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We need to study Apis mellifera both in vivo and ex vivo to better understand 

honey bee biology. In vivo synergism of chemicals can occur when xenobiotic 

transporters are inhibited by one chemical, allowing a second chemical to accumulate 

and become toxic. I have conducted assays between 2010 and 2013 that demonstrated 

RhB dye- a xenobiotic transporter substrate, is fed in the presence of the xenobiotic 

inhibitor verapamil, it is found in higher levels in the hemolymph of the Apis 

mellifera Two types of bee food combined with two dyes were tested in 2012 for the 

impact of food type, and the impact of dye type on the fate of the dye in a Apis 

mellifera hive. Slightly hydrophobic RhB and slightly hydrophilic UrO were used. 

Dyed syrup persisted longer in hives than dyed pollen patties, and dyes did not spread 

uniformly throughout the hive.  

 



 

 

 

 

 

 
 

IN VITRO MEASURES OF MDR-TRANSPORTER FUNCTION AND WHOLE-

HIVE EXPOSURE DYNAMICS USING FLUORESCENT DYES 

 

 

 

 

By 

 

 

Grace Regina Kunkel 

 

 

 

 

 

Thesis submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Master of Science 

2013 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor David Hawthorne, Chair 

Galen Dively 

Dennis vanEngelsdorp 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Grace Regina Kunkel 

2014 

 

 



 

ii 

 

Dedication 

  This work is dedicated to my family who has always been incredibly supportive of 

me.  I feel so lucky to have the love and support of so many people, and it is thinking of them 

that kept me going to finish this project. My Mother has always provided me with 

encouragement and enthusiasm. She was always a phone call away with a pep-talk ready to go. 

When I was stressed out she would always make me feel better. She is responsible for getting me 

interested in science and encouraging me to pursue research.  To my Father, who has always 

inspired me to try harder, achieve more, and most importantly put my best effort forward. He has 

been a huge resource, and always gives me great advice and guidance. To my sisters, Helen, 

Katie, and Claire who shared their experiences and difficulties in pursuing their own degrees to 

encourage me to keep going. They have been incredible role models and I strive to be more like 

them all of the time.   

 To my friends who never turned away when I needed a respite from work.  And to my 

peers who provided me with measureless resources throughout our time at Maryland together. I 

never expected to grow so close to my fellow students, and yet I find I have made an entomology 

family, Particularly Ryan Gott and Ashley Jones. Finally this work is dedicated to my partner, 

Ryan Matis who has only known me for the last part of this thesis but inspires me to be better, 

and finish what I started.  

 

 

 



 

iii 

 

Acknowledgements 

 I would like to thank my advisor, Dr. David Hawthorne for encouraging me to pursue a 

master’s degree in entomology, and for his advisement along the way. His enthusiasm for honey 

bee research is obvious, contagious, and admirable. His way of thinking creatively improved my 

research and my way of thinking as a scientist. I would like to thank Dr. Galen Dively for 

allowing me to volunteer on his crew many summers ago, it was the first time I ever worked 

bees, and it reinforced my interest in entomology and brought my goals into focus. He has also 

been an excellent source of   advice and “know how” as well as a friend.   I would also like to 

thank Dennis vanEngelsdorp, who has been a wonderful addition to our department and an 

invaluable member of my committee. His intelligence and expertise allowed me to have an 

insight into honey bee research that is truly special.  I am grateful to him for opening doors, and 

pushing me to be better.  

 I am especially grateful to the wonderful people at the USDA Bee Research Laboratory 

for letting me experiment on their hives, and giving me tons of help along the way. Jeff Pettis for 

the advice, and guidance in designed my hive experiment. Nathan Rice, and Andy Ulsamer for 

their help setting up my experiment.  I also had a lot of help from many undergraduates, Sarah 

Davies, Alex Guseman, Julius Goldberg, Erin Norcross, Andrew Garavito, Kaliah Miller. Thank 

you.  

 

 

  



 

iv 

 

Table of Contents 
Dedication…………………………………………………………………………………………i 

 

Acknowledgements………………………………………………………………………….…...ii 

 

Table of Contents………………………………………………………………..……….……….iii 

 

List of Tables……………………………………………………………………………….….…iv 

 

List of Figures……………………………………………………………………………………v 

 

Chapter 1: In Vivo Assessment of Xenobiotic Transporter Function in Apis mellifera………….1 

 Abstract…………………………………………………………………………...……….1 

 Introduction…………………………………………………………………...…………...2 

 Methods……………………………………………………………………………………8 

  Source of Bees 

  Treatments……………………………………………………………….………...9 

  Experimental Design 

   Experiment 1. Does consumption of verapamil or ketoconazole alter  

    hemolymph concentrations of Rh…………………….……….…10 

   Experiment 2. Does Consumption of verapmail alter hemolypmh   

    concentrations of RhB and UrO………………………………….11 

  Statistical Analysis……………………………………………………………….11 

 Results………………………………………………………………………..……….….12 

 Discussion……………………………………………………………………….…….…13 

Chapter 2 Whole Hive Dynamics of Fluorescent Dyes Fed In Sugar Syrup and Pollen Patties..20  

 Abstract……………………………………………………………………………..……20 

 Introduction………………………………………………………………………………21 

 Methods…………………………………………………………………………………..24 

  Source of bees……………………………………………………………………24 

  Dyes and food supplements……………………………………………….……..25  

  Laboratory assays…………………………………………………………….….25 

  Colony study treatments……………………………………………………..…..26  

  Colony sampling.  ……………………………………………………………….27 

  Sample processing……………………………………………………………….28 

  Statistical analysis………………………………………………………………..28 

   

file:///C:/Users/Beelab1/Downloads/GKthesis_revised_GPD_GKrevision4-24.docx%23_Toc74394815
file:///C:/Users/Beelab1/Downloads/GKthesis_revised_GPD_GKrevision4-24.docx%23_Toc74394840


 

v 

 

 Results……………………………………………………………………………………29 

  Laboratory assays…………………………………………………………….…..29 

  Preliminary studies: Persistence of Dyes……………………………………..…29 

  In Hive Dynamics Field Study…………………………………………………..30 

 Discussion……………………………………………………………………………..…36 

 

 Literature Cited…………………………………………………………………………..49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

List of Tables 
Table 

 

1      Cumulative numbers of dead bees over seven days (n=four cages) for three dye feeding 

 treatments +/- standard error…………………………………………………………..…37          

 

List of Figures 
Figure 

 

 

1 Rearing cages for the newly emerged bees. ………………………………………..……16 

2      Feeding 30% sucrose-fluorescent syrup to individual honey bees…………………..…..16  

3 Removing hemolymph from the honey bees using a 1uL micro capillary tube.………...17 

4 Mean levels of RhB in bees fed 30% sucrose containing verapamil (1mM), ketoconazole 

(1mM), and a sucrose only control………………………………………………………18  

 

5 Mean levels of RhB in bees fed 30% sucrose containing verapamil (1mM), and a sucrose 

only control.  There was a significantly higher level of RhB in the hemolymph of 

verapamil treated bees than control bees. 

(P=0.0002)………………………………………………………………………….……18 

 

6 Mean level of UrO fluorescence in untreated and treated bees.  The mean levels of UrO 

in hemolymph did not differ among verapamil treated versus untreated bees 

(P=0.3055)……………………………………………………………………………… 19 

. 

7 Mean fluorescence of hemolymph RhB from bees treated with a series of verapamil 

dosages (mM) at 24 and 48 hours after dye treatment…………………………….…….19 

 

8 Mean RhB fluorescence in bees following feeding on day 1……………………………38 

 

9 Figure 9: Mean level of UrO fluorescence in bees following feeding on day 1…………38 

 

10  RhB fluorescence in dyed sucrose syrup vials placed inside of hive boxes, but 

inaccessible to bees, and removed throughout the study…………………………….…..39 

 

11  Mean (±SE) fluorescence of RhB in different hive matrices from colonies fed undyed 

food supplements, dyed pollen patties and dyed sucrose syrup. All colonies were exposed 

to the food treatments on days 0 and 7 and samples collected on day 14. The matrix by 

treatment interaction was highly significant (F(10,51) = 4.83, P <0.001)……………...….40 

 

12  Mean (±SE) fluorescence of UrO in different hive matrices from colonies fed undyed 

food supplements, dyed pollen patties and dyed sucrose syrup. All colonies were exposed 

to the food treatments on day 0 and day 7 of the study and samples of matrices were 



 

vii 

 

collected on day 14. The matrix by treatment interaction was highly significant (F(10,51) = 

3.24, P =0.003)..…………………………………………………………………….…...41 

 

13 ean (±SE) fluorescence of RhB at 3, 7 and 14 days in all hive matrices from colonies 

exposed to undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. 

Colonies were fed treated food on day 0 only.  The treatment by time interaction was 

highly significant (F(10,168) = 10.63, P <0.001)…………………………………..………42            

 

14.  Mean (±SE) fluorescence of UrO at 3, 7 and 14 days in all hive matrices from colonies 

exposed to undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. 

