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Breast cancer is one of the most common malignancies among women world-

wide. Conventional breast cancer diagnostic methods involve needle-core biopsy

procedures, followed by careful histopathological inspection of the tissue specimen

by a pathologist to identify the presence of cancerous lesions. However, such in-

spections are primarily qualitative and depend on the subjective impressions of ob-

servers. The goal of this research is to develop approaches for obtaining quantitative

mechanical signatures that can accurately characterize malignancy in pathological

breast tissue. The hypothesis of this research is that by using contact-mode Atomic

Force Microscopy (AFM), it is possible to obtain differentiable measures of stiffness

of normal and cancerous tissue specimens.

This dissertation summarizes research carried out in addressing key experi-

mental and computational challenges in performing mechanical characterization on

breast tissue. Firstly, breast tissue specimens studied were 600 µm in diameter,



about six times larger than the range of travel of conventional AFM X-Y stages

used for imaging applications. To scan tissue properties across large ranges, a semi-

automated image-guided positioning system was developed that can be used to per-

form AFM probe-tissue alignment across distances greater than 100 µm at multiple

magnifications. Initial tissue characterization results indicate that epithelial tissue

in cancer specimens display increased deformability compared to epithelial tissue

in normal specimens. Additionally, it was also observed that the tissue response

depends on the patient from whom the specimens were acquired.

Another key challenge addressed in this dissertation is accurate data analysis

of raw AFM data for characterization purposes. Two sources of uncertainty typically

influence data analysis of AFM force curves: the AFM probe’s spring constant and

the contact point of an AFM force curve. An error-in-variable based Bayesian

Changepoint algorithm was developed to quantify estimation errors in the tissue’s

elastic properties due to these two error sources. Next, a parametric finite element

modeling based approach was proposed in order to account for spatial heterogeneity

in the tissue response. By using an exponential hyperelastic material model, it

was shown that it is possible to obtain more accurate material properties of tissue

specimens as opposed to existing analytical contact models.

The experimental and computational strategies proposed in this dissertation

could have a significant impact on high-throughput quantitative studies of bioma-

terials, which could elucidate various disease mechanisms that are phenotyped by

their mechanical signatures.
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Chapter 1

Introduction

1.1 Motivation

It is estimated by the American Cancer Society that 232,340 new cases of

invasive breast cancer are expected to be diagnosed among women in the US during

2013, and an estimated 40,030 breast cancer deaths alone are expected in 2013 [3].

Traditional assessments of cancer involve a biopsy procedure, followed by detailed

histopathological analysis of the sampled tissue to identify the presence of cancerous

lesions.

Histology is the branch of biology that studies the microscopic structure of

animal or plant tissues. The most common histological procedure is to embed fixed

tissue chunks in paraffin blocks, thinly section them, treat the sectioned tissue slices

with various staining techniques, and then study them under an optical microscope.

This method has enabled pathologists and clinicians to study human tissue in its

normal and diseased forms for hundreds of years and is still playing an indispensable

role in clinical pathology and biology research. Four types of tissue are present in

human body: epithelial tissue, stromal tissue, nervous tissue and muscles; and they

interweave together in distinctive patterns throughout the human body.

Most breast cancers are broadly classified by pathologists into the following

categories [2]:
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1. Carcinoma in situ: These involve neoplastic proliferation that is limited to the

ducts [called ductal carcinoma in situ (DCIS) - see Fig. 1.1(a)] and lobules

[called lobular carcinoma in situ (LCIS) - see Fig. 1.1(b)] by the basement

membrane.

2. Invasive/Infiltrative carcinoma: These involve neoplastic proliferation that

have penetrated through the basement membrane into the stromal tissue [see

Fig. 1.1(c)].

(a) (b)

(c)

Figure 1.1: Stained histopathological images of (a) ductal carcinoma in situ, (b)
lobular carcinoma in situ and (c) invasive ductal carcinoma [2].

While the interpretation of stained images leads to insights into the onset and

progression of malignancy in a tissue specimen, this exercise is largely qualitative

and based on the subjective impressions of observers. To address this, researchers

have proposed a range of computer-aided diagnostic (CAD) methods that assist

physicians in rendering more informed clinical decisions. A comprehensive review of
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the recent advances in automated interpretation of digital microscopy images and

CAD methods with relevance to histopathological tissue is given in [4].

The correlation between pathophysiological processes and the mechanical prop-

erties of the tissue they affect has been the subject of substantial research for a

number of years. Pathophysiological changes that occur in macroscale tissue have

been studied by imaging tools like ultrasound [5], magnetic resonance imaging [6]

and computed tomography [7], and there is reason to believe that these changes may

manifest at the single cellular level [8]. Li et al. [9] reported increased deformabil-

ity in cancerous breast epithelial cells compared to normal breast epithelial cells,

while similar increase in deformability was reported in cancerous bladder cells [10].

It has been hypothesized that the cellular cytoskeleton plays a dominant role in

the onset and progression of cancer. Actin reorganization was speculated to be the

cause of alteration in mechanical properties in bladder cells [10], breast epithelial

cells [9], mouse fibroblast cells [11] and keratinocytes [12]. Changes in deformability

in the extracellular matrix (ECM), that provides structural support to the cells,

was reported to activate malignancy in breast epithelial cells [13], while the role of

cell-ECM binding in cancer has been investigated in [14].

While the structural changes in cellular architecture and the surrounding ECM

induced by cancer has been widely documented at the cellular scale [8], the mor-

phological changes inside a developing tumor lesion is not clearly understood yet.

Indeed, the difference between cellular and tissue-level manifestation of cancer can

be noted by observing the apparent dichotomous impact of cancer across length

scales: pathologists use breast palpation to locate the presence of stiff nodules,
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which correspond to hardening of the neighboring tumor stromal tissue [15], while

cell biophysicists widely report increased deformability in malignant cells compared

to healthy ones, as mentioned earlier [8].

There are several reasons for investigating the mechanical changes that accom-

pany onset and progression of cancer at the tissue level as opposed to the cellular

level. Studying the tumor at the tissue level provides direct insight into the underly-

ing architectural changes that occur within a developing lesion and the surrounding

tissues, and the degree of malignancy can be quantified in the tissue’s native envi-

ronment. In contrast, the relevance of single-cell study is somewhat questionable

since it is not representative of a three-dimensional tissue environment.

Another distinct advantage of studying tumor-level breast cancer is the im-

proved throughput associated with histological tissue preparation. Using techniques

like tissue microarray (TMA) [16] technology, where representative samples from

numerous biopsy procedures can be assembled onto a single microscope slide, it

is possible to characterize many sub-classes of cancer in a reasonably short period

of time. It is therefore enticing to imagine a battery of mechanical signatures of

various subclasses of cancer complementing the digitized stained-image information

from an imaging system to greatly enhance the capability of current computer-aided

diagnostic methods in making informed clinical decisions.

Advances in cancer biomechanics research has been supplemented by a surge in

the development of mechanical property measurement techniques at the micro/nano

scale [17]. Some of the most common methods used to quantify mechanical proper-

ties of biomaterials are given as follows (see Fig. 1.2 [17]):
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1. Micropipette Aspiration (MA): In this technique, a biological cell is drawn into

a pipette using a known suction pressure. The aspiration length quantifies the

deformability of various types of cells.

2. Magnetic Twisting Cytometry (MTC): This method involves attaching mag-

netic beads to functionalized surfaces of cells. Application of a known magnetic

field deforms the surface of the cell, which characterizes the cellular elastic and

viscous properties.

3. Optical Tweezers (OT): In this method, a highly focused laser beam is aimed

at a dielectric bead, usually attached to the biological specimen. The high

intensity of the laser creates a “trap” which holds the bead and the attached

specimen at the focusing point. In many cases, two beads are attached to two

diametrically opposite surfaces of a cell.

4. Atomic Force Microscopy (AFM): The AFM system consists of a micro-cantilever

probe that is piezoelectrically controlled to deform tissue samples by a fixed

amount. Based on the AFM probe and tissue-sample interaction forces, the

cantilever deflects, which is then optically sensed. This deflection and the cor-

responding change in light intensity is related to the stiffness of the sample

probed by the AFM.

While the MA, MTC and OT based mechanical assays all possess the ability

to quantify mechanical properties of micro/nano scale biomaterials, AFM surpasses

these techniques in its versatility in quantifying mechanical properties of biomateri-
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Figure 1.2: Schematics of (a) Micropipette Aspiration, (b) Magnetic Twisting Cy-
tometry, (c) Optical Tweezer and (d) contact-mode Atomic Force Microscopy.
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Figure 1.3: Length scales of various biological specimens, together with the appro-
priate force measuring instruments.
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als across various length scales (see Fig 1.3). It also allows minimal sample prepara-

tion and therefore samples can be studied in their physiological environment. Apart

from its ability to measure nanoscale to picoscale forces, it is also widely used as an

imaging tool [18].

With this background in breast cancer and the mechanical assays that hold

the potential to quantify it, it is hypothesized that using the AFM in contact mode,

differentiable measures of local stiffness in histopathological breast tissue could re-

veal insights into the nature and progression of breast cancer that could supplement

traditional staining based histological assessments for diagnostic purposes.

1.2 Proposed Solution

The research objectives that have been addressed in this work are stated as

follows:

1. Tissue preparation protocol and preliminary feasibility study: In order to en-

sure that AFM sampling in the tissue is restricted to a region of biological

interest, it is necessary to have a predefined map of the tissue specimen which

can be used as a reference to navigate through the specimen under AFM inden-

tation. Virtual-microscopy (VM) enabled TMA technology for this purpose.

The results of preliminary characterization studies show that cancerous ep-

ithelial tissue exhibits increased deformability compared to normal epithelial

tissue.

2. Experimental improvements in the AFM sampling procedure: Human breast
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tissue being highly heterogeneous wherein functional breast epithelial cells

are surrounded by stromal tissue in a complex intertwined manner, sampling

a particular cell type is highly labor-intensive and inefficient. To enhance

the positioning throughput prior to AFM indentation, a long-range image-

guided positioning system (IGPS) has been developed that improves efficiency

in AFM tissue characterization experiments significantly, and the developed

setup serves as a useful supplement to commercial AFM X-Y stages with

limited scanning range.

3. Error quantification in tissue stiffness estimates from indentation data: A crit-

ical pre-requisite to effective tissue characterization is accurate data analysis

of raw AFM data. Variability in two key experimental parameters give rise

to inaccurate estimation of the tissue mechanical properties: (1) the contact-

point in an AFM force curve, which relates to the probe’s vertical position

when it first makes contact with the tissue and (b) the probe’s spring con-

stant, which converts the probe deflection into the contact force. To this end,

an error-in-variables (EIV) based Bayesian Changepoint algorithm has been

developed to investigate the impact of these uncertainties in the mechanical

characterization process.

4. Constitutive modeling of breast tissue: The direct implication of spatial het-

erogeneity in breast tissue specimens is that tissue response might not be

adequately captured through linearized analytical contact models such as the

Hertz contact model. Violations to Hertzian contact theory has been investi-
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gated by using numerical procedures and an exponential type phenomenolog-

ical hyperelastic constitutive model has been proposed to estimate nonlinear

tissue properties from AFM data.

1.3 Organization

Single-cell mechanical characterization using AFM has been well-researched

in the past[19] and this dissertation commences by following a cell-based AFM

characterization protocol as a starting point. In chapter 1, the background and

motivation for this study is discussed. In chapter 2, the operation of the AFM, the

tissue preparation and AFM experimental protocol are introduced and the results of

preliminary AFM indentation experiments on breast tissue specimens are discussed.

Following this, the development of a semi-automated positioning system is reported

in chapter 3, which improves efficiency in the AFM characterization experiments

on tissue compared to preliminary tissue characterization. In chapter 4, details

of a probabilistic mathematical model using EIV-Bayesian Changepoint scheme is

elaborated, which is used to estimate tissue mechanical properties from AFM data

after taking into consideration the innate errors in the AFM system. In chapter 5,

constitutive material modeling of the tissue specimens under AFM indentation is

discussed. Finally, in chapter 6, contributions of this dissertation and the future

goals of this project are discussed.
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Chapter 2

Pilot Mechanical Characterization Studies on Breast Tissue

Pathology samples using Atomic Force Microscopy

2.1 Overview

This chapter discusses the results of pilot studies of AFM indentation on hu-

man breast tissue. Epithelial and stromal tissue regions were selected from normal

and cancerous tissue specimens and AFM indentation experiments were carried out

on these regions. In section 2.2, the materials and methods used to prepare the

tissue microarray map of prescribed locations, the AFM experimental setup with

its operating principle and the AFM data analysis are discussed. In section 2.3, the

tissue elasticity results are presented. This chapter is concluded in section 2.4 with

a discussion of the merits and demerits of the experimental protocol and suggested

improvements.

2.2 Material and Methods

2.2.1 Tissue Microarray (TMA) preparation and Annotation

Tissue Microarray (TMA) technology is a relatively new technique for har-

vesting tiny cylinders of tissue and arranging them on a recipient paraffin block in a

matrix-like format [16]. TMA has been widely used as a high throughput analytical
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tool for conducting large scale molecular studies on tissue specimens. Tissue cores of

0.6 mm diameter were extracted from paraffin-embedded normal and breast cancer

tissue blocks and assembled into 4 quadrupled tissue microarray blocks using Auto

Tissue Arrayer (Beecher ATA-27). Two consecutive 4 µm slices of each TMA were

cut and fixed onto glass slides (see Fig. 2.1).

(a)

(b)

Figure 2.1: (a) Stained slide image and (b) adjacent unstained slide image c©2010
IEEE.

One of each set of consecutive slides was stained with hematoxylin and eosin

(H&E) and cover-slipped. Following the extraction on tissue cores, Virtual Mi-

croscopy (VM) technology was used to generate digital scans of the tissue segments.

VM automatically scans a specimen in a fixed high resolution and allows users to

navigate the digital specimen as if they were viewing the specimen using a tra-

ditional microscope [see Fig 2.2(a) and 2.2(b)]. Both the stained and unstained
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tissue slides were digitized using Trestle/Zeiss MedMicro scanning system at 40x

equivalent resolution into a tiled TIFF format and uploaded onto the web server at

http://virtualscope.umdnj.edu for subsequent viewing and annotation.

The H&E slides were examined by a certified pathologist to confirm histolog-

ical validity of specimen and one pair of consecutive slides was selected based on

the fact that they contained adequate amount of breast parenchyma for the exper-

iments. The certified pathologist then annotated valid normal epithelial regions;

normal stromal regions; cancer epithelial regions and cancer stromal regions using

the online annotation tool [Fig 2.2(c)], while the labels were concealed to the person-

nel performing the AFM tests. The AFM operator was only provided information

on the regions to be indented.

Using TMA technology in the experimental design served three primary pur-

poses. First and foremost, the configuration of TMA specimen facilitated navigation

about the specimens and dictated that each sampling that was taken using the AFM

probe could be applied unambiguously to specific tissue cores by registering the

stained and unstained core images. Second, as each TMA slide can contain dozens

to hundreds of tissue cores, each potentially originating from a different patient,

TMA technology provides abundant specimen sources and experiment design possi-

bilities. Third, it has been proven that TMA technology preserves the microscopic

tissue architecture in each tissue disc for visual assessment as well as for various

qualitative and quantitative assessments [16, 20, 21, 22, 23].
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(b) (c)

(d) (e)

Figure 2.2: An example of one tissue sample as has been used in different steps
of experiment: (a) A low resolution stained image of the tissue microarray. (b)
The VM image of an H&E stained tissue core. (c) The same core annotated by a
pathologist. (d) The unstained adjacent tissue core (VM image). Please note that
tissue distribution in this image is nearly the same as (b) but nearly impossible
to distinguish by eye. (e) Image taken from the AFM microscope during AFM
experiments c©2013 IEEE.
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2.2.2 AFM experimental setup

Prior to AFM experiment, the unstained adjacent slide from the annotated

one was de-paraffinized with xylenes and hydrated with graded alcohols, then kept

in Phosphate buffered saline (PBS).

Top-view 

Optics

  Inverted 

microscope

Vibration 

isolation table

AFM 

head Manual XY 

positioning 

stage

Figure 2.3: AFM experimental setup c©2010 IEEE.

The Atomic Force Microscope (AFM) system consists of the AFM head and

controller (MFP-3D-BIOTM, Asylum Research) and an inverted microscope (Model:

TE2000U, Nikon, Inc) coupled to it such that the AFM head rests on the microscope

(Fig. 2.3). The whole setup is placed on a vibration isolation table (manufactured

by Herzan) and is isolated from external noise using an acoustic hood. The X-Y
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range of the automated scanning stage is 90 µm and the Z-range is 40 µm.

The region of the slide containing the tissue cores was encircled by a hydropho-

bic barrier (Fig. 2.4) using a Pap-Pen (Invitrogen Corporation, Carlsbad, CA), and

PBS solution was intermittently added in the encircled region to ensure that the

tissue cores did not dry up. The barrier prevents the PBS solution from spilling

over to the X-Y scanning stage while performing tissue-AFM probe alignment.

Tissue hydrated in PBS

Hydrophobic

 barrier

Microscope

 Slide
AFM X-Y

stage

Figure 2.4: Hydrated tissue specimen on microscope slide.

After locating each array core on the slide, the annotated regions of interest

within each core were identified by closely following the annotated map [Fig. 2.2(c)]

and ∼ 5-8 indentations were carried out within the annotated region.

AFM cantilevers with pyramidal tips have been shown to produce stress con-

centration on the sample and may also potentially damage the tissue [24]. Hence,

AFM cantilevers with spherical glass tips (Novascan Technologies, spherical bead

of diameter 5 µm) were used for the AFM indentation experiments (see Fig. 2.5).

Typical probe dimensions are tabulated in Table. 2.1.
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Cantilever
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Width, 

Thickness, 

(Radius,   )

Figure 2.5: CAD drawing of a typical AFM probe used for tissue characterization
experiments.

Table 2.1: AFM probe parameters used for characterization experiments

Typical Parameters

Length, L 130 µm
Width, W 35 µm
Thickness, t 2 µm

Bead Radius, R 5 µm
Spring Constant 4.50 N/m

2.2.3 Contact-mode operation of AFM

Fig. 2.6 shows a schematic of the contact-mode operation of the AFM. The

AFM probe is lowered vertically towards the specimen using the piezoelectric scan-

ner (also called the z-piezo), while its deflection is measured by monitoring the

deviation in laser signal reflected from the backside of the AFM probe and sensed

through a photodiode. When the probe is far away from the specimen, the vertical

z position and the deflection, d, are recorded as z1 and d1 respectively [Fig. 2.6(a)].

As the probe is lowered, it makes contact with the specimen at (zk, dk) [Fig. 2.6(b)].

The probe is further lowered till its maximum vertical displacement at (zn, dn)
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Figure 2.6: Schematic of contact-mode AFM operation.
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[Fig. 2.6(c)]. After this, the probe is retracted in the opposite vertical direction.

A 2D representation of the deflection, d, as a function of the vertical displacement,

z, constitutes an AFM force curve [Fig. 2.6(d)]. When the probe is lowered to-

wards the specimen the force curve is termed as the approach force curve. During

the probe retraction phase, the force curve is termed as retract force curve.

Given n data points in a force curve1, the net indentation in the sample is

given by the following equation [24]:

∆ = (zn − zk)− (dn − dk) (2.1)

The AFM measures the probe deflection, which needs to be related to force.

For low deflection regimes, it is possible to treat the cantilever probe as a linear

spring of spring constant kc. The value of kc is obtained by calibrating the probe’s

spring constant prior to an AFM experiment. The “thermal method” [25] was used

for calibrating the probe’s spring constant using Asylum Research software (IGOR

Pro, Wavemetrics, Inc.)2. The force, F , then can be related to the deflection by :

F = kc(dn − dk) (2.2)

Now that force F and indentation ∆ can be obtained from the AFM force

curve, all that remains is to curve-fit the force and indentation to a contact model

1Henceforth, by the term “force curve”, the approach part of the AFM force curve is implied.
In this dissertation, data analysis was not carried out on the retract portion of the force curve,
which is typically used to quantify viscoelastic properties.

2Details of the probe calibration procedure are given in chapter 4.
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to estimate the material properties of the specimen. This is discussed in section

2.2.5.

2.2.4 Operating modes for AFM indentation

There are two modes in which the AFM force curves are acquired: deflection-

controlled mode and the indentation-controlled mode. These determine the amount

of vertical travel of the AFM probe towards (and into) the specimen.

2.2.4.1 Deflection-controlled AFM force curves

The deflection-controlled mode is considered to the be the “gold standard” for

acquiring AFM force curves, and is the most commonly used mode used for AFM

indentation experiments. In this mode, a constant deflection setpoint [(dn − d1),

see Fig. 2.7(a)] is set and the probe is lowered towards the specimen till the probe

deflection (dn) with respect to the non-contact deflection (d1) reaches the deflection

setpoint [Fig. 2.7(b)]. At this point, the probe is retracted from the specimen.

