
1

Segment-based simple-connectivity measure design and
implementation

Joao Soares
1
, Andrea Baraldi

2
, and David Jacobs

1

1
 Department of Computer Science, University of Maryland

2
 Department of Geography, University of Maryland, 4321 Hartwick Rd, Suite 209, College

Park, Maryland, USA 20740.

E-Mail: andrea.baraldi@hermes.geog.umd.edu

Tel.: +1-301-314-1467; Fax: +1-301-405-6806

Table of Contents

Segment-based simple-connectivity measure design and implementation 1
1 Introduction ... 2

2 Nomenclature .. 3
3 Project requirements specification .. 3

4 Existing definitions of simple-connectivity indexes ... 3
5 Original definitions of simple-connectivity indexes ... 4

5.1 Simple-connectivity index based on boundary 4-adjacency cross-aura measures 5

5.1.1 Test case: scale invariance .. 7

5.1.2 Test case: one-pixel thin region with a hole ... 8

5.1.3 Test case: sensitivity to a single hole of increasing size ... 9

5.1.4 Test case: sensitivity to the presence of multiple holes .. 10

5.1.5 Test case: sensitivity to a noisy external boundary ... 10

5.1.6 Test case: range of SmplConnctvty4Adjacency values .. 11

5.1.7 Conclusions about the first proposed shape index .. 11

5.2 Simple-connectivity index based on areas ... 12

5.2.1 Test case: scale invariance .. 13

5.2.2 Test case: sensitivity to a single hole of increasing size ... 13

5.2.3 Test case: sensitivity to the presence of multiple holes .. 13

5.2.4 Test case: sensitivity to a noisy external boundary ... 13

5.2.5 Conclusions about the second proposed shape index ... 14

5.3 Combined simple-connectivity index... 14

Appendix A. Review of algorithms for tracing the external region boundary and the external

outer boundary 14

2

Appendix B. Simple-connectivity index based on boundary lengths 16

B.1 Test case: scale invariance ... 18

B.2 Test case: diagonal boundaries ... 18

Appendix C. Original algorithm for computing the total length of the (region) boundaries =

length of the external boundary + length of the internal boundaries. ... 19
C.1 Original pseudo-code ... 20

C.2 Correctness of the proposed algorithm... 21

References ... 24

1 Introduction

In developing different measures for the description of a segment’s shape, we noted that it would

be useful to include a measure capable of quantifying the presence of holes. This was motivated

by the following scenario. The measures we use to characterize a segment’s shape, such as

RoundnessAndNoHole (also known as compactness), ConvexityAndNoHole and

RectangularityAndNoHole are monotonically decreasing with the presence of holes, namely:

 RoundnessAndNoHole is high if Roundness is high and condition NoHole is true,

 ConvexityAndNoHole is high if Convexity is high and condition NoHole is true and, finally,

 RectangularityAndNoHole is high if Rectangularity is high and condition NoHole is true.

For example, a region with a perfectly round external boundary, but containing several holes,

will present a low RoundnessAndNoHole measure. Were the holes not present in the region, it

would instead feature a very high RoundnessAndNoHole measure. Besides these measures, our

newly introduced version of a measure of elongatedness
1
 is also affected by the presence of

holes, increasing as the number of holes increases.

In our study of satellite images, it is very common to find segments that contain holes, whether

due to the underlying holes in the original observed structure or whether due to segmentation

errors. In order to reason about these types of situations without having to change the definitions

of the shape measures already in use (which are quite natural and intuitive), we introduce a new

measure to quantify the presence of holes, which we call simple-connectivity. The simple-

connectivity measure quantifies the extent to which a region is simply-connected, i.e., the

measure should be monotonically decreasing with holes whose cardinality increases or whose

size increases (at fixed cardinality).

The rest of this paper is organized as follows. In Section 2, nomenclature is introduced. Existing

definitions of simple-connectivity indexes are provided in Section 4, which provides this

document with a relevant survey value. Section 5 presents an original combination of indexes of

1
 In particular, Elongatedness = Number of pixels belonging to the 8-adjacency skeleton (to replace the traditional

segment's longest path, which requires a segment to be simply-connected) / Average width = [Mean(Sum(2 min

distance from the boundary of the skeleton pixel, where this distance is computed by the Euclidean distance

transform generated during the skeletonization process))], such that Elongatedness 1.

3

simple-connectivity. As a supplement, Appendix A presents a review of algorithms for tracing the

region boundaries. Appendix B presents an alternative simple-connectivity index based on

boundary lengths. Appendix C describes an efficient original algorithm for computing the length

of a region’s boundaries, to be used in computing the alternative measure presented in Appendix

B.

2 Nomenclature

Following is a list with some nomenclature used in this document.

1. External (region) boundary.

2. Outer external boundary.

3. Internal (region) boundary (facing holes).

4. Outer internal boundary.

5. Total (region) boundary = External boundary + internal boundary.

6. Total outer boundary = outer external boundary + outer internal boundary.

These terms are defined in Section 5. Throughout, in order to define our measures of simple-

connectivity, we will only consider region boundaries, and thus we will only be using terms 1, 3,

and 5 above. The outer boundaries will only be discussed briefly, so terms 2, 4, and 6 above are

included here more for completeness.

3 Project requirements specification

These are our requirements of a geometric index.

 Dimensionless (it is a pure number).

 Normalized range of change (intuitive to deal with by a user).

 Scale-invariant.

 In compliance with human perception. For example, a simple-connectivity index should be

monotonically decreasing with holes whose cardinality increases or whose size increases

when the number of holes is fixed.

 Robust to the presence of noise in the input data. For example, in satellite imagery an

increasing level of data noise may increase, firstly, image fragmentation, i.e., it increases the

number of image-objects (segments) along with the average presence of holes within each

segment and, secondly, the roughness of image-objects whose boundaries become less

smooth (more irregular).

4 Existing definitions of simple-connectivity indexes

This section investigates existing definitions of simple-connectivity indexes to provide this

document with a relevant survey value.

Much work in shape analysis does not provide an appropriate treatment of holes as integral

characteristics of shapes. Holes are sometimes eliminated in a pre-processing stage as a nuisance.

Similarly, there is a body of work that focuses on characterizing only the shape’s external

4

boundary (refer to the adopted nomenclature in Section 2), in effect ignoring eventual holes [1].

Our work in developing indexes for shape description follows the line of treating holes as

important constituents of a shape. Besides the practical importance of taking such an approach,

discussed in Section 1, this view is also interesting as it holds a counterpart in human perception,

as discussed below.

Bertamini [2] reviews a series of works that strongly indicate that the borders of holes are not

perceived as belonging to the hole itself, but to the region that encloses it. In this sense, from a

perceptual standpoint, the boundary that surrounds a hole is actually contributing to define the

shape of the enclosing region. (This does not imply that the shape of the hole itself is not

perceived at some level, but that its boundary is in fact perceived as an integral part of the shape

that surrounds it.) It is important to point out that, in dealing with satellite images, in many cases

there is not a clear definition of what region perceptually constitutes “figure” (foreground) or

“ground” (background), since many regions present the same, or similar, (3-D) depth. Therefore

it is not always clear which regions should be considered perceptually as foreground versus hole.