Colonies were fed treated food on day 0.  The treatment by time interaction was highly 

significant (F(10,168) = 9.24, P <0.001)……………………………………………………43 

 

15  Mean (±SE) fluorescence of RhB in different hive matrices from colonies exposed to 

undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. Colonies were 

fed treated food on day 0 only.  The treatment by matrix interaction highly pooled across 

all sample days was significant (F(10,168) = 4.17, P <0.001)………………………..…….44 

 

16  Mean (±SE) fluorescence of UrO in different hive matrices from colonies exposed to 

undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. Colonies were 

fed treated food on day 0 only.  The treatment by matrix interaction pooled across all 

three sample days was significant (F(10,168) = 2.23, P =0.018)……………………...……45 

 

17  Mean (±SE) fluorescence of UrO at 3, 7 and 14 days in different hive matrices from 

colonies exposed to undyed supplemental food, dyed pollen patties, and dyed sucrose 

syrup. Colonies were fed treated food on day 0.  Data are mean units pooled over all three 

food treatments.  The matrix by time interaction was significant (F(10,168) = 2.12, P 

<0.001)…………………………………………………………………………….….….46 

 

18  The mean fluorescence of RhB in royal jelly across three feeding treatments; Once dyed 

sucrose syrup (1xs), once fed pollen patty (1xp), and twice fed pollen patty (2xp). Bars 

are means, lines are standard error. * indicates p<0.05, ** indicates p<0.001…………..47 

 

19  The mean fluorescence of UrO in royal jelly across three treatments. Once dyed sucrose 

syrup (1xs), once fed pollen patty (1xp), and twice fed pollen patty (2xp). Bars are 

means, lines are standard error. * indicates p<0.05, ** indicates p<0.001………………47 

 

20  The ratios of UrO to RhB (average of fluorescence units) in matrices sampled at day 7 

from syrup treated hives.  Bars are means, lines are standard error……………………..48 

 

 

 

 

 

 

 



 

1 

 

Chapter 1: In Vivo Assessment of Xenobiotic Transporter Function in 

Apis mellifera 

Abstract 
 

     

    Honey bees are an important and vulnerable agricultural resource utilized worldwide. 

They are susceptible to sub-lethal effects from many chemicals that in combination  may have a 

lethal synergistic effects. One mechanism through which sub-lethal effects may arise is 

inhibition of ABC transporters, a key part of the xenobiotic processing system in most, if not all 

eukaryotes. An ABC transporter is a trans-membrane protein found in many tissues of the honey 

bee that actively efflux toxins away from sensitive tissues and cells towards excretion. Changes 

in these proteins have been shown to be important in some cases of pesticide resistance. Given 

the large number of potential inhibitors, standard feeding assays to measure dose-mortality 

relationships of inhibition of actual individual chemicals is very time consuming. Development 

of an assay to quickly and reliably test a chemical’s inhibition of these transporter proteins is 

necessary to identify compounds that may be increasing bees’ sensitivity to pesticides. An assay 

was developed using Rhodamine B (RhB), a fluorescent dye that is a known substrate and 

verapamil, a known inhibitor of the main xenobiotic trafficking transporters.  Following a 

pretreatment with verapamil, bees were fed RhB + Verapamil—laced sucrose syrup. To 

determine if transporter inhibition increased the rate of dye transit into the hemolymph and 

slowed its excretion, the amount of RhB remaining in the hemolymph was measured. Bees 

treated with verapamil had consistently higher levels of RhB in their hemolymph than bees fed 

inhibitor-free sucrose syrup. Results provided proof-of-concept that the fluorescent dye RhB 

could be used as a surrogate representing a chemical substrate of these key transporters.   
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Introduction 

 Honey bees are an essential element of our agricultural industry, contributing an 

estimated $14.6 billion in value (Morse & Calderone, 2000).  The almond industry is the largest 

user of honey bees for pollination in the U. S., employing 60 percent of the nearly 2.5 million 

managed honey bee colonies nation-wide to ensure a full crop (vanEngelsdorp et al., 2008).   

Several large and unexplained losses of honey bee colonies, across much of North America, were 

reported following the winter of 2006/2007 (vanEngelsdorp et al., 2009).  These losses were 

associated with an unusual collection of symptoms including: 1) rapid loss of adult worker bees 

from affected colonies as evidenced by weak or dead colonies with excess brood populations 

relative to adult bee populations, 2) lack of dead worker bees both within and surrounding the 

affected hives, and 3) the delayed invasion of afflicted colonies by hive pests (vanEngelsdorp et 

al., 2009).  These symptoms were labelled “Colony Collapse Disorder” (CCD).  There have been 

many hypotheses proposed for the cause of CCD including pathogens such as Israeli Acute 

Paralysis Virus (Cox-Foster et al. 2007) vectored by the parasitic mite Varroa destructor, 

exposure of bees to pesticides such as the widespread neonicotinoid insecticides (Chensheng et 

al. 2012), and broader threats like poor nutrition resulting from monocrop farming systems 

(Aluax et al. 2012).  All of these candidate causes for CCD are supported by intriguing but 

inconclusive evidentiary threads; none are clearly and individually implicated.  

 High overwintering losses have continued since 2006, but because the symptoms 

associated with CCD do not always accompany the losses, CCD may not be the sole cause of 

those losses. Historically, acceptable overwintering losses are considered to be below 15%, but 

since 2006 they have averaged 30.5%, peaking in 2012-2013 at 31.1% (vanEngelsdorp et al. 
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2013).  The cause of these losses, as with CCD itself, are unknown and may be due to a 

combination of the factors listed above.   

Pesticides in particular have been singled out as a possible cause of CCD and high 

overwintering mortality of bee colonies (Mullin et al., 2010, Hawthorne & Dively, 2011, 

Johnson et al., 2010). This is because pesticides are routinely encountered by honey bees while 

foraging, and are also placed within their hive for pest control.  The effects of many pesticides on 

honey bees have been tested individually as a requirement for commercial registration in the 

United States and Canada and in Europe.  Only a few have been tested in combination with other 

pesticides or in-hive medications.  Given the very large number of pesticides, environmental 

toxins and plant chemicals to which honey bees are exposed, it is becoming increasingly clear 

that exposure to multiple compounds (each at individually harmless concentrations) should be 

examined as a possible cause for colony losses (Hawthorne & Dively, 2011, Johnson et al., 

2009).   

One of the ways in which adverse consequences of a combination of pesticides could 

occur is through inhibition of a key detoxification or excretion mechanism by one or more of the 

chemicals—thus rendering the bees more susceptible to another.  Inhibition of a family of 

membrane-bound proteins, often called xenobiotic transporters, is a candidate mechanism for 

adverse effects of multiple pesticide exposures.  A xenobiotic transporter is a cellular pump that 

effluxes harmful molecules out of cells for removal from the organism (Karnaky et al., 2003).  

These transporters were first examined in detail in the realm of chemotherapy resistance in 

tumors, which were deemed multi-drug resistant (MDR) cells that are especially good at 

removing chemotherapy drugs (Klaassen,  2002).  One class of these transporters or pumps are 

the ATP binding cassette (ABC) transporters (Leonard et al., 2003).  These transporters utilize 
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ATP to push materials into or outside of the cell in an active process (Bosch & Croop, 1998, 

Lage, 2003).  Members of the ABC-B family of these transporters, also called p-glycoprotein (p-

gp) play an important role in xenobiotic metabolism and excretion (Leonard et al, 2003).  

Honey bees, like virtually all living organisms have p-gp’s that are responsible for 

transporting an unusually broad range of substrate compounds.  These transportable compounds 

include a very wide range of environmental toxins, including secondary plant compounds and 

insecticides.  These transporters are known to contribute to insecticide resistance in several pest 

species, including mosquitos (Porretta et al., 2008) and body lice (Yoon et al., 2011), and are 

likely important to many more cases of resistance (Buss & Callaghan, 2008).  The widespread 

foraging and subsequent concentration of floral nectar and pollen within the hive may lead to 

bees being exposed to extraordinarily diverse collections of chemicals.  One landmark study 

found over 121 different pesticides in samples taken from beehives across North America, with 

some hives having residues from as many as 39 different pesticides (Mullin et al., 2010).   

This comingling of chemicals within the hives, and individual bees is alarming because 

we don’t know the effects of the interactions that most of these chemicals have with each other 

inside of an organism.  If honey bees are utilizing xenobiotic transporters to prevent poisoning, 

then it is important to know if, for example, oxytetracycline, a common antibiotic applied to 

beehives is also an inhibitor for p-gp.  Coumaphos, a once widely used in hive treatment against 

varroa mites, has also been shown to inhibit this family of transporters in human multi-drug-

resistant (MDR) cell lines, which suggests it could inhibit honey bee transporters as well (Bain et 

al., 1997). That type of knowledge would allow for better honey bee management decisions, and 

maybe even more precise and thoughtful insecticide applications to crops where bees are actively 

foraging.  In order to get this knowledge we need to be able to identify the undesirable 
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combinations, preferably quickly and cheaply, because there are so many combinations to be 

tested.  

