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Light-emitting diode (LED) applications have expanded from display 

backlighting in computers and smart phones to more demanding applications including 

automotive headlights and street lightening. With these new applications, LED 

manufacturers must ensure that their products meet the performance requirements 

expected by end users, which in many cases require lifetimes of 10 years or more. The 

qualification tests traditionally conducted to assess such lifetimes are often as long as 

6,000 hours, yet even this length of time does not guarantee that the lifetime 

requirements will be met. 

This research aims to reduce the qualification time by employing anomaly 

detection and prognostic methods utilizing optical, electrical, and thermal parameters 

of LEDs. The outcome of this research will be an in-situ monitoring approach that 

enables parameter sensing, data acquisition, and signal processing to identify the 



 

potential failure modes such as electrical, thermal, and optical degradation during the 

qualification test. To detect anomalies, a similarity-based-metric test has been 

developed to identify anomalies without utilizing historical libraries of healthy and 

unhealthy data. This similarity-based-metric test extracts features from the spectral 

power distributions using peak analysis, reduces the dimensionality of the features by 

using principal component analysis, and partitions the data set of principal components 

into groups using a KNN-kernel density-based clustering technique. A detection 

algorithm then evaluates the distances from the centroid of each cluster to each test 

point and detects anomalies when the distance is greater than the threshold. From this 

analysis, dominant degradation processes associated with the LED die and phosphors 

in the LED package can be identified. When implemented, the results of this research 

will enable a short qualification time. 

Prognostics of LEDs are developed with spectral power distribution (SPD) 

prediction for color failure. SPD is deconvoluted with die SPD and phosphor SPD with 

asymmetric double sigmoidal functions. Future SPD is predicted by using the particle 

filter algorithm to estimate the propagating parameters of the asymmetric double 

sigmoidal functions. Diagnostics is enabled by SPD prediction to indicate die 

degradation, phosphor degradation, or package degradation based on the nature of 

degradation shape of SPD. SPDs are converted to light output and 1976 CIE color 

coordinates using colorimetric conversion with color matching functions. Remaining 

useful life (RUL) is predicted using 7-step SDCM (standard deviation of color 

matching) threshold (i.e., 0.007 color distance in the CIE 1676 chromaticity 

coordinates).   



 

To conduct prognostics utilizing historical libraries of healthy and unhealthy 

data from other devices, this research employs similarity-based statistical measures for 

a prognostics-based qualification method using optical, electrical, and thermal 

covariates as health indices. Prognostics is conducted using the similarity-based 

statistical measure with relevance vector machine regression to capture degradation 

trends. Historical training data is used to extract features and define failure thresholds. 

Based on the relevance vector machine regression results, which construct the 

background health knowledge from historical training units, the similarity weight is 

used to measure the similarity between each training unit and test unit under the test. 

The weighted sum is then used to estimate the remaining useful life of the test unit. 
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CHAPTER 1 Introduction 

This research will enable LED manufacturers to quickly qualify LED 

prototypes during the development phase under wear-out performance degradation and 

an unknown failure distribution. This is a benefit because market pressures demand a 

short qualification testing cycle. A prognostics-based qualification process will 

evaluate the product reliability in test conditions that accelerate potential failure 

mechanisms at associated sites, to assess LED degradation, detect anomalies, and 

estimate the remaining useful life (RUL). By employing the  methodology developed 

in this project, both the qualification test time and costs will be reduced from those in 

traditional qualification testing allowing LED manufacturers to meet customer 

requirements based on the intended application and application conditions. 

1.1 Key Issues 

A major hurdle for getting new LED products to the market quickly is the 

amount of time it takes to qualify them. Conventional LED qualification processes do 

not meet the needs of quick qualification. The following key issues and problems with 

current LED qualification testing will be addressed by our proposed research: 

1) Current qualification testing methods based on lumen maintenance (as a 

failure mode) do not distinguish between failure mechanisms of LEDs since 

all failures affect light output degradation [1][2]. Therefore, the current 

product qualification does not provide detailed information on the failure 

modes, failure mechanisms, and failure sites of LEDs. Chang et al. [1] 

investigated and grouped thirteen failure mechanisms of LEDs in terms of 
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three failure sites: semiconductors, interconnects, and package. Each failure 

mechanism is associated with failure cause, effect on device, and failure 

mode. It is confirmed that there are multiple types of failure modes beyond 

the light output degradation in terms of electrical, thermal, and color 

features such as reverse leakage current, parasitic series resistance, short 

circuit, open circuit, forward voltage, discoloration of the encapsulant, 

broadening of spectrum, color coordinates shift, and color temperature shift 

[1][2]. A new product qualification method is required to consider all of 

these failure modes which tell the difference among failure mechanisms 

more clearly. 

2) Qualification test time varies depending on the manufacturer, and test 

results do not offer reliability information about the product when the tests 

do not include failures. It can take several months to complete operating life 

tests even when the tests are time-terminated [3]. An accelerated test to 

reduce the qualification test time is used to predict the lifetime of LEDs by 

multiplying the light output (i.e., lumen) degradation projection by an 

acceleration factor, often based on the Arrhenius model [4][5]. However, 

there is no relationship to relate the time under accelerated test conditions to 

the time under field conditions with the consideration of actual LED failure 

mechanisms. Additionally, the extrapolation of LED lifetime based on 

lumen maintenance under the accelerated test condition is affected by 

factors such as the number of samples tested, the assumed activation 

energy, possible failure mechanism shift, and the length of testing [6]-[8]. 
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Current life prediction method does not perform remaining useful life 

estimation during operation. 

3) Major LED manufacturers such as Cree and Nichia evaluate LED failure 

criteria in terms of light output maintenance, forward voltage shift, and uv 

shift [9]-[11]. The failure threshold for each parameter varies depending on 

the manufacturers, applications, and materials. Due to the variability and 

complexity of these failure thresholds, it is difficult to evaluate and perform 

product qualification for different products at the same time. The 

acceptance criteria are usually a binary pass or fail in terms of those 

parameter thresholds. Manufacturers do not fully analyze the degradation 

trends and results by utilizing the failure criteria for the qualification tests 

which require the anomaly detection and the prediction of remaining useful 

life to reduce the qualification test time. 

4) The Illuminating Engineering Society (IES) recommends that LED 

manufacturers collect color shift data over 6,000 hours of operations [12]; 

however, a life prediction method in terms of color failure of LEDs has not 

been developed. Color shift is difficult to extrapolate because of differences 

in the LED designs, materials, manufacturing processes, optics applied to 

the LED, and use conditions of LED operation. LED color change has been 

studied under different current loads [13]-[15]. There is no model that 

provides detailed information on color degradation. 
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A new product qualification method is needed that not only reduces the time 

needed for the qualification process, but also improves life prediction and ensures the 

reliability of LEDs over their lifetimes. 

1.2 Purpose of Investigation 

We will investigate and develop a method to reduce LED qualification time by 

developing prognostic techniques that can be applied to various degradation features, 

including optical, electrical, and thermal failure precursors, in different types of LEDs 

due to diverse LED design and material to meet demands of the requirements of 

specific applications. We will develop an in-situ monitoring system that enables test 

process, parameter sensing, data acquisition, and signal processing for 

prognostics-based product qualification method of LEDs. We will develop a 

qualification method for LEDs by analyzing test data to detect anomalies and predict 

the remaining useful life of LEDs in a shorter timeframe than is allowed by 

conventional qualification methods. 

1.3 Significance 

LEDs are being used in an ever-increasing variety of applications, including 

television display backlighting, communications, medical equipment, signage, and 

general illumination [16]–[21]. As the number of LED applications increases, LED 

manufacturers need to ensure that new products meet the quality and performance 

expected by commercial end users and that there are reliable savings for utilities. There 

is a demand on the manufacturers to perform qualification testing quickly. However, 

the conventional qualification tests are not working. There have been a large number of 
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LEDs that have passed qualification tests, but have failed in the field. As a result, many 

companies have incurred costs of these failures. For example, in 2006, it was reported 

that mounted LED stop lights in the Washington D.C. area had observable lens fading, 

premature LED dimming, or outright failures due to heat or moisture failings of LEDs 

or LED circuit boards [22]. LED traffic signal lights have failed in operational control 

of traffic at intersections in snow-prone areas of the U.S. due to a lack of heat to prevent 

snow buildup in their fixtures and poor power board quality [23]. Additionally, the 

failure rate of the 20,000 LED street lamps installed between 2009 and 2011 in Taiwan 

was about 8.2% as of 2011 [23]. With China’s 12th Five-Year Plan (i.e., a new national 

development program approved by China’s National People’s Congress for five years 

from 2011 to 2015) and increasing LED adoption in Europe and the U.S., the LED 

industry is optimistic about the global LED street lighting market, but the quality and 

performance of products remain a concern. The best performance of life was 8,000 

hours under the condition without adjusting the brightness according to data from the 

Government-Backed Industry Technology Research Institute [24]. 

Customers want LED manufacturers to guarantee the lifetime of their LED 

products. This demand combined with the market gap that will be opening up as 

incandescent bulbs are phased out, has created the potential for a competitive edge for 

LED manufacturers who can guarantee the reliability of their products for the widest 

array of applications,  while at the same time getting their products to market the 

fastest. 
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1.4 Objectives 

The conventional qualification tests used by LED manufacturers often take a 

long time (more than 6,000 hours) to detect anomalies, and often produce remaining 

useful life predictions that are at odds with how the LEDs perform in the field. Our 

prognostics-based qualification method overcomes the addressed key issues by taking 

into account all failure precursors to detect all possible failure modes in a more 

accurate and faster manner than the conventional approach. The objectives of this 

project are as follows: 

1) To develop an in-situ monitoring system that enables parameter sensing, 

data acquisition, and signal processing to collect potential failure modes 

including electrical and thermal degradation parameters which are readily 

measurable accompanied with offline-based optical measurements 

including color features during the qualification testing period. 

2) To investigate and formulate a means to reduce qualification time by 

developing prognostic techniques considering degradation dynamics and 

unit-to-unit variation that can be applied to various degradation parameters 

in LEDs, including optical, electrical, and thermal failure precursors. 

3) To develop a prognostics-based product qualification method to detect 

anomalies and predict the remaining useful life (RUL) of LEDs in a shorter 

timeframe than is allowed by conventional qualification methods, based on 

a similarity-based-metric test that was developed to identify anomalies 

without utilizing historical libraries of healthy and unhealthy data for 

anomaly detection. A detection algorithm evaluates the distances from the 
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centroid of each cluster to each test point and detects anomalies when the 

distance is greater than the threshold. To predict RUL of LEDs, prognostics 

of LEDs are developed with spectral power distribution (SPD) prediction 

for color failure to indicate potential LED degradation such as the LED die 

degradation, phosphor degradation, and encapsulant degradation. SPD is 

deconvoluted with die SPD and phosphor SPD with asymmetric double 

sigmoidal functions. Future SPD is predicted by using the particle filter 

algorithm to estimate the propagating parameters of the asymmetric double 

sigmoidal functions. 

4) To develop similarity-based prognostics with Bayesian machine learning 

techniques to extract features and to define different failure thresholds of 

each LED. Based on a comparison between the training data and the test 

data, the anomaly detection and the remaining useful life estimates for the 

test unit will be determined using electrical and thermal failure precursors 

by establishing the relationship between light quality and the electrical and 

thermal parameters. 
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CHAPTER 2 Literature Review 

Prognostics-based qualification includes two parts: anomaly detection and 

RUL prediction. Anomaly detection is required for the qualification testing to provide 

users with an early time to begin remaining useful life (RUL) prediction. This chapter 

summarizes the studies related to light emitting diodes, qualification test of LEDs, 

anomaly detection, and prognostics-based RUL prediction of LEDs. 

2.1 Light Emitting Diodes (LEDs) 

Light emitting diodes (LEDs) are a solid-state lighting source increasingly 

being used in display backlighting, communications, medical services, signage, and 

general illumination [16]-[21]. LEDs offer design flexibility, from zero-dimensional 

lighting (dot-scale lighting) to three-dimensional lighting (color dimming using 

combinations of colors), with one-dimensional lighting (line-scale lighting) and 

two-dimensional lighting (local dimming, i.e., area-scale lighting) in between. LEDs 

have small exterior outline dimensions, often less than 10mm × 10mm. LEDs, when 

designed properly, offer high energy efficiency that results in lower power 

consumption (energy savings) with low voltage (generally less than 4 volts) and low 

current operation (usually less than 700 mA). LEDs can have longer life—up to 50,000 

hours—with better thermal management than conventional lighting sources (e.g., 

fluorescent lamps and incandescent lamps). LEDs provide high performance, such as 

ultra-high-speed response time (micro-second-level on-off switching), a wider range of 

controllable color temperatures (4,500K–12,000K), a wider operating temperature 

range (-20°C–85°C), and no low-temperature startup problems. In addition, LEDs have 
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better mechanical impact resistance compared to traditional lighting. LEDs are also 

eco-friendly products with no mercury and low health impact due to low UV radiation. 

LEDs that have a single color are over ten times more efficient than incandescent lamps. 

White LEDs are more than twice as efficient as incandescent lamps [18].  

LEDs range from a narrow spectral band emitting light of a single color, such as 

red, yellow, green, or blue, to a wider spectral band light of white with a different 

distribution of luminous intensity and spectrums and shades depending on color mixing 

and package design. A recent trend in LEDs to produce white light involves using blue 

LEDs with phosphors. White light is a mixture of all visible wavelengths, as shown in 

Figure 1. Along with the prominent blue color (peak wavelength range 455–490nm), 

there are other wavelengths, including green (515–570nm), yellow (570–600nm), and 

red (625–720nm) that constitute white light. Every LED color is represented by unique 

x-y coordinates, as shown in Figure 2. The CIE (Commission Internationale De 

L'eclairage (International Commission on Illumination)) chromaticity coordinates of x, 

y, and z are a ratio of the red, green, and blue stimulation of light compared to the total 

amount of the red, green, and blue stimulation. The sum of the RGB values (x + y + z) 

is equal to 1. The white area of the chromaticity diagram can be expanded, and 

boundaries are added to create each color range. The color temperatures and the 

Planckian locus (black body curve) show how they relate to the chromaticity 

coordinates [19].  

The color temperature of a white light is defined as the temperature of an ideal 

Planckian black-body radiator that radiates light of comparable hue to that white light 

source. The color temperature of light is equal to the surface temperature of an ideal 
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black-body radiator in Kelvin heated by thermal radiation. When the black body 

radiator is heated to high temperatures, the heated black body emits colors starting at 

red and progressing through orange, yellow, white, and finally to bluish white. The 

Planckian locus starts out in the red, then moves through the orange and yellow, and 

finally enters the white region. The color temperature of a light source is regarded as 

the temperature of a Planckian black-body radiator that has the same chromaticity 

coordinates. As the temperature of the black body increases, the chromaticity location 

moves from the red wavelength range toward the center of the diagram in Figure 2.  

LED degradation not only results in reduced light output but also in color 

changes. LED modules are composed of many LEDs. This means that if some number 

of LEDs experience color changes, it will be noticed by users. Even if all of the LEDs 

degrade at the same rate, LED modules need to maintain their initial color, especially 

for indoor lighting and backlighting applications.  

 
Figure 1 Spectral power distribution for a white LED. 
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Figure 2 CIE 1931 Chromaticity Diagram [19]. 

 LED application areas include LCD backlights, displays, transportation 

equipment lighting, and general lighting (see Table 1). LEDs are used as a light source 

for LCD backlights in products such as mobile phones, cameras, portable media 

players, notebooks, monitors, and TVs. Display applications include LED electronic 

scoreboards, outdoor billboards, and signage lighting, such as LED strips and lighting 

bars. Examples of transportation equipment lighting areas are passenger vehicle and 

train lighting (e.g., meter backlights, tail and brake lights) [25], and ship and airplane 

lighting (e.g., flight error lighting and searchlights). General lighting applications are 

divided into indoor lighting (e.g., LED lighting bulbs, desk lighting, and surface 

lighting) [26][27], outdoor lighting (e.g., decorative lighting, street/bridge lighting, and 

stadium lighting), and special lighting (e.g., elevator lighting and appliance lighting) 

[28][29]. The use of LEDs in general lighting has increased, beginning with street 
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lighting in public areas and moving onto commercial/business lighting and consumer 

applications.  

Table 1 Application Areas of LEDs 

Application Area Application Examples 

LCD backlight 

· Mobile phones 
· Cameras 
· Portable media players (PMPs) 
· Notebooks 
· Monitors 
· TVs 

Displays 
· Electric scoreboards 
· Outdoor billboards 
· Signage lighting 

Transportation 
equipment lighting

· Vehicle/train lighting 
· Ship/airplane lighting 

General lighting 
· Indoor lighting 
· Outdoor lighting 
· Special lighting 

The history of LED development can be divided into three generations, each of 

which is characterized by distinct advancements in fabrication technology and 

equipment, development of new phosphor materials, and advancements in heat 

dissipation packaging technologies. Over time, LEDs have been becoming brighter, 

and color variance has been becoming more flexible. Light efficiency and light efficacy 

have also been improving. The first commercialized LED was produced in the late 

1960s. This first generation of LEDs lasted from the 1960s until the 1980s. In this 

period, major application areas were machinery status indicators and alpha-numeric 

displays. The first commercially successful high-brightness LED (300mcd) was 

developed by Fairchild in the 1980s. In the second generation, from the 1990s to the 

present, high-brightness LEDs became popular. The main application areas for the 

second generation include motion displays, LED flashers, LED back light units (BLUs), 

mobile phones, automotive LED lighting, and architecture lighting. The third 

generation is now arriving in the market. These LEDs have been developed for 
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substantial savings in energy consumption and reduction in environmental pollution. 

Future LED application areas are expected to include general lighting, lighting 

communication [30], medical/environmental fields, and critical applications in system 

controls. Some examples are portable LED projectors, large-size LED backlighting 

displays, LED general lighting, visible light communication, purifiers, and bio-medical 

sensors. Moore’s Law predicts the doubling of the number of Si transistors in a chip 

every 18–24 months. Similarly, for LEDs, luminous output (luminous flux, measured 

in lm) appears to follow Haitz’s Law, which states that LED flux per package has 

doubled every 18–24 months for more than 30 years [17]. This trend in the 

technological advancement of LEDs is based on industry-driven R&D efforts targeting 

high-efficiency, low-cost technology solutions that can successfully provide an 

energy-saving alternative to the recent applications of LEDs. 

LED dies are composed of a p-junction, a quantum well (active layer) or 

multiple quantum wells, and an n-junction. LEDs emit light due to the injection 

electroluminescence effect in compound semiconductor structures. When a p-n 

junction is biased in the forward direction, electrons in the n-junction have sufficient 

energy to move across the boundary layer into the p-junction, and holes are injected 

from the p-junction across the active layer into the n-junction. The active region of an 

ideal LED emits one photon for every electron injected. Each charged quantum particle 

(electron) produces one light quantum particle (photon). Thus, an ideal active region of 

an LED has a quantum efficiency of unity. The internal quantum efficiency is defined 

as the number of photons emitted from an active region per second divided by the 

number of electrons injected into the LED per second. The light extraction efficiency is 
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defined as the number of photons emitted into free space per second divided by the 

number of photons emitted from the active region per second [19][31]. Thus, the 

external quantum efficiency is the ratio between number of photons emitted into free 

space per second and the number of electrons injected into the LED per second. Higher 

external quantum efficiency results in higher light output for the same amount of input. 

