ agents increases with the para-SVO of the tester agents,

because it is beneficial to be more cooperative if the other agent is more cooperative.

The magnitude of change of the average is not large, because para-SVO values of

about 45 (out of 71) agents remain constant across different tester agents.

Figure 6.3 shows the average para-SVO of students’ agents when the tester

agents are Constant-SVO agents with SVO = −40◦,−20◦, 0◦, 20◦, or 40◦. Again,

the results show that the average para-SVO of the students’ agents increases with

the para-SVO of the tester agents. Moreover, when n increases, most of the averages

decrease, and all of them level off after about 20 iterations. From examining the

code, we found that many of the agents try to build a model of the other agent in

the game, based on the history of interactions, and the model tend to be stabilized

after some number of iterations. All of the above results show that the apparent
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Figure 6.2: Average para-SVO values θ10(x|Cφ) for φ = −90◦ to 90◦, averaged over

all x in the entire set of students’ agents.

social preferences of agents change with the behaviors of other agents, because the

action of an agent is usually determined by both its SVO and its prediction of the

opponent action.

6.3.2 Predicting Agents’ Performances

Our next goal was to evaluate the accuracy of our prediction algorithms. In the

following experiments, the total number of iterations (N) is 100, and the number

of runs is also 100. We predicted the average payoff of all possible games of any
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Figure 6.3: Average para-SVO values θn(x|Cφ) with different tester agents Cφ, av-

eraged over all x in the entire set of students’ agents.

two students’ agents (including playing with itself, i.e., 71× 71 data points for each

run), using the methods mentioned in Section 6.2.

Figure 6.4 and Figure 6.5 show the correlation and mean square error between

predicted payoffs and actual payoffs. Regardless the value of n, the predicted payoffs

have high correlation with the actual payoffs. Their mean square errors are low,

comparing with the average payoff ≈ 5.5. When n = 0, the accuracy of En is good

(mean square error = 0.284). As n increases, the accuracy of En also increases until

n = 20, at which point it levels off (similar to Figure 6.3).
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Figure 6.4: Correlation between predicted and actual payoffs (when student agents

play in a tournament).

When n = 0, En degenerates to E0 which only considers the (initial) SVO value

of the agents. When n > 0, En takes the agents’ adaptive behaviors into account by

considering their behavioral signatures. The better performance of En shows that

our extended SVO model works better in repeated games than the original SVO

model.
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Figure 6.5: Mean square error of predicted payoffs (when student agents play in a

tournament).

6.4 Summary

We have extended the SVO model from social psychology, to provide a behavioral

signature that models how an agent’s behavior over multiple iterations will depend

on both its own SVO and the SVO of the agent with which it interacts. We have pro-

vided a way to use this behavioral signature to predicting the agent’s performance.

In our study of agents that were designed to play a repeated stochastic game (the

Life Game) in classroom tournaments, the predictions made by our model were
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highly correlated with the agents’ actual performance.
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Chapter 7: Conclusions

Human social preferences — i.e., human preferences for the outcomes of their inter-

actions with others — have been shown to play an important role in many areas of

decision-making. As agents are developed that exhibit more autonomy and take an

increasing role in interacting with other human and agents, it is becoming important

to understand the social preferences of agents as well as humans. This dissertation

presents a step in this direction, by studying how the notion of SVO can be used to

improve our understanding of the behavior of computer agents.

This chapter summarizes the contributions in this dissertation and proposes

new directions for future work. The four main contributions of this thesis are:

1. Chapter 3 described a formal model that combines game-theoretical analyses

for cooperation in Iterated Prisoner’s Dilemma with insights from social and

behavioral sciences. Our model is not claimed to be the most accurate account

of social orientations; rather, it is a simple model that takes the first step

in the above direction. Unlike existing models, this formalism captures the

notion of prosocial vs. proself orientations exhibited in human behavior and

explicitly provides an abstract representation for how a player develops its

strategies in repeated games. We have presented theorems showing how players
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with different social tendencies interact. Our theorems identify five general

steady-state behavioral patterns, that can be explained in terms of the players’

social orientation values. We have also performed an experimental evaluation

of our model using evolutionary simulations in the well-known IPD game.

The results of the experiments demonstrated that our model captures the

well-known behavior patterns in IPD. Furthermore, it allows modeling richer

behavior patterns since it does not depend on the particular game matrix.

2. Chapter 4 described a successful strategy for the life game by utilizing SVO

theory. Our method of agent modeling can be used to learn strategies and re-

spond to others’ strategies over time, to play the game well. Our experiments

demonstrated that our SVO based agent outperformed both standard repeated

games strategies and a large set of peer designed agents. Furthermore, our ex-

perimental work illustrates the importance of adaptive and fine-grained oppo-

nent modeling, as well as the impacts that different trust adaptation strategies

have on the performance of the SVO agent.

3. In Chapter 5, we have developed a way to measure the social preferences

of computer agents, by adapting some concepts and techniques from social

psychology. In our study of agents that were designed to play the life game,

we have found a strong correlation between the agents’ social preferences and

the social preferences of their human designers. We have shown that this

correlation can be used to make useful predictions of what choices an agent

will make over the course of a game, and have shown that these predictions
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can be used to improve the performance of other agents that interact with the

given agent.

4. In Chapter 6, we have extended the SVO model, to provide a behavioral signa-

ture that models how an agent’s behavior over multiple iterations will depend

on both its own SVO and the SVO of the agent with which it interacts. We

have provided a way to measure an agent’s behavioral signature, and a way

to use this behavioral signature to predicting the agent’s performance. In our

study of agents that were designed to play the life game in classroom tour-

naments, the predictions made by our model were highly correlated with the

agents’ actual performance.

There are several ways in which this work is both novel and significant. First,

this is one of the first works to investigate the behavior of agents in repeated games

where the stage game varies stochastically at each iteration. Many of the techniques

used in ordinary repeated games depend on having the same game at each iteration,

hence require extensive alteration (if they can be used at all) if the game varies

stochastically. Second, this work shows how a concept from social psychology—

namely, the concept of SVO—can successfully be adapted to model and predict the

behavior of computerized agents in game-theoretic environments. It is possible that

we can further improve our understanding of the behavior of computer agents by

borrowing other well-established theories from psychology (such as expectancy the-

ory [57], inequity aversion [40]). Third, this work provides a way to take the SVO

concept—which was originally developed to model situations where two individuals
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have a single game-theoretic interaction—and extend it to situations in which the in-

dividuals interact repeatedly in a variety of game-theoretic settings. This extension

is important because repeated interactions in different settings are very common in

many real-world applications.

A limitation to most of the above works is that they were restricted to the

life game. However, we believe there is a strong potential for extending the results

to other contexts. One topic of future work would be to generalize our model and

analysis to other kinds of repeated games. Another limitation of our study is that

the algorithm for measuring an agent’s behavioral signature requires a collection of

interaction trace between the agent and a specific group of agents in some special

sequences of games. An interesting direction would be to estimate the behavioral

signatures of agents using a set of interaction traces produced by different pairs of

agents in arbitrary two-player repeated games. Such extensions may provide both

an improved understanding of agent behavior, and ways to improve the effectiveness

of agents in their interactions with others.
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