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Abstract 
Dictionaries are often developed using tools that save to Extensible Markup Language (XML)-based standards. These standards 
often allow high-level repeating elements to represent lexical entries, and utilize descendants of these repeating elements to represent 
the structure within each lexical entry, in the form of an XML tree. In many cases, dictionaries are published that have errors and 
inconsistencies that are expensive to find manually. This paper discusses a method for dictionary writers to quickly audit structural 
regularity across entries in a dictionary by using statistical language modeling. The approach learns the patterns of XML nodes that 
could occur within an XML tree, and then calculates the probability of each XML tree in the dictionary against these patterns to look 
for entries that diverge from the norm.  
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1. Introduction 
Many dictionaries today are developed using tools that 
save to Extensible Markup Language (XML)-based 
standards, such as the Lexical Markup Framework 
(LMF) (Francopoulo et al., 2007), the Lexicon 
Interchange FormaT (LIFT) (Hosken, 2009), or the Text 
Encoding Initiative (TEI) (Burnard & Bauman, 2007). 
Often, these standards allow high-level repeating 
elements to represent lexical entries and utilize 
descendants of these repeating elements to represent the 
structure of each lexical entry, in the form of an XML 
tree. 
 
This paper presents a method to audit the structural 
regularity across all the entries in a dictionary, 
automatically. This approach uses statistical language 
modeling (LM), a technique commonly used in natural 
language processing, to learn the linear combinations of 
XML nodes that could occur within a lexical entry, and 
then evaluates each of these lexical entries against the 
learned patterns, looking for entries that diverge from 
the norm.  
 
Technical users of XML often utilize tools to check the 
well-formedness of an XML document, or to determine 
the validity of a document as applied to a particular data 
schema. These help catch certain types of errors, such as 
syntax, or data relationship errors. 
 
With many dictionary schemas, however, the structure 
within entries can vary from entry to entry. This 
structural permissiveness can allow a dictionary writer 
to introduce or underspecify ambiguous relationships, or 
to accidently place a node underneath an incorrect 
parent node in the entry’s XML tree. These kinds of 
errors may be valid XML and may conform to the data 
specification, so they will not be caught by traditional 
XML tools, but they are semantically incorrect. 

 
The LM technique described here linearizes the lexicon 
structure, ignoring the underlying text, converting the 
opening tags in XML into tokens, and then considering 
the string of tokens representing a lexical entry to be a 
sentence. A probabilistic language model is learned 
from these example sentences, and then that model is 
evaluated against each lexical entry in the corpus. Nodes 
that are in unusual positions produce a high perplexity, 
identifying possible anomaly points. 

2. XML 
Extensible Markup Language (XML), a text format used 
to store hierarchical data electronically, is often 
described by a data modeling definition such as a 
Document Type Definition (DTD), XML Schema (Gao, 
2011), or RELAX NG (ISO, 2008). These data modeling 
definition documents use a regular language to define 
the data permissible in the XML document. Tools are 
available to validate, or ensure strict compliance of an 
XML document, to the data modeling definition. These 
tools result in a Boolean decision as to whether the data 
conforms to the specification, and are unable to alert the 
user to structurally valid, but illogical or rare structures 
that one may wish to investigate.  

3. Structural Errors in Dictionaries 

3.1 Dictionary Creation 
Dictionaries are often the product of long-term research 
projects, or large-scale projects created quickly with 
multiple collaborators. Without strict conformance to a 
recording standard, entries can drift in style across time 
or between collaborators. Additionally, dictionaries can 
be large and complex, leaving them expensive to edit. 
Whether due to cost or deadlines, dictionaries are 
published that have errors and inconsistencies. 
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Figure 1: Missing Orthography. Scan from Qureshi 

(2003) 

3.2 Dictionary Digitization 
The process of digitizing dictionaries from a printed 
book by optical character recognition (OCR), or 
manually keying in content, can cause additional 

structural errors to be introduced. Typically in print 
dictionaries, typefaces, text size, text position, and 
unreserved symbols are used in combination to indicate 
the structure of a lexical entry and the scope of linguistic 
operators (such as English words and or or). 
Typographical errors that occur in the original print 
dictionary, misinterpretation by the OCR system, 
operator ambiguity, or typist error during the digitization 
stage can alter the intended structure of the dictionary. 
These errors can result in incorrect marking of 
subcomponents within a lexical entry or incorrectly 
understanding scope within the language examples. In 
bilingual dictionaries, translations may be forgotten 
(Figure 1), and languages may be mixed with no 
delineation (Figure 2). 