The LED supply chain starts from an LED chip and progresses to an LED 

package, an LED module, and then to a system. LED production starts from a bare 

wafer made out of a material such as sapphire, GaN, SiC, Si, or GaAs. Many thin 

epilayers are grown on the bare wafer. Different colors of LEDs can be made by using 

different types of epiwafers. The types of epiwafer are InGaN/AlGaN for producing 

blue, green, and UV-range light; InAlGaP for producing red and yellow light; and 

AlGaAs for producing red or infrared-range light. The LED chip fabrication process 

involves attaching electric contact pads on an epiwafer and cutting the epiwafer into 

LED dies that are then packaged.  

LEDs are classified into two types by color output: white LEDs and RGB LEDs. 

White LED packages can use red/green/blue/orange/yellow phosphors with blue LED 

chips to produce white light. The phosphors comprise activators mixed with impurities 

at a proper position on the host lattice. The activators determine the energy level related 

to the light emission process, thereby determining the color of the light emitted. The 

color is determined by an energy gap between the ground and excitation states of the 

activators in a crystal structure. RGB LED packages include red LED packages, green 

LED packages, blue LED packages, and LED packages with multi-dies in a single 

package producing white light using a combination of red, green, and blue LED dies.  
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A cross-sectional side view of white LEDs is shown in Figure 3. An LED 

package mounted on a printed circuit board is composed of a housing, encapsulant, die, 

bond wires, die attach, lead frames, metal heat slug, and solder joints. The housing is a 

body for supporting and protecting the entire structure of an LED device. The housing 

is usually formed of materials such as polyphthalamide (PPA) or liquid crystal polymer 

(LCP). The encapsulant positioned over the housing is a resin material for the LED 

package in the shape of a dome. The typical material types for the resin are epoxy and 

silicon. The die is a compound semiconductor. The lead frames are used to connect the 

LED die to an electrical power source. The die attach is used to mechanically and 

thermally connect the chip to the heat slug. Typical types of die attaches are Ag paste 

and epoxy paste. Phosphors dispersed in the encapsulant emit white light when they are 

excited by absorbing a portion of the light from the LED dies.  

 

Figure 3 LED package assembled with printed circuit board (PCB). 

 

LED types are placed in the following major categories depending on LED 

electrical power: low power LEDs are under 1W of power (currents typically near 

20mA); medium power LEDs (high brightness LEDs) dissipate between 1–3W of 
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power (currents typically in the 30mA/75mA/150mA range); and high power LEDs 

(ultra-high-brightness LEDs) have more than 3W of power (currents typically in 

350mA/750mA/1000mA range). The LEDs vary because the LED current-voltage 

curves vary among materials. 

The LED industry still faces challenges in attracting widespread consumption. 

One issue of concern is price, and another is lack of information regarding reliability. 

The number of LEDs required for the LCD BLU is an area where both of these issues 

converge. It may take from tens to sometimes thousands of LEDs to produce an LED 

BLU because the light emission of a single LED covers a limited area. If one single 

LED fails, the final product is sometimes treated as a failure. For example, the failure 

of LEDs in an LCD display is critical, even when only a single LED package 

experiences changes in optical properties [32]. The failure of an LED or LEDs in an 

LCD display can cause a dark area or rainbow-colored area to appear on the LCD 

screen.  

The LED die is a semiconductor, and the nature of manufacturing LED 

packages is similar to that of microelectronics. But there are unique functional 

requirements, materials, and interfaces in LEDs that result in some unique failure 

modes and mechanisms. The major causes of failures can be divided into die-related, 

interconnect-related, and package-related failure causes. Die-related failures include 

severe light output degradation and burned/broken metallization on the die. 

Interconnect failures of LED packages include electrical overstress-induced bond wire 

fracture and wire ball bond fatigue, electrical contact metallurgical interdiffusion, and 

electrostatic discharge, which leads to catastrophic failures of LEDs. Package-related 
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failure mechanisms include carbonization of the encapsulant, encapsulant yellowing, 

delamination, lens cracking, phosphor thermal quenching, and solder joint fatigue that 

result in optical degradation, color change, electrical opens and shorts, and severe 

discoloration of the encapsulant. In this paper, the focus is on the failure sites, modes, 

and mechanisms at these three levels.  

Cost is another barrier that confronts the LED industry in seeking to expand 

market share in general lighting. The current cost of LEDs ranges from $0.40 to $4 per 

package depending on the application. In the recent past, LEDs were often too 

expensive for most lighting applications. Even though the price of LEDs is decreasing 

quickly, it is still much higher than the price of conventional lighting sources. However, 

according to one study, the life cycle cost of an LED lighting system is less than for an 

incandescent lamp system [33]. The total cost of a lighting system includes the cost of 

electricity, cost of replacement, and the initial purchase price. Yet since the life cycle 

savings are not guaranteed at the time of lighting system selection, higher initial costs 

are still an obstacle to the acceptance of LED lighting. Reducing the manufacturing 

cost and selling price reduction while maintaining, a high reliability level is key to 

increasing market share. According to a study by Samsung, the selling price of a white 

LED lighting system needs to decrease by 50% in order to make LEDs more 

competitive with fluorescent lamp systems over the next four to five years [33]. 

2.2 LED Reliability 

End-product manufacturers that use LEDs expect the LED industry to 

guarantee the lifetime of LEDs in their usage conditions. Such lifetime information 

would allow LED designers to deliver the best combination of purchase price, lighting 
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performance, and cost of ownership for the life of the end-products. One barrier to the 

acceptance of LEDs in traditional applications is the relatively sparse information 

available on their reliability. There are many areas in need of improvement and study 

regarding LEDs, including the internal quantum efficiency of the active region, 

light-extraction technology, current-flow design, the minimization of resistive losses, 

electrostatic discharge stability, increased luminous flux per LED package, and 

purchase cost [19].  

It is rare for an LED to fail completely. LED lifetimes can also vary from three 

months to as high as 50,000–70,000 hours based on application and construction [3]. 

LED lifetime is measured by lumen maintenance, which is how the intensity of emitted 

light tends to diminish over time. The Alliance for Solid-State Illumination Systems 

and Technologies (ASSIST) defines LED lifetime based on the time to 50% light 

output degradation (L50: for the display industry approach) or 70% (L70: for the 

lighting industry approach) light output degradation at room temperature, as shown in 

Figure 4 [12]. The accelerated temperature life test is used as a substitute for the room 

temperature operating life test to quickly predict LED lifetime. Prediction of LED 

lifetime varies with the method of interpreting the results of accelerated testing 

[4][9][34]. 
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Figure 4 Lifetime estimation based on LED accelerated life testing. 

LED manufacturers usually perform tests in the product development cycle 

during the design and development phases. Typical qualification tests of LEDs are 

categorized into operating life tests and environmental tests by using industrial 

standards such as JESD, JEDEC or JEITA [9]-[11][36], which have been used by LED 

manufacturers such as Cree, Samsung, and Nichia. Operating life tests are performed 

by applying electrical power loads at various operating environment temperatures to 

LEDs to apply Joule heating to the internal parts of the LEDs. On the other hand, 

environmental tests are conducted with non-operating life tests. For example, Cree 

performs the high temperature operating life (HTOL) test with JESD 22 Method 

A108-C under maximum current in data sheet and 85°C [9]. In some cases, LED 

manufacturers have independent qualification test conditions different from the 

industrial standards. Samsung LED performs the HTOL test under high current (than 

the typical current) and 85°C [10]. Nichia conducts the HTOL test under 100°C and 

low current (less than the typical current in data sheet) [11][36]. 
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Tests vary among manufacturers. Generally, operating life tests for LEDs 

include the room temperature test, the high temperature test, the low temperature test, 

the wet/high temperature test, the temperature humidity cycle test, and the on/off test. 

Environmental tests of LEDs include the reflow soldering test, the thermal shock test, 

the temperature cycle test, the moisture resistance cyclic test, the high temperature 

storage test, the temperature humidity storage test, the low temperature storage test, the 

vibration test, and the electro-static discharge test. In some cases, combinations of 

these kinds of loading conditions are used. The acceptance criteria are pass or fail based 

on lumens, color, and electrical maintenance. Furthermore, when the tests do not 

include failures, they do not offer any insight on the degradation of LEDs. 

Environmental tests are utilized to determine the light output at initial test 

conditions and final test conditions. Data from other parameters are sometimes 

collected, such as chromaticity coordinate values (x and y) and reverse current when 

the lumen measurement is conducted at each data readout time. In many cases, the 

proper failure criteria of these other parameters are not defined to demonstrate how 

these collected data are correlated with the data from the light output degradation 

measurements.  

LED system manufacturers are interested in estimating the expected duration of 

LEDs, since customers want the manufacturers to be able to guarantee a certain level of 

LED lifetime under usage conditions of the product, and manufacturers want to 

estimate the life cycle cost of LED systems. To achieve this, manufacturers usually 

perform accelerated life tests on LEDs at high temperatures while monitoring light 

output. Modeling of acceleration factors (AF) is generally used to predict the long-term 
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life of LED packages at specific usage conditions [4][5]. A lifetime estimate is 

generally made using the Arrhenius model. Activation energy is sensitive to the test 

load condition, types of materials, and mechanical design of LED packages. The 

Arrhenius model estimates LED life with uncertainties such as exponential 

extrapolation of lifetime, assumed activation energy, possible failure mechanism shift 

between test and usage conditions, and discounting of all other failure causes besides 

temperature. 

One method for predicting the lifetime of LEDs is the use of an accelerated test 

approach where the estimated lifetime in the accelerated life tests is multiplied by an 

acceleration factor. The process involves 1) measuring the light output of samples at 

each test readout time; 2) estimating LED life under the accelerated test conditions 

(using functional curve fitting of time-dependent degradation under the test conditions) 

or finding observed lifetime for L50 or L70, as shown in Figure 4; 3) calculating an 

acceleration factor; and 4) predicting lifetime under the usage conditions by using the 

acceleration factor multiplied by the lifetime of the test condition, as shown in Equation 

(1): 
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where Ea is the activation energy [eV], Tu is the junction temperature at usage 

conditions, Ta is the junction temperature at accelerated conditions, and k is the 

Boltzmann constant (8.6×10-5 [eV/K]).      

The optical performance of an LED package is dependent on temperature. The 

junction temperatures in the active layers (quantum well structures) between the p-n 

junctions of the chip affect optical characteristics such as color and dominant 
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wavelength. Direct measurement of the junction temperature is difficult, and the 

estimation of the junction temperature is derived from the LED case temperature or 

lead temperature. The luminous efficiency becomes low as the luminous flux emitted 

from an LED package decreases and the junction temperature increases. The junction 

temperature is dependent on the operating conditions (the forward current and the 

forward voltage) and operating environment. Light output measurement does not 

isolate the failure mechanisms of LEDs, because all failures affect light degradation. 

This current method of life testing (L50 or L70) may provide a basis for comparing the 

life expectancy of different LEDs, but it does not provide detailed information on the 

failure modes, failure mechanisms, and failure sites of LEDs. This method also does 

not help in remaining useful life estimation during operation. 

Each LED lighting system manufacturer may use additional tests based on 

empirical development histories, applying previous product information to product 

development. Simple functional plotting in test conditions can be affected by the value 

of the activation energy of the Arrhenius model. This empirical curve plotting 

sometimes results in unclear data trending of LED lifetime even in the test conditions, 

since the functional curve fitting is very sensitive in terms of the number of samples 

and test duration [6]-[8]. There is a need to develop a more advanced life qualification 

tool that is able to predict the lifetime of a lighting system during the design, 

development, and early production phases using analytical tools, simulation, and 

prototype testing [37]-[44]. These techniques must be properly utilized in order to 

achieve improved reliability, increased power capability, and physical miniaturization 

[45]-[49]. 
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Today’s ever-diminishing product development cycle time requires rapid and 

cost-effective reliability analysis and testing of LEDs. If conducted early in the 

development phase, reliability analysis and accelerated life testing can enable early 

introduction of mature products with robust design margins. The construction of LEDs 

is somewhat similar to microelectronics, but there are functional requirements, 

materials, and interfaces in LEDs that make their failure modes and mechanisms 

unique. 

When a high current is applied to LEDs, there is increased light output. The 

problem is that light output can change as a result of operating conditions, temperature 

in particular. Light output decreases with a temperature rise in LEDs, since quantum 

efficiency decreases at higher temperatures, which contributes to more non-radiation 

recombination events in LEDs [50]. A temperature increase is also related to forward a 

voltage decrease in the I-V curve due to a decrease in the bandgap energy of the active 

region of LEDs and also due to a decrease in series resistance occurring at high 

temperatures. The resistance decrease is due to higher acceptor activation occurring at 

elevated temperatures as well as the resulting higher conductivity of the p-type layer 

and active layers. In addition to the quantum efficiency drop, the color of the LEDs also 

changes. In particular, phosphor-converted LEDs with blue InGaN and yellow 

phosphors experience light output degradation, which causes shifts of blue peak 

wavelength toward longer wavelengths and shifts of the peak energy of the phosphors 

to lower wavelengths when the temperature of the LEDs increases. The shifts of the 

blue peak wavelength toward longer wavelengths having lower energy are due to the 

junction temperature dependence of energy gap shrinkage. The peak energy shifts of 
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the phosphors are due to phosphor thermal quenching. To sum up, many important 

reliability-related features of LEDs are a function of temperature. 

High power LEDs’ long-term stability and lifetime are typically judged on the 

basis of measured light output. The measured light output mostly depends on the 

junction temperature. Hence, the reliability of light output measurements is determined 

by the temperature stability of the light output measurement setup and by the accuracy 

of the temperature measurement. Prediction of the junction temperature is complicated, 

and there are associated uncertainties, as it is junction temperature is measured in an 

indirect way by measuring the temperatures of reference points on leads or metal heat 

slugs and utilizing them to estimate the junction temperature. 

Thermal stressing of LEDs directly or indirectly by high junction temperature 

affects internal efficiency, maximum light output, reliability, peak wavelength, and 

spectral wavelength [51]. When a drive current is applied to an LED, the LED junction 

produces heat, and heat then flows through the junction to the outside of the junction. 

An accurate method of measuring junction temperature is required to make sure that 

critical high temperatures beyond the absolute maximum ratings are avoided. 

Extensive research on failure mechanisms of LEDs has been conducted as 

shown in Table 2 [1][52]. The overall reliability of LED packages is related to 

interconnect failures, semiconductor failures, and package failures. Interconnect 

failures are responsible for broken bond wires and lifted balls, electrical metallurgical 

interdiffusion, and electrostatic discharge [53][54]. LED semiconductor failures are 

manifested as die cracking, defect and dislocation generation and movement, dopant 

diffusion, and electromigration [1][52][54]. Package failures involve mechanical 
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interaction with LED chips, die adhesives, heat slugs, lead frames, and encapsulants. 

The failure mechanisms responsible for package failures include carbonization of the 

encapsulant, delamination, encapsulant yellowing, phosphor thermal quenching, and 

lens degradation. These result in optical degradation, color change, electrical 

opens/shorts, and severe discoloration of the encapsulant. Many of these failures are 

related to thermal stress as well as electrical stress and hygromechanical stress. 

Thermal stress affects die cracking, wire ball bond fatigue, delamination, lens cracking, 

encapsulant yellowing, electrical contact metallurgical interdiffusion, and phosphor 

thermal quenching. The failure modes of LEDs relate to light output and optical 

characteristics. These modes differentiate LEDs from the failure modes of other 

electronic parts where the failures are generally related to electrical parameter 

degradation. 

If the reliability analysis and accelerated testing are not conducted correctly, 

unexpected field failures will still occur and the test will become a waste of time and 

money. Because of the acceptance of different standards, conditions, durations, and 

failure criteria, product certification methodologies need to change from 

standards-based reliability certification to an approach based on an understanding of 

failure mechanisms and the end-user conditions. The use of standards-based 

qualification without consideration of actual LED failure mechanisms results in testing 

without value, since there is no relationship provided to relate time under accelerated 

test conditions to time under field conditions.  

PoF-based accelerated stress testing was also reviewed briefly. This involves 

the use of PoF models to qualify the acceleration factors between the expected life 
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cycle stress profile and the accelerated test profile so that the test can be optimized for 

minimum time and cost. Further research can be devoted to designing a better test 

(possibly by using more effective combinations of multiple types of stresses) and 

providing recommendations about the optimal test conditions that will address the life 

cycle failure risks at minimum time and cost. 

Table 2 Failure Sites, Causes, Effects, Modes, and Mechanisms of LEDs. 

Failure Site Failure Cause Effect on Device Failure Mode Failure Mechanism 

Semiconductor 
(Die) 

High Current–Induced 
Joule Heating 

Thermomechanical 
Stress 

Lumen Degradation, 
Increase in Reverse 
Leakage Current, 

Increase in Parasitic 
Series Resistance 

Defect and  Dislocation 
Generation and 

Movement 

High Current–Induced 
Joule Heating 

Thermomechanical 
Stress  

Lumen Degradation Die Cracking 
High Ambient 
Temperature 

Poor Sawing and Grinding 
Process  

Poor Fabrication Process of
p-n Junction 

Thermal Stress 

Lumen Degradation, 
Increase in Series 
Resistance and/or 
Forward Current 

Dopant Diffusion 
High Current–Induced 

Joule Heating 
High Ambient 
Temperature 

High Drive Current 
or High Current Density 

Electrical Overstress
No Light, Short 

Circuit 
Electromigration 

Interconnects 
(Bond Wire, Ball, 
and Attachment) 

 

High Drive Current/ 
High Peak Transient 

Current 
Electrical Overstress

No Light, 
Open Circuit 

Electrical 
Overstress-Induced 
Bond Wire Fracture 

Thermal Cycling Induced 
Deformation 

Thermomechanical 
Stress No Light, 

Open Circuit 
Wire Ball Bond 

Fatigue 

Mismatch in Material 
Properties (e.g., CTEs, 

Young’s Modulus) 

Moisture Ingress 
Hygro-mechanical 

Stress 
High Drive Current or 

High Pulsed / Transient 
Current 

Electrical Overstress
Lumen Degradation, 
Increase in Parasitic 
Series Resistance, 

Short Circuit 

Electrical Contact 
Metallurgical 
Interdiffusion 

High Temperature  Thermal Stress 
Poor Material Properties 

(e.g., poor thermal 
conductivity of substrate)

Thermal Resistance 
Increase No Light,  

Open Circuit 
Electrostatic Discharge

High Voltage (Reverse 
Biased Pulse) 

Electrical Overstress

Package  
(Encapsulant,   

Lens, Lead Frame, 
and Case) 

High Current–Induced 
Joule Heating 

Electrical Overstress Lumen Degradation 
Carbonization of the 

Encapsulant High Ambient 
Temperature 
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Failure Site Failure Cause Effect on Device Failure Mode Failure Mechanism 
 Mismatch in Material 

Properties (CTEs and 
CMEs) 

Thermomechanical 
Stress 

Lumen Degradation Delamination 
Interface Contamination 

Moisture Ingress 
Hygro-mechanical 

Stress 
Prolonged Exposure to UV Photodegradation 

Lumen Degradation, 
Color Change, 

Discoloration of the 
Encapsulant 

Encapsulant  
Yellowing 

High Drive Current 
Induced Joule Heating 

Thermal Stress High Ambient 
Temperature 

Presence of Phosphor 
High Ambient 
Temperature Thermomechanical 

Stress 
Lumen Degradation Lens Cracking Poor Thermal Design 

Moisture Ingress  
Hygro-mechanical 

Stress  
High Current–Induced 

Joule Heating 
Thermal Stress 

Lumen Degradation, 
Broadening of 

Spectrum (Color 
Change) 

Phosphor Thermal 
Quenching High Ambient 

Temperature 

Mismatch in Material 
Properties / Thermal 

Cycling Induced High 
Temperature Gradient 

Mechanical Stress 

Lumen Degradation, 
Forward Voltage 

Increase  
Solder Joint Fatigue 

Cyclic Creep and 
Stress Relaxation
Fracture of Brittle 

Intermetallic 
Compounds 

2.3 Anomaly Detection of LEDs 

LED lifetime is defined by the general lighting industry as the time to reach 70% 

light output [12] and 0.007 color shift [55] on the CIE (Commission Internationale De 

L’eclairage) 1976 chromaticity diagram. The Illuminating Engineering Society (IES) 

recommends that LED manufacturers collect color data from LEDs over 6,000 hours of 

operation while collecting light output data [12]. The U.S. Department of Energy (DOE) 

also published the “Energy Star® Program Requirements: Product Specification for 

Luminaires” with the Environmental Protection Agency (EPA) regarding LED color 

failure [56]. This document describes color shift using the 7-step SDCM (standard 

deviation of color matching) in product qualification tests, where the change in 

chromaticity over the first 6,000 hours of LEDs should be within 0.007 on the CIE 

1976 chromaticity diagram. 
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The performance of LEDs is evaluated during qualification tests, where the 

performance of the product consists of quality (which includes function) and reliability, 

and the requirements are set during product design. The qualification testing method 

for color failure utilizes the 0.007 color shift without identifying LED die degradation 

or LED phosphor degradation within the LED package that degraded. However, if 

qualification testing could identify the main parts in an LED that degrade, such as the 

die, phosphors, or encapsulant, then the product design, such as geometric dimensions 

and material properties, can be optimized to meet the specified targets for products. 

