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This work investigated optical sensor platforms for protein multiplexing, the ability to 

analyze multiple analytes simultaneously. Multiplexing is becoming increasingly 

important for clinical needs because disease and therapeutic response often involve 

the interplay between a variety of complex biological networks involving multiple, 

rather than single, proteins.  Moreover, one biomarker may be indicative of more than 

one disease, similar diseases can manifest with similar physical symptoms, and 

monitoring a disease requires the ability to detect subtle differences over time. 

Multiplexing is generally achieved through one of two routes, either through spatial 

separation on a surface (different wells or spots) or with the use of unique 

identifiers/labels (such as spectral separation – different colored dyes, or unique beads 

– size or color). We looked into combining both spatial separation and unique labels 

to further expand the multiplexing capabilities of surfaces.   Our original research 

resulted in one of the few demonstrations of reactive semiconductor nanocrystal 

  



immunoassays for multiplexed analysis within a single well on a microtiter plate.  

Innovative planar surface fluorescent immunoassays were developed for both spatial 

and spectral multiplexing using Quantum Dots and prospective incorporation into a 

Point-of-Care (POC) device involving an evanescent wave scanner.  These assays 

used standard microscope slides combined with flow cells and were designed to 

markedly reduce the amount of sample and reagents needed as compared to standard 

96-well plate assays. The platform was optimized for detecting Chicken IgG and 

Staphylococcal Enterotoxin B (SEB); SEB is commonly used in the literature to 

characterize the performance of biosensor platforms.  The planar surface fluorescent 

immunoassays were applied to a real-world public health need to detect renal injury. 

Two emerging novel biomarkers, Kidney Injury Marker-1 (KIM-1) and Neutrophil 

Gelatinase Associated Lipocalin (NGAL), were investigated for their potential to 

detect injury earlier and with more specificity than current methods using serum 

creatinine (SCr).  Detecting these medically-relevant markers using planar surface 

fluorescence immunoassays could potentially allow for more rapid diagnosis of acute 

kidney injury (AKI), among other uses. 
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Chapter 1: Motivation, Objectives, and Innovation 

Technological advances in fields such as genomics, proteomics and metabolomics 

have advanced understanding of the underlying mechanisms of disease initiation, 

disease progression, and therapeutic response, and helped identify biomarkers useful 

in personalized medicine [1-3].  These biomarkers, such as proteins, can serve as 

diagnostic, prognostic, or therapeutic indicators and typically represent a surrogate 

endpoint used in addition to, or instead of, a clinical endpoint.  Development of novel 

devices for biomarker measurement is important to the field of personalized 

medicine, a term which is defined in numerous ways.  For the purpose of this work, 

personalized medicine is providing the best treatment specific to a patient’s individual 

genetic, genomic, or proteomic profile to guide safer and more effective treatment [4-

6].  Information about a patient’s make-up on a cellular level can provide clues 

regarding the appropriate medication, pertinent drug dosage, disease state, or method 

for disease prevention [4].  The ultimate goal of personalized medicine is to achieve 

the 5 Rs: “the right patient, right diagnosis, right treatment, right drug/target, and 

right dose/time”.  Such a goal can only be realized through the combination of a 

clinical approach to medicine, completion of a comprehensive medical history, and 

utilization of data from appropriate testing such as in vitro diagnostic devices.   

 

In Vitro Diagnostics (IVDs) are assays that probe samples taken from a patient (urine, 

blood, nasal swabs, etc.) for molecules in the genome, epigenome, or proteins and 

may be used for clinical diagnostics or prognostics or to aid in treatment selection [7].  

Specific IVDs that are developed in parallel with a therapeutic agent, and are used in 
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conjunction with one another as specified on the labeling of the drug and device, are 

called companion diagnostics [6].  Specific analytes that IVDs probe are considered 

“biomarkers” if they can be objectively measured and evaluated and indicate normal 

or pathogenic biologic processes or pharmacologic responses to a particular 

therapeutic intervention [6, 8].  There are three major categories of biomarkers—

biomarkers of exposure (e.g. diagnosis/identification of disease or to predict response 

to therapy), susceptibility (e.g. to distinguish patients with indolent or aggressive 

disease), and toxicity (e.g. to identify patients likely to develop adverse side effects) 

[9].  Ideally, the most useful IVDs should be high-throughput, rapid, and capable of 

real-time detection of many biomarkers.  IVDs for personalized medicine should also 

be paired with a specific drug or drug combination that would be able to treat the 

patient safely and effectively with minimal adverse effects [10].  The scope of this 

work is to develop a new method capable of biomarker multiplexing (detecting 

multiple analytes simultaneously).    

 

Significance of Multiplexed Protein Detection 

Multiplexing is becoming increasingly important because disease and therapeutic 

response often involve the interplay between a variety of complex biological 

networks rather than single proteins [10].  DNA and proteomic microarrays have been 

crucial in identifying new biomarkers and will continue to play a significant role in 

their routine detection [4, 5, 11-15].  While many efforts have been made to 

understand the biological basis of diseases by studying gene expression, the 

relationship between an expression of a gene and the onset of disease remains 
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unclear, but the relationship between protein profiles and disease onset is becoming 

more understood [16].  As there are only around 25,000 genes in the human genome, 

but genes code for multiple variants of proteins, researchers often use proteomics, 

rather than genes, to provide insight into diseases [17] and new analytical tools can 

assist in this process [5, 6].  Multiplexing is important for immunoassays, a 

biochemical technique that uses antibodies for measuring the amount of a specific 

macromolecule present in a sample.  Since antibodies are created due to the body’s 

immune response against viruses, bacteria, and other hazards, using these biological 

molecules for detection purposes achieves superb specificity and sensitivity [17].  

Concentrations as low as 10-21 moles/L have been detected using immunoassays [17].  

Multiplexing can increase throughput and increase data generation while simplifying 

formats and decreasing the time and cost required to operate tests [18]. 

 

Device Attributes 

Appropriately-designed IVDs can be particularly useful as point-of-care (POC) 

diagnostics, which may be used in a doctor’s office or at home and can reduce the 

time, sample volume, and reagent volumes required as well as the overall cost of the 

test.  Since many IVDs are homogeneous and simple to use (e.g., glucose test strips or 

home pregnancy tests), requiring only one mixing/sample addition step and one 

detection step, there is potential for these types of assays to become miniaturized and 

incorporated into high-throughput, POC devices [7, 19, 20].  As they are currently 

designed, standard techniques involving microtiter plates are not currently suited for a 
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POC environment because they are complicated and require trained personnel for 

operation.   

 

A POC device must be cost-effective, highly accurate, low maintenance, easy to use, 

portable, robust, stable under harsh environmental conditions, have minimal user 

interface, have a rapid turnaround time, and be capable of high-throughput [21]. For 

home care or other “in the field” applications, the device must be relatively small in 

size (not much larger than a cellular phone), so the sample volume required to detect 

analytes should be ≤ 50μl.  Detection of analytes in low volumes is particularly 

relevant for situations in which certain sample types may be limited in volume, such 

as critically ill, neonatal, or pediatric patients.  However, sample size is less of an 

issue for multiplex assays, which can be miniaturized.  Efforts to miniaturize assays 

have involved microfluidics, lab-on-a-chip technologies, and improved excitation and 

detection methods [7, 19, 20, 22].  These advances are key for the integration of all 

aspects of an assay (sampling, testing, and detection) onto one hand-held platform to 

create a true biosensor [23].  A biosensor is defined by the International Union of 

Pure and Applied Chemists (IUPAC) as a self-contained device that provides 

quantitative analytical information using a biological recognition element such as an 

antibody or nucleic acid, which is in direct contact with a transduction element [10].  

While the goal of this work was not to create a POC biosensing device, these device 

attributes were crucial in the design of the assay platform to allow for POC 

development in the future. 
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Real-World Applicability: Acute Kidney Injury Biomarkers 

The main theme of this work was investigation of optical sensor platforms to study 

multiplexing capabilities using decreased sample volumes.  Since the bulk of the 

work was on the evaluation of a new platform, relatively inexpensive proteins were 

used to characterize the platform and allow for comparison among platforms.  

However, to demonstrate the relevance to personalized medicine, we also investigated 

whether this platform could be used to measure renal injury biomarkers associated 

with Acute Kidney Injury (AKI), which is discussed in greater detail in Chapter 5.  

Measuring relatively new biomarkers such as Kidney Injury Marker-1 (KIM-1) and 

Neutrophil Gelatinase-Associated Lipocalin (NGAL) may improve personalized 

medicine by diagnosing patients correctly and quickly (earlier than existing methods 

allow) so that treatment can be administered based on the particular needs of the 

patient [24-26].   

 

Current tests for diagnosing AKI involve measuring blood urea nitrogen and serum 

creatinine, but these biomarkers are typically not elevated until 50% of kidney 

function is gone, which is clearly not adequate for reducing or preventing AKI [27]. 

 

Diagnosing AKI at the POC using a small amount of sample is important in a number 

of clinically relevant situations.  For example, a POC device could be used in the 

scenario of a biological attack where the lipopolysaccharide (LPS) of gram-negative 

bacteria could elicit an innate immune response [28, 29].  Exposure to LPS 

(endotoxin) can cause systemic vasodilation and decreased renal perfusion and 
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subsequent AKI [28].  Additionally, the resulting inflammation and cytokine release 

following exposure to the toxin will likely cause a nephrotoxic effect, leading to 

elevated levels of NGAL and KIM- 1, which could indicate early kidney damage 

[29].  In another example, a POC device is useful in the developing world, where AKI 

is a major medical complication particularly with regard to sepsis, diarrheal illnesses, 

and infectious diseases.  In this environment, low-resource medical tests are needed.  

A third scenario where a POC device would be useful for AKI diagnosis is following 

crash injuries and natural disasters such as earthquakes, which could adversely affect 

kidneys.  Lastly, rapid diagnosis of AKI is important because early diagnosis—

leading to quickly-instituted treatment—results in more favorable outcomes for the 

patient.  In these examples, testing and treating patients rapidly is of the utmost 

importance, and providing care to a large population using minimal resources can be 

facilitated by use of a POC device capable of multiplexing and using small samples.  

 

Objectives 

This work aims to address the concerns regarding current techniques for multiplexed 

biomarker detection using optical sensing platforms.  Specifically, the goal of this 

work is to evaluate technologies for multiplexing.  This project investigated the 

multiplexing potential within a single well in a microtiter plate and the development 

of a novel multiplex immunoassay platform, planar surface fluorescent 

immunoassays, that can detect protein biomarkers in a manner that is amenable for 

further development into a POC device.  The evaluated platforms were investigated 

with regard to limit of detection, specificity, and other performance parameters.  
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LOD is defined as the concentration at which the signal is larger than the background 

signal plus three standard deviations.  In these studies, the LOD was specified as the 

lowest concentration measured for which the intensity meets the requirements defined 

above rather than that extrapolated from a curve fit plot. 

 

The primary objectives are:  

1) Develop a new planar surface fluorescent immunoassay capable for protein 

multiplexing at low sample/reagent volumes.  Multiplexed, low-volume planar 

surface fluorescent immunoassays were created with various surface modifications.  

In addition, several microfluidic designs and fluorescence detection mechanisms were 

tested and optimized.   

 

2) Characterize the developed platform by using model protein analytes and evaluate 

its multiplexing capability. Direct and indirect sandwich assays were conducted to 

detect two common analytes.  The planar surface fluorescent immunoassays 

performed similarly to fluorescent immunoassays conducted using microtiter plates.  

These results are particularly promising for biomarker detection for which larger 

volumes may not be obtainable. 

   

3) Demonstrate the applicability of this developed platform for a real-world public 

health need to detect renal injury biomarkers.  Current strategies for diagnosing and 

treating acute renal injury are flawed because they may only detect renal damage after 

24 – 72 hours [24].  New biomarkers, Neutrophil Gelatinase-Associated LiPoCalin 
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(NGAL) and Kidney Injury Marker-1 (KIM-1) have been identified as having the 

potential to detect different aspects of renal damage after only two hours post injury 

[24, 25].  Detection of these proteins involved in AKI could allow for earlier 

intervention and better patient outcomes.  The developed platform was tested using 

these biomarkers to investigate the feasibility and clinical utility of this technology.  

Application of this platform to renal injury biomarkers demonstrated that the system 

is capable of multiplexing, and can detect the analytes above baseline levels.   

 

4) Evaluate multiplexing capability in standard fluorescent immunoassays utilizing 

microtiter plates in combination with unique Quantum Dot (QD) labels. In this phase 

of experiments, standard laboratory assays were performed involving microtiter plate 

fluorescent immunoassays using a variety of protein analytes.  The multiplexing 

capability was investigated within a single well on the plate using QDs as unique 

labels to facilitate multiplex analysis.  (QDs will be discussed in more detail in 

Chapter 6).  Different detection labels were compared and LODs were established.  

Identifying the performance properties of plate immunoassays for multiplexing 

proteins using QDs allowed for the comparison of similar studies involving planar 

surface fluorescent immunoassays.   

 

5) Characterize the use of a unique evanescent wave detection platform to image QD-

based planar surface fluorescent immunoassays.  In these experiments, we 

demonstrated that spatial and unique-label multiplexing on a glass slide can increase 

the potential number of analytes measured using this platform. We showed that the 
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filter and camera combination (detection system) can distinguish between two QDs 

bound within the same spot.  Theoretically, this platform can be extended to detect 

multiple QDs within a single spot.  This platform is amenable to a POC environment 

using an in-house developed evanescent waveguide detection system. 

 

Innovation 

Smaller Sample Volume 

The planar surface fluorescent immunoassays developed here can be used for 

multiplexing and perform similarly to fluorescent immunoassays executed in a 

standard 96-well microtiter plate in terms of sensitivity and LOD. However, the 

planar surface immunoassays require distinctly less sample volume and reagents to 

perform experiments.  A standard microtiter plate immunoassay requires 50 - 100 µL 

of sample or reagent per well [30].  Immunoassays have been conducted using 

microscope glass slides in many formats, including sandwich and reverse phase 

formats.  Additionally, many different chemical modifications for immobilizing 

antibodies onto the surface have been used to conduct immunoassays.  Despite their 

differences, most planar surface immunoassays require a sample volume in the high 

micro-to-milliliter range [31-34].  The use of vinyl/polycarbonate/acrylic templates 

developed in this work have the potential to detect analytes with much smaller 

volumes (e.g. 2μl).  This is less than one-tenth of the volume that is needed for one 

well in a microtiter plate, and this volume can be used to quantify nine different spots 

for analysis using planar surface fluorescent immunoassays. 
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Small sample size confers an important advantage in that there may be less influence 

from matrix effects on the assay when experiments are conducted in biological fluids 

such as plasma and urine [17].  Different sample sizes, each containing the same 

amount of analyte may provide different results.  However, in small samples, there is 

a lower proportion of the sample in the reaction, so the influence of matrix effects 

may be diminished and the accuracy improved.  Consequently, an assay with a 

smaller sample size may be more sensitive and more robust. 

 

The use of such small volumes is important for medical practice because large 

volumes of sample may not be obtainable from certain patients, such as infants or the 

critically ill [35-37] or from all sample types, such as tissue biopsy or cerebrospinal 

fluid [38-43].  Use of small sample volumes could enable the use of capillary blood 

taken from the finger of a patient rather than venous blood, requiring a phlebotomist’s 

assistance.  In this project, the focus is on the critical public health need to detect 

acute kidney injury earlier than current methods allow and with greater sensitivity.  

When a patient’s kidneys are damaged, the production of urine may be inhibited, so 

performing a test on a small volume of fluid can be useful [29].   

 

Smaller System 

As opposed to the detection method for fluorescent immunoassays (e.g. use of 

microtiter plate reader), which typically requires large instruments coupled to a 

computer for quantitative output, the new platform that was investigated in this 

project may be more amenable to a POC environment.  Although miniature ELISAs 
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and chip-based flow cytometry have been demonstrated as a proof-of-concept, no 

such devices have been commercialized, so the need to develop a POC biosensor is 

still paramount [44-46].   

 

The planar surface fluorescent immunoassay platform is much smaller than a typical 

microtiter plate.  The planar surface platform is only 75 mm (length) x 25 mm (width) 

x 1 mm (height), but the microtiter plate is 127.64 mm x 85.60 mm x 14.3 mm.  Since 

the former has a smaller area, it can more easily fit into a hand-held device for on-the-

spot analysis as opposed to the microtiter plate, which requires use of a plate reader 

such as the TECAN, which costs ~$65,000 dollars, weighs 29.5 kg and has 

dimensions as follows: width of 515 mm, height of 257.5 mm, and depth of 516.9 

mm.   

 

The detection method for analyzing the signal (mean fluorescence) of biomarkers for 

the planar surface fluorescent immunoassay platform could be coupled to a charge-

coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) 

camera [47].  In this setup, either a light-emitting diode (LED) or a small laser diode 

could be used as the excitation source, but the LED may be more advantageous to 

cover the whole device, rather than a laser, which would have to move over a large 

distance in order to illuminate the entire surface, unless the laser causes total internal 

reflection fluorescence, which is described in more detail in Chapter 6.  Using the 

platform to detect clinically-relevant biomarkers could potentially impact clinical 

practice because if the device is portable, disposable, cost-effective, requires minimal 
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user interaction, and meets a clinical need to obtain relevant information about 

analytes in small volumes [21], physicians could make diagnostic, prognostic, or 

therapeutic decisions more quickly than with existing technology [36].   

 

Improvement upon Current Techniques 

Currently, multiplexed optical biosensors are less robust than ELISA when probing 

for molecules within plasma or serum [10].  Furthermore, multiplexed immunoassays 

may exhibit cross-reactivity among capture antibodies, especially when target 

antigens may be present at varying concentration ranges.  Lastly, immunoassays are 

prone to matrix effects, which can diminish sensitivity.  While ELISA would also be 

prone to matrix effects, the enzyme amplification is generally more sensitive than 

fluorescent sandwich immunoassay that lacks the amplification step.  This work 

sought to overcome these issues by testing an innovative optical sensor platform.     

 

The approach for experimentation in this work is also novel in terms of testing the 

same samples across optical sensor platforms.  Typically, studies conducted by one 

research group do not involve comparison of the same analytes among many 

platforms.  Comparing optical sensor platforms while keeping the antibody and stock 

antigen sources, buffer solutions, and other reagents consistent across experiments 

enables comparison among the two main detection strategies: fluorescent 

immunoassays (performed in microtiter plates) and planar surface fluorescent 

immunoassays.  Specific parameters that are of interest when comparing platforms 

include LOD, specificity, sensitivity, reproducibility, reliability, robustness, cost, 
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speed, and multiplexing capability.  Conducting new experiments using all of these 

platforms is more advantageous than comparing experiments using the proposed 

platforms to existing studies published in the literature because among scientific 

research groups, there are variations in protocols and reagents, etc.  However, we 

chose SEB for investigation so that we could also compare our results to those 

published in the literature.  These studies will build upon the scientific community’s 

growing interest in multiplexing, which has developed within the last decade [10]. 

This work adds to the scientific knowledge available regarding comparison of novel 

multiplexed arrays to existing sensing technologies, and may shift current research 

toward new platforms.   

 

The multiplexing approach demonstrated here is novel in that both spatial and 

spectral multiplexing were achieved using QDs.  This technique can increase the 

multiplexing capabilities for immunoassays because multiple QDs have broad 

absorption bandwidths and can be excited at one particular wavelength, yet they each 

have a narrow spectral bandwidth within the visible range.  Therefore, the signal from 

each QD can be distinguished from one another.  Studies involving detection of two 

analytes within a single spot were demonstrated using planar surface fluorescent 

immunoassays.  Similarly, experiments using 96-well microtiter plates succeeded in 

deconvoluting signals from three different QDs corresponding to three different target 

analytes.  These accomplishments indicate that, for example, a 96-well plate can yield 

more than 96 data points because more than one target analyte can be detected per 

well.  The duplex using the planar surface fluorescent immunoassay can yield 216 
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data points, while the triplex using the 96-well plate can generate 288 data points.  

There is promise to extend these studies to distinguish between even more analytes by 

employing more than three QDs so long as their emission wavelengths are spectrally 

diverse.      

 

The planar surface fluorescent immunoassays can be incorporated into a POC device 

and could impact science and engineering fields.  Sensing multiple biological 

elements simultaneously using low sample volume and with increased sensitivity are 

desirable properties for many applications ranging from food safety and monitoring 

of agricultural products to military applications [48]. 
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Chapter 2: Background 

There are many different methods for quantifying protein analytes, such as the use of 

mechanical, electrical, or chemical sensors [49-53].  Current issues with these 

biosensing strategies include less than optimal limits of detection, low sensitivity and 

specificity, in addition to an inability to detect different analytes simultaneously (i.e. 

multiplexing) in an automated fashion [50].  Optical sensors are advantageous over 

many other detection strategies because they are immune to inferences from 

electrochemical and electromagnetic sources, are capable of real-time detection, and 

are amenable to lab-on-a-chip applications [54, 55].   

 

This work focused on optical sensors that are capable of multiplexed protein 

detection.  The gold standard for protein detection is Enzyme-Linked Immunosorbent 

Assay (ELISA), which can measure multiple targets using different wells (i.e. spatial 

separation) using colorimetric, fluorescent, or luminescent techniques [10]. This work 

focuses on the fluorescent assay. There are two main types of multiplexing 

strategies—spatial separation on a surface (i.e. different wells or spots) and the use of 

unique identifiers/labels (i.e. spectral separation due to different colored dyes or bead 

sizes/colors).  Two commonly used fluorescent assays capable of multiplexed protein 

detection are standard microtiter plate fluorescent assays and the Luminex 100/200.  

Standard optical methods of multiplexed protein detection often require large 

instrumentation, highly-trained personnel, and must be performed in a typical 

laboratory setting [56, 57]. Point-of-Care (POC) devices, on the other hand, have 

many advantageous attributes as discussed in Chapter 1 such as their cost-
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effectiveness, low maintenance, and portability.  Various research groups have 

demonstrated viable POC devices capable of protein multiplexing, but few are 

available for commercial purchase [45, 46].  For example, some portable particle 

counters are on the market for very specific applications.  More products are needed 

to detect other analytes.   

 

Biosensors 
 
A biosensor is defined by the International Union of Pure and Applied Chemists 

(IUPAC) as a “self-contained device that provides quantitative analytical information 

using a biological recognition element such as an antibody or nucleic acid, which is in 

direct contact with a transduction element” [10].  In other words, biosensors use a 

biological system to differentiate substances of interest from other components in a 

sample by employing a biological receptor to detect the analyte, a transducer to 

convert the recognition event to a signal, and a detection system that includes analysis 

and processing [17].   

 

Antibodies are glycoproteins involved in host defense systems [17].  There are five 

human immunoglobulin classes: IgG, IgM, IgA, IgD, and IgE, but the first class of 

antibodies is used most often for biosensing needs because it is produced in the 

highest amounts following immunization, has a high affinity for the epitope, is stable 

during isolation, and has many functional sites that can be accessed for chemical 

coupling.  Antibodies are composed of two identical heavy polypeptide chains that 

contain three constant domains and one variable domain.  Each variable domain on 
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the heavy chain is linked to an identical light polypeptide chain, which contains a 

constant domain and a variable domain.  The variable regions of antibodies are 

capable of binding to an antigen or immunogen at different sites called epitopes with 

great specificity. 

 

There are a variety of biosensing platforms that have been developed to detect DNA 

or proteins through electrochemical, photometric, mechanical [49], piezoelectric [50], 

or optical methods of detection [10] such as the use of surface plasmon resonance 

[51] or with mass spectroscopy [58, 59].  Some biosensors are composed of 

nanomaterials [52], while others use microcantilevers [53], and other methods of 

detection that may involve label-based or label-free techniques [60].  Current issues 

with these biosensing strategies include less than optimal limits of detection, low 

sensitivity, and low specificity relative to the demands of specific applications.  In 

addition, many biosensors are unable to detect different analytes simultaneously in an 

automated fashion [50].  Multiplexing is possible by employing a variety of different 

types of detection mechanisms.  Optical sensors are advantageous over many other 

detection strategies because they are immune to interferences from electrochemical 

and electromagnetic sources, are capable of real-time detection [54], and are 

amenable to lab-on-a-chip formats [55].   

 

Importance of Multiplexing for Clinical Use 

Many scientific fields can benefit from the use of multiplexed optical sensors.  For 

example, it is important for the food industry to test for various toxins that could be a 
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threat to public health.  The U.S. Department of Defense may also be interested in 

these sensors for measuring biological threats in a field-deployable format [50].  The 

focus of this work is on the development of multiplexed biosensors for clinical use. 

 

The need for the development of a multiplexed biosensor for use in clinical practice is 

paramount for therapeutic purposes and diagnostic purposes where both identification 

and quantification of biomarkers (analytes that indicate normal or pathogenic biologic 

processes) are important [35].  It is important to measure many different analytes 

simultaneously (multiplex) because one biomarker may be indicative of more than 

one disease, similar diseases can manifest with similar physical symptoms, and 

monitoring a disease requires the ability to detect subtle differences over time [36].  

For example, due to the inter-relatedness of biomarkers, profiling as many as 70 

genes or more than 100 antibodies may be required to predict a specific cancer 

patient’s diagnosis or possible response to chemotherapy [10, 61].   

 

Multiplexed sensors have the potential to revolutionize patient treatment by reducing 

exposure to potentially ineffective toxic drug treatments based on the assessment of 

many biomarkers [62].  Furthermore, multiplexed sensors can help prevent disease 

and prolong life if: a diagnosis is made early, patients are screened multiple times 

over a specific period, and only the best therapies are prescribed for patients.  
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Benefits of POC Biosensors in the Healthcare Field 

The ideal POC device is small, portable, cost-effective, highly accurate, low 

maintenance, easy to use, robust, and stable under different environmental conditions 

[21].  The device should also require minimal user interface, have a rapid turnaround 

time, and be capable of high-throughput.  A POC device is useful in the healthcare 

field because it can be used to confirm a patient’s diagnosis while the patient is still 

present in the doctor’s office, which can be particularly important if the patient is 

contagious or requires immediate treatment.  A model POC device would require a 

single test sample, a single set of personnel to process and analyze the sample and a 

single point in time when the patient’s blood or urine would need to be sampled.  

These benefits can help increase the likelihood of a patient to follow through for 

repeat care or to find out the outcome of a test, thereby improving the level of care 

provided.   

 

In clinical practice, determining the presence of biomarkers typically requires a 

variety of laboratory tests and equipment that utilize several different types of 

technology.  For a single diagnosis, many laboratories and various personnel can be 

involved in handling each test.  The more laboratories and personnel needed to 

analyze samples for a single diagnosis, the greater the uncertainty associated with the 

results.  Typical assays such as Enzyme Linked Immunosorbent Assays (ELISA) 

require each analyte to be detected individually, but multiplex POC devices can be 

used to probe for many biomarkers simultaneously using one uniform testing method, 

thereby allowing for greater consistency in the data for each analyte.  Furthermore, 
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determining relationships between biomarkers is significantly easier and more 

reliable when using the same testing method as in a multiplexed POC device.  

Multiplex POC assays require less time, cost, and labor, and a small sample size; the 

sample size is often irrespective of the number of analytes tested and only dependent 

on the detection technique used [37].   

 

Methods for Multiplexed Protein Detection 

There are many scenarios where multiplexed sensors are applicable such as for 

patient diagnosis at a clinic or for monitoring a disease at home.  A field-deployable 

multiplexed sensor is useful for detection of biological warfare agents or for detection 

of contaminated foods.  Currently, there are many different methods for detecting 

proteins in a multiplexed fashion.  The main techniques used for multiplexing 

biological molecules are described below.   

 

Mass Spectrometry 

Mass spectrometry is a technique that can be used to analyze protein mixtures and 

quantify thousands of proteins [63].  Measurements are conducted in the gas phase of 

ionized analytes.  Mass spectrometers are composed of three components: an ion 

source to ionize analytes, a mass analyzer for measuring ionized analytes’ mass-to-

charge ratio (m/z), and a detector that counts the number of each m/z ion.  The two 

most common techniques for volatizing and ionizing proteins are (1) electrospray 

ionization (ESI), which ionizes analytes from a liquid-based sample and (2) matrix-

 20 
 



assisted laser ionization (MALDI), which ionizes analytes from a dry matrix, with the 

former used more commonly for complex samples.  This direct technique can achieve 

high specificity, but tends to have a lower sensitivity, and requires large laboratory 

equipment and is expensive to operate [17]. 

 

Surface Plasmon Resonance  

There are many techniques that involve measuring molecular interactions using a  

label-free format including Quartz Crystal Microbalance, BioLayer Interferometry, 

and Resonant Waveguide Grating, but Surface Plasmon Resonance (SPR) is the 

leading technology [17].  SPR is a technique that measures specific molecular 

interactions such as the binding of proteins to antibodies where the analyte molecule 

in solution interacts with the molecules bound (e.g. via carbgoxmethylated dextran 

polymers) to the sensor surface, usually composed of a thin-gold film on a glass 

surface.  The gold side of the sensor surface is in contact with a flow channel while 

the glass side of the sensor surface is positioned on a prism.  Under total internal 

reflection, light transforms photons into surface plasmons contained in the gold layer.  

Light must hit the surface at a specific angle of incidence, which depends upon the 

refractive index in the proximity to the gold surface, in order to be reflected and 

reduced, generating a characteristic surface plasmon resonance (SP) band.  When 

analytes bind to the surface, the change in mass concentration causes a shift in the 

refractive index, which in turn shifts the SP band and the amount of light absorbed by 

the detector.  The angle of incidence is monitored so that detection of binding events 

occurs in real-time.  While this technique has advantages of being label-free and 
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relatively sensitive, this technology typically requires laboratory-based equipment 

and highly-trained personnel, so it is not suitable for a POC environment. 

 

Flow Cytometry 

Flow cytometry is a technique that measures biological-labeled beads as they pass 

through a detector in a fluid stream, one at a time [64].  These beads are used for 

multiplexing by either changing the internal label used (different dyes) or the size of 

the beads.  Flow cytometry allows fluorescent molecules associated with particles to 

be distinguished from free fluorescent molecules.  This technique is employed in a 

variety of clinical applications ranging from measuring cellular DNA content to 

identifying disease-specific cell types for diagnostic and prognostic purposes [56, 65].  