 

 
Figure 2: No signal between Dhivehi pronunciation and English meanings. Scan from Reynolds (2003) 

 
 

4. Anomaly Detection Using Language 
Modeling 

While language modeling is not a common approach for 
structural anomaly detection, it has been employed to 
detect anomalies in language use. Language models in 
natural language processing are commonly used to 
model linear combinations of word tokens or 
part-of-speech types. Lexicon XML structure is similar 
to the latter, in that the node names and attributes within 
the XML are chosen from a small closed class. 
 
Xia & Wong (2006) used language modeling to tag 
lexemes in Chinese-language Internet chat transcripts as 
either standard Chinese, or anomalous. The authors 
noted that chat speak has a dynamic lexicon, and 
training corpora for supervised systems in this domain 
can obsolesce. 
 
The authors trained trigram language models on 
standard Chinese newspaper corpora in order to induce 
typical values for trigram entropy on words and parts of 
speech in the standard language. They then learned a 
language model on a hybrid corpus consisting of 
newspaper corpora, and a chat transcript corpus. With 
the typical entropy values known from the newspaper 
corpus, they evaluated a language sample with the 
hybrid model. When a trigram had higher entropy than 
the standard average, they marked that trigram as an 
anomaly. The authors found words to be a better 

indicator of anomaly than POS tags, reaching an F-score 
of 0.85 for words and 0.70 for POS tags in their best 
conditions. 
 
The authors do not qualify the data that is flagged 
anomalous. It would be interesting to know if this data is 
dialectal Chinese, misspelled words, bad grammar, 
emoticons, or lexemes unique to Chinese Internet chat. 
The POS tag condition is more comparable to our 
scenario, as both their POS categories and our structure 
description language have a small vocabulary. 
 
Jabbari (2010) was interested in detection of anomalous 
words in the context of the words around them, which 
has practical applications including real-word spelling 
error detection and word sense disambiguation. The 
author examined an approach using bags of words, one 
using language models, and then a combination of the 
two. The language modeling approach marked a word as 
an anomaly if the probability of the word in that context 
was less than the expected probability of not having that 
word in the context. The language modeling system 
received an overall F-score of 0.71. It performed less 
well than the author's bag of words model, and the 
combined model. The author did not look at parts of 
speech, which is more relevant to our task. 

5. LM Anomaly Detection for Flattened 
Structures 

In the previous section, we showed how language 
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modeling has been used to detect anomalies in a linear 
string of tokens. This section explains how to convert 
the XML tree into a linear string of tokens, and how this 
is used to build a language model. 
 
The input to the language model is determined by 
specifying a repeating node in the XML file that 
contains child trees to be examined. Each of these 
repeating tree structures is traversed depth-first, and the 
element names and attributes of children are recorded to 
a buffer as a tag that identifies that element. In XML, a 
depth-first search is a linear scan of each node within a 
tree. At the end of each repeating node the buffer 
contains a single layer of whitespace-separated tags 
corresponding to a flattened representation of the tree. 
We call this a tag sentence. The tag sentences for all the 
repeating nodes form a corpus of tag sentences. 
 
This corpus can then be used to train a statistical 
language model. For our experiments, we used the SRI 
Language Modeling Toolkit (SRILM) (Stolcke, 2002). 
SRILM includes command line programs and C++ 
libraries to calculate n-gram statistics for a language, 
and to measure the perplexity of a text sample to those 
statistics. SRILM reads and writes to a standard ARPA 
(Advanced Research Projects Agency) file format for 
n-gram models. There are other language modeling 
toolkits available. Typically, the differences between 
applications are in the speed of the evaluation, the size 
of the model created, or the statistical smoothing 
algorithms included for estimating low-occurrence 
combinations. In our case, speed and model size is not 
much of an issue, but estimating combinations of low 
token occurrence is. Since we are training and testing on 
the same dataset, advanced smoothing algorithms would 
not add any benefit. SRILM runs with Good-Turing and 
Katz back-off by default. 

6. Evaluation 

6.1 Dictionary and Evaluation Data 
We perform our evaluations on a bilingual Urdu-English 
dictionary of 44,237 lexical entries (Qureshi, 2003). 
This dictionary has been edited by a team of linguists 
and computer scientists to remove errors using a 
change-tracking system we refer to as Dictionary 
Manipulation Language (DML) (Zajic et al., 2011). 
DML provides a number of benefits for dictionary 
editing, but the core advantage for this application is that 
DML can be used to mark every error discovered in the 
original source dictionary. From the change log, we can 
create a list of trees we know to be errorful that can be 
used for evaluating our automatic systems.  

