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and maximal τ -invariant.
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Chapter 1: Introduction

Assume that GC is a simply connected, semisimple, simply laced complex Lie

group, and G is a real form of GC with nontrivial fundamental group. Then G has

a nontrivial two-fold cover G̃, which is not a matrix group (see [6], Proposition 3.6).

For example, this holds when G is a split group, or G = SU(p, q), Spin(p, q), and

most real forms of the exceptional groups. In fact, most real forms of GC have a

nontrivial two-fold cover (see [2]). The purpose of this paper is to discuss some small

genuine representations of G̃ and their properties. By a genuine representation we

mean that a representation of G̃ which does not factor through G.

In Chapter 2, we first introduce some basic invariants, such as infinitesimal

character, τ -invariant, and associated variety, which are used to classify representa-

tions. These notions are quite general, and are defined on more general real reductive

groups G, which can be linear or nonlinear, and are not necessarily simply laced.

For each type, we fix an infinitesimal character λ. If G is simply laced or of type G2

and F4, λ is chosen to be ρ/2, where ρ is half of the sum of the positive roots. For

type Bn and Cn, λ is defined as in [3], and is listed in Table 2.1. Then we define a

class of representations of G̃ denoted

∏s
λ(G̃) = {π̃ | π̃ ∈ ̂̃Gadm,λ, π̃ is genuine and has maximal τ -invariant},

1



where
̂̃
Gadm,λ is the set of irreducible admissible representations of G̃ with infinites-

imal character λ. Here the superscript s stands for small in the sense that the

representations in this set have maximal τ -invariant. There is a unique complex

nilpotent orbit O which is the complex associated variety of every π̃ from
∏s

λ(G̃).

We calculate this orbit O explicitly for all types and list them in Table 2.1.

Denote

∏O
ρ/2(G̃) = {π̃ | π̃ ∈ ̂̃Gadm,λ, π̃ is genuine and the associated variety of π̃ is O}.

Then we have

Theorem 1.0.1.
∏s

ρ/2(G̃) =
∏O

ρ/2(G̃).

The proof of the theorem is based on truncated induction of representations

of Weyl groups and the Springer correspondence.

This set of representations
∏s

ρ/2(G̃) =
∏O

ρ/2(G̃) plays a significant role through-

out this paper. First of all, we can attach to each π̃ ∈
∏s

ρ/2(G̃) a pair (χπ̃,Oπ̃),

where χπ̃ is the central character of π̃ and Oπ̃ is the real associated variety of π̃.

Here, Oπ̃ is one of the real forms of O, and in Chapter 3, we will see that there are

not many real groups which have nonempty intersection with O and the number of

real forms of O is tiny as well. The notions of real associated variety and genuine

central character will be discussed in more detail in Chapters 3 and 4.

In Chapter 5, we restrict our attention to simply laced split groups. For split

groups, there is a well-understood family of representations, called the Shimura

representations (see [3]). Starting with these, we construct other genuine repre-

sentations in
∏s

ρ/2(G̃). There are standard ways to get new representations from
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old ones: the theory of cross actions and Cayley transforms. In our setting these

are non-standard, because they involve half-integral roots. It is possible to start

with a Shimura representation, and apply some cross actions and Cayley trans-

forms to it, to obtain other representations in
∏s

ρ/2(G̃). The conditions which need

to be satisfied are very rigid, and we get a small number of representations in∏s
ρ/2(G̃). Let

∏
RD

(G̃) denote the set of representations obtained this way. The

map π̃ ∈
∏

RD
(G̃)→ (χπ̃,Oπ̃) leads to a bijection with the pairs

{(χ,OR) |χ is a genuine central character of G̃,OR is a real form of O}.

In the last part of Chapter 5, furthermore, by counting the elements in
∏s

ρ/2(G̃) using

a Weyl group calculation, we show that every representation in
∏s

ρ/2(G̃) is produced

this way for type An−1 and Dn and hence we have a bijection
∏s

ρ/2(G̃)↔ {(χ,OR)}

for type An−1 and Dn. We conjecture this is true for type E.

In Chapter 7, the key tool, the lift operator, comes in. A basic tool in rep-

resentation theory of linear groups is endoscopic transfer, or lifting. This idea was

extended to nonlinear two-fold covers of real groups later on by many people. In [4],

a lifting operator, denoted by LiftG̃G, is defined on the level of global characters of

representations. It takes stable representations of G to 0 or virtual genuine represen-

tations of G̃. (By a stable representation we mean its global character is invariant

under conjugation of GC.) Hence for every stable representation π of G, let Lift(π)

denote the finite set of all irreducible genuine representations of G̃ occurring in

LiftG̃G(π). There is a complete discussion of Lift(π) for one-dimensional representa-

tion π of GL(n,R), which can be found in [5]. For example, when G = GL(n,R),
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Lift(C) = Tn, where C is the trivial representation, and Tn is the genuine unipotent

representation coming from minimal parabolic subgroup and containing the pin rep-

resentation as its lowest K-type. What we attempt to do is a similar analysis for

other simply laced groups. Because of the setting in the beginning, the only one-

dimensional representation of G is C, the trivial representation. What we expect

is that Lift(C) should give an interesting class of unitary representations, and the

goal is to study these representations and their characters. The following theorem

describes the properties that a representation occurring in Lift(C) should possess.

More precisely, the irreducible representations in Lift(C) are the small representa-

tions that we discuss in the previous chapters.

Theorem 1.0.2. The setting is as above and assume G is simply laced. Then

Lift(C) ⊆
∏s

ρ/2(G̃) =
∏O

ρ/2(G̃).

Then a natural question arises – Is Lift(C) =
∏s

ρ/2(G̃)? This conjecture is

true in some cases, for example, when G is split.

Theorem 1.0.3. The setting is as above and assume G is simply laced and split.

Then Lift(C) =
∏s

ρ/2(G̃)↔ {(χ,OR)}

The proof is based on case-by-case calculation. At the end, we obtain a small

number of representations in Lift(C) and they are very concrete, in terms of their

lowest K-types, Langlands parameters, associated varieties, and so on.
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Chapter 2: Some Small Representations

In this chapter, we will introduce a category of representations which plays an

important role when we are talking about the lifting of one-dimensional representa-

tions. Before doing that, some notions are needed.

2.1 Invariants of a representation

Let’s get started with the setting. Let G be a connected real Lie group, and

suppose that the complexified Lie algebra of G, denoted g, is reductive. Here G

is allowed to be nonlinear, which means it cannot be embedded into any GL(n,C)

(see [4], [6] for example). We fix a Cartan involution θ of G and let K = Gθ be the

corresponding maximal compact subgroup. Let h be a Cartan subalgebra of g, and

U(g) be the enveloping algebra of g. Let 4 = 4(g, h) be the root system and W

be the Weyl group of g.

Let HC(g, K) be the set of Harish-Chandra modules and let Ĝadm denote the

set of equivalence classes of irreducible admissible representations of G. Then Ĝadm

can be viewed as a subset of HC(g, K) by sending an irreducible admissible repre-

sentation π ∈ Ĝadm to its space Vπ of K-finite vectors and then the latter can be

regarded as an irreducible (g, K)-module. What we are going to do is to attach
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certain invariants to the representations in Ĝadm.

The most basic invariant is the infinitesimal character of a representation.

The center Z(g) of U(g) can be identified with the W -invariant polynomials on h

via the Harish-Chandra homomorphism ζ : Z(g) → U(h)W . In this way, we have

a map infchar : Ĝadm → h∗/W , and the infinitesimal character of π ∈ Ĝadm is

identified with a weight λ ∈ h∗. For λ ∈ h∗/W, we denote by

Ĝadm,λ = {π ∈ Ĝadm|infchar(π) = λ}

and refer to the representations in Ĝadm,λ as the irreducible admissible represen-

tations with infinitesimal character λ. Similarly, let HC(g, K)λ denote the set of

Harish-Chandra modules with infinitesimal character λ.

2.1.1 Primitive Ideals

Many invariants to be considered are actually invariants attached to the prim-

itive ideals in U(g), though there are some invariants attached directly to an irre-

ducible Harish-Chandra module. Thus let’s first define

Definition 2.1.1. Let V be an irreducible U(g)-module. The annihilator of V in

U(g) is

Ann(V ) := {X ∈ U(g)|Xv = 0, ∀v ∈ V },

which is a two-sided ideal in U((g). It is called be the primitive ideal in U(g)

attached to V .
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If two U(g)-modules have the same primitive ideals, then their infinitesimal

characters are the same, and hence it makes sense to talk about the primitive ideals

with infinitesimal character λ. We set Prim(g)λ to be the set of primitive ideals in

U(g) with infinitesimal character λ. For any π ∈ Ĝadm, let Vπ be the corresponding

Hairish-Chandra module and let Iπ :=Ann(Vπ), and hence we have a map Ĝadm →

Prim(g)λ sending π to Iπ. This map is several-to-one in general.

2.1.2 Associated Variety and Gelfand-Kirillov Dimension

Given a finitely generated g-module V . Let Un(g) ⊆ U(g) be the subspace of

U(g) generated by the monomial of the form X1 · · ·Xm with m 6 n and Xi ∈ g.

There is a good filtration (see Section 4 in [8]) of V compatible with the graded

action of U(g), i.e. 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V and Un(g)Vi ⊆ Vi+n for all

i, n. Then gr(V ) =
⊕
n>0

Vn/Vn−1 is a finitely generated module for the associated

graded algebra of U(g), namely the symmetric algebra S(g) by Poincaré-Birkhoff-

Witt theorem. So one can define the associated variety of V , denoted AV(V ), to be

the support of the S(g)-module gr(V ) in g∗.

Moreover, let ϕV (n) =
∑
q6n

dimC Vq, which is finite since V is finitely generated.

By a theorem of Hilbert and Serre, there is a polynomial ϕV (n), of degree at most

dim g, such that ϕV (n) = ϕV (n). (The proof can be found in [23]). Therefore, the

integer deg(ϕV (n)) is defined to be the Gelfand-Kirillov dimension of V , denoted

by GKdim(V ).

An important lemma is stated below.
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Lemma 2.1.2. AV(V ⊗ F ) =AV(V ) and GKdim(V ⊗ F ) =GKdim(V ) for any

finite-dimensional g-module F .

Proof. Choose a good filtration {Vi} on V , then we obtain a good filtration {Vi⊗F}

on V ⊗ F . With these filtrations, gr(V ⊗ F ) as a S(g) is a sum of copies of gr(V ).

Hence the lemma follows.

Now suppose π ∈ Ĝadm and Iπ is the primitive ideal attached to π, which can

be regarded as a left U(g)-module, and hence we define AV(Iπ) and GKdim(Iπ),

GKdim(π) in usual sense, whereas AV(π) will be defined upon a K-invariant fil-

tration, and we won’t talk about this until Chapter 3. By Kostant’s theory of

harmonics, AV(Iπ) consists of nilpotent elements in g∗, and hence is a union of

finite number of closures of nilpotent coadjoint orbits. In fact, it’s a single orbit.

Let’s record some remarkable facts as follows.

Theorem 2.1.3. (1) (Borho, Brylinski, see [8]) There exists a unique (complex)

nilpotent coadjoint orbit O such that AV(Iπ) = O.

(2) (See [9]) 2GKdim(π) =GKdim(Iπ) = dimCO, where O = AV(Iπ) is obtained

from (1).

2.1.3 τ -invariant

Given I ∈Prim(g)λ. Put 4(λ) = {α ∈ 4| < λ, α∨ >∈ Z}, the integral root

system for λ, and let Wλ denote the Weyl group for 4(λ). Choose 4+(λ) ⊆ 4(λ)

a positive system making λ dominant. Write
∏

(λ) ⊆ 4+(λ) for the set of simple

roots. There is the Borho-Jantzen-Duflo τ -invariant attached to I, which is a subset
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of
∏

(λ) (see [22], [24]), denoted τ(I).

Since GC is simply connected, we have an alternative definition for τ -invariant.

Let π ∈ HC(g, K)λ and Fγ be the finite-dimensional representation of G with high-

est weight γ. Also let 4(Fγ) denote the set of all weights of Fγ. Consider the

Zuckerman translation functor ψλ+γ
λ (π) = Pλ+γ(π ⊗ Fγ),where Pλ+γ by definition is

the projection on the representations with infinitesimal character λ+ γ, and hence

ψλ+γ
λ (π) is a functor that projects π⊗Fγ on representations with infinitesimal char-

acter λ + γ. Let α ∈
∏

(λ), and λα be singular with respect to α and λ − λα is a

sum of roots. Define ψα(π) := ψλαλ (π) be the translation functor of π to the α-wall.

Then we define

τ(π) = {α ∈
∏

(λ)|ψα(π) = 0}.

It turns out that τ -invariant is a measure of size of π: the bigger the τ -invariant,

the smaller the representation.

Definition 2.1.4. We say that π has maximal τ -invariant if τ(π) =
∏

(λ), or

equivalently, ψα(π) = 0 for all α ∈
∏

(λ).

Lemma 2.1.5. Let F be a finite dimensional representation. Then ψα(F ) = 0 for

every root α and hence F has maximal τ -invariant.

Proof. Note that the infinitesimal character of every finite dimensional representa-

tion is regular.

Assume the setting in the Lemma. We have ψα(F ) = Pλ′(F ⊗ F ′) = 0,

where λ′ is singular for α and F ′ is a finite dimensional representation, since F ⊗

9



F ′ is a virtual finite dimensional representation and each constituent has regular

infinitesimal character.

Definition 2.1.6. We call a representation small if it has maximal τ -invariant.

The Gelfand-Kirillov dimension of an irreducible representation is a measure

of the growth of K-types. Here is the proposition connecting these two measures.

Proposition 2.1.7. ( [22]) Let π ∈ Ĝadm,λ. If Iπ has max τ -invariant, then

GKdim(π) = |4+| − |4+(λ)|

2.1.4 Weyl Group Representations

There are some details of Weyl group representations that can be found in

various places, for instance, [11], [17], and [20]. We recall some of the useful facts

as follws.

In [15], Joseph has attached to I ∈Prim(g)λ a representation σI ∈ Ŵλ. In fact,

the map from I ∈ Prim(g)λ to σI is surjective onto the set of special representations

of Wλ (see [11] for definition of a special Weyl group representation).

On the other hand, Springer provides a method for producing a representation

of W from a nilpotent orbit O, which is the well-known Springer correspondence.