Fig. 2.7 shows the acquisition of an AFM force curve in the deflection-controlled

mode with 50 nm deflection setpoint. The deflection can be directly related to

the contact force by multiplying with the probe spring constant, consequently, the

deflection-controlled mode is also termed as force-controlled mode. Henceforth, this

mode is referred to as the force-controlled mode.
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(a) (b)

50 nm

Figure 2.7: (a) Screenshot of MFP3D software panel used to acquire AFM force
curves in the deflection-controlled mode. (b) Acquired AFM force curve with a
deflection setpoint of 50 nm. The red and blue arrows indicate the direction of the
probe’s motion.
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2.2.4.2 Indentation-controlled AFM force curves

For force curves acquired using the same deflection setpoint through the force-

controlled mode, specimen elasticity variations manifest as variability in indentation

(soft materials show larger indentations than stiffer materials for the same deflection

setpoint). Therefore, the force-controlled mode is not useful when a constant sample

indentation is desired.

The indentation-controlled mode is used to address this need. In order to

achieve a specific indentation in a force curve, the contact location (zk, dk) [please

see Fig. 2.6(d)] must be known. However, there is no way for the AFM to identify

the contact point in a given force curve: it can only measure the deflection, d, and

the vertical z-position, z.

To achieve a target indentation in the indentation-controlled mode, first an

AFM force curve is acquired for a very low deflection setpoint (∼ 10 nm) in the

force-controlled mode [Fig. 2.8(a,b)]. The vertical position abscissa z̄n at which

this deflection setpoint is reached is recorded [Fig. 2.8(b-inset)]. Then, a target

indentation setpoint is set [Fig. 2.8(c)] and a second force curve is acquired. In this

second force curve, the contact location zk is set to z̄n from the first force curve.

Based on this estimated contact point, the probe is lowered by the z-piezo till the

indentation [(zn− zk)− (dn−dk)] reaches the target indentation depth [Fig. 2.8(d)].

In Fig. 2.8, a deflection setpoint of 10 nm and and indentation setpoint of 250 nm

was used for the first and second force curves respectively.

While the indentation-mode appears attractive, particularly in the context of
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               = 242 nm
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Figure 2.8: Screenshot of cropped MFP3D software panel used to acquire AFM
force curves in the indentation-controlled mode. (a) Screenshot of 10 nm deflection-
trigger. (b) Acquired force curve with 10 nm deflection trigger. (c) Screenshot of 250
nm indentation trigger. (d) Acquired force curve with 250 nm indentation trigger.
The red and blue arrows indicate the direction of the probe’s motion.

22



analyzing force curves for mechanical characterization [shallow indentations (< 50

nm) for a 4 µm thick tissue sample) do not provide enough information about the

tissue response, while too large indentations3 necessitate complex contact models

that account for nonlinearity in the tissue response], there are significant shortcom-

ings of this approach. Firstly, the tissue specimen is indented twice in this mode,

as opposed to the force-controlled mode where only one force curve is acquired at

a given location on the tissue surface. Not only does this double the time taken

to conduct characterization experiments, but this mode also subjects the tissue to

preconditioning effects due to the effect of the first force curve. Secondly, prior

knowledge of the tissue specimen’s stiffness is necessary while acquiring the first

force curve, because even a small setpoint may result in large tissue indentation if

the tissue stiffness in the probed region is considerably less than the probe’s spring

constant. If this is the case, the deflection setpoint for the first force curve has to

lowered and the process repeated.

2.2.5 Data Analysis

The mechanical properties are obtained by processing the force-curves offline.

Two steps are needed for this: determining the contact point (zk, dk), and curve

fitting the post-contact force indentation data to a contact model.

To determine the contact point (zk, dk), a derivative-based algorithm (Fig. 2.9)

proposed in [24], was used. In this method, the slope between two deflection dat-

3The impact of large indentations on the estimated elastic modulus has been studied in detail
in Chapter 5.
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apoints di and di+p is compared to a predefined threshold value ssetpt. If the slope

exceeds ssetpt, then the contact point is estimated to be (zk̂, dk̂) = (zi+p/2, di+p/2).

Based on the experimental force curves, p = 10 and ssetpt = 5− 20 nm is used.

Is

?

Yes

No

Figure 2.9: Contact estimation algorithm.

The Hertz contact model [26] was used for extracting the elastic modulus from

the acquired force curves. The contact force, F , is related to the indentation, ∆, of

an elastic half-space by:

F =
4
√
R

3

[
1− ν2
E1

+
1− ν2
E2

]−1

∆1.5 (2.3)

where E1 and E2 are the elastic moduli of the indenter and the half-space and

ν1 and ν2 are the Poisson’s ratio of the indenter and the half-space respectively. The

contact radius, a, is given by the following relation:

a =
√
R∆ (2.4)

Hertzian theory involves the following assumptions:
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Figure 2.10: Hertzian contact of an elastic half-space by a sphere of radius R.

1. The sphere and the half-space are homogeneous and isotropic.

2. The indentations and strains in the half-space are infinitesimal and therefore

linearized continuum theory is applicable.

3. The contact between the sphere and the half-space are considered frictionless.

4. There is no adhesion between the sphere and the indenter.

5. Both the sphere and the half-space are linearly elastic materials.

Assuming the tissue to be incompressible, ν2 can be set to 0.5. For the case of

indentation of the tissue with an probe (with an attached spherical bead), E2 � E1,

hence Eqn. (2.3) can be re-written as:

F =
4E2

√
R

3(1− ν2)2
∆1.5 (2.5)
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2.3 Results and Discussions

The AFM experiments conducted were primarily aimed at examining the dif-

ference in the mechanical properties at (a) epithelial and stromal regions of normal

breast tissue and (b) epithelial and stromal regions of cancerous breast tissue.

Three separate sets of AFM indentation studies were performed to investigate

the variations in elasticity in normal and cancerous samples. The calibrated spring

constants in each set are tabulated in Table 2.2. The experiments were conducted

in the indentation-controlled mode by setting an indentation setpoint of 250 nm.

Table 2.2: AFM probe spring constant for all experiments

Set Calibrated Spring Constant Theoretical Spring Constant

1 2.50 N/m 4.50 N/m
2 3.89 N/m 4.50 N/m
3 3.25 N/m 4.50 N/m

Figure 2.11: Histology images (20X magnification) cropped from four representative
regions probed in set 1. (a) and (b) are regions with normal epithelial (A8) and
cancerous epithelial (A13) tissue respectively, (c) and (d) are regions with normal
stromal (A22) and cancerous stromal (A12) tissue respectively c©2010 IEEE.
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Hertz Fit

Experimental Data

Figure 2.12: Force-Indentation plots obtained in set 1 at (a) normal epithelial regions
(A8), (b) cancer epithelial regions (A13), (c) normal stromal regions (A22) and (d)
cancer stromal regions (A12) along with their Hertzian fits and the mean R2 values.
Inside each annotated region, roughly 5-8 force curves were taken. Note that despite
a target indentation of 250 nm, the tissue indentation varied from 150 - 500 nm.
This was primarily on account of incorrect contact estimation in the indentation-
controlled mode.
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The force-indentation curves and the associated Hertz fits obtained by prob-

ing 5-8 locations on each of the annotations (A8, A13, A22 and A12 as shown in

Fig. 2.11) in set 1 are shown in Fig. 2.12. From the force plots, it is evident that

cancerous epithelial regions exhibit lower stiffness compared to normal epithelial

regions.

A summary of the results of all three sets of experiments is tabulated in Table

2.3. In set 1, 23 and 25 regions were probed in normal and cancerous epithelial tissue

respectively, and 12 and 18 regions were probed in normal and cancerous stromal

tissue respectively. The mean elastic modulus of the epithelial regions was computed

to be 981.80 ± 576.72 kPa and 522.79 ± 274.66 kPa for normal and cancerous tissue

respectively. The mean elastic modulus of the stromal regions was computed to be

2342.65 ± 968.38 kPa and 1335.58 ± 1087.87 kPa for normal and cancerous tissue

respectively. Using an unpaired t-test, the normal epithelial regions were found to

be significantly stiffer than cancerous epithelial regions (p = 0.006).

In set 1, the overall stiffness of 35 probed regions in normal tissue was sig-

nificantly stiffer than the overall stiffness of 53 probed regions in cancer tissue

(p=0.009). Also, the overall stiffness of 30 probed regions in stromal tissue was

significantly stiffer than the overall stiffness of 48 probed regions in epithelial tissue

(p=0.0001).

In set 2, however, only 3 cancerous stromal regions could be probed. Likewise,

in set 3, only 7 normal epithelial regions could be probed. Undersampling in the

cancerous stromal regions and normal epithelial regions in sets 2 and 3 respectively

was primarily due to (1) fewer annotated regions to sample from and (2) region
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Table 2.3: Summary of AFM indentation experiments. Results shown as mean ± standard deviation. P-values
less than α(= 0.05) are highlighted in bold.

Epithelial Stromal

Normal Cancerous Normal Cancerous

Sampled Points 23 25 12 18
Set 1 Elastic Modulus (kPa) 981.80 ± 576.72 522.79 ± 274.66 2342.65 ± 968.38 1335.58 ± 1087.87

p-value 0.006 0.015

Sampled Points 37 13 14 3
Set 2 Elastic Modulus (kPa) 985.99 ± 1059.99 326.36 ± 128.23 2288.18 ± 1839.41 × †

p-value 0.031 × †

Sampled Points 7 21 34 26
Set 3 Elastic Modulus (kPa) × † 186.40 ± 204.21 400.03 ± 328.23 308.29 ± 241.91

p-value × † 0.236

† Elastic modulus and p-value results in these fields are excluded due to insufficient sample size arising out of undersampling in
the corresponding tissue regions.
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localization errors arising out of manual registration methods, i.e. the AFM probings

were carried out outside the specified annotations. Hence, no conclusive inferences

could be made about the comparison between epithelial and stromal tissue response

in normal and cancerous specimens in sets 2 and 3 respectively, and therefore, the

elastic modulus values in the cancerous stromal regions in set 2 and normal epithelial

regions in set 3 have not been presented in Table 2.3.

2.4 Conclusions

In this chapter, the results of preliminary AFM characterization studies on

breast tissue specimens have been discussed. The preliminary feasibility studies in-

dicate that the AFM holds the potential to objectively distinguish between normal

and cancerous tissue. It was observed that cancer tissue exhibited significantly less

stiffness than normal tissue and that epithelial regions exhibited less stiffness than

stromal regions. It was also shown that cancerous epithelial regions were signifi-

cantly softer than normal epithelial regions. Overall results indicated that tissue

had higher stiffness as compared to previously reported measurements on cultured

cell lines or isolated single cells [9],[10]; however, this is most likely attributed to the

general tissue architecture in which the AFM studies are carried out. These results

demonstrate the feasibility of applying AFM on histologically prepared tissue sam-

ples; and this approach can potentially provide a unique pathway to gaining insight

into the biophysical changes at the onset and progression of breast cancer and other

diseases.
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The pilot studies also highlighted certain limitations of using the current ex-

perimental AFM system used for characterizing the tissue specimens. Since the

AFM allows individual pointwise estimation of local stiffness in the tissue speci-

mens, only fraction of the tissue provided on a TMA specimen could be sampled

during each experiment setting. This is primarily due to the laborious nature of

conducting these experiments, where specimens need to be manually translated af-

ter a force curve is acquired on a tissue region. Despite the fact that the AFM user

visually registers stained and unstained tissue images to ensure AFM probings are

conducted within the specified annotated region, such manual registration methods

are not guaranteed to be completely error-free. As seen in the results in Table 2.3,

stromal and epithelial regions were significantly undersampled by the AFM in sets 2

and 3 respectively due to incorrect probing localizations. This impediment is further

aggravated when the number of annotations are limited. Reducing human interven-

tion in carrying out these tasks by automating the process of region localization

and automated indentation can increase robustness in characterizing breast tissue

specimens using AFM. This is discussed in greater detail in chapter 3.

The elastic modulus values reported in this chapter also depend on the spring

constant of the AFM probe being used. While several calibration schemes have been

proposed [25][27], all of these methods report on a certain amount of variability (∼

5−17%) [28]. Another concern with AFM indentation experiments is the sensitivity

of the estimated elastic modulus to estimation errors in the contact point [29]. These

issues are discussed in detail in chapter 4.

While the Hertz model was used to characterize the tissue specimens, it is true
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that apriori assumptions of Herztian contact theory are not always applicable to

soft biological samples that often exhibit hyperelastic behavior [30]. However , the

focus of this preliminary work was to investigate the variations (if any) in stiffness

in normal and cancerous tissue specimens, and the Hertz model provides a rough

estimate of the stiffness of tissue specimens. Aspects of constitutive modeling of the

tissue specimens are discussed in detail chapter 5.
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Chapter 3

Improvements to the AFM experimental protocol for tissue

characterization

3.1 Overview

In chapter 2, it was shown that using stiffness measures as a biomarker,

contact-mode AFM could be used to differentiate spatially between normal and can-

cerous histological breast tissue specimens. By visually relating stained annotated

images and unstained images acquired from AFM integrated optical microscope dur-

ing AFM sampling, manual registration of tissue regions of interest (ROI) with the

stained annotation was performed, and by using manual adjusting screws attached

to the base of the AFM stage, the tissue specimens could be aligned with the AFM

probe.

In this chapter, some of the shortcomings of using manual registration and

positioning methods are discussed in detail that were briefly alluded to at the end

of chapter 2. As opposed to pointwise tissue elasticity measures, elastic maps are

proposed as a technique to quantify the spatial distribution of tissue specimen’s

elastic modulus. The development of a semi-automated image-guided positioning

system to automate some of the positioning tasks involved in tissue characterization

is reported in this chapter. Using the developed system, it becomes possible to

33



acquire much larger experimental datasets within the same experimental setting.

3.2 Problem Statement and Proposed Solution

There were several experimental challenges that were encountered in the pre-

liminary AFM characterization studies in chapter 2. These are elaborated as follows:

• Low sample size: In the preliminary characterization studies, 78, 67 and 88

regions were sampled in experimental sets 1, 2 and 3 respectively. While the

tissue elasticity did display a trend, characterization studies for conclusive

histopathological inference would clearly require much larger datasets, poten-

tially in the order of hundreds or thousands.

• Low throughput during AFM experiments: One of the primary causes for low

sample size was the repetitive manual positioning tasks that were required

to be carried out in between two consecutive force curve acquisitions. These

included (a) moving the tissue slide so that another tissue region inside the

annotation could be sampled, (b) manually registering the stained and un-

stained images and (c) translating the tissue slide to probe annotated regions

in a different core. All these tasks carried out multiple times leads to AFM

operator fatigue, and severely restricts throughput. A flowchart showing the

various steps involved in manual tissue characterization is shown in Fig. 3.1.

• Lack of Automated Registration: As stated in the previous bullet point, man-

ual registration remains another major impediment to improving throughput

in conducting AFM based tissue characterization. The relatively large length
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Start

Position slide underneath
AFM head such that tissue

core is in the field of view (M)

Register annotation on stained
image with unstained image
at low magnification (M)

Align annotated region
with the AFM probe (M)

Change objectives to higher
magnification and re-adjust

focusing and scene lighting (M)

Perform tissue registration
at higher magnification (M)

Change objectives to lower
magnification and re-adjust

focusing and scene lighting (M)

Is Reg-
istration
accurate
(M) ?

AFM Probing (M)

Relevant
Points in
annotation
probed
(M) ?

Manual Positioning (M)

End

NO
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Figure 3.1: Flowchart describing manual AFM indentation experiments. (M) = Manual,

(A) = Automated. 35



(b)

A1

A2

A3

(a)

(c)

A1

A2

A3

Figure 3.2: Manual registration between unstained and stained images. (a) Stained
TMA core image annotated by the pathologist as regions A1, A2 and A3. (b)
Brightfield image while performing AFM indentation on a point in annotation A3
after manually registering the stained image (c) Stained TMA core image overlaid
with the points probed during AFM experiments on the unstained slide. Observe
that annotation A2 has been incorrectly sampled by the AFM.
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scale of the TMA cores (∼ 600 µm in diameter) implies that the whole tis-

sue core is not visible at high magnifications under the optical microscope.

Therefore it becomes necessary to zoom in on a ROI to locate annotations

desired to be phenotyped and then revert back to a coarse magnification to

get a larger perspective of the alignment of the ROI and the AFM probe (see

Fig. 3.1). Furthermore, the image of the tissue specimen acquired by the op-

tical microscope has to be registered with the stained and annotated image to

ensure the AFM probing is restricted to the annotated regions on the stained

image. Poor image contrast in the unstained slide leads to difficulty in manual

registration of the stained and unstained images and as seen in the results in

chapter 2, it might lead the AFM operator to conduct probing outside the

regions annotated by the pathologist (see Fig. 3.2).

Hypothesis: Positioning and registration automation can overcome several

of the aforementioned shortcomings of using manual AFM probe-tissue alignment

prior to tissue indentation.

The following solutions are proposed to improve the AFM experimental pro-

tocol for tissue characterization using AFM:

• Raster scanning for generating elastic maps: By acquiring a set of force curves

from points at precise spatial intervals on a tissue region of interest (ROI), a

two-dimensional map of the tissue elasticity can be constructed. Each force

curve can be processed and assigned a definite pixel of a topographic image,

where the pixel value corresponds to the elastic modulus of force curve acquired
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at the pixel location. This resulting image is typically called an “elastic map”

[31] or a “force-volume” [18].

Elastic maps are proposed as a technique to quantify the spatial distribution

of tissue specimen’s elastic modulus. The AFM X-Y stage, which is typi-

cally employed for imaging applications, can be used for positioning the tissue

specimen at pre-specified spatial intervals.

Table 3.1: X-Y travel range of automated AFM scanners, arranged in increasing
order of their travel range.

AFM Vendor (X-Y) Stage Vendor Travel Range (µm)

Asylum Research Inc. Asylum Research, Inc. 90
Agilent 5420 Agilent 90

JPK Instruments, Inc. Tip Assisted Optics (TAO) stage 100
from Physik Instrumente, Germany

Bruker, AXS Bruker, AXS 150

• Large scanning operations with improved registration: While the commercial

AFM X-Y stages are capable of closed-loop accurate position control, they

are limited by their range of travel (∼ 90 - 150 µm) range for closed-loop

positioning (see Table 3.1). For acquiring elastic maps on small tissue ROIs,

the AFM X-Y stage might be sufficient, however, it would not be possible to

scan regions beyond a 90µm×90µm ROI. Moreover, the AFM X-Y stage still

does not resolve the registration problem.

To account for large ROI scanning operations and repeated manual registra-

tion, a semi-automated image-guided positioning system (IGPS) is proposed.

Essentially, this system uses a micromanipulator with a large X-Y travel range
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to align the tissue specimens with the AFM probe prior to AFM indentation

using closed-loop image feedback from the camera mounted to the inverted

microscope. As described later in section 3.5, this system also addresses key

manual registration challenges.

In the subsequent sections 3.3, 3.4 and 3.5, details of the design and implementation

of the IGPS system are discussed.

3.3 AFM experimental setup with the IGPS

In the modified AFM system, an additional motorized MP-285 micromanip-

ulator (manufactured by Sutter Instruments, Novato, CA) is used for translating

the tissue slide, which is situated at the base of the microscope on the vibration

isolation table. Attached to the MP-285 is a custom-made end-effector to which the

tissue slide is mounted. The slide is placed between the AFM X-Y stage and AFM

probe. The MP-285 has a step resolution of 40 nm and a range of 2.54 cm on both

X and Y axes, and this enhanced X-Y travel range makes it possible to scan ROIs

much larger than 90µm× 90µm.

Since the forces measured during AFM indentation experiments are in the

nm-range, chatter in the end-effector or the slide can lead to incorrect mechanical

property estimation and can potentially damage the AFM probe and the tissue

sample. To eliminate vibrations in the slide, the end-effector was fabricated using

Aluminum and the slide was clamped to the end-effector using a clamping screw

(Fig. 3.3 inset). Additionally, an adhesive tape was used to firmly attach the slide
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to the end-effector. It was observed that using this arrangement, there were no

perceptible vibrations in the slide/end-effector, as mentioned in section 3.5.

Tissue

 Slide
Adhesive 

Tape

Clamping 

Screw

AFM 

Probe

Screws for 

Specimen Alignment

Inverted

Microscope

Vibration Isolation Table

MP-285

(micromanipulator)

End-

effector

Acoustic

HoodAFM 

Head

Figure 3.3: AFM Experimental Setup with the MP-285 micromanipulator c©2013
IEEE.

3.4 Image-Guided Navigation

3.4.1 Tracking of the ROI

The presence of vision in the loop allows the AFM operator to select a certain

ROI and place the ROI underneath the AFM probe tip in an automated man-

ner. Some of the popular tracking algorithms are gradient-based methods like the

Kanade-Lucas-Tomasi (KLT) feature tracker [32] and the Scale-Invariant Feature

Transform (SIFT) [33]. However, as seen in Figs. 2.2(d) and 2.2(e) in chapter 2,
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the unstained tissue images are characterized by low contrast and therefore unique

feature vectors are difficult to compute. In many cases, features of high contrast

(extracted from the images) have been external particles in the fluid environment,

which tend to move around randomly during the motion of the tissue slide under-

neath the AFM probe (see Fig. 3.4).