The role of p-gp in metabolism and excretion of a toxin is to establish a concentration 

gradient of potentially toxic compounds, continuously shunting the toxin towards less-sensitive 

tissues and towards excretion.  By reducing the concentration of a toxin within cells, the 

efficiency of metabolic processes is increased and the most sensitive tissues and targets are 

protected from reaching critical toxin concentrations (Klassen, 2013).  The location of these 

transporters can also be an indication of their role in detoxification and excretion.  They are 

found at the blood-brain barrier of fruit flies in order to protect the brain (Mayer et al. 2009).  

They are also found in the midgut lining, the malpighian tubules, and the cuticle, all tissues 

involved in protection of insects from exterior or ingested toxins (Labbe et al., 2011., Lanning et 

al., 1996).  These transporters have also been observed increasing in number following exposure 

to toxic substrates (Yoon et al., 2011). 

The role of these transporters can be tested by co-exposing an insect to a p-gp inhibitor 

and a toxin that is a substrate of the transporter.  Inhibition of the transporters will, under these 

conditions, increase the organism’s sensitivity to the toxin, increasing mortality.  This assay can 

be performed with insects; the effects of an inhibitor measured by mortality at a single dose or 

over a range of toxin dosages to estimate the LD50.  But this increased sensitivity to toxins could 

also be due to inhibition of other detoxification mechanisms, such as cytochrome p450 metabolic 

enzymes.  To complement inhibitor mortality assays, a functional assay is needed to measure the 

rate of chemical transport in the presence of a p-gp specific inhibitor.  

We can somewhat narrow down the chemicals that specifically are a target for p-pg based 

on some broad chemical properties.  Typically, the molecular weight is greater than 399 (Bain et 
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al. 1997,  Didziapetris et al., 2003), the compound is moderately hydrophobic (usually 1 < log 

Kow < 2 to 3) (Bain et al., 1997, Didziapetris et al., 2003), it has at least one six- or more-

membered ring structure (Bain et al., 1997), and is has the ability to be a hydrogen bond donor 

and acceptor (Bain et al., 1997, Osterberg & Norinder, 2000, Penzotti et al., 2002).  It is 

important to note that these characteristics, while useful as guide, do not include all known 

substrates of p-gp.  Exceptions to these properties, include substrate compounds with a lower 

molecular weight, and a higher log Kow, so a chemical cannot be ruled out based only on these 

rules (Bain,  McLachlan and Leblanc, 1997).  Interestingly, in the same survey of chemicals this 

group also found that coumaphos, an acaridae and long-lasting hive contaminant, strongly 

inhibits pg-p.  

Rhodamine B (RhoB) is a fluorescent dye that is non-toxic to honey bees at the 

concentrations I used and is also a substrate of p-gp based on its chemical properties and 

observed transport across the blood brain barrier (Meyer et al., 2009, Bain et al., 1997).  This 

makes it a useful tool for measuring p-gp activity by looking at the relative amounts in different 

honey bee tissues.  Given a model of RhB excretion that includes retention of the dye in the gut 

lumen (aided by p-gp in the midgut epithelium), and rapid removal of the dye that has entered 

the hemolymph by the malpighian tubules (also aided by p-gp in the tubules), I expected to see 

the concentration of RhoB in the hemolymph of bees fed that dye to be low and to diminish 

rapidly following exposure.   

 The tissues responsible for the majority of the excretion of toxins in insects are the 

malpighian tubules (Labbe et al., 2011, Gaertner et al., 1998, Wang et al., 2004).  The blood-

brain barrier also contains ABCs to protect the brain from toxins (Mayer et al., 2009).  

Fluorescent dyes that are substrates of these transporters can be used in place of toxins and can 
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measure functionality of transporters through spectrophotometry without killing the insect. If the  

p-gp’s in our system are keeping the substrate dye within the lumen of the gut, and the 

malphigian tubules to be excreted out of the animal, then we would expect to see higher levels of 

dye in the hemolymph of the inhibited animals.  The transporters mop up the dye in order to limit 

exposure and get rid of it as they would a toxin.  This has been seen in fruit fly blood-brain 

barriers, where dye is constantly pumped away from the brain (Mayer et al., 2010).  The goal of 

this assay was to demonstrate transporter mediated activity in honey bees.  Here, I developed an 

assay to assess the function of xenobiotic transporters in vivo following exposure to inhibitors by 

measuring the concentration of RhB in the hemolymph of the honey bee. 

RhB was used as the fluorescent transporter substrate to quantify the amount of 

transporter activity happening inside the bee in the presence and absence of an inhibitor.  This 

dye has previously been used as a ABC transporter substrate in experiments measuring transport 

across the blood brain barrier (Mayer et al., 2010). It has also been used in MDR function assays 

devleoped in mussells, measuring the transport of RhB across the gills in the presence of various 

chemicals to determine their potential as transporter inhibitors (Cornwall et al., 1994).  In 

preliminary assays, I found that RhB in the range of concentrations I used, was non-toxic to bees, 

and did not appear to be metabolized over 24-48 hr periods within the bee.  RhB is also used in 

biological risk assessment by measuring efflux by transporters in animals commonly used for 

ecosystem monitoring like mollusks.  Animals with more, or more functioning transporters 

efflux RhB more rapidly (Smital et al., 2000). 

 Uranine O (UrO), a dye typically used as water tracing dye in environmental 

assessments, was used as a negative control. UrO, a water soluble form of fluorescein dye, is not 

a known substrate of p-gp, perhaps because it does not meet the slightly lipophilic requirement 
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(L. Bain et al. 1997). Its excitation and emission spectra also do not overlap with RhB, 

facilitating simultaneous measurement of both dyes.  UrO was also non-toxic and did not 

degrade over time in honey bees in preliminary lab assays.  Verapamil was selected as the 

inhibitor for our assay because it is a well characterized inhibitor of p-gp (Gatouiliat et al., 

2008). It has been used previously in transporter assays in insects (Mayer et al, 2010).  

Verapamil was not toxic to the honey bees in lab testing.   

 

Methods 

Source of Bees 

  Honey bees were obtained from established field colonies located at the Central 

Maryland Research and Education Center, Beltsville facility at Beltsville, MD.  Brood frames 

with signs of emerging bees were removed from colonies and brought to the laboratory where 

they were reared in a dark incubator maintained at 33±2°C and (70–80%) RH.  Emerging bees 

were collected daily and maintained in groups of 15-20 in 7 oz wax paper cups with a muslin 

covering.  Bees were fed sucrose solution (30%; w:w) ad libitum from holes in the bottom of 2.0 

ml microfuge tubes, until they were used for assays. 

Treatments 

 RhB was used as a transporter substrate that would serve as a surrogate for a pesticides 

and other environmental chemicals that are substrates of p-gp. I determined in preliminary assays 

that RhB was non-toxic to honey bees, even at concentrations exceeding 2mM, and did not break 

down over time within the bee.  Uranine O (UrO), a water soluble form of fluorescein dye, 

typically used as a water tracing dye in environmental assessments, was also used as a negative 

control when co-fed with RhB, because it was a non-substrate of our target transporter. Its 
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excitation and emission spectra also do not overlap with RhB, making it a good candidate for a 

dye to use alongside RhB.  UrO was also non-toxic and did not degrade over time in honey bees 

in preliminary lab assays.  Verapamil was selected as the main inhibitor because it is a well 

characterized inhibitor of p-gp transporter function (Gatouiliat et al., 2008), and used  previously 

in transporter assays in insects (Mayer et al,. 2010).  Verapamil at dietary doses of 1mM was 

non-toxic to honey bees in previous studies (Hawthorne & Dively, 2011).  Ketoconazole was 

tested as another inhibitor, known to have strong effects in mammalian cells and because it is in 

the same chemical family as some fungicides used in field crop sprays.  

Both dyes, verapamil and ketoconazole were obtained from Sigma Aldrich.  Spectrophotometers 

used were Molecular Devices SpectramaxPlus (Method A), and FilterMax F5 (Method B). All 

assays were performed using 96-well assay plates (Costar).  

Experimental Design 

Frames with emerging bees were taken from research hives and placed into a dark 

incubator maintained at 33±2°C and (70–80%) RH.  Emerging bees were collected daily and 

maintained in cohorts of 15-20 in 7oz wax paper cups with a muslin covering.  After 3-7 days 

bees were fed either a control sucrose solution or a sucrose + inhibitor solution for 24 hours 

(Figure 1).  Two different protocols were used in the following experiments, for feeding bees 

labelled sucrose solutions and obtaining hemolymph, differing in the method of honey bee 

restraint and in the spectrophotometer and excitation/emission settings used to measure 

fluorescence.  For the first method, (method A), bees were anesthetized with CO2, and the legs 

and wings and body were restrained to a support surface with tape such that their head, 

mandibles and antennae could move freely (Figure 2).  Bees were then fed 10ul of experimental 

solutions containing the fluorescent dyes via pipettor. The process of restraining bees resulted in 
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approximately one hour without food before dye treatment.  After feeding, bees, still restrained, 

were kept in a dark and humid chamber at room temperature for 24 hr.  Hemolymph (1ul) was 

collected from bees through a minute slit between the terminal sternites of the abdomen using a 

micro-capillary tube, mixed with 50ul of 0.01% SDS, and transferred to a 96 well plate.  