We write sp(O) for the irreducible representation of W attached to O. There is an

algorithm to calculate the sp(O) if given O by use of symbols (see [17]). Note that

the map O → sp(O) is injective, but not surjective usually.

Let W ′ be any subgroup of W generated by reflections. There is an operation

called truncated induction jWW ′ , taking irreducible representations of W ′ to those of

10



W .

Fact. jWW ′ : Ŵ ′ → Ŵ is injective.

The following proposition summarizes and connects all concepts stated above.

Proposition 2.1.8. Let π ∈ Ĝadm,λ, I = Iπ, Wλ be the integral Weyl group for λ.

Then there is a unique nilpotent orbit O such that σ =sp(O). Furthermore, this O

is dense in AV(I), that is, AV(I) = O. Thus, we have a commutative diagram:

O sp(O)

I σI

AV

sp

σ

j

(The left vertical arrow in the diagram means AV (I) = O.)

2.2 Certain Properties to Characterize Small Representations of G̃

In this section we assume that G is a real form of a simply connected, semisim-

ple complex Lie group, and G̃ is the nonlinear two-fold cover of G. First, we identify

the kernel of the covering map p : G̃→ G with ±1 and write H̃ for the inverse image

in G̃ of a subgroup H of G. We define

Definition 2.2.1. A representation π̃ of H̃ is called genuine if π̃(−1) = −I. If π̃ is

irreducible, then π̃ is genuine if and only if π̃ does not factor through H.

We focus on the genuine representations with a particular infinitesimal char-

acter λ. If G is simply laced or of type G2 and F4, λ is chosen to be ρ/2, where ρ
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is half sum of the positive roots. For type Bn and Cn, λ is defined as in [3], and is

listed in Table 2.1. We are interested in a special category of representations with

certain properties, defined as follows.

Denote

∏s
λ(G̃) = {π̃ | π̃ ∈ ̂̃Gadm,λ, π̃ is genuine and has maximal τ -invariant}

The following is the key Lemma.

Lemma 2.2.2. There is a unique complex nilpotent orbit O such that AV(Iπ̃) =

O for every π̃ ∈
∏s

λ(G̃). This O can be computed explicitly (case by case) and

dim(O) = 2GKdim(π̃) = 2(| 4+ | − | 4+ (λ)|), where 4 and 4(λ) are the root

system and integral root system, respectively.

Proof. Let π ∈
∏s

λ(G̃). Since π̃ has maximal τ -invariant, σIπ̃ = sgnWλ
, the sign

representation of the integral Weyl group for λ. Then the truncated induction

takes sgnWρ/2
to a special representation of W , denoted j(sgn) = jWWλ

(sgn), since

sgnWλ
is a special representation of Wρ/2. Hence j(sgn) defines a nilpotent orbit

O of g through the Springer Correspondence, i.e. sp(O) = j(sgn), and this O is

dense in the associated variety of Iπ̃, which means AV(Iπ̃) = O. The uniqueness

of this O follows from either Theorem 2.1.3 (1) or the injectivity of the Springer

correspondence.

From [22], for a representation at infinitesimal character λ with maximal τ -

invariant, GKdim(π̃) = | 4+ | − | 4+ (λ)|, and hence dimO = 2(| 4+ | − | 4+ (λ)|)

by Theorem 2.1.3 (2). For exceptional groups, there is a unique complex nilpotent

orbit of this dimension (see [12]), so it is exactly the one that we are looking for.
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For classical types, there is an algorithm to calculate j(sgn) and the cor-

responding O explicitly via the Springer correspondence. The parametrization

sets of nilpotent orbits are partitions of n for type An−1, and are partitions of

2n(2n + 1, resp.) which even part occur with even (odd, resp.) multiplicity for

type Bn and Dn (Cn, resp.) (see [11] and [12]). All of the nilpotent orbits and the

corresponding Weyl group representations are listed in Table 2.1.

Because of this lemma, let O denote the complex nilpotent orbit such that

AV(Iπ̃) = O for π̃ ∈
∏O

λ (G̃), and define

∏O
ρ/2(G̃) = {π̃ | π̃ ∈ ̂̃Gadm,λ, π̃ is genuine and AV(Iπ̃) = O}

Then here is the main theorem of this chapter.

Theorem 2.2.3.
∏s

λ(G̃) =
∏O

λ (G̃)

Proof. It is clear that
∏s

λ(G̃) ⊆
∏O

λ (G̃) due to Lemma 2.2.2. Conversely, given a

representation π̃ ∈
∏O

λ (G̃), we need to show that π̃ has maximal τ -invariant, that is,

to show that σIπ̃ = sgnWλ
. This simply follows from the injectivity of the truncated

induction.
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Table 2.1: O and its corresponding Weyl group representation (using parameterizations

in [11] and [12])

T
y
p
e

n
|4

+
|

λ
4
(λ
)

|4
+
(λ
)|

d
im
O

O
j(
sg
n
W
λ
)

A
n
−
1

2m
n
(n
−
1
)

2
1 4
(n
,n
−

3,
··
·,
−
n
+
3
,−
n
+
1
)

A
m
−
1
×
A
m
−
1

n 2
(
n 2
−

1
)

n
2 2

[2
m
]

[2
m
]

2m
+
1

n
(n
−
1
)

2
1 4
(n
,n
−

3,
··
·,
−
n
+
3
,−
n
+
1
)

A
m
−
1
×
A
m
−
1

(
n
−
1

2
)2

n
2
−
1

2
[2
m
1
]

[2
m
1
]

B
n

2m
n
2

1 2
(n
,n
−

1,
··
·,

1
)

B
m
×
B
m

n
2 2

n
2

[2
n
1
]

(φ
;[
2m

])

2m
+
1

n
2

1 2
(n
,n
−

1,
··
·,

1
)

B
m

+
1
×
B
m

n
2
+
1

2
n
2
−
1

[2
n
−
1
13
]

(φ
;[
2m

1
])

C
n

n
2

1 2
(2
n
−
1,
2
n
−

3,
··
·,

1
)

D
n

n
2
−
n

2
n

[2
12
n
−
2
]

([
1n

];
φ
)

D
n

2m
n
2
−
n

1 2
(n
−
1
,·
··
,1
,0
)

D
m
×
D
m

1 2
n
(n
−

2
)

n
2

[3
2n
−
2
1
]

{φ
;[
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Chapter 3: Real Associated Variety

In the previous chapter, given π ∈ Ĝadm, we defined its complex associated

variety AV(Iπ). Now we want to attach nilpotent orbits directly to π. Notice that

these notions are quite general and they can be defined linear and nonlinear groups.

Suppose (π, V ) is the given finitely-generated (g, K)-module. As in Section

2.1.2, suppose 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V is a good filtration, and furthermore

suppose this is a KC-invariant filtration since V is also a KC-module. Hence we

have that AV(π) =AV(V ) is a closed subvariety of (g/k)∗. Since V is also a KC-

module, AV(π) is actually a KC-invariant subset of (g/k)∗. Similarly, AV(π) consists

of nilpotent elements, say, AV(π) ⊆ N (g/k)∗ := N (g∗)∩(g/k)∗, whereN (g∗) denotes

the nilpotent cone of g∗. By a theorem of Kostant-Rallis, there are finitely many K

orbits on N (g/k)∗, and hence we may write

AV(π) = OKC
1 ∪ · · · ∪ O

KC
j ,

for orbits OKC
i of KC on N (g/k)∗.

The next result of Vogan relates the complex associated variety and real asso-

ciated variety.

Theorem 3.0.4. (see [21], for example) Suppose π ∈ Ĝadm. Write

AV(π) = OKC
1 ∪ · · · ∪ O

KC
j , and AV(Iπ) = O.
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Then each OKC
i is a Lagrangian submanifold of the canonical symplectic structure

of O. In particular, for each i, we have

G · OKC
i = O and GKdim(π) = dim(OKC

i )

Next we introduce the Sekiguchi correspondence (see [12], chapter 9, for ex-

ample).

Theorem 3.0.5. (Sekiguchi) There is a natural one-to-one correspondence between

nilpotent G-orbits in gR and nilpotent KC-orbits in (g/k).

Thus, by the Sekiguchi correspondence, AV(π) can be viewed as O1 ∪ · · ·Oj,

where each Oi is a G-orbit in gR corresponding to OKC
i via the Sekiguchi correspon-

dence. Moreover, if AV(Iπ) = O, then we have GC · Oi = O, and hence we say that

each Oi is a real form of O. Equivalently, we say {Oi}li=1 is the set of real forms of

O if O ∩ gR = O1 ∪ · · · ∪ Ol.

Resuming the setting of G and G̃ in Section 2.2, recall that we defined a set of

representations
∏s

λ(G̃), and the complex associated variety of each representation

in this set is the closure of a particular O (see Table 2.1). In Tables 3.1, 3.3, 3.5, 3.7,

we list all real groups G such that O∩gR is nonempty, as well as the real forms of O

with respect to each G. For classical groups, we parametrize the real nilpotent orbits

by Young diagrams or signed Young diagrams, with or without a Roman numeral

(see [12]). For exceptional groups, we also refer to [12] for the parameterization of

real nilpotent ortbits. The number of real orbits is also listed in the tables, denoted

#Oi.
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Remark 3.0.6. It can be observed from the tables that there are not many real

groups which have nonempty intersection with O. More precisely, if G is not listed

in Table 3.1 to 3.7, then O ∩ gR = φ.

We have the following proposition saying that we can attach to each small

representation defined in Section 2.2 a single real nilpotent orbit.

Proposition 3.0.7. We resume the setting and notations in Section 2.2. Suppose

GC is a simply connected, semisimple complex Lie group, G is a real form of GC

and G̃ is the nontrivial two-fold cover of G. For each π̃ ∈
∏s

λ(G̃) =
∏O

λ (G̃), there

is a unique real nilpotent orbit Oπ̃ such that AV(π̃) = Oπ̃. This Oπ̃ is one of the

real forms of O.

Proof. By a result of Vogan (see [25]), if Ol is a real orbit of maximal dimension

in AV(π̃), and the complement of Ol has codimension at least two in Oi. Then

AV(π̃) = Ol. Since dimROi = dimCO for each real form Oi of O, we just need to

pick a complex nilpotent orbit O′, which is one step down smaller than O, and see

if the difference of dimO and dimO′ is at least 2. This case by case check is shown

in the following table (see [12] for the parameterization of nilpotent orbits).
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Type n O dimO O′ dimO′ codimOO′

An−1 2m [2m] n2

2
[2m−1 12] 2m2 − 2 2

An−1 2m+ 1 [2n 1] n2−1
2

[2m−1 13] 2m2 + 2m− 4 4

Bn 2m [2m 1] n2 [2n−1 15] n2 − 4 4

Bn 2m+ 1 [2n−1 13] n2 − 1 [2n−3 17] n2 − 9 8

Cn [2 12n−2] 2n [12n] 0 2n

Dn (n > 4) 2m [3 2n−2 1] n2 [3 2n−4 15] n2 − 4 4

D4 2m+ 1 [3 2n−3 13] n2 − 1 [3 2n−5 17] n2 − 9 8

E6 3A1 40 2A1 32 8

E7 4A1 70 A2 66 4

E8 4A1 128 A2 114 14

F4 A1 16 0 0 16

G2 Ã1 8 A1 6 2
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Table 3.1: Type An−1, g = sln

Type g n O inner class G = GR O ∩ gR #Oi

An−1 sln

2m [2m] unequal SL(n,R) (split)

(I,II)

2

2m+ 1 [2m 1] unequal SL(n,R) (split) 1

2m [2m] equal SU(m,m)

(quasisplit)

+ −
+ −
+ −
+ −

1

2m+ 1 [2m 1] equal SU(m + 1,m)

(quasisplit)

+ −
+ −
+ −
±

2
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Table 3.3: Type Bn and Type Cn

Type g n O inner class G = GR O ∩ gR #Oi

Bn so2n+1

2m [2n 1] equal Spin(n+ 1, n)

(split)

+ −
+ −
+ −
+ −
+

(I, II)

2

2m+ 1 [2n−1 13] equal Spin(n+ 1, n)

(split)

+ −
+ −
+
+
−

1

2m+ 1 [2n−1 13] equal Spin(n+2, n−1)
+ −
+ −
+
+
+

1

Cn sp2n [2 12n−2]
equal Sp(2n,R) (split)

± ∓
+
+
+
+

2

equal Sp(2p, 2q)
+ −
+
+
−
−

1
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Table 3.5: Type Dn

Type g n O inner class G = GR O ∩ gR #Oi

Dn so2n

2m [3 2n−1 1] equal Spin(n, n)

(split)

± ∓ ±
+ −
+ −
+ −
+ −
∓

(I, II)

4

2m+ 1 [3 2n−3 13] unequal Spin(n, n)

(split)

± ∓ ±
+ −
+ −
±
∓
∓

2

2m [3 2n−1 1] unequal Spin(n+1, n−1)

(quasisplit)

+ − +
+ −
+ −
+

1

2m+ 1 [3 2n−3 13] equal Spin(n+1, n−1)

(quasisplit)

+ − +
+ −
+ −
+
+
−

1

2m+ 1 [3 2n−3 13] unequal Spin(n+2, n−2)
+ − +
+ −
+ −
+
+
+

1
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Table 3.7: Type E6, E7, E8, F4, G2

Type O inner class G = GR O ∩ gR #Oi

E6 3A1

equal E6(A1×A5)

(quasisplit)

#4,#5 2

unequal E6(C4) (split) #3 1

E7 4A1 equal E7(A7) (split) #8,#9 2

E8 4A1 equal E8(D8)(split) #6 1

F4 A1 equal F4(B4) (split) #2 1

G2 Ã1 equal G2(A1×A1)(split) #2 1
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Chapter 4: Genuine Central Character

4.1 Regular Character

The following material can be found in several places, for example, [6], [19],

and [26]. Again, G is a real form of a simply connected, semisimple complex Lie

group and G̃ is the nonlinear two-fold cover ofG. Let π ∈ Ĝadm,λ, where λ is a regular

infinitesimal character. Then π can be specified by a parameter, which is called a

λ-regular character, γ = (H,Γ, γ), where H is a θ-stable Cartan subgroup of G, Γ

is a character of H, and γ is an element in h∗ which defines the same infinitesimal

character as λ, and there are certain compatibility conditions between γ and Γ. More

precisely, π = J(γ), the unique irreducible quotient of a standard representation

I(γ), which is parametrized by γ from a K-conjugacy class of regular characters

for λ. Here the standard module I(γ) is defined as follows. Write H = TA, where

T = Hθ and A is the identity component of {h ∈ H|θ(h) = h−1}. Let M =CentG(A)

and choose a parabolic subgroup P = MN , then we define I(γ) = IndGP (σM), where

σM is some relative discrete series of M (see [7] or [1] for details.).