Nonetheless, in considering the problem of shape analysis in general, if we assume that we are

given a foreground region, it becomes perceptually relevant to use the boundaries of the region’s

holes to help define its shape.

Wentz [3] defines a measure to aid in characterizing shapes in geographic applications. Wentz’s

measure is called Perforation, defined as the ratio between the area of a segment’s holes and the

area of the segment when all its holes are filled in. In this manner, Perforation [0, 1]. In

addition to being dimensionless and normalized, which make it easy to use, index Perforation is

also scale invariant, which is a fundamental property of geometric descriptors.

Soffer and Samet [4] define a Hole-Area Ratio for recognition of symbols and logos. The Hole-

Area Ratio is defined as the ratio between the area of a segment’s holes and the segment’s area

(without its holes filled in). This index is in the same spirit as the Perforation index, with the

difference that the denominator in the Perforation index is the area of the segment with its holes

filled in. Though in practice the indexes may present similar behavior, the Hole-Area ratio is not

contained in the [0,1] range and thus is less desirable for our purposes.

Topological properties of a region can also be used to quantify the presence of holes, such as the

number of holes, or Euler number [1] [5]. The limitation of topological measures is that they do

not quantify the size or shape of holes, focusing instead solely on counting their number. In our

applications, we would like to quantify the size/extent of holes, and thus we opt for different

types of indexes.

5 Original definitions of simple-connectivity indexes

We begin by defining three relatively simple original simple-connectivity measures. These more

simple measures are defined in Sections 5.1, 5.2, and Appendix B. The first two of these indexes

are of interest to us, since they satisfy the requirements specification listed in Section 3. At the

same time, these two indexes are complementary in that they present different kinds of

sensitivities to holes. In order to develop a final index that is sensitive to these different types of

holes, our final formulation is derived as a combination of the two original indexes, which is

presented in Section 5.3. The third index, although not completely scale invariant, is

5

approximately scale invariant. It is described in Appendix B.

5.1 Simple-connectivity index based on boundary 4-adjacency cross-
aura measures

We define our simple-connectivity index, based on boundary 4-adjacency cross-aura measures,

starting from some basic definitions.

We consider a 2-D region, also called 2-D segment, polygon or (2-D) image-object, to be any set

of 8-connected pixels on a usual 2-D discrete rectangular grid. Sonka et al. distinguish between

two types of boundaries where regions are assumed to be simply connected, i.e., where image-

objects are assumed to have no holes [6] (pp. 129-131).

 A simply-connected region's inner boundary is traced by searching the image from top

left until a pixel of the target region is found. Next, an inner boundary tracing algorithm

moves anticlockwise along the region's boundary pixels. By definition, boundary pixels

belong to the region at hand, are either 4- or 8-adjacency connected to one another and

face, respectively in their 8- or 4-adjacency neighborhood, at least one non-region pixel.

Thus, inner boundary pixels form a subset of the region, see Figure 1. A review of an

algorithm for tracing this inner boundary is presented in Appendix A.

 A region's outer boundary denotes outer border pixels not belonging to the target region,

i.e., pixels facing the region from the “outer” world. If the region inner boundary is 8- (4-

)adjacency connected, then outer pixels are those non-region pixels faced by inner

boundary pixels in their 4-(8-)adjacency neighborhood, see Figure 1.

 o o o

o x x ooo x oo

 oo x x x x oo

 o x x ooo x x o

 o o o o

Figure 1: Example of a region’s 8-adjacency inner boundary, in dark highlight, and the region's outer boundary (with

o meaning one count in the 4-adjacency neighborhood of a region's inner boundary pixel). (This example was

provided by Sonka et al. [6], page 131.)

In this paper we consider only 8-adjacent region boundaries, which are boundaries whose pixels

are 8-adjacency connected.

Introduced in Section 2, a different terminology from that of Sonka et al. is adopted hereafter.

(a) External 8-adjacency region boundary. Set of pixels that: (i) belong to the region (ii) are 4-

adjacent to an outer pixel which: (a) falls, by definition, outside the region and (b) does not

belong to an inner hole of the region.

(b) Internal 8-adjacency region boundary (facing holes). Set of pixels that: (i) belong to the

region and (ii) are 4-adjacent to an outer pixel which: (a) falls outside the region and (b)

6

belongs to an inner hole of the region.

(c) Total 8-adjacency region boundary = External 8-adjacency region boundary + internal 8-

adjacency region boundary. Set of pixels that: (i) belong to the region and (ii) are 4-adjacent

to any outer pixel that (by definition of outer pixel) falls outside the region, irrespective of

whether this outer pixel belongs to an inner hole of the region at hand.

These definitions are illustrated by the example in Figure 2. Since most of the boundaries that we

consider in this paper are region and 8-adjacent, we will omit these terms throughout. Thus, the

three previously defined boundaries will be referred to simply as external boundary, internal

boundary, and total boundary.

Figure 2: Example illustrating a region’s 8-adjacency region boundaries (a) region (gray pixels) containing a hole;

(b) the corresponding external 8-adjacency region boundary; (c) the internal 8-adjacency region boundary; (d) the

total 8-adjacency region boundary, which is the same as the union of the external and internal 8-adjacency region

boundaries.

We go on to define two types of cross-aura measures of importance. The first is the “4-adjacency

cross-aura measure of the external boundary”. For each pixel of the external boundary, we count

its 4-neighbors that: (i) do not belong to the region, and (ii) do not belong to the region’s holes.

These counts are tallied up, resulting in the desired cross-aura measure. The counting procedure

is such that a pixel that does not belong to the region and is a 4-neighbor to multiple external

boundary pixels will be counted multiple times (once for each of its 4-neighboring external

boundary pixels), as an example, refer to Figure 1.

The “4-adjacency cross-aura measure of the total boundary” is defined similarly, but also takes

into account contributions from holes. For each pixel in the total boundary, we count its 4-

neighbors that do not belong to the region, irrespective of whether they belong to a hole or not.

These counts are added up over all pixels in the total boundary. Again, a pixel that does not

belong to the region and is a 4-neighbor to multiple boundary pixels will be counted multiple

times.

We are now ready to define our first measure of simple-connectivity, which we denote

SmplConnctvty4Adjacency, as

SmplConnctvty4Adjacency = (4-adjacency cross-aura measure of the external boundary) /

(4-adjacency cross-aura measure of the total boundary), (1)

where SmplConnctvty4Adjacency [0, 1], such that SmplConnctvty4Adjacency is equal to 1 if

and only if the region has no holes, i.e., if it is simply-connected.

7

It is easy to prove that pros and cons of SmplConnctvty4Adjacency are the following (refer to

further Section 0).

 Pros.

o Dimensionless (it is a pure number).

o Normalized range of change (intuitive to deal with by a user).

o Scale-invariant.

 Cons.

o Somehow contrary to human perception when a single hole of increasing size is

met, it does not cause SmplConnctvty4Adjacency to decrease significantly relative

to the size of the hole.

In the following subsections, we will present numerical examples to illustrate the properties

above.