(a) (b)

Figure 3.4: Extracted features with strong intensity gradients. Observe that promi-
nent features are impurities floating in the liquid environment of the sample.

As a result, normalized cross-correlation based template matching algorithm

[34] is used to ensure robust tracking of the ROI during the motion of the slide (see

Fig. 3.5). Though the applicability of such methods are conditional upon uniform

scene lighting and in-plane translation without rotation, these conditions could be

enforced by: (1) manually adjusting the external lighting and (2) ensuring that there

is no relative motion in the various interconnected parts of the end-effector.

The implementation of the tracking algorithm is given as follows:

For an image, It = {I(px, py, t)|0 ≤ px ≤ R, 0 ≤ py ≤ C}, and a ROI,

T = {T (px, py, t)|0 ≤ px ≤ r, 0 ≤ py ≤ c}, where It and T are the image and the

ROI respectively at the tth frame, the estimated position of the ROI at the t+ 1th
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(a) (b)

Figure 3.5: Normalized cross correlation algorithm used for tracking at two time
instants (a) and (b). The top images correspond to It = I(px, py, t) with the ROI
marked with a white box, while the bottom ones are the result images R, where
with the estimated ROI position (p̂x,t+1, p̂y,t+1) appear as spots of high intensity.

frame is given by [34]:

(p̂x,t+1, p̂y,t+1) = argmax
px,py

R (3.1)

where R, the result image is given by:

R =

∑

p′x,p
′

y

[T (p
′

x, p
′

y)It+1(px + p
′

x, py + p
′

y)]

√∑

p′x,p
′

y

T (p
′

x, p
′

y)
2
∑

p′x,p
′

y

It+1(px + p
′

x, py + p
′

y)
2

(3.2)

The numerator of the expression in Eqn.(3.2) indicates the correlation of the image

and the ROI, while the denominator is the normalizing term to ensure that general

lighting differences in both the image and the ROI do not affect the tracking algo-

rithm significantly. The tracking algorithm was implemented in Visual C++ using
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OpenCV libraries [35].

3.4.2 Control Scheme

The control law in discrete state space form is given by:

X(k + 1) = X(k) + u(k) (3.3)

Y (k) = SRX(k) (3.4)

where

S =



sx 0

0 sy


 ; R =



cos(θ0) −sin(θ0)

sin(θ0) cos(θ0)


 (3.5)

Y =
[
px py

]T
and X =

[
x y

]T
represent the image and manipulator

frame coordinates respectively. R is the rotation matrix between the manipulator

and the image frame while S is a scaling matrix relating the two frames. The

parameters of R and S are estimated in a pre-experiment calibration step using a

cover-slip with uniform grids marked at 100 µm separation, as shown in Fig. 3.6.

u(k) is the control input in the manipulator frame.

To estimate the control input, a gradient-descent based approach [36] is used,

where the control input u(k) is based on the gradient of the function:

F [X(k)] = [X(k)−X tip]
T [X(k)−X tip] (3.6)
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Figure 3.6: Calibration of the scaling matrix S using a cover-slip with uniform grids
at 100 µm.

The control input u(k) is therefore given as:

u(k) = −γ(k)∇F [X(k)] = −2γ(k)[X(k)−X tip] (3.7)

where the step size γ(k) is given by:

γ(k) =





γ0
2||X(k)−X tip||

, if ||X(k)−X tip|| > ε

0, if ||X(k)−X tip|| ≤ ε. (3.8)

γ0 is a constant that determines the magnitude of the incremental travel of

the ROI towards the probe tip X tip. The positioning is terminated once the ROI is

within a radius of ε from the probe tip, where ε is a preset parameter.

It is vital to ensure that parts of the tracked ROI are not occluded by the

AFM probe during positioning since the template matching algorithm requires the

entire ROI to be visible in the image space. As a result, the estimated position of
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the slide in image coordinates, Y , is selected to lie on the upper-corner of leading

edge of the ROI, as shown in Fig. 3.7(b).

3.5 ROI positioning protocol

Tracking

ROI

Probing

ROI

Coarse

ROI

(b)

(c) (d)

(a)

Figure 3.7: Tracking protocol for probe-ROI alignment at 10X and 20X. (a) Stained
image of tissue core annotated by the pathologist at low resolution (10X). (b) Bright-
field image from the AFM-optical microscope. A coarse ROI is selected to match
one of the annotated regions in (a). (c) Positioning at 10X. (d) Registration of the
coarse ROI at 20X c©2013 IEEE.

Using the tracking algorithm and the control law described in section 3.4, the

following protocol is implemented for alignment of the tissue ROI and the AFM

probe tip (see Fig. 3.7).
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• A coarse ROI is selected at low magnification (m1 = 10x), after visually cor-

relating the annotated regions from the stained image [Fig. 3.7(a)] and the

brightfield image from the AFM-optical microscope [Fig. 3.7(b)]. The AFM

probe tip is also selected visually at the same magnification [Fig. 3.7(b)].

• Based on the tracking algorithm and control law discussed, the ROI is posi-

tioned within an error of ε, chosen to be 2 µm [Fig. 3.7(c)].

• The objectives, lighting and focusing are altered manually at higher magnifi-

cation (m2 = 20x) to ensure that the probe tip and the ROI is in focus and

the scene is uniformly lit. The AFM tip is then selected visually by the user

at high magnification, m2. Since the probe tip is stationary, it serves as a ref-

erence for the coarse ROI, which is recreated at a distance m2ε/m1 from the

tip at m2 magnification [Fig. 3.7(d)]. This allows registration of the same ROI

across multiple magnifications. At m2 magnification, finer details are visible

to the user and a part of the recreated ROI is selected, called the probing ROI,

which is probed by the AFM. The remaining part of the recreated ROI serves

as the tracking ROI. The probing ROI is then sampled in a raster fashion,

while the tracking ROI is used to provide image feedback [Fig. 3.7(d)].

In the IGPS, the user has to visually register the stained and unstained images

only twice during the course of the experiment: first, during the selection of the

Coarse ROI at low magnification and second, during the selection of the probing

ROI at higher magnifications (see Fig. 3.8). This is a marked improvement over

manual registration procedures, where the AFM user has to visually register the
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core is in the field of view (M)
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and register coarse ROI with
annotation on stained image
at low magnification (M)
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error ε from the AFM tip (A)
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Figure 3.8: Flowchart describing AFM indentation experiments using the image-
guided positioning system (IGPS). (M) = Manual, (A) = Automated.
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annotated ROI on the unstained image periodically to ensure that the AFM probings

are carried out within the specified annotations (see Fig. 3.1).

A representative AFM force curve obtained from samples mounted on the

IGPS is shown in Fig. 3.9(a) and Fig. 3.9(b). Minimal fluctuations in the deflection

data is indicative of negligible vibrations introduced due to the end-effector design.
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Figure 3.9: (a) Representative AFM force curve on a tissue sample mounted on the
end-effector. (b) Corresponding force-indentation curve overlaid with the Hertzian
fit and (c) Tracking Performance c©2013 IEEE.
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The positioning accuracy is demonstrated in Fig. 3.9(c), where the slide is

translated from its original position (262,226) to Y tip = (163, 362) in the image

space. The positioning errors at the completion of alignment at 10x and 20x were

1.6 µm and 0.8 µm respectively, which are acceptable alignments errors.

3.6 Results and Discussion

A combination of the AFM X-Y stage and the IGPS was used to obtain elastic

maps from the tissue specimens. In the case of the AFM X-Y stage, the annotations

on the stained slide were manually registered with the unstained slide and a 60µm×

60µm ROI inside the annotation was raster-scanned. In the case of the IGPS, the

protocol given in section 3.5 was followed to define the probing ROI on which raster-

scanning was performed.

Due to the relative ease of the force-controlled mode, this mode was used to

acquire the force curves and a deflection setpoint of 50 nm was used. Using the

contact point estimation scheme [24] and the Hertz contact model [26] described in

chapter 2 to fit the experimental data, the AFM force curves were post-processed

to obtain the elastic maps.

3.6.1 Characterization of Epithelium-Stroma boundary

Due to the sharp differences in elasticity in the epithelial and stromal tissue

regions in both normal and cancer specimens, the boundaries of these two tissue

types were identified and raster-scanned.
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Figure 3.10: Elastic maps on normal tissue cores along with their correponding
brightfield images.
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Figure 3.11: Elastic maps on cancer tissue cores along with their correponding
brightfield images.

51



Raster-scanning results on the epithelium-stromal tissue boundaries on normal

and cancer specimens are shown in Figs. 3.10 and 3.11 respectively. The first

column in Figs. 3.10 and 3.11 correspond to the brightfield image of the probed

region on the tissue core, while the second column represents the corresponding

elastic map. The first row images in Figs. 3.10 and 3.11 correspond to elastic maps

on probing ROIs (115µm× 160µm) and (90µm× 130µm) on a normal and cancer

core respectively, acquired by the IGPS and sampled at 5µm spatial intervals. The

second and third row images in Fig. 3.10 and Fig. 3.11 correspond to AFM X-Y

stage acquired 60µm× 60µm elastic maps sampled at 2.5µm spatial intervals.

In all the elastic maps, a clear delineation between the two tissue regions is

clearly observed: the softer regions correspond to epithelial tissue, while the stiffer

regions are the stroma. These results validate the observations in chapter 2, where

epithelial tissue in both normal and cancerous specimens were more deformable

compared to stromal tissue.
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Figure 3.12: Uninterpretatble force curve with no prominent non-contact regime.

It should be noted that during the raster-scanning, some force curves were
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acquired where no defined contact point existed, as shown in Fig. 3.12. These

types of force curves are typically acquired when the tissue specimen has started

translating before the probe has completely retracted from the specimen surface

[37]. These uninterpretable force curves were not considered in constructing the

elastic map, and pixels corresponding to these force curves were replaced by blank

white spaces, as seen in Figs. 3.10(d), Fig. 3.10(f) and Fig. 3.11(d).

3.6.2 Characterization of patient specific tissue specimens

The preliminary characterization experiments in chapter 2 were conducted on

normal and cancer tissue cores compiled from multiple patients. In this section,

patient-specific tissue characterization results are reported, primarily to investigate

if there was any tendency of the tissue response depending on the patient from

whom the cores were extracted.

Table 3.2: AFM experimental setting parameters.

Set Patients Calibrated Spring Constant Theoretical Spring Constant

1 A,B,C 0.596 N/m 0.95 N/m
2 D,F,G,H 0.589 N/m 0.95 N/m

Two sets of experiment were conducted to investigate the tissue response from

7 patients (details in Table 3.2). Patient-specific results are tabulated in Table

3.3. On observation, it can be seen that that stromal tissue is stiffer compared to

epithelial tissue, as observed previously during raster scans at the epithelium-stroma

interface.
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Table 3.3: Summary of AFM raster-scanning results on patient specific tissue specimens. Results expressed as
mean ± standard deviation.

Epithelial Stromal

Normal Cancerous Normal Cancerous

Patient A
Sampled Points × 2285 × 537

Elastic Modulus (kPa) × 419.65 ± 312.41 × 1149.10 ± 675.10

Patient B
Sampled Points × 1144 × ×

Elastic Modulus (kPa) × 461.86 ± 264.09 × ×

Patient C
Sampled Points 576 × 565 ×

Elastic Modulus (kPa) 512.34 ± 251.53 × 902.73 ± 524.86 ×

Patient D
Sampled Points × 1152 × ×

Elastic Modulus (kPa) × 359.49 ± 236.16 × ×

Patient E
Sampled Points × 2304 × ×

Elastic Modulus (kPa) × 152.20 ± 111.46 × ×

Patient F
Sampled Points × × 576 ×

Elastic Modulus (kPa) × × 714.82 ± 348.07 ×

Patient G
Sampled Points 3452 × × ×

Elastic Modulus (kPa) 240.61 ± 144.15 × × ×
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It was also observed that cancer epithelial and normal epithelial tissue response

was not uniform across patients. While patients A and B show similar mean elastic

modulus in cancer epithelial regions, patients D and E show vastly dissimilar elastic

modulus values. Cancer epithelial regions in Patient E showed significantly lower

tissue response compared to normal epithelial regions in Patient G, however, when

the cancer epithelial response from Patient D was included (conducted in the same

experimental setting), the hypothesis of reduction in elastic modulus with cancer

progression could no longer be considered valid.

These results clearly indicate that normal and cancer tissue extracted from the

same patients are necessary to draw meaningful conclusions about tissue property

alterations with cancer progression. Due to time constraints and unavailability of

paired tissue specimens from the same patient, tissue response from the same patient

could not be investigated, and this remains a subject of future work.

3.7 Conclusions

In this chapter, several improvements to the original AFM experimental pro-

tocol was proposed. The major contributions in this chapter are as follows:

1. Improved Sample Size: Using a combination of the AFM X-Y stage and an

image-guided positioning system (IGPS), sample size (upto two orders in mag-

nitude) could be significantly increased, thus confirming the research hypoth-

esis of this chapter. The AFM X-Y stage is employed to perform small scans,

while the IGPS allows scans on much larger ROIs. This is especially relevant to
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the study of relatively large histopathological breast tissue microarrays, where

malignancies of interest are not easily isolated within a small tissue region.

2. Improved Registration: The use of the image-guided positioning system allows

significant reduction in manual registration of the stained and unstained im-

ages. The user requires to perform manual registration only twice during the

course of the AFM experiments, as opposed to reviewing the position of the

ROI on the unstained image with respect to the annotated image periodically

in manual positioning operations.

There are, however, certain limitations with the IGPS, which are elaborated

as follows:

1. User interventions in microscope operations required: Though manual posi-

tioning operations could be significantly reduced, the AFM user is still re-

quired to shift objectives, alter the objective focal length and adjust the scene

lighting manually. It is possible to automate these tasks, however, these au-

tomated options are not currently available in the inverted microscope (Nikon

TE2000U).

2. Absence of automated registration between the stained and unstained images:

Further user intervention could be reduced by performing automated registra-

tion between the annotated regions in the stained and the unstained tissue

images. This would require performing multimodal registration since the two

images are acquired by different scanning systems in dissimilar lighting envi-

ronments.
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Larger datasets implied that stronger conclusions could be drawn from the

AFM measurements. While delineations at the boundaries of epithelium and stroma

tissue could be clearly seen, it was also observed that the tissue properties also

depend on the patient from whom the tissue cores were extracted. It is therefore

proposed that normal and cancerous tissue pairs from the same patient be extracted

and characterized by the AFM.
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Chapter 4

Probabilistic Estimation of the Elastic Modulus

4.1 Overview

In chapter 3, it was demonstrated that by using an image-guided positioning

system with a range much larger than commercial AFM stages, considerable hu-

man intervention could be reduced in AFM tissue characterization experiments. In

addition to reducing the time taken to conduct the experiments, large-scale AFM

indentation data acquisition was shown possible. To exploit the full potential of the

image-guided automated positioning system, it is necessary to develop robust com-

putational methods to automate the mechanical property extraction from large-scale

raw AFM force curves.

As discussed in chapter 2, an accurate material characterization procedure

from the AFM experimental data entails unequivocal determination of the following

experimental parameters: the contact point on the AFM force curve and the spring

constant of the AFM probe. A derivative-based algorithm was used to determine

the contact point [24], and the thermal method was used to calibrate the AFM

probe spring constant [25] to obtain the results in chapter 2. The challenges in

accurate determination of the contact point and the probe spring constant were

briefly alluded to at the conclusion of chapter 2.

In this chapter, the sensitivity of the estimated mechanical property to uncer-
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tainties in these two experimental parameters are discussed in detail. A probabilistic

mathematical model based on Bayesian analysis is proposed to estimate the mechan-

ical property after accounting for observed uncertainties in the contact point and

the probe spring constant. In section 4.2, causes for uncertainty in the experimental

parameters are reviewed. In section 4.3, the details of the mathematical model are

described. In section 4.4, results of implementation of the model on simulated and

experimental AFM force curves are shown. This chapter closes with discussions of

the proposed model with its merits and demerits in section 4.5.

4.2 Problem Statement and Proposed Solution

4.2.1 Uncertainty in the contact Point

The determination of the contact point is a vital component of the mechanical

property extraction process because it determines the amount of indentation caused

due to the vertical travel of the AFM probe. A representative AFM force curve

on a fixed mouse Embryonic Stem Cell (mESC), is shown in Fig. 4.1. It is evident

from Fig. 4.1 that the force curve displays a smooth transition from the non-contact

regime to the contact regime. This is typical of compliant biological samples like

cells and tissue, and this smooth nature of the transition leads to considerably

difficulty in ascertaining the contact point. On stiff substrates in air, the AFM force

curve while approaching the sample shows a prominent attractive region (primarily

contributed by the van der Waal’s forces and capillary forces [38]), which causes

the first derivative of the force curve to change sign when the contact forces take
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over [39]. However, this approach is invalidated for compliant specimens like cells

and tissue in liquid environments. As seen in the Fig. 4.1, there is no perceptible

attractive region in the approach curve while indenting biological specimens.
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Figure 4.1: Representative AFM force curve on mESC, with candidate contact
points shown in red blocks: (a) Whole AFM force curve and (b) transition region
from non-contact to contact regime.

The effect of uncertainty in the contact point on the elastic modulus computed
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using a Hertzian fit [24] is shown in Table 4.1. Over a wide range of candidate contact

points, the elastic modulus varies by a factor of 42% [expressed as (min - max)/ave

].

Table 4.1: Variation of elastic modulus with change in contact point.

Contact Point 1 2 3 4 5 6 7

Elastic Modulus (kPa) 13.28 14.29 15.35 16.50 17.72 19.03 20.52

Over the years, researchers have proposed various strategies to estimate the

point of contact in AFM force curves. Most contact estimation algorithms can be

broadly divided into three categories : purely fit-based, purely derivative based and

a combination of fit and derivative based algorithms. Following is a brief description

of the existing algorithms in literature, together with their strengths and weaknesses.

• Purely Derivative-based Approaches

– Pillarisetti et al. [24] and Nyland and Maughan [40] assumed contact

when the first derivative of the deflection with respect to the Z-position

exceeded a threshold.

– Radermacher [41] detected the contact point as the point of discontinuity

in the first derivative of the raw force curve.

– Advantages: These methods are independent of the contact-model used

to extract the material properties.

– Disadvantages: Computing derivatives in the presence of noisy data could

lead to incorrect estimates. Moreover, smoothness of the transition re-
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gion might preclude any prominent changes in the first derivative of the

deflection. In addition, selection of the threshold parameter to detect the

change in the deflection derivative [24],[40] is largely subjective and is

prone to noise in the non-contact regime.

• Derivative and fit-based Approaches

– Jaasma et al. [39] used a piecewise quadratic function to fit the deflection

data in the force curve, and estimated the contact point as the point

where the extrapolated first derivative of the fitting function exhibited

zero-crossings.

– Charras et al. [42] and Radermacher et al. [43] solved for the contact

point and the elastic modulus simultaneously by taking two points on the

force curve, whose existence in the contact regime was beyond doubt.

– Dimitriadis et al. [44] performed a unconstrained sequential search for

the contact point by fitting the force curve to a modified Hertz contact

model, and selected the point that led to the best fit as the contact point.

– Lin et al. [29] used high-order derivatives to obtain a truncated dataset

where linear elasticity theory was valid. Following this, a sequential

search for the contact point was performed by fitting all the points to

the right of the candidate contact point. The datapoint that led to the

best fit was chosen as the contact point. Crick and Yin [45] used a secant

method to truncate the AFM force datasets to ensure applicability of

linear elasticity theory, following which a fitting protocol similar to [29]
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was used to estimate the contact location.

– Advantages: These methods, when used on smoothed datasets, are inde-

pendent of noise in the deflection data.

– Disadvantages: Fitting (truncated) datasets to pre-established contact

models makes implicit assumptions on the nature of material being in-

dented. In many cases, the contact model is not beforehand.

• Purely fit-based Approaches

– Costa et al. [1] used a bi-domain polynomial (BDP) fit (linear pre-contact

and Hertzian contact regime) for the whole dataset. The estimated con-

tact point was the point that resulted in the best fit for both regimes.

– Polyakov et al. [46] performed segmentation of the AFM force curve

into electrostatic and contact regions using a least-squares optimization

approach.

– Advantages: These methods do not require truncation of the datasets,

which is often a subjective exercise. Also, absence of derivative compu-

tations eliminates the need of smoothing the raw datasets.

– Disadvantages: Fitting datasets to pre-established contact models makes

implicit assumptions on the nature of material being indented. In many

cases, the contact model is not beforehand.

Research has also been directed towards developing methods that obviate the

need to accurately determine the contact point. Al-Hassan et al. [47] developed an
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approach termed as Force Integration to Equal Limits (FIEL) to obtain qualitative

maps of relative elasticity in a biological sample. Briefly, the FIEL approach involves

integrating the raw AFM force curves to the same limits (i.e. maximum deflection).

The authors reported that varying the contact point by a few datapoints resulted

in very small changes in the computed integral. The stiffness at different spatial

locations was then expressed an a non-dimensional parameter, normalized by the

integral at a given spatial location.