Recall that (see [1], for instance) when λ is a regular infinitesimal character,

HC(g, K)λ is parametrized by the set Pλ of K-conjugacy classes of λ-regular char-

acters. Furthermore, the following two sets are bases of the Grothendieck group:
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{[J(γ)]}γ∈Pλ and {[I(γ)]}γ∈Pλ .

We have the following definition.

Definition 4.1.1. Define the change of basis matrix

[J(δ)] =
∑
γ∈Pλ

M(γ, δ)[I(γ)]

and the inverse matrix

[I(δ)] =
∑
γ∈Pλ

m(γ, δ)[J(γ)]

M(γ, δ) and m(γ, δ) are integers and M(γ, δ) are computed by the Kazhdan-

Lusztig-Vogan algorithm when G is linear.

In particular, consider C, the trivial representation, and write its standard

module as I(γ0) with parameter γ0. Then the coefficients M(γ, γ0) are ±1.

Lemma 4.1.2. ( [26]) There is an identity in the Grothendieck group

C =
∑
γ

(−1)l(γ0)−l(γ)I(γ),

where γ = (H,Γ, γ) runs over holomorphic characters Γ on H (see [1] for definition),

and l(γ) is the length function in [26].

The above notions can also be defined for nonlinear groups. More specifically,

let λ be the regular infinitesimal character defined in Chapter 2. In this case, suppose

that π̃ is an irreducible genuine representation from
̂̃
Gadm,λ. Then π̃ is parametrized

by a genuine λ- regular character γ = (H̃,Γ, γ), where Γ is an irreducible genuine

representation of H̃ = p−1(H). Note that in this case Γ can be replaced by a

character of Z(H̃), a central character of H̃, because of the following proposition

(see [3]).
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Proposition 4.1.3. Write
∏

g(Z(H̃)) and
∏

g(H̃) for equivalence classes of irre-

ducible genuine representations of Z(H̃) and H̃, respectively, and let n = |H̃/Z(H̃)| 12 .

For every χ ∈
∏

g(Z(H̃)) there is a unique representation Γ = Γ(χ) ∈
∏

g(H̃) for

which Γ|Z(H̃) is a multiple of χ. The map χ→ Γ(χ) is a bijection between
∏

g(Z(H̃))

and
∏

g(H̃). The dimension of Γ(χ) is n, and IndH̃
Z(H̃)

(χ) = nΓ.

When G is simply laced, a genuine representation of H̃ is determined by the

infinitesimal character and its restriction to Z(G̃). We record the properties as

follows (see [6]).

Proposition 4.1.4. All the setting is as before, and also suppose G is simply laced,

H is a Cartan subgroup of G, and H0 is the identity component of H. Then

(1) Z(H̃) = Z(G̃)H̃0. In particular, a genuine character of Z(H̃) is determined by

its restriction to Z(G̃) and its differential;

(2) A genuine regular character γ = (H̃,Γ, γ) of G̃ is determined by γ and the

restriction of Γ to Z(G̃), and so is π̃ = J(γ).

The second part of this proposition is basically a corollary of the first part.

Consequently G̃ typically has few genuine irreducible representations, denoted
∏

g(G̃).

4.2 Action of Aut(G) on
∏

g(G̃)

In this section we want to see how an automorphism of G acts on
∏

g(G̃). Let

Aut(G) denote the automorphisim group of G, and

Int(G) = {τ ∈ Aut(G) | τ = τx for some x ∈ G}, where τx(g) = xgx−1 for g ∈ G,

Out(G) = Aut(G)/Int(G).
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Lemma 4.2.1. There is a natural map from Out(G) to Aut(Z(G̃)), which sends each

τ ∈Aut(G) to τ̃ ∈ Aut(Z(G̃)). When G is simply laced, This map is an embedding.

Proof. The map τ ∈Aut(G)→ τ̃ ∈Aut(Z(G̃)) is defined as follows. Every τ ∈Aut(G)

can be lifted to an automorphism τ̃ of G̃. Then by restricting τ̃ to Z(G̃), we get an

automorphism of Z(G̃), which is also denoted by τ̃ . This map is well-defined since

if τ ∈Int(G) , say, τ = τx for some x ∈ G, τ̃(z̃) = x̃z̃x̃−1 = z̃x̃x̃−1 = z̃, for z̃ ∈ Z(G̃).

The proof of the second assertion can be found in [4].

Let τ ∈Aut(G). Define an action of τ on
∏

g(Z(G̃)) as follows. Let χ ∈∏
g(Z(G̃)), define χτ (z) := χ(τ̃(z)), z ∈ Z(G̃). When G is simply laced, we have an

action of Aut(G) on
∏

g(G̃). Due to Proposition 4.1.4 (2), every π = J(γ), where

γ = (H̃,Γ, γ), is determined by γ and χ := Γ|Z(G̃). Then we can define πτ := J(γτ ),

where γτ is a regular character determined by γ and χτ .

The following is a corollary of Lemma 4.2.1.

Corollary 4.2.2. Suppose G is simply laced. Let π̃ ∈
∏

g(G̃), and τ ∈Out(G), then

π̃ and π̃τ are inequivalent representations in
∏

g(G̃).
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Chapter 5:
∏s

λ(G̃) – Split Case

In this chapter, the setting is as in Chapter 2, and furthermore we assume

that G is split. Let H denote the split Cartan subgroup of G with Lie algebra h

(then H̃ = p−1(H) is the split Cartan subgroup of G̃). It follows from Proposition

4.1.4 that there is a unique minimal principal representation of G̃ coming from H̃ if

we fix a genuine central character and infinitesimal character. In [3], they are called

genuine pseudospherical representations, or Shimura representations. We will show

in this chapter that we can get more representations in
∏s

λ(G̃) by applying cross

actions and Cayley transforms to the Shimura representations.

5.1 Shimura Representations

In [3], there is a set of minimal principal series denoted
∏

gs(G̃), called Shimura

representations. We list the lowest K̃-types and the numbers of them in Table 5.1.

From this table, we can see there are few Shimura representations for each

split group. We enumerate them as
∏

gs(G̃) = {Shi}ki=1, where k = 1, 2, or 4. In

fact, we have the following important properties for Shimura representations.

Proposition 5.1.1. (1) {Shi} ⊆
∏s

λ(G̃).

(2) There is a bijection between {Shi} and
∏

g(Z(G̃)). In particular, if G is simply
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Table 5.1: Shimura representations
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laced or of type G2, there is a bijection between this and
∏

g(Z(M̃)) =
∏

g(Z(H̃)),

where M is as defined in Section 4.1, and M̃ = p−1(M).

(3) There is a bijection between
∏

g(Z(G̃)) and {Oi}, where {Oi} is the set of real

forms of O, the complex associated variety of every Shimura representation.

Proof. For the first part, it will be proved in Chapter 7 that every Shimura repre-

sentation is in Lift(C) (Theorem 7.3.3) and hence every Shimura representation is

in
∏s

λ(G̃) by Theorem 7.2.3.

The second part can be observed from Table 5.1, and the bijection sends every

Shimura representation to its central character (see [3] for complete proof). The

third part can be observed from the Table in Chapter 6.

Remark 5.1.2. We can attach to each Shi a pair (χi,Oi), where χi is the central

character of Shi, and Oi =AV(Shi). Then for each τ ∈Out(G), Shτi is associated

to the pair (χτi ,Oτi ), (i.e. as τ permutes the central characters, it also permutes the

real associated varieties).

5.2 Constructing Representations in
∏s

λ(G̃)

We need to recall some basic tools: cross-action, Cayley and inverse Cayley

transforms before starting to construct new representations (see [6] and [19]).

5.2.1 Translation Functors across a Nonintegral Wall

Most of the material in this section can be found in [27] and [19]. Fix λ to be

the infinitesimal character defined in Chapter 2. In order to compute characters for
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nonlinear groups, we need a family of infinitesimal characters containing λ, denoted

F(λ). But we need to recall some notation first.

Let 4+(λ) be the positive root system making λ dominant, R(λ) be the in-

tegral root system for λ, Wλ be the integral Weyl group for λ. Let P be the

integral weight lattice, i.e. P = {γ ∈ h∗ | < γ, α∨ >∈ Z for α ∈ 4} and let

WP (λ) = {w ∈ W |wλ − λ ∈ P}. Then let F(λ) be a family of representatives of

(W ·λ+P )/P containing λ, and hence it’s clear that F(λ) is indexed by W/WP (λ):

if γ ∈ F(λ), then γ = yλ modulo P for some y ∈ W which is unique modulo WP (λ).

So we can write F(λ) = {γy = yλ | y ∈ W/WP (λ)}. In particular, λ = γ1. There

is an obvious action of W on F(λ): w ∗ γy := w−1(γy + µ(y, w)) = γyw, by picking

some µ(y, w) ∈ P . We fix once and for all integral wights µ(y, w) ∈ P satisfying the

above conditions and we want to use them to define the following. First let α be a

nonintegral simple root in 4+, sα be the corresponding simple reflection. Then we

define:

(a) the nonintegral wall-crossing functors ψα and φα, where ψα(X) := ψ
γysα
γy (X), a

functor realizes an equivalence of categories between HC(g, K)γy and HC(g, K)γysα ;

its inverse is φα(see [26]) ;

(b) the cross action of W : let γ = (H ′,Γ, γ) be a (γy)-regular character, w ∈ W ,

then the regular character w×γ = (H ′, w×Γ, w×γ) is defined by w×γ = γ+µ(y, w)

and w × Γ = Γ ⊗ µ(y, w) ⊗ ∂ρ(w), where ∂ρ(w) := w · (ρi − 2ρic) − (ρi − 2ρic), ρi

(resp. ρic) denotes the half-sum of positive imaginary (resp. compact imaginary)

roots in 4+(γ). Note that w × γ defines the same infinitesimal character as γyw.
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Remark 5.2.1. Let α1, · · · , αp be simple roots and s1, · · · , sp be the corresponding

reflections. If w = sp · · · s1 ∈ WP (λ), we can define µ(1, w) = wλ−λ, which is equal

to µ(1, s1) +µ(s1, s2) +µ(s1s2, s3) + · · ·+µ(s1s2 · · · sp−1, sp). Thus, w×γ = γ if and

only if w ∈ WP (λ), where γ ∼ λ.

We also need some basic facts about Cayley and inverse Cayley transforms.

The related concepts can be found in various references (e.g. [19], [26]). Here we

just introduce some notation and quote some important facts.

Let γ = (H,Γ, γ) be a λ-regular character. Assume α is a nonintegral root,

then we can define Cayley (or inverse Cayley) transform on γ (see Section 5 of [19])

through α if α is noncompact imaginary (real, resp.) and this action is denoted

by cα(γ) = γα ( or cα(γ) = γα, resp.) Note that after Cayley (inverse Cayley,

resp.) transform, we get a new λ-regular character, say, γα = (Hα,Γα, γα) (or γα =

(Hα,Γα, γα), resp.), which has infinitesimal character λ and I(γα) (or I(γα), resp.)

has the same central character as the original representation I(γ). For convenience,

we call both operators cα and cα Cayley transforms through the root α.

Now we are ready to state the result of Vogan describing translation functors

across a nonintegral wall.

Theorem 5.2.2. ( [19]) Let γ be a genuine λ-regular character of G. Suppose α is

a nonintegral simple root in 4+(γ). Then, with the translation functor ψα defined

by the weight µα fixed above, we have:

ψα(J(γ)) = J((γ + µα)α) = J((sα × γ)α) if α is noncompact imaginary,

ψα(J(γ)) = J((γ + µα)α) = J((sα × γ)α) if α is real satisfying the parity condition,
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ψα(J(γ)) = J(γ + µα) = J(sα × γ) otherwise.

5.2.2 Construction related to Dynkin Diagrams

Now we would like to restrict the simply laced groups, so λ = ρ/2. Assume

the setting as before, i.e. G is split, and G̃ is the two-fold cover of G, and so on. As

described in [18], to the Dynkin diagram D of G̃, we attach a finite abelian group

denoted by RD as follows. Let
∏

be the set of simple roots.

RD = {S ⊆
∏
|S is strongly orthogonal, so that any β /∈ S is adjacent to an

even number of elements in S}.

In Table 5.2, we list the elements in RD for simply laced groups using Dynkin

diagrams. Note that the root is in the element in RD if and only if the corresponding

node is filled.

Lemma 5.2.3. There is a one-to-one correspondence between RD and (Z(GC)2)∧,

the characters of elements in Z(GC) of order 2. The latter is isomorphic to P/(2P+

R) as group, and hence RD can be parametrized by the elements in P/(2P +R).

Proof. Denote Z = Z(GC) and Z2 = Z(GC)2.

From the exact sequence

1→ Z2 → Z → Z/Z2 → 1,

we have another exact sequence

1→ (Z/Z2)∧ → Z∧ → Z∧2 → 1.

Notice that Z∧ ' P/R. Write Z2 = {exp(2πiτ∨)|τ∨ ∈ X∗ ⊗ C, exp(2πi(2τ∨)) = 1}.

32



Table 5.2:

Type n RD |RD|

An−1 2m c c c1 2 3 n− 3 n− 2 n− 1
· · · c c c {φ}

s c s1 2 3 n− 3 n− 2 n− 1
· · · s c s {α1, α3, · · · , αn−1}

2

An−1 2m+ 1 c c c1 2 3 n− 3 n− 2 n− 1
· · · c c c {φ} 1

Dn 2m c c c1 2 3 n− 3
· · · c c�c

c@
n− 1

n

{φ} 4

c c c1 2 3 n− 3
· · · c c�s

s@
n− 1

n

{αn−1, αn}

s c s1 2 3 n− 3
· · · s c�s

c@
n− 1

n

{α1, α3, · · · , αn−3, αn−1}

s c s1 2 3 n− 3
· · · s c�c

s@
n− 1

n

{α1, α3, · · · , αn−3, αn}

Dn 2m+ 1 c c c1 2 3 n− 3
· · · c c�c

c@
n− 1

n

{φ} 2

c c c1 2 3 n− 3
· · · c c�s

s@
n− 1

n

{αn−1, αn}

E6 c c c c c1 2 3 4 5

c
6

{φ} 1

E7 c c c c c c1 2 3 4 5 6

c
7

{φ} 2

s c s c c c1 2 3 4 5 6

s
7

{α1, α3, α7}

E8 c c c c c c c1 2 3 4 5 6 7

c
8

{φ} 1
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Then (Z/Z2)∧ ' (2P +R)/R, since γ ∈ P such that γ|Z2 = 1 (i.e. γ(exp(2πiτ∨)) =

exp(2πi < γ, τ∨ >) = 1 ) if and only if < γ, τ∨ >= 1, if and only if γ ∈ 2P + R.