Fluorescence of hemolymph samples was measured using a Molecular Devices SpectramaxPlus 

spectrophotometer (ex/em RhB 540:625, ex/em UrO 490/625).  For the second method, (Method 

B), cohorts of 10-15 bees in cups were shallowly anesthetized through chilling.  During 

recovery, bees were held by the wings and thorax and fed 10ul of experimental solutions from a 

pipettor.  Bees were then placed individually into a 15 mL centrifuge tube for two hours to 

ensure that each bee fully consumed the solution and then returned to their original cups along 

with similarly treated cohort members and allowed to continue feeding on their assigned 

inhibitor treatment ad libitum.  To sample hemolymph, bees were anesthetized on ice, a meso-

thoracic leg was removed and 1ul of hemolymph collected in a micro-capillary.  The hemolymph 

was prepared and fluorescence measured as in method A, however a FilterMax F5 

spectrophotometer was used (ex/em RhB 540:625, ex/em UrO 490/625).  Because fluorescence 

readings of the two spectrophotometers differed, data cannot be compared between assays using 

the two methods.  

 

Experiment 1. Does consumption of verapamil or ketoconazole alter hemolymph 

concentrations of RhB? 

Cups of four-day old bees were assigned to control or inhibitor treatments and continued on 30% 

sucrose solution, or switched to a 30% sucrose solution containing the p-gp inhibitor verapamil 

(1mM) or the fungicide ketoconazole (1mM).  After 24 hr, bees were fed (Method A) 10ul of a 
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30% sucrose syrup containing 0.125mg/ml RhB.  After 24 hours 1ul of hemolymph was 

collected and fluorescence measured.  Plates also contained SDS-only control samples and 

hemolymph samples from bees fed sucrose syrup without any added dyes.  Preliminary standard 

curves were estimated in the linear range of the standard curve for each dye.  

 

Experiment 2. Does consumption of verapamil alter hemolymph concentrations of 

RhB and UrO? 

Using Method A, bees were similarly fed sucrose or sucrose + verapamil (1mM) 

solutions, and after 24 hour fed a 30% sucrose syrup containing 0.125mg/ml RhB and 

0.125mg/ml UrO. Hemolymph was collected and fluorescence measured as described above, 

with the additional reading of UrO fluorescence using 490/625 nm.  

Experiment 3. Is there a dose-response of verapamil and hemolymph concentrations of RhB? 

Using Method B, cups of 3-7 day old bees were pretreated for 24 hour with 30% sucrose 

solutions containing one of a range of verapamil concentrations (0, 0.05, 0.1, 0.33, 0.66, 1.0 

mM), then fed 0.125 mg/ml solutions of RhB in 30% sucrose syrup. Hemolymph was sampled 

from bees after 24 or 48 hour, and fluorescence measured.  

Statistical Analysis 

Differences in the mean hemolymph concentrations of RhB between bees fed inhibitors 

and controls were tested using a t-test (SAS Institute 2002-2008).  

 

Results 
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 RhB concentrations in hemolymph (24 hour) were significantly greater in bees fed either 

verapamil or ketoconazole than those fed only sucrose syrup (t = -2.37, df = 10, P < 0.04) 

(Figure4).  RhB concentrations in hemolymph similarly increased in verapamil treated bees in 

experiment 2 (t = -2.06, df = 14, P < 0.06), whereas UrO concentrations were not significantly 

different in the verapamil and control bees (t = 1.66, df = 9, P = 0.13) (Figure 5, 6).  These 

results show that verapamil increases the concentration of RhB in hemolymph, supporting our 

expectation of p-gp inhibition causing increased hemolymph concentrations of a p-gp substrate.  

I also show, by the lack of an effect on the non-substrate UrO, that the effect was not generalized 

to all fluorescent compounds.  

There was a significant increase in RhB concentrations in hemolymph with increasing 

dosages of verapamil after both 24 and 48 hour post dye feeding (Figure 7).  Levels of RhB, as 

inferred from fluorescence, were lower in all hemolymph samples from bees treated with 

verapamil 48 hours after treatment compared to  24 hours after treatment.  

After 24 hours, bees that were treated with 0.1, 0.33, 0.66, or 1.0 mM of verapamil all 

had significantly more RhB in their hemolymph than bees that received no inhibitor and bees 

that received only 0.05 mM of inhibitor (Figure 5).  Hemolymph fluorescence after 24 hours 

following the 0.33mM verapamil treatment was not different from the fluorescence in 

hemolymph in bees treated with  0.66mM verapamil. Hemplymph fluorescence in bees treated 

with 1.0 mM did not differ from the fluorescence in bees treated with  0.66mM verapamil; 

however, hemolymph fluorescence in bees treated with  0.33mM of verapamil was lower than 

the fluoresces observed in the hemolymph of bees treated with  1.0mM verapamil (Figure 7). 

 Although levels of dye in the hemolymph of bees after 48 hours were less than 24 hour 

bees, there were still differences among verapamil concentration treatments.  Hemolymph dye 
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levels of 0.33, 0.66, and 1.0mM verapamil treatments are all significantly higher than the control.  

The level of fluorescence in hemolymph  resulting from two lowest concentrations of verapamil 

(0.05 and .1mM), are not statistically different from each other.  The level of fluorescence 

resulting from the  two highest concentrations of verapamil are also not statistically significant 

from each other (1.0 and 0.66mM), but levels of fluorescence resulting from the  0.66 and 1mM 

treatments are both significantly higher than the 0.33mM (Figure 7).   

 

Discussion 

These data provide evidence supporting the use of verapamil as an inhibitor of at least 

one class of the xenobiotic handling ABC transporters in honey bees, and that RhB was a useful 

substrate and indicator of the function of those transporters.  I also show that the hemolymph 

concentration, and possibly the dynamics of metabolism and excretion of a non-substrate dye, 

UrO, are unaffected by exposure of bees to verapamil (Figure 5, Figure 6). This difference in 

transport of dyes supports the conclusion that higher levels of RhB dye in bees that are inhibited 

with verapamil was because p-gp was inhibited and not because verapamil was acting in some 

other way allowing the dye to more rapidly enter or to remain in the hemolymph.  It supports that 

I was actually characterizing functionality of p-gp, and not a non-target mechanism.  

 This assay was designed to determine if a fluorescent substrate of the ABC-B transporters 

in honey bees could be used to measure a reduction in transporter function following exposure to 

a candidate inhibitor.  Previous work (Hawthorne & Dively, 2011) has demonstrated that orally 

dosed verapamil increases honey bee sensitivity to insecticides, and the results reported here 

suggest that the mechanism of that increased sensitivity was  indeed reduced functionality of the 
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xenobiotic transporters.  This combination of assay strategies provide a complementary set of 

approaches that could be used to identify inhibitors of these transporters in honey bees.  

 The significant positive dose response of RhB concentration in the hemolymph in 

response to increasing verapamil dosage further supports that the differential transport of RhB 

was due to p-gp.  Verapamil is a well-known p-gp inhibitor, and so it makes sense that increasing 

the concentration would cause reduced p-gp function.  Given our logic model for the 

consequences of reduced transporter function in honey bees, we expected verapamil to create a 

situation where more RhB would remain in the hemolymph of the bee (Figure 4, Figure 5, and 

Figure 7). 

The observation that hemolymph collected 48 hours after RhB feeding still showed the 

effects of verapamil exposure suggests two things.  First, it shows that the verapamil was not 

immediately metabolized or excreted  and remains partially effective at  inhibiting the 

transporters 48 hr after dye exposure, but secondly, that the levels of verapamil are either 

reduced over time allowing recovery of transporter function and removal of the RhB from the 

hemolymph, or that transporter function was not fully inhibited, especially in the malpighian 

tubules and the bees were able to eventually remove the majority of RhB from the hemolymph.   

It is important to realize however that even shutting down only a small fraction of the 

available p-gp’s could still increase accumulation of a substrate.  If that substrate was toxic to the 

insect the partial inhibition of p-gp would decrease the LD50 of the insect to that substrate, 

rendering it more sensitive to the toxin.  It is also of value to note that honey bees would not 

naturally encounter verapamil, an artificially synthesized pharmaceutical.  We used verapamil 

here to study the function of xenobiotic transporters.  Ketoconazole is a fungicide that has 

inhibited p-gp function in a wide array of cell-based assays, and here behaved similarly to 
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verapamil.  Interestingly, fungicides with similar chemistry to that of ketoconazole, such as 

propiconazole, and tebuconazole are used in agriculture to protect crops, suggesting one of the 

means by which a honey bee would encounter powerful transporter inhibitors while foraging 

(Chowdhary et al., 2013).   