6.2 Tree Tiers 
The entries in Qureshi (2003) can contain multiple 
senses, each of which can contain multiple word forms. 
An entry can also contain word forms directly. These are 
high-level structures within each entry that can vary 

significantly. In order to isolate where the errors occur 
within the entry, we partition some of the structure, 
performing evaluations on ENTRY, SENSE, and FORM 
nodes separately. For the ENTRY evaluation, the 
highest-level SENSE and FORM branches were 
collapsed into single nodes, with their descendants 
pruned. For the SENSE trees, descendent SENSE and 
FORM branches were collapsed. No branches were 
collapsed in the trees for FORM evaluation. We call the 
ENTRY, FORM, and SENSE trees tiers. 
 
Our three tiers are listed in Table 1, showing the number 
of occurrences in the dictionary, as well as the number 
of nodes of that tree tier that had a hand-made correction 
within the tree. 
 

Tier Count in Dictionary Hand-corrected 
ENTRY 15,808 7,511 
FORM 51,105 9,845 
SENSE 88,465 20,037 

 
Table 1: Tree counts and manual correction counts 

6.3 n-gram Models 
For each of these tiers, content and closing tags were 
removed, and the trees flattened to form a tag sentence. 
These three corpora were used to train 2-, 3- and 4-gram 
language models, without smoothing. 
 

Tree Unique 
Tokens 

2-gram 3-gram 4-gram 

ENTRY 21 178 395 667 
FORM 7 25 44 51 
SENSE 22 183 384 628 

 
Table 2: Unique Token and n-gram grammar counts at 

each tree level. 
 
This language model serves to provide prototype trees 
for comparison, storing which tags can co-occur with 
which others, and what the likelihood of that 
co-occurrence will be. Table 2 lists the three tiers, the 
count of unique tokens (XML descendants) under that 
tier, and the number of unique n-grams created by the 
linear combination of those tokens. 

6.4 Applying the models 
Each tag sentence from the dictionary is then evaluated 
with this language model, producing statistical 
measurements for each flattened tree structure: log 
probability of the sentence (LOGPROB), average 
perplexity per word (PPW), and average perplexity per 
word with end tags (PPWET). LOGPROB and PPWET 
both evaluate trees against n-grams that contain START 
OF SENTENCE and END OF SENTENCE tags. This 
helps model differences between tokens that appear 
initial or final in the tag sentence. 
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We rank these measurements to force the trees into a 
decreasing order of anomalousness. For LOGPROB, the 
trees are sorted in ascending order, and for both PPW 
and PPWET, the trees are sorted in descending order. 
 
For evaluation, we provide precision at the top R 
anomalies, where R can be {15, 30, 50, 100, 500, or 
1000}. A hit occurs where a tree in the top R of our list 
has shown up in our errorful tree list. Precision at Rank 
is defined as the number of hits divided by R. 

6.5 4-gram Results 
Out of the three n-gram lengths evaluated, 4-grams 
performed the worst overall. The average of the six 
precisions at rank scores for each tree tier and each 
language model measurement were lower than those for 
both 3- and 2-grams. Several trials in the group did 
reach the best scores for their Tier-R combination, but 
these are matched in the 2- and 3-gram models. Results 
can be seen in Tables 3, 4, and 5. 
 

Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .93 .80 .70 .63 .61 .62 .72 
FORM .93 .93 .96 .98 .98 .99 .96 
SENSE .93 .93 .92 .89 .61 .56 .81 

 
Table 3: Descending PPWET 4-grams 

 
 

Tier / R 15 30 50 100 500 1000 AVG 
ENTRY 1.0 .70 .66 .60 .65 .67 .71 
FORM .93 .97 .98 .99 .99 .99 .98 
SENSE .93 .93 .92 .90 .56 .54 .80 

 
Table 4: Descending PPW 4-grams 

 
 

Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .87 .93 .94 .90 .80 .76 .87 
FORM .80 .90 .92 .95 .98 .78 .89 
SENSE .93 .93 .96 .91 .85 .81 .90 

 
Table 5: Ascending LOGPROB 4-grams 

 

6.6 3-gram Results 
The 3-gram language model performed well, capturing 
the best average Tier / R trials for FORM with the PPW 
measurement. The results can be found in Tables 6, 7, 
and 8. 
 

Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .93 .83 .80 .73 .69 .72 .78 
FORM .93 .93 .96 .98 .98 .99 .96 
SENSE .93 .90 .92 .91 .68 .69 .84 

 
Table 6: Descending PPWET 3-grams 

 

Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .93 .73 .72 .69 .69 .74 .75 
FORM .97 .98 .99 .99 .99 .99 .99 
SENSE .93 .93 .92 .91 .64 .59 .82 

 
Table 7: Descending PPW 3-grams 

 
Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .87 .93 .94 .93 .86 .84 .90 
FORM .87 .93 .94 .95 .98 .78 .91 
SENSE .93 .97 .98 .94 .91 .87 .93 

 
Table 8: Ascending LOGPROB 3-grams 

6.7 2-gram Results 
2-gram language models results can be found in Tables 
9, 10, and 11. This length n-gram performed the best, 
with the best average Tier / R trial for ENTRY and for 
SENSE using the LOGPROB measurement. This 
measurement, shown in Table 11, has the largest number 
of Tier/R trials with the highest precision. 
  

Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .73 .73 .74 .73 .79 .76 .75 
FORM .93 .97 .98 .98 .98 .99 .97 
SENSE .93 .83 .74 .81 .74 .78 .81 

 
Table 9: Descending PPWET 2-grams 

 
Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .73 .73 .66 .72 .75 .79 .73 
FORM .93 .97 .98 .99 .99 .99 .98 
SENSE .93 .93 .92 .83 .71 .76 .85 

 
Table 10: Descending PPW 2-grams 

 
Tier / R 15 30 50 100 500 1000 AVG 
ENTRY .87 .93 .96 .93 .91 .90 .92 
FORM 1.0 1.0 1.0 .97 .98 .78 .96 
SENSE .93 .97 .98 .96 .96 .91 .95 

 
Table 11: Ascending LOGPROB 2-grams 

 

6.8 Other-grams 
Unigram, 5-gram, and 6-gram models were also 
evaluated according to their LOGPROB. 5- and 6-gram 
models performed at a lower accuracy for nearly all R 
and tree levels. Unigram evaluations were inconclusive. 
Accuracy was slightly higher for some R, but some were 
far lower. 

7. Conclusions 
We presented a statistical error detection technique for 
dictionary structure that uses language modeling to rank 
anomalous dictionary trees for human review. To create 
the language model, we split the dictionary into three 
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tiers-ENTRY, FORM, and SENSE, and flatten each to 
form a tag sentence. We create 2-, 3-, and 4-gram 
language models based on this flattened structure, and 
evaluate against the original dictionary using Perplexity 
Per Word (PPW), Perplexity Per Word with End Tags 
(PPWET), and log probability (LOGPROB). These 
measurements were ranked, and we presented 
Precision-at-Rank for all trials. 
 
We found the highest precision Tier/R trials to be spread 
across several n-gram length language models, and 
several language model measurements. In general, we 
find that the best overall configuration is a 2-gram 
language model, which ranks the trees by ascending log 
probability. Averaging our six precisions for this metric, 
the system reached 92% precision on ENTRY error 
detection, 95% on SENSE, and 96% on FORM. 
Evaluating the top 50 anomalies, we reached 96% 
precision on ENTRY, 98% on SENSE, and 100% on 
FORM.  

8. Comments 
Though a large amount of man-hours were dedicated to 
the eradication of errors in our copy of the dictionary, 
we can make no assumption that we have found all of 
the errors present, and some of the trees that have not 
been marked bad, may indeed be errorful. Evaluation of 
our system, given this scenario, provides some difficulty. 
We have a small number of known-bad trees from the 
original source dictionary. The large remainder of trees 
is of questionable character, but are probably good. We 
cannot make large-scale automatic judgments on the 
questionable trees, but we can make sure the known-bad 
trees are ranked highly in our system. Actual precision 
should be considered at least the numbers reported. 
Unfortunately, without known-good trees, it is difficult 
to provide reliable recall measurements. 

9. Future Work 

9.1 Iterative language model improvement 
As each error in a dictionary is corrected, the language 
model created from that dictionary improves. An 
iterative approach, having a linguist examine a small R, 
correcting the trees, and then rerunning the model, may 
be the most efficient use of a linguist’s time. 

9.2 Bootstrapping a cleaner model 
With DML, we can find a small percentage of trees that 
are guaranteed to have had human review at some level. 
These trees are more likely to be correct than the 
completely untouched trees, and a corpus of the trees 
from the final dictionary could be used to create a higher 
quality language model to compare against the source 
dictionary. 

9.3 Node-level anomaly detection 
Evaluation of a language model on a tag sentence 

outputs a probability at each word. It would be 
interesting to show whether the peaks of perplexity 
correspond to the precise errors corrected in our 
dictionary. 

9.4 Related systems  
The language modeling approach is the first in a series 
of experiments examining anomaly detection on 
dictionary structure. We have several other frameworks 
currently under development, and expect approaches 
that harness structure, instead of flattening structure, will 
perform with higher accuracy. Additionally, we are 
planning work on a graphical tool to enable dictionary 
editors to interact with these anomaly detection systems, 
and plan to research how these systems can incorporate 
automatic error correction with assistance of an editor. 
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