The computation of the cross-aura measures is done in the following manner. We begin by

explaining the procedure used to compute the 4-adjacency cross-aura measure of the total

boundary. Our system for geographical image analysis provides us with an image indicating

which pixels belong to the region to be analyzed, as well as the coordinates of a bounding box

around the region. To compute the 4-adjacency cross-aura measure of the total boundary, we visit

each pixel inside the bounding box and only analyze those that belong to the region.

(Alternatively, we could analyze only the set of pixels that belong to the total boundary, if this set

is available in some data structure.) For each pixel belonging to the region, we count the number

of its 4-neighbors that do not belong to the region. This number is accumulated over all pixels,

resulting in the desired cross-aura measure. Note that, in accordance with the definition of the

cross-aura measures presented above, a non-region pixel will be counted multiple times if it is a

4-neighbor to multiple region pixels.

To compute the 4-adjacency cross-aura measure of the external boundary, we follow the same

procedure as above, after having filled in the holes of the region. In this manner, we avoid

counting any contribution of non-region pixels that belong to holes. The region with its holes

filled in is stored as an intermediate product of our image analysis system, as it is also used to

compute the FilledAreaRatio. The procedure used to fill in the holes of a given region is

described along with the definition of FilledAreaRatio, in Section 5.2. To say that, when the 4-

adjacency cross-aura measure of the external boundary is computed, this computation benefits

from pre-filling of the region's holes, if any.

Perhaps a more direct approach to compute the 4-adjacency cross-aura measure of the external

boundary would be to trace the external outer boundary as described by Sonka et al. in their

“outer boundary tracing” algorithm. This algorithm is briefly reviewed in Appendix A.

5.1.1 Test case: scale invariance
To illustrate how SmplConnctvty4Adjacency behaves under variations in the scale of a region, we

present a simple example. (a) shows a region containing a hole, where we have

SmplConnctvty4Adjacency =12/16 = 0.75. We then scale the region to twice its size, as shown in

(b). The result is SmplConnctvty4Adjacency =24/32 = 0.75. Note that the value has not changed.

8

Figure 3: An example to illustrate the behavior of the simple-connectivity measures when a region is subjected to

scaling. The regions are denoted by the set of gray pixels, so that each region has a single hole. In (a), a one-pixel

thin region with a hole is shown. If the image in (a) is enlarged to twice its size, we obtain the result shown in (b).

See the text for the simple-connectivity values corresponding to the regions.

5.1.2 Test case: one-pixel thin region with a hole
The definition of SmplConnctvty4Adjacency (see Equation 1) is justified to properly deal with a

particularly difficult type of (connected) region which is not simply connected, i.e., this region

has (inner) holes. shows an example of such a difficult region. The region is one-pixel thin and

contains a relatively large hole. In this example, a practical difficulty arises due to the fact that

the set of pixels that form the external boundary is the same as the set of pixels that form the total

boundary, even though a hole is present.

Figure 4: Example of a pixel-thin region containing a relatively large hole. The region is defined by the set of pixels

marked in gray. Note that in this case, the pixels that form the region, its external boundary, and its total boundary all

coincide.

We will briefly discuss an alternative approach to defining simple-connectivity, which is more

direct and simple, but less effective (i.e., less sensitive to the presence of holes, refer to this text

below). Instead of considering 4-adjacency cross-aura measures, one could attempt to directly

detect boundary pixels and simply count them up. This alternative approach would consist of the

following steps.

(a) Count the number of pixels that form the external boundary. Recalling the definition in

Section 5.1, the set of pixels forming the external boundary are the pixels that: (i) belong

to the region and (ii) are 4-adjacent to an outer pixel which: (a) falls outside the region

and (b) does not belong to an inner hole of the region. For example, the region in Figure

2(a) presents 25 such pixels (shown in Figure 2(b)), whereas the region in presents 16

such pixels, which coincide with the region itself.

(b) Count the number of pixels that form the total boundary. To recall the definition from

Section 5.1, the total boundary is the set of pixels that: (i) belong to the region and (ii) are

9

4-adjacent to any outer pixel that (by definition of outer pixel) falls outside the region,

irrespective of whether this outer pixel belongs to an inner hole of the region at hand. The

region in Figure 2(a) presents 36 such pixels (shown in Figure 2(d)), while the region in

presents 16 such pixels, which again coincide with the complete region.

(c) Take the simple-connectivity to be the number of pixels that form the external boundary

(from (a)) divided by the number of pixels that form the total boundary (from (b)).

Noteworthy, by using this alternative approach, the region in Figure 2 would present a simple-

connectivity measure of 25 / 36 below 1, which indicates the presence of holes. Also

SmplConnctvty4Adjacency would result in a value of 36 / 48 below 1, which appears reasonable.

On the other hand, for the region type shown in , where at least part of a region is one-pixel thin

and presents a hole, which shows up frequently in the segments produced by our analysis of

satellite images and thus needs to be dealt with appropriately, the SmplConnctvty4Adjacency

index value is equal to 24 / 40, well below 1, which correctly reflects the presence of the hole in

the region. However, the aforementioned alternative approach would result in a simple-

connectivity of 1. This is undesirable, since the region is certainly not simply-connected.

To recapitulate, the original SmplConnctvty4Adjacency index proposed in Equation 1, based on

4-adjacency cross-aura measures, complies with geometric index requirements proposed in

Section 3 and effectively copes with the difficult test case shown in Figure 4, where at least part

of a region is one-pixel thin and presents a hole, which shows up frequently in the segments

produced by our analysis of satellite images and thus needs to be dealt with appropriately.

Figure 5: Example regions used to illustrate the sensitivities of the different simple-connectivity measures to a hole

of increasing size. See text for the simple-connectivity values associated to each region.

5.1.3 Test case: sensitivity to a single hole of increasing size
The next example shows how SmplConnctvty4Adjacency responds to a single hole of increasing

size. We use to illustrate this. In (a), the size of the hole is relatively small, resulting in

SmplConnctvty4Adjacency ~ 0.86, while for the square with the medium-sized hole in (b), we

obtain SmplConnctvty4Adjacency ~ 0.67. Finally, the square with the large hole in (c) has

SmplConnctvty4Adjacency ~ 0.55. Note that, though in (c) we see a very large hole,

SmplConnctvty4Adjacency takes on the value of 0.55, which is intermediate in its range, instead

of being "small". This does not correctly align with our perception regarding the size of the hole.

In practice, index SmplConnctvty4Adjacency does not appear to be sensitive "enough" to changes

in size of holes whose cardinality is fixed. In other words, index SmplConnctvty4Adjacency does

10

not appear effective in exploiting its whole normalized output domain of change [0, 1] to

describe input changes in size of holes whose cardinality is fixed.

5.1.4 Test case: sensitivity to the presence of multiple holes
The following example illustrates how SmplConnctvty4Adjacency behaves in the presence of

multiple holes. presents two squares with holes. In (a), the square contains 4 small holes, each of

1 pixel in size. This region results in SmplConnctvty4Adjacency ~ 0.86. (b) presents a square of

the same size, but with a single hole of 4 pixels in size. For this case, we obtain

SmplConnctvty4Adjacency ~ 0.56. Note that SmplConnctvty4Adjacency is sensitive to the

variation in the number of holes, increasing with the increase in number of holes.