Therefore, Z∧2 ' P/(2P +R) from the above exact sequence.

Associate to each S = {α1, · · · , αp} ∈ RD an element wS = sα1 · · · sαp ∈ W ,

then we have a map sending elements in RD to P/(2P +R) by S → wS(ρ/2)− ρ/2.

This is a bijection by counting the elements in RD and P/(2P +R) case by case.

We will show that we can get a subset of representations in
∏s

ρ/2(G̃) from each

Shimura representation Shi by a sequence of Cayley transforms or wall-crossings

through the simple roots in S ∈ RD.

Associate to each S = {α1, · · · , αp} ∈ RD an element wS = sα1 · · · sαp ∈ W ,

and let cS = cα1 · · · cαp and ψS = ψα1 · · ·ψαp be the corresponding Cayley transform

and wall-crossing functor respectively.

Lemma 5.2.4. For every wS, S ∈ RD, wS ∈ WP (ρ/2), and hence wS × γ = γ,

where γ ∼ ρ/2, by Remark 5.2.1.

Proof. Let S = {α1, · · · , αp} ∈ RD. Then wS(ρ/2)− ρ/2 = sα1 · · · sαp(ρ/2)− ρ/2 =

− < ρ/2, α∨1 > α1 − · · ·− < ρ/2, α∨p > αp.

For each simple root β /∈ S, β is adjacent to even numbers of αi’s, and hence

< wS(ρ/2) − ρ/2, β∨ >∈ Z. For β = αi some i, < wS(ρ/2) − ρ/2, β∨ >= − <

ρ/2, α∨i >< αi, α
∨
i >∈ Z. Therefore, wS ∈ WP (ρ/2).

We would like to take a look at the effects of Cayley transforms on the τ -

invariant. Note that for every root α ∈
∏

(ρ/2), there exists a positive root system
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Ψα ⊆ 4 such that Ψα ⊇ 4+
λ and α is simple in Ψα (cf [27] Lemma 3.1 ), that is,

we can apply a sequence of cross actions (across nonintegral walls) through a set

of roots Q = {β1, · · · , βq}, to move α to a chamber in which it is simple. More

precisely, let γ be a λ-regular character. Let w = sβ1 · · · sβq , and hence α is simple

in Ψα = w(4+). Let X = J(γ) and X ′ = ψQ(J(γ)), where ψQ = ψβ1 · · ·ψβq is a

sequence of nonintegral wall-crossings in Theorem 5.2.2. Since ψQ is an equivalence

of categories, we in fact have τ(X) = τ(X ′) and the following Theorem is extremely

helpful.

Theorem 5.2.5. (cf. [27] Theorem 4.12) Assume the settings as above for G and

G̃ as before, and X,X ′, w are as in the previous paragraph, so α is simple for w×γ.

Put l =
2 < λ, α∨ >

< α, α∨ >
, then we have

a) If α is real and γ′(mα) 6= (−1)lεα (cf. [27]) Proposition 4.5), then α /∈ τ(X).

b) If α is real and γ′(mα) = (−1)lεα, then α ∈ τ(X).

c) If α is complex and θ(α) ∈ 4+
γ′, then α /∈ τ(X).

d) If α is complex and θ(α) /∈ 4+
γ′, then α ∈ τ(X).

e) If α is noncompact imaginary, then α /∈ τ(X).

The following lemma is a corollary of this theorem.

Lemma 5.2.6. Let S ∈ RD and S ′ ⊆ S. Let Sh be a Shimura representation. Then

cS′(Sh) has maximal τ -invariant if and only if S ′ = S.

Proof. This can be proved case by case using 5.2.5.

Theorem 5.2.7. Fix some Shi with central character χi as above. Suppose Shi is

specified by the ρ/2-regular character γ = (H,Γ, γ). Let S ∈ RD. Then
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(1) cS(Shi) and ψS(Shi) are in
∏s

ρ/2(G̃);

(2) cS(Shi) has central character χi, so let πi := cS(Shi), where the subscript in-

dicates πi has the same central character as Shi. Then ψS(Shi) can be denoted πj

for some j and j 6= i if S 6= φ. More precisely, if πi is specified by the regular

character γi = γS = (HS,Γi, γi) with central character χi and πj is specified by the

regular character γj = γ′S = (H ′S,Γj, γj) with central character χj, then HS = H ′S,

γi ∼ γj ∼ γ ∼ ρ/2 and χi 6= χj if S 6= φ.

Proof. For the first part, cS(Shi) is in
∏s

ρ/2(G̃) due to Lemma 5.2.6 and the fact that

the infinitesimal character doesn’t change under the action of Cayley transforms.

On the other hand, ψS is a series of nonintegral wall-crossings ψα, and in each

step, ψα(X) = P
γysα
γy (X ⊗ Fµ(y,sα)), the projection of X ⊗ Fµ(y,sα) on to the Harish-

Chandra modules at infinitesimal character γysα , where γy, γysα , and µ(y, sα) are

described in the beginning of Section 5.2.1. Note that Shi ∈
∏s

ρ/2(G̃) =
∏O

ρ/2(G̃),

we have AV (Shi) = O and hence AV (Shi ⊗ F ) = O for any finite dimensional F

by Lemma 2.1.2. Therefore, AV (ψα(Shi)) = O and AV (ψS(Shi)) = O by the same

argument. By Lemma 5.2.4, ψS(Shi)) has infinitesimal character ρ/2 and hence

ψS(Shi)) ∈
∏s

ρ/2(G̃).

For the second part of the proof, first, observe that according to the Theo-

rem 5.2.2, each step of the wall-crossings in ψS also goes through the same Cayley

transform as in cS, and hence HS = H ′S.

Then we want to check that γi and γj define the same infinitesimal character,

that is, ρ/2. Since Cayley transforms don’t change infinitesimal characters, γi defines
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the same infinitesimal character as γ ∼ ρ/2. On the other hand, wS ∈ WP (ρ/2) by

Lemma 5.2.4, and hence γj = wS × γ = γ ∼ ρ/2.

Finally note that Cayley transforms don’t change the central characters, and

hence cS(Shi) and Shi have the same central character χi. However, since wSγ−γ ∼

wS(ρ/2)− ρ/2 defines a nontrivial element in P/(2P +R) if S 6= φ by Lemma 5.2.3.

Therefore, χj/χi 6= 1 if S 6= φ.

Now we denote

∏
RD

(G̃) = {π | π = cS(Sh) where Sh is a Shimura representation and S ∈ RD}

Remark 5.2.8. (1)
∏

RD
(G̃) ⊆

∏s
ρ/2(G̃).

(2) If |Z(G̃)∧| = p, then |
∏

RD
(G̃)| = p2.

5.2.3 Example

In this section, we describe the representations in
∏

RD(G̃) for type An−1 and

Dn, where n is even, by describing their lowest K-types and Langlands parameters.

In the following content, we use the highest weight of the lowest K-type to stand

for the lowest K-type.

Example 5.2.9. Let G = SL(n,R), where n = 2m. Before describing representations

in
∏

RD(G̃), we consider a bigger group G′ = GL(n,R).

First we recall the definition of the Speh representations of G̃′ (See [5] for

details).

Let L ∼= GL(m,C) be an θ-stable Levi subgroup of G′, q = l⊕u be a parabolic

subalgebra of g, S =
n(n− 1)

2
. Then for k ∈ {0, 1, 2, ....}∪{−1

2
, 1

2
, 3

2
, ....} and ν ∈ iR,
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Speh(k, ν) = RS
q (χ(k, ν)) is defined to be the irreducible unitary representation of G̃′

obtained from the S-th cohomological induction from the one-dimensional character

χ(k, ν)(z) =
( z
|z|

)k
|z|ν of L. We write Speh(k, 0) =Speh(k). Note that when n = 2,

Speh(k.ν) is the relative discrete series representation of G̃L(2,R) with infinitesimal

character (
k + ν

2
,
−k + ν

2
).

In [5] and [13], there are two genuine unitary irreducible representations of G′

under consideration, denoted Tn and Speh(1/2). Tn is defined to be the unique irre-

ducible subquotient of IndG̃
′

P (δn ⊗ ρ/2), where P is the minimal parabolic subgroup

of G̃′, which contain M̃ , the preimage of diag{±1, · · · ,±1} in G̃′, and δn is the

representation of M̃ restricted from the pin representation of Pin(n) with highest

weight (1
2
, · · · , 1

2
; 1

2
). It is shown in [13] that Tn has infinitesimal character ρ/2 and

the lowest K-type is (1
2
, · · · , 1

2
; 1

2
). Furthermore, Tn has maximal τ -invariant, and

hence Tn ∈
∏s

ρ/2(G̃′).

On the other hand, Speh(1/2) is the irreducible quotient of IndG̃
′

P1
(σ), where

P1 = M̃1N , M1
∼= GL(2,R)m, and

σ = Speh(1
2
, n−2

2
)⊗Speh(1

2
, n−6

2
)⊗· · ·⊗Speh(1

2
, 1)⊗Speh(1

2
,−1)⊗· · ·⊗Speh(1

2
, −n+2

2
)

(see [5]), It is easy to show that this representation has infinitesimal ρ/2 and the

lowest K-type is (3
2
, · · · , 3

2
; 1

2
). Furthermore, we claim that Speh(1/2) has maximal

τ -invariant by using Theorem 5.2.5. Let
∏

(ρ/2) = {ei − ei+2|i = 1, 3, · · · , n − 2}

be the set of integral simple roots, all of which are complex roots for Speh(1/2).

Let αi = ei − ei+1, i = 1, 3, · · · , n − 2. Note that Speh(1/2) is specified by the

Cartan H̃ with H = (C×)m, obtained from the split Cartan through a sequence of

38



Cayley transforms cα1cα3 · · · cαn−2 , and hence the Cartan involution of Speh(1/2) is

θ = −sα1sα3 · · · sαn−2 . For the complex root ei − ei+2, calculate

θ(ei − ei+2) = −sα1sα3 · · · sαn−2(ei − ei+2) = −sαisαi+2
(ei − ei+2) =

−sαi+2
(ei+1 − ei+2) = ei+3 − ei+1,

which is a negative root in the big root system, and hence for α ∈
∏

(ρ/2), we have

θ(α) is negative and hence α is in the τ -invariant by Theorem 5.2.5.

Note that the restriction of each of these two representations to G̃ = S̃L(n,R)

is the sum of two inequivalent irreducible representations of G̃. More precisely, pick

y ∈ G′ \G, let τ = τy be the conjugation action on G by y. Let χ denote the central

character of Tn, and for g̃ ∈ G̃, define χτ (g̃) = χ(yg̃y−1). Then χ and χτ define

different genuine characters of G̃ and hence Tn|G̃ = π̃ + π̃τ , where χ and χτ are the

central characters of π̃ and π̃τ , respectively. In fact, π̃ and π̃τ are the two Shimura

representations of G̃. We know that the lowest K-type of Tn is (1
2
, · · · , 1

2
; 1

2
) and its

restriction to Spin(n) is the sum of the representations of highest weights (1
2
, · · · , 1

2
)

and (1
2
, · · · 1

2
,−1

2
), which are the lowest L-types of Sh1 and Sh2, respectively.

Similarly, the restriction of Speh(1/2) to G̃ is also a sum of two irreducible

representations, parametrized by their lowest K-types (3
2
, · · · , 3

2
) and (3

2
, · · · 3

2
,−3

2
).

We have shown that they are in
∏s

ρ/2(G̃). From next section, we will know that

|
∏

RD(G̃)| = |
∏s

ρ/2(G̃)| = 4 and hence these two representations are the ones in∏
RD(G̃) besides the Shimura representations.

Example 5.2.10. Consider type Dn, where n = 2m. First consider a bigger group

G̃′ = S̃pin(2m + 1, 2m), K ′ = Spin(2m + 1) × Spin(2m) . From [16], we have
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4 representations of G̃′, say Γ1,Γ2,Γ3,Γ4, with all K ′-types specified (in the big

table on the last page of this section). Let G̃ = S̃pin(2n, 2n), K = Spin(2n) ×

Spin(2n), the maximal compact subgroup of G̃. Since γ(x1, · · · , xm; y1, · · · , ym) =

(y1, · · · , ym;x1, · · · , xm) is an outer automorphism of G̃, the K ′-types parametrized

by (λ;λ′) and (λ′;λ) represent different representations when restricted to K, and

hence restricting these Γi’s to G̃, we will get 16 representations, which are also

listed in the big table. In fact, these 16 representations are contained in
∏s

ρ/2(G̃)

(explain?) and hence are the 16 representations in
∏

RD
(G̃) by the next section.

Let Sa = {φ}, Sb = {en−1 ± en}, Sc = {e1 − e2, e3 − e4, · · · , en−1 − en}, Sd =

{e1 − e2, e3 − e4, · · · , en−1 + en} be the elements in RD. If Shimura representations

are enumerated as {Shi}4
i=1, then cSa(Shi) = Shi and we denote

cSb(Shi) = πi, cSc(Shi) = δi, cSd(Shi) = τi,

where the representations with the same subscript have the same central character.

From the big table, Sh1 is parametrized by its lowest K-type (1
2
, · · · , 1

2
; 0 · · · , 0),

and similarly, Sh2 is parametrized by (1
2
, · · · , 1

2
,−1

2
; 0 · · · , 0), Sh3 is parametrized by

(0 · · · , 0; 1
2
, · · · , 1

2
), Sh4 is parametrized by (0 · · · , 0; 1

2
, · · · ,−1

2
). Let σ, γ ∈Out(G)

such that the action of σ and γ on the K-types are as follows.