Flow cytometry is also used to perform immunoassays, such as to detect biomarkers 

involved in acute kidney injury [66-70].  There are many commercialized products 

capable of performing bead-based flow cytometry in a multiplexed fashion (e.g. 

Luminex products) by performing a sequential analysis on particles.  Beads have been 

demonstrated as a means for sorting cells, proteins, or other particles of varying sizes 

[56].  Standard beads with a specific fluorescence intensity can be used for 

establishing quality control—data from samples taken over time and among different 

experiments can be normalized.  Although flow cytometry can be used for diagnostic 

purposes, it is desirable to combine this technique with DNA analysis or other 

procedures to improve the value of flow cytometry [65].  Nevertheless, some 

advantages of this technique include its speed, accuracy, low background signal, 

reproducibility, rapidity, cost-effectiveness, and sensitivity [60].  
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ELISA  

The most commonly used and best validated method to quantify biological molecules 

is Enzyme Linked Immunosorbent Assays (ELISAs), which are [10].  This method is 

capable of multiplexing by using spatially distinct wells that can probe for different 

proteins.  The ELISA typically uses either a colorimetric or luminescent method for 

detection and causes a product of the colored reaction to absorb light in the visible 

range [71].  The optical density of the product is proportional to the amount of analyte 

measured.  These assays are typically conducted using a 96-well microtiter plate.  A 

similar method to the ELISA is the Meso Scale system, which uses an 

electrochemiluminescent method for multiplexing.  The Meso Scale can probe for 

different analytes within one single well in addition to among several different wells 

on a single plate. 

 

ELISAs, among many other biosensing platforms utilize the biotin-streptavidin 

interaction for numerous applications such as testing new materials and determining 

the interactions between proteins and ligands [72-75].  The biotin/avidin interaction is 

one of the strongest known noncovalent interactions (the association constant, Ka ~ 

1015 m-1) that occurs in nature.  Biotin is an essential component of Vitamin B and its 

competitive binding to avidin is often utilized in assay formats [76-78].  Avidin is a 

protein that is commonly found in albumin, the white portion of eggs [79].  Some 

examples of how researchers use the avidin-biotin interaction are in conjunction with 

quantum dots (QDs) and gold nanoparticles [80-82].  
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An example of this method for conducting an ELISA is as follows (Figure 1):  

 

 

TMB Substrate

Capture Antibody

Target Protein

Biotin-Conjugate

Streptavidin

HRP
Product

Absorbance

 

Figure 1. ELISA detection scheme using 96-well plate. The enzyme horseradish peroxidase 
(HRP) converts the substrate  3,3′,5,5′-tetramethylbenzidine (TMB) into a colored product 
measured by absorbance.  . 
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1. Capture antibodies are immobilized onto the surface of the wells overnight, 

typically via non-specific interactions.    

2. The next morning, the surface is blocked with a blocking buffer for 1-2 hours, 

depending upon the specific protocol to prevent non-specific binding to the 

surface.  Common blocking buffers include milk or bovine serum albumin 

(BSA) in phosphate buffered saline (PBS), although there are a number of 

proprietary blocking buffers available commercially.   

3. Wells are exposed to the sample containing the target protein for ~1 hr., 

followed by several washes to remove any non-specific binding.   

4. A biotin-antibody conjugate is used to bind to the target protein and incubates 

for ~1 hr.  Several washes are performed to remove non-specific binding 

between the target and the biotin-antibody conjugate to ensure that antibodies 

are only bound through specific biorecognition events. 

5. A streptavidin-HRP (horseradish peroxidase) molecule is exposed to the wells 

and binds to biotin for ~20 min.  Wash steps are conducted to remove any 

non-bound streptavidin-HRP.   

6. A substrate, such as TMB (3,3′,5,5′-tetramethylbenzidine), or other 

chromogenic or luminescent substrate, is introduced to detect HRP.  In the 

case of TMB, after incubation for ~20 min under low exposure to light yields 

a blue (Amax = 650 nm) color in the wells where the target is present.   

7. Following incubation with TMB, a stop solution such as Sulfuric acid is used 

to stop the enzyme amplification process which turns the solution yellow 

(Amax = 450 nm).     
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8. For chromogenic-based ELISAs, the absorbance, which is an indication of the 

amount of sample present, is detected using a plate reader.  The plate reader 

measures the absorbance in the 96-well plate at a specific wavelength (in the 

case of TMB, typically ~450 nm).  For luminescent-based ELISAs, the 

luminescence from each well is measured by the plate reader. \ 

 

While Figure 1 shows the use of HRP as the enzyme label, there are many other 

labels that may be used [71].  Two others that are most commonly used are calf 

intestine alkaline phosphatase and E.coli β-D-galactosidase, but the latter is used less 

frequently than the first.  HRP is the most popular choice as it is a relatively small 

protein and thus rarely causes steric hindrance and it is relatively inexpensive.  

However, HRP is incompatible with sodium azide and other preservatives.  Alkaline 

phosphatase, on the other hand, is larger in size and therefore uses a lower enzyme to 

antibody conjugation ratio, resulting in lower activity for the number of bound 

enzymes.  This enzyme may become inactive due to exposure to chelating agents, low 

pH, or inorganic phosphates.  Keeping in mind the various advantages and 

disadvantages of each enzyme is important to ensuring that the assay performs 

adequately.  

 

Just as selection of the right enzyme is important for preparing an ELISA, the correct 

substrate is also important.  Since the two most commonly-used enzymes, peroxidase 

and alkaline phosphatase yield soluble reaction products, substrates that also create 

soluble products are appropriate [71].  Some substrates are very sensitive and have 
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fast reaction rates, whereas other substrates may take up to 30 minutes to product 

reaction products, but may be more amenable to assays where a large dynamic range 

is favorable.  The common substrate for HRP is TMB, which is quite sensitive and 

produces a blue color that is measureable at 650 nm, which upon addition of the stop 

solution (sulfuric acid) turns yellow (measured at 450 nm).  

 

ELISAs have limited applicability when it comes to POC requirements.  Obtaining 

data from ELISAs typically require a dedicated laboratory and an expensive and 

bulky plate reader.  However, Sapsford et al. demonstrated the miniaturization of 

colorimetric SEB ELISAs, reducing sample volume to <5 μL/well [44].  There are 

also some ways to decrease user interaction with experiments such as using a 

sequential injection analysis technique, which can automate the washing and addition 

of reagent solutions with the use of a syringe pump and switching valve [83].  

Recently, a new technique called digital ELISA has been introduced where sub-

femtomolar concentrations of proteins can be detected [17].  In this single-molecule 

immunoassay, a solution of enzymes are trapped in 50-femtoliter wells containing 

fluorogenic substrates, along with the sample, capture beads, and detection antibody, 

and sealed.  Digital ELISA avoids reliance on diffusion, as in standard 96-well 

experiments requiring ~100 microliters of volume.  While this technology is still in its 

infancy, digital ELISA is very promising for automated, high-throughput applications 

requiring single-molecule sensitivity.  
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Fluorescence Immunoassays  

ELISAs are similar to fluorescent immunoassays in that they are typically conducted 

in sandwich formats (two antibodies specifically bind to different epitopes on a 

common target) [84].  However, ELISAs use an enzyme, such as horseradish 

peroxidase, coupled with a colorimetric or chemiluminescent substrate for signal 

generation, instead of a fluorescent label [85, 86].  In fluorescent immunoassays, the 

relative fluorescence units (number of photons emitted) are proportional to the 

amount of analyte present [71].  Fluorescent immunoassays do not necessarily require 

use of the biotin-streptavidin interaction, and may expose a dye-labeled antibody to 

the target protein for detection, decreasing the amount of time it takes to perform an 

assay.  Additionally, fluorescent immunoassays are more sensitive and have a larger 

dynamic range compared to colorimetric assays.    

 

Despite the difference in detection between ELISA and fluorescent immunoassays, 

limitations described in the literature involving ELISAs are relevant for fluorescent 

immunoassays.  When Coenen et al. evaluated six different ELISAs for detection of 

the same target antibodies, the performance cutoff values, reproducibility, sensitivity, 

specificity, and accuracy for the detection of antibodies varied significantly, 

demonstrating the need for standardization among manufacturers’ diagnostic tests 

[87].  Specifically, reagents, assays, data storage, and normalization techniques need 

to be standardized [37] due to the variability among similar assays.  
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In addition to standardization, fluorescent immunoassays are in need of other 

improvements.  These techniques each require a variety of different laboratory 

equipment, dissimilar sample preparation and preservation techniques and other time-

consuming procedures, as well as packaging needed to transport samples to 

laboratories for analysis.  Microtiter well plate readers and flow cytometers are 

typically large laboratory instruments, and the latter requires expensive reagents and 

highly-trained technicians for operation [56, 57].  Although there has been scientific 

progress toward developing lab-on-a-chip flow cytometers, none are available for 

commercial purchase [45, 46].   

 

Fluorescent Detection Labels 

A variety of different fluorescent labels is available with their own specifications and 

may be employed in certain circumstances to maximize the LOD.  Organic 

fluorophores (fluorescent compounds that may re-emit light following excitation) 

such as dimeric cyanine dyes, Cy3 and Cy5 are commonly used in the literature for 

quantifying proteins [88, 89].  Both dyes, are commonly used because of their 

brightness, because have low non-specific dye interactions, and because they are 

commercially available with a wide range of reactive chemistries that facilitate 

labeling, such as the ability to label protein lysine residues [60].  The emission and 

excitation wavelengths for Cy3 are 550 nm and 570 nm, respectively.  The emission 

and excitation wavelengths for Cy5 are 650 nm and 670 nm, respectively.  Although 

fluorescent dyes are frequently used, they have limitations such as low photostability 

and brightness, and intrinsic background fluorescence [90].   
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Quantum dots (QDs) used as fluorescent labels can be made from a variety of 

materials [91], but the most commonly used and best characterized QDs to date are 

composed of two layers—a semiconductor core (typically cadmium selenide) and 

shell (typically zinc sulfide) [60].  A variety of different quantum dots can be excited 

at the same excitation wavelength (QDs have broad excitation bandwidths), but they 

have narrow emission bandwidths, with the emission wavelengths very specific to the 

type and size of QD core material [92].  QDs are of particular interest because they 

possess a number of advantages compared to standard organic-based fluorescent dyes 

and can have increased sensitivity [33, 90]. The distinct, bright photoluminescence 

spectra (Figure 2) of quantum dots and their narrow emission bandwidths within the 

visible spectrum (Figure 2), along with other properties such as photochemical 

stability, high quantum yields, and large extinction coefficients, make quantum dots 

useful for multiplexing [33, 60, 90].  Quantum dots can be applied to both planar and 

suspension biochips, can be used to detect single molecules, and can be employed in 

fluorescence resonance energy transfer (FRET) for added specificity [90].   

 

One drawback of QDs is their elevated cost in comparison to other fluorescent labels 

[93].  One way to avoid the expense associated with purchasing QDs is to synthesize 

them in-house [94].  Another drawback of QDs is that they are typically composed of 

heavy metals such as cadmium or lead, which are highly toxic materials and may 

pose concern when applied for in vivo applications [93, 95].  However, since we are 

concerned with their application in vitro and not in vivo, testing on living organisms 

is beyond the scope of this work and QD toxicity is not of a concern for our studies.  
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Lastly, QDs are typically larger in size than organic fluorophores, and this may 

disrupt the natural binding kinetics of proteins or aptamers that are involved in the 

biosensing platform.  A comparison between the properties of QDs and organic dyes 

is shown in Table 1 [91].  

 
 

 

 

Figure 2. Properties of CdSe/ZnS quantum dots. (A) photoluminescence spectra, (B) quantum 
dots after UV excitation  
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Table 1. Properties of organic dyes and quantum dots [91] 
Property Organic Dye Quantum Dot 

Absorption spectra Discrete bands Steady increase toward 
UV wavelengths 
starting from absorption 
onset 

Emission spectra Asymmetric, often tailing 
to long-wavelength side 

Symmetric, Gaussian 
profile 

Stokes shift Normally <50 nm, up to 
>150 nm 

Typically <50 nm for 
visible wavelength-
emitting QDs 

Spectral multiplexing Possible 3 colors 
(MegaStokes dyes), 4 
colors (energy-transfer 
cassettes) 

Ideal for multi-color 
experiments; up to 5 
colors demonstrated 

Quantum yield 0.5-1.0 (visible), 0.05-0.25 
(NIR) 

0.1-0.8 (visible), 0.2-
0.7 (NIR) 

Fluorescence lifetimes 1 – 10 ns, mono-
exponential decay 

10 – 100 ns; typically 
multi-exponential decay 

Photochemical stability Sufficient for many 
applications (visible 
wavelengths) 

High (visible and NIR 
wavelengths); orders of 
magnitude higher than 
that of organic dyes 

Toxicity From very low to high; 
dependent on dye 

Unknown  

Size ~0.5 nm; molecule 6-60 nm 
(hydrodynamic 
diameter); colloid  

Lifetime multiplexing Possible Lifetime discrimination 
between QDs not yet 
shown; possible 
between QDs and 
organic dyes 

Signal Amplification Established techniques Unsuitable for many 
enzyme-based 
techniques, other 
techniques remain to be 
adapted and/or 
established 
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Commonly Used Analyte: Staphylococcal Enterotoxin B 

Many biosensing platforms involve the use of a well-characterized target antigen, 

Staphylococcal enterotoxin B (SEB) [96-99].  SEB is one of many proteins produced 

by the bacterium Staphylococcus aureus, which when ingested may cause food 

poisoning in humans [100].  SEB is also a bioterrorism agent of concern and appears 

on the Centers for Disease Control and Prevention (CDC) list of agents in Category B 

because it can be disseminated easily and may cause moderate morbidity rates [101].  

This toxin is often investigated to test sensing platforms as it serves as a basis to 

compare the LOD, sensitivity, etc. with other platforms published in the literature.   

 

Miniaturized Assays 

The standard techniques previously described are not currently suited for a POC 

environment.  Ideally, a POC device must be cost-effective, highly accurate, low 

maintenance, portable, robust, stable under harsh environmental conditions, have 

minimal user interface, have a rapid turnaround time, and be capable of high-

throughput [21].  For home care or military applications, the device must be relatively 

small in size (not much larger than a cellular phone), and have a sample volume 

required to detect analytes ≤ 50 μL.  Detection of analytes in low volumes is 

particularly relevant for tissue biopsies for which volumes may be limited.  In clinical 

laboratories, 0.5 mL of serum is required for antibody studies, and 0.15 mL is needed 

per assay.  For some critically ill, neonatal, or pediatric patients, the amount of serum 

needed may be prohibitive for analysis.  However, sample size is less of an issue for 

multiplex assays, which can be miniaturized.   
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Besides the clinical relevance of using small sample volumes, there are other 

advantages of using low volumes such as simplification of the platform format, an 

increase in sensitivity, and an increase in throughput and subsequent volume of data 

[18].  For example, some microfluidic heterogeneous immunoassays have been 

shown to detect bacterial toxins with a LOD in the femtomolar range [102].  The 

LOD of one miniaturized immunoassays reportedly attained 1/50th of the LODs of a 

classical ELISA and require 100-fold less volume [61].  This assay used a surface 

chemistry involving a maleic anhydride-alt-methyl vinyl ether (MAMVE) copolymer 

to immobilize histone proteins covalently onto the surface.  The anhydride moieties 

on this copolymer react highly toward primary amino groups and were used to 

immobilize histone proteins, which then bound to autoantibodies implicated in 

autoimmune diseases.  Other studies involving autoantibody arrays have shown four 

to eight times more sensitivity than ELISAs and were linear over a 1000-fold range 

[37].  These experiments spotted antigens onto the surface using a robotic arrayer and 

were probed with monoclonal antibodies or serum samples.   

 

The use of protein array technologies for the analysis of diseases, while not a new 

concept, is emerging as a powerful technique for profiling protein levels and hence 

identifying biomarkers indicative of disease [5, 28-30].  Although many modified 

ELISAs exist as commercial antibody assays, the kits often require many washing 

steps, produce a lot of waste, are expensive, and involve lengthy processes [103].  

Despite these challenges, there are also issues related to the use of microarrays such 

as technical problems related to printing and detection, normalization of data, lack of 
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reference samples between experiments and laboratories, as well as the ability to 

measure biomarkers that exist in samples at such varied concentrations [104].   

 

Microscope glass slide arrays for multiplex detection of proteins have been developed 

previously, but the volumes needed to perform assays are still generally around 50 µL 

[105].  There are multiplexed platforms for proteins detection that have been 

developed by research groups and there are some commercially-available biosensors 

employing planar waveguide technology, but there is still potential for the reduction 

of volumes required to conduct these assays [106-113].   

 

Protein Microarrays 

Protein microarrays have many benefits over traditional ELISA and fluorescence 

immunoassays (performed in 96-well plates) because they are helpful for determining 

antibody reactivity to a large number of targets using a relatively small amount of 

sample and in some cases have been reported to achieve better sensitivity [114, 115].  

They have been used for determining vaccination response, screening for disease-

related biomarkers, and evaluating specificity of antibodies.  Compared to DNA 

arrays, protein arrays are not as precise or reproducible [16].  Many research groups 

have used antibody microarrays for biomarker multiplexing and compared their 

results to standard ELISAs [93, 114].  While many journal articles address the 

potential of their platforms to be developed into POC systems, rarely are the reported 

systems actual stand-alone biosensors.   
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A variety of different types of technologies can be applied for protein microarrays.  

Figure 3 shows that there are multiple ways proteins can become attached to a surface 

such as via non-covalent or covalent attachment [116].  Different types of molecules 

can be immobilized onto the surface such as antibodies, peptides, or purified proteins.  

There are many technologies that can be used in conjunction with appropriate buffers 

to keep the immobilized proteins in their most active state.  The figure also shows 

various methods for detection such as fluorescence, with some better than others for 

detection of low concentrations of proteins within small sample volumes.  The 

detection method is important because there are no protein amplification procedures, 

unlike DNA.  ELISAs can amplify the detection signal by employing an enzyme, but 

this does not amplify the protein itself.  Based on the particular application and type 

of analysis desired, certain combinations of arraying technology, immobilization 

technique, capture molecules, and detection techniques (Figure 3) may be more 

suitable than others.  With the right blend of microarray technologies, platforms can 

be designed to perform better than standard ELISA. 

 

Protein microarrays are divided into two main groups: planar surface assays or 

bead/suspension assays [117].  The former can be conducted on glass, silicon, or 

nitrocellulose, and uses solid-phase kinetics.  The latter uses micron-sized beads that 

may be distinguished by color code, shape, or size by using an instrument such as a 

Luminex.  Bead assays use fluid-phase kinetics, which may allow for faster detection 

than using planar surface assays.   
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Figure 3. Different technologies for protein microarrays (adapted from Stoll, D., et al., Protein 
microarray technology. Front Biosci, 2002. 7: p. c13-32) 
 

 

 

Within planar surface arrays, there are two main types of quantitative protein 

microarrays: forward and reverse arrays [16].  Forward protein arrays involve 

immobilizing antibodies onto a surface and assessing the protein levels in samples 

that bind to the immobilized antibodies.  On the other hand, reverse phase protein 

arrays bypass the need for a capture antibody because extracts from clinical samples 

are printed onto the surface which is then probed with proteins or antibodies [118].  

These types of assays are often used to assess phosphorylation status [16].  Reverse 

phase assays have relatively low sensitivity compared to forward phase assays 

because when a protein is present at a low concentration, less proteins of interest bind 
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to the surface compared to others, so primary antibodies have fewer binding sites 

available.  However, reverse phase assays are only limited by the availability of high-

affinity antibodies [118].  Since reverse phase formats rely on a single antibody, 

extensive validation is necessary for this type of assay.  Reverse phase assays are 

common for autoantibody profiling [36].  

 

Biological Molecule Immobilization 

As mentioned, there are a variety of methods for immobilizing biological molecules 

onto different surfaces, using various buffers (Table 2).  One common method for 

immobilization is via nonspecific physical absorption; this technique is not as 

effective and reproducible as employing covalent binding [16].  Covalent binding is 

advantageous because only certain reactive groups are involved in forming bonds.  

Primary amines on the amino acids lysine and arginine are frequently used as the 

reactive group for binding because these groups are present on essentially all proteins.  

The most commonly-used amine-reactive chemistry is N-hydroxysuccinimide (NHS) 

and 1-ehtyl-3-(3-dimethylaminopropoyl) carbodiimide (EDC) because EDC is 

reactive with the carboxyl group present on the surface.  However, this method is 

prone to issues such as hydrolysis of EDC in aqueous environments, susceptibility to 

cross-linking, and the requirement for more than 1000-fold excess of reagent, which 

can cause mixed avidity and heterogeneous architecture [18].  
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Table 2. Biological molecule immobilization techniques 
Reference Buffer Immobilized 

Molecule 
Technique Surface 

 
[119] PBST 

 
Blocking 
agent: PBST 
+ 3% skim 
milk 

Proteins;  
Peptides  

FLEXYS 
Robotic 
Workstation 

FAST (nitrocellulose 
polymer) 

[120] Sodium 
phosphate 
buffer with 
40% glycerol 

Antigens 
 

Shanghai 
Precision 
Instrument 

Epoxysilane-coated 
glass  

[121] Acrylamide/
bisacrylamid
e, Irgacure 
2959, 
glycerol 

Proteins  By hand 
(micropipette 
to create 1ul 
protein spots) 

Acryl-functionalized 
glass slide.   

[122] Phosphate 
buffer 

Ligands Silicone 
gasket used 
to create 50 
wells of 3 
mm diameter 
and 1mm 
thickness to 
create 5-10 
µl volume 
wells 

Hydrogel-coated 
glass slides with 
NHS functional 
groups incubated 
with amine ligand 

[123]  Carbohydrates  Nitrocellulose, 
SAM, thiol-
functionalization 

[124] T-PER-SDS 
buffer 
 

Cell lysates Robotic 
Arrayer 

FAST 

[125] Phosphate 
buffer (0.01 
M, pH 7.2) 

Antibodies Soak in 
solution 

Protein A+ 
Chromium and gold-
coated glass slides 

[126] Acetate 
Buffer 

Antibodies Soak in 
solution 

silicon wafer 
functionalized with 
3-
aminopropyltriethox
ylsilane (APTES) 
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Sometimes, optimizing the surface chemistry is enough to yield reasonable results.  

However, other times, alternate materials such as plastics or silicon, as well as slides 

that are coated with nitrocellulose polymers, e.g. FAST slides are used.  FAST slides 

have been demonstrated as good microarray surfaces because they have low 

coefficients of variation (CVs), low background (especially at blue excitation 

wavelengths), and high signal-to-noise ratios [35, 36, 61, 104].  Alternatively, silicon 

surfaces are promising because they exhibit low intrinsic auto-fluorescence [127], 

may have increased signals compared to microscope glass slides [128], and can be 

modified physicochemically to bind proteins with an affinity comparable to FAST 

slides [124].  In addition, there are a number of different commercial slide surfaces, 

designed specifically for use with robotic microarrayers, which can be evaluated in a 

similar fashion to studies described by Wilson, et al. [35].   

 

Antibodies may be patterned onto the surface using PDMS flow cells, stencils such as 

those described in Chapter 3, or by printing with robotic machines [129].  Proteins 

may become immobilized in two main ways: by physical adsorption or via covalent 

bonds [130, 131].  Physical adsorption requires relatively easy experimental methods, 

but causes the antibodies to be randomly oriented on the surface in various 

conformations, and the antibodies are susceptible to changes in the ambient 

environment.  Alternatively, covalent immobilization provides more control over the 

intermolecular interactions that ensue because there is more orderly orientation of 

antibodies compared to physical adsorption.  Additionally, covalent bonds are 

relatively stable despite changing environmental conditions.   
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Some multiplex protein microarrays require quantification of the signal while for 

other applications, a qualitative response is sufficient.  For example, Rowe-Taitt, et 

al. demonstrated the use of an assay to detect six different biohazardous agents using 

a format that requires fluorescent detection.  Upon imaging, results can be interpreted 

by eye to determine whether or not an analyte is present (e.g. if the spot on the assay 

that probes for a specific analyte is bright or dull)  [132].  In this case, simply 

knowing whether an agent is present is sufficient and the concentration of the agent is 

immaterial.   

 

Some commercial protein microarrays have been developed such as the AtheNA 

Multi-Lyte test system and the BioPlex 2200 ANA screen, which both use Luminex’s 

xMAP technology [117].  These immunoassays can screen for multiple 

autoantibodies that are involved in rheumatic diseases.  The CombiChip Autoimmune 

is another commercially-available product that can be used to help identify 

autoimmune diseases; this product uses nitrocellulose-coated slides and requires 

manual imaging and analysis.  The Meso Scale system uses an 

electrochemiluminescent method and can be used to quantify cytokines, chemokines, 

phosphoproteins, and toxicologic biomarkers, among many others.    

 

Drawbacks of Microarrays 

There are a number of areas of concern when developing multiplex platforms for 

biomarker screening, with reproducibility (inter- and intra-slide variation) and sample 

normalization being the major concerns.  Balboni, Utz, and coworkers have attempted 
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to address some of the issues associated with protein arrays, in particular, antigen 

arrays for autoimmunity [34-36].  A variety of controls can be implemented to allow 

broad market application of microarrays such as replicate spots, negative control 

spots, marker spots for orientation, and  spots to test cross-reactivity of capture and 

detection antibodies [117].   

 

Other factors that can affect the utility of microarrays include the use of polyclonal or 

monoclonal antibodies.  Choosing the most appropriate antibody for experiments is 

important as the affinity and specificity can be affected.  In addition, the conditions 

under which patterning of antibodies takes place such as the temperature and 

humidity must be tightly controlled.  Lastly, blocking the surface with a blocking 

buffer/agent such as PBS + 1% Bovine Serum Albumin (BSA) following patterning 

is critical to prevent non-specific adsorption of proteins.     

 

In addition to assay variability, some microarrays exhibit less-than-optimal linear 

dynamic range [114].  Current methods for analyzing data typically rely upon the 

direct comparison of signal intensities, which limits quantification between antibodies 

and the fluorescent signal.  Microarrays do not have a common standard for detecting 

antibodies that bind to different targets, as opposed to ELISA, which can utilize an 

independent standard curve.  Since the affinity of antibodies for their targets can vary 

in biological matrices, a method is needed to quantify independent antibody 

concentrations in microarrays.  Yu, et al. created a nonlinear calibration to quantify 

the amount of antibody binding to the surface using a microarray nonlinear 
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calibration (MiNC) method.  This method adds a series of known amounts of 

antibodies (from the same species) onto an array.  Immunoglobulin G (IgG) is used to 

create a nonlinear standard curve, which is used to interpolate the amount of antibody 

that specifically binds to the epitope of each protein.   

 

In addition to the drawbacks inherently associated with conducting protein 

microarrays, there are drawbacks with commonly used microarray scanners that are 

used to quantify results.  Using the GenePix for analysis is problematic because the 

lasers used for excitation are confined to either the green or red range (532 nm and 

635 nm) and the blue range is preferred for analyzing microarrays that use QDs.  

Another drawback is that the filter emission cannot be configured with each type of 

label used.   Rather, the GenePix is optimized for Cy3 and Cy5.  The GenePix 4000B 

Microarray Scanner, like the TECAN plate reader is not optimized for POC use.  The 

GenePix has dimensions of 13.5” x 8” x 17.5” and a weight of 25 lbs. and costs 

>$50,000.  The laser power settings are limited to only 100%, 33%, or 10%.  As a 

result, development of data detection platforms that are designed specifically for use 

with a certain fluorescent label are becoming more popular.  In-house developed 

platforms can be configured to employ the proper lasers and filters to administer the 

most appropriate excitation wavelength and to capture the best range of emission 

wavelengths.         
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Lab-on-a-Chip Devices 

Lab-on-a-chip devices integrate processing steps such as sampling, sample pre-

treatment, separation, detection, and data analysis into one small machine.  Ideally, a 

Lab-on-a-Chip device should meet several specifications.  First, the optic, electronic 

and fluidic components of the device must be incorporated in separate compartments 

so that the function of the optics and electronics is not impaired by exposure to fluid 

[48].  Second, the optics components should be incorporated into the device in a 

manner that makes replacing parts easy.  Third, the reservoirs for fluid should be 

amenable for injection molding, as required for mass production.  Fourth, the 

reservoirs for the sample and tracer molecules must be compartmentalized so that 

they do not mix.   

 

Microfluidic systems are capillary networks (10 – 50 µm deep and 10 – 400 µm 

wide) fabricated on materials such as silicon, glass, or polymeric substrates [133].  

Flow of fluid is usually controlled by electroosmotic effects such as application of an 

electric field or vacuum.  Microfluidics can allow for parallelization and integration 

of sample processing steps onto one small device [134].  Other benefits include 

miniaturization, automation, disposable units for single-use devices.  Microfluidic 

systems have been demonstrated for use in protein separation, kinase reactions, and 

immunoassays [133].  Sandwich assay formats, which require addition of the analyte, 

followed by a labeled antibody, have been demonstrated in microfluidic systems 

using glass or polystyrene beads that are immobilized and entrapped with samples 

containing the analyte of interest.  In one example, when a syringe pump was used to 
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control the flow, the reaction time was 30 min for four reaction chambers contained 

on a 50 mm x 70 mm space.  In another example, Weishan, et al. developed a 

“SlipChip” for conducting immunoassays using magnetic beads [135].  This approach 

involved two microfabricated glass slides with various inlets, outlets, and wells where 

the sample was exposed to the reagents required.    

 

Microfluidic systems have rarely matured from the proofs of concept in the academic 

world to commercialized products [134].  However there are some label-free 

microfluidic systems commercially available such as the Triage system and the 

VIDAS platform, which use fluorescence for multiplex detection of proteins related 

to cardiac diseases [117].   

 

Fiber Optic Methods  

Many research groups have developed fiber optic methods for biological sensing 

[106-113].  For example, Wang et al. developed a portable fiberoptic fluorescence 

analyzer for determination of glomerular filtration rate of the kidney in animals [136].  