2.3.1 Overview of Anomaly Detection of LEDs 

A life prediction method based on the color failure of LEDs has not yet been 

developed. It is difficult to extrapolate color change because of the differences in the 

design, materials, manufacturing processes, and optics applied to LEDs and in their use 

conditions. LED color change has been studied under different current loads [13]- [15], 

but there is no model that provides detailed information on color degradation. 

Therefore, an anomaly detection technique is needed for qualification testing to obtain 

the exact time to predict the remaining useful life of the products so that accurate 

prognostics-based qualification can be achieved without waiting 6,000 hours and 

without increasing the prediction error. 

Prognostics and health management (PHM) is a methodology for detecting 

anomalies and predicting the remaining useful life of products. PHM is an enabling 

discipline consisting of technologies and methods to assess the reliability of a product 

in its actual life cycle conditions to determine the advent of failure and mitigate system 

risk [57]-[59]. However, very little research has been conducted on anomaly detection 
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in LEDs. Sutharssan et al. [60] conducted real-time monitoring and detected anomalies 

with Mahalanobis distance (MD) and Euclidean distance (ED) using applied voltage 

and three (current, light, temperature) sensor voltages. The thresholds were identified 

as the point where the light output started to decrease continuously for each of the 

seven LEDs, and they took the minimum values for detection thresholds of MD and ED. 

Avenel [61] developed a method to identify at least one faulty LED in a string of LEDs 

using voltage responses. Fan et al. studied the initial anomaly detection work for 

chromaticity shift of high power white LEDs using the MD approach [62]. However, 

there has been little reported work on anomaly detection in LEDs utilizing color 

degradation to provide more detailed information than simply chromaticity shift. Color 

degradation is a critical issue for some application areas of LEDs, such as museum 

lighting or decorative lighting, as one of the benefits of LEDs is that they can produce a 

wide range of colors from 4,500K to 12,000K [1]. If an LED product cannot maintain 

its initial color properties, this means that the product will lose its advantage over 

traditional lighting sources such as fluorescent lamps or incandescent bulbs. 

2.3.2 Clustering Techniques – Exploratory Data Analysis 

PHM involves analyzing and categorizing multivariate data. This can be carried 

out using two different approaches. Clustering belongs to division of data into groups 

based on similarities in proximity measures. On the other hand, Classification is 

affiliated with division of data into groups based on prior labeling (defined by training 

data).  

Exploratory data analysis (EDA) is an approach/philosophy for  data analysis 

that employs a variety of techniques (mostly graphical) to maximize insight into a data 
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set, to uncover underlying structure, to extract important variables, to detect outliers 

and anomalies, to test underlying assumptions, to develop parsimonious models, and to 

determine optimal factor settings. EDA approach is precisely not a set of techniques, 

but an attitude/ philosophy about how a data analysis should be carried out. 

EDA is not identical to statistical graphics although the two terms are used 

almost interchangeably. Statistical graphics is a collection of techniques- all graphical 

based and all focusing on one data characterization aspect. EDA encompasses a larger 

venue. EDA is an approach to data analysis that postpones the usual assumptions about 

what kind of model the data follow with the more direct approach of allowing the data 

itself to reveal its underlying structure and model. EDA is not a mere collection of 

techniques. EDA is a philosophy as to how we dissect a data set, what we look for, how 

we look, and how we interpret. EDA is a philosophy heavily uses the collection of 

techniques that we call statistical graphics, but it is not identical to statistical graphics. 

John W. Tukey (1977) was one of the first statisticians to provide a detailed 

description of EDA. He defined it as “detective work – numerical detective work – or 

counting detective work – or graphical detective work. It is mostly a philosophy of data 

analysis where the researcher examines the data without any pre-conceived ideas in 

order to discover what the data can tell him about the phenomena being studied. Tukey 

contrasts this with confirmatory data analysis (CDA), an area of data analysis that is 

mostly concerned with statistical hypothesis testing, confidence intervals, and 

estimation. Tukey stated that confirmatory data analysis is judicial or quasi-judicial in 

character. CDA methods typically involve the process of making inferences about or 

estimates of some population characteristics and then trying to evaluate the precision 
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associated with the results. EDA and CDA should not be used separately from each 

other, but rather they should be used in a complementary way. The analyst explores the 

data looking for patterns and structure that leads to hypotheses and models. 

Tukey thought EDA at a time when computers were not widely available and 

the data sets tended to be somewhat small, especially by today’s standards. So, Tukey 

developed methods that could be accomplished using pencil and paper, such as the 

familiar box-and-whisker plots (also known as boxplots) and the stem-and-leaf. He 

also included discussions of data transformation, smoothing, slicing, and others. Since 

today is a time when computers are widely available, researchers go beyond what 

Tukey used in EDA and present computationally intensive methods for pattern 

discovery and statistical visualization. 

Tukey, expanding on his ideas of how EDA and CDA analysis fit together, 

presented a typical straight-line methodology for CDA. Its steps follow: (1) sate the 

equation(s) to be investigated; (2) design an experiment to address the questions; (3) 

collect data according to the design experiment; (4) perform a statistical analysis of the 

data; and (5) produce an answer. The procedure is core of the usual confirmatory 

process. To perform EDA, Tukey revised the first two steps as follows: (1) start with 

some idea; and (2) iterate between asking a question and creating a design. 

Some of the ideas of EDA and their importance to teaching statistics were 

discussed by Chatfield [1985]. He called the topic initial data analysis or IDA. While 

Chatfield agrees with the EDA emphasis on starting with the noninferential approach in 

data analysis, he also discussed the need for looking at how the data were collected, 

what are the objectives of the analysis, and the use of EDA/IDA as part of an integrated 
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approach to statistical inference. Hoaglin [1982] provided a summary of EDA in the 

Encyclopedia of Statistical Sciences. He describes EDA as the “flexible searching for 

clues and evidence” and confirmatory data analysis as “evaluating the available 

evidence.” In his summary, he stated that EDA are composed of four themes: resistance, 

residuals, re-expression and display. 

Resistant data analysis pertains to those methods where an arbitrary change in a 

data point or small subset of the data yields a small change in the result. A related idea 

is robustness, which has to do with how sensitive an analysis is to departures from the 

assumptions of an underlying probabilistic model. Residuals are what we have left over 

after a summary or fitted model has been subtracted out. This was read such as 

Residual = data – fit.  

Residuals should be looked at carefully for lack of fit, heteroscedasticity 

(nonconstant variance), nonadditivity, and other interesting characteristics of the data. 

Re-expression has to do with the transformation of the data to some other scale that 

might make the variance constant, might yield symmetric residuals, could linearize the 

data or add some other effect. The goal of re-expression for EDA is to facilitate the 

search for structure, patterns, or other information. 

Finally, the displays used most often by early practitioners of EDA included the 

stem-and-leaf plots and boxplots. The use of scientific and statistical visualization is 

fundamental to EDA, because often the only way to discover patterns, structure or to 

generate hypotheses is by visual transformations of the data. Given the increased 

capabilities of computing and data storage, where massive amounts of data are 
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collected and stored simply because we can do so and not because of some designed 

experiment, questions are often generated after the data have been collected. 

Clustering is the process of partitioning a set of data (or objects) into sets of 

meaningful sub-classes called clusters. A cluster is a collection of data (or objects) that 

are “similar” (based on some proximity measures) to one another and thus can be 

treated collectively as a group. Clustering applications include pattern recognition, 

spatial data analysis, and image processing. 

Clustering techniques can be broadly categorized into five approaches [63][64]. 

Hierarchical algorithms construct a hierarchical decomposition of the set of data. 

Partitioning-based algorithms construct partitions in data and evaluates them by some 

criterion. Density-based algorithms are based on connectivity and density functions. 

Grid-based algorithms are based on multiple level granularity structure. Model-based 

algorithms are hypothesized and fit to each cluster.  

Clustering is used for the exploration of inter-relationships among a collection 

of patterns, by organizing them into homogeneous clusters [63][64]. Clustering does 

not use priori labeling of some patterns to use in categorizing others and inferring the 

cluster structure of the whole data. Kotsiantis et al. introduced intra-connectivity and 

inter-connectivity to explain the concept of clustering [63]. Intra-connectivity is a 

measure of the density of connections between the instances of a single cluster. The 

authors stated that a good clustering arrangement needs a high intra-connectivity since 

the instances grouped within the same cluster are highly dependent on each other. 

Inter-connectivity is a measure of the connectivity between distinct clusters. It is 
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required for the inter-connectivity that a low degree of inter-connectivity is better 

because it tells that individual clusters are largely independent of each other. 

There is a question with regard to clustering techniques in that the interpretation 

of the clusters is difficult. In addition to this problem, the techniques can get a wrong 

decision assigning the data to clusters even if there were no clusters in the data. So it is 

necessary to analyze if the data set exhibits a clustering tendency when the cluster 

structure is investigated based on inferences. In real application, there are noises (i.e., 

errors) in the collected data set due to missing values or inaccurate measurement. So a 

strategy needs to be selected for handling missing attribute values. We need 

pre-processing techniques. Also basic question is that what specific learning algorithm 

is suitable for the data set. Jain et al. discussed that learning algorithms based on the 

type of data and the nature of the problem were still remained an open and fundamental 

problems [65].   

 Kotsiantis et al. [63] studied that many factors such as effective similarity 

measures, criterion functions, algorithms, and initial conditions plays an important role 

to develop fine-tuned clustering technique for a given clustering problem. The authors 

also argued that no clustering method can properly handle all kinds of cluster structures 

in terms of shape, size, and density. So depending on the data structure from collected 

data, different techniques can be selected to obtain best results from clustering 

techniques.  

It is common to delete noisy values by a preprocessing step. Small clusters are 

often eliminated because they frequently represent groups of outliers (i.e., instances 

with noise). The missing value problems occurred due to some occasional sensor 
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failures. One way to cope with this problem is to throw away the incomplete attribute 

vectors. Another way to deal with this is taking median value of that attributes across 

all training instances. 

Also two small clusters close together can be merged. Alternatively large 

clusters can be split into smaller clusters. The authors used outlier detection term as 

anomaly detection [63]. The authors explained that outlier detection is to find small 

groups of data objects that are exceptional when compared with rest large amount of 

data. Outlier mining has been used in the areas of telecommunication, financial fraud 

detection, and data cleaning. The anomalies are usually interesting for helping the 

decision makers to make profit or improve the service quality.  

Usually, from statistical point of view, instances with many irrelevant input 

attributes provide little information. So, in practical applications, it is required to 

choose attributes providing information to a proper learning algorithm. Different 

algorithms have been developed for this purpose. For example, this can be 

accomplished by discarding attributes that show little variation or that are highly 

correlated with other attributes [66]. 

Hierarchical clustering (HC) algorithms organize data into a hierarchical 

structure according to some proximity measure (e.g. Euclidian distance or Manhattan 

distance). The results of HC are usually depicted by a binary tree or dendrogram. An 

example of typical dendrogram is shown in Figure 5. Hierarchical clustering methods 

are categorized into agglomerative (bottom-up) and divisive (top-down) shown in 

Figure 6. Agglomerative clustering starts with one-point (singleton) clusters and 

recursively merges two or more most appropriate clusters. Divisive clustering starts 
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with one cluster of all data points and recursively splits the most appropriate cluster. In 

both approaches, the process continues until a stopping criterion (frequently, the 

requested number (‘k’) of clusters) is achieved. 

 

Figure 5 Typical dendrogram. 

 

Figure 6 Schematic for agglomerative clustering and divisive clustering. 

However, it is known that both agglomerative and divisive clusterings have 

limitation in a sense that adjustment of clustering is not available once the splitting or 

merging decision is made [63]. Advantages of the hierarchical clustering techniques 

are: they do not require deciding the number of clusters in advance; they compute a 
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complete hierarchy of clusters; good result visualizations are possible to see the 

clusters; and a “flat” partition can be derived via a cut through the dendrogram shown 

in Figure 5. 

Hierarchical clustering techniques utilize criteria to determine “which clusters 

should be joined (for agglomerative clustering) or split (for divisive clustering)” locally 

at each step. For agglomerative hierarchical techniques, the criterion is typically to 

merge the “closest” pair of clusters, where “close” is defined by a specified measure of 

cluster proximity. There are three definitions of the closeness between two clusters 

including single-link, complete-link, and average-link. The single-link similarity 

between two clusters is the similarity between the two most similar instances, one of 

which appears in each cluster. Single-link is suitable for dealing with non-elliptical 

shapes, but it is sensitive to noise and anomalies. The complete-link similarity is the 

similarity between the two most different instances, one from each cluster. 

Complete-link is less sensitive to noise and outliers, but can break large clusters, and 

has trouble with convex shapes. The average-link similarity is a compromise between 

two clusters. Known hierarchical techniques on clustering are BIRCH, CURE, and 

CHAMELEON. 

Partitioning-based clusterings typically partition the data set into a desired 

number (such as k) of clusters using a specific criterion [67]. Representative 

partitioning techniques are centroid clustering and medoids clustering. The centroid 

algorithms identify each cluster by using the center of the gravity of the instances. The 

medoids algorithms represent each cluster by means of the instances closest to the 

center of the gravity. 



 

 

38

38 
 

K-means clustering is one of the most well-known centroid algorithms. 

K-means clustering partitions the data set into k subsets such that all points in a given 

subset are closest to the same center. Brief flowchart for k-means clustering is shown in 

Figure 7. It needs to choose the number of clusters at the beginning of the operation. 

 

Figure 7 Flowchart for K-means clustering. 

The number k needs to be selected before we conduct the k-means clustering 

technique. In detail K-means clustering randomly initiates to select k of the instances to 

represent the same clusters. Based on the selected k instances, the whole data set is split 

into k sub-clusters assigned to their closer centers. K-means then computes the new 

centers by taking average of all data points in each sub-cluster. The operation is 

continuously repeated until there is no change in the center of the gravity as shown in 

Figure 8. Even though optimum k-values need to be selected until the most suitable 

value is found unless k can be known ahead of computation, it was discussed [63][64] 

that a way of finding a distance measure working good with all types of data determines 

the effectiveness of this method. 
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Figure 8 Schematics of k-means clustering. 

The k-means clustering has the following characteristics: It is efficient in 

processing large data set; It often terminates at a local optimum; The clusters have 

spherical shapes; and It is sensitive to noise. The k-modes algorithm is a partitioning 

algorithm and uses the simple matching coefficient measure to deal with categorical 

attributes [68]. The k-prototypes algorithm advanced k-means and k-modes algorithms 

by clustering instances designed by mixed attributes [68]. Another drawback of 

k-means clustering is that the computations are complex causing more money and 

another problem is overfitting. The speed of the simulation is out of focus in this study 

so this disadvantage will be considered as negligible. 

Finding clusters in data especially like LED spectral data becomes an issue 

when clusters are dealing with different sizes, densities, and shapes. Also it is 

challenging to find clusters in data when the data contains large amount of noise and 

outliers. Many of these issues will be severer when the data is composed of high 
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dimensionality such as time series data or text data. In many cases, clustering 

techniques have issues related to how to handle to noise and outliers, how to determine 

the number of clusters, and how to find clusters with different sizes, shapes, and 

densities [69].  

Density-based clustering algorithms try to find clusters based on density of data 

points in a region. In other words, density-based algorithms define a cluster to be a 

region in the data space that exceeds a given density threshold. An advantage of the 

density-based clustering over the partition-based and hierarchical algorithms is in 

identifying clusters of arbitrary shapes. K-means clustering as a representative method 

for the partition-based clustering is good for spherical shapes of the data set. The key 

idea is that neighborhood of a given radius for each instance of a cluster has to contain 

at least a minimum number of instances [63].  

In early stage of developing density-based clustering technique, one of the most 

well-known techniques is DBSCAN (density-based spatial clustering of applications 

with noise) [69][70].  DBSCAN separated data points into three classes: core points, 

border points, and noise points [69][70]. Core points are the points that are at the 

interior of a cluster. A point is regarded as the interior point if there are enough points 

in its neighborhood. Board point is a point that is not a core point, i.e., there are not 

enough points in its neighborhood, but it falls within the neighborhood of a core point 

[63]. Noise point is any point that is not a core point or a board point. 

 In DBSCAN, the density associated with a point is obtained by counting the 

number of points in a region of specified radius around the point. Points with a density 

above a specified threshold are classified as core points, while noise points are defined 
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as non-core points that do not have a core points within the specified radius [69]. The 

noise points are discarded, while clusters are formed around the core points. If two core 

points are neighbors of each other, then their clusters are joined [69]. 

The concept of the density is described in Figure 9. This figure shows what 

density means. The density is related to how to the points are packed together to form 

clusters. It is not related to probability densities. Although DBSCAN is good for 

finding clusters of arbitrary shapes, it is not suitable to form clusters including different 

densities [69]. 

 

Figure 9 Density-based neighborhoods [69]. 