A relatively new approach to estimate the contact point was recently proposed

by Rudoy et al. [48], which involves a Bayesian Changepoint model to obtain pos-

terior distributions of the contact point along with the elastic modulus. As opposed

to the other approaches stated before which are primarily point-based, a Bayesian

formulation generates distributions that makes it possible to investigate the vari-

ability in the elastic modulus caused due to the contact uncertainty. The Bayesian

formulation proposed in [48] can be looked upon as a probabilistic extension to the

bi-domain polynomial (BDP) fitting approach proposed by Costa et al. in [1], which

is a maximum-likelihood based approach to estimate the contact point.

4.2.2 Uncertainty in AFM Probe Calibration

As stated previously in chapter 2, the deflection data, d, is related to the

elastic modulus using the Hertz model as shown below:

F = kc(dn − dk) =
4E
√
R

3(1− ν2)∆
1.5 (4.1)
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where k is the contact point index in a dataset of n datapoints, kc is the AFM

spring constant, E is the elastic modulus and ν is the Poisson’s ratio of the material

being indented. Since the elastic modulus E scales with the spring constant kc, any

uncertainty in kc leads to a proportional change in E.

Due to potential inaccuracies during microfabrication, AFM probes are typi-

cally calibrated prior to their use. Various calibration methods have been proposed

by researchers. Some of the most prominent ones are:

1. Sader’s Method [27]: This method uses the probe dimensions, fundamental

resonance frequency and the quality factor of the noise spectrum of a cantilever

vibrating due to the thermal energy of the surroundings to calibrate the spring

constant of the probe.

2. Thermal Method [25]: Similar to Sader’s Method, the thermal method utilizes

equipartition theorem to estimate the probe spring constant of a cantilever

vibrating due to the thermal energy of the surroundings.

3. Cleveland Method [49]: The Cleveland method determines the probe spring

constant from the decrease in resonant frequency resulting from the attach-

ment of known masses to the probe.

4. Reference cantilever based methods [50]: This method involves deforming a

probe of unknown spring constant against a known (reference) probe, and then

measuring the deformations to estimate the spring constant of the unknown

probe.
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Of the aforementioned calibration protocols, the first three are most com-

monly used to estimate the spring constant. Of these, the thermal method [25] has

emerged as a preferred choice of many researchers over (a) the Sader method [27]

because it requires no prior knowledge of accurate dimensions of the probe and (b)

the Cleveland method [49] because of its relative ease of use, as opposed to the

cumbersome procedure of mounting masses on AFM probes [49]. Consequently, the

thermal method is used to calibrate the AFM probe spring constant using Asylum

Research software (IGOR Pro, Wavemetrics, Inc.)

The thermal method involves determination of (1) the sensitivity of the pho-

todiode, commercially called Inverse Optical Lever Sensitivity (InvOLS) [nm/v] and

(2) fundamental resonant frequency of the probe. Following is a step-by-step process

to obtain the spring constant:

• An AFM force curve is obtained on a tissue-free hard glass surface of the

microscope slide [Fig 4.2(a)].

• The slope of the approach force curve is computed.

• The InvOLS is computed from the slope of the force curve, after incorporating

correction factors that accounts for the approximation of AFM probes as ideal

springs and finite laser spot size on the probe end [51].

• The probe is withdrawn from the surface of the microscope slide and is made

to vibrate in response to the thermal noise in the fluid surroundings.

• A Lorentzian function is then fitted to the thermal spectrum after visually

66



9.29.49.69.810

−20

0

20

40

60

80

100

120

0 50 100 150

1.5

2

2.5

3

3.5

4

x 10
−13

Approach

Retract

Slope (related to 

InvOLS)

Exp. 

Fit

Z-position 

D
e
lf
e
c
ti
o
n
 
(n
m
)

A
m
p
lit
u
d
e
 

Fundamental

Freq. (kHz)

(a)

(b)

Figure 4.2: AFM Probe Calibration using the thermal method. (a) An AFM force
curve on a tissue-free hard glass surface and (b) thermal spectrum of the probe in
PBS solution. The rectangular probe of Table 4.2 (rated compliance of 0.222 m/N)
was used to generate these results c©2014 IEEE.
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locating the position of the fundamental frequency [Fig 4.2(b)]. The integral

of the Lorentzian, P , is then computed.

• The spring constant is finally computed as:

kc =
kBT

P (InvOLS)2
(4.2)

While the calibration protocol discussed is fairly straightforward, interpreting

the calibration results is a challenging exercise. Most calibration schemes report

variability between 5-17%[52]. Carrying out calibration experiments in liquid envi-

ronments add to further complexity in accurate determination of the probe’s spring

constant. Calibrated spring constants have shown large variations depending on the

viscosity of the liquid medium. Pirzer and Hugel [53] reported an error of 25% in 4M

phosphate solutions and upto 100% in highly viscous solutions. It was observed that

improving the thermal spectrum fitting function to estimate the spring constants

led to reduced errors in the calibrated stiffnesses.

A relatively new technique of AFM probe calibration is the use of laser doppler

vibrometry (LDV) based interferometric methods [54] to measure the actual vertical

displacement of the probe tip, as opposed to the optical detection methods used in

standard AFMs that measure the angular deflection of the tip end. LDV-integrated

AFMs have recently gained a lot of popularity for dynamic AFM methods in liquids

[55]. Gates el at [28] recently reported calibration errors within 2%, compared to

around 5% at best for the thermal method of calibrating AFM probes; however,
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Table 4.2: Summary of AFM probe calibration results using the thermal method.
Results expressed as mean ± standard deviation.

Probe Rated Comp- InvOLS Fundamental Calibrated
Geometry liance (m/N) (nm/V) Freq. (kHz) Compliance (m/N)

V-Shaped 16.67 87.72 ± 3.66 3.77 ± 0.13 16.38 ± 1.63
(Probe 1)

Rectangular 0.222 178.36 ± 1.88 62.68 ± 2.75 0.328 ± 0.032
(Probe 2)

LDV-integrated AFMs have yet to be commercialized, and the thermal method is

used for calibrating the AFM probes in this dissertation.

It is worth mentioning here that henceforth, the probe spring constant

is referred to by its inverse, i.e. probe compliance, s = 1/kc. Such a

transformation is a necessary step for expressing the uncertainty in the AFM probe

calibrations as an error-in-variables (EIV) regression problem, as seen later in this

chapter.

A summary of 20 calibration experiments using the thermal method for two

probes in PBS solution prior to and after the completion of the AFM experiment are

shown in Table 4.2. As seen from the thermal noise spectrum in [Fig 4.2(b)], the

location of the fundamental frequency is not sharp due to the low Q-factor of the

surrounding fluid. As a result, proper fitting of the noise spectrum to a Lorentzian

is challenging. From Table 4.2, it can be observed that the probe compliance shows

10% errors, which are in good agreement with previously reported variability with

the thermal method [52].

The aforementioned factors of uncertainty clearly pose a serious hindrance in

obtaining accurate estimates of the mechanical properties of specimens subject to
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AFM indentation. This need is further underscored in light of fact that mechanical

characterization results on biomaterials such as breast tissue specimens are quite

often followed by statistical hypothesis testing for inference purposes, for example,

t-tests [10]. Pointwise estimation of the mechanical properties without accounting

for the underlying uncertainty can lead to erroneous conclusions, especially when the

computed p-values for the chosen hypothesis test are close to the level of significance,

α. Indeed, hypothesis testing methods that incorporate interval uncertainty [56]

reduce the possibility of inference errors compared to conventional hypothesis testing

techniques which assume that the exact values of the estimates are known. An

accurate inference test, however, has to be preceded by an approach that quantifies

the elastic modulus with its associated interval uncertainty in a robust manner [57].

Error quantification in AFM studies has been recently shown by [58], where

studies were conducted in air to measure the elastic modulus of relatively stiff sub-

strates like cellulose nanocrystals. However, the effect of contact uncertainty was

not investigated, which is considerably lesser in air compared to liquid.

Hypothesis: Accuracy of the estimated elastic modulus can be significantly

improved by developing robust uncertainty quantification techniques using Bayesian

methods.

In this chapter, a rigorous statistical approach using an integrated error-in-

variables (EIV) based Bayesian Changepoint formulation is proposed to estimate

the elastic modulus of biological samples as a function of both the contact point

and the AFM probe compliance variability. The probe compliance variability is

modeled using the EIV formulation, which is typically used in cases where the in-
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dependent variables in a regression model are observed with errors. Use of Markov

Chain Monte Carlo (MCMC) methods makes it possible to factorize the joint pos-

terior distribution and obtain samples from the marginal posterior distributions.

The proposed algorithm is validated on simulated data and implemented on AFM

datasets obtained from indentation studies on breast tissue specimens. Finally, a

sensitivity analysis is carried out to monitor the performance of the algorithm to a

wide range of probe compliance values.

4.3 Bayesian Analysis

4.3.1 Transformation of raw data

The AFM raw data comprises the probe deflection (d) and z-position (z),

which are processed offline to estimate the properties of the specimen being studied.

Using the same notation used in section 2.2.3 of chapter 2, the contact point is given

as (zk, dk), where k ∈ (1, n) is the unknown index in the dataset which indicates the

transition from non-contact to the contact regime.

The following transformation is used:

δi = zi − di (4.3)

Physically, δ represents the tip-sample distance prior to contact and the spec-

imen indentaion post-contact. Using Eqn. (2.1), the indentation in the sample can
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Figure 4.3: Representative AFM force curve of d v/s z and d v/s δ. Please note that
the d v/s δ curve is displaced 10nm on the deflection axis for ease of visualization
c©2014 IEEE.

be written as:

∆ = δn − δk (4.4)

The experimental data can now be related to an explicit force-indention rela-

tionship by the following expression:

kc(di − dk) = f(E, ν, δi − δk) (4.5)

where kc is the probe spring constant, k + 1 ≤ i ≤ n, f(E, ν, δi − δk) is the

contact model, E is the elastic modulus and ν is the Poisson’s ratio.

Two contact models are used in the EIV-Bayesian Changepoint analysis and

are given as follows:

1. Hertz contact model [26], as discussed in chapter 2.
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2. Long’s contact model [59], for finite indentations on a thin hyperelastic speci-

men following a neo-Hookean constitutive material model.

Assuming incompressibility in the biological specimens, ν can be set to 0.5.

Both Hertz and Long’s contact models are linear in the elastic modulus, E, and can

be written as:

kc(di − dk) =
16E
√
R

9
fi (4.6)

where

fi =





(δi − δk)1.5 for f ≡ Hertz

[
(δi − δk)1.5 + 1.15

√
γ(δi − δk)2 + α1γ

√
γ(δi − δk)3 for f ≡ Long’s Model

+α2γ
3(δi − δk)4.5

]/[
1 + 2.3γ

√
γ(δi − δk)1.5

]

(4.7)

The constants α1, α2 and γ are given by:

α1 = 10.05− 0.63
√
h/R(3.10 + h2/R2) (4.8a)

α2 = 4.80− 4.23h2/R2 (4.8b)

γ = R/h2 (4.8c)

where k + 1 ≤ i ≤ n. R is the of radius of the spherical bead (= 2.5 µm)

and h is the thickness of the tissue sample. Long’s force-indentation relationship is

valid in the regime ∆/h ≤ min(0.6, R/h) and 0.3 ≤ R/h ≤ 12.7. The expressions in

Eqns. (4.8a) and (4.8b) assume frictionless contact between the AFM probe and the
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specimen, which is a reasonable assumption since the tissue specimens are hydrated

by PBS solution during the AFM experiments.

While using the Hertz model to study cells of radius Rcell, R refers to the

effective radius, given by:

R =

√
RbeadRcell

Rbead +Rcell
(4.9)

An alternate form of Eqn. (4.6) is obtained by using the compliance of the

probe, s = 1/kc, in the right-hand-side of the Eqn. (4.6). Therefore, one can write:

(di − dk) =
16E
√
R

9
sfi (4.10)

Such a transformation allows us to relate the deflection, d, to the transformed

variable δ, and to incorporate the probe compliance, s, into the EIV model, as shown

later in this section.

In the non-contact regime, the deflection, d, can be modeled as a linear function

of z [1] , i.e. d = az + b, where a and b are arbitrary constants. However, using a

simple rearrangement of the coefficients a and b, it can be readily shown that d also

varies linearly with the transformed variable δ in the non-contact regime:

d =
a

1− aδ +
b

1− a (4.11)

The two regime regression model relating the deflection d to δ can therefore
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be written as:

di =






[
1 δi

]
β1 + ε1 if i ≤ k

[
1 sfi

]
β2 + ε2 if k + 1 ≤ i ≤ n

(4.12)

where εj ∼ N(0, σj
2); j = 1, 2 are independent and identically distributed

(i.i.d) normal random variables and fi is given by Eqn. (4.7). In general, σ2
1 6= σ2

2 ,

since σ2
1 results from the viscous interactions between the probe and the liquid

medium, while σ2
2 depends primarily on the probe-sample frictional forces [48]. βj =

[
βj1 βj2

]T
; j = 1, 2 are the regression coefficients in the non-contact and contact

regime respectively, and β22 encapsulates the elastic modulus E.

4.3.2 Classical Error-In-Variables Model

In a standard linear regression model with a single independent covariate ξ,

the data comprises n observations of the response variable y and ξ. These are related

by the data error model, and is given by:

yi = β0 + β1ξi + εi ; i = 1, 2, 3, . . . , n. (4.13)

where the errors εi are (i.i.d) and normally distributed with zero mean and constant

variance σ2
ε , and β0 and β1 are unknown regression coefficients which are usually

estimated using least-squares or other similar techniques.

The likelihood function in this case is given by the joint probability of the

75



data:

p(y1, . . . , yn|β0, β1, σ2
ε ) ∝

[
1

σ2
ε

]n
2

n∏

i=1

e

[
− 1

2σ2
ε
(yi−β0−β1ξi)2

]
(4.14)

However, there arises cases where the ξi’s are not directly observed. Instead,

xi’s are observed with a normally distributed additive error νi, which are related by:

xi = ξi + νi ; i = 1, 2, 3, . . . , n. (4.15)

The Equation (4.15) constitutes the classical Error-In-Variable model.

Cheng and Ness [60] states three different sub-classifications of the classical EIV

model based on the assumptions on ξi’s. These are given as follows:

1. Functional Model: ξi’s are assumed unknown constants.

2. Structural Model: ξi’s are (i.i.d) random variables and independent of the error

νi’s. In this case,

E(ξi) = κ; var(ξi) = σ2
ξ (4.16)

3. Ultrastructural Model: Similar to the structural model, ξi’s are independent

random variables, but not identically distributed. This means that they have

possibly dissimilar means, κi’s, and a common variance σ2
ξ . If κ1 = κ2 = . . . κn,

the ultrastructural model reduces to the structural one, whereas if σ2
ξ = 0, the

ultrastructural model reduces to the functional model.
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For considerations of simplicity the functional model is used for the rest of this

work. To use the data error model together with the EIV model, certain assumptions

are made about the errors εi and νi in Eqns. (4.13) and (4.15) respectively. These

are:

E(νi) = E(εi) = 0 (4.17a)

var(νi) = σ2
ν , var(εi) = σ2

ε ∀i (4.17b)

cov(νi, νj) = cov(εi, εj) = 0 ∀i 6= j (4.17c)

cov(νi, εj) = 0 ∀i, j. (4.17d)

The likelihood function is now the joint distribution of the xi’s from Eqn.

(4.15) and the response variables yi’s from Eqn. (4.13), and is given by:

p(x1, . . . , xn, y1, . . . , yn|β0, β1, σ2
ε , σ

2
ν , ξ1, . . . , ξn) ∝

n∏

i=1

[
1

σ2
ν

] 1
2

e

[
− 1

2σ2
ν
(xi−ξi)2

]

×
n∏

i=1

[
1

σ2
ε

] 1
2

e

[
− 1

2σ2
ε
(yi−β0−β1ξi)2

]
(4.18)

4.3.3 EIV-based Changepoint Modeling: Likelihood

From Eqn. (4.12), it can be seen that in the non-contact regime, the covariates

ξi = δi, i = 1, 2, . . . , k are fixed and observed; therefore implementation of the EIV

model is not necessary.
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The joint distribution in the non-contact regime is therefore given as:

p(d1, . . . , dk|β1, σ
2
1, k) ∝

k∏

i=1

[
1

σ2
1

] 1
2

e

[
− 1

2σ2
1
(di−β11−β12δi)2

]
(4.19)

where the response variables are the deflection data d1, . . . , dk.

In the contact regime, it one can write, using Eqn. (4.12):

ξk+1 = sfk+1

...

ξn = sfn (4.20)

The covariates ξk+1, . . . , ξn in Eqn. (4.20) are multiples of the probe compli-

ance s. When s is observed without errors, the estimation approach proposed in this

work reduces to the regular Bayesian Changepoint model [48],[61], since ξ1, . . . , ξn

are fixed and observed. However, variations in the probe calibration measurements

as evidenced by the results in Table 4.2 indicate that incorporation of some notion

of randomness on the nature of s is necessary.

The variable s is modeled as an unobserved variable which needs to be esti-

mated. Instead of observing s, the random variable sd is observed with an additive

Gaussian error ψ ∼ N(0, σ2
sd
), which is given by:

sd = s+ ψ; ψ ∼ N(0, σ2
sd
) (4.21)
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Using the observed probe compliance sd, one can write:

xk+1 = sdfk+1

...

xn = sdfn (4.22)

where xk+1, . . . , xn are the observed covariates analogous to the observed xi’s in

Eqn. (4.15).

At this point, it would seem natural to define a joint distribution of the data

(xi, di) similar to Eqn. (4.18). However, from Eqn. (4.22) it is clear that xk+1, . . . , xn

are not independent; instead, they are multiples of sd. Likewise, the unobserved

ξk+1, . . . , ξn are all multiples of s. Moreover, it is important to note that the inde-

pendence condition from Eqn. (4.17c) is violated, since:

cov(νi, νj) = cov(xi, xj) = fifjcov(sd, sd)

6= 0 ∀ i 6= j (4.23)

The direct implication of the violation of the independence condition of Eqn.

(4.17c) is that the covariate distribution can simply be expressed in sd and s, instead

of the covariates xk+1, . . . , xn and ξk+1, . . . , ξn. The EIV model in the contact

regime therefore can be reduced to:

p(sd|s, σ2
sd
) ∝

[
1

σ2
sd

] 1
2

e

[
−(sd−s)2

2σ2
sd

]
(4.24)
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This leads to considerable reduction in the complexity of the joint distribu-

tion of the contact-regime data. The joint distribution of the EIV model and the

deflection data in the contact regime now can be written as:

p(sd, dk+1, . . . , dn|β2, σ
2
2 , k, s) = p(sd)

n∏

i=k+1

p(di)

∝
[

1

σ2
sd

] 1
2

e

[
−(sd−s)2

2σ2
sd

]
n∏

i=k+1

[
1

σ2
2

] 1
2

e

[
− 1

2σ2
2
(di−β21−sβ22fi)

2
]

(4.25)

Combining the joint distribution in the non-contact regime [Eqn. (4.19)] with

the distribution of sd in the contact regime [Eqn (4.25)], the data likelihood for the

whole dataset is given by:

p(sd, d1, d2, . . . , dn|β1,β2, σ
2
1, σ

2
2, k, s) = p(sd)

n∏

i=1

p(di)

∝
[

1

σ2
sd

] 1
2

e

[
−(sd−s)2

2σ2
sd

]
k∏

i=1

[
1

σ2
1

] 1
2

e

[
− 1

2σ2
1
(di−β11−β12δi)2

] n∏

i=k+1

[
1

σ2
2

] 1
2

e

[
− 1

2σ2
2
(di−β21−sβ22fi)2

]

(4.26)

Based on the candidate contact point k, the deflection data can be re-written in

a compact vector form, as, d1 =
[
d1 d2 . . . dk

]T
, d2 =

[
dk+1 dk+2 . . . dn

]T

and d =
[
d1 d2

]
. The right hand side of [Eqn. (4.12)] form the design matrices

given by:

X1 =



1 1 . . . 1

δ1 δ2 . . . δk




T
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X2 =




1 1 . . . 1

sfk+1 sfk+2 . . . sfn




T

(4.27)

Using the notations in Eqn. (4.27), the data likelihood of (sd,d) can be re-

written as:

p(sd,d|β1,β2, σ
2
1, σ

2
2, k, s) ∝

[
1

σ2
sd

] 1
2

e

[
− 1

2σ2
sd

(sd−s)2
]
×
[
1

σ2
1

] k
2

e

[
− 1

2σ2
1
||d1−X1β1||

2
]
×

[
1

σ2
2

]n−k
2

e

[
− 1

2σ2
2
||d2−X2β2||

2
]

(4.28)

4.3.4 EIV-based Changepoint Modeling: Posterior

Table 4.3: Conjugate Prior Distributions

Model Distribution Hyperparameters
Parameter Family

k Uniform ∼ U(1, n)

β1,β2 Normal ∼ N(β̄1, Λ̄
−1
1 ) , ∼ N(β̄2, Λ̄

−1
2 )

σ2
1 , σ

2
2 Inverse Gamma ∼ IG(a0, b0) , ∼ IG(a0, b0)

s Normal ∼ N(µsp, σ
2
sp)

The posterior distribution, expressed as posterior distribution ∝ data likelihood×

prior distribution, and can be written as:

p(β1,β2, σ
2
1, σ

2
2 , k, s|sd,d, σ2

sd
) ∝p(d, sd|β1,β2, σ

2
1, σ

2
2, k, s)× π(β1)× π(β2)×

π(σ2
1)× π(σ2

2)× π(k)× π(s) (4.29)

where π(.) indicates the prior distribution of the variable in parenthesis. Conjugate
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priors (Table 4.3) are used to ensure that the posterior distribution is separable [61].