King, et al., have developed a device called the RAPTOR, a portable optical 

fluorimeter, that uses multiple single fiber optic probes to detect multiple analytes 

(one probe for each target) in a rapid and automated manner [50].  The RAPTOR has 

been shown to fluorescently detect spores and ovalbumin, among other bacterial, 

viral, and protein analytes, in 10 minutes, without any false positives, and without any 

sample processing (samples are added manually or via a computer-controlled air 

sampler) [48].  The authors also demonstrated the ability of the device to be reused 
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with the same efficacy after undergoing several cycles of washing.  This device 

improves upon previous optical biosensors such as the Analyte 2000, which connects 

single fiber optic probes in series to perform a multiplexed immunoassay [103] and 

the MANTIS, the precursor to the RAPTOR [50].  The RAPTOR can perform four 

sandwich immunoassays on the surface of waveguides in a field-deployable format 

where all processes, including data analysis, are automated [48, 50].   

 

Despite its benefits, there are some disadvantages of the RAPTOR, such as its size 

(18.6 cm x 27.4 cm x 17.3 cm) and weight (2 lbs.), both of which are larger than the 

ideal specifications for a portable POC device [50].  Additionally, the RAPTOR 

utilizes a separate fiber optic waveguide to detect each analyte, so each sample must 

be analyzed one at a time, and a total of only four analytes can be detected using its 

four different channels [48].  The next generation RAPTOR, the BioHawk, both sold 

by Research International, can detect up to eight analytes simultaneously, but each 

sample must be assayed individually [137].  The BioHawk design can potentially 

discern between up to eight analytes and assess various samples simultaneously [50]. 
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Summary 

Various types of sensing methods from ELISA and fluorescent immunoassays to 

protein microarrays and hand-held field-deployable POC platforms have a variety of 

applications.  These analytical tools may be used for detecting protein analytes that 

are critical for diagnosing specific diseases such as AKI, which is discussed in 

Chapter 5.  Although the scope of this work relates to diagnosing biomarkers related 

to a specific type of renal disease, the tools described in this chapter can be used for 

other purposes such as detecting contaminants in food, maintaining and monitoring a 

safe water supply, and for detecting proteins that could be involved in a chemical or 

biological attack [83, 138, 139]. 
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Chapter 3: Development and Characterization of 
Planar Surface Fluorescent Immunoassays 

Abstract 

One new optical detection method for proteins involves the use of planar surface 

fluorescent immunoassays using in-house microfluidic templates for design 

production that help minimize sample volume and maximize multiplexing capacity.  

The templates were designed in CorelDRAW X4 and micromachined using a 

computer controlled Epilog Legend CO2 65 W laser cutter.  The dimensions of each 

of the details on the various templates were adjusted in order to minimize the volume 

required for each step of the assay.  Minimizing volume is an important feature for 

clinical test methods as the bodily matrix being tested may be scarce.  Once the 

design templates were optimized, the parameters for performing the immunoassay 

were adjusted by testing various surface modifications and concentrations of the 

immobilized capture antibodies.  Two proteins, Chicken IgG and Staphylococcal 

Enterotoxin B (SEB), were used to characterize and optimize the platform.  These 

two proteins were characterized using standard microtiter plate fluorescent 

immunoassays and demonstrated similar LODs as compared to the planar surface 

fluorescent immunoassays.  While the background fluorescence of the slides have 

some variation, the targeted regions of the slide (functionalized with capture 

antibodies) demonstrated proportional increases in signal as the concentration of the 

target analyte increased and variation among spots did not seem affected by spatial 

position.   
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Background 

An optical sensor platform involving microscope glass slides was named a planar 

surface fluorescent immunoassay.  The goal of this new multiplexed platform is to 

reduce the volume needed to perform an assay several-fold, making incorporation of 

the miniaturized assay into a POC device possible.  This platform builds upon the 

work by Bernard, et al., who developed micromosaic immunoassays to test samples 

against an array of antigens by delivering solutions across a surface using a 

microfluidic network, and Murphy, et al., who applied the immunoassay to a 

sandwich format [30, 140, 141].  Rather than employing silicon wafers fabricated 

using reactive ion etching as the surface, which is a complex technique involving 

production that can cause non-uniformity, roughness, varying aspect ratio 

(depth/width), and damage to the surface, in our work, we use more a cost-effective 

surface, standard microscope glass slides [142].  Instead of using PDMS stencils to 

deliver samples and reagents across the surface, which is hydrophobic and may cause 

proteins adsorption, and requires hours for production, we use a combination of vinyl, 

polycarbonate, and acrylic materials to create the flow channels [143].  The 

performance of this newly-developed platform was assessed in relation to standard 

microtiter plate fluorescence immunoassays.   

 

As mentioned in Chapter 2, antibody microarrays offer many advantages over 

standard techniques, namely the possibility of integration with microfluidics and 

development of a stand-alone biosensor for POC use.  Morales-Narvaez, et al. 

demonstrated the use of an antibody microarray for detection of Alzheimer’s Disease 
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biomarkers using a common method employed by various research groups [93].  In 

this method, microarrays are fabricated by spotting antibodies onto the surface of an 

epoxysilane glass slide using a Microgrid II, a machine that automates the spotting.  

Each spot was kept separate using a microarray cassette and the same general method 

of blocking and performing a sandwich assay was applied involving detection of an 

analyte that relies upon two different antibodies (Figure 4).  The studies presented in 

this chapter improve upon typical antibody microarrays because the surface 

functionalization method applied uses a covalent bond (the strongest intermolecular 

interaction), lowering potential for variation in the surface over time and making the 

assay more amenable to a POC environment.   

 

Capture Antibodies

Surface
Step 1: Sample 

Incubation

Step 3:
Detection

Step 2: Tracer 
Antibodies

Dye
Dye

Capture Antibodies

Surface
Step 1: Sample 

Incubation

Step 3:
Detection

Step 2: Tracer 
Antibodies

Dye
Dye

 

Figure 4. Sandwich assay format experimental methods involving dyes as tracer molecules [144] 
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In order to perform assays on glass surfaces, the surface must be modified with 

functional groups that allow for either covalent or non-covalent biological 

attachment.  Different surface chemistries can be employed for patterning antibodies 

onto the surface of the slide as discussed in Chapter 2.  Some reagents that were used 

to modify the glass surface include epoxy silane, hydrophobic C18 silane, amino-

silane, thiol silane, and thiol silane with an N-gamma-maleimidobutyryl-

oxysuccinimide ester (GMBS) hetero-bifunctional crosslinker.  The GMBS 

crosslinker is composed of anime and thiol reactive chemistries.  These surface 

chemistries cause either covalent interactions or weaker non-covalent interactions 

(Van der Waal’s, electrostatic, or hydrophobic) with the antibodies, resulting in 

surface immobilization.   

 

Our studies have shown the utility of the thiol silane/GMBS crosslinker surface for 

covalent immobilization of antibodies.  The protocol for creating the thiol 

silane/GMBS crosslinker surface is shown in Figure 5 where the glass slide is 

immersed in 10% potassium hydroxide in methanol, followed by exposure to 2% 

thiol-silane in toluene, and addition of GMBS in ethanol.  The GMBS creates an 

amine reactive surface, which is used to covalently attach antibodies.  A conventional 

cross-linker for biosensing applications is glutaraldehyde [145].  Glutaraldehyde was 

not investigated because it is toxic, very messy to handle, can cross-react, can 

adversely affect the physicochemical properties of the surface, and unlike the GMBS 

chemistry described above, has the potential for form multiple layers.   
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Figure 5. Thiol silane/GMBS crosslinker surface functionalization procedure.  GMBS stands for 
4-maleimidobutyric acid N-hydroxysuccinimide ester  
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Another popular immobilization strategy that has been employed to create protein 

arrays involves functionalizing the glass surface with a biotin-binding protein such as 

NeutrAvidin or streptavidin.  In this case, antibodies to be immobilized onto the 

surface must be biotinylated, forming a strong non-covalent bond between the biotin-

antibody and the immobilized avidin-protein.  While the biotin/avidin chemistry is 

non-covalent in nature, it represents one of the strongest non-covalent interactions 

known, with a dissociation constant of ~10-15 M and may improve the sensitivity of 

the system by immobilizing the capture antibody with greater strength than many of 

the other chemistries involving hydrophobic or electrostatic interactions [146, 147].  

Although there are many other immobilization chemistries that exist [34, 61], the 

chemistries listed above have demonstrated success for protein immobilization [92].   

 

The volume needed to perform a standard 96-well microtiter plate (50-100 μL of 

volume/well) assay is comparable to previous studies involving the use of planar 

surface fluorescent immunoassays [32].  However, the goal of this study is to 

minimize the volume required to perform the assay to below 20–80 μL of volume, 

which is what 384-well plates require per well.  

 

Methods 

Materials 

Staphylococcal enterotoxin B (SEB) and affinity purified rabbit anti-SEB were 

purchased from Toxin Technology Inc. (Sarasota, FL).  Rabbit anti-Chicken IgG 

(IgY) and Chicken IgG were purchased from Jackson ImmunoResearch Laboratories 
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Inc (West Grove, PA).  Phosphate buffered saline (PBS), Phosphate buffered saline 

with Tween (PBST), and bovine serum albumin (BSA), methanol, potassium 

hydroxide, toluene, ethanol, dimethyl sulfoxide, (3-mercaptopropyl)triethoxysilane, 

3-glycidyloxypropyl)trimethoxysilane, trichloro(octadecyl)silane, (3-

aminopropyl)trimethoxysilane, 4-meleimidobutyric acid N-hydroxysuccinimide ester, 

and J. Melvin Freed Brand Microscope Slides, Plain were obtained from Sigma-

Aldrich (St. Louis, MO).  Doubly distilled water (ddW) was used throughout the 

experiments and was prepared in house using a Nanopure Diamond™ water 

purification system (Barnstead, Dubuque, IA).  Clear acrylic was obtained from 

Piedmont Plastics (Elkridge, MD). Impact-Resistant Polycarbonate was obtained 

from McMaster-Carr (Robbinsville, NJ).  Fluid handling chips were designed in 

CorelDraw X4 (Corel Corp. Ontario, Canada) and micromachined using a computer 

controlled Epilog Legend CO2 65 W laser cutter (Epilog, Golden, CO).  3M 9770 

adhesive transfer tape was used to hold together the layers of the planar surface 

fluorescent immunoassay.  A REGLO Digital pump and tubing were obtained from 

Ismatec (Wertheim, Germany).  Appropriate connectors for the tubing were obtained 

from Cole Parmer (Vermon Hills, IL).  Data was analyzed using Microsoft Excel 

(Microsoft, Redmond, WA) and GraphPad Prism (GraphPad Software, La Jolla, CA). 

 

Epilog Printer Templates 

In this study, novel stencils were created to allow for patterning of capture antibodies 

onto the surface and performing sandwich assays.  A multi-layer system used for 

patterning and performing assays for protein arrays was designed in CorelDRAW 11 
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(Corel Corp., Ontario, Canada) and then micro-machined in various materials, 

including vinyl, polycarbonate (McMaster), and acrylic (Piedmont Plastics) using a 

computer-controlled laser cutter Epilog Legend CO2 65W (Epilog, Golden, CO).  

The channels made of vinyl (0.25 mm) that were used for patterning and conducting 

the assay had dimensions of 50 mm x 0.4 mm and 18 mm x 0.4 mm, respectively 

(Figure 6).  Double-sided tape was placed on one side of the vinyl and acrylic 

templates to allow for manual application onto microscope glass slides (25 mm x 75 

mm x 1 mm).  Templates were wiped using Kimwipes® disposable wipers (Sigma) 

and ddW to remove debris prior to application. 

 

Surface Functionalization 

Plain microscope glass slides were scored using a diamond-tip tool to create a label 

on the edge of the slide to allow for subsequent identification.  The slides were wiped 

using Kimwipes® disposable wipers (Sigma) and ddW.  Slides were placed in a slide 

holder and immersed in a 10% KOH in methanol solution (5 g KOH in 50 mL 

methanol, which was mixed using a magnetic stirrer).  Following incubation at RT for 

30 min, slides were rinsed in DI water and ddW water, dried, and placed in a new 

slide holder.  A variety of different silane-based surface modifications (3-

mercaptopropyl) trimethoxysilane, 3-aminopropyl)trimethoxysilane, 

trichloro(octadecyl)silane ≥90%, (3-glycidyloxypropyl)trimethoxysilane - ≥98) 

(Sigma) were tested using the procedure demonstrated in Figure 5, but GMBS (step 

3) was only applied for the thiol-silane chemistry.  Slides were placed in a 2% silane 

solution prepared in toluene (1 mL silane in 50 mL toluene) and allowed to incubate 
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for 1 hr. at RT.  Slides were rinsed with toluene using a glass pipette.  If the 4-

maleimidobutyric acid N-hydroxysuccinimide ester (GMBS) cross-linker was used, a 

2mM solution was prepared (12.5 mg were placed in 250 µL dimethyl sulfoxide 

(DMSO)) and vortexed and mixed in 50 mL ethanol.  Slides were immersed in this 

solution for 30 min at RT.  A contact angle goniometer developed in-house was used 

to measure the contact angle when one drop of ddW was placed onto the slide.  The 

patterning template must be attached to the slide surface and exposed to the 

patterning antibody relatively quickly (within ~2 hrs. at a maximum) in order to 

ensure that the chemistry remains active for covalent binding.  In order to manually 

force out air bubbles between the slide and the vinyl patterning template, a piece of 

polycarbonate was placed on top of the template and a plastic tool was used to apply 

pressure on the surface in a sliding motion.  The next template layer (polycarbonate) 

was assembled and air bubbles were removed using this same method.  Manual 

pressure was applied to the final layer (acrylic) to ensure a good seal with the 

polycarbonate layer. 

 

Capture Antibody Patterning  

Antibodies were then patterned onto the surface functionalized glass slides.  Anti-

chicken IgG or anti-SEB antibodies (10 µg/mL) in phosphate buffered saline (PBS) 

were patterned onto the slide in channels oriented in the horizontal direction (Figure 

6) using a REGLO Digital pump.  Experimentally, the antibodies were flowed 

through the device with the use of tubing, appropriate connectors, and a peristaltic 

pump (REGLO Digital; Ismatec, IDEX Health & Science).   
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Figure 6. Epilog printer templates. (A) patterning design, (B) assay design, (C) assembled devices  
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Slides were placed in a petri dish containing wet paper towels to create a humid 

environment.  The channels were covered with parafilm to further prevent 

evaporation.  Following incubation at 4oC overnight, the fluid was withdrawn and the 

patterning template was removed from the slide and the slide was rinsed with ddW.   

 

Planar Surface Fluorescent Immunoassays 

Capture antibody modified slides were blocked for 1 hr. at RT in 1% BSA+PBS and 

rinsed with ddW.  Slides that were not used immediately were stored in PBS for up to 

four weeks.  Slides were dried with air and assay templates were applied by hand, as 

described above for the patterning template.  The slide was then exposed to different 

concentrations of chicken IgG and SEB (0 to 800 ng/mL in 0.1% BSA+PBST (PBS 

with 0.05% Tween)), which were loaded onto the slide via channels oriented 

perpendicular to the rows of patterned capture antibodies (i.e. in the vertical direction, 

(Figure 6) using a REGLO digital pump.  Inlets and outlets were covered in parafilm 

to prevent evaporation and placed in a humid chamber for 1 hr. at RT.  Fluid was 

removed and washed with PBST 3X.  Following washing, Cy5-labeled tracer 

antibodies (Rb anti-Chicken or Rb anti-SEB) in 0.1% BSA+PBST were exposed to 

the slide via vertical channels.  Again slides were covered with parafilm and placed in 

a humid environment for 1 hr. at RT.  Aluminum foil was used to cover the humid 

chamber.  Slides were washed with PBST 3X and the templates were disassembled.  

Slides were washed with ddW and dried with air.   

 58 
 



 In order to test the auto-fluorescence of the glass slide upon functionalization, slides 

were imaged at various power and gain settings using a GenePix 4000B Array 

Scanner (Molecular Devices; California, USA) and compared to the images taken at 

the same settings after conducting the assay.  Investigating auto-fluorescence allows 

for normalization of the fluorescence data (e.g. fluorescence values can be reduced or 

divided by the value of the background fluorescence).   

 

Analysis of the mean fluorescence was conducted by imaging the slide with a 

GenePix 4000B Array Scanner (Axon Instruments, Inc., Union City, CA).  The 

GenePix Array Scanner has two laser light sources—one at 532 nm, and another at 

635 nm.  The 635 nm light source was used to image slides exposed to Cy5.  The 

glass slides were quantified using software associated with the GenePix instrument by 

measuring the mean intensity of each spot minus the background signal adjacent to 

the spot and intensities were normalized.  The quantitative values of the mean 

fluorescence and standard deviation between spots were analyzed using Microsoft 

Excel.  The LOD was determined as the lowest concentration assayed for which the 

signal was larger than 3-sigma of the background measurement.  The background 

measurement was determined by averaging the signal from all of the spots within the 

assay only exposed to buffer rather than a concentration of the analyte. 
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Results 

Surface Functionalization 

Different patterning techniques were investigated in order to optimize the procedure 

for immobilizing multiple proteins onto the surface of the slides.  The five different 

chemistries investigated were CH3-Silane, SH-Silane without GMBS, SH-Silane with 

GMBS, NH2-Silane, and Epoxy-Silane.  These five chemistries were selected because 

of their success in previous investigations [148].  Furthermore, GMBS surfaces were 

selected because they have the least amount of nonspecific binding and the highest 

amount of immobilized antibody compared to aminosilane and adsorption alone 

[149].  The different surface chemistries that were tested had contact angles ranging 

from 42.10 to 87.680 
; hydrophobicity was the parameter measured here because of the 

common association with binding antibodies through non-covalent interactions.  The 

measured contact angles are shown in Table 3.  While CH3-Silane was the most 

hydrophobic chemistry tested, the more hydrophobic surface does not necessarily 

indicate the most reactive with antibodies.  The results presented in this work 

ultimately used the covalent chemistry SH-Silane with GMBS, which targets the 

lysine groups on the surface of the antibodies, because this surface chemistry proved 

to be the most reliable in terms of producing consistent results when repeat assays 

were performed.     
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Table 3. Immobilization chemistries and associated measured contact angles 
Immobilization Chemistry Contact Angle 

CH3-Silane 87.680 ± 4.460 

SH-Silane without GMBS 71.940 ± 1.230 

SH-Silane with GMBS 68.540 ± 1.70 

NH2-Silane 49.750 ± 0.860 

Epoxy-Silane 42.10 ± 0.220 

 

 

Epilog Printer Template Design 

Several design iterations of the vinyl/polycarbonate/acrylic templates were tested and 

used for patterning capture antibodies and performing planar surface fluorescent 

immunoassays.  The vinyl template was chosen to be in intimate contact with the 

glass slide because upon removal, it does not leave a sticky residue on the slide 

surface unlike double-sided tape, which is used to attach the polycarbonate and vinyl 

layers of the structure.  These templates were used in a sandwich format (Figure 4).  

The microfluidic platform was designed to perform all of the assay steps including: 

passing the sample over the protein array surface, performing subsequent washings 

steps, and exposing the array to “tracer” antibodies, which enables detection of the 

target protein.  Figure 6 depicts illustrations of the two microfluidic platform designs 

used during patterning and performing the assay.  These templates build upon designs 

developed by the Ligler group which used PDMS flow cells requiring much larger 

volumes, typically 50 to 100 μL [30].  These templates use only 2 µL/channel for 

performing the assay and only 5µL/channel for patterning the capture antibodies.  
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Each of the channels is 1 mm in width.  In this design, alternating colors of food dye 

were added to the channels to illustrate that no leaking is apparent amongst the 

channels in either the horizontal or vertical directions (Figure 7).  These results 

demonstrate a noticeable reduction in the sample/reagent volumes required and this 

feature makes this device desirable for a POC environment. 

 

 

  

Patterning 

Assay 

 

 
Figure 7. Assembled planar surface fluorescent immunoassay devices containing food dye 
 

Background Fluorescence Post-Patterning 

An experiment was conducted to show that when the patterning antibody is patterned 

onto the surface and washed three times with buffer, the mean fluorescence (aka 

background fluorescence) was consistent.  The graph and slide image show that the 

surface does not display an abnormal fluorescence after patterning (Figure 8). 
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Figure 8. Background fluorescence post-patterning of (A) Rb-anti-chicken IgG at 10 and 20 
µg/mL and (B) corresponding image at 10 µg/mL. 
 

 

Optimal Capture Antibody Concentration 

Experiments were conducted to determine the optimal patterning concentration when 

using three washes in the protocol. The capture antibody, anti-chicken IgG, was 

prepared at 1, 10, 20, and 50 μg/ml and sandwich assays were conducted by exposing 

the surface to chicken IgG, followed by the tracer antibody, Cy5-anti-chicken IgG. 

Experiments using a patterning concentration of 10 μg/ml gave a similar assay dose 

A 

B 
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response as higher patterning concentrations (Figure 9).  As a result, 10 μg/ml was 

selected for use in subsequent studies because of its cost-effectiveness. Using a 

concentration of 10 μg/ml for patterning allowed for use of fewer reagents without 

compromising assay sensitivity. 

 

 

 

Figure 9. Determination for optimal antibody patterning concentration using thiol-silane with 
GMBS chemistry for immobilization. Sandwich assay experiments were conducted keeping all 
parameters the same, except with varied capture concentrations of anti-chicken IgG.  10 µg/ml 
Cy5 tracer was used. 
 

 

In another set of experiments, the effect of flow of PBST over the different surfaces 

patterned at different concentrations (1, 10, 20, and 50 μg/ml) was characterized. In 

these studies, the surface was patterned with the fluorescently-labeled antibody to 

chicken IgG and a “simulated assay” was conducted where instead of exposing the 

surface to the analyte and the labeled antibodies, PBST was used. These experiments 
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bolstered the selection of 10 μg/ml as the patterning concentration because the lower 

concentration (1 μg/ml) did not allow for even coverage of the surface (i.e. surface 

was not evenly saturated).  After 0, 3, and 6 washes with PBST, the fluorescence 

intensity when using 10 μg/ml was consistently the highest with the least variation, 

making this concentration most desirable (Figure 10). The 10, 20, and 50 μg/ml 

patterning concentrations demonstrated similar results after washes with PBST. After 

three washes, non-specifically bound antibodies were removed from the surface, 

yielding lower fluorescence intensities and this difference was most notable in the 

least hydrophobic surfaces (NH2- and Epoxy-Silane). However, after six washes, the 

intensity decreased only slightly, suggesting that additional washes did not remove 

bound antibodies.   

 

 

Figure 10. Effect of number of PBST washes on patterning concentration. Fluorescently-labeled 
anti-chicken IgG was patterned onto the surface and a “simulated assay” was conducted where 
PBST was used for all steps instead of exposing the surface to the analyte and the labeled 
antibodies. 
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In a third set of experiments to determine the optimal capture antibody concentration, 

experiments were conducted using 20 μg/mL or 10 μg/ml as a patterning 

concentration for both anti-SEB and anti-chicken IgG.  As demonstrated, the LOD for 

detecting SEB is halved when the patterning concentration is doubled (Table 4).  

While the prospect of halving the LOD sounds appealing, doubling the patterning 

concentration for SEB is not warranted because of the cost of using more anti-SEB 

reagents. Furthermore, the signal for SEB is not as consistent compared to the 

chicken IgG assays, so the reliability of obtaining this lower LOD does not justify the 

added expense of using a higher patterning concentration. 

 

 

Table 4. LOD for chicken IgG and SEB sandwich assays conducted using either 10 µg/ml or 20  
µg/ml as the antibody patterning concentration and 10 µg/ml for the Cy5 tracer-antibody 
conjugates 

Analyte 
Patterning 

Concentration Tracer Limit of Detection 
Chicken IgG 10 μg/ml Cy5-Rb-Anti-Ch  0.4 ng/ml  
  20 μg/ml   0.4 ng/ml 
SEB 10 μg/ml Cy5-Rb-Anti-SEB 0.3 ng/ml 
  20 μg/ml   0.16 ng/ml 

 

 

Consistency of Capture Antibody without Fluid Flow 

To demonstrate that the capture antibody is patterned evenly onto the surface, the 

surface was patterned with the fluorescently-labeled antibody in certain regions and 

the unlabeled antibody in other regions of the same slide. In these experiments, 

surface was not exposed to the flow of any fluid (Figure 11). The fluorescence 

intensity was consistent across each of the spots where the surface was exposed to the 

 66 
 



fluorescently-labeled antibody.  As expected, the areas exposed to the unlabeled 

antibody had very low intensities.  These image shows that the capture antibody is 

patterned evenly onto the surface and no leaking between the channels occurred in the 

fluorescently-labeled antibody exposed regions. 

 

 

 

 

 

Figure 11. Consistency of capture antibody when (A) patterned onto 
the surface using thiol-silane with GMBS cross-linker as the 
immobilization chemistry and (B) corresponding image  
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Consistency of Capture Antibody with Fluid Flow 

The consistency of the capture antibody across the surface when exposed to the flow 

of fluid was also assessed. The surface was patterned with the unlabeled capture and a 

sandwich assay was performed by exposing the surface to chicken IgG, followed by 

the tracer antibody. The signal was assessed in the patterning channel in three 

locations: above, in, and below the assay channel (Figure 12). The results 

demonstrated that there is no leaking of the assay channels because the intensity in 

the channel where the capture antibody is immobilized is significantly higher than 

above or below the channels. These experiments show that the capture antibody is 

consistently immobilized onto the surface during a sandwich immunoassay. 

 

 

Figure 12. Consistency of capture antibody with fluid flow.  Chicken IgG antibodies were 
patterned onto the surface and exposed to chicken IgG, followed by Cy5 tracer antibodies.  Data 
was taken in the patterning channels, within the assay channel and on both sides of the assay 
channel (i.e. above and below). 
  

 

 68 
 



Effect of Fluid Flow on Fluorescence Intensity 

The effects of fluid flow on the surface when performing a sandwich assay were 

analyzed using each of the immobilization chemistries and data using the thiol/GMBS 

surface are shown in Figure 13. The same intensity pattern was discovered when 

immobilizing either the capture antibody or the fluorescently-labeled antibody and 

exposing the surface to chicken IgG and the tracer antibody. The difference between 

the fluorescence results of either capture antibody at each concentration showed a 

smooth dose response curve. The intensity of the labeled capture antibody was 

consistently higher than that of the unlabeled capture antibody. These data 

demonstrate the consistency with which the assay is performed (Table 5).  While the 

CH3-silane surface shows favorable coefficients of variation for both intra- and inter-

slide variation, the relative intensities were lower than those achieved with the SH-

Silane + GMBS cross-linker.  Since the SH-Silane chemistry with or without the 

cross-linker showed similar CVs, a cross-linker was used in further studies because of 

the advantages of employing a covalent bond for protein immobilization. 
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Figure 13. Effect of flow on fluorescence intensity when a chicken IgG sandwich assay was 
performed.  Either Cy5-anti-chicken IgG or anti-chicken IgG was used as capture antibody and 
Cy5-anti-chicken IgG was used as the tracer molecule.  
 
 
 
Table 5. Intra-slide and inter-slide variation among immobilization chemistries when patterned 
with either anti-chicken IgG or the Cy5-anti-chicken IgG and exposed to chicken IgG, followed 
by Cy5-anti-chicken IgG 

Immobilization 

Chemistry 

Intra-Slide Variation (CV) Inter-Slide Variation (CV) 

Cy5-Anti-

Chicken IgG 

Anti-Chicken 

IgG 

Cy5-Anti-

Chicken IgG 

Anti-

Chicken IgG 

CH3-Silane 0.19 0.20 0.19 0.20 

SH-Silane 

without GMBS 

0.10 0.21 0.26 0.27 

SH-Silane with 

GMBS 

0.13 0.28 0.14 0.29 

NH2-Silane 0.17 0.35 0.18 0.34 

Epoxy-Silane 0.43 0.37 0.28 0.27 
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Spatial Analysis 

The variation of chicken IgG and SEB using a Cy5 fluorescent tracer followed a 

similar pattern when comparing a high and low concentration of analyte.  In other 

words, a slide that had a relatively higher fluorescence at the low concentration, in 

comparison with the other slides, also had a relatively higher fluorescence at the high 

concentration when compared with other slides (Figure 14).  Data for other labels 

such as Cy5-Streptavidin and Cy5-NeutrAvidin that are discussed in Chapter 4 are in 

Appendix A.   

 
Figure 14. Variation of fluorescence among slides at low and high concentrations for chicken IgG 
or SEB sandwich assays using Cy5 tracer 
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Comparison of Five Immobilization Chemistries 

Figure 15 shows each of the five immobilization chemistries used for detection of 

chicken IgG or SEB.  The figures show that when SH-Silane is used with or without 

the GMBS cross-linker, the signal increases in greater proportion with each increase 

in concentration of the analyte as compared to the other chemistries.  The inter-slide 

variability for each chemistry is reasonable for a biological assay where ~15% is 

expected.  The differences in the signal between the surface chemistries became more 

apparent as the concentration of the analyte increased, with epoxy-silane and NH-

silane performing the worst due to the lower increase in signal compared to the other 

chemistries.   A summary of the characteristics of these surfaces is shown in Table 6, 

which indicates that SH-Silane with GMBS is the most ideal immobilization 

chemistry.  An analysis of these surfaces will follow in the Discussion. 
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Figure 15. Comparison of immobilization chemistries for chicken IgG and SEB detection using a 
sandwich assay format 
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Table 6. Summary of immobilization chemistry characteristics 

Immobilization 

Chemistry 
Force Contact Angle 

Ease of 

Procedure 

Consistency 

of Capture 

Antibody 

LOD 

 

Normalized 

Intensity 

Overall 

Reproducibility 

Chicken 

IgG 

(µg/ml) 

 

SEB 

(ng/ml) 

CH3-Silane Covalent 87.680 ± 4.460 No Yes 0.78 Low OK 

0.16 

SH-Silane 

without GMBS 

Hydro-

phobic 

71.940 ± 1.230 Yes Yes 3.1 High Good 

0.16 

SH-Silane with 

GMBS 

Covalent 68.540 ± 1.70 Yes Yes 0.78 High Good 

0.16 

NH2-Silane Non-

Covalent 

49.750 ± 0.860 Yes Yes 3.1 Low OK 

0.16 

Epoxy-Silane Non-

Covalent 

42.10 ± 0.220 Yes No 0.78 Low OK 

0.16 
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Comparison to Microtiter Plate Fluorescent Immunoassays 

Experiments were conducted using fluorescent microtiter plate immunoassays to 

compare the LODs using planar surface fluorescent immunoassays.  Experiments 

using Cy5-antibody conjugates as well as biotin-antibody combined with 

streptavidin-Cy5 conjugates were compared (Figure 16).  The LODs for both chicken 

IgG and SEB detection were on the same order of magnitude.  The LODs for chicken 

IgG detection were 0.4 ng/mL and 0.3 ng/mL for the planar surface and microtiter 

plate fluorescent immunoassays, respectively.  Use of the Cy5-antibody conjugates as 

well as biotin-antibody combined with streptavidin-Cy5 conjugates yielded the same 

LOD for chicken IgG detection.  The LODs for SEB detection were 0.3 ng/mL and 

0.1 ng/mL for the planar and microtiter plate fluorescent immunoassays, respectively.  