CURE (Clustering Using Representatives) algorithm was later introduced after 

DBSCAN. The better thing than DBCAN was that the representative points were used 

to find non-globular clusters. However, there were still many types of globular shapes 

that CURE could not handle [69]. Similar approach was introduced as Chameleon 

algorithm. All three algorithms (i.e., DBSCAN, CURE, and Chameleon) have in 

common with determining clusters of different shapes and sizes based on points or 

small subsets of points and then finding clusters around them.   
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In summary, the main differences between these three algorithms are following: 

DBSCAN do not consider noise points to form clusters. CURE eliminated noise points 

by periodically eliminating small groups of points that are not growing fast. Chameleon 

does not eliminate points, but it does eliminate most of the influence of noise points on 

the clustering process by building the similarity graph for the nearest neighbor list [69]. 

Other density-based clustering techniques were developed such as the 

incremental DBSCAN, GBDSCAN (generalized density-based algorithm DBSCAN), 

PDBSCAN (parallel version of DBSCAN), DBSCLASD (Distribution Based 

Clustering of Large Spatial Data Sets), DENCURE, and OPTICS [63].  

Grid-based clustering algorithms first quantize the clustering space into a finite 

number of cells (hyper-rectangles) and then perform the required operations on the 

quantized space [63]. Cells containing more than certain number of points are treated as 

dense and the dense cells are connected to form the clusters. Some of the grid-based 

clustering algorithms are STING (Statistical Information Grid-based method), 

WaveCluster, and CLIQUE (Clustering in QUEst). 

STING divides the spatial area into several levels of rectangular cells in order to 

form a hierarchical structure. The cells in a high level are composed from the cells in 

the lower level. STING generates a hierarchical structure of the grid cells to represent 

the clustering information at different levels [63]. Flaws of STING algorithm is that the 

performance mainly relies on the granularity of the lowest level of the grid structure; 

and the resulting clusters are all bounded horizontally or vertically, but not diagonally. 

CLIQUE is another grid-based clustering that starts by finding dense areas in 

one-dimensional spaces for each attribute [71]. CLIQUE generates a set of 
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two-dimensional cells that can be dense by looking at dense one-dimensional cells. 

CLIQUE generated a possible set of k-dimensional cells by searching dense (k-1) 

dimensional cells [63][71]. 

Clustering groups objects characterized by the values of a set of variables into 

separate groups (clusters), based on their similarities [63][72]. In other words, 

clustering of multispectral data groups objects with respect to a distance, or 

equivalently, a similarity measure [73]. However, the successful application of 

clustering on multivariate data sets depends on the understanding the data set and a 

good choice of the clustering algorithm. 

When clustering techniques are considered for the multivariate data, the main 

things considered are listed with feature dimension, noise, overlapping clusters, 

number of clusters, unequal cluster density, and unequal cluster size [72]. The 

improvement of data collection equipment can cause a large number of variables. This 

increases feature dimension.  

Many data sets include noise or outliers because of limited sensor sensitivity, 

statistical variation, or signal interference. This can lead to a wrong solution. In many 

cases, clusters are overlapping in the feature domain; even though two objects may 

belong to different clusters, they may have features that are similar. Then, if a 

clustering algorithm uses only feature information, it will not have a good result [72].  

Number of clusters has to be determined from the data. This results in the 

accuracy of the anomaly detection with the clustering technique. The unequal cluster 

density in the feature space is the number of objects contained in a unit of the data space. 
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If the data set includes many different densities, it makes the cluster algorithm difficult 

to group the data set into clusters.  

Density-based clustering technique utilizes a local cluster criterion such that 

clusters are determined with regions in data space where the objects are dense, and 

clusters are recognized from another one by low-density regions [73]. It was known 

that a small cluster can be important to analyze the data but it can be often not found 

since the larger clusters determine the clustering result [72]. In some cases, clustering 

techniques often identify the low density regions as the noise. And also, the high 

dimensionality of multivariate data sets is another issue when dealing with 

density-based clustering techniques. 

One of the solutions for the high dimensionality problems is utilizing 

k-nearest-neighbor (KNN) density estimation technique. Instead of defining threshold 

to local density function, low-density regions, and valleys, KNN separate clusters by 

calculating number of shared neighbors. If the number of shared neighbors of two 

adjacent objects is below a threshold (i.e., number of objects), then it is regarded that 

there is a gap, a valley, in between [73]. 

2.4 Prognostics-based RUL prediction of LEDs 

A light-emitting diode (LED) is a solid state light source that emits light by 

electroluminescence, where light is generated by the flow of electrons applied to a 

semiconductor device die [1]. LEDs are being used in an ever-increasing variety of 

applications, including television display backlighting, communications, medical 

equipment, signage, and general illumination [1][16]-[18]. For many of these LED 

applications, LED manufacturers need to ensure that their products meet the quality 



 

 

45

45 
 

and performance expectations of end users and their targeted applications. However, 

one bottleneck is that typical qualification tests performed by manufacturers are 

time-consuming and often not informative. As per industry normative (IESNA) 

standards, it takes at least 6,000 hours (i.e., eight months) to complete qualification test 

and 10,000 hours are preferred for prediction [12][76]. 

The Alliance for Solid-State Illumination Systems and Technologies (ASSIST) 

defines LED lifetime as the time to 50% light output (for the display industry) or 70% 

(for the lighting industry) at room temperature [12][76]. LED lifetimes can vary from 

2,000 hours to as high as 70,000 hours based on the particular application and 

construction [1]. LED lifetime is measured by lumen maintenance, which describes 

how the light output degrades over time. Qualification life testing can be used to predict 

LED lifetime based on lumen maintenance. For example, based on data from a test run 

for 6,000 hours, the time to 50% or 70% light output can be extrapolated, creating a 

remaining useful life prediction under qualification conditions that can, in turn, be used 

for estimating life in field conditions. 

There is no unified standard for qualification testing in the LED industry. Each 

LED manufacturer decides which tests and conditions to use to qualify new products. 

Typical qualification tests include operating life tests and environmental tests based on 

semiconductor-based industrial standards published by organizations such as JESD, 

JEDEC, or JEITA [9]-[11] as well as the IESNA standards suggesting the guideline 

under operating life tests. CIE (the international commission on Illumination) provides 

standards, technical reports, and recommendations [77]. 
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The failure mechanisms of LEDs are related to multiple health indicators, such 

as color, electrical, and thermal properties, as well as light output [1]. These health 

indicators can be divided into two categories: optical health indicators (e.g., light and 

color parameters) and thermal and electrical health indicators. An LED is regarded as 

failed when an optical health indicator crosses a predetermined failure threshold. For 

example, according to industry practices and standards, degradation of light output 

(lumens) to 70% of the original light output is considered a failure [3][4]. However, 

there is no specific guideline for failure criteria based on thermal and electrical health 

indicators. 

The existing methods that predict the lifetimes of LEDs are based on light 

output degradation [1][13][78]-[86]. The most common models are exponential models 

[4][13][78]-[82]. Other models include inverse power models [83][84] and the kinetic 

(theoretical) model for die-defect generation and movement [85]. Fan et al. [86] 

utilized a data-driven extrapolating degradation path model for the prediction of light 

output degradation. Sutharssan et al. [60] performed prognostics using Euclidean 

distance (ED) and Mahalanobis distance (MD). They estimated the RUL by trending 

the ED and MD curves over time. All of these methods require specific mathematical 

model for the prediction. If the degradation path of an LED is different from the model, 

the prediction cannot capture the degradation dynamics of each LED.  

Bürmen et al. [15][87] developed a method for predicting color coordinates x 

and y (in the 1931 chromaticity coordinates) by constant offset moving of the known 

coordinate value in the reference current as a function of the normalized light output 

degradation rate. If the entire test data on the current devices at specific current load did 
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not exist, this method cannot be used for predict the color failure. Only tested current 

device at different current load can be predicted for the color failure.  Although LED 

manufacturers are required to collect data on color shift over 6,000 hours of operation 

[12], there is no accepted way to use these data to extrapolate color shift. Therefore, 

more research is needed on the life prediction of color failure for LEDs. 

Electrical degradation has been studied under different current loads [88]-[93]. 

It has been reported that the reverse (leakage) current (which cannot be measured 

in-situ) and the forward series resistance at different current loads (which cannot be 

obtained under single current loads) increases after aging tests [88]-[93]. It has been 

argued that electrical changes are relatively small in the operation region of I-V 

characteristics, and therefore electrical degradation has not been frequently studied. 

Thermal degradation has been used to predict the lifetime of LEDs based on the 

degradation criterion of a reduction to 70% of light output [4][78]-[82]. Junction 

temperature and thermal resistance are not directly measurable parameters, but 

Keppens et al. studied that junction temperature can be correlated with the electrical 

power and radiant flux as a function of forward current and thermal resistance [94]. The 

failure thresholds of the in-situ health indices based on the characteristics of optical 

health indicators (such as 30% reduction of the light output) have not been addressed. 

2.5 Thesis Scope 

At first, a method for conducting anomaly detection on the color failure of 

LEDs is presented. Then, prognostics-based RUL prediction of LEDs are presented 

with two different approaches. First approach is made when the historical data from 

other devices tested is not available. Second approach is made based on the assumption 
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such that the historical data from other devices previously developed and tested for 

qualification test. 

CHAPTER 3 Anomaly Detection of Light Emitting Diodes 

Using the Similarity-Based-Metric Test 

This chapter presents a method for conducting anomaly detection on the color 

failure of LEDs. Features were extracted by analyzing the data of spectral power 

distributions exhibiting multiple peaks, which are defined as the power per unit area per 

unit wavelength of a radiant exitance (section 3.1). The features were reduced by 

principal component analysis (section 3.2). Then the principal components were 

partitioned into clusters (section 3.3). Anomalies were detected when the similarity 

distance was greater than the pre-determined thresholds (section 3.4). Discussion and 

conclusions are given in section 3.5 and 3.6. 

3.1 Feature Extraction 

Anomaly detection was performed by following the steps described in Figure 

10 and Figure 11. The approach in Figure 10 uses the entire spectral power 

distributions (SPDs) for anomaly detection. The approach in Figure 11 utilizes each 

specific peak in the SPDs, such as die peak and phosphor peak. Individual anomaly 

detection with each peak component (i.e., die and phosphor) in the SPDs is conducted 

to identify the die and the phosphor degradation or to determine whether the die or 

phosphors degrade faster depending on the failure mechanisms of the LEDs. The die 

peak and phosphor peak were separated based on the wavelength range (in this case 
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study, 380nm to 495nm for the die peak and 495nm to 745nm for the phosphor peak) in 

the SPD. 

The full detection scheme is described as follows. Twelve features (e.g., peak 

area, FWHM (full width at half maximum), and peak centroid) were extracted from 

each die and phosphor peak, as discussed in this section. Then, the features from all of 

the component peaks (i.e., using the entire SPD) in Figure 10 and the features from 

each separate peak in Figure 11 were reduced to three principal components to reduce 

dimensionality (see section 3.2).  

 
Figure 10 Anomaly detection scheme with the similarity-based-metric test over 

the entire spectral power distribution. 

 
Each data set (the entire SPD, die peak, and phosphor peak) was partitioned into 

clusters using a KNN-kernel density-based clustering technique (see section 3.3). The 

similarity-based-metric test was developed to evaluate the distance from each centroid 

in each individual cluster to the test data points to conduct anomaly detection (see 
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section 3.4). If the distance was greater than the pre-determined threshold, an anomaly 

was detected. Otherwise, the algorithm continued to measure the distance between the 

centroids and the test data points in three-dimensional PC space. This section covers 

feature extraction by analyzing the SPDs. 

 

 
Figure 11 Anomaly detection scheme with similarity-based-metric test identifying 

parts that degraded mainly in the LED package. 

 

Qualification tests of LEDs measure the degradation of certain variables (such 

as light output and color parameters) without identifying the specific components 

within the LED that degraded. Light and color output are evaluated from the spectral 

power distribution (SPD) of LEDs. An example of an SPD for a phosphor-converted 

white LED is shown in Figure 12. The SPD is composed of two parts: a peak from the 

LED die (i.e., the left peak) and a peak from the phosphors (i.e., the right peak). 

Depending on product design, application, cost, and material properties, the number of 
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peak components can be different. LED phosphors are embedded inside a resin that 

surrounds the LED die. The phosphors convert some portion of the short wavelength 

light from the LED into long wavelength light, and the LED light combined with the 

down-converted light produces the desired white light [95]. The two peaks in the SPD 

show the effects of die degradation, phosphor degradation, and package degradation. 

These types of degradation will be discussed in section 3.2. 

 

 
Figure 12 SPD of white LED with LED die peak and phosphor peak [21]. 

 

Data from an aging test was used to develop and validate the anomaly detection 

process (Appendix A: Test Results). The test samples in this study were 3W InGaN 

white LEDs. Sixteen LED samples were mounted on an aluminum metal core printed 

circuit board (MCPCB). The test setup is shown in Figure 13. The test condition was a 

350mA constant current and a chamber temperature of 40ºC recommended by its 

manufacturer and the IES-LM-80-08 standard. The junction temperature was expected 

to stay below the absolute maximum rating junction temperature of 135ºC [95][96]. 
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The SPDs of all of 16 LEDs were measured after every 22.5 hours of exposure to this 

condition.  

The failure criterion was a 7-step SDCM (discussed in the introduction) for 

color shift. The times to color failure data are plotted with a 3-parameter Weibull in 

Figure 14. The shape parameter was 1.2, the scale parameter was 91.3, and the location 

parameter was 1859.6. The time to failure (TTF) range for color failure was 1,891 

hours to 2,206 hours. The mean time to color failure was 1,945.5 hours (referred to as 

the unadjusted plot) in Figure 14. 

 
Figure 13 Data collection of LEDs [20][21]. 

 

 
Figure 14 Color failure result (7-step SDCM). 
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Features were extracted from both the LED die peak and the phosphor peak, as 

shown in Figure 15. The LED die peak was the wavelength range between 380nm and 

495nm, and the phosphor peak was the wavelength range between 495nm and 745nm. 

Twelve features were extracted from each peak. The features were peak area (denoted 

as v1), average of the peak (v2), peak centroid (v3), peak height (v4), root mean square 

(RMS) (v5), crest factor (v6), standard deviation (v7), skewness (v8), kurtosis (v9), full 

width at half maximum (FWHM) (v10), peak wavelength (v11), and left half width 

(v12). SPD was defined by a function f(x) in the range of wavelength x of a and b (i.e., 

a<x<b), as shown in Figure 16. All features are described in equations (1) through (12) 

in mathematical terms. 

 
Figure 15 Feature extraction from SPD. 
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where x1, x2, v4, v10, and v11 are shown in Figure 16, and N is the number of data 

points in the SPD by optical measurements. 

 
Figure 16 Description of features in the SPD. 
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where a larger number of training data points reduces the error of anomaly detection 

because more training data points include more information on the actual degradation 

trend of LEDs. To investigate detection accuracy based on the number of training data 

points, anomaly detection using the entire SPD, with die and phosphor peaks together, 

was conducted with four different training data sets: 10 data points, 20 data points, 30 

data points, and 40 data points from each LED. For each LED, 123 data points were 

collected.  

The data points that were not used in the data set were used for testing (i.e., 
anomaly detection). Examples of training data sets utilizing the entire SPD are 

described in Table 3. In addition to detection with the entire SPD, anomaly 
detection was conducted for each peak with 30 data points and 40 data points 

from each LED, as shown in  

 
 

Table 4. Each training data set was used to evaluate the loading matrix and 

variances for the principal component analysis. The principal component scores for the 

test data points were obtained by multiplying the loading matrix and the feature 

vectors. 

Table 3 Sample size factor inference for training data sets with the entire SPD. 

Training data set  
(i.e., initial data points)  

with 16 LEDs 

160 data points 
(10  16) 

320 data points 
(20  16) 

480 data points 
(30  16) 

640 data points 
(40  16) 

Total number 
of data points 
for each LED  

(123EA) 

No. of training  
data points 

10 20 30 40 

No. of data points 
for anomaly  

detection 
113 103 93 83 
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Table 4 Sample size factor inference for training data sets with each peak. 

Training data set  
(i.e., initial data points)  

with 16 LEDs 

Die peak Phosphor peak Die peak Phosphor peak 

480 data points 
(30  16) 

480 data points 
(30  16) 

640 data points 
(40  16) 

640 data points 
(40  16) 

Total number 
of data points 
for each LED 

(123EA) 

No. of training 
data points 

30 30 40 40 

No. of data points 
for anomaly  

detection 
93 93 83 83 

The Scree test was used to determine the number of principal components for 

dimensionality reduction. The Scree test plots the principal components in the x-axis 

and their corresponding Eigenvalues (i.e., variances of principal components) in the 

y-axis.  All of the points along the level part of the line, including the transition point, 

are dropped, and three points are counted along the precipitously dropping part of the 

line. The twelve features for the die peak and the phosphor peak were reduced to three 

principal components using the Scree test results, as shown in Figure 17 and Figure 18, 

respectively. 

 
Figure 17 Scree test results for the die peak using 480 data points (i.e., 30 data 

points from each LED). 
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Figure 18 Scree test results for the phosphor peak using 480 data points (i.e., 30 

data points from each LED). 

 

3.3 KNN-Kernel Density-Based Clustering 

Analysis and categorization of multivariate data can be carried out either by 

clustering (which divides data into groups based on similarities in proximity measures) 

or classification (which divides data into groups based on prior labeling of data as 

healthy or unhealthy). Clustering is the process of partitioning a set of data (or objects) 

into sets of meaningful sub-classes called clusters. A cluster is a collection of data (or 

objects) that are similar (based on proximity measures) to one another, and thus can be 

treated collectively as a group [63][64]. It is difficult to define clusters and to determine 

the number of clusters in data when clusters have different sizes, densities, and shapes 

[65][69]. Also, it is challenging to find clusters in data when the data contain a large 

amount of noise and outliers, particularly with higher dimensional data. 

Density-based clustering algorithms define clusters based on the density of data 

points in a region. In other words, density-based algorithms define a cluster as a region 

in the data space that exceeds a given density threshold. One advantage of 
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density-based clustering is that it can identify clusters of arbitrary shapes. 

Density-based clustering techniques utilize a local cluster criterion, such that clusters 

are determined with regions in the data space where the objects are dense, and clusters 

are distinguished from one another by low-density regions [73]. A cluster with a small 

number of data points (i.e., a low density region) can often not be found with 

density-based clustering [72]. In some cases, clustering techniques identify the low 

density regions as noise.  

One of the solutions for this high dimensionality problem is to use the k-nearest 

neighbor (KNN) density estimation technique. KNN-density estimation was developed 

by Lofsgaarden and Quesenberry (1965) and then advanced by Terrell and Scott (1992) 

[29]. Instead of defining the threshold to the local density function, low-density regions, 

and valleys, KNN separates clusters by calculating the number of shared neighbors. If 

the number of shared neighbors of two adjacent objects is below a threshold (i.e., a 

number of objects), then there is a gap, or valley, in between the two objects [73]. For 

anomaly detection in this paper, clusters were partitioned with a KNN-kernel 

density-based clustering technique. The KNN-kernel density-based clustering method 

is based on a combination of nonparametric KNN and kernel density estimation 

methods [73]. The KNN-kernel-density estimation technique makes it possible to 

model clusters of different densities in high dimensional data sets. 