Combining the distribution of the data with the priors, the posterior can be written

as:

p(β1,β2, σ
2
1, σ

2
2, k, s|sd,d, σ2

sd
) ∝

[
1

σ2
1

] k
2
[
1

σ2
2

]n−k
2
[

1

σ2
sd

] 1
2

e

[
− 1

2σ2
1
||d1−X1β1||

2
]
e

[
− 1

2σ2
2
||d2−X2β2||

2
]

e

[
− 1

2σ2
sd

(sd−s)2
]
e

[
− 1

2
(β1−β̄1)

T Λ̄1(β1−β̄1)
]
e

[
− 1

2
(β2−β̄2)

T Λ̄2(β2−β̄2)
]

(σ2
1)

−a0−1e

[
−

b0
σ2
1

]
(σ2

2)
−a0−1e

[
−

b0
σ2
2

][
1

σ2
sp

] 1
2

e

[
− 1

2σ2
sp

(s−µsp )
2
]

(4.30)

A schematic of the EIV-Bayesian Changepoint algorithm is given in Fig. 4.4.
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Figure 4.4: Schematic of the EIV-Bayesian Changepoint algorithm c©2014 IEEE.

4.3.5 EIV-based Changepoint Modeling: Gibbs Sampling

The marginal posteriors are obtained from the joint posterior distribution of

Eqn. (4.30) using Gibbs Sampling, which is a Markov Chain Monte Carlo (MCMC)

sampling technique wherein the marginal posterior in each parameter of the joint
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posterior is derived by separating out the terms in the joint posterior corresponding

to each parameter and conditional upon the rest. The posterior is sampled iteratively

for the parameters (s,β1,β2, σ
2
1, σ

2
s , k).

While sampling for s(i+1) given i previous iteratively sampled steps, it can be

observed that s appears in the data likelihood and the prior for s. The terms in the

posterior distribution containing s are given by:

p(s) ∝ e

[
− 1

2σ2
2
||d2−X2β2||

2
]
e

[
− 1

2σ2
sd

(sd−s)2
]
e

[
− 1

2σ2
sp

(s−µsp )
2
]

∝ e

[
− 1

2σ2
2

n∑

j=k+1

{di−β21−β22sfj}2

]

e

[
− 1

2σ2
sd

(sd−s)2
]
e

[
− 1

2σ2
sp

(s−µsp)
2
]

(4.31a)

The coefficients of s2 and s can be combined to complete the square in s by a simple

rearrangement of terms in Eqn. (4.31a). Since the constant term in the square in s

is not dependent on s, it can be ignored without altering the Gibbs Sampling step.

Therefore:

s(i+1) ∼ p(s|β(i)
1 ,β

(i)
2 , σ

2
1
(i)
, σ2

2
(i)
, k(i))

∼ N(µ̃s, σ̃
2
s)
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where :

µ̃s =

[(
σ2
spsd + σ2

sd
µsp

σ2
sp + σ2

sd

)
σ2
2

β2
22

n∑

j=k+1

f 2
j

+

(
n∑

j=k+1

(dj − β21)fj

β22

n∑

j=k+1

f 2
j

)(
σ2
spσ

2
sd

σ2
sp + σ2

sd

)][

σ2
2

β2
22

n∑

j=k+1

f 2
j

+

(
σ2
spσ

2
sd

σ2
sp + σ2

sd

)]−1

(4.31b)

σ̃2
s =

[
β2
22

σ2
2

n∑

j=k+1

f 2
j +

1

σ2
sd

+
1

σ2
sp

]−1

(4.31c)

Likewise, the regression parameters β1 and β2 appear in multivariate normal form in

the data likelihood and the priors for β1 and β2 respectively, and the same strategy

is employed to complete the square and factor it out of the posterior. The terms in

the posterior distribution containing the regression parameters are given by:

p(βm) ∝ e

[
− 1

2σ2
m

||dm−Xmβm||2
]
e

[
− 1

2
(βm−β̄m)T Λ̄m(βm−β̄m)

]

∝ e

[
− 1

2σ2
m

{||dm−Xmβ̂m||2+(βm−β̂m)TXT
mXm(βm−β̂m)}

]
e

[
− 1

2
(βm−β̄m)T Λ̄m(βm−β̄m)

]

(4.32a)

where m = 1, 2 for the non-contact and the contact regimes respectively and β̂m =

(XT
mXm)

−1XT
mdm is the least-squares solution.

The following identity is used to complete the square in the multivariate case
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[62]:

2∑

p=1

(α−αp)
TΣp(α−αp) = (α− α̃)TΓ(α− α̃) + f(αp,Σp) (4.32b)

whereΣ1,Σ2 are positive semi-definite symmetric matrices, α̃ = (Σ1+Σ2)
−1(Σ1α1+

Σ2α2) and Γ = Σ1 +Σ2.

Using Eqn. (4.32b), one arrives at the following expression:

β
(i+1)
1 ∼ p(β1|s(i+1),β

(i)
2 , σ

2
1
(i)
, σ2

2
(i)
, k(i))

∼ N(β̃1, Σ̃1) (4.32c)

β
(i+1)
2 ∼ p(β2|s(i+1),β

(i+1)
1 , σ2

1
(i)
, σ2

2
(i)
, k(i))

∼ N(β̃2, Σ̃2) (4.32d)

where

β̃m = (σ−2
m Xm

TXm + Λ̄m)
−1
(σ−2

m Xm
Tdm + Λ̄mβ̄m) (4.32e)

Σ̃m = (σ−2
m Xm

TXm + Λ̄m)
−1

(4.32f)

for m = 1, 2.

The variances σ2
1 and σ2

2 appear in the data likelihood and the priors for the

variances. Likewise, the posterior can be factorized to contain terms only in σ2
1 and
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σ2
2 and the following expression results:

p(σ2
1) ∝

[
1

σ2
1

]k
2

e

[
− 1

2σ2
1
||d1−X1β1||

2
][

1

σ2
1

]a0+1

e

[
−

b0
σ2
1

]

∝
[
1

σ2
1

]k
2
+a0+1

e

[
− 1

σ2
1

(
0.5||d1−X1βm||2+b0

)]
(4.33a)

and

p(σ2
2) ∝

[
1

σ2
2

]n−k
2

e

[
− 1

2σ2
2
||d2−X2β2||

2
][

1

σ2
2

]a0+1

e

[
−

b0
σ2
2

]

∝
[
1

σ2
2

]n−k
2

+a0+1

e

[
− 1

σ2
2

(
0.5||d2−X2β2||

2+b0

)]
(4.33b)

Hence, one can write:

σ
2,(i+1)
1 ∼ p(σ2

1|s(i+1),β
(i+1)
1 ,β

(i+1)
2 , σ2

2
(i)
, k(i))

∼ IG(ã1, b̃1) (4.33c)

σ
2,(i+1)
2 ∼ p(σ2

2|s(i+1),β
(i+1)
1 ,β

(i+1)
2 , σ

2,(i+1)
1 , k(i))

∼ IG(ã2, b̃2) (4.33d)

where

ã1 = a0 + k/2 (4.33e)

ã2 = a0 + (n− k)/2 (4.33f)

b̃m = b0 + 0.5(||dm −Xmβm||)2 (4.33g)
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for m = 1, 2.

In the case of the contact point index, a flat uninformative prior [π(k) = 1]

is used to avoid biasing the posterior. The posterior in k is therefore the discrete

distribution function obtained by varying k over the data likelihood, and is given

by:

k(i+1) ∝ p(k|s(i+1),β
(i+1)
1 ,β

(i+1)
2 , σ

2,(i+1)
1 , σ

2,(i+1)
2 )

∝
[
1

σ2
1

]k
2

e

[
− 1

2σ2
1
||d1−X1β1||

2
][

1

σ2
2

]n−k
2

e

[
− 1

2σ2
2
||d2−X2β2||

2
]

(4.34)

4.4 Results and Discussions

4.4.1 Implementation of the Gibbs Sampler

Excepting the contact point index k, all the other marginal posteriors can be

directly sampled from their respective family of parametric probability distributions

due to the use of conjugate priors. Rejection sampling [63] is used to sample for k

[Eqn. (4.34)] to complete the Gibbs Sampling step.

The initial 3000 iteration results of the Gibbs Sampler are rejected, which

constitutes the burn-in period. Sampling is terminated when increasing the number

of iterations do not alter the nature of the marginal posteriors. Typically, sampling

is terminated after 200,000 iterations. With respect to the probe compliance, sd is

set to a pre-experiment calibration value (= 16.1 m/N for Probe 1 and 0.339 m/N

for Probe 2). The hyperparameter values of the probe compliance are set to those

obtained in Table 4.2 , i.e. µsp = 16.38 m/N, σ2
sp = 1.632 m2/N2 for Probe 1 and
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Table 4.4: Hyperparameter Values

Hyperparameters Values

β̄1, β̄2

[
0 0

]T

Λ̄1, Λ̄2

[
10−15 0
0 10−15

]

(a0, b0) (1, 2) (Hertz Model)

(1, 0.002) (Long’s Model)
(µsp, σ

2
sp) (16.38, 1.632) (for Probe 1)

(0.328, 0.0322) (for Probe 2)

µsp = 0.328 m/N, σ2
sp = 0.0322 m2/N2 for Probe 2. Using such an informative prior

based on Table 4.2 makes it possible to incorporate prior knowledge of multiple

probe calibrations. The prior and data variances of the probe compliance are also

assumed to be equal i.e. σ2
sp = σ2

sd
. This allows us to give equal weightage to

the prior and data values. Setting the data and prior variances equal also avoids

estimation problems, which are typical when the data variance is unknown [64].

With respect to the other parameters, no useful information is available beforehand,

consequently, uninformative priors are assigned to them. The contact point k is

assigned a uniform distribution, U(1, n), while β1,β2, σ
2
1 and σ

2
2 are assigned disperse

prior distributions. The hyperparameter values used during sampling is given in

Table 4.4.

4.4.2 Simulated Data

Owing to lack of robust experimental methods to determine the contact point

from AFM force curves, the EIV-Bayesian Changepoint algorithm is first validated
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Figure 4.5: Results of the EIV-Bayesian Changepoint algorithm on simulated data
with n = 1000 datapoints. (a) Simulated AFM force curve with contact occurring
at datapoint k = 650 and (b) marginal posterior of the contact point index k, along
with the posterior mean bk̂c = 653 and the 95% confidence intervals [642, 660].
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on a simulated AFM force curve with a known contact point. The Hertz model (with

power law 1.5) is used as the force-indentation relationship, and the calibration re-

sults for Probe 1 are used to specify the probe compliance data and hyperparameter

values. The following parameters were used to generate the entire data:

• Datapoints n = 1000. Contact Point Index k = 650.

• Pre-contact regime standard deviation σ1 = 1.20. Contact regime standard

deviation σ2 = 1.50.

• Pre-contact regime regression parameters β1 =
[
β11 β12

]T
=

[
35 0.001

]T
.

• Contact regime regression parameters β2 =
[
βj1 βj2

]T
=

[
35.01 0.3

]T
.

• Observed probe compliance sd = 16.10. Observed probe compliance variance

σ2
sd

= 1.632.

The simulated AFM curve is shown in Fig. 4.5(a). The noise parameters

σ1 and σ2, were selected to mimic experimental AFM force curves obtained on

extremely compliant live cells, where the contact uncertainty is more severe than

other biological specimens.

The result of sampling the marginal posterior in the contact point index k

according to Eqn. (4.34) is shown in Fig. 4.5(b). The true contact point is at

datapoint 650, while the posterior mean of the contact point is given by bk̂c = 653,

a very negligible error given the noisy nature of the transition. Moreover, it is sig-

nificant to note that the 95% confidence interval (C.I.) given by [642, 660], contains

the true contact point. This is one of the advantages of using an interval based
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Table 4.5: Model performance on simulated data

Ground Truth Posterior Means

k 650 653
β22 0.3 0.306
σ1 1.20 1.24
σ2 1.50 1.50

(sd, µsp) (16.10,16.38) 16.74 (ŝ)

method over point based methods in estimating the contact-point and the mechan-

ical properties: even though the true contact point was missed by 3 datapoints, the

95% C.I contained the true contact point. It is also evident from Figs. 4.5(a) and

4.5(b) that integration of the EIV model into a standard Changepoint model does

not adversely affect Changepoint model’s ability to estimate the contact point.

The marginal posteriors in s, β22, σ
2
1, σ

2
2 are given in Fig. 4.6, and the posterior

means are given in Table 4.5. From the results, it can be seen that the EIV-Bayesian

Changepoint model performs quite satisfactorily on simulated data. The estimation

error in the regression coefficient of interest, β22 is 2%, which is quite reasonable

given the noisy nature of the simulated AFM force curve. The posterior means of

σ1 and σ2 are also within 3.5 % of the ground truth values. The probe compliance

s shows a posterior mean (ŝ = 16.74) with a dispersed distribution due to the

variability introduced by the variance terms σ2
sd

and σ2
sp.

4.4.3 AFM studies on histological breast tissue

This section deals with the implementation of the algorithm on AFM indenta-

tion datasets obtained from histological breast tissue samples. The AFM indenta-
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Figure 4.7: Image of tissue region where probing was conducted to obtain the results
in this section. AFM indentation experiments on breast tissue were conducted in
the probing ROI c©2014 IEEE.

tion data was generated from raster scanning of the probing ROI shown in Fig. 4.7.

Probe 2 was used for the AFM experiments, and Long’s contact model [59] was used

as force-indentation relationship.

Due to the absence of existing algorithms that quantify the elastic modulus

estimation errors due to both contact uncertainty and probe calibration variability,

it is difficult to compare the efficacy of the algorithm in reflecting the variability in

the estimated elastic modulus due to these two sources of uncertainty. To overcome

this, the following steps are implemented:

1. The 95% bounds from multiple calibration experiments in Table 4.2, i.e.

s̄2.5% = 0.328− 2(0.032) m/N and s̄97.5% = 0.328 + 2(0.032) m/N are used to

set deterministic bounds of the probe compliance variability from the probe

compliance.

2. The posterior mean of the contact point, k̂, is obtained through a standard
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Bayesian Changepoint approach [48] (without any variations in the probe com-

pliance).

3. Using s̄2.5% and s̄97.5% and the contact point posterior mean from step (2), the

bounds of the elastic modulus, Ē2.5% and Ē97.5%, are estimated using least-

squares fitting to the Long’s model. These bounds are then compared to

the 95% confidence intervals of the marginal posterior in the elastic modulus

obtained from the EIV-Bayesian Changepoint approach.

The results of the EIV-Bayesian Changepoint algorithm applied on a repre-

sentative AFM force curve on tissue specimens are presented in Figs. 4.8 and 4.9.

The AFM deflection data together with the posterior mean of the contact point

(bk̂c = 433) is shown in Fig. 4.8(a), and the marginal posterior in k is shown in

Fig. 4.8(b).

The marginal posterior in s is shown in Fig. 4.9(a). The marginal posterior

in β22 [Fig. 4.9(b)] is easily transformed into the elastic modulus, E, due to the

linear relationship between them [Eqn. (4.10)]. The posterior mean of the elastic

modulus, Ê = 119.01 kPa compares favorably with previously reported values on

histological breast tissue [65].

Also displayed in the Figs. 4.9(a) and (b) are the bounds (s̄2.5%, s̄97.5%) and

(Ē2.5%, Ē97.5%) respectively. It is evident that the 95% confidence intervals of the

elastic modulus are well bounded by Ē2.5% and Ē97.5%. Indeed, this is one of the

advantages of using an integrated EIV-Bayesian Changepoint approach: lower vari-

ability in the estimated elastic modulus compared to using bounds on the calibration

94



0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7(b)

%
 F

re
q

u
e

n
c
y

Contact point Index 

0 200 400 600 800
−10

0

10

20

30

40

50

60

Posterior

Mean 

(a)

D
e

fl
e

c
ti
o

n
 (

n
m

)

Datapoints

420 430 440 450

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

Figure 4.8: Results of the EIV-Bayesian Changepoint algorithm on a representative
AFM force curve on breast tissue with n = 783 datapoints. (a) AFM force curve
with the posterior mean of the contact point index at bk̂c = 433. (b) Marginal
posterior of k.

95



0.25 0.3 0.35 0.4 0.45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

90 100 110 120 130 140 150 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Elastic Modulus      (kPa)Probe Compliance      (m/N)

%
 F

re
q

u
e

n
c
y

%
 F

re
q

u
e

n
c
y

(a) (b)

Posterior Mean 

95% Confidence

 Interval

Posterior Mean 

95% Confidence 

Interval

Figure 4.9: (a) Marginal posterior in s and (b) marginal Posterior of E.

data and point estimates of the contact point to compute the elastic modulus.

4.4.4 Sensitivity Analysis

The dispersed nature of the marginal posterior in the elastic modulus in

Fig. 4.9(b) raises an interesting question - what are the individual contributions of

the contact point uncertainty and the probe compliance variability in the marginal

posterior distribution in E? More importantly, does the marginal posterior in E

reflect changes in the hyperparameter values of the probe compliance, given that an

informative prior was used for it?

4.4.4.1 Varying σsp

The effect of using hypothetical values of σsp on the marginal posteriors is

illustrated in Fig. 4.10. The dispersion of the marginal posterior in E increases
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with σsp , as shown in Fig. 4.10(a). This is an expected observation, since larger

variations in the calibrated probe compliance would lead to greater uncertainty in the

elastic modulus of the probed regions. The individual contribution of contact point

uncertainty on marginal posterior in E is given in the first boxplot of Fig. 4.10(a)

(corresponding to σsp = 0.000).

Likewise, increase in σsp leads to greater dispersion in the marginal posteri-

ors in s [Fig. 4.10(b)]. It is worth noting that changes in σsp does not cause any

substantial change to the posterior means of E or s.

The boxplots of Fig. 4.10(c) shows the effect of σsp on the marginal posterior

in k. It can be observed that changes in σsp has no significant effect on the posterior

in k - the 95% confidence intervals varies between the 428th and 435th datapoints.

This is an important observation, since uncertainties in the probe compliance and

the contact point are physically unrelated - probe compliance variations are the

result of calibration errors, while contact point uncertainty occurs because of the

soft nature of biological tissues and the absence of a perceptible attractive region in

the AFM force curve in liquid.

4.4.4.2 Varying µsp

The effect of varying the hyperparameter µsp on the marginal posteriors in

E and s are shown in Figs. 4.11(a) and 4.11(b) respectively. The previous values

of sd(= 0.339) m/N and σsd(= 0.032) m/N and the assumption that σ2
sd

= σ2
sp

are retained. The first boxplot shows the marginal posteriors when µsp is set to
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0.222 m/N, the probe manufacturer’s rated compliance. This is often useful when

the AFM user performs a single probe calibration experiment, and wishes to see the

result of using the rated compliance instead of repeating the calibration experiments.

The second boxplot uses µsp = 0.328 m/N, obtained from Table 4.2.

Reducing the hyperparameter µsp from 0.328 m/N to 0.222 m/N leads to an

increasing trend in the marginal posterior in E [Fig. 4.11(a)] and a corresponding

decreasing trend in the marginal posterior in s [Fig. 4.11(b)]. This is understand-

able, given the inverse relationship between s and E [see Eqn. (4.10)]. This inverse

relationship is also responsible for the increased dispersion in the first boxplot of

Fig. 4.11(a) compared to the second; in contrast both boxplots in Fig. 4.11(b) show

largely similar dispersed behavior.

It is also evident from Fig. 4.11(b) that the probe compliance posterior means

(ŝ) lie approximately midway between the compliance data sd and the hyperparam-

eter µsp (ŝ = 0.283 m/N for µsp = 0.222 m/N and ŝ = 0.333 m/N for µsp = 0.328

m/N). This is a direct consequence of using equal weightage to the data and prior

variances of the probe compliance, i.e. (σ2
sd

= σ2
sp).

4.5 Conclusions

This chapter outlines the formulation of an integrated EIV based-Bayesian

Changepoint algorithm used to obtain robust estimates of the elastic modulus of

biological specimens from AFM force curves in the presence of variability in the

contact point and probe spring constant. The major highlights of this chapter are
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enumerated as follows:

1. Transforming the probe spring constant to the equivalent probe compliance,

a standard Bayesian Changepoint problem [48] could be set up to accommo-

date variability in the probe spring constant. This allowed the application

of error-in-variables based methods to be applied to the Bayesian Change-

point algorithm. Multiple probe calibration experiments were conducted to

obtain the variability in the probe compliance using the thermal calibration

method. These results were used to specify the hyperparameters of the prior

distribution of the probe compliance.