Figure 6: Two regions with holes, used to illustrate the sensitivities of the simple-connectivity measures to the

presence of multiple holes. The total area of the holes is the same in example (a) and (b), though in (a) the region

contains 4 holes, while in (b) there is only one.

5.1.5 Test case: sensitivity to a noisy external boundary
In this example, we show the effect of a noisy external boundary on SmplConnctvty4Adjacency

where the internal region boundary facing holes is kept the same. On theory, a case where noise

affects only the external region boundary and not the inner region boundary facing holes seems

an unlucky circumstance. In practice, this situation seems to frequently affect segments

generated in our satellite image analysis.

Figure 7: Regions used to illustrate the effects of a noisy external boundary on the values of our simple-connectivity

measures. See text for discussion.

In , both regions have the same area and present the same hole. However, the external boundary

of the region in (b) is noisier (and thus longer) than the one of the region in (b). The region in (a)

presents SmplConnctvty4Adjacency ~ 0.71, while the region in (b) presents

SmplConnctvty4Adjacency ~ 0.83. SmplConnctvty4Adjacency is thus affected to a certain extent

by the noisy boundary.

11

5.1.6 Test case: range of SmplConnctvty4Adjacency values
When designing an expert system for classification of image-objects (e.g., detected in a satellite

image), namely, a prior knowledge-based vision system, which is our case, it is desirable to have

shape indexes with an intuitive physical meaning and values in a finite range (bounded above

and below) of pure numbers, like percentage values in the normalized range of change [0, 1].

This allows a knowledge engineer or domain expert to more easily design decision thresholds to

quantize shape index values of target objects. According to Section 3, this is one of the project

requirements which drives our search for a simple-connectivity index.

In this subsection, the effectiveness (sensitivity) of the original index SmplConnctvty4Adjacency

= (1) is tested in a variety of input cases, shown in . SmplConnctvty4Adjacency presents a value

of 1 when the region is simply-connected, since there are no holes contributing towards the 4-

adjacency cross-aura measure of the total boundary. The measure will present a value close to 0.5

when a region contains a large hole, such as in the example shown in (c) and (b). A region may

also present values around 0.5 when the region contains a series of smaller holes, as shown in

(c). Finally, in the extreme case of a region that contains several holes, each with long

boundaries, SmplConnctvty4Adjacency will be very low, as in (d).

Figure 8: Example of regions illustrating the range of SmplConnctvty4Adjacency values: (a) an 8-connected

region with no holes, presenting a SmplConnctvty4Adjacency value of 1; (b) a region with a large hole,

presenting SmplConnctvty4Adjacency equal to 20 / (20 + 12) ~ 0.52; (c) a region with several small holes,

presenting SmplConnctvty4Adjacency equal to 20 / (20 + 4 + 4 + 4 + 4) ~ 0.56; (d) a region with several holes,

each presenting long boundaries. The SmplConnctvty4Adjacency value of this last region is 36 / (36 + 16 + 16 +

16 + 16) = 36 / 100 = 0.36.

5.1.7 Conclusions about the first proposed shape index
Based on Sections 5.1.1 to 5.1.6, our experimental conclusions about the original index

SmplConnctvty4Adjacency = (1) are that:

 Overall, its numerical behavior complies with the project requirements specification of

Section 3.

 Possible improvements to counterbalance its operational limitations.

o SmplConnctvty4Adjacency appears to exploit only one half of its output normalized

domain of change to describe input holes that change in size, rather than in number

(cardinality).

o In addition to the presence of holes, SmplConnctvty4Adjacency is somehow sensitive to

noisy (irregular) external boundaries when the inner region boundary facing holes

remains unaffected by noise (which appears as an unlucky circumstance, but seems to

occur in practice).

12

5.2 Simple-connectivity index based on areas
To improve the original index SmplConnctvty4Adjacency = (1) in compliance with Section 5.1.7,

we keep searching for a better simple-connectivity index driven by the project requirements

specification of Section 3.

The next simple-connectivity index we experiment with is based on the simple ratio between the

total area of the holes divided by the area of the region with its holes filled in. Similar area-based

shape indexes proved to be scale invariant, refer to Section 4. Intuitively, such an area-based

simple-connectivity index is expected to behave very differently from the contour-based

SmplConnctvty4Adjacency = (1) formulation. This intuition is verified in a series of examples in

this section.

We define an "original" FilledAreaRatio index as

FilledAreaRatio = (Area of the region) / (Area of the region with its holes filled in), (2)

such that FilledAreaRatio [0, 1], where FilledAreaRatio equals 1 if there is no hole in the

polygon.

Noteworthy, this index is inversely related to shape indexes presented by Wentz [3] and Soffer

and Samet [4], in fact, FilledAreaRatio = (1 – Perforation) [0, 1]. In other words, index

FilledAreaRatio is not totally new, but it is somehow new based on the degree of novelty of the

framework (refer to Section 3) where it is formulated and adopted.

It is easy to prove that pros and cons of FilledAreaRatio are the following (refer to further

Section 0).

 Pros.

o Dimensionless (it is a pure number).

o Normalized range of change (intuitive to deal with by a user).

o Scale-invariant.

 Cons.

Little sensitivity to the presence of multiple small holes. This behavior is

somehow complementary to that of index SmplConnctvty4Adjacency.

Later on, we present numerical examples that illustrate the properties above.

We implement the computation of the shape index FilledAreaRatio in the following manner. Our

system for spaceborne/airborne image analysis provides us with an image indicating which

pixels belong to the region being analyzed, as well as the coordinates of a bounding box around

the region. In order to compute the area of the region, we visit each pixel inside the bounding

box and count the pixel towards the area each time that it belongs to the region.

In order to compute the area of the region with its holes filled in, we follow the same procedure

as above, but after having first filled in the holes of the region. To fill in the holes, we follow a

two-step approach.

1. The external boundary of the region is traced (see Appendix A).

2. Given the tracing along the external boundary, the region enclosed by the boundary is

13

drawn as a new image, which will not present any of the holes. The algorithm we use to

draw the region after tracing its external boundary is the scan-line polygon filling

algorithm [8] (pages 169-173), whose implementation is provided in the OpenCV library

[7].

5.2.1 Test case: scale invariance
To illustrate how FilledAreaRatio behaves under variations in the scale of a region, we recall the

example from Figure 3. (a) shows a region containing a hole, which presents FilledAreaRatio =

8/9 ~ 0.89. When the region is scaled to twice its size, as shown in (b), the resulting measure is

again FilledAreaRatio = 32/36 ~ 0.89. Note that the value has not changed, as was also the case

with SmplConnctvty4Adjacency (see Section 5.1.1).

5.2.2 Test case: sensitivity to a single hole of increasing size
The next example shows how FilledAreaRatio responds to a single hole of increasing size,

illustrated in . In (a), the size of the hole is relatively small, resulting in FilledAreaRatio ~ 0.97.

For the square with the medium-sized hole in (b), we obtain FilledAreaRatio = 0.75. Finally, for

the square with the large hole in (c), we have FilledAreaRatio ~ 0.31. Note that the measure

FilledAreaRatio had a large rate of change across the different hole sizes, producing a low value

for the region in (c). This was not the case for the previously presented measure

SmplConnctvty4Adjacency, whose value for (c) was approximately 0.55. Thus, in this example,

FilledAreaRatio is more in accordance to our intuitive perception of the size of the hole.