Use of the Cy5-antibody conjugates as well as biotin-antibody combined with 

streptavidin-Cy5 conjugates yielded the same LOD for SEB detection.  These results 

demonstrate that the planar surface fluorescent immunoassays perform on par with 

the fluorescent microtiter plate experiments.  However, planar surface fluorescent 

immunoassays are advantageous over 96-well/384-well plate experiments because of 

their greater potential to be developed into a POC device due to smaller reagent 

volume requirements and the ability to automate the fluidic components. 
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Figure 16. 96-well microtiter plate fluorescent immunoassay characterization of chicken IgG and 
SEB.  Cy5 and biotin-antibody/streptavidin-Cy5 methods are shown as well as data using 1 read 
per well (rpw) and 4 reads per well. 
  

 

Luminex 

In addition to exploring fluorescent immunoassays to detect biological molecules, 

bead-based assays using the Luminex 100/200 is a common technique for 

multiplexing that is done in solution rather than using a surface as with the planar 

surface fluorescent immunoassays.  However, like the planar surface technique, but 

unlike ELISA, the Luminex does not use amplification.  The Luminex allows for 
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multiplexing with the use of different “colored” beads that are coated with a capture 

antibody [10].  Measurements regarding proteins, DNA, RNA, and other molecules 

can be made with the use of beads [64].  The Luminex offers up to 500 internally 

color-coded unique beads using various dye combinations and could therefore 

potentially detect up to 500 different proteins simultaneously.  Using this method, 

beads coated with different capture antibodies can be used to detect various analytes.   

 

SEB singleplex detection on the Luminex has an initial jump in intensity above 

background that gives an LOD of approximately 1.9 x 10-6 ng/mL.  However, this 

initial jump remains fairly flat until the dynamic range of the curve which spans a 

region of 0.24 ng/mL to 500 ng/mL.  When testing SEB in a multiplex format with 

three other toxins (Anthrax Lethal Factor, Ricin, and Yersinia enterocolitica), the 

LOD was 0.015 ng/mL. Reported LODs for SEB detection via similar immunoassay 

techniques are typically between 0.003-0.1 ng/mL [150-156].  However, many of 

these reported values are for multiplexed detection or detection in a realistic buffer, 

which raises the background.  The LOD for chicken IgG detection on the Luminex 

was 0.0005 ng/mL with an average dynamic range of 0.3052 to 1250 ng/mL.  The 

Luminex is a promising method for detecting multiple analytes at the same time, and 

there have been some efforts to miniaturize the technology[45, 151]. 
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Discussion 
 
The objective of this chapter was to develop a planar surface fluorescent 

immunoassay for detection of multiplexed protein analytes using low sample and 

reagent volumes.  Various microfluidic designs and materials were tested in order to 

create the new detection platform.  Once the final design was created, in order to 

characterize the immunoassay, a variety of studies were conducted to compare and 

contrast the features of several immobilization chemistries, to optimize the antibody 

patterning concentration and its consistency, to assess the effects of washing the 

surface and fluid flow, and to determine the signal variation both within and between 

slides.  These assessments demonstrated the ability of the planar surface fluorescent 

immunoassay for use in detecting protein analytes.  

 

Template Designs 

In order to demonstrate the advantage of using this new platform over standard 

techniques, the goal was to keep the sample volume below 20 μL, which is the lowest 

working volume recommended to perform a fluorescent immunoassay in a standard 

384-well plate.  Several iterations of various channel dimensions and microfluidic 

designs were investigated to optimize the assay for the needs of multiplexing and 

using low reagent/sample volumes.  Although the design was set at 108 spots with 9 

patterning channels and 12 assay channels, the template could be amended for future 

needs if more or less spots are desirable. 
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Surface Functionalization 

In addition to adjusting the template designs, the surface functionalization chemistry 

could be changed to suit particular needs.  Five different chemistries were tested for 

potential antibody immobilization and thiol silane with a GMBS crosslinker was used 

for the majority of subsequent tests.  Despite the many advantages of using this 

immobilization chemistry for the biosensing needs in this work, different applications 

may make alternate chemistries (e.g., more hydrophobic) more appropriate.  The 

templates used in this work could be applied for performing immunoassays using 

other surface immobilization chemistries.  Not only can the different surface 

chemistries be adjusted based on needs, but different types of assays such as reverse 

phase assays and competitive assays may be possible using planar surface fluorescent 

immunoassays. 

 

Several immobilization chemistries were tested for use with the planar surface 

fluorescent immunoassay.  Taking the standard deviation into account (Figure 15), 

the thiol silane with or without GMBS performed similarly, but due to the LOD, the 

consistency of patterning antibodies onto the surface, and due to other factors 

discussed above, thiol silane with the cross-linker was chosen for further studies.  A 

summary of the parameters that were taken into account when selecting the “best” 

immobilization chemistry are shown in Table 6.  The surfaces with the larger contact 

angles employing covalent or hydrophobic interactions (CH3-Silane and SH-Silane 

with/without GMBS) theoretically should theoretically have yielded the best results.  

However, CH3-silane had a lower level of reproducibility as compared to the SH-
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silane surface.  The LOD for CH3-silane and SH-silane with GMBS were the same 

for both chicken IgG and SEB detection, but the LODs for SH-silane without GMBS 

were not as good as with GMBS for chicken IgG detection.  The fluorescence 

intensity increased more with each doubling of the analyte for SH-silane with/without 

GMBS as opposed to CH3-Silane.  The procedure for thiol/GMBS is easy to conduct, 

results in a covalent bond to consistently immobilize proteins onto the surface, is the 

most reproducible chemistry of five tested, and demonstrates low LODs and large 

increases in signal as the analyte concentration increases.  All of these characteristics 

taken together indicated that SH-silane with GMBS was the most suitable 

immobilization chemistry to use for subsequent experiments.   

 

Patterning Technique: Gridder Accent (Digilab) 

In addition to the vinyl/polycarbonate/acrylic templates that were employed for 

immobilization of antibodies onto functionalized microscope glass surfaces, a Gridder 

Accent (Digilab) was also investigated for depositing antibodies onto glass surfaces.  

The Gridder Accent is a type of contact arrayer, which is a mechanical instrument 

that can be programmed to put antibodies onto a surface in a prescribed pattern for 

creating microarrays.  The instrument can handle up to three reagent plates and can 

pattern up to 50 slides in an environment of variable humidity.  The instrument 

utilizes High-Efficiency Particulate Air (HEPA) filters to operate in a dust-free 

environment and the pins used for printing can be cleaned with the built-in sonication 

system.  Like the manual patterning technique previously described, the microscope 

glass slide must first be primed with a specific type of chemistry.  Various surface 
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modifications such as the thiol silane/GMBS (Figure 5) were investigated to 

determine the optimal one for use with the Gridder Accent.  To perform the assay on 

patterned slides, alternate flow cells were created using Epilog Printer templates.  The 

new flow cells required optimization to reduce sample volume.  Different surface 

chemistries and machine parameters such as humidity were investigated when 

patterning with the Gridder Accent to determine the best conditions for printing on 

various modified surfaces.   

 

Ultimately, use of the Gridder Accent was nixed for future experiments because the 

instrument is large, expensive, requires maintenance and highly-trained personnel for 

operation.  Moreover, microarray printers have already been demonstrated in the 

literature for various uses such as identification of antigens, screening of small 

molecule ligands, and comparison of genotypes [157-159].  Some disadvantages of 

using microarray printers have been noted such as production of spots containing 

higher densities of proteins, which can be problematic when assessing analyte signal, 

and the evaporation of solutions, which are exposed to the environment [160].   

 

On the other hand, the template designs micromachined on the Epilog Printer, 

combined with the method for performing an assay, create a smaller and cheaper 

platform that can be more readily transitioned to a POC device.  Additionally, this 

system is easy to create and customize to particular sensing needs, it is less likely to 

suffer from evaporation of reagents or samples because of the closed channels, and 
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reactions can take place quicker than other techniques because of the microscale 

volumes used [160]. 

 

Immunoassay LOD 

Compared to results published in the literature, our platform’s performance is on par 

with other platforms.  For example, the LOD for SEB in milk was 0.5ng/mL when 

using a PDMS microfluidic device [161].  Other LODs reported for SEB in-house 

developed immunoassays using chemiluminescent methods ranged from 0.01 ng/mL 

to 0.1 ng/mL [162-164].  Despite similar LODs between the planar surface 

fluorescent immunoassay and those reported in the literature, our device is more 

readily amenable to a POC device. 

 

Immobilized Protein Orientation 

There are many methods for immobilizing and orienting proteins onto a surface and a 

review of the published literature describes mixed results regarding the usefulness of 

orientation control.  Consequently, protein orientation procedures were not 

investigated in the experiments described in this work.  Instead, a procedure that uses 

covalent binding for protein immobilization was used because of the non-

controversial benefits of using this type of format.   

 

Immobilization of proteins, either physically or chemically, onto a surface is common 

for numerous biosensing applications [130].  However, immobilization procedures 

can cause proteins to undergo slight, moderate, or even total loss of conformational 
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activity due changes in the structure of the protein.  When proteins are immobilized, 

their conformation changes to enable interaction with the immobilization construct, 

particularly with hydrophobic surfaces.  For example, adding carbonyl groups 

increases the hydrophilicity of a surface leading to an increase in the total number of 

proteins adsorbed, but the proteins often have distorted structures [165].  Due to the 

various molecular interactions involved with the immobilization technique, proteins 

are randomly oriented on the surface, and some proteins may no longer be able to 

recognize the intended target because the epitope (Fab) is hindered by immobilization 

[130, 131].   

 

Covalent immobilization restricts the number of ways proteins can become 

immobilized to specific reactive groups, creating more predictable protein orientation 

[131].  When covalent immobilization is used, enough antibodies randomly orient 

themselves appropriately to undergo the desired biological interactions without 

decreasing sensitivity.  Common residues used for covalent protein immobilization 

are lysine and cysteine because the former is typically present on a protein’s exterior 

(especially antibodies) and the latter can form disulfide bonds via the thiol group 

[130].  One drawback of using lysine residues is that multiple bonds between a single 

antibody and the surface often form, which can reduce binding ability and cause 

multiple orientations of proteins on the surface. 

 

When using noncovalent adsorption, proteins can attach to the surface in numerous 

ways, so orientation of the protein is varied and control is limited.  To allow for more 
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control over the orientation of proteins on a surface, researchers have developed 

alternatives to noncovalent adsorption which position proteins in a manner that 

ensures single point attachment and availability of specific binding sites for further 

interactions [130].  However, it is challenging to orient all antibodies in one direction, 

even using complex procedures.  Studies have indicated improved outcomes by 

controlling the immobilization process in a reproducible manner, such as 

engaging/introducing unique amino acid residues less likely to affect the target 

binding ability of the antibody,  using Protein G or Protein A which target the Fc 

portion of antibodies, or using biotin, which is introduced to unique sites on the 

antibody [130, 166-173].  Protein A can be used to orient proteins on a surface, but it 

is not ideal for sandwich formats because it can non-specifically interact with tracer 

antibodies, causing a high background.  Some studies have demonstrated improved 

assay performance by as much as 10-fold when single point protein immobilization 

strategies were used [165].  Other studies have shown that controlling the orientation 

of proteins can be highly reproducible, yet in some cases only 70% of antibodies are 

in the desired orientation [130, 165].   

 

Despite some of the advantages described, there are various drawbacks with orienting 

proteins onto a surface.  For example, when proteins were covalently linked to the 

surface, researchers did not find dramatic differences in epitope binding between 

oriented and randomly immobilized proteins [130].  In addition, thiol group 

immobilization techniques do not create stable bonds under reducing conditions (i.e. 

the bond to the solid support can become reduced) [130].   Furthermore, researchers 
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found that site-directed immobilization does not necessarily provide advantages.  

When four methods of immobilization (biotin-avidin, thiol/disulfide exchange, 

aldehyde coupling, and carbodiimide coupling) were investigated, each demonstrated 

comparable binding capabilities.  Lastly, coupling via carbohydrate moieties is flawed 

because both the Fab and Fc regions on an antibody may be involved in the 

immobilization process, reducing the ability of the epitopes to bind to the intended 

target.   

 

The results of orientation controls in published literature are contradictory.  Some 

studies demonstrate benefits, while others state there is limited to no improvement.  

Due to these challenges and limited benefits regarding orientation of proteins 

discussed above, the type of immobilization technique employed (covalent bond) in 

our studies, and the success of our experiments, protein orientation procedures were 

not investigated.   
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Conclusion 

Planar surface fluorescent immunoassays were developed using stencils designed and 

created to minimize the amount of sample and reagents needed.  These templates 

were constructed of vinyl, polycarbonate, and acrylic components and only required 2 

µL per channel for patterning antibodies onto the surface and 5 µL per channel for 

performing an assay.  A variety of different surface functionalization chemistries 

were investigated and the best-performing was thiol-silane with a GMBS cross-linker, 

which covalently bonds proteins by their amine groups.  Experiments demonstrated 

low background fluorescence after patterning antibodies onto the surface.  

Experiments were conducted to determine the optimal patterning concentration of 

antibodies (10 µg/mL) as well as the consistency of patterning both with and without 

flow of fluid over the surface.  Planar surface fluorescent immunoassays 

demonstrated higher fluorescence when higher concentrations of analytes were 

present and the proportional increase from one concentration to another was 

consistent among slides.  Comparison of planar surface fluorescent immunoassays to 

standard microtiter plate fluorescent immunoassays and those reported in the 

literature was favorable as the LODs were on the same order of magnitude. 

 

Novelty of work 

There have been no peer-reviewed publications featuring a similar design as the low-

volume planar surface fluorescent immunoassays featured in this work.  This design 

is novel in that only 2 µL is needed per horizontal channel and only 5 µL is needed 
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per vertical channel.  This design is unique in that the assay can be customized to the 

needs of the particular application.  For example, multiplexing is possible in either the 

horizontal direction or vertical direction, enabling either 9 or 12 different samples or 

capture antibodies to be used.   

 

The materials used to create templates for patterning and performing the assay (vinyl, 

polycarbonate, and vinyl) are cheap to purchase and fabricate, making them attractive 

for use.  Assembling the templates in a multi-layer fashion is easy to accomplish, but 

could be made even easier with the use of automated machinery.  The assay itself is 

relatively cheap to conduct because all of the components and reagents needed are 

required in smaller amounts than traditional standard detection systems. 

 

The application of the methods employed for surface functionalization in conjunction 

with the designed templates is new and has not yet been published.  Characterization 

of the assay using two commonly-used analytes demonstrates comparable 

performance compared to standard microtiter plate fluorescent immunoassays.  

However, use of microtiter plates is not amenable to a POC environment.  On the 

other hand, this newly-developed platform is small enough to be incorporated into a 

hand-held device and uses volumes low enough to make it suitable for future 

development into a POC device. 
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Chapter 4: Spatial Multiplexed Detection of Planar 
Surface Fluorescent Immunoassays  

Abstract 

Planar surface fluorescent immunoassays were evaluated for multiplexing of two 

proteins, chicken IgG and SEB.  Assessments demonstrated that there is no cross-

reactivity of the antibody or reagent contamination between the channels when 

patterning antibodies onto the surface or when performing the assay.  Results show 

the specificity of capture and detection antibodies.  Planar surface fluorescent 

immunoassays performed similarly to standard microtiter fluorescent immunoassays 

using a variety of different Cy5-labels.   

 

Background 

This chapter builds upon the work of Chapter 3.  Following characterization of this 

newly developed platform, planar surface fluorescent immunoassays were tested 

using the thiol-silane and GMBS crosslinker chemistry.  Full dose responses and 

LODs were determined for the analytes (chicken IgG and SEB) individually as well 

as in a multiplexed format.  SEB was chosen for investigation because this toxin is 

often involved in testing sensing platforms and usually serves as a basis to compare 

the LOD with other platforms published in the literature.   
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Methods  

Materials 

Staphylococcal enterotoxin B (SEB) and affinity purified rabbit anti-SEB were 

purchased from Toxin Technology Inc. (Sarasota, FL).  Rabbit anti-Chicken IgG 

(IgY) and Chicken IgG were purchased from Jackson ImmunoResearch Laboratories 

Inc (West Grove, PA).  Phosphate buffered saline (PBS), Phosphate buffered saline 

with Tween (PBST), and bovine serum albumin (BSA), methanol, potassium 

hydroxide, toluene, ethanol, dimethyl sulfoxide, (3-mercaptopropyl)triethoxysilane, 

4-maleimidobutyric acid N-hydroxysuccinimide ester, and J. Melvin Freed Brand 

Microscope Slides, Plain were obtained from Sigma-Aldrich (St. Louis, MO).  

Doubly distilled water (ddW) was used throughout the experiments and was prepared 

in house using a Nanopure Diamond™ water purification system (Barnstead, 

Dubuque, IA).  Clear acrylic was obtained from Piedmont Plastics (Elkridge, MD). 

Impact-Resistant Polycarbonate was obtained from McMaster-Carr (Robbinsville, 

NJ).  Fluid handling chips were designed in CorelDraw X4 (Corel Corp. Ontario, 

Canada) and micromachined using a computer controlled Epilog Legend CO2 65 W 

laser cutter (Epilog, Golden, CO).  3M 9770 adhesive transfer tape was used to hold 

together the layers of the planar surface fluorescent immunoassay.  A REGLO Digital 

pump, appropriate connectors, and tubing were obtained from Ismatec (Wertheim, 

Germany).  Appropriate connectors for the tubing were obtained from Cole Parmer 

(Vermon Hills, IL).  Data was analyzed using Microsoft Excel (Microsoft, Redmond, 

WA) and GraphPad Prism (GraphPad Software, La Jolla, CA). 
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The same methods as in Chapter 3 were used in these studies regarding surface 

functionalization, epilog printer templates, and capture antibody patterning for the 

planar surface fluorescent immunoassays, using the optimized SH-silane/GMBS 

chemistry. 

 

Planar Surface Fluorescent Immunoassay 

All of the steps for fabrication, assembly, and experimentation are the same as in 

Chapter 3.  However, if biotin-streptavidin interaction was utilized (Figure 17), after 

exposure of the sample, a detection antibody conjugated to biotin was exposed to the 

surface for 1 hr. at RT in a humid chamber, covered with aluminum foil.  Following 

3X PBST washes, Jackson ImmunoResearch Cy5-Streptavidin (JISA), Thermo 

Scientific Cy5-Streptavidin (TSSA), or Cy5-NeutrAvidin (TSNA) was applied and 

incubated for 1 hr. at RT.  Following exposure to the tracer antibody, 3 washes with 

PBST were conducted.  A GenePix 4000B slide scanner was used to quantify the Cy5 

fluorescence.   
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Figure 17. Comparison of (A) biotin-streptavidin and (B) direct Cy5 detection schemes using a 
sandwich assay format 
 

A 

B 

 91 
 



Results 
 
Planar Surface Fluorescent Immunoassay – Various Detection Labels 

Experiments were conducted to demonstrate the versatility of the platform for use in 

typical sandwich assays using Cy5-labeled antibodies as well as assays utilizing 

biotin (Bt)-streptavidin (SA) interactions. In these assays, the analyte is first bound by 

the capture antibody immobilized on the surface before being exposed to either 

Biotin-anti-chicken IgG (Bt-αCh) or Biotin-anti-SEB (Bt-αSEB), followed by 

fluorescently labeled (Cy5) SA (Figure 17). Three different Cy5-SA conjugates were 

compared: ThermoScientific Streptavidin (TSSA), ThermoScientific NeutrAvidin 

(TSNA), and JacksonImmuno Streptavidin (JISA). Optimization experiments 

demonstrated that the optimal concentrations of biotin and tracer were 10 μg/mL and 

7.5 μg/mL, respectively.  JISA, TSNA, and TSSA performed similarly, so JISA was 

chosen for future experiments due to its cost-effectiveness.  

 

A singleplex image of a sandwich assay involving biotin-NeutrAvidin detection for 

SEB is shown in Figure 18.  This image shows how each spot exposed to a specific 

concentration of chicken IgG is distinct and of a consistent intensity.  To demonstrate 

the full dose response of the assay, experiments were conducted at higher 

concentrations to show saturation of the signal.  For chicken IgG, saturation is evident 

at 200 ng/mL for Cy5-JISA and 400 ng/mL for Cy5-Rb-αcChicken and Cy5-

NeutrAvidin (Figure 19). For SEB, saturation is evident at 400 ng/mL for all tracers 

(Figure 19).  All experiments were conducted at a gain of 700 to allow for analysis 

among slides.  In this mode, the highest mean fluorescence obtained is 65,000 units.   
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Figure 18. Image of planar surface fluorescent immunoassay: Detection of SEB using either 
direct detection (Cy5-Rb-anti-SEB for rows 1-6) or NeutrAvidin (NA)-Cy5 plus Biotin-Rb-anti-
SEB (rows 7-12) as detection label 
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Rows 2, 8 – 1.25 ng/ml 
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Rows 6, 12 – 20 ng/ml 
Tracer Antibody: 
Step 1: Rows 1-6 – 10 ug/ml Cy5 Rb-
anti-SEB 
Rows 7-12 – 10 ug/ml Bt Rb-anti-SEB 
Step 2: Rows 1-6 – PBST 
Rows 7-12 – 7.5 ug/ml Cy5-NA 
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Figure 19. Platform characterization: dose response for SEB and chicken IgG using different 
fluorescent labels: Cy5, biotinylated antibody + Cy5-streptavidin, and biotinylated antibody + 
Cy5-NeutraAvidin 
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Following characterization of the platform for each analyte using direct and indirect 

detection methods, multiplexed experiments involving detection of both analytes 

were conducted.  Figure 20 shows an image of a multiplexed assay using a JISA-Cy5 

detection label.  Simple interrogation by eye shows the specificity for each antibody 

for the respective target protein.  The Cy5-SA tracer or Cy5-SA + Bt-antibody 

demonstrated a much higher signal in the region where anti-chicken capture 

antibodies were patterned and exposed to chicken IgG than in the region where anti-

SEB capture antibodies were patterned (and also exposed to chicken IgG).  For 

example, the upper left quadrant represents the region where Rb-anti-chicken IgG 

capture antibody was patterned on the surface and where chicken IgG was exposed to 

the surface in increasing concentrations from left to right.  The intensity of the red 

spots becomes increasingly brighter as the concentration increases.  There are no 

bright spots in the left-most lane where only buffer was exposed during the assay.  

Additionally, in the bottom left quadrant, where the Rb-anti-SEB capture antibody 

was patterned, there are no bright spots. 
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Figure 20. Image of planar surface fluorescent immunoassay: multiplexed detection of chicken 
IgG and SEB using JacksonImmuno streptavidin-Cy5 as detection label 
 

 

Likewise, the Cy5-SA tracer or Cy5-SA + Bt-antibody demonstrated a much higher 

signal in the region where anti-SEB capture antibodies were patterned and exposed to 

SEB versus the region where anti-chicken IgG capture antibodies were patterned (and 

also exposed to SEB).   The upper right quadrant shows low levels of intensity where 

the SEB assay was performed on the part of the surface where Rb-anti-chicken IgG 

antibodies were patterned.  As predicted, the lower right quadrant, the region where 

Rb-anti-SEB capture antibodies were patterned on the surface, shows increasing 

levels of intensity from left to right as the concentration of SEB increases. These 

 96 
 



results demonstrate the specificity of the anti-chicken antibodies for chicken IgG, and 

anti-SEB antibodies for the SEB.  The image also shows the success of this design in 

that a decrease in fluorescence was associated with a lower amount of the target 

present (the brightness of the red spots decreased).  This data elucidates the success of 

meeting one benchmark—the assessment of any cross-reactivity of the antibody or 

reagent contamination (due to leaking or pipetting error) between channels that could 

occur when patterning or when performing the assay.  Furthermore, no contamination 

occurs because the fluorescence of spots expected to be bright are bright, and vice 

versa.   

 

The results visually shown in Figure 20 regarding the specificity of the capture and 

detection antibodies in a multiplexed format are graphically represented in Figure 21.  

This figure shows that dose response curves for chicken IgG were obtained from 

regions of the glass slide patterned with chicken capture antibodies, but no signal was 

observed in the SEB capture regions of the slide.  Likewise, the second graph in 

Figure 21 shows that dose response curves for SEB were obtained from regions of the 

glass slide patterned with SEB capture antibodies, but not in the chicken capture 

regions.  These results demonstrate the functionality of the multiplex assay.   
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Figure 21. Mean fluorescence vs. concentration for multiplexed detection of chicken IgG or SEB 
in a sandwich assay format. 
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The limit of detection was at or below the background signal obtained on a capture 

region immobilized with chicken IgG when an SEB assay was performed.  Likewise, 

the LOD was at or below the background signal obtained on a capture region 

immobilized with SEB when a chicken IgG assay was conducted.  Here, as the 

concentration of the analyte increased, the fluorescence increased proportionately, but 

the fluorescence of the opposite capture antibody region remained low across the 

slide.  Increasing the concentration of SEB in the assay channel did not increase the 

background signal on the Rb-anti-chicken IgG capture antibody region of the slide.  

These results demonstrate the specificity of the antibodies for their target proteins and 

the ability of the developed platform to clearly separate one channel from another.  

Due to the success of using chicken IgG antibodies and SEB, we expected to be able 

to distinguish other proteins using a similar experimental design.   

 

 

 

 

 

 

 

 

 

 

 

 99 
 



Comparison to Microtiter Plate Fluorescent Immunoassays 

Table 7 shows the LOD for detection of SEB and chicken IgG using the newly 

developed planar surface fluorescent immunoassay and standard microtiter plate 

fluorescent immunoassays (using the 1 read per well setting) for a variety of different 

detection labels.  These results demonstrate that the planar surface platform performs 

on par with the standard platform (LODs are on the same order of magnitude) with 

respect to direct (Cy5) and indirect (Bt-SA) detection methods.  While TSSA yields 

the lowest LOD for detection of either analyte, JISA was used for subsequent 

experiments due to its cost-effectiveness. 

 

 

Table 7. LOD comparison of 96-well microtiter plate and planar surface fluorescent 
immunoassay platforms.  TSNA = ThermoScientific NeutrAvidin, JISA = JacksonImmuno 
Streptavidin, TSSA = ThermoScientific Streptavidin. 
    Limit of Detection 

Analyte Tracer        Planar Surface        
96-well      
Plate 

Chicken IgG Cy5-Rb-Anti-Ch  0.4 ng/ml 0.3 ng/ml 
  TSNA 0.4 ng/ml   
  JISA 0.4 ng/ml 0.3 ng/ml 
  TSSA 0.1 ng/ml   

SEB 
Cy5-Rb-Anti-

SEB 0.3 ng/ml  0.1 ng/ml 
  TSNA 0.3 ng/ml   
  JISA 0.3 ng/ml  0.1 ng/ml 
  TSSA 0.08 ng/ml   
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Discussion 

The objective of this chapter was to demonstrate the multiplexing capability of the 

planar surface fluorescent immunoassay.  The studies presented here investigated 

detection of two proteins, chicken IgG and SEB.  Different tracers involving Cy5 dye 

were used to characterize the multiplex sandwich assays in either a direct (antibody 

conjugated to Cy5) or indirect (using biotinylated antibody and streptavidin-Cy5) 

method.  The LOD and specificity of each label was demonstrated and compared to 

results using standard 96-well plate experiments.  Results showed that the planar 

surface fluorescent immunoassays are capable of multiplexing and perform with 

similar LODs as microtiter plates, but require much less sample and reagent volumes.  

These results are promising for potential clinical use of planar surface fluorescent 

immunoassays for detection of proteins in biological matrices for which large 

volumes may not be obtainable. 

 

Spatial Multiplexing 

While studies have only been done on two analytes and a limited number of detection 

labels, the applications of these methods are much broader because of the ability to 

modify the spatial multiplexing ability for specific sensing needs.  The experiments 

conducted in these studies used the 9 horizontal channels for patterning antibodies 

onto the glass surface and the 12 vertical channels for performing assays.  However, 

if desired, 12 different antibodies could be patterned onto the surface and 9 different 

samples could be tested instead.  Additionally, the template designs could be re-

drawn using CorelDRAW X4 to increase the number of channels in either direction to 
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maximize multiplexing for the desired needs.  While some settings (e.g., power and 

speed) for printing on the Epilog Legend laser cutter may need to be adjusted to 

accommodate different designs and materials, the flexibility exists to create new 

biosensing strategies.  

 

Changing the design and/or materials for conducting immunoassays to cater to 

biosensing needs is not the only way to increase multiplexing potential.  While only 

organic fluorescent labels such as Cy5 were investigated in this study, other labels 

with emission spectrums that span the visible and IR range such as QDs could be  

tested in addition to newer products such as Kodax X-sight nanospheres [174].    

 

 

 

 

 

 

 

 

 

 

 

 102 
 



Conclusion 

This chapter established that two different types of analytes can be detected 

simultaneously, at very low volumes, using Epilog printer templates to perform 

planar surface fluorescent immunoassays.  These results are encouraging for detection 

of biomarkers for which larger volumes may not be obtainable.  The data suggest that 

this type of immunoassay may be capable of detecting more analytes simultaneously 

than currently demonstrated here.  This new platform is promising because planar 

surface fluorescent immunoassays performed similarly to microtiter plate fluorescent 

immunoassays using a variety of different organic labels, employing either a direct or 

indirect (biotin/avidin) detection method.  While microtiter plates are limited in their 

use as laboratory-only experimental assays, planar surface fluorescent immunoassays 

can be leveraged for use in a POC environment.   