σ(λ1, · · · , λm;λm+1, · · · , λn) = (λ1, · · · ,−λn;λm+1, · · · ,−λn),

γ(λ1, · · · , λm;λm+1, · · · , λn) = (λm+1, · · · , λn;λ1, · · · , λm)

Then we have the action of σ and γ on representations and genuine central characters

in terms of the K-types. For instance, σ(Sh1) = Sh2, σ(Sh3) = Sh4, γ(Sh1) = Sh3,

and so on. The complete actions of the outer automorphisms on central characters
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are in the following table, assuming that χi is the corresponding central character

of Shi.

χ1 χ2 χ3 χ4

(0, · · · , 0) (1, 0 · · · , 0) (1
2
· · · , 1

2
) (1

2
· · · ,−1

2
)

1 χ1 χ2 χ3 χ4

σ χ2 χ1 χ4 χ3

γ χ3 χ4 χ1 χ2

σγ χ4 χ3 χ2 χ1

The vectors under each χi in the first row are the representatives of

∏
g(Z(G̃)) ∼= P/(2P +R) ∼= Zn ∪ (Z + 1

2
)n/Zne

By Lemma 5.2.3, each S ∈ RD corresponding to wS(ρ/2)−ρ/2 ∈ P/(2P +R).

More precisely,

Sa ↔ (0, · · · , 0), Sb ↔ (1, 0, · · · , 0), Sc ↔ (1
2
, · · · , 1

2
), Sd ↔ (1

2
, · · · ,−1

2
)

Note that for each S ∈ RD, ψS(Shi) = (cS(Shi))
ξ for some ξ ∈ Out(G) and

then the central character of ψS(Shi) is χξi . In fact,

ψSa(Shi) = cSa(Shi), ψSb(Shi) = (cSb(Shi))
σ, ψSc(Shi) = (cSc(Shi))

γ,

ψSd(Shi) = (cSd(Shi))
σγ.

Then, we have the following effects of ψS’s on Shimura representations and 16 rep-

resentations
∏

RD
(G̃) are produced in this way. The representations produced are

denoted by Shi, πi, δi, τi as follows, where representations with the same subscript
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have the same central character.

Sh1 Sh2 Sh3 Sh4

ψSa Sh1 Sh2 Sh3 Sh4

ψSb π2 π1 π4 π3

ψSc δ3 δ4 δ1 δ2

ψSd τ4 τ3 τ2 τ1

Tables 5.4-5.6 list all K-types and lowest K types of the small representations

of G̃ = Spin(n, n). In Tables 5.4 and 5.5, the case of even n is shown and the case

of odd n is shown in Table 5.6. In Tables 5.4 and 5.5, λ = (λ1, · · · , λn) ∈ Zn and

γ = (γ1, · · · , γn) ∈ Zn are decreasing sequences of nonnegative integers. By γ ≺ λ

we mean that λ1 > γ1 > · · · > λn > γn > −λn. In Table 5.6, λ = (λ1, · · · , λn) ∈ Zn,

λ′ = (λ1, · · · , λn, 0) ∈ Zn+1 and γ = (γ1, · · · , γn) ∈ Zn are decreasing sequences of

nonnegative integers. By γ ≺ λ′ we mean that λ1 > γ1 > · · · > λn > γn > 0. Again,

the representations are described in [16].
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Table 5.4: All K-types of representations in
∏

RD
(G̃) when G = Spin(n, n), n = 2m

(1)

G̃
′ -

re
p

K
′ -

ty
p

e
L

.K
′ .

T
re

st
ri

ct
io

n
to
K

L
.K

.T
G̃

-r
ep

Γ
1

V
+

=
⊕ λ

(λ
;λ

+
1 2

)
(0

;
1 2

)

⊕ λ

⊕ γ
≺
λ
(γ

;λ
+

1 2
),

Σ
(λ
i

+
γ
i
)
∈

2
Z

(0
,·
··
,0

;
1 2
,·
··
,
1 2

)
S
h
3

⊕ λ

⊕ γ
≺
λ

(γ
;λ

+
1 2

),
Σ

(λ
i

+
γ
i
)
∈

2
Z

+
1

(0
,·
··
,0

;
3 2
,
1 2
,·
··
,
1 2

)
π
4

Γ
1

V
+

=
⊕ λ

(λ
+

1 2
;λ

)
(
1 2

;0
)

⊕ λ

⊕ γ
≺
λ
(λ

+
1 2

;−→
γ

),
Σ

(λ
i

+
γ
i
)
∈

2
Z

(
1 2
,·
··
,
1 2

;0
,·
··
,0

)
S
h
1

⊕ λ

⊕ γ
≺
λ
(λ

+
1 2

;γ
),

Σ
(λ
i

+
γ
i
)
∈

2
Z

+
1

(
3 2
,
1 2
,·
··
,
1 2

;0
,·
··
,0

)
π
2

Γ
2

V
−

=
⊕ λ

(λ
;σ

(λ
+

1 2
))

(0
;σ

(
1 2

))

⊕ λ

⊕ γ
≺
λ
(γ

;σ
(λ

+
1 2

))
,Σ

(λ
i

+
γ
i
)
∈

2
Z

(0
,·
··
,0

;
1 2
,·
··
,−

1 2
)

S
h
4

⊕ λ

⊕ γ
≺
λ

(γ
;σ

(λ
+

1 2
))
,Σ

(λ
i

+
γ
i
)
∈

2
Z

+
1

(0
,·
··
,0

;
3 2
,
1 2
,·
··
,−

1 2
)

π
3

Γ
2

V
−

=
⊕ λ

(σ
(λ

+
1 2

);
λ

)
(σ

(
1 2

);
0

)

⊕ λ

⊕ γ
≺
λ

(σ
(λ

+
1 2

);
γ

),
Σ

(λ
i

+
γ
i
)
∈

2
Z

(
1 2
,·
··
,−

1 2
;0
,·
··
,0

)
S
h
2

⊕ λ

⊕ γ
≺
λ
(σ

(λ
+

1 2
);
γ

),
Σ

(λ
i

+
γ
i
)
∈

2
Z

+
1

(
3 2
,
1 2
,·
··
,−

1 2
;0
,·
··
,0

)
π
1
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Table 5.5: All K-types of representations in
∏

RD
(G̃) when G = Spin(n, n), n = 2m

(2)

G̃
′ -

re
p

K
′ -

ty
p

e
L

.K
′ .

T
re

st
ri

ct
io

n
to
K

L
.K

.T
G̃

-r
ep

Γ
3

V
+ 0

=
⊕ λ

(λ
+

1 2
;λ

+
1

)
(
1 2

;1
)

⊕ λ

⊕ γ
≺
λ
(γ

+
1 2

;λ
+

1
),

Σ
(λ
i

+
γ
i
)
∈

2
Z

(
1 2
,·
··
,
1 2

;1
,·
··
,1

)
δ 1

(m
ev

en
)/
δ 2

(m
o
d

d
)

⊕ λ

⊕ γ
≺
λ
(σ

(γ
+

1 2
);
λ

+
1

),
Σ

(λ
i

+
γ
i
)
∈

2
Z

+
1

⊕ λ
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Table 5.6: All K-types of representations in
∏

RD
(G̃), when G = Spin(n, n), n =

2m+ 1

G̃′-rep K′-type L.K′.T restriction to K L.K.T G̃-rep

Γ V =
⊕
λ

(λ′;λ+
1

2
) (0;

1

2
)

⊕
λ

⊕
γ≺λ′

(γ;λ+
1

2
),Σ(λi + γi) ∈ 2Z (0, · · · , 0; 1

2
, · · · , 1

2
) Sh2

⊕
λ

⊕
γ≺λ′

(γ;λ+
1

2
),Σ(λi + γi) ∈ 2Z + 1 (0, · · · , 0; 3

2
, 1
2
, · · · , 1

2
) π1
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(λ+
1

2
;λ′) (

1

2
;0)

⊕
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(λ+
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2
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2
, · · · , 1

2
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2
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2
; 0, · · · , 0) π2
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5.3 Exhaustion – Characterization of
∏s

λ(G̃)

In the last section, we have shown that
∏

RD
(G̃) ⊆

∏s
ρ/2(G̃), and in this section

we will show by counting the elements in
∏s

ρ/2(G̃) that this is in fact an equality

when G is split.

Fix a central character χ̃ of G̃. Let
∏s

ρ/2(G̃)χ̃ be the subset of representations

in
∏s

ρ/2(G̃) with central character χ̃. The goal is to count |
∏s

ρ/2(G̃)χ̃|. Take a block

B of representations with central character χ̃ and infinitesimal character ρ/2, and

consider
∏

(ρ/2),4(ρ/2),W (ρ/2), the simple roots of the integral root system, the

integral root system for ρ/2, and the integral Weyl group, respectively. Let Z[B]

be the Z-span of the set of standard modules I(γj), where each γj is a ρ/2-regular

character in B. Then W (ρ/2) acts on Z[B] by the coherent continuation action

( [10]) and this action is denoted by w · I(γ), or simply w · γ for w ∈ W (ρ/2) and

γ ∈ B.

Consider {J(γ)|γ ∈ B}, the set of irreducible quotients of {I(γ)|γ ∈ B}, as

another basis of Z[B], we have

Lemma 5.3.1. Let α ∈
∏

(ρ/2), γ ∈ B, then sα · J(γ) = −J(γ) if and only if

α ∈ τ(J(γ)).

Proof. Let α ∈
∏

(ρ/2) and let λ be an infinitesimal character which is singular for

α. Define a coherent family with π(ρ/2) = J(γ). Then we have the identity

π(ρ/2) + π(sα(ρ/2)) = ψ
ρ/2
λ ◦ ψλρ/2(π(ρ/2))

Notice that α ∈ τ(J(γ)) if and only if ψλρ/2(π(ρ/2)) = 0, which is equivalent to
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ψ
ρ/2
λ ◦ψλρ/2(π(ρ/2)) = 0, since the functor of push-to or push-off walls is injective. We

conclude that α ∈ τ(J(γ)) if and only if J(γ) = π(ρ/2) = −π(sαρ/2) = −sα · (J(γ))

(by definition of coherent continuation).

Proposition 5.3.2. |
∏s

ρ/2(G̃)χ̃| = dimHomW (ρ/2)(sgn,Z[B])

Proof. Let π = J(γ). Then by the previous Lemma, π ∈
∏s

ρ/2(G̃)χ̃ if and only if

sα · π = −π for all α ∈
∏

(ρ/2), which is equivalent to saying that W (ρ/2) acts on

π as the sign representation. Thus the proposition follows.

Therefore, to count the left hand side, we just need to count the right hand

side in this Lemma. More precisely, we need to analyze the W (ρ/2)-representation

Z[B] in order to count the right hand side.

The first observation is that it makes counting more convenient if we consider

a special block D, which is equivalent to B, instead of B, but at an infinitesimal

character other than ρ/2, and in a different chamber.

The following Lemma tells what this block is.

Lemma 5.3.3. Let ρ = ρ(4+), and λ0 = ρ/2. Then we can find w ∈ W and

let (4′)+ = w4+, λ = wρ − 1
2
λ∨i ((4′)+), where λ∨i is the fundamental weight

for αi, such that (1) < λ, α∨j >= 1 when i = j and < λ, α∨j >= 1/2 elsewhere;

(2) 4(λ) = 4(λ0), (and
∏

(λ) =
∏

(λ0) as well). Therefore, for type An−1, we

can always move to a block D (through nonintegral wall-crossing equivalence) with

infinitesimal character λD = λ, such that every root in
∏

(λ) is simple for all root

system; for type Dn, n > 4, E6, E7, E8, we can move to a block D with infinitesimal

character λ, such that every root in
∏

(λ) is simple for all root system but one.
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Proof. This lemma is proved by a case by case calculation.

The following table gives a summary of this special block D. In the table
∏
D

denotes the simple roots in the chamber of D. Notice that the integral root system

is fixed and so is
∏

(λ) =
∏

(ρ/2), the simple integral roots. For type Dn, E6, E7

and E8, let α denote the only integral root in
∏

(ρ/2) but not simple for the whole

system.

Type
∏

(ρ/2)
∏
D α

An−1 (n even) ei− ei+2, 1 6 i 6 n−2
∏
∪{en−1 − e2} N/A

An−1 (n odd) ei− ei+2, 1 6 i 6 n−2
∏
∪{en − e2} N/A

Dn, (n even) ei−ei+2, 1 6 i 6 n−2,

en−3 + en−1, en−2 + en

ei−ei+2, 1 6 i 6 n−2,

en−1 − e2, en−2 + en

en−3 + en−1

Dn, (n odd) ei−ei+2, 1 6 i 6 n−2,

en−3 + en−1, en−2 + en

ei−ei+2, 1 6 i 6 n−2,

en − e2, en−3 + en−1

en−2 + en

E6 −e3 + e5,−e1 + e3,

−e3 − e5,−e2 + e4,

1
2

(1,−1, 1,−1, 1,−1,−1, 1),

1
2

(1, 1, 1,−1, 1, 1, 1,−1)

e2 + e4

E7

E8
1
2

(1, 1, 1, 1, 1, 1,−1,−1),

In particular, we decompose sα into a product of simple reflections (with re-

spect to the chamber of D) for type Dn for later use.

When n is even,

sα = sen−1−en−2sen−2−ensen−2+ensen−1−en−3sen−1−en−2sen−1−en−3sen−2+ensen−2−ensen−1−en−2
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.

When n is odd,

sα = sen−2−ensen−en−3
sen−2+ensen−1−en−3

sen−1+en−3
sen−en−3

sen−3+en−1
sen−3−en−1

sen−2−ensen−en−3
sen−2−en .

Due to the equivalence of block B and block D, we’ll focus on analyzing Z[D]

from now on and then count dimW (λ)(sgn, Z[D]).

Now take a closer look at the coherent continuation action of W (λ) on Z[D].

The following proposition gives explicit formulas for the action ofW (ρ/2) on {I(γ)|γ ∈

B}, which can be found in [29].

Proposition 5.3.4. Fix γ ∈ B and α ∈
∏

(ρ/2). Furthermore, suppose α is simple

in the whole root system (See Theorem 4.12 in [27]). Let s := sα ∈ W (ρ/2).

(a) If α is complex or real for γ, then s · γ = s× γ.

(b) If α is compact imaginary for γ, then s · γ = −γ.

(c) If α is noncompact imaginary for γ, then s · γ = −s× γ + cα(γ).

From Proposition 5.3.4, we can see the coherent continuation action is closely

related to the cross action, so we also consider the cross action of W (λ) on Z[D].