A nonparametric kernel density method can be used to estimate an unknown 

probability density function of a data set. If we have an N × d dimensional data set, the 

multivariate kernel density estimated at the object x with kernel K is defined as [74]: 
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where N is total number of data set, V is volume (hyper-rectangles), K is multivariate 

kernel function defined by the product of univariate kernels, and H is a scale vector 

H=[h1…hd] in d-dimensional space. In many cases, a triangular or Gaussian kernel 

function is used. It is known that KNN-density was developed by Lofsgaarden and 

Quesenberry (1965) and then advanced by Terrell and Scott (1992) [56]. The 

KNN-kernel technique enables density estimate smooth by using kernel function; and 

KNN approach enables an adaptive kernel width, a border kernel in low-density 

regions and a narrower kernel in high-density regions. 

To understand the algorithm flow of the KNN-kernel density-based clustering, 

we need to understand mathematical derivation of classification rule (i.e., way to assign 

objects (i.e., data) to clusters) based on KNN-kernel density estimates [13][56]. The 

common way of classification rule is based on Bayes’ decision rule: 

ሺ߱௜ሻ݌௜ሻ߱|ݔሺ݌ ൐ หݔ൫݌ ௝߱൯݌൫ ௝߱൯,							∀݆ ് ݅																																																																										ሺ14ሻ 

where p(x│ωi ) is the class-conditional density function at x of each class ωi and p(ωi ) 

is the prior probability function. The class-conditional density function for the 

nonparametric KNN-kernel density-based clustering technique is such that 

௜ሻ߱|ݔሺ̂݌ ൌ
1
݊௜ ௫ܸ

෍ ݔሺ൫ܭ െ ௫ሻܪ/.௝൯ݔ
௫ೕ∈ఠ೔

																																																																																	ሺ15ሻ 

where ni is the size of cluster ωi, and  
i

i Nn . So equation (14) can be modified by 

using equation (15) as: 
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If the prior probability functions of p(ωi) and p(ωj) are simplified as ni/N and nj/N, 

respectively, we obtain Bayes’ decision rule for KNN-kernel density-based clustering: 
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The algorithm of KNN-kernel density-based clustering follows the steps shown 

in Figure 19. The first step is to input data with N single clusters. A KNN table (N×k) is 

then formed, which lists the kth nearest neighbor distances for each of the N datasets. 

Cluster memberships are assigned using the class condition shown in equation (5), and 

the cluster memberships are recalculated if the cluster memberships change in order to 

maximize the total class conditional density of the point xi being assigned to cluster c 

as: 

ܦ ൌ෍̂݌

ே

௜ୀଵ

ሺݔ௜|ܿሻ																																																																																																																										ሺ18ሻ 

 
Figure 19 KNN-kernel density-based clustering. 

The KNN-kernel density-based algorithm adjusts and selects all parameters and 

conditions except for the user-defined parameter, k, which is the number of 

neighborhood points. The number of clusters decreases with a larger k. In this study, 

the optimal number for k was selected by trying multiple values of k and picking the 

one that captured the features of the dataset with 3D graphical exploratory data analysis. 

The optimal numbers for k for 160, 320, 480, and 640 training data points with the 

entire SPD were 12, 19, 22, and 28, respectively. The number of partitioned clusters 

from the four training data sets was 9 for a data set with 160 training data points, 10 for 
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a dataset with 320 training data points, 8 for a dataset with 480 training data points, and 

14 for a dataset with 640 training data points. The results show that having more 

training data results in better cluster formation. 

To identify the degradation components in the LED package, the optimal 

numbers for k were 60 (for 480 training data points) and 68 (for 640 training data points) 

using the triangular kernel function for both the die peak and the phosphor peak. In 

addition to the 3D graphical exploratory data analysis, an approach was used with a 

plot similar to the Scree test to determine the correct number of clusters in the data set. 

The “elbow” in the plot (along the sharply declining part of the line) was considered 

based on “within-cluster sum of squares” to choose the number of clusters.  

The within-cluster sum of squares (WCSS) was defined for given a set of 

observations (x1, x2, …, xn), where each observation is a d-dimensional real vector. The 

KNN-kernel density-based clustering aims to partition the n observations into k sets 

(k≤n) of clusters C = {C1, C2, …, Ck} with the centroid νj in cluster Cj [98][99]. 
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																																																																																																			ሺ19ሻ 

 

Two training data sets (one for die peak and the other for phosphor peak) were 

partitioned with 7 clusters by the algorithm for a data set with 480 training data points, 

as shown in Figure 20 and Figure 21. Elbows were observed in the 3rd and 7th clusters 

shown in Figure 20 and in the 2nd and 7th clusters shown in Figure 21. Due to multiple 

bins (i.e., classification) of LEDs based on optical properties (such as light output and 

color) in the specification sheet, the degradation paths and patterns of LEDs were 

grouped in 7 clusters rather than in 2 or 3 clusters.  
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Figure 20 WCSS for die peak training data with 480 data points. 

 
Figure 21 WCSS for phosphor peak training data with 480 data points. 

 

Trials have been made for anomaly detection with three clusters for die peak 

training data and two clusters for phosphor peak training data with 480 data points. The 

detection results missed the anomalies. Seven clusters were utilized for both die peak 

and phosphor peak training data, as shown in Figure 22 and Figure 23. With the same 

algorithm, two training data sets with 640 training data points were partitioned with 8 

clusters. 
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Figure 22 KNN-kernel density-based clustering for die peak training data with 

480 data points. 

 
Figure 23 KNN-kernel density-based clustering for phosphor peak training data 

with 480 data points. 

3.4 Anomaly Detection Results with Similarity-Based-Metric Test 

After partitioning the training data into clusters using the KNN-kernel 

density-based clustering technique, the similarity-based-metric test (depicted in Figure 

24) was conducted to detect anomalies in color change. When the training data were 

partitioned with m clusters, each centroid (Vj) from each cluster was evaluated. Then, 

the distance (D) between one data point and each cluster was evaluated with the 

Euclidian distance from the data point to the centroid. The distance from each cluster 

was evaluated and compared with a pre-determined threshold. The detection threshold 
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(Tj) for anomaly detection was the threshold of the cluster with the shortest distance (Dj) 

from the threshold (i.e., maximum Tj - Dj distance). This procedure was repeated for the 

next test data point if the distance (Dj) was smaller than the detection threshold (Tj). If 

the distance (Dj) was greater than the detection threshold (Tj), then the algorithm 

detected an anomaly. 

The mean radius (R(Cj)) is the average distance from member points in the 

cluster to the centroid of each cluster. In other words, the mean radius (R(Cj)) is a 

measure of the tightness of the cluster around the centroid. Given m-dimensional data 

vectors vi in a cluster Cj={vi│j=1,2,…,m}, the centroid vj and mean radius ሺR(Cj)) are 

evaluated as [100][101]: 
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Figure 24 Similarity-based-metric test for anomaly detection. 
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If the data form a spherical shape, the detection threshold (Tj) is ideally the 

mean radius (R(Cj)) of the closest cluster. The data shown in Figure 22 and Figure 23 

are not spherical, but elliptical. The elliptical shape has regions of clusters wider than 

the mean radius (R(Cj)) and regions of clusters narrower than the mean radius (R(Cj)). 

So, adjustment of the detection threshold determines the accuracy of the detection. If 

the cluster shapes are not spherical, then the threshold is in a range between the 

minimum distance from the centroid (i.e., the distance between the closest member 

point and the centroid) and the maximum distance from the centroid (i.e., the distance 

between the farthest member point and the centroid) in the cluster. The threshold 

changes the sensitivity of the anomaly detection. In other words, the fault detection rate 

increases if the detection threshold (Tj) is close to the minimum distance from the 

centroid in the cluster, whereas the missed alarm rate increases if the detection 

threshold (Tj) is close to the maximum distance from the centroid in the cluster. To 

improve the accuracy of anomaly detection, the distributions of points in a cluster are 

considered to define a new threshold for each cluster. In this study, a detection 

threshold metric was developed as: 

ሺܶሻ	݈݀݋݄ݏ݁ݎ݄ݐ	݊݋݅ݐܿ݁ݐ݁ܦ ൌ ሻݎሺ	ݏݑ݅݀ܽݎ	݊ܽ݁݉ ൅
ሻߪሺ	݊݋݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ
ሺ݀ሻ	ݎ݋ݐ݂ܿܽ	݈ܽ݊݋݅ݏ݊݁݉݅݀

														ሺ22ሻ 

where the standard deviation (σ) is the standard deviation of all distances of member 

points from the centroid in the cluster, and the dimensional factor (d) is the number of 

dimensions of the data space. In this study, the dimensional factor (d) was 3, because 

data analysis was conducted in three dimensional principal component space, as shown 

in Figure 10 and Figure 11. This metric minimizes the error from the cluster shape and 

the data distribution of the cluster. 
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Using the entire SPD, including both the die peak and the phosphor peak, 160 

training data points were used to detect anomalies, with thresholds of both the mean 

radius in equation (21) and the developed detection threshold in equation (22). The 

centroids of the clusters were evaluated using equation (20) for the ten clusters. Data 

were collected for 123 days in total, with 113 days for anomaly detection after the 

initial data points and 10 days to create the clusters. When a new data point was 

collected during the accelerated test, the closest cluster was found by evaluating the 

distance (Dj) of the data point from the each centroid (Cj). Anomalies were detected 

when Dj was greater than Tj, as described in Figure 24.  

Data points from LED 15 are used here to illustrate this detection scheme. 

Detailed distance plots were constructed for the entire data collection period from 

cluster 1 to cluster 8 for LED 15 utilizing the developed detection thresholds. Cluster 1 

and cluster 2 gave false alarms, with an alarm at 11 days immediately after starting the 

detection algorithm, as shown in Figure 25 and Figure 26, respectively.  

An anomaly was detected at day 72 from cluster 8, as seen in Figure 27. The 

anomaly was detected in cluster 8 because the maximum Tj - Dj distance came from 

cluster 8. The actual time to failure for LED 15 was day 88. The distance plots of 

cluster 3, cluster 4, and cluster 5 are similar to cluster 1, as shown in Figure 25, while 

the distance plots of cluster 6, cluster 7, and cluster 9 are similar to cluster 2, as shown 

in Figure 26. 
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Figure 25 Distance measure of cluster 1 from LED15. 

 
Figure 26 Distance measure of cluster 2 from LED15. 

 
Figure 27 Distance measure of cluster 8 from LED15. 
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Application of the developed detection threshold improved the anomaly 

detection rate from 25% (4 out of the 16 LEDs) with the mean radius metric to 50% (8 

out of the 16 LEDs) for the case with 160 training data points, as shown in Table 5. A 

false alarm was defined to occur when anomalies were detected immediately after 

beginning the algorithm (within 5% of the ratio of the detection time divided by the 

actual time to failure). Detection results with 320, 480, and 640 training data points 

were also improved using the detection threshold in equation (9). Table 5 summarizes 

the anomaly detection results for LEDs based on the similarity-based-metric test. As 

the number of training data points increases, the anomaly detection rate increases. 

Anomalies were successfully detected in 81.25% of LEDs using 14 clusters with 640 

training data points, as shown in Figure 28. The algorithm missed an alarm for LED 14, 

where the anomaly was detected at day 88 but the actual time to failure was day 84 

(Figure 28). 

The detection rate increases with the number of training data points. The initial 

data points have variation caused by the short-term aging effect of the color 

degradation parameters. When the number of training data points increases, the 

short-term aging effect is decreased and the accuracy increases. The detection results 

showed that the similarity-based-metric test can provide advance warning of failures. 

Table 5 Summary of anomaly detection results using similarity-based-metric test. 

 

160 training data points (9 
clusters) Results with 

320 training 
data points 

(10 clusters) 

Results with 480 
training data 

points 
(8 clusters) 

Results with 640 
training data 

points 
(14 clusters) 

Mean radius 
(eq.(8)) 

New detection 
threshold 
(eq.(9)) 

Missed alarm 0% (0/16) 0% (0/16) 6.25% (1/16) 0% (0/16)  6.25% (1/16) 

False alarm 75% (12/16) 50% (8/16) 43.75% (7/16) 31.25% (5/16) 12.50% (2/16) 

Anomaly 
detection 

25% (4/16) 50% (8/16) 50% (8/16) 68.75% (11/16) 81.25% (13/16) 
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Figure 28 Anomaly detection results with 640 training data points using the entire 
SPD. 

An advanced technique that does not necessarily wait until the signature of the 

anomalies is close to the time to failure, as shown in Figure 28, is required for fast 

qualification of LEDs. Each peak component in the SPD, specifically die SPD and 

phosphor SPD, were independently utilized for anomaly detection to identify the die 

and the phosphor degradation or determine whether the die or phosphors degrade faster 

depending on the failure mechanisms of LEDs. 

As a case study, the training data set with 480 data points (i.e., 30 data points 

from each of the 16 LEDs) was partitioned into 7 clusters, as shown in Figure 22 for the 

die peak and Figure 23 for the phosphor peak, and 93 data points from each LED were 

used for anomaly detection. LED 3 is used here to illustrate the detection scheme. First, 

the centroids of the clusters were evaluated using equation (19) for seven clusters. Then, 

the developed threshold (Tj) of each cluster from the die peak and phosphor peak were 

calculated. 
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The distances from the centroids of the clusters to the new data points of LED 3 

were evaluated for the entire data collection period. The Tj –Dj distances over time 

were greatest at cluster 4 for the die peak and cluster 2 for the phosphor peak. An 

anomaly was detected at day 59 from cluster 4 for the die peak, as seen in Figure 29. An 

anomaly was detected at day 83 from cluster 2 for the phosphor peak, as shown in 

Figure 30. The actual TTF for LED 3 was day 91. All of the anomaly detection results 

for die peak and phosphor peak are included in Appendix B. Smoothing can improve 

the anomaly detection results, as shown in Appendix B. In further, anomaly detection 

results under the condition of 200mA drive current and chamber temperature 90°C are 

shown in Appendix C. 

 
Figure 29 Distance measure of cluster 4 from LED 3 for die peak. 

 
Figure 30 Distance measure of cluster 2 from LED 3 for phosphor peak. 
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Figure 31 summarizes the anomaly detection results for all LEDs based on the 

similarity-based-metric test using 480 data points. The results showed that die 

degradation is an earlier sign of color failure of LEDs than phosphor degradation. 

Therefore, die degradation initiates color failure of LEDs. As a result, future package 

designs must consider how to strengthen LED die performance. The die and phosphor 

degradation can be directly explained by SPD changes over time during the aging test. 

The SPDs for LED 3 at day 0, the anomaly detection times for die and phosphor peaks 

and the actual TTF are shown in Figure 32. The phosphor peak degraded together with 

the die peak. This type of peak change is due to die degradation. All LEDs degraded in 

a manner similar to the result in Figure 32. In Figure 31, most of the anomalies from the 

die peaks were detected in less than 1,000 hours. This shows that this test can reduce 

the time needed for predicting the remaining useful life of LEDs during qualification 

tests. The starting point for early anomaly detection is the earliest time at which users 

can begin to predict the remaining useful life of LEDs. 

For all LEDs, the die peak increased from day 0 until the detection times (i.e., 

day 59 and day 83), and then decreased to the initial day 0 value at the actual TTF. On 

the other hand, the phosphor peaks decreased from day 0 until the actual TTF time. The 

amount of die degradation was relatively less (i.e., 0.066) than the amount of change 

from phosphor degradation (i.e., 0.143), but the die degradation detected the anomalies 

earlier than the phosphor degradation. As seen in Figure 33, using the same algorithm, 

which used 640 data points, the anomalies were first detected from the die degradation 

and later from the phosphor degradation. The anomalies were detected at about 1,200 

hours in the die peak data. The detection time for both the die and phosphor peaks 
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increased due to the larger amount of training data (640 data points vs. 480 data points), 

and therefore provided more information about the degradation trends. 

 
Figure 31 Anomaly detection using 480 data points (i.e., 30 data points from each 

LED). 

 

Figure 32 SPD changes at different detection times for LED 3. 

 
Figure 33 Anomaly detection using 640 data points (i.e., 40 data points from each 

LED). 
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3.5 Discussion 

The similarity-based-metric test for LED anomaly detection presented in this 

chapter extracted features from the spectral power distribution, reduced the 

dimensionality of the features by using principal component analysis, and grouped the 

data set into clusters using the KNN-kernel density-based clustering technique. Then, 

the distances from each centroid of cluster to each test point were measured. The 

algorithm detected anomalies when the distance was larger than the pre-determined 

threshold.  

The similarity-based-metric test can significantly decrease the amount of time 

needed for LED qualification by using prognostic techniques. This anomaly detection 

method will provide users with an earlier time to begin remaining useful life prediction 

than LED qualification tests, such as those based on the IES LM-80-08 standard and 

the U.S. DOE Standard, “Energy Star® Program Requirements: Product Specification 

for Luminaires,” which require at least 6,000 hours of test time. The 

similarity-based-metric test presented in this paper can potentially decrease the amount 

of time needed for qualification testing to about 1,000 hours.  

This is the first study to use the spectral power distribution (SPD) for anomaly 

detection in qualification tests. The similarity-based-metric test utilizes features from 

the SPDs as leading indicators. SPD, which denotes the radiant power at each 

wavelength per wavelength interval in the visible spectrum, can be used to obtain 

degradation information for LEDs. The SPD of the tested LEDs includes two parts: a 

peak from the LED die and a peak from the phosphors. LED phosphors are embedded 

inside a resin that surrounds the LED die. The blue light emitted from the die excites 
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the phosphors, which then emit yellow light; the blue light and yellow light combine to 

emit white light. Previous research driven by the industrial standards utilized u′v′ color 

shift in the CIE 1976 chromaticity diagram to explain color change of LEDs. Color 

shift can be used for identifying color change; however, it cannot explain the internal 

phenomena through which the each optical contributor mixes its independent light into 

white light.  

3.6 Conclusions 

The similarity-based-metric test was developed to diagnose degradation in the 

die and phosphors inside LEDs by using the KNN-kernel density-based technique 

clustering the data with independent optical components in the spectral power 

distributions and measuring the distance from the centroid. The underlying assumption 

is that die degradation reduces the phosphor peak as well as the LED die peak. As the 

amount of photons extracted from the LED die is reduced, the amount of phosphor light 

converted from the short wavelength (i.e., the LED die peak) is also reduced. When 

phosphors are only degraded by phosphor thermal quenching, the phosphor peak will 

be reduced and the LED die peak will not change shape, since the LED die emits light 

as a normal condition independent of phosphor degradation. 

This anomaly detection method does not require historical data. It integrates the 

advantages of anomaly detection under wearout performance degradation and is 

suitable for the qualification of new products. LED manufacturers can use the 

similarity-based-metric test to increase the quality of their LED products by detecting 

anomalies early on and fixing potential problems. Combined with an RUL prediction 

method, this process will help to make product development, design improvement, and 
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qualification better and could reduce qualification testing time. This could enhance the 

competitiveness of LED manufacturers that employ this qualification method by 

enabling them to quickly identify bad batches or designs during tests. As LED lighting 

is a growing field, the similarity-based-metric test will enable new technologies to be 

assessed and improved more rapidly. This will assist in the development of this 

important field. 