 

Novelty of Work 
 
This work represents the first instance of low-volume planar surface fluorescent 

immunoassays for spatial protein multiplexing.  The immunoassay is cheap to 

perform because the required reagents and other components are not needed in large 

quantities.  Since the planar surface fluorescent immunoassays performed as well as 

microtiter plate fluorescent immunoassays using a variety of different tracer 

molecules, the former could be conducted in place of a traditional assay, especially in 

the case where sample volume is limited.   
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Chapter 5: Multiplexed Detection of Renal Biomarkers  
Abstract 

The developed planar surface fluorescent immunoassay was evaluated using 

clinically-relevant biomarkers to provide some insight with regard to the potential 

utility of this technology for applications such as detecting acute kidney injury 

biomarkers.  Specifically, Neutrophil Gelatinase-Associated LiPoCalin (NGAL) and 

Kidney Injury Marker-1 (KIM-1) were evaluated because these biomarkers reflect 

different aspects of renal injury.  These markers may provide earlier clues regarding 

injury (~2 hours post insult) as opposed to standard biomarkers such as serum 

creatinine (SCr) and blood urea nitrogen (BUN), which only indicate damage after 

24-72 hours when the kidney may already be significantly damaged [24-26].  

Colorimetric assays using microtiter plates were used to evaluate these biomarkers 

and compared to planar surface fluorescent immunoassays.  Assays were conducted 

in buffer as well as in spiked control urine and plasma from Sprague-Dawley rats.  

Assays were also conducted using urine and plasma obtained from rats treated with 

gentamicin (a known nephrotoxicant).  While the planar surface fluorescent assays 

did not perform as well as the colorimetric ELISA-based microtiter plate experiments 

due to weaker signals overall (the colorimetric assay has an amplified signal), the 

LODs were still within the clinically-relevant range when spiked into PBS (KIM-

1:401 pg/mL, NGAL:6.3 ng/mL).   
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Background 

Once the optical sensor platforms were thoroughly evaluated, the planar surface 

fluorescent immunoassays were used in further studies for multiplexed detection of 

clinically-relevant renal injury biomarkers.  The previous chapters demonstrated the 

proof-of-concept of the new optical sensor platform, while the focus of this chapter is 

to demonstrate the real-world relevance of this technology.  The planar surface 

fluorescent immunoassays were applied to detection of Acute Kidney Injury (AKI) 

biomarkers. 

 

The kidney filters 350 – 400 mL/100 g of tissue per minute and generates 150 – 180 

L/day of ultrafiltrate, 99% of which is readsorbed, while the remaining 1% is excreted 

as urine [175].  The kidney operates under three basic processes: filtration, 

readsorption, and secretion.  There are many types of diseases that can afflict the 

kidney such as glomerular diseases, urinary tract obstructions, nephrolithiasis, and 

vascular injury, to name a few, and there are a variety of causes for kidney illness, but 

the most common are ischemia, sepsis, and nephrotoxins (endogenous or exogenous), 

with sepsis being the primary cause in the developing world [29].  Ischemia can be 

caused post-operatively from cardiac surgery with cardiopulmonary bypass or result 

from complications due to burns, among other causes and diseases.  Nephrotoxins 

such as contact agents used for imaging, antibiotics or other drugs (e.g. 

chemotherapeutic agents), endogenous toxins (e.g. myoglobin), and exogenous toxins 

(e.g. automobile antifreeze, compounds released from medical device materials) can 

also cause kidney disease because of the extremely high blood perfusion of the 
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kidney and high concentration of substances where water is readsorbed [29, 176].  All 

of these causes of kidney injury can lead to a diagnosis of Acute Kidney Injury 

(AKI). 

 

The focus of this chapter is on detection of biomarkers associated with AKI.  AKI is 

characterized by a sudden onset of impaired kidney function, causing retention of 

waste products that are normally cleared by the kidneys [29].  AKI is not a single 

disease, but a group of conditions that cause an increase in blood urea nitrogen 

(BUN) and/or an increase in the plasma or serum creatinine (SCr) and often a 

decrease in urine output.  AKI is diagnosed as an elevation in SCr concentration of at 

least 0.3 mg/dL or 50% higher than baseline within a period of 24-48 hours or a 

reduction in urine output to 0.5 mL/kg per hour for greater than 6 hours.  AKI is a 

major public health concern because it is associated with a high mortality rate of up to 

80% [3].  BUN and SCr are not ideal biomarkers because they are up-regulated when 

2/3 of the nephron’s function has already been diminished.   

 

Diagnosis of AKI using more sensitive and specific biomarkers has many 

applications.  For example, novel biomarkers could be tested in preclinical 

evaluations to improve identification of nephrotoxic compounds [176].  These novel 

biomarkers could also be used during clinical trials for evaluating new drugs and 

medical devices as exposures to residues and contaminants can cause renal 

pathogenesis.  Testing kidney biomarkers could also be useful for identifying 

exposure to toxic compounds that may be occupational concerns.  For example, 
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workers in the heavy metal industries are routinely monitored for renal risk and 

would benefit by being tested by more sensitive and specific biomarkers [177].  

Another area where early markers of nephrotoxicity may be beneficial is to test 

recipients of metal-on-metal implants, which may release cobalt and chromium, 

molecules that are correlated with renal failure [177]. 

 

It may be particularly important to diagnose AKI using a small POC device in the 

case of a biological attack on a large population where rapid diagnosis using small 

samples is critical.  For example, exposure to lipopolysaccharide (LPS) from Gram-

negative bacteria can cause systemic vasodilation and decreased renal perfusion and 

subsequent AKI [28].  Additionally, exposure to LPS causes an innate immune 

response and cytokine release, which may cause a nephrotoxic effect, leading to AKI 

[29].  Use of a small diagnostic device is also useful for operation in a low-resource 

setting such as in the developing world where AKI is a major medical complication 

resulting from infectious disease or diarrheal illnesses.  A POC device would also be 

useful following a crash injury or natural disaster such as an earthquake where 

kidneys could be adversely affected.  Lastly, rapid diagnosis using a small POC 

device is critical because subsequent early treatment is often more successful.   

 

There are various limitations of the RIFLE (acronym for Risk, Injury, and Failure; 

and Loss, and End-stage kidney disease) criteria for diagnosis of AKI [178].  For 

example, the criteria rely upon changes in serum or plasma creatinine, which often 

unreliably responds to changes in glomerular filtration rate (GFR).  Although 
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normalization of new kidney biomarker levels to serum creatinine (SCr) is 

controversial, a recent study states normalization is not beneficial since patients are 

not in a steady state of creatinine turnover [179]. Since SCr is a relatively small 

molecule (113 Da), it can pass through the glomerular filter while larger molecules 

such as NGAL cannot.  Furthermore, RIFLE depends upon baseline creatinine levels, 

which may not be easily obtainable for many patients who have already started to 

exhibit renal complications.  Moreover, SCr relies upon an assumed level of lean 

muscle mass, which may not represent the individual patient accurately.  SCr has 

been known to rise and fall depending upon the cause of AKI, so repeated 

measurements are needed to assist in determining the appropriate therapeutic 

intervention.   

 

Another biomarker that is often used to assess kidney function is blood urea nitrogen 

(BUN), but this marker, along with SCr, is insensitive for early and subtle renal insult 

as the kidney compensates for renal mass loss [180].  Due to the many issues 

associated with the RIFLE criteria and measuring BUN, there is a need for more 

sophisticated biomarkers that can be quantified to assess kidney function and assist in 

AKI diagnosis.  SCr and BUN are functional biomarkers that measure GFR and are 

slow to rise following injury.  If urine output drops to the level of the current 

diagnostic measure of AKI, additional novel biomarkers could be used to test urine 

output.  This could help to determine the root cause of AKI and personalize 

subsequent treatment.  In addition to the need for more specific biomarkers, 
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assessment of multiple biomarkers using the appropriate biological matrix is helpful 

to compensate for the relative weaknesses of some individual markers. 

 

Understanding the compositions of the plasma and urine proteomes provides insight 

to the input and output of the kidney, respectively.  To fully investigate kidney 

function, measuring biomarkers in these two matrices is important, but testing in 

urine is useful from a practical perspective due to its noninvasive nature [180].  Jia, et 

al. analyzed the proteomes of human plasma and urine  and discovered that there are 

distinct plasma-only proteins,  urine-only proteins, and select proteins found in both 

matrices [175].  While many proteins found in urine are due to kidney filtration and 

secretion, some are derived from shedding of glands in the urine tract, and a subset of 

these proteins may interfere with kidney output, which can impact interpretation of 

kidney biomarkers.  One difference between the proteins in urine and those in plasma 

is that those in urine have a molecular mass lower than ~45 kDa because all proteins 

larger than this mass cannot be filtered via the kidney [181].  A recent study by Jia, et 

al. determined that there are 2611 proteins in plasma and 1522 proteins in urine when 

secreted proteins from the kidney were removed from analysis [175].  These proteins 

are involved in many biological processes such as response to wounding, response to 

stress, cell adhesion, among others.  Based on these findings, it is important to 

investigate the presence of biomarkers in both plasma and urine to fully appreciate a 

patient’s kidney status.  Plasma is particularly important for evaluation because it 

represents the most comprehensive version of the human proteome [181]. 

 

 109 
 



The biomarkers NGAL and KIM-1 were investigated in plasma and urine because 

they show better sensitivity and specificity than BUN and SCr [180].  These 

biomarkers have high stability in urine and have no interference with pathologies 

unrelated to the kidney [3].  KIM-1 is one of the best-described biomarkers for renal 

damage and it is qualified preclinically as an accepted biomarker by the US Food and 

Drug Administration and the European Medicines Agency, and Pharmaceuticals and 

Medical Devices Agency [180].  This biomarker adds information to SCr and BUN 

and outperforms them.  KIM-1 can indicate damage in the proximal tubule and is a 

transmembrane protein expressed by the tubule epithelial cells following injury [26].  

KIM-1 is also a receptor for phosophatidylserine and enables the phagocytic capacity 

to remove cell debris following injury.  KIM-1 plays a critical role in renal 

regeneration and has been shown to be elevated in response to nephrotoxic agents 

such as gentamicin, mercury, cadmium and chromium [25, 176, 180].  Studies have 

shown that urinary KIM-1 is as predictive of the severity of kidney injury as renal 

histopathology and can be detected at lower doses of nephrotoxicant as compared to 

BUN and SCr [176].  In one study, KIM-1 was elevated after exposure to three 

different nephrotoxicants (gentamicin, chromium, and mercury) after 72 hours while 

BUN and SCr were no different from controls.  KIM-1 is increased in patients 

diagnosed with AKI of various causes, particularly in patients who obtained renal 

transplants or had tubular dysfunctions [25, 180].  KIM-1 may be elevated less than 

12 hours following renal insult and can discriminate between causes of renal failure 

when other biomarkers cannot [182].  These studies demonstrate the sensitivity and 

specificity associated with KIM-1, which may be able to improve detection of AKI.  
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However, since KIM-1 is such a new clinical biomarker, there are no known fully-

established and accepted reference intervals or values above which damage is 

indicated. 

 

NGAL, also known as Lipolaclin-2 is indicative of tubule damage (not specific to 

proximal or distal portions).  NGAL can show one of the earliest responses to renal 

damage, but may increase with several kidney injuries and can be released from a 

number of tissues following acute distress [176, 180].  NGAL is found in activated 

neutrophils and epithelial cells and is considered an acute-phase protein.  NGAL 

participates in glomerular filtration and readsorption by proximal tubule cells as well 

as innate immune response [25].  NGAL is low in healthy kidneys, has been shown to 

have an elevated response to gentamicin, and is increased in patients with AKI of 

various causes [25, 180].  An emerging body of literature suggests that measuring 

NGAL in either urine or plasma can be useful for detection of inflammation and 

following exposure to endotoxin as well as detection of AKI [28, 176, 183].  In one 

study, NGAL has the most consistent predictive performance of AKI, up to 24 hours 

prior to clinical presentation of the disease, when compared with KIM-1, α-

glutathione-S-transferase, and π-glutathione-S-transferase [179].  Since NGAL is not 

as specific as other biomarkers, it is important to multiplex additional biomarkers.  

Vashist, et al. claims that the healthy ranges of NGAL in urine and plasma are 110 – 

40,000 ng/mL and 25 – 3491 ng/mL, respectively, but that in acute renal failure, these 

values can rise above 350 ng/mL and 400 ng/mL for urine and plasma, respectively 

[184].  However, the Mayo Clinic states that the cut-off value for NGAL in urine, 
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above which AKI is apparent, is 65 ng/mL [185].  Other studies have cited the cut-off 

value of NGAL as 150 ng/mL [186, 187].  Similar to KIM-1, more research may be 

needed to define the most informative reference interval for NGAL, if any [24].  

However, unlike KIM-1, NGAL is not yet clinically-approved for diagnostic 

purposes.     

 

Nevertheless, companies are developing technology to detect NGAL.  For example, 

the diagnostics company Alere is developing a POC test to detect NGAL for use as a 

predictive biomarker of AKI following cardiopulmonary bypass surgery [17].   While 

prevention of false positives and false negatives are both important for development 

of a diagnostic test for AKI, much more care should be taken to avoid false negatives.  

The consequences of not detecting AKI early enough could result in the patient 

developing irreversible kidney damage, leading the patient to need dialysis or a 

kidney transplant.  On the other hand, the consequences of treating a patient 

suspected of having AKI with fluids or administering drugs to correct the problem in 

the case of a false positive are not as dire because treatments are less likely to cause 

irreversible damage and the patient would probably be in a monitored setting in the 

hospital.     

 

Table 8 shows various concentrations of KIM-1 and NGAL that have been reported 

in rats or humans.  The data illustrates that the kidney may respond differently to 

these various insults, which contributes to the diversity in the reported values.   
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Table 8. Concentrations of reported Acute Kidney Injury biomarkers in healthy or diseased 
subjects 
Reference Species Nephrotoxic 

Agent 
Biological 
Matrix 

KIM-1 NGAL 

[25] Sprague 
Dawley Rats 

Cisplatin Urine 48.26 pg/mg 
creatinine 

2911.8 pg/mg 
creatinine 

[26] Wistar rats 
(male) 

Gentamicin: 
60 mg/kg 
bw; 120 
mg/kg bw 

Urine 80 µg/24 hr. at day 
7; 120 µg/24 hr. at 
day 7 

100 µg/24 hr. at day 
7; 80 µg/24 hr. at 
day 7 

[26] Wistar rats 
(male) 

BI-3: 100 
mg/kg bw; 
1000 mg/kg 
bw 

Urine 10 µg/16 hr. at day 
12; 150 µg/16 hr. 
at day 12 

30 µg/16 hr. at day 
12; 500 µg/16 hr. at 
day 12 

[26] F344/N rats 
(male) 

Ochratoxin 
A: 
21 µg/kg bw 
70 µg/kg bw 
210 µg/kg 
bw 

Urine 0 ng/20 hr. at day 
90; 
75 ng/20 hr. at day 
90; 
75 ng/20 hr. at day 
90 

1800 ng/20 hr. at 
day 90; 
1900 ng/20 hr. at 
day 90; 
1700 ng/20 hr. at 
day 90 

[188] Wistar rats 
(male) 

IMM125: 
30 mg/kg 
bw 
100 mg/kg 
bw 

Urine 0.4 ng/mg 
creatinine at day 
12;  2 ng/mg 
creatinine at day 12 

N/A 

[189] Humans 
(Caucasian) 

Healthy; 
Altered 
glucose 
tolerance 

Serum N/A 60 ng/ml;  
50 – 150 ng/ml 

[178] Humans 
(Swedish) 

ICU patients 
with septic 
shock with 
and without 
AKI  

Plasma;  
Urine 

N/A Plasma: 134 ng/ml 
w/o AKI; 216 with 
AKI 
Urine: 63.5 ng/mg 
creatinine w/o AKI; 
319 with AKI 
 

[182] Humans Healthy Urine 500-1000 pg/ml N/A 
[186] Humans Healthy Plasma N/A Cut-off value 150 

ng/ml after 2 hours 
post insult  

[187] Humans Healthy Urine and 
Plasma 

N/A Cut-off value of 150 
ng/ml after 2 hours 
post insult  
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These numbers highlight the challenge when comparing results from various research 

groups because of the multiple variables that are not constant from one study to 

another: the time point at which measurements are taken, the agent and dose used to 

cause nephrotoxicity, the reported units of each biomarker, the species of rat, duration 

of study, etc.  Natural variation exists between individuals, so analyte levels are 

expected to increase or decrease based on physiological states, as well as age and sex 

[17].  In addition, people’s ethnicity can influence the risk of developing AKI (e.g. 

Malays have an increased risk compared to Chinese), which could suggest that 

baseline levels of biomarkers may be naturally elevated in certain populations and 

that the clinical presentation of the disease could vary based on the person’s heritage 

[190].   

 

Even if differing reference intervals were developed based on a personalized 

assessment of factors including ethnicity, standardization and development of a cut-

off point or reference interval is complicated by the fact that different standards are 

generated by various organizations [17].  Some organizations develop standards 

based on bioassay units, others based on mass or mass concentration units.  Even 

International Standards can have different cut-off points regarding whether the test is 

an immunoassay or other type of assay.  For example, human chorionic gonadotropin 

(hCG), which is detected in POC pregnancy tests, has a standard of 75/589 for all 

tests except immunoassays, where the standard is 99/688.  In some cases, it is better 

for each laboratory to determine its own cut-off level based on a normal population 

rather than relying on one reference interval. 
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Just as the stated values of KIM-1 and NGAL vary from one research group to 

another, under different conditions for healthy and unhealthy subjects, there is also 

variability among the LODs reported for these biomarkers.  Vashist, et al. developed 

an ELISA for NGAL detection that utilizes a chemical crosslinking mechanism as 

opposed to traditional passive adsorption  [184].  They reported an LOD of 3 pg/mL 

and a dynamic range of 2.5 – 5120 pg/mL, which improves upon conventional ELISA 

(LOD of 44 pg/mL and detection range of 40 – 5120 pg/mL).  A comparison of the 

reported LODs for various commercially-available sandwich ELISA kits for NGAL 

detection are shown in Table 9.   

 

 

Table 9. Comparative analysis of commercially-available sandwich ELISA kits for NGAL 
detection [184] 
Manufacturer LOD 
R&D Systems, Inc. 78 pg/ml 
Boster Biological Technology Co., Ltd. 10 pg/ml 
Antibody Immunoassay Services 0.4 ng/ml 
BioPorto Diagnostics 0.2 ng/ml 
CycLex Co., Ltd 26.7 pg/ml 
BioVendor 20 pg/ml 
Argutus Medical 0.4 ng/ml 
 
 

 

The studies in this chapter aimed to ascertain whether planar surface fluorescent 

immunoassays can simultaneously detect and quantify certain clinically-relevant AKI 

biomarkers, namely KIM-1 and NGAL, and how its performance compares to 

standard techniques.   
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Methods 

Materials 

Rabbit anti-Chicken IgG (IgY) and Chicken IgG were purchased from Jackson 

ImmunoResearch Laboratories Inc (West Grove, PA).  Phosphate buffered saline 

(PBS), Phosphate buffered saline with Tween (PBST), methanol, potassium 

hydroxide, toluene, ethanol, dimethyl sulfoxide, (3-mercaptopropyl)triethoxysilane, 

4-meleimidobutyric acid N-hydroxysuccinimide ester, J. Melvin Freed Brand 

Microscope Slides, Plain, Corning Costar® flat bottom high binding clear 96-well 

assay plates, Thermal Seal® sealing film for 96-well plates, sulfuric acid, 

tetramethylbenzidine liquid substrate, and bovine serum albumin (BSA) were 

obtained from Sigma-Aldrich (St. Louis, MO).  Sureblue TMB Microwell peroxidase 

substrate was obtained from KPL (Gaithersburg, MD).  Doubly distilled water (ddW) 

was used throughout the experiments and was prepared in house using a Nanopure 

Diamond™ water purification system (Barnstead, Dubuque, IA).  Commercially-

available colorimetric kits were evaluated using 96 well plates (colorimetric 

detection) and planar surface fluorescent immunoassays.  R&D System Cat# DY3689 

was supplied with a monoclonal capture antibody and a polyclonal detection antibody 

for KIM-1 detection.  R&D Systems Cat# DY3508 was supplied with polyclonal 

capture and detection antibodies for NGAL detection.  Clear acrylic was obtained 

from Piedmont Plastics (Elkridge, MD). Impact-Resistant Polycarbonate was 

obtained from McMaster-Carr (Robbinsville, NJ).  Fluid handling chips were 

designed in CorelDraw X4 (Corel Corp. Ontario, Canada) and micromachined using a 

computer controlled Epilog Legend CO2 65 W laser cutter (Epilog, Golden, CO).  
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3M 9770 adhesive transfer tape was used to hold together the layers of the planar 

surface fluorescent immunoassay.  A REGLO Digital pump, appropriate connectors, 

and tubing were obtained from Ismatec (Wertheim, Germany).  Appropriate 

connectors for the tubing were obtained from Cole Parmer (Vermon Hills, IL).  Data 

was analyzed using Microsoft Excel (Microsoft, Redmond, WA) and GraphPad Prism 

(GraphPad Software, La Jolla, CA). 

 

96-Well Plate ELISA Studies using Standards 

The microtiter plate ELISAs were conducted in a sandwich format (Figure 4).  In this 

format, capture antibodies were immobilized onto the surface of the wells.  Only a 

single capture antibody species was immobilized onto the surface (using 50 µL per 

well).  In these experiments, either 2 µg/mL of Anti-KIM-1 or 0.8 µg/mL of Anti-

NGAL in PBS were immobilized in each well.  To allow ample time for the capture 

antibodies to adsorb to the plate, the plate was sealed with Thermal Seal® sealing film 

and incubated for overnight at RT.   

 

The 96-well plates used in this study were clear Corning Costar flat bottom high-

binding polystyrene plates that have an ionic/hydrophobic chemistry that enables 

them to bind to the capture antibodies.  No preparation was required to prepare the 

surface of each well to ensure binding to the capture antibodies.  The antibodies 

randomly oriented themselves and attached to the surface.   

 

 117 
 



The following day, the wells were emptied and washed three times with 200 µL/well 

Wash Buffer (0.05% Tween® 20 in PBS).   The surface was blocked with 300 µL per 

well of a blocking buffer (1% BSA and PBS) to prevent non-specific binding to the 

surface.  The plate was placed on a rocker for ~1 hr. at RT during blocking (The 

Belly Dancer, Stovall LifeScience, Inc, Greensboro, NC, USA), followed by three 

washes with the Wash Buffer. 

 

The next step of the immunoassay was to expose the wells to the target antigen (50 

µL/well) for 2 hrs. on a rocker, followed by three washes with the Wash Buffer to 

remove any non-specific binding (4 x 200 µL/well).  The singleplex immunoassays 

were exposed to samples of either KIM-1 (0–500 pg/mL) or NGAL (0-5000 pg/mL) 

in 1% BSA + PBS.  The wells were exposed to either the KIM-1 (200 ng/mL) or 

NGAL (150 ng/mL) biotin-labeled detection antibody and placed on a rocker for 2 

hrs. followed by three washes to remove any non-specific binding (3 x 200 µL/well).  

Each well was exposed to 100 µL of 1:200 Streptavidin-HRP (in 1% BSA + PBS) for 

20 min on the rocker and covered with aluminum foil to prevent direct exposure to 

light.  Following, three washes with the Wash Buffer, the wells were exposed to 100 

µL of the Substrate Solution (Tetramethylbenzidine (TMB)), covered with foil, and 

placed on the rocker for 20 min.  The Stop Solution (1 M Sulfuric Acid) was applied 

to each well (100 µL) and the plate was tapped to ensure thorough mixing.  The 

optical density of each well was determined using a plate reader (Tecan Infinite 

M1000 Dual Monochromator Multifunctional Plate Reader (Tecan, Research 

 118 
 



Triangle Park, NC)) set to measure absorbance at 450 nm.  Data was analyzed and 

interpreted using Microsoft Excel.   

 

Negative controls were always present for each assay to determine whether the assay 

was performing appropriately.  For example, a negative control involved exposing 

some wells of the 96-well plate solely to buffer instead of samples.  In this case, the 

capture antibodies were exposed to buffer only and therefore were not exposed to the 

analyte, but were exposed to the detection antibody, Streptavidin-HRP, Substrate 

Solution, and Stop Solution. 

 

Planar Surface Fluorescent Immunoassays using Standards 

The same methods described previously were used in these studies regarding surface 

functionalization, epilog printer templates, and capture antibody patterning, except 

the antibodies, standards, and detection antibodies were those involving KIM-1 and 

NGAL.  Note that the assays conducted here used the Biotin-antibody conjugate + 

Streptavidin-Cy5.    

 

Capture antibody modified slides were blocked for 1 hr. at RT in 1% BSA+PBS and 

rinsed with ddW.  Slides that were not used immediately were stored in PBS for up to 

four weeks.  Slides were dried with air and assay templates were applied by hand.  

The slide was then exposed to different concentrations of KIM-1 and NGAL in 1% 

BSA+PBS, which were loaded onto the slide via channels oriented perpendicular to 

the rows of patterned capture antibodies (i.e. in the vertical direction, Figure 6) using 
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a REGLO digital pump.  Inlets and outlets were covered in parafilm to prevent 

evaporation and placed in a humid chamber for 1 hr. at RT.  Fluid was removed and 

washed with PBST 3X.  After exposure of the sample, a detection antibody (either 

anti-KIM-1 or anti-NGAL) conjugated to biotin (in 1% BSA+PBS) was exposed to 

the surface for 1 hr. at RT.  Following 3X PBST washes, Jackson ImmunoResearch 

Cy5-Streptavidin (JISA) (in 1% BSA+PBS), was applied and incubated for 1 hr. at 

RT in a humid chamber, covered with aluminum foil.  Following exposure to the 

tracer antibody, 3 washes with PBST were conducted and the templates were 

disassembled.  Slides were washed with ddW and dried with air.  A GenePix 4000B 

slide scanner was used to quantify the Cy5 fluorescence.   

 

Each biomarker was characterized individually and assays were optimized first in a 

buffer matrix, using purified target biomarkers, and then in spiked plasma or urine to 

fully characterize the LOD of the assay under different conditions.  LOD is defined as 

the concentration at which the signal is greater than the background signal plus three 

standard deviations.  In these studies, the LOD was specified as the lowest 

concentration measured for which the intensity meets the requirements defined above 

rather than that extrapolated from a curve fit plot.  Once each biomarker was 

characterized and optimized individually, the assays were analyzed in a multiplexed 

format.   

 

In order to address the many issues associated with protein arrays, duplicate spots and 

controls were included in our experimental design, such as those outlined below: 

 120 
 



(a) Incorporate a minimum of three repeat capture regions for each biomarker on the 

array surface, which can be used to account for inter- and intra-slide variation.   

(b) Spike a non-related positive control, chicken IgG, into the sample (at a fixed 

concentration) prior to analysis, with the appropriate capture antibody immobilized 

onto the array [25].  

(c) Expose the surface to PBS without containing any biomarker for use as a negative 

control. 

 

Commercial Urine & Plasma from Rats 

Non-filtered urine and plasma (with sodium heparin) was obtained from mixed 

gender Sprague Dawley rats (Bioreclammation, NY).  These samples were used to 

conduct ELISAs using 96-well plates and planar surface fluorescent immunoassays 

using the same procedures as above, except instead of using buffer as the matrix, 

urine or plasma was used as the matrix.  An “in house” biomarker-positive matrix 

was generated (containing spiked NGAL or KIM-1) and biomarker-negative matrix 

(i.e. not spiked with target and therefore contains just a baseline/inherent level of the 

target of interest) and exposed to the platform.  The matrix (e.g. urine) was prepared 

at the LOD as well as at concentrations within the clinically-relevant range for each 

analyte to establish the sensitivity of the assay.  Normal background levels of KIM-1 

and NGAL are around 500 – 1000 pg/mL and 150 ng/mL, respectively [182, 187].  In 

order to encompass the relevant ranges, 50% serial dilutions were conducted from 

500 ng/mL for NGAL and 50% serial dilutions were conducted from 8 ng/mL for 

KIM-1.   
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Sprague-Dawley Urine Samples 

Urine from Sprague-Dawley rats was obtained as a gift from FDA collaborators for 

use in planar surface fluorescent immunoassays.  These animals had been exposed to 

gentamicin at 50, 100, 200, and 300 mg/kg and urine was collected after 24 hours.  

Our collaborators also shared data for NGAL and KIM-1 in these samples as obtained 

by using Meso Scale technology, which employs a chemiluminescent method for 

detection.   

 

Results 

96-Well Plate ELISA Studies using Standards 

One benchmark for success when evaluating the performance of the new platform in 

its ability to detect clinically-relevant biomarkers is to compare the performance with 

the gold standard for protein detection, ELISA.  Therefore, the biomarkers KIM-1 

and NGAL were characterized using standard instrumentation and methods.  A 

colorimetric kit purchased from R&D Systems was used to perform ELISAs to detect 

KIM-1 and NGAL.  The assay was conducted on 96-well microtiter plates using 

horseradish peroxidase (HRP) as the colorimetric tag and performed better than the 

kit anticipated, with a LOD of 19.5 pg/ml for KIM-1 and 78 pg/ml for NGAL (Figure 

22).   
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Figure 22. Colorimetric ELISA assays for NGAL and KIM-1 detection in PBS.  LOD for NGAL 
is 78 pg/mL and LOD for KIM-1 is 195.5 pg/mL. 
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Planar Surface Fluorescent Immunoassays using Standards 

Different surface chemistries were tested as described in previous chapters.  Despite 

attempts of using different immobilization chemistries such as CH3-Silane, the 

measurements were still best using the thiol-silane and GMBS chemistry, mainly 

because of issues with reproducibility using the CH3-Silane.  All results present here 

represent those obtained using thiol-silane with the GMBS crosslinker. 