2. The proposed algorithm performed satisfactorily on simulated AFM data, and

the estimation errors were within 4%. Also, the ground truth was contained

within 95% confidence intervals of the marginal posteriors.
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3. On implementing the algorithm on AFM datasets obtained from breast tissue

specimens, it was observed that using an integrated approach, the variability

in the estimates of the elastic modulus could be reduced, as opposed to point-

based approaches to estimate the elastic modulus by treating each source of

variability piecemeal.

4. A sensitivity analysis on the parameters of the posterior distribution showed

that the proposed algorithm model responded satisfactorily to a wide range of

hyperparameter values in the probe compliance.

Accurate estimation of the contact point shown in Fig. 4.5 and the sensitivity

plots shown in Figs. 4.10 and 4.11 confirm the research hypothesis of this chapter

that EIV-Changepoint algorithm successfully estimates the elastic modulus due to

the aforementioned sources of uncertainty.

One of the appealing aspects of using the EIV-Bayesian Changepoint formula-

tion is that it makes it possible to automate data analysis of AFM force curves, since

the contact point from the AFM force curves can be determined fairly accurately

without subjective user input. As mentioned previously in chapters 2 and 3, AFM

indentation studies on breast tissue for histopathological inference necessitates very

large scale AFM indentation data acquisition and processing. A robust and com-

putationally efficient approach can significantly improve throughput of AFM based

characterization of biomaterials by allowing batch-processing of AFM curves.

The proposed approach also obviates the need to truncate AFM force curve

datasets to ensure applicability of linear elastic theory. The use of Long’s contact
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model [59] accounts for geometric and material nonlinearities and therefore the whole

AFM force curve can be processed to estimate material properties.

However there are certain limitations of this work that require elaboration.

These are stated as follows:

1. The EIV-Bayesian Changepoint algorithm assumes that the force-indentation

contact relationship appropriately fits the post-contact AFM deflection data.

As a result, the algorithm has been implemented only on those AFM datasets

where the post-contact deflection data could be well described by the contact

model in question, i.e., Hertz or Long’s contact model. For force curves that

display sharp nonlinearity, Long’s contact model is not likely to be an ap-

propriate contact model since it only accounts for neo-Hookean hyperelastic

behavior - which is a first order approximation of higher order hyperelastic

material models. The effect of contact estimation on force curves with pro-

nounced nonlinear effects are dealt with separately in Chapter 5.

2. Errors in the observed probe compliance have been assumed to follow a Gaus-

sian distribution - this assumption has not been experimentally validated. The

assumption of normality in the observed probe compliance and in the prior

distributions of the probe compliance was primarily aimed at simplifying the

sampling of the joint posterior using standard MCMC methods like Gibbs

Sampling. Indeed, large scale probe calibration experiments are necessary to

ascertain the nature of the distribution to which the calibrated probe compli-

ance errors belong.
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3. In the two regime regression model (Eqn. 4.12) used for the EIV-Bayesian

Changepoint analysis, continuity was not assumed at the contact point. This

did not impact the performance of the EIV-Bayesian Changepoint algorithm,

primarily because the algorithm was only implemented with force curves that

could be described well by the contact model chosen in the analysis (Hertz

or Long’s [59] contact model). For force curves that cannot be adequately

described by the contact model, the contact point estimates are likely to be

erroneous. These issues are dealt with in detail in chapter 5.
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Chapter 5

Constitutive material modeling of the tissue specimens under AFM

indentation

5.1 Overview

In chapters 2 and 3, the Hertzian contact model was used to extract the tis-

sue elastic modulus, which relies on the theory of linear elasticity and infinitesimal

strains, to estimate the elastic modulus of the tissue specimens. This was on account

of its computational ease and also because the primary objective was to investigate

any elasticity differences between normal and cancerous specimens, not so much to

assess the appropriateness of the contact model for any given force curve. In chap-

ter 4, Long’s contact model [59] was implemented in the EIV-Bayesian Changepoint

estimation algorithm, which relaxes the assumptions of linear elasticity in the ma-

terial by accounting for neo-Hookean hyperelasticity. However, the algorithm was

only implemented on those force curves that could be adequately described by Long’s

contact relationship.

In this chapter, greater emphasis is placed on the choice of the contact model to

describe AFM force curves with varying levels on nonlinear elasticity and numerical

approaches are explored that might be better suited for elastic modulus estimation

from the tissue specimens. The coupled problem of contact estimation from highly
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nonlinear force curves is also investigated, and a modification to the contact estima-

tion algorithm from chapter 4 is proposed, which can be used in conjunction with

numerical techniques for tissue mechanical property estimation.

It should be mentioned here that in this chapter, the probe spring constant (or

compliance) is assumed to be observed without errors and no consider variability in

the probe’s spring constant is considered in the work outlined in this chapter.

5.2 Experimental Challenges in enforcing Hertzian assumptions

The applicability of the Hertz contact model for analyzing AFM indentation

data on biomaterials has critically studied in the past [1],[66] - nevertheless, a critical

assessment of each of the assumptions in Hertzian theory in the context of prevail-

ing experimental conditions during AFM indentation on breast tissue specimens is

presented in the following discussion.

It may be recalled from chapter 2 that the assumptions in Hertzian contact

model for spherical indentation of tissue specimen are:

(H1) The contact between the indenter and the specimen is considered frictionless.

(H2) There is no adhesion between the sphere and the indenter.

(H3) The displacements and strains in the specimen are assumed to be small so

that a linearized continuum theory can be used.

(H4) The specimen is assumed to be an infinite half-space.

(H5) The specimen is linearly elastic.
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(H6) The specimen is homogeneous and isotropic.

The assumption (H1) of frictionless contact implies that shear tractions at the

contact interface are zero. Since AFM indentation on tissue specimens are primarily

conducted in PBS medium, this is a reasonable assumption to make in the present

study.
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Figure 5.1: Schematic of force-displacement behavior for (a) adhesion-free inden-
tation, (b) indentation with adhesion and (c) representative AFM force curve on
breast tissue specimens showing absence of prominent adhesive region.

The assumption (H2) of adhesion between the tissue and the indenter is not a

trivial one. Live mouse fibroblasts [67] and polyvinyl alcohol gels [68] have previous

shown adhesive behavior when subjected to AFM indentation, which causes the

AFM probe to deflect toward the sample surface resulting in attractive (negative

force) regime in the AFM force curve [see Fig. 5.1(a) and Fig. 5.1(b)]. However, as
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seen in chapters 2, 3 and 4, no adhesion was observed in the force curves on the

tissue specimens [Fig. 5.1(c)], consequently, modeling adhesion is not a significant

concern in this study.

Figure 5.2: Finite-indentation of a thin specimen by a rigid hemispherical indenter.

Assumptions (H3) and (H4) constitute two of the most critical assumptions

that are often violated during AFM indentation studies on tissue specimens. The

infinitesimal assumptions in (H3) and (H4) imply the following:

∆� R (5.1a)

∆� h (5.1b)

R� h (5.1c)

h→∞ (5.1d)

In order to ensure applicability of Eqns. (5.1a) and (5.1b), AFM force curves need to

be acquired in indentation-controlled mode to restrict the sample indentation to the

Hertzian regime. However, conducting AFM experiments in indentation-controlled
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mode is significantly harder compared to force-controlled mode due to the challenges

in online contact estimation, as stated previously in chapter 2. Coupled with the

need to perform raster-scans on the tissue specimens for large-scale AFM force

curve acquisition, indentation-controlled mode becomes a far less attractive mode

compared to force-controlled mode for high throughput purposes. The drawback

associated with force-controlled AFM experiments, however, is that highly compliant

regions in the tissue register very large indentations, which violate assumptions

(5.1a) and (5.1b).

Applicability of Eqns. (5.1c and 5.1d) can be achieved by adjusting the bead

size with respect to the specimen thickness. However, as observed previously in [24],

probe tips with low radius (for example, pyramidal tips with nm-range radius) can

cause permanent damage to the tissue samples [69]. Even worse, sharp tips possess

the undesirable tendency of including contributions from the substrate [70], leading

to inaccurate material characterization. An optimum range of R ∼ 5−10µm ensures

low stress concentration in the tissue specimens, and also aids on averaging out local

tissue heterogeneity. Tissue specimen thickness also can be varied from h = 4µm

to h = 10µm, however, thick tissue specimens also lead to loss of continuity in the

tissue architecture across consecutive tissue slices. Even in the most optimistic case

of (R, h) = (5, 10) µm, R/h = 0.5, which is clearly too large to enforce infinitesimal

assumptions.

As observed in chapters 2 and 3, the tissue specimens studied in this dis-

sertation consists of complex three-dimensional architecture with functional breast

epithelial cells that are enclosed by collagen-rich stromal tissue - which violates
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isotropic and homogeneity assumptions [Assumption (H6)]. Moreover, macroscale

breast tissue specimens have previously shown nonlinear elasticity [Assumption

(H5)] [71].

The combined effect of violations in assumptions (H3-H6) is well-illustrated in

Fig. 5.3, which illustrates the spatial distribution of the tissue stiffness [Fig. 5.3(a)]

and the corresponding goodness of fit [Fig. 5.3(b)] on a tissue ROI. It can be observed

that while the tissue stiffness shows clear delineation from the upper left to the

lower right end of the elasticity map, no such patterns can be observed in the

R2 distribution. Figs. 5.3(c) and 5.3(d) show the force-indentation plots of two

neighboring sampled points with similar stiffness, but with vastly dissimilar nature

of the Hertzian fit. These results underscore the need to have specific material

constitutive laws to extract accurate elasticity measures from AFM indentation

data. In the following section, prior work in the development of contact models that

overcome the limitations of the Hertz contact model are critically reviewed.

5.3 Related Work

Previous research addressing non-Hertzian behavior in biomaterials undergo-

ing AFM indentation can be classified by the individual Hertzian assumptions (H1-

H6) that are targeted and corrected. Since the scope of this research is primarily

directed towards addressing violations in assumptions (H3-H6), a description of

some of the approaches proposed in literature that focus on these assumptions only

is presented in the following discussion. Readers are requested to look elsewhere for
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corrections to violations in (H1) [72] and (H2) [67].

• Finite Indentation (H3,H4): Improvements to the Hertz contact model to

account for thin specimen indentation was primarily motivated by AFM in-

dentation studies on thin polymer gels, wherein it was observed that the Hertz

contact model significantly overestimated the elastic modulus due to the effect

of the underlying stiff substrate [70]. The most seminal contribution in this

regard points to the work of Dimitriadis and his co-workers [44]. Dimitriadis

et al. [44] appended correction terms to the Hertz contact model that led to

an analytical force-indentation relationship as given below1:

F =
4E
√
R∆1.5

3(1− ν2)
[
1−2α0

π
κ+

4α2
0

π2
κ2− 8

π3

(
α3
0+

4π2

15
β0

)
κ3+

16α0

π4

(
α3
0+

3π2

5
β0

)
κ4
]

(5.2)

where E,R,∆, ν have their usual meanings, κ = R∆/h2 and α0, β0 are con-

stants that depend on the Poisson’s ratio ν.

In the limit κ → 0, Eqn. (5.2) reduces to the classical Hertz contact model.

It is noteworthy here that for this to happen, it is not sufficient to restrict the

indentation depth ∆ for a given specimen thickness h only (presumably using

indentation-controlled AFM indentation experiments). Even for moderately

low ∆ values, a large bead radius R could possible make κ non-zero, thereby

invalidating Hertzian assumptions of infinitesimal strains. In the recent past,

Santos et al. [73] have investigated the influence of probe geometry (with

pyramidal/conical indenters of nm-range radius) on the elastic modulus from

1Validation of the Dimitriadis model using finite element analysis is given in Appendix A.
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thin specimens using numerical methods.

• Nonlinear Elasticity (H5): To account for nonlinear elasticity effects in bioma-

terials, Costa et al. [1] proposed a “pointwise modulus” approach to estimate

the elastic modulus as a function of the indentation in the sample. For a

purely Hertzian response, the “pointwise modulus” is constant during the en-

tire indentation regime, whereas for violations in Hertzian assumptions, the

“pointwise modulus” show distinct nonlinearity. While this approach success-

fully differentiates a Hertzian response from a non-Hertzian one, the effect

of material and geometric nonlinearities (finite indentation) are coupled and

there is no way to isolate these two violations in Hertzian assumptions using

the “pointwise modulus” approach solely.

Drawing upon parallels between uniaxial compression and indentation, Lin

et al. [74][75] proposed a reduction formulation to convert force-indentation

datasets into “indentation stress” (σ∗) v/s “indentation strain” (ε∗) plots. This

was accomplished by dividing the contact force F by the contact area to obtain

σ∗, and expressing ε∗ as a function of the contact area [76], as shown below

[74]:

σ∗ =
F

πa2
(5.3a)

ε∗ = 0.2
a

R
(5.3b)

a = R1/2∆1/2 (5.3c)
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where a is the contact area. For a purely Hertzian response, σ∗ - ε∗ are given

by [74]:

σ∗ =
20E

3π(1− ν2)ε
∗ (5.4)

It is noteworthy that σ∗ varies linearly with ε∗ for Hertzian indentation (Eqn.

5.4), which is expected due to assumptions of material linearity in Hertzian

theory. Lin [74] then demonstrated that force-indentation equations could

be obtained for a wide range of hyperelastic materials by obtaining σ∗ as a

function of ε∗ from their strain energy densities and then recasting them into

Eqns. (5.3a) and (5.3b).

While this approach is attractive due to its mathematical elegance in defining

explicit force-indentation relations for hyperelastic materials, its fundamental

shortcoming is that finite-indentation effects are not accounted for. This is

well demonstrated in Fig. 5.4. In Fig. 5.4(a), the purple force-indentation

plot corresponds to a simulated Hertzian response on a specimen of elastic

modulus E = 400 kPa, while the cyan plot represents the force response on a

finite element (FE) model2 of a linearly elastic specimen of thickness h = 4µm

and same elastic modulus (E = 400 kPa). As expected, the force response

for the FE model is higher due to the underlying stiff substrate [44]. When

these force-indentation plots are recast into σ∗ - ε∗ plots using Eqn. 5.3(a-c),

it becomes apparent that the FE solution shows significant deviation from the

2The details of the finite element (FE) model used to generate this plot are given in section 5.5.
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Hertzian response [Fig. 5.4(b)], which is linear (from Eqn. 5.4). This nonlin-

earity occurs in the FE response not due to any hyperelasticity in the material,

but due to the incorrect formulation in the indentation strain ε∗ in Eqn. 5.2(b)

which does not account for specimen depth. In fact, research groups have also

defined representative indentation strain as ∆/t and ∆/R [77]; however, there

is no general consensus on this matter. Apart from the aforementioned works,
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Figure 5.4: Effect of finite deformation on the force response during spherical inden-
tation. (a) Simulated force response on a finite element model of a tissue specimen
(cyan) and a Hertzian force response of the same elastic modulus (purple) and (b)
corresponding indentation stress (σ∗) - indentation strain (ε∗) using Eqns. (5.3a -
c).

researchers have proposed inverse FE based methods to estimate hyperelas-

tic material parameters from AFM force curves [78][79][80]. Most of these

methods, however, do not consider the problem of finite-indentation.

• Finite Indentation & Nonlinear Elasticity (H3,H4,H5): Amongst the first

groups to study the coupled problem of finite indentation and material nonlin-

earity was that of Kosta and Yin [66]. Using finite element methods and the
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“pointwise modulus” [1] approach, the authors studied the effects of indenter

geometry, hyperelasticity and sample thickness for AFM based characteriza-

tion studies. Likewise, Oommen and Val Vilet [77] studied the effects on

indentation on thin hyperelastic polymeric films using FE methods. However,

most of these approaches are primarily exploratory, and have little implications

in estimating the elastic modulus from any given AFM force-curve.

In this context, the work of Long et al. [59] gains prominence: Long et al. ex-

tended Dimitriadis’ approach [44] of appending correction factors to the Hertz

model, and both finite-indentation and material nonlinearity were accounted

for in [59]. Using a judicious choice of exponents of κ ( = R∆/h2, see Eqn.

5.2) in the correction terms, Long et al. fitted FE force-indentation data from

a neo-Hookean hyperelastic material to an analytical expression of force F as

a function of R,∆, κ (see Eqn. 4.7 for full expression), and obtained critical

bounds of R/h and ∆/h in which the expression was valid. Since the force

F could be explicitly related to ∆, it was also possible to use Long’s contact

model in the EIV-Bayesian Changepoint analysis for uncertainty quantifica-

tion in chapter 4.

However, as seen later in section 5.4, even neo-Hookean hyperelasticity is not

adequate to describe some of the force curves that are acquired during AFM

raster scanning on breast tissue specimens.

• Isotropic and Homogeneity (H6) Mechanical anisotropy has been shown to

exist in bone [81], skeletal muscle [82] and recently, vocal fold tissue [83]. In
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[83], the authors carried out indentation studies on vocal fold tissue samples

sectioned at different depths along mutually perpendicular axes and the ratio

of their elastic modulus was used to quantity the degree of anisotropy.

Heterogeneity in the indentation direction has been addressed using numer-

ical methods. Unnikrishnan et al. [84] modeled inhomogeneity in cellular

cytoplasm by modeling the actin cortex as a hyperelastic material and inner

cytoplasm as a fiber-reinforced composite.

5.4 Problem Statement and Proposed Solution

From the preceding discussion in section 5.3 and the results in Fig. 5.3, it be-

comes clear that accounting for violations (H3-H6) in AFM data analysis is critically

important to ensure accurate mechanical characterization. In this context, Long’s

analytical relationship [59] appears particularly attractive since its accounts for vio-

lations (H3 - H5), however, it must be emphasized that neo-Hookean hyperelasticity

is a first-order approximation and it does not capture high degrees of nonlinearities

at large indentations. As a result, it might not be capable of capturing the spatially

heterogeneous tissue response as seen in Fig. 5.3.

This is well demonstrated in Figs. 5.5 and 5.6 where two experimental force

curves E1 and E2 are analyzed by implementing Hertz, Dimitriadis’s and Long’s

contact models in the EIV-Bayesian Changepoint algorithm described in chapter

4. In force curve E1 (Fig. 5.5), it is evident that all three contact models fit the
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Table 5.1: Summary of implementation of the EIV-Bayesian Changepoint algorithm on two experi-
mental force curves E1 and E2 (Figs. 5.5 and 5.6 respectively acquired on a tissue specimen.)

Elastic Modulus (kPa) Contact Point Est. Indentation
R2

Mean 95% C.I. Mean 95% C.I. ∆̂ = δn − δbk̂c
Force Hertz 178.30 [153.19 205.98] 447 [446 449] 461.5 nm 0.999

Curve (E1) Dimitriadis 110.48 [95.15 122.98] 427 [425 428] 490.7 nm 0.999
(Fig. 5.5) Long 119.01 [105.41 131.98] 433 [429 434] 481.8 nm 0.999

Force Hertz 151.83 [132.31 175.65] 141 [139, 143] 433.1 nm 0.908
Curve (E2) Dimitriadis 106.27 [92.78 122.92] 141 [139, 143] 433.1 nm 0.926
(Fig. 5.6) Long 114.382 [99.76, 132.27] 141 [139, 143] 433.1 nm 0.917
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deflection data well (overall R2 > 0.999)3. The Hertzian elastic modulus is under-

standably higher compared to the other two due to infinitesimal assumptions. The

estimated elastic modulus using both Dimitriadis’s and Long’s model are close to

each other, which can be explained by observing that the Long’s model reproduces

the result from Dimitriadis’s model for indentation regimes ∆/h close to 0.1 [59]

(The neo-Hookean model is “nearly” elastic for low deformation regimes).

Fig. 5.6 shows the implementation on force curve E2 acquired in the spatial neigh-
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Figure 5.5: Results of Gibbs Sampling on the posterior distribution using (a) Hertz
contact model, (b) Dimitriadis’s contact model and (c) Long’s contact model on
force curve E1.

borhood of force curve E1. It can be observed that none of the aforementioned

contact models produce a good fit (overall R2 ∼ 0.90− 0.92). Typically, such force

curves are abundantly acquired during raster scans on tissue specimens, where a

single contact model does not appropriately fit all force-curves acquired on a tissue

region-of-interest. The poor fit quality indicates that even a neo-Hookean hypere-

lastic constitutive model is not sufficiently nonlinear enough to explain the sharp

tissue response in force curves such as those shown in Fig. 5.6. Furthermore, it

3By the term “overall R2”, the fit quality for both non-contact and contact regimes are meant.
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Figure 5.6: Results of Gibbs Sampling on the posterior distribution using (a) Hertz
contact model, (b) Dimitriadis’s contact model and (c) Long’s contact model on
force curve E2.

is worthwhile to note that both force curves registered similar indentation range

(∆̂/h ∼ 0.115 − 0.122 for force curve E1 and ∆̂/h ∼ 0.108 for curve E2 for a

tissue specimen 4 µm thick) though their fit quality were vastly different. This in-

dicates that large indentation is not the only cause of the observed tissue response

in Fig. 5.6, were it to be so, a 10% sample indentation in force curve E1 too would

have shown a poor fit quality. This is indicative of the fact that the tissue specimen

was inherently nonlinear beyond the neo-Hookean approximation in force curve E2.