CHAPTER 4  Prognostics of LEDs Using Spectral Power 

Distribution (SPD) Prediction for Color Failure 

The increase in the use of LEDs leads to the need for more information 

regarding failure and usable life estimates for manufacturers to produce higher quality 

LEDs for consumers, particularly those consumer requiring specific chromaticity in 

their applications [1][4]. Many modern methods for testing LEDs use accelerated 

methods to establish an expected lifespan however they fail to identify failure modes as 

they as generally based on a failure criteria such as a percentage loss of luminous power 

as in [1][4].   

One type of white LED is the Phosphor-based LED. The LED produces light 

via the die which emits a blue light around 450-480nm. The phosphor coating of the 

LED absorbs some of this light and emits it with maximum intensity at approximately 

600nm, a yellow color. Together these emissions produce a white light [18][102].  

4.1 SPD and Degradation of LEDs 

The spectral power distribution plots the power of electromagnetic radiation as 

a function of wavelength [103] as in Figure 12. By observing the full spectral 
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distribution the behavior of the die, phosphor, and silicon encapsulation can be 

modeled and predicted over significant periods of time. As the LED die degrades with 

time, the both peaks of the curve degrade, see Figure 34. As expected decreased light 

emission from the die decreases the peak associated with the die.  

Similarly, as less light is emitted from the die, less light may be absorbed and 

emitted by the phosphor, thus decreasing the associated phosphor peak proportionally. 

Associated with phosphor degradation in an LED is a decrease in the emissive power of 

the phosphor peak, see Figure 35. As the die has not degraded, any decrease in its 

optical power will be negligible and the die peak will appear as it did initially. Another 

site for degradation is in the silicon encapsulation as with extended time and use the 

encapsulation may begin to yellow shown in Figure 36. Such degradation causes 

decrease spectral power of the die [102][104]; however it has little effect on the yellow 

phosphor peak. 

 
Figure 34 LED die degradation. 
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Figure 35 Phosphor degradation. 

 
Figure 36 Encapsulant degradation. 

 
In addition to the SPD of the LEDs the color position was observed. 

Trichromatic theory suggests that, due to the physiology of the human eye, all colors in 

the visible spectrum can be defined by a combination of the colors any three primary 

colors [106]. Primary colors are any set of three colors in which any one of the colors 

cannot be produced by the other two.  In the field of optics a common selection of 

primary colors is the red, green, blue color scale. Every color has three chromaticity 

coordinates which define the amount of each primary color needed to produce the 

expected color.  
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Graphical depictions of all colors as a relationship of a combination of 

chromaticity coordinates manifest themselves in color spaces, see Figure 2. In a color 

space the spectral colors exist on a line that bounds the color space through the curved 

portion on the top and sides. The bottom bound does not exist in the spectrum and is 

created with linear combinations of red and blue [106]. Traditionally color spaces are 

normalized and governed by a relationship such as r + g + b = 1. In such cases only two 

coordinates are needed to define a color.  

Given that a color can be defined by a pair of coordinates, color spaces are 

traditionally shown in two dimensions, see Figure 2. A complication in creating all 

colors in the visible spectrum using a combination of red, green, and blue arises in that 

creating some wavelengths a negative amount of red must be added [106][107]. In fact, 

there is no set of real primary colors which can match all of colors in the visible 

spectrum without requiring a negative amount of one of the primary colors.  Such a 

phenomena bears little physical meaning, therefore in 1931 a new model was proposed 

which linearly transformed the coordinates so that each of the coordinates x, y, and z 

have positive values. 

The complication for the CIE 1931 Color Space is that equal Euclidean 

distances within the color space do not necessarily imply equal differences in color 

perception [108]. The human eye is able to distinguish between blues and violets to a 

higher degree than greens and yellows, as observed by MacAdam [109]. A goal in 

colorimetry has long been to create a uniform color space (UCS) in which equal 

Euclidean distances in chromaticity correspond to equal distances in perception of 

colors. While no such color space has been created to date, a nonlinear transform was 
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proposed and accepted by the International Commission on Illumination (CIE) in 1976 

which creates a more linear relationship with between distance and color perception. 

Chromaticity coordinates, u and v define the position of the light in the CIE 1976 

Color Space. The chromaticity coordinates of the LEDs were recorded as they aged, 

allowing for explicit observation of the change of the LED color.  

4.2 SPD Modeling 

Steps of prognostics of LED color failure using SPD prediction are shown in 

Figure 37. SPD is modeled with asymmetric double sigmoidal functions. SPD is 

predicted by using the particle filter algorithm to estimate the propagating parameters 

of the asymmetric double sigmoidal functions. Color distance is calculated from SPD. 

Finally RUL is estimated by using 7-step-SDCM (standard deviation of color 

matching) threshold (i.e., 0.007 color shift in CIE 1976 coordinates). 

Data from an aging test was used to develop the RUL prediction process. The 

test samples in this study were 3W InGaN white LEDs. Sixteen LED samples were 

mounted on an aluminum metal core printed circuit board (MCPCB). The test 

condition was a 200mA constant current and a chamber temperature of 90ºC 

recommended by its manufacturer and the IES-LM-80-08 standard. The junction 

temperature was expected to stay below the absolute maximum rating junction 

temperature of 133ºC [95][96]. The SPDs of all of 16 LEDs were measured after every 

22.5 hours of exposure to this condition. The time to failure range of color failure of the 

16 LEDs based on 0.007 u′v′ color shift was between 345 hours and 874 hours as 

shown in Figure 38. 



 

 

80

80 
 

 
Figure 37 Approach for prognostics of LED color failure using SPD prediction. 

 
Figure 38 Aging test results. 

SPD was mathematically modeled with deconvolution by using two 

asymmetric double sigmoidal functions as shown in Figure 39. For each SPD (for die 

SPD and phosphor SPD) in Figure 39, there are six parameters composing the 

asymmetric double sigmoidal function. Six parameters are offset (y0), center max (xc), 

amplitude (A), width1 (w1), width2 (w2), and width3 (w3).  
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Figure 39 SPD model with deconvolution using two asymmetric double sigmoidal 

functions. 

4.3 SPD Prediction Results 

Average smoothing was used to mitigate the effect of fluctuations in the test 

data to identify the proper fitting model for each parameter of both die SPD and 

phosphor SPD as shown in Figure 40 and Figure 41. The smoothed parameters of the 

asymmetric double sigmoidal function were fitted using a 2nd order Fourier series 

model, which is a finite linear combination of trigonometric functions of sin(݊ݐ) and 

cos(݊ݐ) with n natural numbers, and a double exponential function model, which is a 

linear summation of two exponential functions. 

F(t) = a0 + a1cos(nt) + b1sin(nt)+a2cos(2nt)+b2sin(2nt)   (23) 

where f is a parameter of the asymmetric double sigmoidal function and t is time. a0, a1, 

b1, a2, b2, and n are the parameters of the Fourier series model. 

F(t)=a×exp(bt)+b×exp(dt)                                (24) 
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where f is a parameter of the asymmetric double sigmoidal function and t is time. a, b, 

c, and d are the parameters of the double exponential model. 

 
Figure 40 Parameter trending of asymmetric double sigmoidal function for die 

SPD. 

 
Figure 41 Parameter trending of asymmetric double sigmoidal function for 

phosphor SPD. 

SPD prediction was performed by using the particle filter algorithm (as shown 

in Figure 42) to propagate 12 parameters in two asymmetric double sigmoidal 

functions. For prediction, 2nd order Fourier series, 5th order polynomial equation, an 
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double exponential equation were applied to predict 12 parameters. 2nd order Fourier 

series and 5th order polynomial model show test result for the SPD prediction. The 

curve-fit result after projecting the curve into further time instant could not track the 

parameter trending in future. In particle filter algorithm, state space model tacks data 

up to time to start prediction. After that, it recursively fit the state space model function 

based on the recent particle distribution, so it weight more on recent data. This fact 

makes the particle filter should be better than just simple curve fitting projection 

because curve-fitting gave equal weight to recent and old data, while old data contain 

very little degradation information. 

 
Figure 42 Prediction of SPD. 

Figure 43 shows SPD prediction of all LEDs indicating potential LED 

degradation. Phosphor degradation can be identified from SPD change over time for 

most of LEDs as previously explained in Figure 35. SPD change over time for LED 13, 

LED 14, and LED 16 indicated die degradation. SPD prediction was successfully 

performed for all LEDs. Verification will be given based on color failure time 

prediction by using the SPD prediction results.  
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Figure 43 SPD prediction to indicate potential LED degradation. 

 

4.4 Discussion 

To predict LED color failure by using prognostics, SPD must converted to 

photometric units, which define light output and color degradation. LED RUL based on 

color degradation is estimated by using SPD prediction. Radiometric SPD can be 

converted to photometric unit by using color matching functions as shown in Figure 44. 

For color shift prediction, SPD modeling over time is needed. And then the predicted 

SPD is multiplied to the color matching function. Tristimulus values (X, Y, and Z) are 

obtained. X, Y, and Z are converted to u′ and v′ coordinates to project color change in 

the color space. u′v′ distance is estimated by the results of SPD prediction. RUL is 
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predicted by the time when the estimated when the estimated u′v′ distance crosses the 

failure threshold as shown in Figure 45.  

 

Figure 44 Procedure for prognostics of LED color failure. 

 
Figure 45 Color failure prediction. 

 
 

Table 6 and Table 7 show the prediction error (%) for all LEDs based on 

available data length to estimate RUL of each LED. The prediction error for color 

failure of LEDs shows that the prediction can be made with less time when prediction 
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can be made. For example, at 40% lifetime data, maximum error was -17.4 % at LED 

12. However, with 90% lifetime data, maximum error for the prediction was 8.7% at 

LED 12. More available test data can help to increase the accuracy of the prediction. 

Table 6 Prediction error (%) for LED1 to LED8. 

 

Table 7 Prediction error (%) for LED9 to LED16. 
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4.5 Conclusions 

In this study, diagnostic technique was developed through SPD prediction 

deconvoluted with minimum number of curves using asymmetric double sigmoidal 

functions which separate SPD into component levels of the LED package. Prognostics 

technique for color failure of LEDs was developed by predicting SPDs over time. This 

technique enables to improve reliability and design by identifying failure sites with 

regard to LED die, LED phosphor, and LED encapsulant in product qualification. 

Manufacturers’ performance and reliability testing of LED products with time has 

generally been limited to discrete qualifications such as color distance and light output 

intensity. While these traits allow for prediction of usable lifetime, they fail to identify 

the failure site of the LED.  

The failure site can be identified with the Spectral Power Distribution (SPD) as 

either the degradation of the die, phosphor, or silicon encapsulation. By modeling the 

SPD data with an asymmetric double sigmoidal function the shape of the SPD over 

time can potentially be predicted using techniques such as particle filter technique. This 

would allow for a prediction of the remaining useful life using Standard Deviation of 

Color Matching (SDCM) thresholds such as chromaticity color distance change. With 

better diagnostic and prognostic information, improvements can be made by LED 

manufacturers ensuring the performance and reliability of LEDs for consumers. 
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CHAPTER 5 Prognostics of LEDs Using the Similarity-Based 

Statistical Measures with Relevance Vector Machine Regression 

This chapter presents the prediction of the RUL of LEDs by utilizing 

similarity-based statistical measure with relevance vector machine regression in terms 

of optical and in-situ health indices representing LED failures. A method is presented 

for determining the health index set of LEDs by mapping multiple uncorrelated health 

indicators. The RUL of LEDs is predicted in order to capture degradation dynamics and 

resolve prediction uncertainties using a health index. 

LED prognostics by similarity-based statistical measure with RVM regression 

is composed of two processes: a learning process and a prediction process. A schematic 

diagram of LED prognostics is depicted in Figure 46. Once time to failure data set is 

collected as the training data from multiple sensors or optical measurement equipment, 

a data feature is extracted using a one-dimensional health index to map multiple health 

indicators. Sparse Bayesian machine learning using relevance vector machine (RVM) 

captures the degradation dynamics from the health index set of LEDs. RVM enables 

health knowledge to be constructed from all training units. After the health knowledge 

using TTF data is developed, this information is utilized to predict the remaining useful 

life (RUL) of test units. Features from the test data that are relevant to the degradation 

dynamics are extracted, and similarity-based statistical measures for the test units are 

conducted for RUL prediction to resolve prediction uncertainties, such as unit-to-unit 

variations. 
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Figure 46 Approach for LED prognostics using statistical measure with RVM 

regression. 

5.1 Learning Process: RVM Regression 

In supervised Bayesian machine learning, there is a set of training input vectors,

N
nnx 1}{  , along with corresponding targets (i.e., real values), N

nnt 1}{  . The underlying 

functional mapping can be determined from these input-target pairs. In Bayesian 

machine learning, a distribution over the parameters in w is inferred, rather than 

learning comprising the optimization of the quality measure of the input-target pairs. 

Linear models can be achieved by a parameterized function y(x; w) with a linearly 

weighted sum of M fixed basis functions ௠ሺ࢞ሻ [110]: 

Pሺ࢞|࢚ሻ ൌ yሺܠ; ሻܟ	 ൌ ∑ ௠ெ
௠ୀଵ ௠ሺݔሻ                   (25) 

where w = (1, 2,…, M) is a vector of adjustable model parameters. 

One approach to supervised learning using flexible (i.e., multi-parameter) 

linear kernel methods is the support vector machine (SVM) [111]. SVM makes 

predictions based on a function of the form: 

ሻ࢝;࢞ሺݕ ൌ ∑ ௡ܭሺ࢞, ௡ሻ࢞ ൅ ଴ே
௡ୀଵ                      (26) 

where K(x, xn) is a kernel function and {n} are the model weights. 
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SVM avoids over-fitting and results in a sparse model dependent only on a 

subset of kernel functions [112]. Despite its success, there are disadvantages to the 

SVM learning methodology [113][114]; for example, its predictions are not 

probabilistic. In regression, the SVM outputs a point estimate. Additionally, SVM 

requires an increasing number of kernel functions. The number of kernel functions 

grows steeply with the size of the training data set. Finally, SVM also requires a 

cross-validation procedure. 

A relevance vector machine (RVM) is a probabilistic sparse kernel model 

utilizing the same data-dependent kernel basis as SVM [110][113]-[115]. However, 

RVM utilizes fewer kernel functions than SVM. RVM is capable of generalization 

performance comparable to an equivalent SVM. RVM performance includes adopting 

a fully probabilistic framework and introducing a prior (distribution) over the model 

weights governed by a set of hyperparameters whose most probable values are used to 

estimate the posterior distributions by iterative re-estimation from the data [113][114]. 

Sparsity is obtained by posterior distributions of many of the weights which are sharply 

peaked around zero (i.e., relevance vectors means the remaining non-zero weight 

training vectors). RVM computes the predictive distribution based on the posterior 

distribution over the weights with maximizing hyperparameters. 

Given a data set of input-target pairs ሼݔ௡, ௡ሽ௡ୀଵேݐ , we follow the standard formation 

(( ௡ݐ ൌ ሻ࢝;࢔࢞ሺݕ ൅ ߳௡ , where process noise ߳௡	~	ܰሺ0|ߪଶ )) and assume that p( ௡ݐ  is (࢞|

Gaussian ܰ  ,The mean of this distribution for a given x is modeled by y(x) .(ଶߪ ,(௡࢞)ݕ|௡ݐ)

as defined for SVM. The likelihood of the complete dataset can then be written as 

[110]: 
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൫࢚ห࢞, ,࢝	 ଶ൯ߪ	 ൌ ∏ ,࢝,௡ݔ|௡ݐሺ݌ ଶሻߪ ൌ ∏ ሺ2ߪߨଶሻିଵ/ଶ݁݌ݔ ቔെ
ሼ௧೙ି௬ሺ௫೙;࢝ሻሽమ

ଶఙమ
ቕே

௡ୀଵ
ே
௡ୀଵ   (27) 

The maximum-likelihood estimate, identical to the ‘least-squares’ solution, for 

w is the value w that maximizes݌൫࢚ห࢝,  ଶ൯. Least squares (i.e., maximum likelihood)ߪ	

estimation also results in overfitting. To control the model complexity, instead of the 

regularization of weight penalty Ew(w), we now define a prior distribution which 

expresses our ‘degree of belief’ over the values that w might take ݌ሺࢻ|࢝ሻ ൌ

∏ ܰሺ௡|0, ௡ିଵሻேߙ	
௡ୀ଴ . This choice of a zero-mean Gaussian prior expresses a 

preference for smoother models by declaring smaller weights to be a priori more 

probable. The maximum-likelihood estimations of w and ߪଶ  generally lead to 

overfitting, so we encode a preference for smoother functions by defining prior over the 

weights [110][113]: 

ሻࢻ|࢝ሺ݌ ൌ ∏ ܰሺ௡|0, ௡ିଵሻேߙ	
௡ୀ଴                      (28) 

where α is a vector of N+1 hyperparameters. 

This introduction of an individual hyperparameter for every weight is the key 

feature of the RVM model, and is responsible for its sparsity properties. The prior 

(w|ࢻ) is nevertheless still Gaussian; it could not be sparsity. So, for full Bayesian 

consistency we should now define hyperpriors over all ߙm.  

To complete “hierarchical prior”, we define hyperpriors over ࢻ as well as over 

the noise variance ߪଶ: 

ሻࢻሺ݌ ൌ ∏ ,௡|ܽ௡ߙሺ	ܽ݉݉ܽܩ ܾ௡ሻே
௡ୀ଴                      (29) 

ଶሻߪሺ݌ ൌ ,ܿ|ଶߪሺ	ܽ݉݉ܽܩ 	݀ሻ                        (30) 

where ܽ݉݉ܽܩ	ሺߙ|ܽ, ܾሻ ൌ ሺܽሻ߁ ௔ିଵ݁ି௕ఈ withߙሺܽሻିଵܾ௔߁ ൌ ׬ ݐ௔ିଵ݁ି௧݀ݐ
ஶ
଴  
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The weight hierarchical prior p() is obtained by: 

ሺ࣓ሻ݌ ൌ ሻࢻሺ݌ሻࢻ|ሺ࣓݌׬  (31)                         ࢻ݀

Initially, to set these hierarchical priors to a flat Gamma distribution, we fix a, 

b, c, and d values as small values: e.g., a=b=c=d=0. The combination of the prior over 

 m controlling the prior over wm gives us what is often referred to as a hierarchicalߙ

prior. ݌ሺ࣓ሻ is not a Gaussian prior, but a Student-t distribution. 

The posterior distribution for sparse Bayesian learning is: 

,࢝ሺ݌ ,ࢻ	 ሻ࢚|2ߪ	 ≡ ,࢚|࢝ሺ݌ ,ࢻ ,ࢻሺ݌ଶሻߪ                    (32)	ሻ࢚|ଶߪ	

The weight posterior distribution ݌ሺ࢚|࢝, ,ࢻ  :ଶሻ is obtained byߪ

,࢚|࢝ሺ݌ ,ࢻ ଶሻߪ ൌ ሺ2ߨሻିሺேାଵሻ/ଶ|Ʃ|ିଵ/ଶexp	ሼെ ଵ

ଶ
ሺ࢝ െ ሻ்Ʃିଵሺ࢝ െ ሻሽ      (33) 

where the posterior covariance and mean are respectively: 

Ʃ	 ൌ 	ሺିߪଶ઴்઴ ൅ ࡭ ሻିଵ with࡭ ൌ ݀݅ܽ݃ሺߙ଴, ,ଵߙ 	 … ,         ேሻ             (34)ߙ

	 ൌ  (35)                                      ݐଶƩΦ்ିߪ	

So, instead of learning a single value for w, we have inferred a distribution over 

all possible values. In effect, we have updated our prior “belief” in the parameter values 

in light of the information provided by the data t, with a higher posterior probability 

assigned to values which are both probable under the prior and which explain the data. 