 In addition to expanding the assay to the realm of chemicals encountered by bees, it 

would also be interesting to pair experiments where an inhibitor and RhB are fed to one group of 

bees, and the same inhibitor and a toxin is fed to another group of bees.  It would be interesting 

to relate a reduction of the LD50 of a toxin via inhibition of p-gp to decreased function of p-gp in 

moving RhB due to the same inhibitor.  This would provide further evidence that the mechanism 

of synergism of toxicity is due to p-gp inhibition and not another pathway.  

 More evidence of the inhibition of p-gp could potentially be obtained through direct 

observation of transport of dye using isolated malpighian tubules.  Tubules could be dissected 

out of the bee, and suspended in a bath of just dye, or dye and inhibitor mixture using the 

Ramsay assay (O’Donnell, 2009). Observing the tubule removing the dye from solution and 

concentrating it in the tubule lumen would confirm the larger picture that is believed to be 

happening in the honey bee.  The dye is getting absorbed by the malpighian tubules for 

excretion, thereby being removed from the hemolymph. 

 Developing this line of research further is important as we shift from considering the 

effect of a single chemical, compound, or condition on honey bees to considering the interplay 

between several factors.  Honey bees interact with so many plant compounds, chemical 

treatments, pesticides etc. that they are a prime candidate for this type of research. This is 

underscored by their key role in food production in the United States.  
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Figure 1: Rearing cages for the newly emerged bees.  

 

 

Figure 2: Feeding 30% sucrose-fluorescent syrup to individual honey bees.  
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Figure 3: Removing hemolymph from the honey bees using a 1uL micro capillary tube.  
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Figure 4: Mean levels of RhB in bees fed 30% sucrose containing verapamil (1mM), 

ketoconazole (1mM), and a sucrose only control.   

 

 

 
 

 

 

 

Figure 5:  Mean levels of RhB in bees fed 30% sucrose containing verapamil (1mM), and a 

sucrose only control.  There was a significantly higher level of RhB in the hemolymph of 

verapamil treated bees than control bees. (P=0.0002) 
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Figure 6: Mean level of UrO fluorescence in untreated and treated bees.  The mean levels of UrO 

in hemolymph did not differ among verapamil treated versus untreated bees (P=0.3055). 

 

 
 

 

Figure7: Mean fluorescence of hemolymph RhB from bees treated with a series of verapamil 

dosages (mM) at 24 and 48 hours after dye treatment.  
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Chapter 2: Whole hive dynamics of fluorescent dyes delivered in sugar 

syrup and pollen patties.  

Abstract 

Many laboratory studies have reported sublethal effects on individual honey bees (Apis 

mellifera) by exposing them to single doses of chemicals such as insecticides.  Some argue that 

these effects cannot be extrapolated to the overall health of a functional colony which can 

compensate as a super organism for many stress factors. Hence, sublethal effects of pesticide 

exposure are now being assessed by feeding colonies treated sucrose syrup and/or treated pollen 

supplements. Because the pharmacokinetics of a pesticide within a honey bee colony could 

change the potential impacts of a toxin, it is important to assess the fate of pesticides within 

colonies and the exposure doses to bees, brood, queen, and other hive matrices. However, it is 

very expensive to analyze hive components for tracking the fate of chemical residues, which 

limits the number of samples and replicate colonies. This study evaluated the utility of using two 

chemically different fluorescent dyes, RhB (slightly hydrophobic) and UrO (highly hydrophilic), 

as surrogate agents to track the movement of a simulated pesticide within colonies. Honey bees 

were exposed to dye-labelled pollen supplement patties and sucrose syrup. To measure 

movement of the dyes, adult workers, larvae, pupae, wax, pollen, and honey were sampled at 3 

weekly intervals, and royal jelly was sampled once at the end of the study. The concentration of 

dye present in samples was measured using a spectrophotometer. Significant differences in dye 

levels in bees and hive matrices were found and varied according to the exposure method. Dye 

from pollen patties did not persist in the hive as long as dye from sucrose syrup. The movement 

and decay patterns between the dyes, particularly evident in wax, suggested that there was some 

partitioning of the dye based on lipophilicity.  Overall results indicated that fluorescent dyes can 
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be used to mimic the movement over time of pesticides within colonies with greatly reduced cost 

and without harm to honey bees.  

 

Introduction 

A comprehensive assessment of risks to honey bees (Apis mellifera) from environmental 

toxins should include three tiers of experiments: an analysis of the acute effects to individual 

bees, usually performed in laboratory studies; an evaluation of the sublethal effects on cohorts of 

bees over a longer period; and a field colony study examining chronic lethal and sublethal effects 

of dietary exposure to toxins over multiple brood cycles (EPA,  2012). Many laboratory studies 

have reported sublethal effects on individual honey bees (Apis mellifera) by exposing them to 

single doses of chemicals such as pesticides (Blacquière et al. 2012).  Some argue that whole 

colony analysis of bee responses to toxic exposure is essential because a functional colony as a 

superorganism exhibits many social interactions and feedback mechanisms to compensate for 

stress factors, and these are unpredictable from extrapolation of responses of individual bees 

(Cresswell, 2010).  For example, trophallaxis between honey bees can spread and dilute 

compounds across a hive population of bees, and thus can buffer bees and brood from exposure 

to toxins (Crailshem, 1990). Alternatively, dilute toxins might become concentrated in honey 

increasing the exposure dosages to bees later feeding on that honey. 

Few field studies have been conducted using honey bee colonies to assess sublethal 

effects of dietary exposure to pesticides. Of those published reports, researchers have either 

placed colonies in isolated treated or untreated bee-friendly crops or exposed bees directly to 

known residues in sucrose syrup or pollen supplements and then measured various parameters of 

colony performance, foraging activity, and overwintering (Unpublished work- Galen Dively, 
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Cutler & Scott-Dupree, 2007, Henry et al., 2012, Lu et al., 2012, Nguyen et al., 2009, Faucon et 

al. 2005, Tremolada et al., 2004). The pharmacokinetics of a pesticide within a honey bee colony 

can change the potential impacts of a toxin, so it is important to measure the fate of a toxin 

moving through the colony and its accumulation in different hive matrices such as honey, wax, 

beebread, pollen, and the bees themselves. However, it is costly to quantitatively analyze hive 

matrices for the presence of residues, thus the high cost of chemical analyses has limited the 

number of samples and replicate colonies that are usually tested in field studies.    

Another potential limitation with colony studies that use treated sucrose syrup or pollen 

supplements as exposure routes is whether the bees actually process these foods the same as they 

would naturally foraged nectar or pollen. For instance, beekeepers and researchers generally 

agree that pollen supplements are consumed immediately by honey bees and not stored in the 

hive in the same way that foraged pollen is processed. Pollen supplements (commonly fed as 

MegaBee diet patties) are readily consumed by bees and closely resemble the nutritional value of 

pollen (DeGrandi-Hoffman, 2008).  However, while they provide supplemental protein for brood 

production, the rapid consumption of pesticide-treated pollen patties may expose bees over a 

shorter time to higher doses of pesticides and thus not accurately represent the fate of a toxin 

entering the colony in foraged pollen. Hive bees mix foraged pollen with a little honey and 

enzymes from their saliva to form a fermented blend called “bee bread” which is stored for 

future use (Herbert & Shimanuki, 1978). During this process, degradation of a toxin due to 

microbial activity and abiotic conditions can result in a different exposure dose, especially after 

the bee bread is further processed as brood food and honey jelly (Winston, 1987). In contrast, 

sucrose syrup is thought to be treated by hive bees similarly to that of foraged nectar.  Sugar 

syrup is commonly fed to colonies as a supplemental feed during the early spring and late 
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summer when natural nectar sources are scarce; however, much smaller volumes are usually 

used to expose bees to a potential toxin in field experiments. Nevertheless, pesticide-treated 

pollen and sucrose supplements as routes of exposure could have very different fates and 

resultant effects on a honey bee colony than those of contaminated bee-collected pollen or 

nectar.  Therefore, it is important to determine the relative levels and distribution of pesticide 

residues within colonies fed treated food supplements before drawing conclusions that their 

effects are representative of foraging exposures.  

 The physical properties of pesticide residues present in pollen or nectar (either foraged or 

supplemented) may also influence their fate, distribution and exposure routes within a honey bee 

colony.  For instance, the highly lipophilic coumaphos, an organophosphate acaricide, is known 

to accumulate in fatty substances, such as wax, which acts as a sink for the chemical and allow it 

to persist in the hive for long periods (Tremolada et al., 2004). Conversely, a more hydrophilic 

compound, such as imidacloprid, is likely to accumulate in honey which could have a greater 

direct impact on bees, but may not persist and accumulate in hives.  Thus, it would be useful to 

know how the physical properties of toxins affect their exposure dynamics within the hive. 