Notice that two λ-regular characters γi = (H̃i,Γi, γi) and γj = (H̃j,Γj, γj) fromD are

in the same cross action orbit if and only if H̃i = H̃j. Indeed, if H̃i = H̃j = H̃, then

Γi and Γj agree on Z(G̃), since Z(H̃) = Z(G̃)H̃0 (by Proposition 4.1.4 (1)). Since

γi and γj are in the same block, γi and γj define the same infinitesimal character,

say, γi ∼ γj ∼ λ and hence γj = w× γi for some w ∈ W (λ). Enumerate the Cartan

subgroups of G̃ as {H̃1, · · · , H̃l}, and pick a λ-regular character γj specified by H̃j,

then {γ1, · · · , γl} is a set of representatives of the cross action orbits of W (λ) on
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Z[D].

Let Wγj = {w ∈ W (λ) |w × γj = γj} be the cross stabilizer of γj in W (λ).

Then we have the following proposition.

Proposition 5.3.5. Z[D] ' ⊕jIndW (λ)
Wγj

(εj), where εj is a one-dimensional repre-

sentation of Wγj such that for w ∈ Wγj , w · γj = εj(w)γj+ other terms from more

split Cartan subgroups.

Proof. SinceWγj is generated by {sβ|β ∈
∏

(ρ/2)}, it suffices to show that sβ·I(γj) =

±I(sβ × γj)+ other terms from more split Cartan subgroups. This is clear when β

is simple for the whole root system by Proposition 5.3.4.

Consider α ∈
∏

(ρ/2), which is not simple (as listed in the table). Let Tα be

the corresponding Hecke operator, the Z[q1/2, q−1/2]-linear map from Z[D][q1/2, q−1/2]

to itself (defined in [29]). We can decompose Tα = Tα1Tα2 · · ·Tαm , where αj’s are

simple. Here the α’s are allowed to be non-integral. Notice that

Tα = −φαψα + q,

up to a sign, where ψα and φα are the functors of push-to and push-off walls,

respectively, and also,

φαψα(I(γ)) = I(γ) + sα · I(γ).

We conclude that sα · I(γ) = −Tα(1)(γ), up to a sign. Using definition 9.4 in [19],

each Tαj(I(γ)) can be calculated explicitly, and so can Tα(I(γ)). Therefore, it is

not hard to see that sα · I(γj) = ±I(sα × γj)+ other terms from more split Cartan

subgroups.
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By this proposition and Frobenius reciprocity, the multiplicity of sgnW (λ)

in Z(D) is [sgnW (λ) : Z[D]] = [sgnW (λ)|Wγj
: εj], which is equal to 0 or 1, since

sgnW (λ)|Wγj
is one-dimensional. This means that we have reduced our goal to count

the number of γj’s which make [sgnW (ρ/2)|Wγj
: εj] = 1, which is called condition

(∗). Equivalently, condition (∗) is

sgnW (λ)|Wγj
= εj (∗)

To reach this goal, we need to analyze εj for each j. By [6],

Wγj = WC(γj)
θ n (W i((γj)×W r(γj)).

So we can decompose εj = εCj ⊗εij⊗εrj , where εCj , ε
i
j, ε

r
j are characters ofWC(γj)

θ,W i(γj),W
r(γj),

respectively. Notice that in the linear case (or say, when B is a block with integral

infinitesimal character λ), we have εj = sgni for all j (see [10]).

Proposition 5.3.6. If G̃ has type An, εj = sgni for all γj.

Proof. We are in a block D where every β ∈
∏

(ρ/2) is simple for the whole root

system. every w ∈ Wγj = WC(γj)
θ n (W i(γj) ×W r(γj)) can be written as w =

wCwiwr. Note that W i(γj) is generated by {sβ|β is compact imaginary for γj}. By

Proposition 5.3.4, sβ · γj = −γj for compact imaginary β, so εj(wi) = sgni(wi) and

hence εij = sgni.

Secondly, W r(γj) is generated by {sβ|β is a nonparity real root for γj}. By

Proposition 5.3.4 again, sβ · γj = sβ × γj = γj for nonparity real β, so εj(wr) = wr

and hence εrj = 1. Similar argument shows that εCj = 1. Thus we conclude that

εj = sgni.
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Lemma 5.3.7. For type An−1, if there is a real integral root for γj, then γj doesn’t

satisfy condition (∗).

Analyzing εj for type Dn, n > 4, requires more work. We need to consider

εj(sα) first, where α is the only root in
∏

(ρ/2) which is not simple. Recall that in the

above table, we decompose sα = sα1sα2 · · · sαm , a product of simple reflections. Since

the coherent continuation is not defined for sαj on Z[D] when αj is non-integral, we

pass to the level of Hecke operators (as the discussion in the proof of Proposition

5.3.5), that is, consider the decomposition Tα = Tα1Tα2 · · ·Tαm . Here, we need to be

more careful.

Let γ ∈ D, Tα(γ) = Tα1Tα2 · · ·Tαm(γ). Note that on the right hand side, the

Hecke operation is calculated step by step. In each step, we have to deal with some

Tαk(δ), where δ is the parameter of a standard module not necessarily belonging to

block D. In fact, this is an ”abstract” Hecke operation, and it should be denoted by

Tαk ·a (δ). Taking an inner automorphism φk of g sending (λ, h∗) to (δ, h∗δ), we define

Tαk ·a (δ) := Tφk(αk)(δ). Here φk(αk) is a simple root in the chamber of δ, and hence

we can use the formulas in Definition 9.4 of [19] to calculate Tφk(αk)(δ) in each step.

Tα(γ) = Tα1 ·a Tα2 ·a · · · ·a Tαm(γ)

= (Tφ1(α1)(Tφ2(α2)(· · · (Tφm(αm)(γ))) · · · )

= p1(q) · · · pm(q)φ1(α1)× (φ2(α2 × · · · (φm(αm)× γ)) + higher terms,

where pj ∈ Z[q, q−1]

Let cγ be the number of occurrences of complex roots in {φj(αj), 1 6 j 6 m}, and

tγ be the number of occurrences imaginary roots in {φj(αj), 1 6 j 6 m}. It turns
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out that

sα(γ) = −Tα(1)(γ), when α is real or imaginay

sα(γ) = (−1)cγTα(1)(γ), when α is complex

An easy calculation shows that

sα · γ = (−1)tγsα × γ + terms from more split Cartans. (5.3.1)

When n is even, then m = 9 and

{αj} = {en−1 − en−2, en−2 − en, en−2 + en, en−3 − en−1, en−1 − en−2, en−3 −

en−1, en−2 + en, en−2 − en, en−1 − en−2}

{φj(αj)} = {en−3 + en−2, en−3 + en, en−3 − en, en−2 + en−1, en−3 − en−1, en−3 −

en−2, en−1 + en, en−1 − en, en−1 − en−2}

When n is odd, then m = 11 and

{αj} = {en−2 − en, en − en−3, en−2 − en, en−3 − en−1, en−3 + en−1, en − en−3, en−3 +

en−1, en−3 − en−1, en−2 − en, en − en−3, en−2 − en}

{φj(αj)} = {en − en−2, en−3 + en, en−3 + en−2, en−1 + en, en − en−1, en−2 + en, en−2 +

en−1, en−2 − en−1, en − en−3, en−2 − en−3, en−2 − en}

Due to the remark above Proposition 5.3.5, we can choose each γj properly

and calculate the εj’s according to the chosen γj’s. In fact, our goal is to rule out

γj’s satisfying either of the following conditions.

• (R) If there is a real integral root, then choose γj such that α is real for γj.

53



• (C) If there are no real integral roots, and there is an orthogonal set of 4

nonintegral roots of the form {ep±eq.er±es}, where ep±eq are both imaginary,

or both real, and one of {er ± es} is real, whereas the other is imaginary, then

choose γj such that this quadruple is {en−3 ± en−2, en−1 ± en}. In this case α

is a complex root.

With the setting, we have the following key Lemma.

Lemma 5.3.8. Suppose that G̃ has type Dn, n > 4. If γj satisfies condition (R)

and (C) then γj doesn’t satisfy condition (∗).

Proof. To show that the chosen γj fails to satisfy condition (∗), we will pick a

w ∈ Wγj and show that εj(w) and sgn(w) do not coincide. In either case, we have

to calculate εj(sα) for γj. By Equation 5.3.1, we just need to count the number tγj

for the chosen γj.

Suppose that n is even. If γj satisfies condition (R), en−3 − en−1 is also a

real integral root, and the roots en−2 ± en−1, en−2 ± en−3, en ± en−1, en ± en−3 can

be arranged so that each of them is either real or complex. Therefore, tγj = 0,

and hence εj(sα) = 1. This result follows for the odd case by applying the same

argument. Since sα ∈ Wγj and sgn(sα) = −1, γj fails to satisfy condition (∗).

Suppose that γj satisfies condition (C). It can be easily counted that tγj = 3,

which implies εj(sα) = −1. Let w = sen−3−en−1sen−3+en−1sen−2−ensen−2+en . We claim

that w ∈ Wγj (later). When n is even (odd, respectively), we have en−3−en−1, en−2±

en (en−3 ± en−1, en−2 − en, respectively) are simple and complex, so εj(sβ) = 1 for

every β from these three root, and hence εj(w) = εj(sα) = −1. But it’s easily seen
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that sgn(w) = 1. Therefore γj fails to satisfy condition (∗).

Theorem 5.3.9. For type An−1 and Dn, n > 4, we have
∏s

λ(G̃) =
∏

RD
(G̃).

Proof. As stated in the beginning of the section, we have shown in the preceding

sections that
∏

RD
(G̃) ⊆

∏s
λ(G̃). To show this is an equality, we just need to show

|
∏s

λ(G̃)| = |
∏

RD
(G̃)|.

By Proposition 5.3.2, fixing a genuine central character, we calculate dimW (λ)(sgn,Z[D]),

with λ, D defined earlier in this section. It comes down to counting the number of

γj’s in Proposition 5.3.5 satisfying condition (∗).

For type An−1, we claim that if the real rank of the Cartan subgroup Hj is at

least n/2 (when n is even) or (n − 1)/2 (when n is odd) , then there exists a real

integral root for γj, and hence such γj can be ruled out by Lemma 5.3.7.

When n is even, we enumerate all Cartan subgroups as {Hn/2−1, Hn/2, · · · , Hn−2, Hn−1},

where the real rank of Hj is j. Let γn−1 be the parameter of the principal series,

and αk = e2k−1 − e2k, 1 6 k 6 n/2, then we pick γn−1−k = cαk · · · cα2cα1(γn−1) to

be the representative of the cross action orbit specified by Hn−1−k, 1 6 k 6 n/2.

Notice that when k 6 n/2 − 2, en−2 − en is a real integral root for γn−1−k, which

means that we can rule out γj, for n/2+1 6 j 6 n−1. Only γn/2−1 and γn/2 are not

ruled out, and they are exactly the γj’s satisfying condition (∗) since the number of∏
RD

(G̃) with a fixed central character is also 2. Hence the theorem follows for type

An−1, when n is even.

When n is odd, we enumerate all Cartan subgroups as {H(n−1)/2, H(n+1)/2, · · · , Hn−2, Hn−1},
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where the real rank of Hj is j. Let γn−1 be the parameter of the principal series, and

αk = e2k−1−e2k, 1 6 k 6 (n−1)/2, then we pick γn−1−k = cαk · · · cα2cα1(γn−1) to be

the representative of the cross action orbit specified by Hn−1−k, 1 6 k 6 (n− 1)/2.

Notice that when k 6 (n− 3)/2, en−2 − en is a real integral root for γn−1−k, which

means that we can rule out γj, for (n+ 1)/2 6 j 6 n− 1. Only γ(n−1)/2 is not ruled

out, and hence it is exactly the only one satisfying condition (∗) since the number

of
∏

RD
(G̃) with a fixed central character is also 1. Hence the theorem follows for

type An−1, when n is odd.

For type Dn, when n is even, we enumerate all Cartan subgroups as {Hd
j , 0 6

j 6 n}, where the real rank of Hd
j is j, and we use the superscript d to distinguish

Cartan subgroups of the same real rank but not conjugate to each other. For

example, when n = 4, there are three Cartan subgroups of real rank 2, and they are

labeled by H1
2 , H2

2 , H
3
2 , all of which are isomorphic to R× S1 × C×.

Let γn be the parameter of the principle series. We start with a set of or-

thogonal nonintegral real roots R(γn) = {αk, βk, 1 6 k 6 n/2} of γn, where

αk = e2k−1 − e2k, βk = e2k−1 + e2k, and obtain γdj by taking Cayley transforms

through the roots in R(γn). We attach to each γdj a set of real roots R(γdj ) = {β ∈

R(γn) | β is real for γdj }. Now let γ0 be the parameter of the discrete series with

R(γ0) = φ, γ1
2 be the parameter two steps up from γ0, with R(γ1

2) = {αn/2, βn/2},

γ2
n/2 be the parameter with R(γ2

n/2) = {β1, · · · , βn/2}, and γ3
n/2 be the parame-

ter with R(γ3
n/2) = {β1, · · · , βn/2−1, αn/2}. Observe that when n = 4, γ1

2 is the

representative from the middle Cartan subgroup H1
2 ; when n > 4, choose γ1

n/2 to

be the representative from H1
n/2 with R(γ1

n/2) = {β2, · · · , βn/2, αn/2}. Note that
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it is possible that there exists γ2
n/2, d > 3. In this case, choose γdn/2 such that

{αn/2−1, αn/2, βn/2−1, βn/2} ⊆ R(γdn/2).

Now we claim that if γdj is not one of these four, then it satisfies either condition

(R) or (C), and hence can be ruled out by Lemma 5.3.8.

When j > n/2+2, γdj can be chosen so that {αn/2−1, αn/2, βn/2−1, βn/2} ⊆ R(γdj )

and hence en−2 ± en are real integral roots of γdj .

Now suppose n > 4. We observe that γ1
n/2 satisfies condition (C) since there

is a a quadruple {αn/2−1, αn/2, βn/2−1, βn/2}, where αn/2, βn/2, βn/2−1 are real, and

αn/2−1 is imaginary for γ1
n/2. For d > 3, since {αn/2−1, αn/2, βn/2−1, βn/2} ⊆ R(γdn/2),

en−2 ± en are real imaginary roots of γdn/2, and hence γdn/2 satisfies condition (R).