5.2.3 Test case: sensitivity to the presence of multiple holes
The following example illustrates how FilledAreaRatio behaves in the presence of multiple

holes. presents two squares with holes. In (a), the square contains 4 small holes, each of 1 pixel

in size. This region results in FilledAreaRatio = 0.84. (b) presents a square of the same size, but

with a single hole of 4 pixels in size. Since FilledAreaRatio measures only the relative area

attributed to holes, again we have FilledAreaRatio = 0.84. While the FilledAreaRatio does not

change between the two regions, our previously presented index SmplConnctvty4Adjacency is

sensitive to the variation in the number of holes, as presented in Section 0, which is more in

accordance to our intuitive perception of the polygon's "hole-ness" (internal emptiness).

5.2.4 Test case: sensitivity to a noisy external boundary
In this example, we show that FilledAreaRatio can be relatively insensitive to noisy external

boundaries. This situation is especially relevant, since it tends to happen in practice in segments

from our satellite image analysis. In , the two regions have the same area and present the same

hole. However, the external boundary of the region in (b) is noisier (and thus longer) than the one

of the region in (b). As shown in Section 5.1.5, this noisy boundary affects the measure

SmplConnctvty4Adjacency to some extent. However, the value of FilledAreaRatio = 0.84 is the

same for both regions, in effect ignoring the noise in the external boundary.

5.2.5 Conclusions about the second proposed shape index
Based on Sections 5.2.1 to 5.2.4, our experimental conclusions about the original index

FilledAreaRatio = (2) are that:

 Overall, its numerical behavior complies with the project requirements specification of

Section 3.

14

 It is suitable to counterbalance operational limitations of the SmplConnctvty4Adjacency = (1)

formulation and vice versa. In fact:

o SmplConnctvty4Adjacency appears less sensitive to changes of input holes in terms of

size than to changes of input holes in terms of their overall number (cardinality). Index

FilledAreaRatio = (2) behaves the opposite, it is more sensitive to changes of input holes

in terms of size than to changes of input holes in terms of their overall cardinality.

o Whereas SmplConnctvty4Adjacency is somehow sensitive to noisy (irregular) external

boundaries when the inner region boundary facing holes remains unaffected by noise

(which appears as an unlucky circumstance, but seems to occur in practice),

FilledAreaRatio is insensitive to this noise effect.

5.3 Combined simple-connectivity index
Based on conclusions proposed in Section 5.2.4, we define our final simple-connectivity index,

CombinedSmplConnctvty, as

CombinedSmplConnctvty = Min{SmplConnctvty4Adjacency, FilledAreaRatio}. (3)

such that CombinedSmplConnctvty [0, 1], where CombinedSmplConnctvty equals 1 if there is

no hole in the polygon.

Hence, CombinedSmplConnctvty = (3) is severe as (as low as) the most severe (lowest) between

the two simple-connectivity indexes SmplConnctvty4Adjacency = (1) and FilledAreaRatio = (2).

For example, shows that FilledAreaRatio is more sensitive to the size of large holes. For the

region in (c), which presents a single very large hole, we obtain FilledAreaRatio = 0.31 and

SmplConnctvty4Adjacency ~ 0.55, therefore CombinedSmplConnctvty = FilledAreaRatio = 0.31.

On the other hand, the example in shows that SmplConnctvty4Adjacency is more sensitive to the

presence of multiple holes when the total area of the holes in the region is the same. For

example, in the two regions shown in Figure 6(a) and Figure 6(b), FilledAreaRatio = 0.83 is the

same for both regions (since the total area of the holes does not change), while

SmplConnctvty4Adjacency ~ 0.86 in Figure 6(a) and SmplConnctvty4Adjacency ~ 0.56 in Figure

6(a). Therefore, CombinedSmplConnctvty = FilledAreaRatio = 0.83 in Figure 6(a) and

CombinedSmplConnctvty = SmplConnctvty4Adjacency = 0.56 in Figure 6(b).

Appendix A. Review of algorithms for tracing the external region

boundary and the external outer boundary
In this Appendix, we review the algorithm for tracing the external region boundary, along with

its variant that is used to trace the external outer boundary. The definitions of these different

types of boundaries can be found in Section 5.1. We follow the presentation from Sonka et al. [6]

(p. 129). Similar descriptions of the standard boundary tracing algorithm are presented by

Pavlidis [8] (p. 143) and by Gonzalez and Woods [5] (p. 796-797). The latter authors note that

the algorithm is sometimes referred to as the Moore boundary tracking algorithm, after Moore

[9].

In order to avoid any confusion, in the following discussion we explicitly differentiate between

15

the two types of boundaries we are interested in by always qualifying them as either external or

internal (the latter surround holes). Sonka et al.’s initial description of the method is not

concerned with holes, so that their algorithm only traces the external boundary. Additionally, we

make use of the term walk (borrowed from graph theory), in order to refer to the result of the

tracing algorithms. For our purposes, we define a walk as an ordered sequence of pixels, in

which pixels are allowed to repeat. A closed walk is one whose first and last pixels coincide, as is

the case for the walks we are interested in, which are traced along boundaries.

The algorithm for external region boundary tracing begins by raster scanning the image, from top

left, until it finds a pixel that belongs to the region. This pixel is the first in the external region

boundary walk. The algorithm proceeds to follow the boundary in counter-clockwise direction.

While the boundary tracing is on-going, the latest pixel added to the walk has its neighborhood

scanned, also in counter-clockwise direction. In this step, either the 4-adjaceny or 8-adjaceny

neighborhood of the pixel can be scanned, each resulting in a different kind of detected boundary

walk (whose pixels are respectively 4-connected and 8-connected). The neighborhood scan

begins at the previous boundary pixel and proceeds until a new region pixel is found. This new

pixel, which will also belong to the boundary, is then added to the walk and the process is re-

iterated. The algorithm terminates after having re-encountered the initial boundary pixel and

checked that the next pixel that would be visited is the second pixel already found in the walk, in

which case the external boundary has been completely traced. The steps of the algorithm are

such that it is robust to the possible presence of holes in the region, simply ignoring them.

Figure 9: Assessment of the length of the external region boundary (traced in 8-connectivity) for a region whose

parts are one-pixel thin. By searching the region from top left, we find that pixel a has the minimum column value of

all pixels of the region having the minimum row value. Following the boundary in counter-clockwise direction

starting from pixel a, the region’s external walk is found to be abcbdedba. The length of the external boundary is

thus 8. Note that pixel b appears three times in the walk, while pixel d appears twice. Pixels c, and e each appear

only once. Pixel a also appears twice, but since it is the first and last pixel, it is only counted once towards the length

of the boundary.

The external region boundary walk is defined as the sequence of pixels visited by the tracing

algorithm when using 8-connectivity. As a consequence of this operational definition, the set of

pixels that belong to the external region boundary walk will: (a) belong to the region, and (b) be

4-connected with outer pixels belonging to the region’s “outer” world (not to be confused with

the region’s (inner) holes, if any).