A more efficient way to track the fate and distribution of potential toxins within honey 

bee colonies are fluorescent tracing dyes, which have been used by environmental scientists for 

years to study the flow of one matrix over time in fresh water and soil systems (Smart & 

Laidlaw, 1977). Dyes have also been used to track the flow of pesticides in the environment after 

an application (Pang & Close, 2001). Fluorescent dyes allow the tracing of a material by direct 

visualization or by the use of a fluorometer if quantitative detection of lower concentrations is 

required. This method of detection could serve as a proxy for chemicals to study the movement 

and fate of pesticides within colonies, at less cost than a residue analysis of a sample and without 
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harm to honey bees. A similar approach was performed by Crailsheim (1990, 1992) who used 

proteins tagged with radioactive isotopes to trace royal jelly through the hive and from bee to 

bee.  

To explore the possibility of using fluorescent tracing dyes in honey bee risk assessment,  

I evaluated the utility of using two chemically different dyes, RhB (slightly hydrophobic) and 

UrO (highly hydrophilic), as surrogate agents to track the movement of a simulated pesticide 

within colonies. First, I completed laboratory assays with caged cohorts of bees to  determine  if 

dye consumption had any direct effect on survival and whether dyes would accumulate and 

persist in bees.  Field colonies were then exposed to dye-labelled pollen supplement patties and 

sucrose syrup, and then samples of bees and hive matrices were taken over time and 

quantitatively analyzed using a spectrophotometer to measure dye concentrations. I predicted 

that UrO would accumulate more in aqueous matrices such as honey, while RhB would be found 

at higher levels in the wax and larvae. 

Methods 

Source of bees 

Honey bees used in laboratory studies were obtained from established field colonies 

located at the Central Maryland Research and Education Center, Beltsville facility at Beltsville, 

MD.  Brood frames with signs of emerging bees were removed from colonies and brought to the 

laboratory where they were reared in a dark incubator maintained at 33±2°C and (70–80%) RH.  

Emerging bees were collected daily and maintained in groups of 20-27 in 7 oz wax paper cups 

with a muslin covering.  Bees were fed sucrose solution (30%; w:w) ad libitum from holes in the 

bottom of 2.0 ml microfuge tube, until they were the right age for assays. Colonies used for the 
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hive study were located at the USDA-ARS Bee Research Laboratory in Beltsville, Maryland.  

All colonies consisted of a single-deep Langstroth hive box, each with 10 fully drawn frames. 

Prior to the field study, colonies were all queen right and equalized to contain 8-10 frames of 

bees, 6 frames of brood, and similar amounts of pollen and honey.  

Dyes and food supplements 

Rhodamine B, [9-(2-carboxyphenyl)-6-diethylamino-3-xanthenylidene]-

diethylammonium chloride, (RhB) (MW = 479.01, Kow = 190) was used as a surrogate of a 

pesticide with lipophilic properties. Uranine O, the disodium salt of fluorescein, (UrO) (MW = 

376.15, Kow = 0.047) (Kasnavia et al. 1999,  typically used as a water tracing dye in 

environmental assessments, was also used as a as a surrogate of a more hydrophilic pesticide. 

RhB and UrO were selected based on their differing physical and chemical properties, stability 

over several weeks, and different excitation and emission frequencies. Both dyes were obtained 

from Sigma Aldrich. The sucrose syrup was prepared by mixing 2 parts of granulated sugar to 1 

part of water (w/w). The pollen supplement was prepared by adding MegaBee powder (Dadant 

& Sons, Inc., Hamilton, IL) in a 1.7:1 diet to sucrose solution. This produced soft, moist dough 

which was formed into 227 g patties. Dyes were either added to the sucrose syrup or to the 

MegaBee powder and thoroughly blended in the mixing process to produce the specific 

concentration of dye for each test. 

Laboratory assays 

 Feeding assays were conducted to determine if the survival of bees fed dyes was affected 

and how quickly dyes accumulated and persisted in bees. To address survival, 12 cages (8 X 

10cm ) with 20-25 bees (four days old) in each cage were kept in a 34 degree C. incubator in the 

dark. The cages were randomized into three groups assigned to three treatments: 1) four cages 
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were fed 30% sucrose containing RhB and UrO, each at a concentration of 1g/L for 24 hours, 

followed by untreated syrup for the remainder of the 7 day period; 2) four cages were fed the 

same sucrose syrup with both dyes for the entire 7days; and the third group of four cages served 

as a control and were fed only untreated sucrose solution.  The number of live bees in each cage 

were recorded daily.   

To address the persistence of dyes in bees, four cages each with 10 bees were assigned to 

two groups: one fed 1g/ L of RhB and the other fed 1g/l of UrO in sucrose syrup for 24 hours. 

After the dye exposure period, the food was replaced with untreated sucrose solution. One bee 

was removed daily from each cage and prepared for fluorescence analysis. 

Colony study treatments 

 Twenty colonies, equalized for bee and brood strength, were spaced 3 m apart in two 

parallel rows of ten, separated by a 6 m open area.  Colonies were randomly assigned to five 

treatment groups (each with 4 replicates).  Each hive in control group #1 was fed 1 liter of 

sucrose syrup and one 277 g pollen patty on day 0 and again on day 7.  The syrup was 

provisioned in a 2 liter in-hive feeder by removing one frame. The patty was placed on the top 

bars of frames inside each hive to allow bees ad libitum access to the syrup and pollen 

supplements. Treatment group #2 was fed the same quantities of both food supplements on both 

days but the pollen patty on day 0 contained 1g each of RhB and UrO dyes. Treatment group #3 

was exposed to the same food supplements as in treatment #2 but fed twice, on days 0 and 7. 

Colonies in treatment groups #4 and #5 were provisioned with the same food supplements and 

timings of feeding as in treatments #2 and #3, respectively, but the sucrose syrup contained 

1g/liter each of RhB and UrO dye. The dyed sucrose syrup and pollen patties delivered to hives 
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contained the same amount of each dye (1g), so all treated colonies fed either once or twice were 

exposed to the same level of fluorescent dye by both types of food supplements.  

To measure the stability of the two dyes within colonies over time, 50 ml tubes with 

small amounts of dyed syrup were placed inside the hives and then removed at regular intervals 

to determine if any degradation of the dye occurred due to abiotic factors within colonies.   

Colony sampling 

Four subsamples of larvae, pupae, bees, stored pollen, capped honey, uncapped honey, 

and wax were collected at random from the interior six frames of each hive on days 3, 7 and 14 

of the study.  Once an individual frame was selected, a 10 cm x10 cm cardboard square was 

tossed onto a frame to outline an area to remove samples. The square was tossed repeatedly until 

each sample type was removed from the frame. If not all subsamples were collected from the 

first frame, another frame were removed and sampled. Bees were removed by gently skimming 

the bees off of the top bars into 50 ml centrifuge tubes when hive was first opened. Pupae and 

larvae were removed from cells using tweezers and placed in Eppendorf tubes. Wax from these 

same cells was then collected into two 50 ml centrifuge tubes. Capped honey, uncapped honey, 

and pollen samples were removed by pressing a 15 ml centrifuge tube into the cells and pulling 

the tube away with the section of the comb containing the matrix, which was later removed from 

the wax cells in the laboratory.  Royal jelly production was stimulated by removing the queens 

from all hives on day 7.  After 5 days of being queen-less, each colony was examined for queen 

cups. Royal Jelly was collected from all queen cells present using a 1 ml syringe and stored in a 

1.5 ml Eppendorf tube. All samples were kept cold and dark until they were returned to the lab, 

where they were stored at -20
O 

C until analyzed.  
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Sample processing 

  Samples were removed from cold storage and weighed in portions of approximately 0.1 

g prior to processing. Each sample was prepared as a homogenized solution to allow for 

spectrophotometric measurements of fluorescent. A 0.01% stock solution of sodium dodecyl 

sulfate (SDS), a detergent that helps to breakdown tissue cells, was added at a rate of 10 ul per 

mg of sample to create uniform concentrations of samples. Because royal jelly was collected in 

limited amounts, less SDS was added to the royal jelly to avoid over diluting it. Samples were 

transferred to small centrifuge tubes and either pulverized by hand grinding, blended using a 

vortex for 30 seconds, or homogenized in a Hammer Genie shaker with steel beads, depending 

on the particular matrix. The mixture was then centrifuged at 2000 rpm for 2 minutes, and 100 ul 

of the supernatant was transferred to individual wells of a 96-well plate for measurement by the 

spectrophotometer. The excitation/emission of 540 nm/625 nm for RhB and 490 nm/525 nm for 

UrO was used to measure the fluorescence level of each dye.  