Any γdn/2+1 is obtained from some γd
′

n/2 by an inverse Cayley transform, that

is, we can choose γdn/2+1 such that R(γdn/2+1) is obtained from R(γd
′

n/2) by adding a

root. But adding a root to R(γd
′

n/2) would result in either a real integral roots or a

quadruple as described in condition (C) for γdn/2+1.

Finally we observe γdj , j > n/2. Every γdn/2 can be obtained from some γd
′

n/2

by a sequence of Cayley transforms through roots in R(γd
′

n/2), that is, γdj is chosen

such that Rd
γj

is obtained by removing roots from R(γd
′

n/2). It turns out that when

j > n/2, there would be a quadruple as described in condition (C) for all γdj , except

γ0 and γ1
2 . We conclude that γ0, γ1

2 , γ2
n/2, γ3

n/2 are the γj’s satisfying condition (∗)

since the number of
∏

RD
(G̃) with a fixed central character is exactly 4. Hence the

theorem follows for type Dn, n > 4, when n is even.

For type Dn, when n is odd, we again enumerate all Cartan subgroups as

{Hd
j , 1 6 j 6 n}, where the real rank of Hd

j is j.
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Let γn be the parameter of the principle series. We start with a set of or-

thogonal nonintegral real roots R(γn) = {αk, βk, 1 6 k 6 (n − 1)/2} of γn, where

αk = e2k−1 − e2k, βk = e2k−1 + e2k, and obtain γdj by taking Cayley transforms

through the roots in R(γn). We attach to each γdj a set of real roots R(γdj ) = {β ∈

R(γn) | β is real for γdj }. Now let γ1 be the representative of the fundamental series

with R(γ1) = φ, γ1
(n−1)/2 be the parameter with R(γ1

(n−1)/2) = {β1, · · · , β(n−1)/2}.

Note that there exists γd(n−1)/2, d > 1. In this case, we choose γdn/2 such that

{α(n−1)/2, β(n−1)/2−1} ⊆ R(γdn/2).

Now we claim that if γdj is a parameter other than γ1 and γ1
(n−1)/2, then it

satisfies either condition (R) or (C), and hence can be ruled out by Lemma 5.3.8.

When j > (n−1)/2+1, γdj can be chosen so that {α(n−1)/2, β(n−1)/2−1} ⊆ R(γdj )

and hence en−2± en are real integral roots of γdj . For the same reason, en−2± en are

also real integral roots of γd(n−1)/2, for d > 1.

The remaining parts to deal with are γdj ’s, j < (n − 1)/2. Every γd(n−1)/2 can

be obtained from some γd
′

(n−1)/2 by a sequence of Cayley transforms through roots

in R(γd
′

(n−1)/2), that is, γdj is chosen such that R(γdj ) is obtained by removing roots

from R(γd
′

(n−1)/2). It turns out that when j < (n− 1)/2, there would be a quadruple

as described in condition (C) for all γdj , except γ1. We conclude that γ0 and γ1
(n−1)/2

are the γj’s satisfying condition (∗) since the number of
∏

RD
(G̃) with a fixed central

character is exactly 2. Hence the theorem follows for type Dn, n > 4, when n is

odd.
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Table 5.8:

Counting for γj’s satisfying (∗) representations in
∏

RD
(G̃)

Type Cartan subgroups real rank Cartan subgroup real rank

An−1

(n even)

(C×)
n
2
−1 × S1 n

2
− 1 (R×)n−1 n− 1

R× × (C×)
n
2
−1 n

2
(C×)

n
2
−1 × S1 n

2
− 1

An−1 (n odd) (C×)
n−1
2

n−1
2

(R×)n−1 n− 1

Dn

(n even)

(S1)n 0 (R×)n n

R× × C× × (S1)n−3 2 (R×)n−3 × C× × S1 n− 2

R× × (C×)
n
2
−1 × S1 n

2
R× × (C×)

n
2
−1 × S1 n

2

R× × (C×)
n
2
−1 × S1 n

2
R× × (C×)

n
2
−1 × S1 n

2

Dn

(n odd)

C× × (S1)n−2 1 (R×)n n

(C×)
n−1
2 × S1 n−1

2
(C×)

n−1
2 × S1 n−1

2

We compare the Cartan subgroups where the γj’s satisfying condition (∗)

when counting |
∏s

ρ/2(G̃)| come from and the ones where the representations in∏s
ρ/2(G̃) =

∏
RD

(G̃) actually come from. Table 5.8 is a summary.

We would like to do the same thing in type E, parallel to the case of type Dn.

Like in type Dn, we can also move to a block D where all integral simple roots are

simple but one, say α. Then there come some difficulties. First, to decompose sα

into a product of simple reflections is never easy, and after having done with that,

we have to keep track of a sequence of inner automorphisms when trying to calculate

the coherent continuation action sα · γ, where γ is a standard module parameter.
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Figure 5.1:
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Even though this complication has not been solved yet, we strongly believe that the

counting |
∏s

ρ/2(G̃)| = |
∏

RD
(G̃)| in Theorem 5.3.9 holds for type E6, E7 and E8.

We conjecture that when we count the number of γj satisfying condition (∗),

those satisfying condition (R) or (C) should be ruled out.

Conjecture 5.3.10. For type E6, E7 and E8, γj does not satisfy condition (∗) if it

satisfy condition (R) or (C).

The Cartan diagrams of type E6 to E8 are listed in Figure 5.1.

For type E6, it can be shown that for every Cartan subgroup Hj of real rank

greater than 2, γj can be chosen to satisfy condition (R). If Conjecture 5.3.10 is
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true, then the only γj satisfying condition (∗) comes from the fundamental Cartan

(C×)2 × (S1)×.

For type E8, it can be shown that if the real rank of the Cartan Hj is at least

4, then γj can be chosen to satisfy condition (R); if the real rank of Hj is greater

than 0, then γj can be chosen to satisfy condition (C). It turns out that the only γj

satisfying condition (∗) comes from the compact Cartan (S1)8 if Conjecture 5.3.10

is true.

For typeE7, we enumerate all Cartans as {H0, H1, H2, H
1
3 , H

2
3 , H

1
4 , H

2
4 , H5, H6, H7}.

Here we denoteH1
4 = (R×)2×(C×)2×S1, H2

4 = R××(C×)3, H1
3 = R××(C×)2×(S1)2,

H2
3 = (C)3 × S1. Here every the real rank of each Hj (or Hd

j ) is j. It can be shown

that for H7, H6, H5, H
1
4 , γj can be chosen to satisfy condition (R), and for H1, H2, H

1
3 ,

γj can be chosen to satisfy condition (C). This means that these Cartans can be

ruled out if Conjecture 5.3.10 is true. We know that the number of representations

in
∏

RD
(G̃) with a fixed central character is two, so we expect we will get two γj’s

satisfying condition (∗). We expect one is from H0, the compact Cartan, as usual,

but we have not had any clues that the other comes from H2
3 or H2

4 .
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Chapter 6: Relation to the pairs (χ,OR)

6.1 Number of Genuine Central Characters and Real Associated Va-

rieties

In Chapter 3 we discuss the real group G such that O ∩ gR 6= φ (see Remark

3.0.6). In Table 6.1, we list the center of these groups, and then the number of

genuine central characters of G̃, compared to the number of real forms of O, which

is denoted #{Oi}.

Therefore we have the following observation, which follows from Tables 5.1

and 6.1.

Lemma 6.1.1. Suppose G is simply laced and split, then |
∏

g (̃G)| = #{Oi}, which

also matches the number of Shimura representations.

Denote

CO(G̃) = {(χ,OR) |χ is a genuine central character of G̃,OR is a real form of O}

Then we have the following theorem.

Theorem 6.1.2. Suppose G is a real form of a simply connected, semisimple com-

plex Lie group, and G̃ is the nontrivial two-fold cover of G. Moreover, suppose G is
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Table 6.1:

G Z(G) Z(G̃) |
∏
g(Z(G̃))| #{Oi}

SL(2m,R) (split) Z2 Z2 × Z2 (m even) Z4

(m odd)

2 2

SL(2m+ 1,R) (split) 1 Z2 1 1

SU(m,m) (quasisplit) Z2m 2m m+ 1

SU(m+ 1,m) (quasisplit) Z2m+1 2m+ 1 m+ 1

Spin(2m+ 1, 2m) (split) Z2 Z2 × Z2 2 2

Spin(2m+ 2, 2m+ 1) (split) Z2 Z2 × Z2 2 1

Spin(2m+ 3, 2m) Z2 Z2 × Z2 2 1

Sp(2n,R) (split) Z2 Z2 × Z2 (n even) Z4

(n odd)

2 2

Spin(2m, 2m) (split) Z2 × Z2 Z2 × Z2 × Z2 (m even)

Z2 × Z4 (m odd)

4 4

Spin(2m+ 1, 2m+ 1) (split) Z2 Z2 × Z2 2 2

Spin(2m+ 1, 2m− 1) (quasisplit) Z2 Z2 × Z2 2 2

Spin(2m+ 2, 2m) (quasisplit) 4 2

Spin(2m+ 3, 2m− 1) Z2 Z2 × Z2 2 2

E6(A1 ×A5) (quasisplit) Z3 3 2

E6(C4) (split) 1 Z2 1 1

E7(A7 (split) Z2 Z2 × Z2 2 2

E8(D8) (split) 1 Z2 1 1

F4(B4) (split) 1 Z2 1 1

G2(A1 ×A1) 1 Z2 1 1
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simply laced and split. Then there is a one-to-one correspondence between
∏s

ρ/2(G̃)

and CO(G̃) .

Proof. We will show this case by case.

First, the theorem is obvious for type An−1, n is odd, E6, and E8, since

|{Shi}| = #{Oi} = |CO(G̃)| = 1; and just map the unique Shimura representa-

tion to the unique pair (χ,OR ∈ CO(G̃).

For type Dn, n = 2m, i.e. G = Spin(2m, 2m). Using the same notations as in

Example 5.2.10. Suppose Oi is the real associated variety of Shi, then each Shi is

corresponding to the pair (χi,Oi). From the first table in Example 5.2.10, we have

the action of Out(G) on genuine central characters of G̃, and hence Out(G) also

permutes the representations and their real associated variety. More precisely, for

ξ ∈Out(G), χξ = χj if and only if Oξi = Oj. For example, all of the representations

π, i = 1, · · · , 4, have different real associated varieties, and similar for δi’s and τi’s.

Furthermore, from Table 5.4 and 5.5 of Section 5.2, we observe that Sh1, π2, δ3, τ4

have the same asymptotic K-types, and hence they share the same real associated

variety, say, O1, Similarly, O2, O3 andO4 are shared by four different representations

from
∏s

ρ/2(G̃), respectively. Therefore, we have the precise correspondence between∏s
ρ/2(G̃) and CO(G̃) illustrated in Table 6.3. (Note that every representation is

parametrized by the highest weight of its lowest K-type.)

Similary, for type Dn, n = 2m + 1, we have the correspondence illustrated in

Table 6.5, which follows from Table 5.6.
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Table 6.3:

O1 O2 O3 O4

χ1 Sh1 π1 δ1 τ1

( 12 , · · · ,
1
2 ; 0, · · · , 0) ( 32 ,

1
2 , · · · ,−

1
2 ; 0, · · · , 0) ( 12 , · · · ,

1
2 ; 1, · · · , 1) ( 12 , · · · ,

1
2 ; 1, · · · ,−1)

χ2 π2 Sh2 τ2 δ2

( 32 ,
1
2 , · · · ,

1
2 ; 0, · · · , 0) ( 12 , · · · ,−

1
2 ; 0, · · · , 0) ( 12 , · · · ,−

1
2 ; 1, · · · , 1) ( 12 , · · · ,−

1
2 ; 1, · · · ,−1)

χ3 δ3 τ3 Sh3 π3

(1, · · · , 1; 1
2 , · · · ,

1
2 ) (1, · · · ,−1; 1

2 , · · · ,
1
2 ) (0, · · · , 0; 1

2 , · · · ,
1
2 ) (0, · · · , 0; 3

2 ,
1
2 , · · · ,−

1
2 )

χ4 τ4 δ4 π4 Sh4

(1, · · · , 1; 1
2 , · · · ,−

1
2 ) (1, · · · ,−1; 1

2 , · · · ,−
1
2 ) (0, · · · , 0; 3

2 ,
1
2 , · · · ,

1
2 ) (0, · · · , 0; 1

2 , · · · ,−
1
2 )

Table 6.5:

O1 O2

χ1 Sh1 π1

( 12 , · · · ,
1
2 ; 0, · · · , 0) ( 32 ,

1
2 , · · · ,

1
2 ; 0, · · · , 0)

χ2 π2 Sh2

(0, · · · , 0; 3
2 ,

1
2 , · · · ,

1
2 ) (0, · · · , 0; 1

2 , · · · ,
1
2 )
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Chapter 7: Lifting of the Trivial Representation

In this chapter, we will restrict the attention to the simply laced real groups.

More precisely, the setting is stated in the beginning of the introduction. Let GC be a

simply connected, semisimple, simply laced complex Lie group, andG be a connected

real form of GC with nontrivial fundamental group, and consider the nontrivial two-

fold cover G̃ of G. Now we’re going to introduce the key tool, the lifting operator,

which relates genuine characters of G̃ to characters of G. By character we mean

the character of a representation, viewed as a function on the regular semisimple

elements.

7.1 Lifting Operator

Now suppose π ∈ Ĝadm, with character Θπ viewed as a function on G′, the set

of regular semisimple elements of G.

Definition 7.1.1. Let π ∈ Ĝadm, with character Θπ. We say π and Θπ are stable

if Θπ is invariant under conjugation of GC, that is, Θπ(g) = Θπ(g′) if g, g′ ∈ G′ and

g′ = xgx−1 for some x ∈ G(C).

Suppose H is a Cartan subgroup of G and Φ+ is a set of positive roots of H

in G. For h ∈ H we have the Weyl denominator
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|D(h)| 12 = |
∏

α∈Φ+

(1− α−1(h))||eρ(h)| (see [4]).

Definition 7.1.2. (see [4]) Suppose π ∈ Ĝadm and π is stable. For g̃ ∈ G̃′, define

LiftG̃G(Θπ)(g̃) =
∑

{h∈G|h2=p(g̃)}
∆(h, g̃)Θπ(h).