The posterior having observed (t1,..,tk) as the ‘prior’ for the remaining data (tk+1,…,tN) 

and the equivalent result in seeing all the data at once. 

The hyperparameter posterior ݌ሺࢻ, ሻ࢚|ଶߪ	  adopts an approximation at its 

most-probable values of ࢻெ௉  and ߪଶெ௉ . Therefore, relevance vector “learning” 
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becomes the search for the hyperparameter posterior mode (i.e., the maximization of 

,ࢻ൫݌ ൯࢚ଶหߪ	 ∝ ,ࢻห࢚൫݌  .(ଶߪ and ࢻ ଶ൯ with respect toߪ	

,ࢻห࢚൫݌ ଶ൯ߪ	 ൌ ሺ2ߨሻିே/ଶ|ߪଶࡵ ൅ ઴ି࡭ଵ઴்|ିଵ/ଶexp	ሼ
ଵ

ଶ
ࡵଶߪሺ்࢚ ൅ ઴ି࡭ଵ઴்ሻିଵ࢚ሽ      (36) 

The values of ࢻ and ߪଶ that maximize ݌൫࢚หࢻ,  ଶ൯ cannot be obtained in closedߪ	

form, so we optimize ݌൫࢚หࢻ, ଶ൯ߪ	  via gradient-based prediction (i.e., iterative 

re-estimation). Initially, setting ߙ and ߪଶ to zero and rearranging are performed by the 

re-estimation formulae: 

௜௡௘௪ߙ ൌ ఊ೔
ఓ೔మ

                                (37) 

ሺߪଶሻ௡௘௪ ൌ మ||ࣆࢶି࢚||

ேି	Ʃ೔ఊ೔
                            (38) 

where ߛ௜ ൌ 1 െ ௜Ʃ௜௜ߙ  and Ʃ௜௜  is the ith diagonal element of the posterior weight 

covariance computed with the current α and ߪଶ. The prediction learning algorithm then 

initializes all {ߙ௜} and ߪଶ ; computes the weight posterior sufficient statistics  and Ʃ; 

computes all {ߛ௜} and then re-estimates {ߙ௜} (and ߪଶ if desired); repeats from 2 until 

convergence; deletes the weights for optimal ߙ௜ ൌ ∞, since this implies ߤ௜ ൌ 0; and 

makes predictions for new data via the predictive distribution computed with the 

converged ࢻெ௉ and ߪଶெ௉: 

ܲሺ࢚|∗ݐሻ ൌ ,࢝|∗ݐሺ݌׬ ,࢚|࢝ሺ݌	ଶெ௉ሻߪ ,ெ௉ࢻ    (39)              ࢝ଶெ௉ሻ݀ߪ

This equation is computable and Gaussian [110][113][114]. The predictive 

mean of ܲሺ࢚|∗ݐሻ is the model function evaluated with the posterior mean weights. The 

predictive variance comprises the estimated noise on the data and the uncertainty in the 

prediction of the weights. 
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5.2 Prediction Process: Remaining Useful Life Estimates Based on Similarity-based 

Statistical Measures 

The prediction process predicts the RULs for new test units by employing a set 

of RVM regression curves built into the learning process of the training units. The 

prediction process involves RUL calculation based on each training unit and RUL 

calculation of the test unit with the linearly weighted sum of RULs from the training 

units [115]-[117]. The RUL for a test unit is defined as a similarity-based statistical 

measure such that the RUL prediction of a test unit is a linear interpolation in terms of 

the projected RULs (i.e., ܮ௧෡  .of K training units (ݏ

ܮܷܴ ൌ ଵ

ௐ
∑ ሺ ௜ܹܮప෡ ሻ
௄
௜ୀଵ                              (40)  

where ݓ ൌ ∑ ௜ܹ
௄
௜ୀଵ . 

Similarity weight is evaluated with: 

௜ܹ ൌ ቂ∑ ሺݕ௜ሺݔ௠ሻ െ ௠ሻሻݔ௣௜ሺݕ
ଶே

௠ୀଵ ቃ
ିଵ

                             (41)      

where Wi is the similarity weight of the ith training unit, w is the total weight of K 

training units, ݕ௜ሺݔ௠ሻ is a real test point under the test at a certain time instance ݔ௠, 

and ݕ௣௜ሺݔ௠ሻ is the prediction result at the time instance ݔ௠. 

The summation in equation (41) is designated for the sum of the squared error 

between the true value and the predicted value at each point. The similarity weight 

enhances the accuracy of the RUL prediction, as can be seen in the example in Figure 

47 where a larger weight is given to a training unit with a higher similarity to the test 

unit. If the test part appears similar to a certain training part, then the weight for that 
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training data is higher. This prediction process can utilize any training data set which 

was conducted for all devices. This means that all historical data set can be used for 

prediction mathematically. Uncertainty caused by modeling state space equation which 

shows the degradation path model is reduced based on utilization of all training 

samples. 

 
Figure 47 RUL prediction based on weight measure. 

5.3 Experimental Procedures and Results 

An overview of the test setup is shown in Figure 48. The LED board was placed 

in a forced convection oven temperature chamber and each LED was tested under 

350mA constant current and a data logger (Agilent 34970A) monitoring the electrical 

and thermal measurements. A photometric instrument (BTS 256 LED tester 

(Gigahertz-Optik)) was utilized to collect the optical health indicators.  

Three-watt high power InGaN LEDs with maximum absolute junction 

temperature ratings of 135˚C were mounted on an aluminum metal core printed circuit 

board (MCPCB). An MCPCB consists of a base layer (aluminum), a dielectric layer 

(FR-4 layer), and a circuit layer (Cu trace layer) for higher heat dissipation than the 
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FR-4 board. Thermocouple wires were attached to the anode side of the lead for the 

tested LEDs.  

The test conditions were a 350mA drive current and an ambient temperature of 

40°C. The average junction temperature was estimated to be 132.6°C [118]. The 

junction temperature of LEDs was directly estimated from the correlation between 

junction temperature and the forward voltage for long-term aging tests of high power 

LEDs [118]. There were 16 LED samples (designated as LED 1 to LED 16) mounted 

on the MCPCB. The measurement interval for the electrical parameters (input constant 

current and output forward voltage) and thermal parameters (ambient temperature and 

lead temperature) was every five minutes; and the measurement interval for the optical 

parameters (light output, correlated color temperature, color rendering index, and uv 

distance) was every 22.5 hours. 

 

Figure 48 Overview of LED test setup. 

Color failures were observed ahead of light output failures. The average time of 

16 LEDs for the light output to decrease from 100% to 70% is shown in Figure 49 with 

the standard deviation (i.e., the horizontal bar). The average time for each color 
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distance to increase from 0.001 to 0.007 is shown in Figure 50 with the standard 

deviation. The standard deviation of the time to reach each step of color distance in 

Figure 50 is 4 times larger in maximum than the standard deviation of the time to reach 

each percent step of light output in Figure 49. The time step to reach each color distance 

from 0.001 to 0.007 and each percent of light output from 100% to 70% did not match 

with a linear relationship because the degradation dynamics were exponentially 

decrease and increase in Figure 49 and Figure 50.  

 

Figure 49 Average time for the percent of light output to decrease from 100% to 
70%, with standard deviations. 

 

 

Figure 50 Average time for the u'v' distance to increase from 0.001 to 0.007, with 
standard deviations. 
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The time to failure (TTF) range of color failure based on 7-step-standard 

deviation of color matching from MacAdam ellipses (7 standard deviations from the 

initial color state, i.e., a uv distance of 0.007) was between 1,891 hours and 2,206 

hours, as shown in Figure 51. MacAdam ellipses are described as having ‘step’, which 

means standard deviations [77]. The TTF range of L70 (i.e., 30% degradation of light 

output) was between 2,251 hours and 2,633 hours, as shown in Figure 52. The mean 

time to failure (MTTF) for the color shift was 1,945.5 hours, and the light output 

degraded by 10% at an average time of 1,951 hours. The unreliability in Figure 51 and 

Figure 52 is the probability that a device will not perform its intended function for a 

given interval of time under specified operating conditions. 

 

Figure 51 Result of color failure. 
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Figure 52 Result of light output failure. 

 

5.4 RUL Prediction Results 

Prediction was performed with optical health indices and in-situ health indices. 

Optical health indices include information on light and color health indicators. In-situ 

health indices include information on electrical and thermal health indicators of LEDs. 

The prediction results with optical and in-situ health indices are compared in this 

section. Further, the results are compared with previously published research on LED 

prognostics in [60]. 

5.4.1 RUL Prediction in Terms of Optical Health Indicators 

LED prognostics includes a feature extraction by one-dimensional health index, 

a learning process using RVM regression, and a prediction process utilizing 

similarity-based statistical measure. A one-dimensional optical health index was 

generated using Mahalanobis distance (MD). MD is the square distance between 

observed vector and the mean vector of a population as shown equation (42) 

[119][120]. Four optical health indicators (luminous flux, correlated color temperature, 
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color rendering index, and uv distance) for each LED were used to construct the 

health indices.  

௜ܦܯ ൌ
ଵ

௣
ܼ௜ିܥଵܼ௜

்                              (42) 

where i = 1,…,n where i is ith row in data matrix, k = 1,…,p where p is number of 

parameters in column of data matrix, Zi = ith vector of Zix, T = transpose of the vector, 

C-1 = inverse of the correlation matrix of standardized values, and ܼ௜௑ ൌ
ሺ௫೔ି௫̅ሻ

ఙ೉
 is mean 

centered standardized values of xik. The data set (including failure data) for each LED 

was constructed based on L70 failure criterion. Figure 53 shows how to extract features 

from the four optical health indicators.  

 

Figure 53 Feature extraction: Optical health index. 

 
Ten of the 16 sample LEDs were used to perform RVM learning to construct 

the background health knowledge, as shown in Figure 54. The prediction process used 

the similarity-based statistical measure, as shown in Figure 55. RUL was calculated 

using equation (41) and equation (43). The true RUL was 1,215 hours, and the 

similarity-based statistical measure predicted a RUL of 1,201 hours. 



 

 

101

101 
 

 

Figure 54 Learning process: RVM learning for optical health indices. 

 

 

Figure 55 Prediction process: Similarity-based statistical measure for optical 
health indices. 

ܮܷܴ ൌ ෠ܮ	 ൌ 	 ଵ
ௐ
ሺݓଵܮ෠ଵ ൅ ෠ଶܮଶݓ ൅ ⋯൅  ෠ଵ଴ሻ                                                 (43)ܮଵ଴ݓ

5.4.2 RUL Prediction in Terms of In-Situ Health Indicators 

LED prognostics with in-situ health indicators is performed in a way similar to 

LED prognostics with optical health indicators, using feature extraction by 

one-dimensional in-situ health index, a learning process using RVM regression, and a 

prediction process utilizing a similarity-based statistical measure. One-dimensional 
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in-situ health index was performed by Mahalanobis Distance (MD). Four in-situ health 

indicators (input current, ambient temperature, lead temperature, and forward voltage) 

for each LED were used to construct the health indices.  

In this example, constant current was applied; however, some real applications 

use pulsed width modulation (PWM) mode which the current levels can change, or 

sometimes the input current changes based on catastrophic failures. This approach 

introduces the available electrical and thermal features monitored by sensors at in-situ 

conditions. In other cases, LED input current becomes zero due to catastrophic failures 

of LEDs. In the cases, input current also can be signatures representing LED 

performance change. For this reason, input current was also considered to construct the 

in-situ health indicators. 

The entire data set (including failure data) of each LED was constructed based 

on the L70 failure criterion. Figure 56 shows how to extract features from the four 

optical health indicators. Ten LEDs (the same training units as used with the optical 

health indicators) from the 16 sample LEDs were used to perform RVM learning to 

construct the background health knowledge, as shown in Figure 57. The prediction 

process used the similarity-based statistical measure, as shown in Figure 58. The RUL 

was calculated using equation (17) and equation (19). The true RUL was 1,210 hours, 

and the similarity-based statistical measure was estimated as 1,200 hours. 
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Figure 56 Feature extraction: In-situ health index. 

 

 

Figure 57 Learning process: RVM regression for in-situ health indices. 
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Figure 58 Prediction process: Similarity-based statistical measure for in-situ 
health indices. 

 
As shown in Table 8 and Table 9, a comparison of the RUL prediction results 

based on optical health indices and in-situ health indices showed that in-situ health 

indices can be used to predict the RUL of LEDs with the same level of accuracy as 

optical health indices. For example, in Table 8, the maximum error of 6.9% was 

occurred at the test unit 2 though the test unit 2 in Table 9 showed -0.2% of the 

prediction error. But the maximum error of -6.2% in Table 9 was occurred at test unit 6. 

Based on the result in Table 9, in-situ health indices can be used for RUL prediction in 

prognostics-based qualification tests. In this test set, anomalies were detected in LEDs 

at 1,500 hours, as shown in Figure 57 and Figure 58. In this work, 10 LEDs were used 

to perform RVM regression (learning) to construct background health knowledge, but 

the prediction results can be made more accurate using a larger number of training 

samples and different training results. Prediction results at another time instant at 2,000 

hrs are shown in Table 10 and Table 11. More length of data at 2,000 hrs than the length 

of data at 1,500 hrs gave higher accuracy to predict RUL than RUL.   
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Table 8 RUL prediction using optical health indices at 1,500 hours. 

 Test unit 1 Test unit 2 Test unit 3 Test unit 4 Test unit 5 Test unit 6 

Predicted 
RUL 

1,201 hrs 1,089 hrs 1,140 hrs 1,114 hrs 1,155 hrs 1,082 hrs 

True RUL 1,215 hrs 1,170 hrs 1,170 hrs 1,170 hrs 1,192 hrs 1,080 hrs 

Error (%) 1.2  % 6.9 % 2.6 % 4.8 % 3.2 % -0.2 % 

   cf) Error (%) = (True RUL-Predicted RUL)/True RUL*100 

Table 9 RUL prediction using in-situ health indices at 1,500 hours. 

 Test unit 1 Test unit 2 Test unit 3 Test unit 4 Test unit 5 Test unit 6 

Predicted 
RUL 

1,200 hrs 1,172 hrs 1,210 hrs 1,190 hrs 1,183 hrs 1,147 hrs 

True RUL 1,210 hrs 1,170 hrs 1,170 hrs 1,170 hrs 1,190 hrs 1,080 hrs 

Error (%) 0.9 % -0.2 % -3.4 % -1.7 % 0.6 % -6.2 % 

   cf) Error (%) = (True RUL-Predicted RUL)/True RUL*100 

Table 10 RUL prediction using optical health indices at 2,000 hours. 

 Test unit 1 Test unit 2 Test unit 3 Test unit 4 Test unit 5 Test unit 6 

Predicted 
RUL 

684 hrs 576 hrs 630 hrs 620 hrs 658 hrs 572 hrs 

True RUL 701 hrs 589 hrs 640 hrs 614 hrs 655 hrs 582 hrs 

Error (%) 2.4 % 2.2 % 1.6 % -0.98 % -0.5 % 1.7 % 

   cf) Error (%) = (True RUL-Predicted RUL)/True RUL*100 

Table 11 RUL prediction using in-situ health indices at 2,000 hours. 

 Test unit 1 Test unit 2 Test unit 3 Test unit 4 Test unit 5 Test unit 6 

Predicted RUL 716 hrs 564 hrs 618 hrs 610 hrs 668 hrs 544 hrs 

True RUL 701 hrs 586 hrs 640 hrs 610 hrs 655 hrs 582 hrs 

Error (%) 1.2  % 6.9 % 2.6 % 4.8 % 3.2 % -0.2 % 

   cf) Error (%) = (True RUL-Predicted RUL)/True RUL*100 

5.5 Discussion 

Sutharssan et al. [60] predicted the remaining useful life of LEDs using MD by 

trending curves over time with sequential estimation between one step time ahead such 

as t-1 and t. They utilized voltage, current, light output, and temperature of LEDs to 

determine MDs. They related the maximum value of MD to the failure limit with power 

law approximation using (44). They assumed that the extent of deviation of MD does 
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not continuously increase until the LED completely failed. The degradation of MD 

curves exhibited decreasing trend. If the trend of MD does not decrease over time, the 

approach in [60] cannot be used to set up the failure limits. To validate the approach, 

MDs were evaluated using voltage, current, light output, and temperature of each LED. 

The degradation trend of LEDs increased over time. The remaining useful life of LEDs 

cannot be evaluated using the method presented in [60]. A similarity-based statistical 

measure with RVM can predict the remaining useful life of LEDs without 

consideration of the pattern of the data. 

ሻݐ݈݅݉݅	݁ݎݑ݈݅ܽܨሺ	ܮܨ ൌ 2.3105 ൈ ௠௔௫ܦܯ
଴.଺଻ସ଺		                                         (44) 

 

 

Figure 59 Data trend using MD with the approach in [60]. 

 

5.6 Conclusions 

There are many international environmental and legal trends (e.g., China’s 12th 

Five-Year Plan for 2011 to 2015) toward the increased adoption of LEDs for general 

lighting. However, the LED industry cannot meet this demand if their products do not 

meet the quality and reliability expectations of the customer. The methodology 

developed and demonstrated in this paper will help the industry to evaluate LED 
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technologies for their lifetime goals more rapidly than the methods used as of 2013 and 

enable them to make better informed product introduction decisions. 

In this paper, health indices were developed for rapid assessment of the 

remaining useful life of an LED at any point during qualification testing. An optical 

health index was defined based on light and color data and the in-situ health index was 

defined based on electrical and thermal data. Using these health indices enables the 

monitoring of the degradation of LEDs with one single parameter by mapping multiple 

dissimilar data in the experiment. Similarity-based statistical measures technique with 

the relevance vector machine (RVM) improved the prediction of remaining useful life 

compared to the technique employed by Sutharssan et al., which is only applicable to 

health indices with decreasing trends. Based on the similarity of the degradation trend 

of the test unit under test and training units having time to failure (TTF) data in prior 

qualification testing, the RUL of the test unit under test was predicted by calculating 

the linear combination of RULs of training units.  

LED manufacturers and developers have TTF data available and degradation 

trends from their product design qualification tests. The LED manufacturers collect 

light output, correlated color temperature, color rendering index, chromaticity 

coordinates, current, voltage, and temperatures. Even though the data collection time 

varies from 1,000 hours to 6,000 hours, LED manufacturers have collected data, 

including the TTF from previous product lines. There have been improvements in 

quality and performance in terms of LED materials and design. For this reason, in 

many cases, a new LED package has been modified from an existing LED package to 

meet customers’ needs. As a result, the historical data trend from existing LED 
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packages can be used to predict the RUL of a new LED package. This can be 

accomplished through the use of a similarity-based statistical measure accompanied by 

RVM regression. 