In cases in which parts of a region are one-pixel thin, the same pixel may appear more than once

in the external region walk. An example of a region presenting this behavior is shown in Figure

16

9.

When defining an internal (hole-surrounding) walk, we can also resort to the boundary tracing

algorithm described by Sonka et al. [6] (p. 129). For each hole, we consider the closed walk

along the boundary that surrounds that hole, as would be traced by the algorithm described by

Sonka et al. In this case, the initialization of the algorithm is modified so that it starts at a region

pixel that is 4-adjacent to the hole. As usual, the algorithm will then successively trace the walk

along the boundary, searching around each boundary pixel’s neighborhood in counter-clockwise

direction. It is important to note that, differently from when the external part of the boundary is

traced, applying the algorithm around a hole will result in a walk that is ordered in clockwise

fashion around the hole, as noted by Pavlidis [8] (p. 143).

Thus, we define an internal region boundary walk as the sequence of pixels resulting from the

tracing algorithm applied around a given hole, using 8-connectivity. As a consequence of this

operational definition, the set of pixels that belong to the internal walks will: (a) belong to the

region (region pixels), and (b) be 4-connected with outer pixels belonging to the region’s holes.

In Section 5.1, we briefly mentioned that it is possible to compute the 4-adjacency cross-aura

measure of the external boundary by using an external outer boundary tracing method. This

method is referred to by Sonka et al. [6] (p. 129) as “outer boundary tracing” and consists of the

following. The external region boundary is traced in 4-connectivity as described previously.

During the tracing process, when we are analyzing a boundary pixel’s neighborhood, the set of

non-region pixels that are tested form the external outer boundary. Each time that an outer

boundary pixel is tested during the algorithm, a count should be incremented towards the 4-

adjacency cross-aura measure of the external boundary. Following this procedure, after having

completed the tracing, the count will result in the desired cross-aura measure. As an example,

consider the region in Figure 1. Each time an outer pixel is visited by the boundary tracing

algorithm, it is marked with an ‘o’. Therefore, the 4-adjacency cross-aura measure of the external

boundary is equal to the number of ‘o’s in the image. Note that this algorithm does not require

that the holes be filled in, and in effect holes are simply ignored.

Appendix B. Simple-connectivity index based on boundary lengths
A simple-connectivity index alternative to the ones presented in Section 5 index can be defined

using the lengths of closed walks along the external and the internal boundary. At the end of this

Appendix we show examples illustrating the index’s properties and explain why we opted not to

use it in our final simple-connectivity index, which was presented in Section 5.3.

Two types of closed walks are considered: external (boundary) walks, which are along the

external boundary; and internal (boundary) walks, which are along the internal boundary that the

region forms with its (internal) holes, refer to nomenclature in Section 2. The term walk is

borrowed from graph theory. For our purposes, we define a walk as an ordered sequence of 4-

connected or 8-connected pixels, in which pixels are allowed to repeat. A closed walk is one

whose first and last pixels coincide. Throughout this appendix, all walks considered are defined

along some part of a boundary, are closed, and are 8-connected. Therefore, when referring to a

walk, the terms boundary, closed, and 8-connected, will be considered implicit and omitted. To

recall, throughout most of this document, we are considering 8-adjacency region boundaries, i.e.

17

boundaries whose pixels are 8-connected and belong to the region being analyzed (see

definitions in Section 5.1). All walks are defined over this type of boundary.

The simple-connectivity measure based on boundary lengths is defined using the relation

between the length of a region’s external boundary and the length of its internal (hole-

surrounding) boundaries. The length of an external or internal boundary is defined simply as the

number of pixels in its boundary walk (such that the first and last pixel, which coincide, are only

counted once). This new segment-specific simple-connectivity index, denoted as SmplConnctvty,

is defined according to the following equation.

SmplConnctvty = (length of the (sole, unique) external boundary) /

(total length of the (one or more) boundaries), (4)

where

Total length of the (one or more) boundaries =

Length of the (sole, unique) external boundary +

Sum_{h set of the region holes} length of the (internal) boundary around hole h. (5)

Note that this simple-connectivity index is also in the [0, 1] range. The measure SmplConnctvty

will be equal to 1 if and only if the region has no holes, i.e., it is simply connected.

The walk along the external boundary, used to compute its length, is traced along only the part of

the boundary that the region forms with its “external (outer) world,” i.e., the external boundary

walk does not consider the part of the boundary that the region forms with its (inner) holes. In

practice, this walk is defined operationally as the closed walk traced along the external boundary

of a segment by the 8-adjacency version of the “inner boundary tracing” algorithm described by

Sonka et al. [6] (p. 129). Similar descriptions of the same algorithm are presented by Pavlidis [8]

(p. 143) and by Gonzalez and Woods [5] (p. 796-797). The latter authors note that the algorithm

is sometimes referred to as the Moore boundary tracking algorithm, after Moore [9]. It is

noteworthy the so-called external boundary walk, traced by the “inner boundary tracing”

algorithm described by Sonka et al. [6] (p. 129) is alternative to an external outer boundary walk,

which can be traced by the “outer boundary tracing” algorithm, also described by Sonka et al. [6]

(p. 131). The pixels from the former all belong to the region, while the pixels from the latter face

the region from the “outer” world, i.e., they do not belong to the region at hand. The algorithms

for tracing these boundaries are briefly reviewed in Appendix A.

Finally, we define the total length of the (one or more) boundaries as the length of the external

boundary plus the length of each of the region’s internal boundary walks that surround holes, if

any exists. Each eventual hole of the region faces a subset of the region’s boundary. A closed

walk surrounding the hole can be traced along this boundary subset, whose length is then

included in the total length estimate (refer to Figure 2). In Appendix C we present an alternative

original algorithm for computing the total length, which does not require the walks to be

explicitly traced.

We now illustrate two important properties of the SmplConncivty measure. In general, the

18

measure behaves similarly to SmplConnctvty4Adjacency, as it is also based on the boundaries of

the region at hand. However, the two properties below illustrate important differences between

the two indexes.

B.1 Test case: scale invariance
A problem with the SmplConncivty index is that it is not completely scale invariant (a) shows a

region containing a hole, with SmplConncivty = 8/12 ~ 0.67. We then scale the region to twice its

size, as shown in (b). The resulting region has SmplConncivty = 20/28 ~ 0.71. While the value of

SmplConncivty has changed, the corresponding values of SmplConnctvty4Adjacency and

FilledAreaRatio remain constant across the two regions. For this reason, we decide not to use

SmplConncivty in our final measure, instead preferring SmplConnctvty4Adjacency and

FilledAreaRatio.

SmplConnctvty, though not completely scale invariant, is approximately scale invariant. It is not

difficult to see that for images with higher resolution, the error introduced by SmplConnctvty due

to scale changes will be very small. In such situations, it might be advantageous to use

SmplConnctvty in the place of SmplConnctvty4Adjacency, as it is more precise in measuring the

lengths of diagonal boundaries, as illustrated in the test case below.

Figure 10: Example comparing regions with holes: (a) a region with a square hole whose sides are aligned with the

image grid; (b) a region with a square hole whose sides are diagonal relative to the image grid.