Here ∆(h, g̃) is a certain function on G′ × G̃′ satisfying the following conditions:

∆(h, g̃) = 0 unless h2 = p(g̃)

|∆(h, g̃)| = |D(h)| 12/|D(g̃)| 12

∆(xhx−1, x̃g̃x̃−1) = ∆(h, g̃) (x̃ ∈ G̃, x = p(x̃))

∆(h,−g̃) = −∆(h, g̃)

By section 5 in [4], since GC is simply connected and semisimple, the function ∆ is

canonical.

The following theorem is a special case of the main theorem of [4]. Since GC

is simply connected and semisimple, a simplified version of Section 5 in [4] applies.

Theorem 7.1.3. Assume the setting in the beginning of this chapter. Then there

is a canonical function (see Section 5 in [4]) ∆(h, g̃) satisfying the conditions in

Definition 7.1.2, such that for all stable admissible representation π of G,

Lift(Θπ)(g̃) =
∑

{h∈G|h2=p(g̃)}
∆(h, g̃)Θπ(h)

is the character of a genuine virtual representation π̃ of G̃, or 0. We say π̃ is the

lift of π and write π̃ =LiftG̃G(π), where Θπ̃ =LiftG̃G(Θπ).

Because of this theorem, for a stable admissible representation π of G, we will

denote LiftG̃G(π) as a set as follows. If LiftG̃G(π) =
∑̃
π

aπ̃π̃, for aπ̃ ∈ Z and π̃ ∈
∏

g(G̃),

the set of genuine irreducible representations of G̃, then the set
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LiftG̃G(π) = {π̃ ∈
∏

g(G̃) | aπ̃ 6= 0},

and this is a finite set of irreducible genuine representations due to Theorem 7.1.3.

Lifting of regular characters is also defined (see Theorem 19.1 in [4]), and is

written as γ̃ =LiftG̃G(γ). Lifting of a stable sum of standard modules is also well-

understood in [4] (see Corollary 19.8). We quote the important result as follows.

Let IstG (γ) be a stable sum of standard modules of G with parameter γ, Wi be the

imaginary Weyl group, then

Theorem 7.1.4. ( [4]) Let {γ̃1, · · · , γ̃n} be the set of constituents of LiftG̃G(wγ) as

w runs over Wi, considered without multiplicity. Then

LiftG̃G(IstG (γ)) = C(H)
n∑
i=1

IG̃(γ̃i),

where C(H) = c(H)/c(Hs), c(H) = |H0
2 ||H/Z0(H)| 12 , Hs is the maximally split

Cartan subgroup of G, H0
2 is the subgroup of elements of order 2 in the identity

component of H, Z0(H) = p(Z(H̃)). Note that all the constituents have distinct

central characters, so are a fortiori distinct, and that C(H) is normalized so that

C(Hs) = 1.

Now restrict the attention to one-dimensional representations. Since G is

connected, the only one-dimensional representation is C, the trivial representation.

We are interested in the representations in the set LiftG̃G(C), which will be written

as Lift(C) for simplicity. It’s not surprising that the representations in Lift(C) are

small in the sense that we discussed in Definition 2.1.6 in Chapter 2.
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7.2 Properties of representations in Lift(C)

In [5], when G = GL(n,R), π̃ =LiftG̃G(π) has infinitesimal character ρ/2 and

maximal τ -invariant for one-dimensional representation π of G, assuming π̃ 6= 0.

The same is true for various simply laced connected group G. Before stating the

result, we need some Lemmas.

Lemma 7.2.1. Let π be a stable admissible virtual representation of G with infinites-

imal character λ. Assume that Lift(π) 6= φ, then every π̃ ∈Lift(π) has infinitesimal

character λ/2.

Proof. In fact, we just need to show the case for standard modules since standard

modules span virtual modules.

Let IstG (γ) be a stable sum of standard modules, and γ = (H,Γ, λ) be the

regular character parametrizing it. By Definition 17.5 in [4], we can define formal

lifting data of G̃ if LiftH̃H(Γ) 6= 0, say, LiftG̃G(γ) = {γ̃1, · · · , γ̃n}, where each γ̃i =

(H̃, Γ̃i,
1

2
(λ − µ)) is a genuine regular character of G̃. It turns out that each γ̃i

has infinitesimal character λ/2 since GC is simple and simply connected, lifting is

canonical and µ = 0 (see chapter 5 in [4]). Now by Theorem 7.1.4, LiftG̃G(IstG (γ)) is

a sum of IG̃(γ̃i) and hence the infinitesimal character of LiftG̃G(IstG (γ)) is λ/2.

Lemma 7.2.2. Let π be a representation of G described as in Lemma 7.2.1 and F

be a finite dimensional representation of G̃ (as well as of G) with the set of weights

4(F ), then

Lift(π)⊗ F =Lift(π ⊗ F ′)
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for some virtual finite dimensional representation F ′ with weights 4(F ′) = 24(F ).

Proof. The proof is analogous to the case of GL(n,R), see [5].

Now we are ready to prove the following result.

Theorem 7.2.3. Let 0 6= π̃ ∈Lift(C). Then π̃ has infinitesimal character ρ/2 and

maximal τ -invariant.

Proof. The first assertion of the theorem is a corollary of Lemma 7.2.1 since the

infinitesimal character of C is ρ.

To show that π̃ has maximal τ -invariant, we will show that ψα(π̃) = 0 for

all α ∈
∏

(ρ/2), where ψα is the Zuckerman translation functor to the α-wall. Fix

α ∈
∏

(ρ/2) and let λ be singular with respect to α and suppose γ = ρ/2 − λ is

a weight. (Indeed, Let c =< ρ/2, α∨ >∈ Z and λ can be chosen to be ρ/2 − cλα,

where λα is the fundamental weight for α, and hence it’s easy to check that λ is

singular for α. Thus, γ = ρ/2−λ = cλα is a weight.) Since GC is simply connected,

γ is the highest weight of a finite dimensional representation, say, F . Let 4(F ) be

the set of its weights. The goal is to show that none of the constituents in π̃ ⊗ F

have infinitesimal character λ.

Let F ′ be the virtual finite dimensional representation as in Lemma 7.2.2, and

hence by the same Lemma we have

π̃ ⊗ F ∈ Lift(C⊗ F ′) =Lift(
∑

µ∈4(F )

π(ρ+ 2µ)),

assuming that C = π(ρ) and each π(ρ+ 2µ) has infinitesimal character ρ+ 2µ. By

Lemma 2.1.5, none of these π(ρ + 2µ)’s have infinitesimal character 2λ, and hence
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none of the representations of Lift(C ⊗ F ′) have infinitesimal character λ, and we

conclude that none of the constituents of π̃⊗F has infinitesimal character λ. Then

the theorem follows.

We will apply the same notation in Chapter 2 to G̃, except that
∏s

λ(G̃) and∏O
λ (G̃) denote the sets of genuine representations of G̃ possessing the respective

properties. Since we just care about simply laced groups, λ = ρ/2. Therefore we

have the theorem.

Corollary 7.2.4. Assume the setting in the beginning of the chapter for G and G̃.

Then

Lift(C) ⊆
∏s

ρ/2(G̃).

Then from Theorem 2.2.3, we have the picture:

Lift(C) ⊆
∏s

ρ/2(G̃) =
∏O

ρ/2(G̃)

Corollary 7.2.5. LiftG̃G(C) = 0 if G is not in Tables 3.1, 3.5, and 3.7 in Chapter

3. Therefore, if LiftG̃G(C) 6= 0 then G is quasisplit with one exception.

7.3 Characterization of Lift(C) for split groups

In this section we suppose that G is split. We want to describe Lift(C) more

explicitly. In fact we will show that every representation in
∏

RD
(G̃) (defined in

Section 5.2.2) is in Lift(C).

Let IG(γ0) be the standard module of C and write C as a sum of standard

modules, say, C =
∑
γ

M(γ, γ0)IG(γ). Then after lifting, we get
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LiftG̃G(C) =
∑

some γ̃

cγ̃IG̃(γ̃) some coefficient cγ̃ (7.3.1)

Next let ĨShi denote the standard module of the Shimura representation Shi

with central character χi. Then we can write ĨShi = IG̃(γ̃i), where γ̃i = (H̃, Γ̃i, γ̃i)

with Γ̃i|Z(G̃) = χi and γ̃i ∼ ρ/2. Then we have the Lemma.

Lemma 7.3.1. LiftG̃G(IG(γ0)) 6= 0 and LiftG̃G(IG(γ0)) =
∑
i

IG̃(γ̃i).

Proof. This is a corollary of Theorem 7.1.4.

Let S ∈ RD and πi = cS(Shi) ∈
∏

RD
(G̃). Now define IS,i to be the family

of standard modules Ĩ of G̃ obtained from ĨShi by a sequence of inverse Cayley

transforms cS′ , where S ′ is a subset of S. Then we have the following Lemma.

Lemma 7.3.2. Fix S ∈ RD and fix a Shimura representation Shi with central

character χi. Also assume the above notations and let ν̃i be the regular character

specifying πi, say, the standard module of πi, denoted Ĩπi, is equal to IG̃(ν̃i). Then

(1) for every S ′ ⊆ S, M(cS′(γ0), γ0) 6= 0, i.e. every IG(cS′(γ0)) occurs in the char-

acter formula of C;

(2) for every S ′ ⊆ S, IG(cS′(γ0)) is a stable sum of standard modules and Lift(IG(cS′(γ0))) 6=

0. Moreover, Lift(IG(cS′(γ0))) = cS′(LiftG̃G((IG(γ0)))) =
∑
i

IG̃(cS′(γ̃i)).

(3) For a genuine regular character γ̃ of G̃, m(ν̃i, γ̃) 6= 0 if and only if γ̃ = cS′(γ̃i)

for some S ′ ⊆ S. In this case, we have m(ν̃i, γ̃) = 1. This means that all of the

standard modules in IS,i appear in Equation 7.3.1, and they are the only standard

modules of G̃ containing πi = cS(Shi).
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Proof. The third part of this Lemma is obvious when S = {φ}. In this case, IS,i =

{ĨShi}, and ĨShi appears in Equation 7.3.1 because of Lemma 7.3.1 and no other

standard modules rather that ĨShi since ĨShi is the only standard module coming

from the split Cartan H̃ with central character χi.

Theorem 7.3.3.
∏

RD
(G̃) ⊆ Lift(C).

Proof. We just need to show that the coefficient of each π ∈
∏

RD
(G̃) in Equation

7.3.1 is nonzero. By Lemma 7.3.2 (3), one needs to compute the coefficients of

Ĩ ∈ IS,i for every S ∈ RD and every χi.

It is obvious that every Shimura representation is in Lift(C) since the only

standard modules containing Shimura representations in Equation 7.3.1 are ĨShi ’s.

Therefore, we just need to show the theorem when |
∏

RD
(G̃)| > 1. Also, it suffices

to compute the coefficients of every Ĩ ∈ IS,i for nonempty S. Let πi = cS(Shi). By

Lemma 4.1.2, 7.1.4, 7.3.2, the coefficient of πi in Lift(C) is

cπi =
∑
S′⊆S

∑
γS′

(−1)l(γ0)−l(γS′ )C(HS′), (7.3.2)

where γS′ = cS′(γ) is defined on HS′ . So we compute the coefficient cπi case by case

as follows (see Table 7.1 to 7.4).

For type An−1, n = 2m is even:

When S = {α1, α3, · · · , αn−1},

cπi =
m−1∑
k=0

(−1)kCm
k + (−1)m · 2,

which is 1 when m is even, and is −1 when m is odd.
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For type Dn, n = 2m is even:

When S = {αn−1, αn}, cπi = 1− 2 · 1 + 2 = 1.

When S = {α1, α3, · · · , αn−3, αn−1} or {α1, α3, · · · , αn−3, αn},

cπi =
m−1∑
k=0

(−1)kCm
k + (−1)m · 2,

which is 1 when m is even, and is −1 when m is odd.

For type Dn, n = 2m+ 1 is odd:

This case is the same as the case when n is even and S = {αn−1, αn}.

For type E7:

When S = {α1, α3, · · · , α7}, cπi = 1− 3 + 3− 2 = −1.

Since cπi 6= 0 for every π = cS(Shi), S ∈ RD, we conclude that
∏

RD
(G̃) ⊆Lift(C).
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Table 7.1: Type An−1, n = 2m

S S ′ #{S ′} HS′ C(HS′)

{α1, α3, · · · , αn−1}

{φ} 1 (R×)n−1 1

{αi}, i = 1, 3, · · ·n− 1 Cm
1 (R×)n−3 × C× 1

...
...

...
...

{αi1 , · · · , αik} Cm
k (R×)n−1−2k × (C×)k 1

...
...

...
...

S − {αi} Cm
m−1 R× × (C×)m−1 1

S 1 (C×)m−1 × S1 2
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Table 7.2: Type Dn, n = 2m

S S ′ #{S ′} HS′ C(HS′)

{αn−1, αn}

{φ} 1 (R×)n 1

{αi}, i = n− 1, n 2 (R×)n−2 × C× 1

S 1 (R×)n−3 × C× × S1 2

{α1, α3, · · · , αn−3, αn−1}

{φ} 1 (R×)n 1

{αi}, i = 1, 3, · · ·n− 1 Cm
1 (R×)n−2 × C× 1

...
...

...
...

{αi1 , · · · , αik} Cm
k (R×)n−2k × (C×)k 1

...
...

...
...

S − {αi} Cm
m−1 (R×)2 × (C×)m−1 1

S 1 R× × (C×)m−1 × S1 2

{α1, α3, · · · , αn−3, αn}

{φ} 1 (R×)n 1

{αi}, i = 1, 3, · · ·n Cm
1 (R×)n−2 × C× 1

...
...

...
...

{αi1 , · · · , αik} Cm
k (R×)n−2k × (C×)k 1

...
...

...
...

S − {αi} Cm
m−1 (R×)2 × (C×)m−1 1

S 1 R× × (C×)m−1 × S1 2
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Table 7.3: Type Dn, n = 2m+ 1

S S ′ #{S ′} HS′ C(HS′)

{αn−1, αn}

{φ} 1 (R×)n 1

{αi}, i = n− 1, n 2 (R×)n−2 × C× 1

S 1 (R×)n−3 × C× × S1 2

Table 7.4: Type E7

S S ′ #{S ′} HS′ C(HS′)

{α1, α3, · · · , α7}

{φ} 1 (R×)7 1

{αi}, i = 1, 3, 7 3 (R×)5 × C× 1

{αi, αj}, {i, j} ∈ {1, 3, 7} 3 (R×)3 × (C×)2 1

S 1 (R×)2 × (C×)2 × S1 2
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