The immediate implication of this observation is that truncation of force-indentation

data, as is often used to limit the fitting range to the linear elasticity regime [78],

might still lead to inaccurate estimation of the elastic modulus if the underlying

constitutive material model for the force curve is not established.

Up to this point, the effect of the contact point has not been discussed in

estimating hyperelastic constitutive parameters from AFM force curves. In chapter

4, the EIV-Bayesian Changepoint algorithm that was used for contact estimation

had one critical assumption: the contact model for an AFM force curve was known
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beforehand. From the preceding discussion, it is clear that Long’s contact model

(with neo-Hookean hyperelasticiy) would not be able describe force curves such as

the one shown in Fig. 5.6. Therefore, the contact estimation procedure would need

to be re-validated for force curves that show high degree of material nonlinearity.

Hypothesis: By incorporating finite element modeling of spherical inden-

tation of nonlinear hyperelastic tissue response in the mechanical characterization

process, it is possible to improve accuracy and robustness in AFM indentation data

analysis.

To address the problem of material nonlinearity beyond neo-Hookean approx-

imation and its associated contact estimation problem, the following solution is

proposed:

• FE analysis of hyperelastic tissue specimens under AFM loading (Assumptions

H3-H5:) To our knowledge, there are no existing explicit contact models for

capturing finite-indentation and material nonlinearity simultaneously beyond

neo-Hookean hyperelasticity. This necessitates use of numerical techniques to

accommodate data analysis for highly nonlinear force curves and to this end,

2D axisymmetric finite element models of tissue specimens with an exponential

form of the strain energy density function have been developed that sufficiently

captures the nonlinear response as evidenced by Fig. 5.6. The details of the

FE modeling is described in section 5.5.

• Contact Estimation: A weighted least-squares based approach is proposed to

estimate the contact point from force curves with high degrees of nonlinearity.
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Details of the contact estimation algorithm are discussed in section 5.6.

It should be mentioned here that during AFM raster scanning on breast tis-

sue specimens, force curves such as Fig. 5.7 were frequently encountered that indi-

cated that the assumption of homogeneity in the indentation direction was violated

[Hertzian assumption (H6)]. These force curves were excluded from the data analysis

outlined in this chapter. Moreover, isotropic assumptions in the tissue for modeling

and analysis were also retained in this chapter.
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Figure 5.7: Evidence of lack of material homogeneity in the direction of indentation.
(a) AFM force curves. Please note that the force curves have been displaced to have
the same approximate contact point at (0,0).(b) Corresponding force-indentation
curves. Note the change in the nature of the force-indentation curves at 200 nm and
300 nm indentation.

5.5 Finite Element Modeling

5.5.1 Discretization and Parameter Estimation

The FE analysis was carried out in ABAQUS v6.8 (Dassault Systemes, RI,

USA). Taking advantage of the symmetry of the indentation process, a 2D axisym-
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metric model of the indenter and the tissue specimen was used. The quarter of the

spherical indenter in contact with the specimen was modeled as an axisymmetric

rigid indenter.

The tissue specimen consists of 135 axisymmetric, quadrilateral hybrid ele-

ments (CAX4H) (15 radially, 9 axially). The length of the tissue model was 6 µm.

A fine mesh was used near the indentation region, with a coarser mesh away from it

(see Fig. 5.8). No friction was assumed between the indenter and the tissue specimen

model. The nodes at the interface of the specimen and the indenter were considered

traction free, while the nodal displacements in the radial and axial directions were

constrained. Nodes on the axis were constrained to move only along the direction of

indentation. Quasistatic equilibrium solutions were acquired for incremental axial

displacements of the indenter. In a mesh convergence study, it was verified that

mesh size or the length of the tissue model did not have significant impact on the

analysis results.

With any single or multi-parameter constitutive model whose explicit force-

indentation relationship is unknown, estimating the material properties typically

involves solution of an inverse-finite element problem where the simulated response

is curve-fitted to experimental data. This is obtained by minimizing the squared

norm of the error and is given by the following expression:

argmin
θ

∑
||Fexp − FFE(θ)||2 (5.5)

where Fexp and FFE represent the experimental and simulated force response re-
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Figure 5.8: Finite element models: (a) undeformed mesh, (b) deformed mesh.
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spectively, and θ represents a vector of material parameters defined in the consti-

tutive material model. The minimization problem was implemented in MATLAB

(Mathworks, Inc) using the fminsearch routine which is a heuristic optimizer using

the Nelder-Mead simplex algorithm [85]. The optimizer iterates from an arbitrary

initial point towards the optimum solution until the incremental reduction in the

objective function is lesser than a predefined tolerance. A flowchart indicating the

steps of the inverse FE approach is shown in Fig. 5.9.

Finite Element Analysis

Update 

Initialize 

Equalize

and       

    

Has the solution 

converged ?

Obtain 

End

 

Yes

No

Figure 5.9: Flowchart of the algorithm used to obtain optimized material properties
using the inverse FE approach.
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Note that in Fig. 5.9, the block “contact estimation” has been included in the

flowchart without explicitly describing a technique for it. The contact estimation

procedure is discussed in section 5.6.

5.5.2 Constitutive Material Models

The tissue specimen is modeled as an isotropic, incompressible and hypere-

lastic material. Isotropic assumptions in the indentation direction were considered

valid because datasets such as those in Fig. 5.7 were not included in this study.

Additionally incompressibility conditions were assumed in the tissue specimens due

to the hydrated nature of the tissue specimens in phosphate buffered saline (PBS)

during AFM indentation experiments.

In order to model force curves like force curve E2 shown in Fig. 5.6, significant

material nonlinearity needs to be considered in the constitutive material model. The

force response for the following two incompressible hyperelastic materials character-

ized by the following strain energy functions were examined.

WY EOH = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3 (5.6a)

WEXP =
C

b
[eb(I1−3) − 1] (5.6b)

where (C1, C2, C3) and (C, b) are hyperelastic material parameters of the Yeoh and

Fung hyperelastic models respectively and I1 is the first invariant of the Cauchy-

Green deformation tensor, expressed in terms of the principal stretch ratio λ1, λ2, λ3
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as:

I1 = λ21 + λ22 + λ23 (5.7)

where λ1λ2λ3 = 1Eqn. (5.6a) represents the Yeoh hyperelastic material [86] which

can be viewed as a polynomial extension of the neo-Hookean model (with C2, C3 =

0), and is commonly used to model rubber elasticity. Eqn. (5.6b) represents an

exponential form proposed by Fung [87], which has been previously used to model

biomaterials. The presence of higher orders coefficients such as (C2, C3) and b in the

Yeoh and Fung models respectively makes these two models particularly attractive in

describing highly nonlinear force curves such as Fig. 5.6. While the Yeoh material

model was pre-defined in the ABAQUS material library, Fung’s model was not.

Consequently, the user subroutine UHYPER was employed to specify the strain

energy function denoted by Eqn. (5.6b) for the FE analysis.

The hyperelastic coefficients can be related to the specimen’s materials prop-

erties using the relation:

µ0,Y EOH
= 2

∂WY EOH

∂I1

∣∣∣∣
I1=3

= 2C1 (5.8a)

µ0,EXP
= 2

∂WEXP

∂I1

∣∣∣∣
I1=3

= 2C (5.8b)

where µ0 is the initial shear modulus, which is related to the initial elastic modulus

E0 by:

E0 = 2(1 + ν)µ0 (5.9)

When incompressibility conditions (ν = 0.499) apply, E0 = 6C1 and E0 = 6C for
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Yeoh and Fung material models respectively.
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Figure 5.10: Performance of the (a) Yeoh and (b) Fung hyperelastic models in
describing the force response for force curve shown in Fig. 5.6.

Fig. 5.10 shows the force curve E2 from Fig. 5.6 overlaid with FE simula-

tion results of indentation on a Yeoh [Fig. 5.10(a)] and Fung hyperelastic material

[Fig. 5.10(b)]. The contact point was assumed to be the bk̂c = 141, as obtained

from the EIV-Bayesian Changepoint algorithm, leading to an indentation of 433.1

nm (from Table 5.1) in the simulation. The results demonstrate the applicability of

higher order hyperelastic material models to reproduce force curves with pronounced

nonlinearity (overall R2 > 0.99). The estimated hyperelastic parameters using an

inverse FE analysis were (C1, C2, C3) = (5.94, 134.72, 4900) kPa and (C, b) = (7.55

kPa,45.0) for the Yeoh and Fung hyperelastic models respectively. Using Eqn. (5.8),

the initial elastic modulus was computed to be E0 = 35.68 for Yeoh’s model and

E0 = 45.33 kPa for Fung’s model.

Several conclusions can be drawn from the results in Fig. 5.10. Firstly, esti-

mates of higher order coefficients in the Yeoh model (C2, C3) are significantly greater
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than C1, thereby demonstrating that sharp material nonlinearity in the force curve

can be successfully captured by (C2, C3), while C1 quantifies only the initial tissue re-

sponse to indentation. Compared to the case where only a single material parameter

is extracted from the force curve, i.e. the case when C2 = 0, C3 = 0: a neo-Hookean

hyperelastic model where force and indentation explicitly relates by Long’s contact

model [59], the elastic modulus is significantly overestimated (114.382 kPa, see ta-

ble 5.1), the obvious implication being that more than one material parameter is

necessary to describe the force curves such as the one in Fig. 5.10 completely.

Secondly, the quality of fit and the estimated initial elastic modulus being

similar for both the Yeoh and Fung hyperelastic models, a pertinent question comes

up: which hyperelastic model should be selected for modeling force curves shown in

Fig. 5.10 ?

A parametric study is demonstrated in Fig. 5.11, where the hyperelastic pa-

rameters for the Yeoh and Fung models ([Fig. 5.11(a-c)] and [Fig. 5.11(d,e)] respec-

tively) are varied individually, and their corresponding force-indentation curves are

obtained. Both the Yeoh and Fung models utilize a single parameter, C1 and C,

respectively to capture the initial tissue response. For increasing material nonlinear-

ity, Yeoh’s hyperelastic model uses two parameters, C1 and C2, while Fung’s model

uses only one, b. In this context, the Fung model is appears particularly attractive

because of one less hyperelastic parameter compared to the Yeoh model. From the

perspective of solving an inverse-FE problem (typically for estimating material prop-

erties from an experimental AFM force curve), it is also likely that the Fung model

would pose less existence and uniqueness problems compared to the Yeoh model,
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Figure 5.11: Effect of varying the hyperelastic parameters of the Yeoh (a,b,c) and
Fung (d,e) hyperelastic models individually.

where material nonlinearity is coupled in between C2 and C3. In contrast, Fung’s

model is fairly decoupled: C quantifies the initial elastic modulus, while b describes

the degree of material nonlinearity. For these reasons, the Fung hyperelastic model

is used to describe the observed hyperelasticity in the AFM force curves.

5.5.3 Sensitivity Analysis

Since the Fung model captures material nonlinearity in AFM force curves

through the parameter b, it is instructive to examine the sensitivity of b to varying

degrees of nonlinear elasticity in AFM force curves. The estimated value of b (=

45.0) in Fig. 5.10 raises an interesting question: is there an existence of a lower

bound of b which corresponds to a linear elastic response (the analytical analogue of
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which is Dimitriadis’s [44] model) ? If this is the case, then the parameter b could

be used to potentially differentiate between linear and nonlinear elastic responses

in the tissue specimen, which could serve as an additional mechanical signature for

tissue health.
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Figure 5.12: Sensitivity of the Fung model parameters at varying indentations.
(a)∆ = 100 nm, (b) ∆ = 200 nm, (c) ∆ = 400 nm, (d) ∆ = 600 nm, (e) ∆ = 900
nm and (f) ∆ = 1400 nm. Also shown in the third row (g-i) are enlarged figures of
(d-f) where the range of b is reduced to 1 − 6. The white dotted line at 400 kPa
indicates the elastic modulus of the linearly elastic material.

A sensitivity analysis was performed to examine values of E0(= 6C) and b

that resulted in a good fit with a F − ∆ curve obtained from a linearly elastic

material, and the results are shown in Fig. 5.12. The target F − ∆ curve was
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obtained by varying the indentation from ∆ = 100 nm (∆/h = 0.025) to ∆ = 1400

nm (∆/h = 0.35) on a linearly elastic specimen of elastic modulus 400 kPa and 4

µm thickness.

The ranges of E0 and b that fit well with the linearly elastic force response

can be compactly expressed by the region S(∆,R2
FE,thresh

) ∈ R
2 where S(∆,R2

FE,thresh
) =

{(E0, b)|R2
∆(E0, b) > R2

FE,thresh}, where R2
FE,thresh indicates a pre-specified threshold

R2 value. The term R2
FE,thresh has implications for an inverse FE analysis during

parameter estimation - it determines the termination criteria for an inverse FE

solution. In Fig. 5.12, R2
FE,thresh was chosen to be 0.995 (see colorbar in Fig. 5.12)4.

For low indentation regimes such as ∆ = 100 nm, [Fig. 5.12(a)], moderately

hyperelastic specimens (b ∼ 25 − 30)5 produce a linearly elastic response. With

increasing ∆, the domain of S(∆,R2
FE,thresh

) progressively shrinks. The immediate

implication of this observation is that parameter estimation using an inverse FE

approach is likely to yield inaccurate estimates of b for shallow indentation regimes

due to the relatively large domain of S(∆,R2
FE,thresh

), and it is unlikely that it would

be possible to differentiate between linear and hyperelastic tissue response for these

regimes. This effect can be avoided during AFM experiments by using a relatively

stiff cantilever and specifying (1) a moderately large force setpoint in force-controlled

mode, or (2) by setting a large indentation setpoint in indentation-controlled mode.

However, for larger indentations, the estimated values of b can be used for

differentiating between linear and hyperelastic tissue response. This is evident by

4Minimizing the squared norm of the residuals is equivalent to maximizing the R
2.

5The peak b at ∆ = 100nm was 67.0 for R2

FE,thresh = 0.995 (not shown).
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observing that for an indentation of ∆ = 433 nm in force curve E2 of Fig. 5.10 (see

Table 5.1), the estimated b was 45.0, whereas the b is upper-bounded in S(400,0.995)

by a value of 10-10.5 [see Fig. 5.12(c)]. It now becomes possible to construct a clas-

sification curve (see Fig. 5.13), where the linearly elastic tissue response is bounded

by bmax
R2

FE,thresh

(∆), which is defined as:

bmax
R2

FE,thresh
(∆) := max{b|b ∈ S(∆,R2

FE,thresh
)} (5.10)
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Figure 5.13: Classification curve, showing the variation of bmax
R2

FE,thresh

(∆) with ∆ for

different values of R2
FE,thresh. Also shown are the curve fits for bmax

R2
FE,thresh

(∆).
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5.6 Contact Estimation

In chapter 4, the problem of contact estimation associated with AFM force

curves on soft tissue was discussed and a probabilistic EIV-Bayesian Changepoint

algorithm was proposed for uncertainty quantification in AFMmechanical character-

ization. One critical assumption was made in EIV-Bayesian Changepoint algorithm:

the post-contact F −∆ analytical model was assumed known. It might be recalled

that the EIV-Bayesian Changepoint analysis was restricted to those force curves

only for which the post-contact regime could be described by the analytical contact

model used. For force curves with pronounced hyperelasticity where no contact

model exists, the contact estimation problem needs to be revisited.

It was initially envisaged that contact estimation could be integrated in the

inverse-finite element algorithm. This would obviate the need to have a explicit

analytical contact model for estimating the contact point. Essentially, this approach

involved augmenting the cost function (from Eqn. 5.5) with the unknown contact

point index k and simultaneously estimating the set of parameters (E0, b, k) that

minimized the augmented cost, as shown below:

arg min
E0,b,k

k∑

i=1

[Fi − β11 − β12δi]2 +
n∑

i=k+1

[Fi − FFE(E0, b)]
2 (5.11)

where β11, β12 are pre-contact regression parameters, which could be estimated by

traditional least squares fitting. It might be recalled from chapter 4 that δ, was

obtained by subtracting the AFM probe, d, from the vertical probe position, z, i.e.,
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δ = z − d.

However, several numerical difficulties were encountered with this approach.

Standard gradient-based algorithms and heuristic approaches such as the Nelder-

Mead simplex algorithm [85] converged to local minimas, primarily because the

curvature of the cost function was significantly lower along the direction of contact

(i.e k) for smooth transitions compared to the directions of E0 and b. Since an

inverse-FE approach by itself is computationally expensive, which might have to

be implemented on a large number force curves on a given tissue region of interest

(ROI), the approach of simultaneous estimation of the contact point and material

parameters was not pursued any further.

In the subsequent section, two approaches for estimating the contact are de-

scribed. First, the bidomain polynomial (BDP) approach without continuity con-

straint is discussed, which was proposed by [1]. This can be viewed as a determin-

istic version of a Bayesian Changepoint problem6 that was discussed in chapter 4,

nonetheless, a description of this approach is presented for the sake of completeness.

Then, a continuity enforced weighted BDP approach is discussed. It should be noted

that both these approaches require an explicit contact model.

5.6.1 BDP approach without continuity [1]

It might be recalled from chapter 4 that the contact estimation in an AFM

force curve was cast as a two-regime regression model with a unknown changepoint

6Since spring constant variations are not considered in this section, the EIV-Bayesian Change-
point algorithm reduces to a regular Bayesian Changepoint algorithm.
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separating the two regimes. The two-regime regression model (Eqn. 4.12 from

chapter 4) is restated below:

Fi =






β11 + δiβ12 + ε1 if i ≤ k

β21 + fiβ22 + ε2 if k + 1 ≤ i ≤ n

(5.12)

where Fi is the observed force obtained by multiplying the deflection di by the

probe spring constant kc, β1 = [β11 β12]
T and β2 = [β21 β22]

T are the pre-

contact and post-contact regression coefficients respectively, δi is the transformed

variable obtained as δi = zi − di, k ∈ (1, n) is the unknown contact index for n

datapoints, ε1
iid∼ N(0, σ1

2), ε2
iid∼ N(0, σ2

2) are the error terms in the pre-contact

and post-contact regimes respectively, and fi is the contact model.

The bidomain polynomial (BDP) approach seeks to obtain optimal estimates

(k̂, β̂1, β̂2) that minimizes the error between the observed force readings Fi and the

fitted force estimates from the regression model of Eqn (5.12).

As in chapter 4, the force data can be written in compact form as F k
1 =

[
F1 F2 . . . Fk

]T
, F k

2 =
[
Fk+1 Fk+2 . . . Fn

]T
and F =

[
F k

1 F k
2

]
. The

right hand side of Eqn. (5.11) form the design matrices given by:

Xk
1 =



1 1 . . . 1

δ1 δ2 . . . δk




T
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Xk
2 =




1 1 . . . 1

fk+1 fk+2 . . . fn




T

(5.13)

The optimal estimate for the regression coefficients (β̂
k

1, β̂
k

2) at each k is there-

fore given by:

(β̂
k

1, β̂
k

2) = arg min
β1,β2

||F k
1 −Xk

1β1||2 + ||F k
2 −Xk

2β2||2 (5.14)

Eqn. (5.14) is the least squares problem, whose solution is given by:

β̂
k

1 = [(Xk
1)

TXk
1]

−1(Xk
1)

TF 1

β̂
k

2 = [(Xk
2)

TXk
2]

−1(Xk
2)

TF 2 (5.15)

The BDP estimate of the contact point obtained by performing a line search on the

sum of squared residuals (SSR), and is given by:

k̂ = arg min
1<k<n

SSR (5.16)

where

SSR = ||F k
1 −Xk

1β̂
k

1||2 + ||F k
2 −Xk

2β̂
k

2||2 (5.17)

5.6.2 Continuity-constrained weighted BDP approach

In the unconstrained BDP approach discussed in section 5.6.1[1], no continuity

is considered at the changepoint, i.e. β21 is not necessarily equal to β11 + δkβ12.
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Not enforcing continuity did not significantly impact the contact point estimate in

chapter 47, primarily because the contact model fitted the post-contact deflection

data well. For sharply nonlinear force curves for which no contact model exists, it

is unlikely that the contact estimation would be accurate.

As a result, a modification to the BDP approach is proposed, with continuity

enforced at the contact point. This leads to the following constraint:

β21 = β11 + δkβ12 (5.18)

Due to the constraint in Eqn. (5.18), the regression parameter space reduces to

three unknowns: β̃ = [β11 β12 β22]
T . The modified regression model from Eqn.

(5.12) are given by the following equations:




F1

...

Fk

Fk+1

...

Fn




=




1 δ1 0

...
...

...

1 δk 0

1 δk fk+1

...
...

...

1 δk fn




×




β11

β12

β22




(5.19)

7It might be recalled that the EIV-Bayesian Changepoint implementation on simulated data
(section 4.4.2) yielded the posterior mean of the contact point within 3 datapoints of the ground
truth.
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In vector form, these equations are given as:

F︸︷︷︸
n × 1

= X̃
k

︸︷︷︸
n × 3

β̃
k

︸︷︷︸
3 × 1

Since the contact model fi is unlikely to fit the entire post-contact force data for

highly nonlinear force curves, weights are added to the residuals of the regression

model to restrict the fitting range near the contact transition. This is accomplished

by defining a diagonal weight matrix W k = diag(
√
wk

11,
√
wk

22, . . . ,
√
wk

nn) where

W k ∈ R
n×n.