Statistical analysis 

All data sets were evaluated before analysis for normality and homogeneity of variances 

by examining residual plots and Shapiro-Wilk statistic. For data not meeting the assumptions of 

ANOVA, an appropriate transformation was used. A mixed model procedure (SAS Institute, 

version 9.1.3) was used to test for dye effects on bee survival. Each caged cohort of bees 

represented a single experimental unit and the endpoints of mortality recorded over the 7 day 

period were treated as repeated measures and thus corrected for autocorrelation. For the colony 

study, separate analyses were performed on different subsets of the data. A three-way ANOVA 

tested each fluorescent dye for main and interaction effects of the food supplements (sucrose 

syrup, pollen patty), hive matrices (larvae, pupae, bees, stored pollen, capped honey, uncapped 
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honey), and time after exposure (3, 7 and 14 days). Fluorescence was the response variable, food 

supplements and matrices were fixed factors, and time was treated as repeated measures. This 

analysis only included data from colonies that were exposed once at day 0.  A second two-way 

ANOVA tested each fluorescent dye for main and interaction effects of the food supplements 

and matrices as fixed factor but only used data for day 14 from colonies that were exposed twice 

at days 0 and 7.  Mean differences in all analyses were separated following a significant F test by 

using Tukey’s multiple comparison adjustment (P < 0.05). Arithmetic means and standard errors 

were computed and summarized in all graphs. For day 7 data, ratios of the amounts of dye in 

each hive matrix were determined by dividing the fluorescence units of UrO by the units of RhB. 

These ratios were then compared to the ratio of the dyes in sucrose syrup or pollen patties fed to 

the bees on day 0 (baseline). A higher ratio in a matrix relative to the baseline ratio suggested 

that UrO accumulated in the matrix more than RhB, while a ratio lower than baseline suggested 

the opposite effect.  

Results 

Laboratory assays 
 When bees were fed dyed sugar syrup there were no obvious negative effects reflected in 

the number of dead bees when compared to bees that were just fed sugar syrup. (Table.1)  

Preliminary Studies: Persistence of Dyes 

 Both RhB and UrO appear in the bees after day one. Neither RhB nor UrO appeared to 

break down within the honey bee, even four days after the dyed sugar syrup was completely 

removed from the cage. Levels of dye per bee were variable which was expected because the 

bees fed ad libitum and so likely ingested differing amounts of dye. The average amount of dye 
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at day four was equal to or greater than the amount at day one for both RhB and UrO.  (Figure 

10, Figure 11) 

In-Hive Dye Dynamics Field Study 

 In 2012 a combined 1,919 samples of adult bees, larvae, pupae, pollen, capped honey, 

and uncapped honey were collected from 20 hives and analyzed.  36 samples of royal jelly were 

collected and analyzed.  Control vials of dyed sugar syrup were placed in the hives and removed 

at regular intervals to test for degradation of the dye within the hives. The RhB remained highly 

fluorescent throughout the two weeks of sampling (Figure 12).   

 The main effects of treatment, were significant for RhB concentration, (t=10.35 df=8.92 

P<0.05)  Mean fluorescence measures for the no-dye control treatment pooled across substrates 

was: 4.53+/- 0.56, the mean for the once-fed patty treatment was 15.94+/- 3.77 and the mean for 

the once- fed syrup treatment was 41.83+/- 12.24. The main effect for sample time was also 

significant for RhB, (t=3.44, df=168, P<0.03), the mean for sample day 3 was 23.15+/- 10.78. 

The mean for sample day 7 was 15.94+/- 3.77, and the mean for sample day 14 was 19.65+/- 5.8. 

The main effect of matrix was also significant (t= 33.94, df=168, P<0.0001). The pooled mean 

for pollen was 9.96+/- 1.53, the pooled mean for uncapped honey was 40.91+/-22.54, the pooled 

mean for capped honey was 5.43+/- 2.34, the pooled mean for larvae was 10.69+/-2.19, the 

pooled mean for pupae 9.90 +/- 2.34, and the pooled mean for adult bees was 39.086+/-8.46. 

The main effects of treatment, sample time and matrix were also significant for UrO. For 

treatment (t= 10.19, df= 8.94, P<0.01) and the pooled mean for the control treatment was 

77.61+/- 5.89, the mean for the once fed pollen patty treatment was 144.98+/-26.02, and the 

pooled mean for the sugar syrup treatment was 267.03+/- 41.15. For sample time (t=1.64, 

df=168, P<0.20) the pooled mean for sample day 3 was 178.43+/- 40.44, the pooled mean for 
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sample day 7 was 151.07+/- 20.15, and the sample mean for day 14 was 161.49+/-23.13. For 

matrix (t=111.05, df=168, P<.0001).  The pooled mean for pollen was 91.20+/- 6.32, the pooled 

mean for uncapped honey was 78.68+/-25.61, the pooled mean for capped honey was 28.06+/- 

5.21, the pooled mean for larvae was 249.43+/-39.34, the pooled mean for pupae 200.50+/- 

32.78, and the pooled mean for adult bees was 333.78+/-70.04. 

There was a significant interaction between feeding method and sample matrix in 

samples taken at day 14 for both RhB and UrO (F(10,51) = 4.83, P <0.001), (F(10,51) = 3.24, P 

<0.003) (Figure 12, Figure 13). Overwhelmingly RhB and UrO accumulated at higher levels 

from dyed sucrose syrup than dyed pollen patties by sample day 1. Within the sucrose syrup 

treatment dye accumulated significantly higher in all matrices for RhB, and most matrices for 

UrO. (Figure 12, Figure 13).  

There was a significant interaction between the treatment the colonies were fed and the 

time the samples were taken for both RhB and UrO concentrations (F(10,168) = 10.63, P <0.001), 

(F(10,168) = 9.24, P <0.001) (Figure 14 & Figure 15). Sugar syrup was always the highest at each 

day. By day 14 sugar syrup remained at high levels while pollen patties approached control 

levels. 

There was a significant interaction of treatment by matrix interaction for both RhB and 

UrO concentrations (F(10,168) = 4.83, P <0.001),  (F(10,168) = 2.23, P <0.02). RhB accumulated the 

most from the sucrose treatment in the uncapped honey matrix, whereas UrO accumulated the 

most from sucrose in the adult bees, pupae and larvae (Figure 16 & Figure 17). Interestingly, for 

the interaction between matrix and sample date pooled across feeding treatments, only UrO 

concentration was significant (F(10,168) = 2.12, P <0.001)(Figure 18).  The interaction when 

looking at RhB was not significant.  
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 Both dyes were found in royal jelly. The level of RhB was significantly higher in royal 

jelly when bees were fed the sugar syrup treatment then the pollen patty treatment (p=0.007) The 

twice fed pollen patty hives also had significantly higher levels of RhB than the hives only fed 

one dyed pollen patty (p=<0.0001). The once fed pollen patty treatment was almost identical to 

the control and had virtually no dye present.  The once fed syrup treatment and twice fed pollen 

patty treatments were not different from each other (p=0.16) (Figure 19).  

There was significantly more UrO in the royal jelly from the sugar syrup treated  hives 

than from hives fed one dyed pollen patty (p=0.0004). There was also significantly more UrO in 

royal jelly from hives fed two dyed pollen patties than hives fed one (p= <0.0001). The royal 

jelly form the sugar syrup hives, and the twice-fed pollen patty hives are not statistically different 

from each other (p=0.73) (Figure 20). 

The ratio of UrO to RhB concentrations was lower in the wax than in the dyed syrup 

samples removed from the hive boxes, but it was not statistically significant.  The ratio of UrO to 

RhB was higher in honey, adult bees, and similar in royal jelly to the ratio in wax (Figure 21).  

Discussion 

 

Pesticide analysis via high performance liquid chromatography (HPLC) is a costly 

endeavor because you have to send samples to a lab with the proper equipment and staff. 

However pesticides are being detected in honey bee colonies at unprecedented levels and 

combinations (Mullin et al., 2010).  Being able to approximate the movement of those pesticides 

through a hive by using a fluorescent dye as a surrogate is a valuable tool. Here, I examined the 

in-hive dynamics of two chemically different fluorescent dyes, to determine if feeding method 

impacted where the dye ended up, and to see if the dyes were found in royal jelly. I found that 
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both dyes distributed throughout the hive in similar ways with some subtle difference. Feeding 

method had a large impact on the concentrations of both dyes, and the sampled hive matrix also 

had a large impact on the level of dye found.  And I did find dye in royal jelly samples.  

 Laboratory assays showed that the dye gets into the honey bees quickly, it does 

not kill, and it does not break down over time, but exposure and readings are variable from bee to 

bee. This variation was important to keep in mind when using these dyes because a very small 

difference in the amount consumed can have a large impact on the fluorescence reading from a 

bee or matrix.  

The higher pooled mean, over all matrices, from the syrup treatment show that both dyes 

from syrup accumulated within the hives to higher levels, than when delivered to the hives in 

pollen patties. Based on high levels of dye from sucrose treatments in the uncapped honey, but 

very little dye from the pollen patty’s in the stored pollen, this data shows pollen patties were 

consumed by the adult bees, but apparently not stored in the hive.  The bees appeared to be using 

the patties as a source of immediate fuel whereas they were storing the sugar syrup within the 

hive for consumption later.  