 

Experiments were conducted using AKI biomarkers by spiking the standards into 

PBS.  A dose response was conducted for KIM-1 with a LOD of 401 pg/mL (Figure 

23).  This LOD is one order of magnitude lower than the LOD for KIM-1 using the 

96-well plate colorimetric ELISA detection method (fluorescent immunoassay 

method was unavailable).  This difference in the LODs between the planar surface 

fluorescent immunoassay and the colorimetric ELISA 96-well plate assay is lower 

than expected based on previous studies comparing the two detection methods.  Our 

studies demonstrated a 2-3 order of magnitude difference between fluorescence and 

colorimetric detection, with both methods using 96 well microtiter plates.  By 

comparison, the planar surface method performed better than anticipated.  Detection 

of KIM-1 has a dynamic range from 401 pg/mL to 260 ng/mL, as evidenced by both 

the graph and image in Figure 24.  The LOD for NGAL is 6.3 ng/mL, which is two 

orders of magnitude higher than detecting NGAL with the colorimetric assay (Figure 

23).  The maximum concentration detected was 260 ng/mL (Figure 24).  Compared to 

clinically-reported levels of KIM-1 and NGAL (discussed in the Background section 
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of this chapter), the LODs for these AKI biomarkers are below the level that is known 

to indicate disease (KIM-1:500-1000 pg/mL, NGAL:150 ng/mL) [182, 187]. 
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Figure 23. LOD for KIM-1 (401 pg/mL) and NGAL (6.3 ng/mL) in buffer using planar surface 
fluorescent immunoassay 
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Figure 24. Normalized dose response for KIM-1 and NGAL using planar surface fluorescent 
immunoassay. KIM-1: LOD 401 pg/mL, NGAL: LOD 6.3 ng/mL 
 

 

Following individual characterization of each biomarker, multiplexing by detecting 

both KIM-1 and NGAL on the same slide was conducted (Figure 25).  The mean 

fluorescence intensity at the highest concentration for KIM-1 is about six times higher  

than the mean fluorescence intensity at the highest concentration for NGAL.   
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Row 1: Anti-Chicken IgG

Rows 2-5: Anti-KIM-1
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Rows 1-12 – 7.5 μg/mL Cy-JISA

 
Figure 25. Image of planar surface fluorescent immunoassay: multiplexed detection of KIM-1 
and NGAL using JacksonImmuno Streptavidin-Cy5 as detection label 
 

 

 

This finding may be due to the different kinds of antibodies employed for each 

biomarker’s detection.  The capture antibody for NGAL and the detection antibody 

for NGAL are both polyclonal.  However, the capture antibody for KIM-1 is 

monoclonal and the detection antibody for KIM-1 is polyclonal.  Due to the higher 

specificity of monoclonal antibodies compared to polyclonal antibodies, assays using 

monoclonal antibodies are oftentimes less sensitive.  The specificity of antibodies for 

their target may be one of the contributing factors for why NGAL detection differs 

from KIM-1 detection.   
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Another reason why the system does not perform equally when detecting KIM-1 and 

NGAL is because the size of the antigens and their antibodies are different and each 

protein is composed of a different combination of amino acids.  The capture antibody 

of NGAL may alter its conformation due to binding the glass slide, which could 

adversely affect its interaction with the analyte. 

 

Unspiked Commercial Urine & Plasma from Rats  

96-well plate ELISA 

Comparisons of the multiplexed platform with standard technology (ELISA) allows 

for a comprehensive evaluation of the performance of the platform with respect to 

clinically-relevant analytes.  Experiments were conducted using unspiked, pure 

control urine or plasma to determine the baseline level of KIM-1 and NGAL.  Since 

the background signal of the biomarkers were high, diluting the matrix was necessary.  

The buffer dose-response curves were used to determine the background level of 

KIM-1 and NGAL in the control samples. 

 

Pure plasma and urine (wells 12 and 11) and 3X dilutions of each biological matrix 

(wells 10 to 2) using PBS as the diluent were prepared to determine the baseline level 

of KIM-1 and NGAL present in control samples (Figure 26).  Well 12 was patterned 

with the opposite capture antibody and exposed to 100% of the biological matrix to 

assess cross-reactivity.  Well 1 was exposed to PBS rather than diluted plasma or 

urine.  Standard curves for KIM-1 and NGAL spiked in PBS are also shown in the 

figure for comparison.  The mean absorbance of NGAL or KIM-1 in plasma was 
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compared to the respective standard curve in PBS for determination of the baseline 

levels.  Results are reported in Table 10.  Diluting plasma 243 times (well 6 in Figure 

26A) was suitable for determining the concentration of NGAL from the standard 

curve (well 10 in Figure 26A), whereas diluting plasma 9 times (well 9 in Figure 

26A) was adequate for determining the concentration of KIM-1 using the standard 

curve (well 9 in Figure 26A).  Diluting urine 243 times (well 6 in Figure 26B) was 

suitable for determining the concentration of NGAL from the standard curve (well 8 

in Figure 26B), whereas diluting urine 3 times (well 10 in Figure 26B) was adequate 

for determining the concentration of KIM-1 using the standard curve (well 7 in Figure 

26B).  Results showed that the baseline level of KIM-1 in either matrix was 

comparable (558 pg/ml in urine and 750 pg/ml in plasma) (Figure 26).  NGAL 

detection in plasma and urine showed similar baseline levels, with NGAL in plasma 

(pNGAL) slightly higher (607 ng/ml) than urinary NGAL (uNGAL; 456 ng/ml).  

These results suggest that the amount of NGAL and KIM-1 have different baseline 

levels in plasma and urine; this may be due to the natural disparity of this protein in 

plasma and urine.  Since NGAL is expressed in both the distal and proximal tubule, 

but KIM-1 is expressed only in the proximal tubule of the kidneys, it is reasonable to 

expect the baseline level of NGAL to be higher than that of KIM-1 [180].  

Additionally, it is reasonable to expect pNGAL to be higher than uNGAL because 

pNGAL is implicated in innate immunity. 

 129 
 



 

 

 
Figure 26. Colorimetric ELISA microtiter plate detection of KIM-1 and NGAL at various 
dilutions of (A) plasma or (B) urine.  Standard curves for KIM-1 and NGAL spiked into PBS are 
shown as the blue diamond and green triangle, respectively.  Well 12 was exposed to the opposite 
capture antibody (e.g. anti-NGAL for the KIM-1 standard curve).  100% of the matrix and 3X 
dilutions of the matrix in PBS are shown in wells 112.  Well 1 was exposed to PBS.  N = 3; 
average %SD is 24.5. 
 

 

 

 

A 
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The baseline levels of KIM-1 and NGAL in urine and plasma did not agree with the 

baseline levels obtained by the Meso Scale platform (Table 10).  However, these 

specimens did not come from the same source.  The urine and plasma used for the 

colorimetric studies were obtained from rat samples provided by a company, 

Bioreclammation.  The studies conducted on the Meso Scale instrument were 

obtained by in-house IACUC animal procedures.  These results highlight the 

variability of KIM-1 and NGAL that may be present in healthy control rats.   

 
 
 

Table 10. LOD comparison of AKI Biomarkers among platforms.  LODs are reported for the 
planar surface fluorescent immunoassay and colorimetric assays in buffer.  All other values are 
average concentrations of control rat samples. The known human reference intervals are shown. 

 
 

 

 

Biomarker Planar 
Fluorescent 
Surface 
Immunoassay 

Colorimetric 
Microtiter 
Plate 

Meso 
Scale 
(Obese 
Wistar 
Rat) 

Meso 
Scale 
(Lean 
Wistar 
Rat) 

Meso 
Scale 
(Sprague 
Dawley 
Rat) 

Human 
Reference 
Interval  

PBS 
KIM-1 

LOD 401 
pg/ml 

LOD 3.9 
pg/ml 

N/A N/A N/A N/A 

PBS  
NGAL 

LOD 6.3 
ng/ml 

LOD 19.5 
pg/ml 

N/A N/A N/A N/A 

Urinary 
KIM-1 

0.5 ng/ml 558 pg/ml 1.78 
ng/ml  

0.17 
ng/ml 
 

1.01 
ng/ml 
 

500-1000 
pg/ml 
[182] 

Urinary 
NGAL 

125 ng/ml 456 ng/ml 331 
µg/ml 
 

41 
µg/ml 
 

211.77 
ng/ml 
 

>150 
ng/ml 
diseased 
[186, 187] 

Plasma 
KIM-1 

1 ng/ml 750 pg/ml N/A N/A N/A N/A 

Plasma  
NGAL 

63 ng/ml 607 ng/ml N/A N/A N/A N/A 
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Planar Surface Fluorescent Immunoassay  

Studies were conducted to ascertain whether the planar surface fluorescent 

immunoassay platform is capable of simultaneously detecting and quantifying KIM-1 

and NGAL in urine and plasma.   

 

Planar surface fluorescent immunoassays were conducted using 100% control urine 

and 100% control plasma as the matrix.  Figure 27 shows an image of a slide that was 

probed for KIM-1 and NGAL.  This slide shows a minimal fluorescent signal in the 

KIM-1 region, indicating that the background level of KIM-1 in either urine or 

plasma is below the level detectable by this platform.  Due to the lower sensitivity of 

the slides as compared to ELISA, the background level of KIM-1 was not an issue for 

detecting elevated levels of this biomarker.  NGAL, on the other hand had a relatively 

high background level, demonstrating that level of NGAL is either naturally high in 

these matrices.  There may also be interfering molecules in plasma and urine that 

non-specifically bind to the polyclonal NGAL antibody, as evidenced by Figure 28.  

The background levels on KIM-1 and NGAL in urine and plasma are shown in Table 

10.  The level of KIM-1 in plasma and urine agrees with the baseline levels in these 

matrices as obtained by ELISA.  uNGAL and pNGAL, however, do not agree with 

baseline levels obtained via colorimetric 96-well plate detection and some reasons for 

this discrepancy are discussed in the Discussion section.   
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Patterning (10 μg/ml) 

Rows 1: Anti-Chicken IgG

Rows 2-5: Anti-KIM-1

Rows 6-9: Anti-NGAL

1
2
3
4
5
6
7
8
9

A) Control Urine B) Control Plasma

 

Figure 27. Images of KIM-1 and NGAL detection in unspiked commercial control (A) urine or 
(B) plasma using planar surface fluorescent immunoassays.  Capture antibodies were patterned 
onto the surface and exposed to the 100% of the matrix (urine or plasma), followed by the 
biotinylated detection antibodies and Cy5-Streptavidin.  Chicken IgG was used as a positive 
control 
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Spiked Commercial Urine & Plasma from Rats  

Dilutions of urine and plasma were prepared at 100%, 50%, 25%, 10%, and 1% using 

PBS as the diluent.  These solutions were then spiked with NGAL or KIM-1 in a 

region that is clinically relevant as described in the Methods Section to carry out 

experiments using planar surface fluorescent immunoassays.  As shown in Figure 28, 

urine diluted to 50% and plasma diluted to 10% is best for detecting KIM-1 in the 

clinical range with both achieving a LOD of 2 ng/mL.  In contrast, urine at 1% and 

plasma at 1% is best for detecting NGAL in the clinical range with LODs of 31 

ng/mL and 63 ng/mL.  The dilution for the biological matrix was deemed optimal 

when it approximated the biomarker standard in PBS.  The fact that urine and plasma 

need to be diluted in buffer prior to conducting an assay is expected as other 

researchers have also needed to dilute these biological matrices 10X to obtain results 

for KIM-1 and NGAL using rat samples.  LODs for KIM-1 and NGAL when spiked 

into diluted plasma and urine are shown in Table 11.   

 134 
 



Urine: NGAL Detection

Spiked Concentration (ng/mL)

N
or

m
al

iz
ed

 F
lu

or
es

ce
nc

e

0 200 400 600
0.0

0.5

1.0 Standard
100% Urine
50% Urine
25% Urine
10% Urine
1% Urine

  

  

 

 
 
 
 

 

  

  

 

 
 

  

  

  

 
 
 

  

  

 

 
 
 
 

 

Plasma: NGAL Detection
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Urine: KIM-1 Detection
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Plasma: KIM-1 Detection
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Figure 28. Detection of NGAL or KIM-1 spiked into control plasma or control urine using 
planar surface fluorescent immunoassay 
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Table 11. LOD of NGAL and KIM-1 when spiked into diluted urine or plasma and detected with 
planar surface fluorescent immunoassays 

Biomarker Biological Matrix Dilution of Matrix LOD 
NGAL Urine 1% 31 ng/ml 
NGAL Plasma 1% 63 ng/ml 
KIM-1 Urine 50% 2 ng/ml 
KIM-1 Plasma 10% 2 ng/ml 

 
 

 

Rat Urine and Plasma Samples 

Planar surface fluorescent assays were conducted using urine from rats exposed to a 

known nephrotoxicant, Gentamicin, at 0, 50, 100, 200, or 300 mg/kg.  Results shown 

in Figure 29 are for 100% urine (i.e. no dilutions in PBS were conducted).  This slide 

image illustrates that NGAL can be detected in rat urine even at high doses of 

exposure to the antibiotic.  Although the level of NGAL in urine after exposure to 300 

mg/kg is expected to be markedly higher than the control level, the detection system 

(GenePix 4000B) can still discern the signal, which has not reached its maximum.  

Consequently, planar surface fluorescent immunoassays can be used to detect renal 

injury biomarkers above baseline levels, including after exposure to nephrotoxicants.     
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Figure 29. NGAL detection in urine from rats exposed to 0, 50, 100, 200, or 300 mg/kg of 
Gentamicin, a known nephrotoxicant 
 

 

Discussion 

The objective of this chapter was to demonstrate the applicability of planar surface 

fluorescent immunoassays to a real-world public health need for renal injury 

biomarker detection.  We showed that the developed platform can detect both KIM-1 

and NGAL in a multiplexed format in buffer as well as in urine and plasma, but 

detection in biological matrices requires dilution in order to obtain reliable results.  

We compared our results to standard 96-well plate colorimetric assays and noted 
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discrepancies between the two methods, which will be discussed in more detail 

below.  Since there are no widely-accepted, clinically-relevant levels of KIM-1 and 

NGAL that indicate pathology, we cannot state with certainty that our platform would 

be useful for healthcare needs. Once the medical community develops consensus 

regarding the levels of these biomarkers that indicate disease, more tests can be 

conducted on the platform to determine its relevance for AKI intervention.  

 

Microtiter Plate Fluorescent Immunoassays 

As shown in the Results section, planar surface fluorescent immunoassays were 

compared to colorimetric assays using 96-well plates rather than direct comparison to 

microtiter plate fluorescent immunoassays.  Baseline levels of KIM-1 in urine and 

plasma as determined by ELISA were comparable to the levels obtained using the 

planar surface fluorescent immunoassay.  However, this was not the case for 

detection of NGAL in urine and plasma.  This difference may be due to a variety of 

reasons including the fact that ELISA is more sensitive and less susceptible to matrix 

effects than the planar surface fluorescent immunoassay.  Baseline level differences 

are expected when using two different platforms for NGAL detection because unlike 

KIM-1, NGAL has presented discrepancies in the absolute values of this biomarker 

when comparing Meso Scale technology to Luminex xMAP technology.  In this 

study, by Pavkovic, et al. reported there were systematic error and biases when 

calculating baseline levels of NGAL.  This same inconsistency was reported by others 

who analyzed NGAL using the same platforms, but with samples from different AKI 

root causes.  These differences shed light on the issue that baseline levels of 
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biomarkers may be platform-specific and that reference intervals may need to be 

determined for each detection system rather use of a global reference interval. 

 

In addition to ELISA, microtiter plate fluorescent immunoassays were conducted for 

KIM-1 and NGAL and these experiments data did not yield meaningful results.  A 

fluorescent detection method was applied to detection of KIM-1 and NGAL in urine 

and plasma using 96-well plates and all experimental steps were the same as with the 

colorimetric assays, with the exception of Streptavidin-HRP, which was replaced with 

Streptavidin-Cy5.  Some reasons why results the fluorescent studies were 

uninformative are: the assay is not sensitive enough for fluorescent detection, the 

assay performs better when amplification is possible, as with the colorimetric 

detection method, and the antibodies and proteins were optimized for colorimetric 

detection rather than fluorescent detection.  Certain antibodies raised for a particular 

assay (e.g. ELISA) may not recognize the same antigen because the conformation of 

the antibody may be altered when used in a different assay [17].  Previous studies in 

our laboratory have demonstrated that fluorescent detection LODs are about 2 - 3 

orders of magnitude higher than colorimetric assays.  In addition to fluorescent 

detection not being as sensitive as colorimetric detection, renal biomarkers, especially 

NGAL, may be harder to detect because the capture antibody and detection antibody 

are polyclonal, rather than monoclonal.  A monoclonal antibody, such as that used for 

KIM-1, has higher specificity and may have a resulting higher sensitivity.   
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Amplification of the signal, which is made possible by the enzymatic conversion of 

substrate into product in ELISA detection methods, is not available for direct Cy5 or 

biotin-antibody/Streptavidin-Cy5 fluorescent formats.  One method for signal 

amplification is to use a polymer with amines, which can be biotinylated or 

conjugated to a dye.  A polymer, poly(allylamine hydrochloride), was conjugated to 

biotin and Cy5 and used in a sandwich assay (the biotinylated detection antibody was 

exposed to streptavidin, followed by the Cy5-conjugated poly(allylamine 

hydrochloride)).  Despite this attempt to amplify the fluorescent signal, this method 

did not yield meaningful results over the full dose response.  An amplification 

strategy that has been shown to amplify the signal up to 1000-fold could be tested in 

future studies [17].  This technique applies enzymes and substrates in a coupled cycle 

where the product of the conventional enzyme-substrate reaction is not detected; 

rather, two recycling enzymes convert this product to a new form and back to the old 

form many times.  The products from substrate 2 and 3 may be detected as 

fluorescent, colored, or luminescent.  Another potential method for amplifying the 

fluorescent signal, which may be studied in the future, is to use a product called 

ELAST that is available by Perkin Elmer.  This product uses biotinylated antibodies 

to amplify the signal.  Still, another method that could be tested is enzyme-generated 

fluorophores, which may be used in conjunction with time-resolved fluorescence 

[17].  A variety of salicyl phosphates can be used as substrates for alkaline 

phosphatase (AP).  AP produces fluorophores when chelated with lanthanides in the 

presence of ethylene triamine tetra-acetic acid (EDTA).  This technique combines 

amplification of an enzyme with a very sensitive signal generation system.  Even 
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though we could not compare our results for renal biomarker detection using planar 

surface fluorescent immunoassays to microtiter plate fluorescent immunoassays, 

based on previous characterization experiments shown in Chapters 3 and 4, we 

believe the two platforms would be expected to perform similarly. 

 

Planar Surface Fluorescent Immunoassays 

The developed planar surface fluorescent immunoassays demonstrated clinical utility 

for detecting both KIM-1 and NGAL in the known clinical range for urine and 

plasma.  Although a background level of each of the biological matrices was detected, 

the assays performed on par with the standards in PBS when either urine or plasma 

was diluted.  Detection of KIM-1 showed the greatest congruence with experiments 

conducted in buffer and diluting urine to 50% was adequate to detect this biomarker 

when spiked into solution.  Detection of NGAL in urine showed the highest 

background and diluting the matrix to 1% was needed.  This is because the baseline 

level of NGAL in control animals is quite high, around 125 ng/mL in urine and 63 

ng/mL in plasma.  However, despite the baseline levels of NGAL in each biological 

matrix, when diluting plasma or urine with PBS, the background signal is still above 

that of using PBS as the matrix.   

 

These results suggest that some component of urine or plasma interferes with the 

assay.  If there were no molecules interfering with the assay, we would expect that 

with each increasing dilution of the biological matrix, the dose response curves would 

become closer to the dose response curves in buffer and that the background levels 
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would decline in a predictable manner.  However, since this is not the case and the 

background level of 1% of urine or plasma is still high, we can conclude that there are 

negative effects due to the matrix used.  The source of this matrix effect could be due 

to molecules naturally-present in the matrix or chemicals or other substances that may 

have been used in the sample collection devices [17].  Some molecules that are 

known to cause background fluorescence in plasma are NADH and bilirubin, among 

other proteins [17].  The antibodies used in the assay may be low-affinity antibodies, 

which are more susceptible to sample interferences and matrix effects.  To address the 

issue of background fluorescence, experiments could be conducted using time-

resolved fluorescence where measurement of the emitted light occurs after a time gap 

following excitation of the fluorophore, however, this would require special labels 

such as terbium chelates.  Antibody fragments could also be tested rather than the full 

antibodies, which could lower the non-specific binding.    

 

As mentioned, the baseline level of NGAL in urine was determined to be 125 ng/mL, 

which is double the level of NGAL in plasma (63 ng/mL).  These results are in 

agreement with the level of 150 ng/mL reported in the literature [187].  The level of 

KIM-1 was found to be 500 ng/mL and 1 ng/mL in urine and plasma, respectively. 

These levels agree with the reported range of 500 – 1000 pg/mL found in the 

literature [182].  Therefore, even though the clinically-relevant levels of these 

biomarkers have not been completely established by the medical community, based 

upon current knowledge, this platform is suitable for use in a clinical setting for 

 142 
 



measuring KIM-1 and NGAL in either plasma or urine because our platform can 

measure these analytes above the baseline levels. 

 

The LOD for detecting spiked NGAL in urine at a 1% dilution was 31 ng/mL.  The 

LOD for detecting spiked NGAL in plasma at a 1% dilution was 63 ng/mL.  The 

LOD for detecting spiked KIM-1 in urine at a 50% dilution was 2 ng/mL.  The LOD 

for detecting spiked KIM-1 in plasma at a 10% dilution was 2 ng/mL.  These results 

(Table 11) demonstrate that when the biological matrix is diluted, a LOD below the 

baseline level for NGAL (Table 10) can be achieved, meaning that the platform can 

detect increases in this biomarker and potentially the diseased state of a patient.  The 

baseline levels of KIM-1 in plasma and urine (Table 10) are below the LOD, but 

detection at 2 ng/mL may be the lowest level needed to change clinical management 

of AKI.  A rise in 1-1.5 ng/mL above baseline may not indicate a large enough rise in 

the biomarker to indicate disease, so this LOD may be adequate.  More clinical data is 

needed to determine the pathological range for KIM-1. 

 

One limitation to the experiments conducted with the planar surface fluorescent 

immunoassays is that the biological matrices were diluted prior to spiking the 

standard into the samples.  This procedure was conducted as a way to save reagents 

and supplies.  However, spiking the standard into the 100% biological matrix 

followed by diluting the sample may be a more appropriate way to measure the 

biomarkers in samples.  Further studies may be warranted to investigate this spiking 

protocol.  
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Comparisons to Results in the Literature 

As described in the Background section of this chapter, the literature has widely 

varying data regarding the levels of these biomarkers obtained in rats and humans.  

Table 10 shows the comparison of the levels of KIM-1 and NGAL in rats, as detected 

on the tested platforms: planar surface fluorescent immunoassays, colorimetric 

ELISA 96 well plate studies, Meso Scale evaluations of both obese and lean Wistar 

rats and normal Sprague Dawley rats.  As shown in the table, when experiments were 

conducted in PBS and spiked with either KIM-1 or NGAL, the LODs using 

colorimetric assays involving microtiter plates were lower than the LODs using 

planar surface fluorescent immunoassays.  Despite the fact that the LODs are higher 

for the planar surface fluorescent immunoassays, they are still distinctly lower than 

the baseline levels of the biomarkers, as detected by the planar surface fluorescent 

immunoassays, the colorimetric experiments, and the MesoScale experiments 

involving three different species of rats.   

 

Despite the public health concern of detecting and characterizing AKI biomarkers, 

relevant ranges for both humans and rats have not yet been established for NGAL and 

KIM-1 in plasma or urine, following various doses of nephrotoxic drugs, or other 

exposure to agents that may cause AKI.  As more information is known regarding 

potential relevant ranges of these biomarkers, if any, the context of our results can be 

better explained with regard to clinical relevance.  Our research investigated the 

possibility of a quatitative assay for AKI biomarker determination.  However, future 

studies may indicate that semi-qualitative devices may be sufficient to determine the 
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presence of NGAL and KIM-1 as negative, low positive, medium positive, or high 

positive [17].  Alternatively, qualitative assays may be sufficient to detect an elevated 

concentration of an analyte.  It is still too early to state the clinical significance of our 

work for diagnosing AKI, but we have demonstrated that detection of KIM-1 and 

NGAL is possible using the developed planar surface fluorescent immunoassay. 

 

One study by Zhang, et al. demonstrated a multiplexed electrochemiluminescent 

immunoassay for detection of four renal biomarkers in urine [24].  These experiments 

demonstrated imprecision below 15%, required 25 µl of sample, and took 5 hours to 

run.  Reported LODs were 2.29 pg/mL and 0.02 ng/mL for KIM-1 and NGAL, 

respectively.  They discovered that NGAL is higher in females and that reliance upon 

a reference interval may not be appropriate due to the individual variation in 

expression and concentration, particularly for NGAL.  For example, researchers have 

reported values of NGAL as low as 3.2 pg/mL and as high as 3.0 µg/mL.  

Furthermore, NGAL in normal adults has been reported with a median from 12 to 38 

ng/mL with an upper limit of 107 to 396 ng/mL and an intra-individual variability of 

84 to 142%.  Efforts to normalize markers with respect to urinary creatinine are 

flawed due to varied excretion rates.  The overall conclusion of this study was that 

clinical strategies for AKI detection vary based on the biomarkers used because of the 

biological variability and baseline levels among patients.  Serial measurements of 

patient biomarker levels may be superior to comparison to a reference interval.   
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While one of the issues with personalized medicine is the intrinsic individual 

variation, which may require many repeat measurements of biomarkers over time, 

there is still great promise for future developments that could outweigh this potential 

drawback.  Nevertheless, based on the known cut-off levels of KIM-1 and NGAL in 

plasma and urine and the LODs of the planar surface fluorescent immunoassay, we 

can conclude that the platform performs within the known clinically-relevant ranges.   

 

 

Conclusion 

The planar surface fluorescent immunoassay platform is a viable option for KIM-1 

and NGAL biomarker detection, which are implicated in early identification of AKI.  

These studies show that the platform can be applied to detection of AKI biomarkers 

present in biological matrices such as urine and plasma and can be detected within the 

known clinically-relevant limits.  Our demonstration of NGAL detection in rat urine 

after exposure to a nephrotoxicant indicates that our platform may be useful for 

evaluation of clinical samples. 

 

While the planar surface fluorescent immunoassay LODs were not as low for either 

biomarker as compared to ELISA, the LODs were adequate to detect KIM-1 and 

NGAL in rat plasma and urine in a multiplexed fashion at clinically relevant levels.  

These biomarkers were abundantly present in control rats, making a very low LOD 

unimportant.  Rats treated with gentamicin, a nephrotoxic drug, had even higher 

concentrations of KIM-1 and NGAL, which were detectable with the newly 
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developed platform using diluted samples.  The planar surface fluorescent 

immunoassay was compared to Meso Scale chemiluminescent detection methods.  

Results showed that different types of rats under investigation (e.g. species and 

whether they were lean or obese) had varied levels of the biomarkers in both control 

and nephrotoxicant exposure experiments.  This data demonstrates a large dynamic 

range is paramount for detecting AKI biomarkers.  As more studies are conducted to 

fully characterize KIM-1 and NGAL, devices can be fine-tuned to detect the 

appropriate range in concentrations.  Nevertheless, our results showed that detection 

of NGAL and KIM-1 is possible using planar surface fluorescent immunoassays, and 

pending further clinical studies, this device could be adjusted for detection within the 

newly-established relevant clinical ranges. 
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Novelty of Work 

Our evaluation of planar surface fluorescent immunoassays bolstered the use of this 

platform for actual biosensing needs with respect to existing sensing strategies.  

These results represent the first instance of a planar surface fluorescent immunoassay 

using very low volumes of either urine or plasma for analysis of renal injury 

biomarkers.  This platform was shown to detect levels of AKI biomarkers present in 

control rat plasma and urine as well as gentamicin-treated rat urine.  Although 

dilution of the biological matrices may be needed for analysis, we can detect 

elevations in KIM-1 and NGAL above baseline levels.  It was previously unknown 

what the LOD and dynamic range would be for detecting these biomarkers using 

fluorescent methods.  Our results showed that microtiter plates may be suitable for 

AKI biomarker detection if colorimetric ELISA methods are employed.  However, 

use of fluorescent immunoassays using microtiter plates was unsuccessful.  This work 

showed that the planar surface fluorescent immunoassays may be a viable alternative 

for detection of AKI biomarkers where use of small volumes is advantageous and 

where standard microtiter plate fluorescent experiments fail.  These results show the 

promise of using this type of detection system in instances where fluorescence is the 

ideal method of detection, and where large volumes are not obtainable.  Although this 

platform was applied to detection of other AKI biomarkers present in plasma or urine, 

planar surface fluorescent immunoassays may also be used to detect proteins 

implicated in other diseases or other non-clinical applications. 
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Chapter 6: Spatial and Spectral Multiplexing using 
Quantum Dots 

Abstract 

The simultaneous detection of two analytes, chicken IgY (IgG) and Staphylococcal 

enterotoxin B (SEB), in a single well of a 96-well plate is demonstrated using 

luminescent semiconductor quantum dot nanocrystal (QD) tracers.  One light source 

can serve as the excitation source for detecting two distinct signals from analytes 

when using these unique labels.  The QD-labeled antibodies were prepared via 

sulfhydryl-reactive chemistry using a facile protocol that took <3 h. Dose response 

curves for each target were evaluated in a single immunoassay format and compared 

to Cy5, a fluorophore commonly used in fluorescent immunoassays, and found to be 

equivalent. Immunoassays were then performed in a duplex format, demonstrating 

multiplex detection in a single well with limits of detection equivalent to the single 

assay format: 9.8 ng/mL chicken IgG and 7.8 ng/mL SEB. Immunoassays were 

further developed to demonstrate a triplex format to detect chicken IgG, mouse IgG, 

and SEB with LODs of 10 ng/mL, 5 ng/mL, and 2 ng/mL, respectively. In addition to 

demonstrating the multiplexing capability within a single well of microtiter plates, 

this technique was applied to planar surface fluorescent immunoassays.  Spectral 

multiplexing within a single spot was achieved with a novel detection platform 

involving an evanescent wave scanner, which makes this platform more amenable to 

a POC environment.   
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Background 

Antibodies demonstrate the highest levels of specificity and affinity compared to 

other synthetically produced molecules such as aptamers and molecularly imprinted 

polymers [144].  It has been demonstrated that up to nine antibodies can be spotted 

within a single well of a 96-well microtiter plate, but five of the nine assays were 

statistically different when compared to individually run assays [10].  The main 

problem with conducting multiplexed assays is the overlap of emission wavelengths 

among common organic dye labels [18, 144].  In order to circumvent this problem 

and avoid creating complicated assays, QDs can be used because of their distinct 

emission wavelengths.   