B.2 Test case: diagonal boundaries
The following example illustrates how SmplConnctvty and SmplConnctvty4Adjacency behave

differently with respect to boundaries that are diagonal relative to the image axes. Figure 10

presents two regions, each with a different hole. In Figure 10(a) the size of the hole is larger than

in Figure 10(b), at the same time the two holes are oriented differently relative to the image axes.

The 4-adjacency cross-aura measures of the external and total boundaries are the same for both

regions, so that for both we obtain SmplConnctvty4Adjacency = 36 / 64 ~ 0.56. However, the

difference in the lengths of the boundaries of the holes is captured by SmplConnctvty. For Figure

10(a) we obtain SmplConnctvty = 32 / 60 ~ 0.53, while for Figure 10(b) we have SmplConnctvty

= 32 / 48 ~ 0.67.

19

Appendix C. Original algorithm for computing the total length of the

(region) boundaries = length of the external boundary + length of the

internal boundaries.
The total length of the boundaries considers, besides the external boundary, the internal

boundaries that the region forms with its holes, refer to nomenclature in Section and see Figure

2. In order to compute the total length of the external plus internal boundaries, one could

explicitly trace all of the walks along the region boundaries: one external, and the others internal,

surrounding each of the region’s holes. The lengths of all of the resulting walks would then be

added in order to obtain the desired total length. An algorithm for tracing all of these walks is

presented by Pavlidis [8] (p.146). The algorithm involves maintaining a queue of walk pixels (or,

equivalently, the chain codes describing the on-going walks) as well as an auxiliary image (or

array) to indicate the number of times each pixel has been added to a walk. After tracing the

external walk, the algorithm uses pixels from the queue as starting points to scan the interior of

the region, and a careful set of verifications is performed in order to detect unvisited holes. Once

a new unvisited hole is found, it will have its internal hole-surrounding walk traced, which is

then added to the queue, so that the scanning process may continue. Here we will present an

alternative method to compute the total length of the boundaries, which does not require them to

be explicitly traced, nor any additional data structure to be allocated. For our particular purposes,

finding the walks themselves is not required, since we only need their lengths in order to

compute the simple-connectivity measure. Besides being used for computing the SmplConnctvty

index, this algorithm can be used in other applications in which the total length of the boundaries

is desired, e.g. when computing the compactness of a region with holes.

By a single scan of the image pixels, the total length of the boundaries of a target region can be

directly computed. This observation leads to our proposed algorithm. For each pixel, its

contribution towards the total length of the boundaries is counted by analyzing only the pixels in

its 8-adjacency neighborhood. Consider the 3 3 local window that contains a boundary pixel at

its center, surrounded by its 8-adjacency neighborhood. In addition, consider the set of walks that

would be traced by a boundary tracing method along the external boundary as well as along the

internal parts of the boundary, which surrounds holes. Ignoring the case in which the region

consists of a single isolated pixel, let us consider the sets of contiguous non-region pixels within

the aforementioned 3 3 window. Each set of contiguous non-region pixels will be delimited by

pixels belonging to the region, which also belong to a walk (see Figure 1(a)). If a non-region set

contains a 4-adjacency neighbor of the central pixel, then the walk will necessarily pass through

the central pixel, in which case we should increment the count for that pixel towards the total

length. If, instead, the non-region segment consists of a single pixel which is not a 4-adjacency

neighbor of the central pixel, then it should not be added towards the count, since the non-

region’s surrounding walk will not contain the central pixel (see Figure 1(b) and Figure 1(c)).

20

Figure 11: Examples of boundary pixels, along with their respective 3 by 3 neighborhood windows. In (a), the walk

that passes through the boundary pixel e is ceg, while the set of contiguous non-region pixels of interest, which is

delimited by the walk pixels, is bad. In (b), the central pixel is not a boundary pixel, since it has no non-region 4-

neighbors. In this case, pixels f and h will form part of the walk that surrounds i. In (c), the central pixel is a

boundary pixel due to its non-region neighboring pixels bad. However, as in (b), the walk that surrounds pixel i does

not pass through e.

C.1 Original pseudo-code
Observations proposed in the introduction to Appendix C lead to a simple algorithm for

determining the total length of the boundaries, which we present below in pseudo-code. Note

that, since each pixel’s neighborhood is analyzed independently, the algorithm can be easily

implemented in parallel.

1 function computeTotalLengthOfBoundaries(image i, target region r)

2 totalLength ← 0

3 for each pixel p in image i

4 if isRegionPixel(i, r, p) then

5 unaccounted4AdjcncyNeighbor ← FALSE

6 for each direction d from 0 to 7

7 currentNeighbor ← neighbor(i, p, d)

8 nextNeighbor ← neighbor(i, p, d + 1 (mod 8))

9 if NOT isRegionPixel(i r, currentNeighbor) then

10 if d {0, 2, 4, 6} then

11 unaccounted4AdjcncyNeighbor ← TRUE

12 end if

13 if isRegionPixel(i, r, nextNeighbor) AND unnacounted4AdjcncyNeighbor then

14 totalLength ← totalLength + 1

15 unaccounted4AdjcncyNeighbor ← FALSE

16 end if

17 end if

18 end for

19 end if

20 end for

21 return totalLength

In the pseudo-code above, the neighboring directions are encoded as integers from 0 through 7,

using the scheme shown in Figure 112. According to this scheme a 4-adjacency neighborhood of

21

the central pixel consists of direction numbers that are even, i.e., direction d {0,2,4,6}. The

function neighbor(image i, pixel p, direction d) returns the position of the neighbor of pixel p

in the direction d, while the function isRegionPixel(image i, region r, pixel p) returns TRUE if

pixel p belongs to region r, and FALSE otherwise.

Figure 112: Neighborhood encoding scheme used in the pseudo-code presented here. The integer code denoting a

neighbor grows in the counter-clockwise direction.

It is important to point out that, in order to simplify the explanation, the pseudo-code above does

not handle the case in which the region is a single isolated pixel. This could be handled either by

a pre-processing stage, or by modifying the above algorithm accordingly. A flag could be added,

indicating whether there was ever a region pixel found that did not present any transition from

non-region pixels to region pixels. This would mean that the region pixel has no neighbors that

belong to the region, so that the region necessarily consists of that single isolated pixel (to recall,

we assume all regions are 8-connected).

C.2 Correctness of the proposed algorithm
Here, we explain more carefully that the function computeTotalLengthOfBoundaries() above

does in fact compute the total length of the boundaries. At the end of the Section, we provide

results of the algorithm on a couple of example regions for illustration.

We would like to show that the value of variable totalLength provided as output at the end of

the function will be equal to the sum of the length of the external walk with the lengths of

internal (hole-surrounding) walks, if any. In order to do this, the main idea is to consider pairs of

consecutive pixels along the boundary walks. Each pixel in a walk, in combination with the pixel

that immediately succeeds it, defines a pair. For the purposes of this analysis, we will consider

that the last pixel in a walk (which is equal to the first) does not form a pair with its successor

(we will, however, consider the pair that it forms with its predecessor). If we were to consider the

pair the last pixel forms with its successor, that pair would have to be a repetition of the pair

already formed by the first and second pixels of the walk, and we do not wish to count that pair

twice. With this, the number of pairs from a given walk will be equal to the number of pixels in

the walk, minus one (to account for the last pixels), which is exactly its length. Additionally, it is

important to note that each pair appears in only a single walk, and only once in that walk.