The overall level of dye in matrices from the pollen patty was lower than dye from sugar 

syrup. The level in adult bees was not high enough to account for all of the dye fed in the pollen 

patties, so where was it going? Because the adult bees are eating it right away, the pollen patty 

was likely also being excreted in frass when bees left the hive.  This would reduce the exposure 

of the hive to the dye in the pollen patty treatment.  

Based on these data I can recommend that pollen patties are good to deliver a “pulse-

like” exposure to a hive; they were not stored so the exposure was not long-lasting. The sugar 
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syrup would be better for an extended exposure, because it persisted in the hive throughout the 

two weeks of the study.  

Some matrices also had higher overall means than others. It would make sense for adults, 

larvae, and uncapped honey to have higher levels of dye; particularly from the syrup treated 

hives because the adults consumed the syrup, exposing themselves first, then they either stored 

the syrup or fed the larvae. Some dye remained in the larvae and at the next sample date has 

transformed into dyed pupae. The dyed uncapped honey became capped by the next sample date 

with the dye inside. A small amount of dye may have gotten in with fresh pollen to make bee 

bread. This movement meant dyes were diluted and spread throughout the hives, but not in a 

uniform way.   

The higher mean level of dye at sample day 14 indicates that dye was accumulating in the 

hives over time. This suggests that the “metabolism” of the hives were not fast enough to 

eliminate these materials and so they caused prolonged exposure.  

I observed an interaction between sample day and matrix for UrO but there was no 

significant interaction for RhB (Figure 20).  The significant interaction meant that depending on 

sample date, UrO accumulated differently in the hive matrices, whereas RhB did not accumulate 

differently from day to day. This difference could be apparent with UrO because it fluoresces 

much higher than RhB and so the differences were larger with UrO leading to a significant 

interaction that was not observed with RhB.  

Queens are the sole reproductive unit of the hive and are expected to live between 1 and 3 

years and can produce 2000 eggs a day at their peak (Corona et al., 2007). Royal jelly is 

produced in the hypopharyingeal gland of workers and fed to honey bee larvae as they develop. 

Royal jelly makes up a much higher percentage of the food for queen larvae than ti does for 
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worker larvae, therefore contaminants present in the royal jelly would impact all larvae but could 

potentially have a larger impact on queen bees (Winston, 1987). Dye in the royal jelly likely 

originated from labelled food consumed by workers while they are producing royal jelly. Dye 

from both the patty and syrup were present in royal jelly, although not for the once fed patty 

treatment, just the twice fed patty treatment was present.  This tells us that it was not the delivery 

method per se but the time since feeding that influences the level of contamination of royal jelly. 

The syrup from both syrup treatments was taken into the hive and stored so when the bees were 

making the royal jelly they were still being exposed to dye that was within the hive. Dyes 

originating from the single patty treatment were gone when royal jelly production was stimulated 

because it was not stored in the hive. In contrast, hives that received two dyed patties were still 

actively consuming the second patty at the time that royal jelly was produced, and the dyes were 

then found in the royal jelly. 

 Hive components are complex materials. Honey contains over 181 different components 

including several sugar and enzymes, and royal jelly is made up of water, sugars, proteins and 

fats (Viuda-Martos et al., 2008). This can make it hard to determine where a more lipophilic dye 

might accumulate versus a hydrophilic dye. Wax was the only compound in this study that is 

mainly a lipid, and has been shown to accumulate lipophilic pesticide residues like coumaphos 

(Chauzat & Faucon, 2007).  Here, I saw that that the ratio of UrO (hydrophilic) to RhB 

(lipophilic) dye is less than the starting ratio of those dyes in the sucrose syrup, indicating that 

there is a relatively higher amount of RhB, the more lipophilic dye in the wax. If I had chosen 

dyes that are even more different in their polarity this partitioning may have been more 

substantial.  
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 Even though this data does not demonstrate clear partitioning of dyes in matrices besides 

in the wax, this does not rule out the use of a dye as surrogate for an insecticide exposure by 

matching chemical properties. Levels of dye in this study were very concentrated to make sure 

we would recover dye in the sampling.  This high initial level may have masked any subtle 

differences in accumulation across different materials.  

 Using these data, dyes should be used to target the best sampling method for a pesticide 

trial by helping establish the optimal timing and location of sampling. This would avoid wasting 

money on analyzing more samples than necessary. Particularly if a dye is co-fed with a pesticide 

of interest, spot sampling to establish presence of the pesticide in dyed areas could be coupled 

with a much more extensive sampling where only dye concentration is measured. By relating dye 

concentration to pesticide concentration,   this could provide a detailed picture of where the 

pesticide is reaching in the hive.  In addition no material taken into a beehive will be spread 

throughout the hive uniformly. The spread may be impacted by the chemical properties of the 

material, and dyes are one tool to help these differences.  
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Table 1: Cumulative numbers of dead bees over seven days (n=four cages) for three dye feeding 

treatments +/- standard error.  

 

Day Mean bee deaths:  

No dye fed 

Mean bee deaths:  

RhB/UrO mixture fed 

for 1 day 

Mean bee deaths:  

RhB/UrO mixture fed 

for 7 days 

1 0 ± 0 0.5 ± 1.44 0 ± 0 

2 0 ± 0 1 ± 3.53 0 ± 0 

3 0.25 ± 1.25 1.5 ± 5.95 0 ± 0 

4 0.5 ± 1.44 5.5 ± 15.24 0 ± 0 

5 4.25 ± 16.6 6.5 ± 12.99 7.5 ± 27.5 

6 4.5 ± 16.13 7.5 ± 13.61 7.5 ± 27.5 

7 4.9 ± 13.39 10.5 ± 9.68 7.5 ± 27.5 
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Figure 8: Mean RhB fluorescence in bees following feeding on day 1.  

 
 

 

Figure 9: Mean level of UrO fluorescence in bees following feeding on day 1.  
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Figure 10:  RhB fluorescence in dyed sucrose syrup vials placed inside of hive boxes, but 

inaccessible to bees, and removed throughout the study.  
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Figure 11: Mean (±SE) fluorescence of RhB in different hive matrices from colonies fed undyed 

food supplements, dyed pollen patties and dyed sucrose syrup. All colonies were exposed to the 

food treatments on days 0 and 7 and samples collected on day 14. The matrix by treatment 

interaction was highly significant (F(10,51) = 4.83, P <0.001).
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Figure 12: Mean (±SE) fluorescence of UrO in different hive matrices from colonies fed undyed 

food supplements, dyed pollen patties and dyed sucrose syrup. All colonies were exposed to the 

food treatments on day 0 and day 7 of the study and samples of matrices were collected on day 

14. The matrix by treatment interaction was highly significant (F(10,51) = 3.24, P =0.003).  
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Figure 13: Mean (±SE) fluorescence of RhB at 3, 7 and 14 days in all hive matrices from 

colonies exposed to undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. 

Colonies were fed treated food on day 0 only.  The treatment by time interaction was highly 

significant (F(10,168) = 10.63, P <0.001). 
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Figure 14: Mean (±SE) fluorescence of UrO at 3, 7 and 14 days in all hive matrices from 

colonies exposed to undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. 

Colonies were fed treated food on day 0.  The treatment by time interaction was highly 

significant (F(10,168) = 9.24, P <0.001).  
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Figure 15: Mean (±SE) fluorescence of RhB in different hive matrices from colonies exposed to 

undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. Colonies were fed 

treated food on day 0 only.  The treatment by matrix interaction highly pooled across all sample 

days was significant (F(10,168) = 4.17, P <0.001).  
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Figure 16: Mean (±SE) fluorescence of UrO in different hive matrices from colonies exposed to 

undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. Colonies were fed 

treated food on day 0 only.  The treatment by matrix interaction pooled across all three sample 

days was significant (F(10,168) = 2.23, P =0.018).  
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Figure 17: Mean (±SE) fluorescence of UrO at 3, 7 and 14 days in different hive matrices from 

colonies exposed to undyed supplemental food, dyed pollen patties, and dyed sucrose syrup. 

Colonies were fed treated food on day 0.  Data are mean units pooled over all three food 

treatments.  The matrix by time interaction was significant (F(10,168) = 2.12, P <0.001).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

 

Figure 18: The mean fluorescence of RhB in royal jelly across three feeding treatments; Once 

dyed sucrose syrup (1xs), once fed pollen patty (1xp), and twice fed pollen patty (2xp). Bars are 

means, lines are standard error. * indicates p<0.05, ** indicates p<0.001 

 

 

 

Figure 19: The mean fluorescence of UrO in royal jelly across three treatments. Once dyed 

sucrose syrup (1xs), once fed pollen patty (1xp), and twice fed pollen patty (2xp). Bars are 

means, lines are standard error. * indicates p<0.05, ** indicates p<0.001. 
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Figure 20: The ratios of UrO to RhB (average of fluorescence units) in matrices sampled at day 7 

from syrup treated hives.  Bars are means, lines are standard error.  
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