The weights are assumed Gaussian, and are given as follows:

wii = w0e
− 1

2σ2
w
(i−k)2

(5.20)

Note the dependence of the weights around the candidate contact point k -

this ensures that the contact transition is captured by the regression model.

Similar to the unconstrained BDP approach, the optimal regression coefficient

estimate
ˆ̃
βk for a given contact point k is given by:

ˆ̃
βk = argmin

β̃

||W k(F − X̃
k
β̃)||2 (5.21)

The weighted least squares solution
ˆ̃
βk is given by:

ˆ̃
βk = [(X̃

k
)T (W k)TW kX̃

k
]−1(X̃

k
)TW kF (5.22)
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The constrained BDP estimate of the contact point obtained by performing a

line search on the sum of squared residuals (SSR) and is given by:

k̂ = arg min
1<k<n

SSR (5.23)

where

SSR = ||(F − X̃
k ˆ̃
βk)||2 (5.24)

5.6.3 Choice of fi for automated data analysis

Central to both BDP model (with and without continuity constraint) is the

post-contact regression model denoted by fi. As discussed previously, analytical

force-indentation relationships are not available beyond neo-Hookean hyperelastic-

ity. In this context, it must be noted that the need to estimate the contact point

and estimate hyperelastic material parameters (using inverse FE) arises only when

there is prominent hyperelasticity in the force curves - otherwise, the proposed ap-

proach in chapter 4 suffices in accurately quantifying mechanical properties from

AFM force curves.

It therefore seems prudent to use Dimitriadis’s force-indentation relationship

as fi in the BDP approaches suggested in sections 5.6.1 and 5.6.2. Using Dimitri-
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adis’s model [44], fi is given by:

fi =





0 if i ≤ k

(δi − δk)1.5 + 1.133
√
γ(δi − δk)2 + 1.283γ(δi − δk)2.5 if k + 1 ≤ i ≤ n

+0.769γ
√
γ(δi − δk)3 + 0.0975γ2(δi − δk)3.5

(5.25)

where γ = R/h2. If Dimitriadis’s model fit (R2
Dim) exceeds a threshold (R2

Dim,thresh)

after the contact point is established either using the regular BDP or the con-

strained weighted BDP approach, no inverse FE analysis is required since the force

curve represents linear elasticity in the material, which is adequately captured using

Dimitriadis’s model. In the case where the post-contact fit to Dimitriadis’s model is

poor, inverse FE estimation is invoked with the Dimitriadis’s solution as the initial

condition, which is terminated when the R2
FE reaches the threshold R2

FE,thresh. A

pseudocode describing the proposed automation strategy is given in below (Algo-

rithm 1).

5.7 Results

In this section, the algorithm shown in Algorithm 1 is implemented on AFM

force curves of varying degrees of elasticity. The proposed approach is first validated

on simulated force curves. Then, the performance of the proposed approach is

demonstrated on a tissue elastic map.
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input : AFM force curve, R2
Dim,thesh,R

2
FE,thresh.

output: Material parameters.

Multiply deflection with probe spring constant to obtain force;
Contact Estimation: Estimate contact point using BDP based
approaches;
Dimitriadis Curve fitting: Fit F −∆ to Dimitriadis’s contact model
to obtain EDim, R

2
Dim;

if R2
Dim > R2

Dim,thesh then

Linear Elasticity: Estimated material parameter: Ê ← EDim;
else

Hyperelasticity:

end

initialize C0 ← EDim/6 , b← 30;
Invoke Inverse FE routine with R2

FE,thresh;

Estimated material parameters: Ê0 ← 6Ĉ0 , b̂;
Algorithm 1: Pseudocode for automated force curve analyis

5.7.1 Parameter reidentification on simulated force curves

Three AFM force curves (S1-S3) are simulated with varying degrees of hyper-

elasticity. The parameters used to construct force curves are given in Table 5.2.

Additionally, the force values were perturbed by Gaussian noise [∼ N(0, 0.05)]. The

threshold parameters R2
Dim,thresh and R2

FE,thresh were set to 0.980 and 0.999 respec-

tively.

Table 5.2: Parameters used to construct the simulated force curves.

(Contact k, Inden- Linear Hyperelastic
Datapoints n) tation Elastic Modulus Parameters (E0, b)

Force Curve S1 (501,900) 400 nm 200 kPa ×
Force Curve S2 (501,900) 400 nm × (65 kPa,60)
Force Curve S2 (501,900) 400 nm × (45 kPa,120)

Performance of the unconstrained BDP [1] and continuity-constrained weighted

BDP methods applied to force curves S1, S2 and S3 are shown in Fig. 5.14. The
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weighting parameters used were w0 = 30, σw = 3. In addition, the performance of

the continuity-constrained weighted BDP is investigated without additional weights,

i.e. W k = I, where I is the identity matrix. It is clear from Fig. 5.14(a-c) that

when the material is linearly elastic, all three approaches produce close contact es-

timates compared to the ground truth (501th datapoint). This is primarily because

the Dimitriadis contact model, i.e. [44] produces an elastic response - which was

used to obtain force curve S1. The unconstrained BDP estimate [Fig.5.14(a)] can

be further corrected using a Bayesian Changepoint scheme, (as demonstrated in

chapter 4) and it is likely that the 95% confidence intervals will contain the ground

truth.

With increasing hyperelasticity in force curves S2 and S3, it is evident that the

performance of all three approaches degrade. However the continuity-constrained

weighted BDP approach significantly outperforms the other two approaches. This

is primarily because the fitting range is restricted by the assigned weights. In the

absence of any weights, the continuity constrained BDP still outperforms the un-

constrained BDP approach, however the estimation error is significant.

One of the shortcomings of the continuity-constrained weighted BDP approach

is that weights require to be tuned to produce correct estimates of the contact point

for sharply nonlinear force curves. It is possible to reduce the contact estimation

error in Fig. 5.14(h) further by increasing the weights, however, very large weights

(σi < 3) tends to yield false minimas in the sum of squared residuals (SSR) function.

Typically, w0 = 30, σw = 3 works optimally for force curves with moderate to large

nonlinear elasticity (such as force curve S2) in the force curves. For force curves
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such as S3 with very large b, however, this contact estimation error in inevitable

using the current approaches.
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Figure 5.14: Performance of the three contact estimation methods for simulated
force curves S1 - S3 (shown row-wise). The first column shows the sum of squared
residuals (SSR) using unconstrained BDP (red) for force curves S1-S3 (a),(d),(g) re-
spectively. The second column shows SSR variations using constrained BDP (blue
and green) for S1-S3 (b),(e),(h) respectively. The third column shows the corre-
sponding contact point on the force curves S1-S3 (c),(f),(i) respectively. The contact
point estimates using the unconstrained and constrained BDP approaches are also
shown at the base of the SSR curve.

Fig. 5.15 shows the Dimitriadis curve fitting and inverse FE solution steps

of the proposed automation strategy. The continuity-constrained weighted BDP

method is chosen for contact estimation since it outperforms the unconstrained BDP
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and the unweighted continuity-constrained BDP. For force curve S1, the Dimitriadis

contact model produces a very good fit and therefore invocation of the inverse FE

routine is not necessary. For force curves S2 and S3, the inverse FE routine is

invoked. The estimated E0 and b from the inverse FE are very close to the ground

truth values for force curve S2. For S3 however, the there is an estimation error of

100%, which is a direct consequence of the contact estimation error.
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Figure 5.15: Implementation of the proposed algorithm for automated characteriza-
tion for simulated force curves S1 - S3 (shown row-wise). Note that the inverse FE
correction step was not required for curve S1.
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The estimated parameters for all three force curves S1-S3 are tabulated in

Table 5.3.

Table 5.3: Summary of algorithm performance on force curves S1-S3. Units of E and
E0 are in kPa. G.T. indicates ground truth.

Force Contact Point k Material Parameters

Curve G.T. (k) (k̂) G.T. (E) (ĒDim) G.T. (E0) (Ê0) G.T. (b) (b̂)

S1 501 501 200 196.97 × × × ×
S2 501 517 × × 65 71.82 60 60.78
S3 501 593 × × 45 94.54 120 150.69

5.7.2 Implementation on elastic map

In Fig. 5.3, an elastic map on a tissue ROI was shown where the spatial distri-

bution of the fit quality (R2) was not uniform throughout. The proposed algorithm

for automated characterization (Algorithm 1) is implemented on all the force curves

acquired in the elastic map to investigate if the inverse-FE correction yields more

accurate characterization results. Due to the computational cost involved for the

inverse-FE routine, a modest termination criteria for the inverse-FE procedure was

set (R2
FE,thresh = 0.992), while R2

Dim,thresh = 0.980 was used for detecting linear

elasticity in the force curve.

In Fig. 5.16, the implementation of the proposed algorithm is shown. Fig. 5.16(a)

shows the elastic modulus when no inverse FE corrections are implemented, i.e. the

Dimitriadis model is used to fit all the force curves after the contact point is esti-

mated using the continuity-constrained weighted BDP approach. The spatial dis-

tribution of the corresponding (R2) in Fig. 5.16(b) shows that the fit quality is still
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Figure 5.16: Implementation of the proposed algorithm for automated characteriza-
tion on a tissue ROI shown previously in Fig. 5.3. (a) Elastic map using the Dimitri-
adis model only without any Inverse FE corrections, (b) Corresponding post-contact
R2

Dim fit, (c) Elastic map (Ê) with inverse-FE correction, (d) Corresponding R2
net

fit, where R2
net = max(R2

Dim, R
2
FE). White spaces indicate force curves that were

not analyzed due to presence of multiple potential contact points such as those in
Fig. 5.7.
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non-uniform. When the inverse FE correction is implemented, it becomes apparent

that the (R2) distribution improves significantly, because force curves with material

nonlinearity are now accounted for using Fung’s hyperelastic parameters.

In the elastic map, there were a few force curves that displayed multiple contact

points, as shown previously in Fig. 5.7. These force curves were not analyzed and

their corresponding pixel location in the elastic map and R2 distribution have been

marked with blank white spaces.

Fig. 5.17 shows the estimated Fung parameter b as a function of the estimated

indentation, computed using the inverse-FE routine. The inverse-FE routine was

invoked for correcting 268 force curves out of a total of 729 in the elastic map

shown in Fig. 5.16(a). Also shown in bold red is the predicted value bmax
0.992 for a

linearly elastic response, as obtained from the sensitivity study. It can be seen

from Fig. 5.17(a) and Fig. 5.17(b) that hyperelastic force curves can be clearly

differentiated from the predicted linear elastic response (classification curve in bold

red). This would not have been possible without invocation of the inverse FE-

routine.

On closer examination of Fig. 5.17(b), it becomes apparent that there was a

significant population of force curves that showed very low values (∼ 0.001 − 0.1)

in the estimated parameter b̂. One such representative force curve is shown in

Fig. 5.18. These force curves show surprisingly linear force-indentation curves, which

is probably due to material softening during the AFM loading. These force curves

did not fit well even after invocation of the inverse-FE routine.
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Figure 5.17: (a) Variation of estimated Fung parameter b̂ from the Inverse FE
analysis as a function of the estimated indentation (using the contact estimate), (b)
zoomed image. Also overlaid in red is bmax

0.992(∆).
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FE = 0.977. The Dimitriadis solution was ĒDim was
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5.8 Conclusions

AFM characterization studies on normal and cancerous breast tissue specimens

for histopathological inference necessitates very large scale AFM indentation data

acquisition and processing. In this chapter, some of the key issues in automating

AFM data analysis on spatially heterogeneous tissue specimens were addressed. The

major highlights of this chapter are enumerated as follows:

1. The applicability of the Hertz contact model in extracting elastic modulus from

AFM force curves on tissue specimens were highlighted and existing research

that overcame Hertzian limitations were reviewed.

2. To account for hyperelasticity beyond neo-Hookean approximation, the Fung

type phenomenological hyperelastic model was proposed to extract material

properties from highly nonlinear force curves.

3. Through a sensitivity study, bounds of the Fung model parameter b was ob-

tained that approximated a linear elastic tissue response.

4. A modified version of the BDP contact estimation algorithm[1] was proposed,

that could estimate the contact point accurately in nonlinear force curves.

5. An automation strategy was proposed that could accurately estimate material

properties and the contact point from simulated force curves with varying

degrees of hyperelasticity.

6. On implementation on an entire ROI, it was observed that the proposed au-

tomation strategy could significantly improve fit quality in the elastic map of
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the ROI, thereby validating the research hypothesis of this chapter.

There are some limitations associated with the proposed approach discussed

in this chapter, namely:

1. In this analysis, a constant value of the indenter radius (R = 2.5µm) was

used. Varying the indenter size is likely to impact the results of the sensitivity

studies in section 5.5.3. However, the probe bead size is unlikely to affect the

major conclusions of this study, since it would still be possible to differentiate

between a linear and an hyperelastic tissue response based on the estimated

Fung parameter, b̂ from the inverse FE analysis.

2. It was observed that for force curves possessing very high degrees of hyperelas-

ticity, the contact estimation did not perform satisfactorily. This was primarily

because the force-indentation contact relationship used in the regression model

was not capable of explaining very high nonlinear tissue response. Establish-

ing a contact model for the Fung type hyperelastic materials remains a subject

of future work.

3. Anisotropy of the tissue response in the direction of indentation was not con-

sidered in this work. Currently, force curves that display anisotropy (shown in

Fig. 5.7) are isolated from the data analysis procedure after visually locating

them. An automated strategy using multi-changepoint estimation might be a

promising solution to identify and isolate these force curves in an unsupervised

manner.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation summarizes research directed towards performing accurate

mechanical characterization on breast tissue specimens with the intent of establish-

ing quantitative mechanical markers for cancer progression in the human breast.

Due to variability in the tissue elasticity across patients, it is difficult to conclu-

sively attribute mechanical signatures to the onset and progression of cancer in the

tissue specimens, however, this dissertation presents extensive work that has been

carried out towards achieving that goal. Several challenges were encountered while

carrying out preliminary AFM characterization experiments on tissue, which served

as the basis for chapter 2 of this dissertation. In the subsequent chapters 3-5, each

of these challenges were carefully examined and their solutions proposed. Based on

the research work done and experimental results obtained in this dissertation, the

following conclusions can be made:

1. Breast tissue specimens obtained from biopsy samples are highly heteroge-

neous in their composition and therefore, accurate mechanical characterization

should incorporate elastic map acquisitions (as discussed in chapter 3), instead

of random pointwise sampling in the annotated areas of the tissue specimen

(as discussed in chapter 2).
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2. Obtaining representative tissue samples for quantifying mechanical property

alterations in cancerous tissue compared to normal tissue is a very challenging

exercise. As observed in the results in chapter 3, tissue elasticity is a strong

function of the individual patient from whom the biopsies were taken. It is

therefore recommended that for future characterization studies, normal and

cancer cores be extracted from the same patient.

3. Stromal tissue was consistently found to be more stiff compared to epithelial

regions in all the characterization experiments that were conducted. It is

therefore recommended that these regions need not be sampled as much as

epithelial regions for future characterization studies.

4. A probabilistic approach for tissue elastic modulus estimation provides a greater

degree of certainty in the characterization results since it incorporates errors

in the AFM probe calibration protocol and contact point uncertainty.

5. The direct implication of tissue heterogeneity is that AFM force curves ac-

quired during raster-scanning need to be carefully post-processed to identify

contribution of nonlinear elasticity in the force curves. Least square fitting of

the raw AFM data to existing contact models is attractive from the computa-

tional point of view; however, as observed in the results in chapter 5, a single

contact model does not account for all force curves obtained during raster

indentations on the tissue specimens.
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6.2 Contributions

The contributions presented in this dissertation can be summarized as follows:

1. Development of a long range positioning system: A semi-automated position-

ing system has been proposed that overcomes some of the shortcomings of

using manual tissue-AFM probe alignment and manual registration methods.

Using image feedback, it was demonstrated that tissue ROIs beyond the range

of conventional AFM X-Y stages could be raster-scanned. It was also shown

that manual registration needed to be performed only twice during the AFM

experiments using the proposed system, in contrast to repetitive manual reg-

istration that needed to be periodically carried out to ensure that the probe

was localized correctly with the stained image.

2. EIV-Bayesian Changepoint algorithm: An integrated probabilistic approach

for estimating material properties from raw AFM data after incorporating

errors in contact estimation and AFM probe spring constant calibration vari-

ability was proposed. It was shown through extensive analysis that the algo-

rithm responded satisfactorily to varying degrees of calibration errors and the

accuracy of the results was validated on simulated AFM force curves.

3. Hyperelastic constitutive modeling of breast tissue: It is generally the practice

for AFM data analysis procedures to curve-fit bulk AFM data to analytical

contact models. While computationally inexpensive, might lead to inaccurate

estimates of the tissues’ elastic modulus when the tissue response is sharply
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nonlinear. Using finite element modeling techniques, it was shown possible to

account for material nonlinearity through an exponential hyperelastic material

model, which significantly improved characterization accuracy.

6.3 Future Work

The possible directions for future work in this area are:

1. Characterization of stained tissue specimens: In this dissertation, AFM-based

tissue characterization was restricted to unstained tissue specimens to preclude

any tissue alterations due to staining. If stained tissue response parallels

those in unstained tissue, then stained tissue specimens could be used for

characterization. This would additionally aid in manual registration of the

annotated images with the tissue used for AFM probing.

2. Characterization of normal and cancerous specimens from the same patient:

Future work might be directed towards patient-specific characterization of

normal and cancerous tissue specimens.

3. Automated registration: Further throughput improvement with AFM charac-

terization could be achieved if the stained annotations could be automatically

registered with the tissue used for AFM probing. This can be performed using

multimodal registration techniques.

4. Non-parametric contact estimation: In the contact estimation strategies pro-

posed in chapters 4 and 5, an explicit contact model needed to be used. Con-
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tact estimation strategies that do not require a contact model might be par-

ticularly attractive for estimating the contact point in force curves that are

not described by existing contact models.

5. Integrated computational framework for tissue characterization: In this dis-

sertation, the various steps involved in AFM characterization (probe spring

constant, contact estimation and tissue constitutive modeling) were treated in

a piecemeal manner. This was primarily because the EIV-Bayesian Change-

point algorithm (in chapter 4) required an explicit contact model and there

were no such models for highly nonlinear force curves, as seen in chapter 5. Fu-

ture work might be directed towards developing contact models for exponential

hyperelastic response on the lines of those proposed by Lin et al. [74] which

also accounts for finite-indentation. This would allow uncertainty quantifica-

tion of the tissue properties using the probabilistic tools developed in chapter

4. Confidence intervals thus generated could be used in interval-uncertainty

incorporated hypothesis tests, as suggested in [56] for inference purposes.

The experimental and computational strategies proposed in this dissertation

could have a significant impact on high-throughput quantitative studies of bioma-

terials, which could elucidate various disease mechanisms that are phenotyped by

their mechanical signatures.
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Appendix A

Finite indentation response of Hertz and Dimitriadis contact models

In this appendix, the ability of Hertz and Dimitriadis contact models to ac-

count for finite indentation on thin specimens is investigated by comparing it with

a finite element (FE) response.

Simulated contact forces obtained by performing spherical indentation on a

linearly elastic FE model of a tissue specimen 4µm thick with varying elastic mod-

ulus E (from 10 kPa to 2500 kPa) were fitted with Dimitriadis and Hertz contact

models, resulting in the fitted moduli EDim and EHertz respectively. The normal-

ized parameters EDim/E and EHertz/E were obtained for varying indentation depth

(from ∆ = 50 nm to ∆ = 1400 nm). Two probe bead sizes R = 2.5µm and

R = 5.0µm were used for investigating the impact of indenter size on predictions

from Hertz and Dimitriadis contact models.

Fig. A.1 summarizes the results of the analysis performed. Figs. A.1(a) shows

the variation of EHertz/E and EDim/E for a probe bead radius of R = 2.5 µm

with increasing indentation depth and the corresponding fit quality (R2) is shown

in Fig. A.1(b). It becomes clear that the Hertz model significantly overestimates

the elastic modulus with increasing indentation depth due to the violation in in-

finitesimal assumptions. The corresponding fit quality too shows deteriorates with

increasing indentation. The overestimation in the Hertz response worsens further

156



for a larger bead size of R = 5.0 µm [Figs. A.1(c) and (d)].
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Figure A.1: (a) Variation of EHertz/E and EDim/E for R = 2.5 µm, (b) Corre-
sponding R2 fit quality, (c) Variation of EHertz/E and EDim/E for R = 5.0 µm and
(d) Corresponding R2 fit quality.

In contrast, it is clear that for both bead sizes, the Dimitriadis model accu-

rately estimates the elastic modulus (EDim/E ∼ 1) for shallow as well as deep in-

dentations. This analysis conclusively proves the applicability of Dimitriadis model

in estimating tissue elastic modulus from AFM indentation on thin specimens such

as the breast tissue specimens studied in this work.
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