Therefore, the total number of distinct pairs in the boundary walks is equal to the total lengths of

the walks, which is what we wish to compute. At the same time, function

computeTotalLengthOfBoundaries() also defines a set of pairs. For each pixel belonging to the

region being analyzed, the algorithm considers its 33 neighboring window. totalLength is

incremented each time a set of consecutive non-region pixels in the window contains a 4-

adjacency neighbor of the central pixel. This set of consecutive non-region pixels indirectly

determines a pair, formed respectively by:

22

1. the central pixel;

2. the neighbor of the central pixel that belongs to the region and immediately follows the

set of non-region pixels, when following the central pixel’s neighborhood in counter-

clockwise direction.

The second pixel in the pair above is exactly the pixel that is found to belong to the region when

the verification performed on line 13 of function computeTotalLengthOfBoundaries() is

successful.

We show that the set of pairs that forms the boundary walks is the same as the set of pairs found

by function computeTotalLengthOfBoundaries(). For this purpose, we show the following two

more simple properties. The first is that every pair in a walk will be found and counted by

function computeTotalLengthOfBoundaries(). The second is that each pair found by function

computeTotalLengthOfBoundaries() will also belong to a walk. These are explained below.

1. Every pair in a walk will be counted by function computeTotalLengthOfBoundaries().

Consider any region that is not a single isolated pixel. (The situation in which the region

is a single pixel is not handled by function computeTotalLengthOfBoundaries(),

though it is trivial.) Now, consider any pixel in any walk of the region, namely, either the

external walk or an internal hole-surrounding walk. The current and next pixels along the

walk form the pair of interest. It is important to note that this specific pair will be found

within only a single walk and will be present only once in that walk: since the pair

determines the state of the boundary tracing algorithm, if the same pair were to be traced

twice, the algorithm would be repeating itself, which, assuming the algorithm is correct,

does not happen. The next pixel along the walk is an 8-adjacency neighbor of the current

pixel, and therefore is also contained in the 33 window centered on that pixel. The

boundary tracing algorithm is such that if we follow the 8-adjacency neighborhood of the

current walk pixel in counter-clockwise direction, starting from the previous walk pixel,

we will reach the next walk pixel after meeting only non-region pixels in between. These

non-region pixels contain one or more pixels that are 4-adjacent to the central walk pixel.

(If the non-region pixel set consisted of a single non-region pixel that was not 4-adjacent

to the central pixel, then the central pixel would not have been included in the walk in the

first place, as indicated in Figure 1). Thus, this set of non-region pixels will be detected

by our proposed function computeTotalLengthOfBoundaries(), along with its

corresponding pair.

2. Every pair counted by function computeTotalLengthOfBoundaries() will also belong to

a walk. Each totalLength count increment has an associated pair, as defined previously

in this Section. To recall, the pair is defined by the current pixel being analyzed, along

with the pixel that immediately follows its associated contiguous set of non-region pixels,

when performing the analysis in the counter-clockwise direction. The non-region pixels

are either external to the region or belong to a hole, both cases for which a walk will be

traced. This set of non-region pixels also necessarily contains at least one pixel that is 4-

adjacent to the central pixel, due to the explicit check in line 10 of function

computeTotalLengthOfBoundaries(). Thus, the central pixel belongs to a boundary, so

that it will be part of a walk that surrounds the same set of non-region pixels that were

23

detected by the function (based on the assumption that the tracing algorithm is correct).

The boundary tracing algorithm searches for new pixels in the counter-clockwise

direction, so that the ordering of pixels in the walk will be the same as the ordering in the

pair defined by the scanning algorithm, and thus both pairs coincide.

Figure 13 and Figure 134 illustrate the result of function computeTotalLengthOfBoundaries()

on a couple of example regions. For each region, we indicate the walks of interest, as well as the

counts associated to each pixel, as computed by function computeTotalLengthOfBoundaries().

Figure 123: First illustrative example of the computeTotalLengthOfBoundaries() algorithm. The original region is

shown in (a), indicated by the set of gray pixels. Note that the region contains two holes. The counts associated to

each pixel by function computeTotalLengthOfBoundaries() are shown in (b). By adding these counts together we

arrive at a value of 16 for totalLength. The pixels of the region are labeled in (c). According to this labeling, we

have the following closed walks along the region’s boundaries. The external boundary walk is abcdefgda, whose

length is 8. The internal hole-surrounding walk around the left hole is dcbad, while the walk around the right hole is

fedgf. Both these walks have length 4, resulting in a total length of boundary walks equal to 16. The boundary

tracing algorithm is such that the external walk is oriented in counter-clockwise fashion, while the internal walks are

oriented clockwise. Note that, in this manner, no pairs along the walks are ever repeated, even though individual

pixels may appear more than once, either in the same or in different walks.

Figure 134: Second illustrative example of the computeTotalLengthOfBoundaries() algorithm. The original region

is shown in (a), indicated by the set of gray pixels. The counts associated to each pixel by function

computeTotalLengthOfBoundaries() are shown in (b). By adding these counts together we arrive at a value of 24

for totalLength. The pixels of the region are labeled in (c). According to this labeling, we have the following closed

walks along the region’s boundaries. The external boundary walk is abcdefghijklma, whose length is 13. In turn,

the single internal hole-surrounding walk is ihgfezdbmlki, whose length is 11, resulting in a total length of

boundary walks equal to 24. The boundary tracing algorithm is such that the external walk is oriented in counter-

clockwise fashion, while the internal walk is oriented clockwise. Note that, in this manner, no pairs along the walks

are ever repeated, even though individual pixels may appear more than once, either in the same or in different walks.

24

References

[1] B. M. Mehtre, M. S. Kankanhalli and W. F. Lee, "Shape measures for content based image

retrieval: a comparison," Information Processing & Management, vol. 33, no. 3, pp. 319-337,

1997.

[2] M. Bertamini, "Who owns the contour of a visual hole?," Perception, vol. 35, pp. 883-894,

2006.

[3] E. A. Wentz, "S Shape Definition for Geographic Applications Based on Edge, Elongation,

and Perforation," Geographical Analysis, vol. 32, no. 2, pp. 95-112, April 2000.

[4] A. Soffer and H. Samet, "Negative shape features for image databases consisting of

geographic symbols," in Proc. 3rd International Workshop on Visual Form, 1997.

[5] R. C. Gonzalez and R. E. Woods, Digital Image Processomg, 3rd ed., Upper Saddle River,

NJ: Pearson Prentice Hall, 2008.

[6] M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision,

Chapman and Hall Computing, 1993.

[7] Open Source Computer Vision Library (OpenCV). http://opencv.org/. Retrieved on March,

2013.

[8] T. Pavlidis, Algorithms for Graphics and Image Processing, Rockville, MD: Computer

Science Press, 1982.

[9] G. A. Moore, "Automatic Scanning and Computer Processes for the Quantitative Analysis of

Micrographs and Equivalent Subjects," in Pictorial Pattern Recognition, Washington, D.C.,

1968.

http://opencv.org/