 

Common methods for conjugating QD nanocrystals (NCs) to antibodies include 

targeting the antibody amine groups using EDC/NHS chemistry or glutaraldehyde, or 

using the popular biotin/streptavidin interaction.  These methods are not ideal because 

they often require multiple trials to create a viable conjugate and conjugation can 

often result in undesirable cross-linking and subsequent aggregation and mixed 

avidity of the final product [18, 144].  Furthermore, biotin-avidin chemistry requires 

labeling of both molecules, which makes this technique more time-intensive.  To 

avoid these complications, targeting less prevalent molecules on antibodies such as 

sulfhydryl groups can lead to more uniform final products [144].  Our collaborators 

developed a new conjugation method that requires only one step to conjugate 

maleimide-activated QD NCs to the exposed cysteine residues of reduced antibodies.  
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This procedure results in very minimal aggregation, if any, and can be completed in 

less than 3 hours, which improves upon previous methods.   

 

Fluorescent Immunoassays 

Fluorescent immunoassays are a common method for detecting protein analytes and 

will therefore serve as the basis for comparison to the newly-developed platform 

discussed in previous chapters. Comparison between standard sensing methodologies 

and new sensing strategies was facilitated by using the same analytes, e.g. the same 

antibody sources and stock solutions.  By keeping all samples consistent among 

platforms, differences in performance characteristics are more likely to be attributed 

to the alternate technique.  The analytes used were chicken IgG and SEB because 

they have been shown to have no cross-reactivity and because they are highly 

selective.  

 

Quantum Dots 

QDs were employed as tracers because of their inherent and unique optical and 

electrical properties, which are due to their size [191].  A variety of different QDs can 

be excited at the same excitation wavelength because they have broad excitation 

bandwidths, yet they have narrow emission bandwidths, with the emission 

wavelengths very specific to the type and size of QD core material [92].  QDs are 

made up of nanometer-sized semiconductor materials.  The dimensions of the QDs 

enable the materials’ excitons that are confined spatially in three dimensions 

(quantum confinement) to “collapse the continuous density of states in a bulk solid 
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into discrete electronic states of the nanocrystal” [192].  The two CdSe/ZnS core/shell 

nanocrystals (aka QD NCs) used in this study had a maximum emission at 605 ± 3 

nm (NC 605) and 650 ± 3 nm (NC 650) and distinct photoluminescent spectra (Figure 

30) [144].  The ZnS surface of the QD electronically isolates the CdSe core, allowing 

QDs to be photostable and have a high quantum yield [193].  Poly(ethylene glycol) 

(PEG) was used to cover the exterior of the eBiosciences nanocrystals (NC) used in 

this study to facilitate solubility in water.  PEG is soluble in organic and aqueous 

media and becomes covered in water molecules, thereby preventing non-specific 

protein adsorption [194].  The surface of the PEG coating was further functionalized 

with a reactive maleimide (using proprietary techniques) that allowed conjugation to 

the antibodies’ exposed cysteine residues. 

 

 
Figure 30. Photoluminescence spectra for nanocrystals (eFluor® NC 605 and NC 650, Ex @ 400 
nm). Insert shows an image of the NCs in solution following UV 365 nm excitation [144] 
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Planar Surface Fluorescent Immunoassays 

Planar surface fluorescent immunoassays were conducted similarly in previous 

chapters, except with the use of QDs as tracers.  The Gene Pix 4000B slide scanner 

used in the work described in previous chapters is not suitable for investigation of 

other tracers such as QDs because the excitation wavelengths and emission filters 

cannot be tuned.  As a result, an in-house developed detection system involving an 

evanescent waveguide was used to image the slides using QD tracers.  This technique 

marks the first step in transitioning the planar surface fluorescent immunoassay from 

a traditional bench-top laboratory technique to a field-deployable device. 

 

Methods 

Materials 

Staphylococcal enterotoxin B (SEB) and affinity purified rabbit anti-SEB were 

purchased from Toxin Technology Inc. (Sarasota, FL).  Rabbit anti-Chicken IgG 

(IgY), Chicken IgG, Goat anti-mouse IgG and mouse IgG were purchased from 

Jackson ImmunoResearch Laboratories Inc (West Grove, PA).  Phosphate buffered 

saline (PBS), Phosphate buffered saline with Tween (PBST), methanol, potassium 

hydroxide, toluene, ethanol, dimethyl sulfoxide, (3-mercaptopropyl)triethoxysilane, 

4-meleimidobutyric acid N-hydroxysuccinimide ester, J. Melvin Freed Brand 

Microscope Slides, Plain, Corning Costar® flat bottom high binding white 96-well 

assay plates, Thermal Seal® sealing film for 96-well plates and bovine serum 

albumin (BSA) were obtained from Sigma-Aldrich (St. Louis, MO).  Millipore 

Amicon® Ultra centrifugal filter devices 100 kDa were purchased from Millipore 
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Corporation (Billerica, MA).  The quantum dot nanocrystals (NC) eF525-maleimde, 

eF605-maleimde and eF650-maleimde where a gift from our collaborators 

eBioscience (San Diego, CA), along with their proprietary Conjugation and 

Purification Buffers. Doubly distilled water (ddW) was used throughout the 

experiments and was prepared in house using a Nanopure Diamond™ water 

purification system (Barnstead, Dubuque, IA).  The 800 nm QDs (Qdot® 800 ITK™ 

Streptavidin Conjugate Kit) were supplied by Invitrogen (Grand Island, NY). A 800 

nm bandpass filter (85% transmission, 12.5 mm diameter) and a 605 nm bandpass 

filter (15 nm bandpass, 12.5 mm diameter) was obtained from Edmund Optics 

(Barrington, NJ).  Impact-Resistant Polycarbonate was obtained from McMaster-Carr 

(Robbinsville, NJ).  A 438 nm PN 156 1 watt laser was obtained from Hangzhou 

BrandNew Technology Co., Ltd (Zhejang, China).  A Mead Deep Sky Imager PRO 

III CCD camera was obtained from Adirondack Video Astronomy (Hudson Falls, 

NY).  Clear acrylic was obtained from Piedmont Plastics (Elkridge, MD).  Fluid 

handling chips were designed in CorelDraw X4 (Corel Corp. Ontario, Canada) and 

micromachined using a computer controlled Epilog Legend CO2 65 W laser cutter 

(Epilog, Golden, CO).  3M 9770 adhesive transfer tape was used to hold together the 

layers of the planar surface fluorescent immunoassay.  A REGLO Digital pump, 

appropriate connectors, and tubing were obtained from Ismatec (Wertheim, 

Germany).  Appropriate connectors for the tubing were obtained from Cole Parmer 

(Vermon Hills, IL).  CCD image intensities were analyzed using ImageJ software, 

developed and distributed freely by NIH (http://rsb.info.nih.gov/ij/download.html). 

Data was analyzed using Microsoft Excel (Microsoft, Redmond, WA). 
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QD Labeling Method 

In this study, we used QD-labeled antibodies that were created using sulfhydryl-

reactive chemistry in which disulfide bonds present on antibodies become reduced, 

allowing for conjugation to the QDs (Figure 31).  The distinct photoluminescence 

spectra for the two different-colored QDs used in the study are shown in Figure 30.   

 

 

 

Figure 31. Sulfhydryl-reactive chemistry. The disulfide bond present on the antibody is reduced 
when exposed to the in situ reducing agent and conjugated to the nanocrystal [144]  
 

 

Antibodies were labeled with the QDs using the sulfhydryl-reactive conjugation 

instructions provided by the manufacturer.  Briefly lyophilized nanocrystals were 

reconstituted in 200 μL Conjugation Buffer by heating the mixture on high in a 

microwave for 5-10 s, repeated 3-4 times as necessary.  A total of 200 μg of antibody 

was then added to the QDs and the reaction incubated for 2 hr. at RT on a shaker.  For 

the microtiter plate immunoassay triplex studies eF525-maleimde, eF605-maleimde 

and eF650-maleimde NCs were conjugated to rabbit anti-chicken IgG, goat anti-

mouse IgG and rabbit anti-SEB, respectively.  For the planar surface fluorescent 

immunoassays, eF605-maleimde NCs were conjugated to rabbit anti-chicken IgG.  

The reaction was stopped after 2 h by adding 0.7 μL Quencher directly to the mixture, 
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vortexing and incubating for an additional 10 min on the shaker.  The resulting 

antibody conjugated QDs were purified using a 100 KDa centrifugal filter unit.  The 

reaction mixture was added to a centrifugal filter unit (pre-equilibrated with 

Purification Buffer) and the volume increased to a total of 1 ml using Purification 

Buffer, before being spun at 1,000g for 10 min (Beckman CS-6KR Centrifuge). Once 

the sample volume had reduced to ~0.1 ml an additional 1 ml of Purification Buffer 

was added and the spin repeated, this process was repeated a total of 4 times.  The 

NC-antibody conjugate was then transferred to a 1.5 ml microcentrifuge tube and 

spun at 7 krpm for 5 min to remove any aggregates.  The purified NC-antibody 

conjugate was characterized using UV-visible spectroscopy (Ultrospec™ 2100 Pro 

UV/Visible Spectrophotometer GE Healthcare, Piscataway, NJ) and stored at 4 °C 

prior to use for up to 12 months.   

 

Labeling Antibodies with Cy5 Dye 

Antibodies were labeled with a Cy5 dye via their primary amines [144]. The rabbit 

(Rb) anti-SEB and Rb anti-chicken IgG were prepared at 0.5 mg/mL (total of 600 µ 

L) in PBS.  One vial of Cy5 was resuspended in 50 µ L DMSO.  Then, 7.5 µL of the 

Cy5 was added to the antibody solution for incubation at room temperature (RT) for 

~30 min.  Any unincorporated dye was removed by using a ZebraTM desalt spin 

column.  An Amersham Biosciences Ultrospec 2100 pro UV/visible 

Spectrophotometer (GE Healthcare, Piscataway, NJ, USA) was used to measure the 

absorbance of the purified Cy5-labeleled antibody at 280 and 650 nm.  Final antibody 
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concentration and dye-to-antibody ratio were determined, following the 

manufacturer’s instructions.       

 

Microtiter Plate Fluorescent Immunoassays 

The microtiter plate fluorescent immunoassays were conducted in a sandwich format 

(Figure 32).  In this format, capture antibodies were immobilized onto the surface of 

the wells.  For the single assay studies, only a single capture antibody species was 

immobilized onto the surface (using 50 µL per well).  In these experiments, either 10 

µg/mL of Rb-anti-chicken IgG, goat anti-mouse IgG, or rabbit anti-SEB were 

immobilized in one well.  For the multiplex studies, a mixture of all capture 

antibodies were combined together to yield a total 50 µL for well incubation.  

Microtiter wells were functionalized with antibodies against chicken IgG at 7.5 

μg/mL and SEB at 2.5 μg/mL for duplex immunoassays. For the triplex studies, 4 

µg/mL rabbit anti-chicken IgG, 4 µg/mL goat anti-mouse IgG, and 2 µg/mL rabbit 

anti-SEB in PBS were used.  These final concentrations were optimized based on 

some preliminary studies.  To allow ample time for the capture antibodies to adsorb 

to the plate, the plate was sealed with Thermal Seal® sealing film and incubated for 

~1 hr. at RT and then overnight at 4 oC.   

 

The 96-well plates used in this study were Corning Costar flat bottom high-binding 

polystyrene plates that have an ionic/hydrophobic chemistry that enables them to bind 

to the capture antibodies.  No preparation was required to prepare the surface of each 
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well to ensure binding to the capture antibodies.  The antibodies randomly oriented 

themselves and attached to the surface.   

 

 

 

 

Figure 32. Sandwich assay format involving QDs [144]. Analytes are distinguished based on 
color even in the same well of a 96-well plate or within the same spot of a planar surface 
fluorescent immunoassay 
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The following day, the wells were emptied and washed four times with 200 µL/well 

ddH2O.   The surface was blocked with 200 µL per well of a blocking buffer (1% 

BSA and PBS) to prevent non-specific binding to the surface.  The plate was placed 

on a rocker for ~1.5 hr. at RT during blocking (The Belly Dancer, Stovall 

LifeScience, Inc, Greensboro, NC, USA).   

The next step of the immunoassay was to expose the wells to the sample containing 

the target antigen (50 µL/well) for 1.5 hr. on a rocker, followed by several washes to 

remove any non-specific binding (4 x 200 µL/well).  The singleplex immunoassays 

were exposed to samples of either chicken IgG (0–2.5 µg/mL) or SEB (0-0.5 µg/mL) 

in 0.1% BSA + PBS.  To complete the sandwich immunoassay, the optimized QD 

tracers were composed of NC605-Rb-anti-chicken IgG at 1:400 dilution or NC650-

Rb-anti-SEB at 1:100 dilution.  The organic dye tracers were either Cy5-Rb-anti-

chicken IgG (10 µg/mL) or Cy5-Rb-anti-SEB (10 µg/mL).  Each well was exposed to 

50 µL of the tracer (in 0.1% BSA + PBS) for 1 hr. on the rocker.  Lastly, the wells 

were washed with 2 x 200 µL/well PBS followed by 2 x 200 µL/well ddH2O and 

dried with air.   

 

For the duplex and triplex immunoassays, the samples involved were the same as 

those used in the singleplex, except they were mixed prior to well exposure.  For 

duplex studies, for wells 1-12, analyte concentrations increased from 0-2.5 µg/ml for 

chicken IgG and decreased from 0.5 µg/ml – 0 for SEB.  For triplex studies, for wells 

1-12, target analyte concentrations increased from 0 – 2.5 µg/ml for chicken IgG and 

from 0-0.5 µg/ml for SEB and decreased from 2.5 – 0 µg/ml for mouse IgG.  The 
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same procedure described above was used, except in this case, only the QD tracers 

were used.  Following all methods described above, including washes to ensure that 

antibodies are only bound through specific biorecognition events, the fluorescence, 

which is an indication of the amount of target analyte present, was detected.  

Fluorescence intensity measurements were collected using a Tecan Infinite M1000 

Dual Monochromator Multifunctional Plate Reader (Tecan, Research Triangle Park, 

NC) simultaneously using 400 nm as the excitation wavelength for both QDs.  The 

plate reader detects fluorescence at the emission wavelengths specific to the labels 

used.  Emission wavelengths were collected at 605 nm and 650 nm for the NC605 

and NC650, respectively.  In our studies, the mean fluorescence was determined 

using the TECAN plate reader, which is coupled to a computer for outputting 

quantitative data.  Data was analyzed and interpreted using Microsoft Excel and/or 

Prism statistical software.    

 

Negative controls were always present for each assay to determine whether the assay 

was performing appropriately.  For example, a negative control involved exposing 

some wells of the 96-well plate solely to buffer instead of samples was used.  In this 

case, the capture antibodies were not exposed to the analyte, but were exposed to the 

tracer combination. 

 

Planar Surface Fluorescent Immunoassays 

All of the steps for fabrication, assembly, and experimentation are the same as in 

Chapter 3.  Beginning at 800 ng/ml, 50% serial dilutions of SEB and chicken IgG 

were used as the samples.  However, instead of using Cy5 dyes, QD tracers were 
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employed.  For chicken IgG detection, a dilution of 1:100 of eF605-maleimde NCs 

was used.  For SEB detection, a detection antibody conjugated to biotin, followed by 

15 nM 800 nm SA-QDs were used.  The first tracer (eF605-maleimide NC) was 

exposed to the surface for 1 hr. at RT in a humid chamber, covered with aluminum 

foil.  Following 3X PBST washes, the biotinylated SEB antibody was exposed to the 

surface for 1 hr. at RT in a humid chamber, covered with aluminum foil.  Following 

3X PBST washes, the 800 nm QDs were exposed to the surface for 1 hr. at RT in a 

humid chamber, covered with aluminum foil.  Following exposure to the 800 nm 

QDs, 3 washes with PBST were conducted.  The slides were imaged using the 

evanescent wave detection system.  

 

Evanescent Wave Detection System  

Because the GenePix4000B is not optimized for QD imaging, a new system was 

developed in-house to image slides using an evanescent wave scanner.  This device 

involves the use of a blue light source combined with a CCD camera and filters to 

generate a small and potentially portable fluorescence detection platform [44, 195, 

196].  The chameleon 1.3 MP Mono was purchased from Point Grey Research.  A 

605 nm bandpass filter and 800 nm bandpass filter, both with 15 nm bandpass and 

12.5 mm diameter were purchased from Edmund Optics.  A laser at 400 nm was used 

to excite quantum dots.  These filters were chosen to improve the rejection of light 

scattered by the laser and thereby reduce the background noise.  This platform was 

designed to read the photon emissions from this excitation while minimizing other 

photon sources (e.g. background fluorescence from the slide and external light). 
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Light from a laser was used as the excitation source for these studies.  In order to 

ensure laser excitation of all points on the slide, the laser beam was passed through a 

line generator (Figure 33). The beam was then injected into the side of the slide (the 

planar surface serves as a waveguide) and propagates through the slide due to total 

internal reflection fluorescence (TIRF).  ,. Normally, due to the interface of two 

different media with incongruent refractive indices, light from the higher refractive 

index medium is both refracted and reflected. However, in the case of this developed 

system, the angle of incidence of the laser hitting the glass slide is greater than the 

critical angle, causing all of the light to be reflected and none to be refracted due to 

total internal reflection.  At the point of reflection, a standing wave known as an 

evanescent wave  is generated that penetrates into the lower refractive index medium 

with an exponential decay.  The evanescent wave interacts with the surface species 

immobilized at the interface and therefore excites the quantum dots that are bound to 

analytes on the planar surface and the subsequent fluorescence emission is measured 

using the CCD camera.  Several angles of injection were tested for the evenness of 

the propagating laser beam along the longer portion of the slide. The optimum angle 

of injection was determined to be 45º from the bottom of the slide. 

 

The injection of the laser beam produced an uneven background fluorescence that 

complicated reading the signal. The laser beam from the line generator had a 

Gaussian intensity profile (Figure 34A). The resulting beam still produced uneven 

lateral background fluorescence (Figure 34B). Since the laser beam scattered as it 
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propagated along the slide, another glass slide was added in front of the assay slide 

such that the laser propagated through both slides. The result (Figure 34C) shows 

even lateral background fluorescence. The linear trend in background fluorescence in 

the direction of laser propagation was then corrected for during data analysis.  

 

The slides were imaged in a dark room to prevent interference from external light 

sources. The apparatus was shielded from remaining sources of light by a black 

acrylic box.  
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Figure 33. POC evanescent waveguide detection scheme.  (A) schematic of laser injection 
featuring line generator, (B) schematic of experimental set-up for imaging, (C) image of 
detection platform 
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Figure 34. Slide background fluorescence.  (A) Intensity profile of laser beam out of the line 
generator, (B) intensity profile of background fluorescence on blank slides using one-slide 
method, or (C) two-slide method  

A 

B C 
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Results 

Results have indicated that multiplexing of antibodies within a single well of a white, 

high-binding, 96-well microtiter plate is possible when using semiconductor QD 

tracers [144].  We have also shown how QDs can be employed for both spatial and 

spectral multiplexing using planar surface fluorescent immunoassays. 

 

Microtiter Plate  

Single Immunoassays 

Dose response curves for the singleplex chicken IgG immunoassay and SEB 

immunoassay for both the methods of detection—Cy5 tracer or QD tracer are shown 

in Figure 35.  The different tracers show similar curves for each analyte using the 

four-parameter logistic model commonly used for immunoassay dose response 

curves.  A statistical comparison of the fit parameters was conducted and at the 99% 

confidence level (t-test, p > 0.01), the parameters that determine the EC50  value and 

slope for each analyte were not significantly different between the two tracers.  The 

reported LODs (signal greater than three standard deviations above the background 

signal) are shown in Table 12.  While the LOD for the Cy5 tracer was slightly better 

than the LOD for the NC 605 for the chicken IgG immunoassay, the LODs were the 

same regardless of the tracer for the SEB immunoassay.  There results, combined 

with the dose response curves shown in Figure 35, indicate that the new QD 

conjugation method employed here was controlled in a manner to retain appropriate 

binding activity. 
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Figure 35. Single NC tracers versus Cy5 tracer [144]. (A) chicken immunoassay. (B) SEB 
immunoassay.  NC tracer is represented as the grey square, while the Cy5 tracer is represented 
by the black diamond 

 

 

Table 12. LOD of chicken IgG and SEB from dose response studies involving either single or 
duplex formats with organic or nanocrystal quantum dot (NC) tracers [144] 
Target Tracer Format LOD (ng/ml) n 
Chicken IgG Cy5 Single 4.9 8 

NC605 Single 9.8 8 
NC605 Duplex 9.8 4 

SEB Cy5 Single 7.8 4 
NC650 Single 7.8 4 
NC650 Duplex 7.8 4 
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Duplex Immunoassays 

In these experiments, sandwich assays (Figure 32) were used to immobilize both 

capture antibodies onto the surface with an optimized ratio of 7.5:2.5 of Rb-anti-

chicken IgG and Rb-anti-SEB.  The chicken IgG sample was increased from 0 to 

2,500 ng/mL while the SEB was decreased from 500 to 0 ng/mL to create the target 

samples.   

 

Dose response curves for the duplex formats are shown in Figure 36 for Chicken IgG 

and SEB immunoassays, respectively.  As displayed in A, when the concentration of 

the analyte increases in ng/mL, the corresponding intensity of the QD emission 

increases.  This figure shows the spectral separation of the QD emissions over a wide 

range of sample concentrations (ng/mL).  In the single format, 10 µg/mL was used for 

the capture antibody, but in the duplex format, 7.5 µg/ml was used for the Anti-

chicken IgG capture antibodies and 2.5 µg/mL was used for the anti-SEB capture 

antibodies.  During capture antibody ratio optimization studies, comparison of the 

chicken IgG/SEB ratios 7.5/2.5 and 9/1 give very similar dose response curves and 

the LOD is the same for both.  Figure 36 (B, C) demonstrates the intensity data versus 

concentration for each antigen in the duplex and singleplex format involving NC 

tracers.  The LOD for SEB in the duplex, 7.8 ng/mL, was equivalent to the value 

obtained by the single assay format using either QDs or Cy5.  The LOD for chicken 

IgG in the duplex, 9.8 ng/mL, was the same for single assay; however, when using 

the Cy5 label, the LOD was 4.9 ng/mL.  These results show that duplexing did not 

hinder the sensitivity of the assays.
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Figure 36. Duplex immunoassay data [143]. (A) intensity vs. wavelength curves for chicken & 
SEB concentrations (B) Dose response curve for chicken immunoassay in single (black) or 
duplex (grey) format (C) Dose response curve for SEB in either single (black) or duplex (grey) 
format [144] 
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 Triplex Immunoassays 

After success of the duplex was shown using microtiter plates, the duplex was 

extended to demonstrate a triplex with a lower LOD than previously found for SEB 

[18].  In addition to the analytes used in the duplex, chicken IgG and SEB, a second 

immunoglobulin, mouse IgG was detected simultaneously.  Both IgGs are ~150 kD, 

while SEB is ~28kD.  For these studies, the same QDs used in the duplex were used 

for chicken IgG and SEB, and a QD with maximum emission spectra at 525 nm was 

used for mouse IgG detection.  In this study, chicken IgG was increased from 0 to 

2500 ng/mL and SEB was increased from 0 to 500 ng/mL while mouse IgG was 

decreased from 2500 to 0 ng/mL.  As seen in Figure 37, the data obtained from the 

plate reader shows that there is no cross-reactivity between the analytes and all 

analytes can be detected within the same well.  Figure 37 shows the raw data (A), 

fitted data (B), fluorescence intensity wavelength scans, and (C) normalized data.  In 

Figure 37A, deconvoluted data is shown from 78 ng/mL chicken IgG, 39 ng/mL 

mouse IgG, and 15 ng/mL SEB.  Figure 37B shows the full fitted spectra for all 

twelve wells exposed to all mixed concentrations of analytes.  Figure 37C shows the 

normalized intensity versus concentration.  The LOD for the triplex is 10 ng/ml, 5 

ng/ml, and 2 ng/ml for the chicken IgG, mouse IgG, and SEB, respectively.  As 

demonstrated, the analyte concentrations are clearly distinct from one another, even 

before deconvolution.   
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Figure 37. Simultaneous triplex immunoassay of a 96 well plate. (A) raw data from one well, (B) 
Fitted Data from twelve wells (50% serial dilutions), (C) normalized data with respect to the 
highest concentration measured [18] 
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Planar Surface Fluorescent Immunoassays 

 Singleplex Immunoassays  

Figure 38 illustrates the sandwich assay format used in these studies involving QDs.  

As shown in the figure, a direct assay was used for chicken IgG detection (QD-anti-

chicken IgG antibodies bound to chicken IgG) and an indirect assay (Bt-antibody/SA-

QDs) was used for SEB detection.  When a sandwich assay was performed using 50% 

serial dilutions of SEB beginning at 800 ng/mL, followed by exposure to 10 μg/mL 

biotinylated anti-SEB and 15 nM 800 nm Streptavidin-QDs for detection, the signal 

was obtained using the developed evanescent waveguide and had a resulting LOD of 

3 ng/mL.  When a sandwich assay was performed with 50% serial dilutions of 

chicken IgG beginning at 800 ng/mL and exposed to 655 nm QDs conjugated to anti-

chicken IgG (1:100 dilution), the LOD was 3 ng/mL.  Figure 39 shows two singleplex 

immunoassay images.  Slide A in the figure shows a sandwich assay where the target 

analyte is SEB, which is detected using biotinylated Rb-anti-SEB antibodies along 

with streptavidin-conjugated 800 nm QDs.  Slide B in the figure shows a sandwich 

assay where the target analyte is chicken IgG, which is detected using 605 nm QDs 

conjugated to Rb-anti-chicken IgG.  Detection of SEB and chicken IgG using Cy5 

tracers and imaged with the GenePix (Table 7) achieved LODs one order of 

magnitude lower than that achieved using QDs and the evanescent waveguide 

detection system.  However, with improvements to make the detection platform 

“light-tight”, we believe we can achieve comparable LODs compared to Cy5 

detection using the GenePix. 
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Figure 38. Sandwich assay format employed for planar surface fluorescent immunoassay 
involving 800 nm QDs for SEB detection and 605 nm QDs for chicken IgG detection 
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Patterning:
Columns 1-9: Columns 4-6: α-SEB (10 µg/ml)

Assay:
Row A: PBS
Rows L B: 800 ng/mL SEB  50% serial dilutions

All rows: 10 µg/ml Biotin-α-SEB, 800 nm QD-SA (15 nM)

    

                

A

B
Patterning:
Columns 1-9: α-Chicken  IgG (10 µg/ml)

Assay:
Row A: PBS
Rows B L: 800 ng/mL Chicken IgG  50% serial dilutions

All rows: 1:100 dilution of 605 nm QD-α-Chicken IgG

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Singleplex immunoassays using planar surface fluorescent immunoassays imaged with 
evanescent waveguide detection system.  Chicken IgG was detected using 605 nm QDs and SEB 
was detected using 800 nm QDs 
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 Duplex Immunoassays  

Figure 38 illustrates the sandwich assay format used in these studies involving QDs, 

which is the same as that used in the singleplex studies.  When a duplex was 

conducted on a single immunoassay by detecting both SEB and chicken IgG using a 

sandwich format, the LODs for SEB and chicken IgG were 0.78 ng/mL and 3 ng/mL, 

respectively.  These results were obtained when each capture antibody was patterned 

for only one single analyte.  The LOD for SEB is on the same order of magnitude as 

the LOD obtained when using Cy5 tracers, but the LOD for chicken IgG is an order 

of magnitude larger than that obtained for a Cy5 tracer (Table 7).   

 

Figure 40 shows two images of the same slide imaged using two different filters.  The 

800 nm bandpass filter was used to capture the signal from the 800 nm QD, 

corresponding to the presence of SEB, while the 605 nm bandpass filter was used to 

capture the signal from the 605 nm QD, corresponding to the presence of chicken 

IgG.  As shown in the figure, the signal from the 605 nm QD is blocked when the 800 

nm filter is used for imaging, and vice versa.   
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Patterning:
Columns 1-4: Columns 4-6: α-SEB (10 µg/ml)
Columns 5-9: α-Chicken  IgG (10 µg/ml)

Assay:
Row A: PBS
Rows L B: 800 ng/mL SEB  50% serial dilutions
Rows B L: 800 ng/mL Chicken IgG  50% serial dilutions

All rows: 10 µg/ml Biotin-α-SEB, 800 nm QD-SA (15 nM)
All rows: 1:100 dilution of 605 nm QD-α-Chicken IgG
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Figure 40. Duplex immunoassays using planar surface fluorescent immunoassays imaged with 
evanescent waveguide detection system.  Chicken IgG was detected using 605 nm QDs and SEB 
was detected using 800 nm QDs 
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 Duplex Immunoassays: Multiplexing within the same spot 

Figure 38 illustrates the sandwich assay format used in the studies involving QDs for 

both spatial and spectral multiplexing.  Note that this is the same format as that used 

in the duplex experiments that employed only spatial multiplexing.  When both 

analytes were detected in a single spot (capture antibodies for both SEB and chicken 

IgG were mixed together), the LODs for SEB and chicken IgG were 1.6 ng/mL and 

25 ng/mL, respectively.  An image of a representative slide imaged with the 800 nm 

filter and the 605 nm filter is shown in Figure 41.  The slide imaged with the 800 nm 

filter shows bright spots where SEB is patterned as well as where SEB and chicken 

IgG are patterned together, but there is no signal obtained in the region where chicken 

IgG is patterned alone.  Likewise, the slide imaged at with the 605 nm filter shows a 

signal where chicken IgG is patterned alone, as well as where chicken IgG and SEB 

are patterned together, but there is no signal obtained in the region where SEB is 

patterned alone.  A quantitative analysis of these images is shown in Figure 42.  

When only SEB antibodies are patterned onto the surface, the signal from the 800 nm 

QD shows a remarkable increase in the signal to noise ratio as compared to when 

both antibodies are patterned onto the surface.  In contrast, the signal of chicken IgG 

from the 605 nm QD is comparable when both antibodies are patterned onto the 

surface or when only chicken IgG antibodies are patterned onto the surface.  The 

assays conducted with the 605 nm QDs are not as sensitive as the assays conducted 

with the 800 nm QDs due to the higher observed autofluorescence of the slide, which 

cannot be fully blocked with the 605 nm filter. 
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Patterning:
Columns 1-3: Mixed α-SEB (2.5 µg/ml) and α-Chicken IgG (7.5 µg/ml)
Columns 4-6: α-SEB (10 µg/ml)
Columns 7-9: α-Chicken  IgG (10 µg/ml)

Assay:
Row A: PBS
Rows B L: 800 ng/mL SEB  50% serial dilutions
Rows L B: 800 ng/mL Chicken IgG  50% serial dilutions

All rows: 10 µg/ml Biotin-α-SEB, 800 nm QD-SA (15 nM)
All rows: 1:100 dilution of 605 nm QD-α-Chicken IgG

    

                

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 41. Spatial and spectral multiplexing using planar surface fluorescent immunoassays 
imaged with evanescent waveguide detection system.  Chicken IgG was detected using 605 nm 
QDs and SEB was detected using 800 nm QDs. 
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Figure 42. Quantitative data of spatial and spectral multiplexing using planar surface fluorescent 
immunoassays.  Chicken IgG was detected using 605 nm QDs and SEB was detected using 800 
nm QDs.   
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 Evanescent Waveguide Detection System 

While the fluorescent label, Cy5 has been used in spatial multiplex studies involving 

the GenePix for imaging, other tracer labels such as QDs were tested in order to 

demonstrate spectral multiplexing.  In order to image these slides, a new evanescent 

waveguide detection system was created to pair specific filter sets with the QDs 

labels employed in the assays.  As mentioned in Chapter 2, use of QDs makes the 

immunoassay more amenable to a POC environment because one excitation source 

can be used to excite multiple QDs that emit at distinct wavelengths, which simplifies 

the platform design.  Using the evanescent waveguide method, there was a high level 

of background that was spatially uneven across the slide.  To minimize some of the 

noise that is caused by a residue from the vinyl template that adheres to the slide, the 

process for creating the templates on the Epilog printer was revised.  When the laser 

cutter operates, some pieces of material that falls through the grate can still be 

exposed to the laser cutter as it continues its operation.  Those pieces of material 

below the grate that are exposed to the laser can give off some smoke as they burn.  

The smoke can adversely affect the even-ness of the bottom layer of the material as it 

is being cut.  To avoid any interaction of smoke with the material being cut, a 

sacrificial layer of acrylic was used to absorb the effects of exposure to smoke.  This 

process was shown to decrease the background of the slide. 

 

The combined cost of the materials and devices in this platform were much less 

expensive than the plate reader. The platform was also decidedly lighter, and 

therefore could be more portable than the plate reader.  This study was an initial 
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proof-of-concept that could be used to detect more than two analytes in each spot, 

assuming the quantum dots were spectrally distinct from one another and that 

appropriate filter sets were used to detect the signal from each analyte. 

 

 

Discussion 
 

The objective of this chapter was to evaluate the multiplexing capability of QDs using 

microtiter plates and planar surface fluorescent immunoassays.  We demonstrated that 

multiplexing is possible within a single well of a 96-well plate by detecting three 

distinct proteins using spectrally distinct QDs.  We also showed how an in-house 

evanescent waveguide detection system can be used for planar surface fluorescent 

immunoassay multiplexing not only spatially, but also spectrally. 

 

Quantum Dot Conjugation Chemistry 

Bioconjugation chemistries have contributed greatly to improvements in fluorescence 

techniques ranging from biological research to medical diagnostics [18].  This is 

particularly true in the case of attaching proteins to fluorescent nanomaterials, such as 

the QD NCs used in this study.  A variety of approaches exist, such as use of a 

heterobifunctional succinimide ester-maleimide crosslinker with amine-thiol 

reactivity to introduce maleimide groups to an amine functionalized NC.  Typical 

nanomaterial bioconjugation approaches involve multiple preparation steps and long 

durations of time to complete and may render the biological region of the antibody 
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partially inactive and/or be detrimental to the nanomaterial unique properties [197].  

However, in the method developed by our collaborators and demonstrated in this 

work, only specific sites for attachment (the cysteine residues exposed under mildly 

reducing conditions) are engaged in the conjugation of the antibody to the maleimide 

activated NC.  This approach should leave the binding region of the antibody 

available to engage in biorecognition events.  Another advantage of this method is 

that the conjugation reaction occurs in situ with only a few steps and relatively 

quickly, without requiring excess components for completion or purification of 

antibody fragments.  Other advantages of this chemistry are its non-reactivity toward 

other functional groups and its stability in aqueous solution.    

 

Quantum Dot Immunoassay Detection Technique 

In contrast to the technique employed here, performing a similar experiment with 

traditional fluorophores such as Cy3 and Cy5 would have required the use of two 

different excitation wavelengths and either instrumentation containing parallel 

excitation sources or a computer capable of serial data acquisition at different signals.  

Use of NC avoids these complications as an excitation wavelength of 400 nm was 

used to excite both tracers due to the broad adsorption profile characteristic of these 

semiconducting nanomaterials.   

 

Although quite low LODs for SEB have been reported in the literature (e.g. 4 ng/mL 

to  <2.5 fg/mL), the aim of the experiments was to demonstrate a proof-of-concept for 

the QD labeling and multiplexing [144].  The  LOD for SEB achieved in this study 
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was 15 times lower than the 30 ng/ml found in a previous 4-color QD immunoassay 

[198].  This study suggests that the QD-antibody constructs can differentiate among 

varying sizes of different proteins [18]. We directly compared the fluorophore, Cy5, 

with QDs and demonstrated that although the sensitivity is equivalent regardless of 

the label, the use of QDs allows for multiplexed detection, which is not as easily 

accomplished using traditional dyes due to their much broader fluorescence emission 

profiles relative to QDs.  Improvements to this assay, along with use of high-affinity 

antibodies may improve the sensitivity in both single and multiplexed formats.  

Furthermore, due to the discrete spectral separation of QDs by 50 nm, immunoassays 

using up to 5 different tracers in the range of 450 – 540 nm may be possible. 

 

Some issues may limit the applicability of multiplexing in QD-immunoassay formats.  

One drawback is the cross-reactivity among antibodies for a particular antigen.  

Employing monoclonal antibodies to afford the most specificity could help overcome 

this limitation.  Another impediment is the ability to resolve QD emissions that are in 

close range of one another, although researchers have shown that spectral 

deconvolution methods used during data analysis can address this issue [199].  

Selecting quantum dots that are spectrally diverse in addition to using state-of-the art 

instrumentation with higher resolution could help avoid the second constraint.   

 

POC Development 

While this work demonstrated the potential for multiplexing, the usefulness of the 

device for a POC application has not yet been realized.  In order for this device to be 
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useful for a company to scale-up production, all steps should be automated.  The 

process of patterning antibodies onto the surface can be automated as well as 

performing an assay and analyzing results.  Automation can increase the assay 

performance, robustness, and reliability [117].  Components can be fabricated 

inexpensively by replication, which can make the device more cost-effective.  If the 

planar surface fluorescent immunoassay were to be scaled up for manufacturing and 

use, storage conditions over ranges in temperature and humidity would need to be 

tested to determine the most appropriate shelf life using traditional testing and 

accelerated shelf life testing [200, 201] and additional processing steps may be 

needed in this case.   

 

Besides automation, development of a pseudo-POC device could build upon previous 

work with microfluidics [48, 50, 202].  Currently, two systems exist for this 

platform—one for performing the assay, and one for imaging and data analysis.  

Ideally, the experimental procedures and the detection systems would be integrated to 

create one fully-fledge, self-contained device that requires minimal user interaction.  

In addition, the box containing the camera and other associated imaging components 

could be concealed in a box that is more “light tight” to avoid any other intrusion of 

external sources of light. 
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Conclusion 

This work is one of only a few examples of multiplexing three distinct biological 

analytes within a single well of a microtiter plate using QDs.  The NC-antibody 

constructs with emissions centered at 605 nm, 650 nm, and 525 nm were able to 

differentiate among two closely related IgGs and between small and large proteins 

when they are all present in the same mixture [18].  Spectral and spatial multiplexing 

was also demonstrated using planar surface fluorescent immunoassays for detection 

of chicken IgG and SEB within the same spot.  Theoretically, spatial and spectral 

multiplexing can be extended beyond three analytes with either platform so long as 

distinct QDs are employed and the signals can be analyzed separately.  The newly-

developed detection system featuring an evanescent waveguide can be used “in the 

field” because it is lightweight, small, and self-contained.  Further work regarding 

integration of the assay with detection mechanisms may make this system even more 

favorable.  For example, color cameras such as those used in cellular phones could 

potentially be used and applied in rugged settings. 

 

Traditional labeling methods for attaching antibodies to QDs are complex, prone to 

aggregation and loss of product, but the method used in this study took less than 3 

hours [144].  This process used the thiols present in the hinge regions of reduced 

antibodies to conjugate nanocrystals with activated maleimide groups.  Careful 

control as demonstrated by this conjugation method is important for the long-term 

needs of bionanotechnology.   
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QD-based dose response curves were shown for both SEB and chicken IgG in a 

single format (microtiter plates) and were statistically equivalent (99% confidence 

level) compared to Cy5 singleplex assays [144].  While other platforms for detecting 

SEB such as ELISA, cantilever methods, and SPR may be more sensitive than this 

QD platform, they often involve multiple steps and specialized equipment.  The 

microtiter plate immunoassays were then developed for simultaneous duplexing with 

LODs of 9.8 ng/mL for chicken IgG and 7.8 ng/mL for SEB.  Building upon these 

results, a triplex was demonstrated with mouse IgG.  Our LOD for SEB is 15 times 

lower than a recent previously reported QD immunoassay [198].  These novel 

outcomes regarding multiplexing and a very low LOD have not been demonstrated in 

the literature prior to the release of our two papers in Sensors and ACS Nano.  The 

studies involving a duplex and triplex suggest promise for multiplexing with greater 

than three configurations because of the large spectral window that could be accessed 

with more diverse QD materials, which can span the UV to IR range [144].  Spatial 

and spectral multiplexing were also demonstrated using planar surface fluorescent 

immunoassays with LODs of 25 ng/mL for chicken IgG and 1.6 ng/mL for SEB.  

Furthermore, these results, along with those previously published, show promise that 

multiplexed fluorescent immunoassays could be used in other immunoassay formats, 

such as in reverse phase or in displacement assays [18, 203].   
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Scientific Impact  
 
Since publication, our first paper, Optimizing two-color semiconductor nanocrystal 

immunoassays in a single well microtiter plate formats, has been cited five times [93, 

95, 204-206].  Morales-Narvaez, et al. noted that our work, along with others, 

demonstrates that QDs have better performance in solid phase as compared to liquid 

phase, and this makes them particularly useful as reporters  [93].  These researchers 

also conducted biomarker screening experiments for Alzheimer’s Disease using 

antibody microarrays, demonstrating the real-world applicability of using QDs in a 

multiplexed fashion for a true clinical need.   

 

A second publication that featured our peer-reviewed work was in a review article 

published by Petryayeva, et al. [204].  This review discussed the use of QDs in 

assays, bioprobes, and biosensors, and in applications such as for fluorescence 

imaging, microscopy, spectroscopy, and imaging.  Petryayeva, et al. cited our work in 

another publication regarding the use of Fluorescence Resonance Energy Transfer 

(FRET) and QDs in a microtiter plate format [205].  This paper demonstrated the use 

of QDs as donors in FRET, which were paired with either Cy3 or Alexa Fluor 647 as 

acceptors in experiments to discern between fully complementary DNA and single 

base mismatches. 

 

A fourth paper that cited our original work is a review by Samir, et al., which 

highlights the use of QDs for various biomedical applications [95].  This review 

discusses the relevance of QDs for in vitro diagnostics and imaging.  
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Lastly, the fifth paper that cited our paper, Optimizing two-color semiconductor 

nanocrystal immunoassays in a single well microtiter plate formats, was written by 

Anderson, et al., who reported the use of single domain antibodies that self-assembled 

onto QDs [206].  The antibody-QD conjugates were used in fluoroimmunoassays as 

well as in SPR to detect ricin. 

 

Our second paper, Reactive Semiconductor Nanocrystals for Chemoselective 

Biolabeling and Multiplexed Analysis, has been cited twenty times since its 

publication in 2011 [144, 197, 204, 207-223].  One paper discussed the use of 

nanomaterials in medicine and the potential adverse effects that may be associated 

with health such as toxicity, genotoxicity, and allergic reactions as well as issues 

related to exposure to physiological environments such as material corrosion and 

aggregation or non-specific adsorption of biomolecules [213].  Other papers 

discussed the delivery of QDs to a wide range of different cell types with implications 

for drug delivery and in vivo labeling [207, 223], while a third paper involved the use 

of single cell imaging [214].  One paper investigated functionalization of 

nanoparticles with biological molecules and another research group focused on 

designing petidyl linkers [197, 208].  A review paper published by Javier Vela cited 

our paper in his discussion of semiconductor nanocrystals [217].  In another review 

paper, Tyrakowski, et al. described the use of QDs for biological sensing and 

highlighted recent advances in QD technology [221].  Vannoy, et al., found our work 

helpful in his studies regarding competitive displacement assays involving QDs as 

FRET donors [216] and Nonat, et al., cited our work with regard to intramolecular 
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energy transfer [212].  Research involving doping QDs with ligands and imaging 

have also relied upon our previous work [210, 215].  Furthermore, our work has been 

cited by researchers investigating QDs for multiplexed biosensors and aptamer 

sensors involving chemiluminescence [209, 211].  In two other papers, researchers 

demonstrated how QDs can form a complex with a photosensitizer, chlorin e(6) and 

demonstrated that this complex can become localized within the plasma membrane 

and endocytic vesicles of cancer cells [219, 220].  In another paper, our work was 

cited with regard to controlling spacing of QDs as they attach to gold nanorods in 

solution, which may be useful for biological sensing and optical communication 

[218].  Wegner, et al. demonstrated an immunoassay involving QDs for potential 

clinical use to detect prostate specific antigen using low volumes of serum [222].   

 

Our two papers regarding the use of QDs in multiplexing have been well-accepted by 

the scientific community as demonstrated by the number of publications that have 

cited our work.  Scientists have found our work useful for determining the properties 

of QDs, for in vivo and in vitro applications, and for incorporation into review papers.   

 

We anticipate that achievements of our work using microtiter plates portends the 

scientific impact of the application of QDs to spatial and spectral multiplexing using 

planar surface fluorescent immunoassays. The planar surface fluorescent platform and 

its associated in-house developed detection system (in combination with QDs) 

containing an evanescent waveguide signify a novel way to detect multiple proteins 

using a cost-effective approach.  Likewise, the detection system is fabricated from 
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acrylic and other cheap components, including the camera that was installed into the 

device.  The combined cost of the materials and devices in this platform were much 

less expensive than a conventional plate reader. The detection platform requires only 

a laptop computer and battery for operation and could therefore be used in remote 

locations. This new imaging technique is more suitable for a POC environment 

because of its greater portability compared to that of a standard plate or slide reader.  

Conventional instruments have photomultiplier tubes and other components that are 

sensitive to vibrations that may be caused by jostling or placement on an uneven 

surface.  This developed detection system is also more immune to jostling that could 

surely arise due to POC use.   
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Chapter 7: Summary 

This work discussed the ability to develop Point-of-Care (POC) platforms capable of 

multiplexing (detecting multiple analytes simultaneously) for personalized medicine.  

Specifically, optical sensor platforms can be used to aid in diagnosis of disease or 

determination of proper therapy. The overall goal of this work was to develop and 

evaluate a new multiplexed immunoassay for protein detection.   

 

A new method for protein multiplexing, planar surface fluorescent immunoassays, 

was developed with the advantages of using less sample/reagent volume and being 

amenable to a POC environment.  This new platform was designed and fabricated in-

house and applied for detection of SEB and chicken IgG.  These analytes were used 

to optimize the platform because they are commonly used in the literature, thus 

allowing us to compare performance to existing technologies.  The platform was 

characterized by evaluating a variety of immobilization techniques, capture antibody 

concentrations, and detection labels.  The performance of the platform was 

characterized over a range of concentrations to demonstrate full dose response curves 

and reproducibility.  Variations among slides and within slides were investigated for 

systematic errors, and analyses revealed that discrepancies were random.  The LODs 

and dynamic ranges were comparable for standard fluorescent plate experiments for 

model protein analytes.   

 

The newly developed multiplexed method, planar surface fluorescent immunoassays,  

was applied to real-world diagnostics by quantifying Acute Kidney Injury (AKI) 
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biomarkers.  The two biomarkers selected for these studies were Kidney Injury 

Marker-1 (KIM-1) and Neutrophil Gelatinase-Associated Lipocalin (NGAL) due to 

their promise for potential earlier and more specific diagnosis of AKI compared to 

traditional markers [24-26].  Studies were compared to colorimetric 96-well plate 

assays in buffer (fluorescence detection was not available) and physiologically-

relevant matrices such as urine and plasma.  Urine samples from Sprague Dawley rats 

treated with varying levels of exposure to gentamicin, a known nephrotoxicant, were 

evaluated with planar surface fluorescent immunoassays.  This work demonstrated 

the applicability of planar surface fluorescent immunoassays to detection of 

biomarkers for a real public health need, Acute Kidney Injury. 

 

A technique was developed using microtiter plates for protein multiplexing of two, 

and then three analytes using luminescent semiconductor quantum dot nanocrystal 

(NC) tracers.  SEB, chicken IgG, and mouse IgG were all detected simultaneously 

with LODs 15 times lower than the 30 ng/ml found in a previous 4-color QD 

immunoassay [198].  These results were published and cited by numerous other 

research groups in peer-reviewed publications.  Our work has been featured in both 

review papers and original research papers regarding the use of QDs for various 

sensing applications.  

 

A novel detection system using an evanescent waveguide and appropriate filters was 

employed for detection of chicken IgG and SEB using Quantum Dots.  The results 

presented demonstrate a proof-of-concept where multiplexing was achieved both 
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spatially and spectrally.  Detection of more than two analytes in a single spot is 

possible if spectrally-diverse QDs are paired with appropriate filter sets that can 

detect the emission of each of the QDs.  This detection system is more amenable to a 

POC environment compared to the standard slide reader, the GenePix 4000B, which 

is a large instrument.  These results demonstrated the potential for this assay to be 

applied for true “in the field” use. While the developed platform is not a true 

biosensor because it is not stand-alone device, requires washing [224], and cannot be 

reused [110], these new methods have the potential to be incorporated into an 

analytical device.  The washing steps and other liquid handling procedures can 

eventually be automated.   
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Chapter 8: Scientific Impact of Work 

The significance of this work is many-fold.  First, a promising optical sensor 

platform—planar surface fluorescent immunoassays— was created and a 

comprehensive analysis was conducted to illustrate its use for multiplexing with low 

sample volumes.  Second, this new platform was applied to a real-world public health 

concern: detection of two novel Acute Kidney Injury (AKI) biomarkers, Kidney 

Injury Marker-1 (KIM-1) and Neutrophil Gelatinase-Associated Lipocalin (NGAL).  

This study represents the first assessment of these biomarkers using low volumes of 

urine and plasma, as there are no known current publications regarding this topic.  We 

demonstrated detection of these biomarkers above baseline levels, including after 

exposure to a nephrotoxicant.  Third, a novel method for multiplexing three analytes 

using microtiter plates and QDs was demonstrated.  This method allowed for a 

significantly lower LOD for SEB than what had previously been reported in the 

literature using a comparable technique.  Finally, a novel detection system was 

created using an evanescent waveguide for imaging two analytes within a single spot 

on the planar surface fluorescent immunoassay.  Creation of this system portends how 

the planar surface fluorescent immunoassays could transition into a POC device 

where many analytes can be distinguished both spatially and spectrally. 

 

Therefore, this project contributed to our scientific knowledge by providing a unique 

multiplexed optical sensor that performs better than existing platforms due to its 

miniaturized format, low sample volume requirements, and its POC amenability.  
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This platform was applied to detection of emerging AKI biomarkers, which could 

eventually aid in improving medical interventions and treatment.   

 

This work has demonstrated the potential of using a planar surface fluorescent 

immunoassay for clinical in vitro diagnostic applications and personalized medicine.  

As the fields of microfluidics and nanotechnology and biomaterials develop, assay 

formats will become simpler and more accessible.  Use of POC devices to meet a 

variety of clinical needs such as diagnosing diseases, determining prognosis, and 

selecting the best therapy, is on the horizon.   

 

Future Directions 

Improvements in Experimental Techniques 

This work focused on the need for detecting numerous proteins simultaneously using 

optical sensors. Microtiter plate fluorescent immunoassays as well as planar surface 

fluorescent immunoassays were shown to be capable of multiplexing, but 

improvements could be made to both techniques. Microtiter plate experiments require 

relatively large volumes of reagents and samples and rely upon large laboratory 

instrumentation. These drawbacks limit the utility of this type of assay for a POC 

environment. On the other hand, planar surface fluorescent immunoassays use much 

smaller volumes, but still rely upon skilled laboratory personnel to carry out the 

methods. Development of this assay for actual clinical use would require automation 

of the immobilization chemistry, automation of the template production (used in 

patterning and performing the assay), and automation of data analysis to minimize 
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user interaction.  Future work can also evaluate the potential for storage of slides in a 

dry setting at room temperature so that the device is ready for use at any time.   

 

The current design of the planar surface fluorescent immunoassay can be improved in 

terms of limit of detection, sample throughput, and analyte throughput.  According to 

Surinova, et al., the device would currently be classified as having a high LOD, and 

low sample and analyte throughput [225].  Improving the LOD to below 1 ng/mL and 

increasing the sample throughput to more than 1000/day and analyte throughput to 

more than 100 would make this new technology more attractive for future 

development.   

 

Point-of-Care Development  

The planar surface fluorescent immunoassay was used for detection of multiple 

protein analytes both spatially and spectrally by employing QDs as tracers and an 

evanescent wave scanner for imaging.  Detection of more than two analytes in a 

single spot would make this device more desirable for point-of-care development.  In 

order to realize the application of this sensor for clinical use, further studies 

demonstrating detection of many analytes by pairing each with different QDs should 

be conducted.  The limit to the number of analytes that may be detected within a 

single spot depends upon the diversity of the QDs and the availability of distinct 

filters that can block out other wavelengths. 
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Another avenue for future work is to develop an easier way for discerning 

concentrations with a digital interface.  Integration of the assay platform with the 

detection system featuring a digital readout for each spot on the slide would assist 

with interpretation of results.  Further development of a handheld, self-contained 

POC device using an evanescent wave scanner or other technology would be 

instrumental in the potential marketability of the device.  It may be possible to use 

CCDs or alternate cameras used in camera phones or smartphones for the design of a 

POC device that can deconvolute signals from different QDs.     

 

Acute Kidney Injury Biomarker Panel 

More studies are needed to determine definitively whether or not a normal reference 

interval is appropriate for assessing levels of KIM-1 and NGAL in plasma and urine.  

Currently, no reference ranges for these markers have been accepted or recognized by 

the medical community.  Some studies indicate that reference intervals may not be 

appropriate for these biomarkers and that monitoring levels of these proteins over 

time may provide more useful clues regarding a person’s health status [24].  More 

research is needed so that the medical community can confidently know the best way 

to interpret these biomarker measurements.  With this knowledge, the scientific 

community can design medical devices more appropriately to detect AKI biomarkers 

using proper specifications. 

 

Since only two biomarkers were investigated with regard to assessing renal injury, 

incorporation of additional biomarkers into the study design may be useful.  Some 
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traditional biomarkers used for renal damage detection that could be included in 

future studies are N-acetyl-β-glucosaminidase, a urinary enzyme located in the 

lysosomes of the proximal tubules and γ-glutamyltransferase, a protein located on the 

outer membrane of the kidney [180].  These markers are very good indicators of early 

renal damage, but could not be tested in our studies because measurements need to be 

taken at the time of urine collection, making retrospective measurements impossible.  

Future studies would require ongoing animal studies for data collection.   

 

Examples of some novel biomarkers that have already been qualified and may 

indicate damage to different regions of the kidney are albumin (glomerulus) and TFF-

3 (distal tube), to name a few (Figure 43) [180].  Cystatin C may be of particular 

interest because it is independent of muscle mass, gender, and age, and can indicate 

damage in both the glomerulus and proximal tubule of the kidney.  Another protein 

that could have significant use for incorporation into a POC device is β2-

microglobulin because it is stable over a large range of pH and can also indicate 

damage to both the glomerulus and proximal tubule.  Assessment of total urinary 

protein may provide insight regarding kidney damage, but this could be challenging 

to assess using a miniaturized optical sensor platform due to space limitations.  There 

are numerous other qualified biomarkers as well as those that are considered 

“exploratory” that might be worthwhile for testing.  Investigating detection of 

additional biomarkers may yield clinical results that have greater utility.   
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Figure 43. Qualified and exploratory kidney biomarkers and region of detection within the 
nephron [180] 
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More experiments are needed to demonstrate the effectiveness of biomarkers by 

testing retrospective samples with known disease outcomes, prospective samples 

from the intended patient population, and random samples from a target population 

[225].  Not only is it important to multiplex more biomarkers, it is important to test 

their usability in other biosensing contexts besides the planar surface fluorescent 

immunoassays developed in this work [180].  Further studies can provide greater 

insight into the understanding of kidney disease as well as improve the performance 

of new biomarkers.   

 

While this work focused on the public health concern of detecting Acute Kidney 

Injury biomarkers that can indicate damage earlier than current techniques, this 

technology may be applied to detecting other types of clinically-relevant biomarkers 

as well.  Planar surface fluorescent immunoassays may also be useful for detecting 

analytes for environmental monitoring, to ensure food safety, to aid in drug 

enforcement activities, and for defense needs.  
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Appendices 
 

Appendix A: Variation of fluorescence at different 
concentrations using various Cy5-avidin labels (Chapter 3) 
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Figure 44. Variation of fluorescence among slides at low and high concentrations for chicken IgG 
or SEB sandwich assays using JacksonImmuno Streptavidin 
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Figure 45. Variation of fluorescence among slides at low and high concentrations for chicken IgG 
or SEB sandwich assays using ThermoScientific NeutrAvidin 
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Appendix B: Spatial Analysis of Planar Surface Fluorescent 

Immunoassays (Chapter 4) 

A spatial analysis was conducted on all 108 spots per slide to determine whether 

specific spots on the slide have a greater probability of having more variability than 

others (Schematic 1). The purpose of the analysis was to elucidate whether there are 

inconsistencies in the surface functionalization and if so, whether this inconsistency 

typically shows up in the same regions of the slide. This analysis was conducted on 

both raw data and normalized data. Data was normalized to the corresponding spot on 

the slide exposed to the highest concentration of the analyte.  An average of replicates 

at the highest concentration was used to normalize each spot exposed to the highest 

concentration. This was necessary to avoid a value of 1.0 for all of the spots exposed 

to the highest concentration so that variability between these spots could be 

ascertained. Standard deviations were obtained at all corresponding spots exposed to 

a particular concentration of antigen among slides. Of the four or five spots exposed 

to the same concentration of analyte, the spot with the lowest and highest standard 

deviations were identified. Out of the six concentrations per analyte per slide, the 

probability of one particular spot having the highest or lowest standard deviation is 

x/6.  Those percentages were converted to probabilities. Even though certain spots 

may look like they have a high probability for being variable, when the total number 

of slides analyzed per tracer is taken into account, at most, only 30% of all of the 

slides analyzed had high variances at the same spot number. Therefore, this analysis 

revealed that there is no systematic error for the variation between spots. Rather, the 

variation is random. 
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Another spatial analysis was conducted to determine overall how replicate spots 

differ from one another on one slide (Schematic 2). This analysis revealed the average 

intra-slide variation for each particular tracer. In this analysis, replicate spots exposed 

to the same concentration of antigen and the same tracer were analyzed using raw 

data in one analysis and normalized data in separate analysis. Each set of spots 

exposed to the same concentration of antigen on one slide have an average and a 

standard deviation among the replicate spots. Using these values, a percent standard 

deviation was obtained for each set of spots exposed to the same concentration per 

slide. Then, each of the percent standard deviations at a particular concentration were 

averaged to obtain one overall percent standard deviation per slide. Finally, each 

percent standard deviation per slide was averaged to obtain one value per tracer. 

Overall, each analyte had an average percent standard deviation of roughly 20%, 

which is adequate for a biological assay. 

 

In addition to an analysis among replicate spots described above, another analysis 

was conducted based on the average of replicate spots compared to other slides 

exposed to the same tracer, Cy5 (Schematic 3). This analysis revealed the average 

inter-slide variation for each particular tracer. The purpose of this analysis was to 

determine how much one set of spots differ from another set of spots regardless of the 

exposure to a specific concentration of the antigen.  In this analysis, the average 

fluorescence (or normalized fluorescence) at the highest concentration and the 

standard deviation among replicate spots exposed to the same concentration of 

analyte were obtained. The percent standard deviation (standard deviation/mean) was 
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obtained for each concentration of analyte. These values were averaged to determine 

the overall percent standard deviation for each tracer. Overall, each analyte had an 

average standard deviation of roughly 20%, which is adequate for a biological assay. 

Therefore, this analysis bolsters the argument that variation among spots is not 

affected by spatial position. Rather, variation is consistent regardless of exposure to a 

different concentration of analyte.   
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Analysis Among Replicate Spots (How 
do they differ?)
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Analysis on Average of Replicate Spots 
(How do sets of spots differ?)
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