We have shown that since color and light degradation patterns are different, 

using color or light to correlate the other degradation can lead to misleading and 

incorrect results. In the aging test, it was observed that the time step to reach each color 

distance from 0.001 to 0.007 had a nonlinear relationship with the time step to reach 

each percentage increment of light output from 100% (i.e., initial light output) to 70%. 

This was because degradation dynamics of color are different than the degradation 

dynamics of light output, and the standard deviation of the time to reach each step of 

color distance was 4 times larger than the standard deviation of the time to reach each 

percent increment of light output. For this reason, color degradation has to be 

considered as well as light output degradation for RUL prediction. In this paper, a 

health index was developed to represent different degradation dynamics of both light 

and color degradation. The health index improved the prediction of the remaining 

useful life of LEDs. 

The average of all light output from the test units for RUL prediction as 

recommended by the industry standard IES TM-21-11 does not consider the variation 

of each test unit. As a result, the method in this standard does not offer a mean time to 

failure, confidence interval, or reliability function. However, this information is 

important for determining the failure distribution of test units. A new industrial 

standard has to be developed to improve the quality of products in the development 

stage by considering the variation of degradation of all test units. To this end, this paper 



 

 

109

109 
 

provides guidelines that industry can follow to standardize LED qualification tests by 

utilizing all TTF data in prior qualification testing and giving higher priority to similar 

data trends of training units. In addition to conducting new predictions for units under 

test using prognostics techniques, TTF data must be used to predict the remaining 

useful life of LEDs. 

Unlike IES TM-21-11, by using the method presented in this paper it is possible 

to perform prognostics using only in-situ measured data if there is sufficient 

degradation data from similar LED product lines. If it is not possible to access enough 

degradation data, the accuracy of the prognostic results will be limited. In-situ 

measured data, including thermal and electrical data, can be collected more frequently 

and are more readily measurable using a data logger system instead of using optical 

measurement. By using in-situ measured data from each LED, the similarity-based 

statistical measure can predict the remaining useful life of individual LEDs under the 

test conditions. The experimental results from the electrical and thermal aging tests 

demonstrated the effectiveness and accuracy of the developed prognostic algorithms. 

The algorithms can be implemented not only in field operations to provide real-time 

LED remaining useful life, but also employed in LED qualification to significantly 

reduce testing time, since only the early period of testing is needed to generate data for 

remaining useful life prediction. Initial increase of light output due to the short term 

aging effect was solved with the more clear trending data with the health index 

approach. This can help the users to link the health indicators to the long term 

performance of the LEDs.     
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CHAPTER 6 Contributions and Future Work 

6.1 Contributions 

• Developed anomaly detection method for LEDs with test data 

on current devices by using new features extracted from SPD. 

• Developed diagnostic and prognostic technique of LEDs by 

predicting SPD to determine potential degradation of die, 

phosphor, and encapsulant in product qualification. 

• Developed RUL prediction method with statistical measure 

accompanied with RVM regression to capture degradation 

trends and predict the RUL of individual LEDs using prior 

electrical and thermal failure data on other devices.   

6.2 Future Work 

• Further research can be performed on an accelerated life test 

profile for conducting accelerated life tests; research 

off-the-shelf hardware and software packages to analyze 

precursor parameter signals; conduct life tests on special LED 
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samples; verify that test stations can detect LED life 

degradation; develop test methods and analysis procedures that 

will enable suppliers and test labs to conduct LED life tests; 

and present research in a final report with a defined test plan. 

• Further research can be performed to do and identify dominant 

failure modes expected from manufacturing process variations; 

conduct tests on a large set of special samples to detect sources 

of manufacturing variation; develop algorithms and methods to 

predict each source of variation; and present research in a final 

report with recommended approach for conducting on-going 

reliability testing program of LEDs.   



 

 

112

112 
 

Appendix A: Test Results 
 

1. Test results under the condition with 350mA drive current and chamber 

temperature 40°C 

 

Light output failure (L70) summary 

 

Color temperature degradation summary 
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CRI degradation summary 

 

 

 

Color (u′v′ Distance Shift) degradation summary 
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Input current variation summary 

 

 

 

Ambient temperature change summary 

 

 

 



 

 

115

115 
 

 

 

 

Lead temperature change summary 

 

 

Forward voltage change summary 
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2. Test results under the condition with 350mA drive current and chamber 

temperature 40°C 

 

Light output failure (L70) summary 

 

 

 

Correlated color temperature degradation summary 
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CRI degradation summary 

 

 

 

Color (u′v′ distance shift) degradation summary 
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Time to failure for color failures (based on 0.007 u′v′ distance color shift) 
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Appendix B: Anomaly Detection Results under the Condition of 
350mA Drive Current and Chamber Temperature 40°C 

 

1. Anomaly detection results for LED die peak under the condition with 350mA 

drive current and chamber temperature 40°C 

 

Distance measure of cluster 1 from LED 1 for die peak. 

 

 

 

Distance measure of cluster 2 from LED 2 for die peak. 
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Distance measure of cluster 4 from LED 3 for die peak. 

 

 

 

 

Distance measure of cluster 7 from LED 4 for die peak. 
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Distance measure of cluster 1 from LED 5 for die peak. 

 

 

 

 

Distance measure of cluster 2 from LED 6 for die peak. 
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Distance measure of cluster 2 from LED 7 for die peak. 

 

 

 

 

Distance measure of cluster 7 from LED 7 for die peak. 
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Distance measure of cluster 3 from LED 9 for die peak. 

 

 

 

 

Distance measure of cluster 2 from LED 10 for die peak. 
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Distance measure of cluster 3 from LED 11 for die peak. 

 

 

 

 

Distance measure of cluster 4 from LED 12 for die peak. 
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Distance measure of cluster 7 from LED 13 for die peak. 

 

 

 

 

Distance measure of cluster 2 from LED 14 for die peak. 
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Distance measure of cluster 4 from LED 15 for die peak. 

 

 

 

 

Distance measure of cluster 2 from LED 16 for die peak. 
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2. Anomaly detection results for phosphor peak under the condition with 350mA 

drive current and chamber temperature 40°C 

 

 

Distance measure of cluster 2 from LED 1 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 2 for phosphor peak. 
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Distance measure of cluster 1 from LED 3 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 4 for phosphor peak. 
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Distance measure of cluster 6 from LED 5 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 6 for phosphor peak. 
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Distance measure of cluster 2 from LED 7 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 8 for phosphor peak. 
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Distance measure of cluster 2 from LED 9 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 10 for phosphor peak. 
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Distance measure of cluster 2 from LED 11 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 12 for phosphor peak. 
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Distance measure of cluster 2 from LED 13 for phosphor peak. 

 

 

 

 

 

Distance measure of cluster 2 from LED 14 for phosphor peak. 
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Distance measure of cluster 2 from LED 15 for phosphor peak. 

 

 

 

 

Distance measure of cluster 2 from LED 16 for phosphor peak. 
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3. Anomaly detection results for LED die peak based on five points adjacent 

moving averaging of distance measures under the condition with 350mA drive 

current and chamber temperature 40°C 

 

 

Comparison of anomaly detection results for the die peak of LED 1. 

 

 

Comparison of anomaly detection results for the die peak of LED 2. 
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Comparison of anomaly detection results for the die peak of LED 3. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 4. 
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Comparison of anomaly detection results for the die peak of LED 5. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 6. 
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Comparison of anomaly detection results for the die peak of LED 7. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 8. 
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Comparison of anomaly detection results for the die peak of LED 9. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 10. 
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Comparison of anomaly detection results for the die peak of LED 11. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 12. 
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Comparison of anomaly detection results for the die peak of LED 13. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 14. 
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Comparison of anomaly detection results for the die peak of LED 15. 

 

 

 

 

Comparison of anomaly detection results for the die peak of LED 16. 
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4. Anomaly detection results for LED phosphor peak based on five points adjacent 

moving averaging of distance measures under the condition with 350mA drive 

current and chamber temperature 40°C 

 

Comparison of anomaly detection results for the phosphor peak of LED 1. 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 2. 
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Comparison of anomaly detection results for the phosphor peak of LED 3. 

 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 4. 
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Comparison of anomaly detection results for the phosphor peak of LED 5. 

 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 6. 
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Comparison of anomaly detection results for the phosphor peak of LED 7. 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 8. 
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Comparison of anomaly detection results for the phosphor peak of LED 9. 

 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 10. 
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Comparison of anomaly detection results for the phosphor peak of LED 11. 

 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 12. 
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Comparison of anomaly detection results for the phosphor peak of LED 13. 

 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 14. 
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Comparison of anomaly detection results for the phosphor peak of LED 15. 

 

 

 

 

Comparison of anomaly detection results for the phosphor peak of LED 16. 
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Appendix C: Anomaly Detection Results under the Condition of 
200mA Drive Current and Chamber Temperature 90°C 

 

1. Anomaly detection results for LED die peak under the condition of 200mA drive 

current and chamber temperature 90°C 

 

Distance measure of cluster 1 from LED 1 for die peak. 

 

 

 

Distance measure of cluster 2 from LED 2 for die peak. 
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Distance measure of cluster 2 from LED 3 for die peak. 

 

 

 

 

Distance measure of cluster 3 from LED 4 for die peak. 
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Distance measure of cluster 5 from LED 5 for die peak. 

 

 

 

 

Distance measure of cluster 2 from LED 6 for die peak. 
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Distance measure of cluster 3 from LED 7 for die peak. 

 

 

 

 

Distance measure of cluster 3 from LED 8 for die peak. 
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Distance measure of cluster 2 from LED 9 for die peak. 

 

 

 

 

Distance measure of cluster 1 from LED 10 for die peak. 
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Distance measure of cluster 7 from LED 11 for die peak. 

 

 

 

 

Distance measure of cluster 2 from LED 12 for die peak. 
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Distance measure of cluster 3 from LED 13 for die peak. 

 

 

 

 

Distance measure of cluster 3 from LED 14 for die peak. 
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Distance measure of cluster 3 from LED 15 for die peak. 

 

 

 

 

Distance measure of cluster 1 from LED 16 for die peak. 
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2. Anomaly detection results for LED phosphor peak under the condition of 200mA 

drive current and chamber temperature 90°C 

 

 

Distance measure of cluster 6 from LED 1 for phosphor peak. 

 

 

 

Distance measure of cluster 6 from LED 2 for phosphor peak. 
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Distance measure of cluster 6 from LED 3 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 4 for phosphor peak. 
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Distance measure of cluster 6 from LED 5 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 6 for phosphor peak. 
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Distance measure of cluster 4 from LED 7 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 8 for phosphor peak. 
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Distance measure of cluster 1 from LED 9 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 10 for phosphor peak. 
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Distance measure of cluster 6 from LED 11 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 12 for phosphor peak. 
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Distance measure of cluster 6 from LED 13 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 14 for phosphor peak. 

 

 

 

10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0
threshold 2.7291

D
is

ta
nc

e

Days

 LED #13_Phosphor

Actual TTF

10 20 30 40 50 60 70 80
0.0

0.8

1.6

2.4

3.2

4.0

Actual TTF

threshold 2.7291

D
is

ta
nc

e

Days

 LED #14_Phosphor



 

 

166

166 
 

 

 

 

Distance measure of cluster 6 from LED 15 for phosphor peak. 

 

 

 

 

Distance measure of cluster 6 from LED 16 for phosphor peak. 

 

 

 

10 20 30 40 50 60 70 80
0.0

0.7

1.4

2.1

2.8

3.5

Actual TTF

D
is

ta
nc

e

Days

 LED #15_Phosphor

10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Actual TTF

D
is

ta
nc

e

Days

 LED #16_Phosphor



 

 

167

167 
 

 

 

 

 

 

 

 

References 

[1] M. -H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light Emitting Diodes Rel
iability Review”, Journal of Microelectronics Reliability, vol. 52, pp. 762-782, 
2012. 

[2] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, “A Revie
w on the Physical mechanisms That Limit the Reliability of GaN-Based LEDs
”, IEEE Transactions on Electron Devices, vol. 57, pp. 108-118, 2010. 

[3] N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, “Performance Charact
eristics of High-power Light-emitting Diodes”, Third International Conference
 on Solid State Lighting, Proceedings of SPIE. 5187, pp. 267-275, 2004. 

[4] Y. Deshayes, L. Bechou, F. Verdier, and Y. Danto, “Long-term Reliability Pre
diction of 935nm LEDs Using Failure Laws and Low Acceleration Factor Age
ing Tests”, Quality and Reliability Engineering International, vol. 21, no. 6, pp
. 571-594, 2005. 

[5] J. -S. Jeong, J. -K. Jung, and S. -D. Park, “Reliability Improvement of InGaN 
LED Backlight Module by Accelerated Life Test (ALT) and Screen Policy of 
Potential Leakage LED”, Microelectronics Reliability. vol. 48, no. 8-9, pp. 121
6-1220, 2008. 

[6] I. Polavarapu and G. Okogbaa, “An Interval Estimate of Mean-time-to-failure 
for a Product with Reciprocal Weibull Degradation Failure Rate”, Proceedings 
of Reliability and Maintainability Symposium. pp. 261-265, 2005. 

[7] C. -Y. Peng and S. -T. Tseng, “Mis-specification Analysis of Linear Degradati
on Models”, IEEE Transactions on Reliability, vol. 58, no. 3, pp. 444-455, 200
9. 

[8] M. Vazquez, N. Nunez, E. Nogueira, and A. Borreguero, “Degradation of AlIn
GaP Red LEDs under Drive Current and Temperature Accelerated Life Tests”,
 Microelectronics Reliability, vol. 50, no. 9-11, pp. 1559-1562, 2010. 

[9] Cree, “Cree Xlamp XR Family LED Reliability”, CLD-AP26 Rev. 2, Cree, Inc
., 2011. 

[10] Samsung LED, “Specification for White LED Model: SPHWHTL3D305E6W 
0F5”, Rev. 2, pp. 1-18, 2011.  

[11] Nichia, “Specifications for White LED Model: NS6W183BT”, Nichia STS-DA
1-1992A, Cat. No. 120524, Nichia Corporation, pp. 1-18, 2012. 

[12] IES (Illuminating Engineering Society), IES LM-80-08, “Approved Method: 



 

 

168

168 
 

Measuring Lumen Maintenance of LED Light Sources”, pp. 1-4, 2008. 
[13] N. Narendran, J. D. Bullough, N. Maliyagoda, and A. Bierman, “What is Usef

ul Life for White Light LEDs?”, Journal of the Illumination Engineering Socie
ty vol. 30, no.1, pp. 57-68, 2001. 

[14] T. Yanagisawa and T. Kojima, “Long-term Accelerated Current Operation of 
White Light-Emitting Diodes”, Journal of Luminescence, vol. 114, no. 1, pp. 3
9-42, 2005. 

[15] M. Bürmen, F. Pernuš, and B. Likar, “Accelerated Estimation of Spectral Degr
adation of White GaN-Based LEDs”, Measurement Science and Technology, 
vol. 18, no. 1, pp. 230-238, 2007. 

[16] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. 
Harbers, and M. G. Craford, “Status and Future of High-power Light-emitting 
Diodes for Solid-state Lighting”, Journal of Display Technology, vol. 3, no. 2, 
pp. 160-175, 2007. 

[17] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. 
J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Ligh
ting Technology”, IEEE Journal of Selected Topics in Quantum Electronics, v
ol. 8, no. 2, pp. 310-320, 2002. 

[18] F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Ga
rdner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Har
bers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. R
udaz, Y. C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, an
d J. J. Wierer, “High Power LEDs - Technology Status and Market Application
s”, Physica Status Solidi (a), vol. 194, no. 2, pp. 380-388, 2002. 

[19] E. F. Schubert, J. K. Kim, H. Luo, and J. -Q. Xi, “Solid-State Lighting-A Bene
volent Technology”, Reports on Progress in Physics, vol. 69, pp. 3069-3099, 2
006. 

[20] Y. Aoyama and T. Yachi, “An LED Module Array System Designed for Street
light Use”, IEEE Energy 2030 Conference, Atlanta, GA, Nov. 17-19, pp. 1-5, 
2008. 

[21] R. Vittori and A. Scaburri, “New Solid State Technologies and Light Emission
 Diodes as a Mean of Control and Lighting Source Applicable to Explosion Pr
oof Equipment, with the Scope to Reduce Maintenance, to Limit the Risk of B
ad Maintenance and to Expand the Plants’ Life”, PCIC Europe '09, pp. 193-19
8, 2009. 

[22] D. G. Moore, Sierra Products Inc., “Request for Legal Interpretations on FMV
SS #108 Subjects”, July 14, 2006, “http://www.sierraproductsinc.com/ 
filebox/108Fed/Heat%20Degradation%20LED.htm”. 

[23] R. Easterling, “LED Street Lighting – No Longer King of the Road”, Jan. 17, 
2011, Ezinearticles, “http://ezinearticles.com/?LED-Street-Lighting---No-Lon
ger-King-of-the-Road&id=5722801”. 

[24] MadeinAsia, “Taiwan Market: LED Street Lamp Failure Rates about 8%”, Feb
. 18, 2011, “http://lighting.madeinasia.com/news/Taiwan-Market-LED-Street-
Lamp-Failure-Rates-About-8-6305.html”. 

[25] M. –S. Huang, C. –C. Hung, Y. –C. Fang, W. –C. Lai, and Y. –L. Chen, “Opti
cal Design and Optimization of Light Emitting Diode Automotive Head Light 



 

 

169

169 
 

with Digital Micromirror Device Light Emitting Diode”, Optik, International J
ournal for Light and Electron Optics, pp. 1-9, 2009. 

[26] S. W. R. Lee, C. H. Lau, S. P. Chan, K. Y. Ma, M. H. NG, Y. W. NG, K. H. L
EE, and J. C. C. Lo, “Development and Prototyping of a HB-LED Array Modu
le for Indoor Solid State Lighting”,  High Density Microsystem Design and Pa
ckaging and Component Failure Analysis, 2006. HDP΄06. Conference, pp. 141
-145, 2006. 

[27] R. Peon, G. Doluweera, I. Platonova, D. Irvine-Halliday, and G. Irvine-Hallida
y, “Solid State Lighting For The Developing World – The Only Solution”, Opt
ics & Photonics 2005, Proceedings of SPIE, vol. 5941, pp. 109-123, San Diego
, 2005. 

[28] R. A. Pinto, M. R. Cosetin, M. F. da Silva, G. W. Denardin, J. Fraytag, A. Ca
mpos, and R. N. do Prado, “Compact Emergency Lamp Using Power LEDs”, I
ndustrial Electronics, 2009. IECON ΄09. 35th Annual Conference of IEEE, pp. 
3494-3499, 2009. 

[29] S. –I. Shibata, T. Oyabu, and Haruhiko Kimura, “Bioelectric Potential Charact
eristic of Pothos under Light Emitting Diode”, ICCAS-SICE, pp. 4663-4668, 2
009. 

[30] T. Wipiejewski, T. Moriarty, V. Hung, P. Doyle, G. Duggan, D. Barrow, B. Mc
Garvey, M. O’Gorman, T. Calvert, M. Maute, V. Gerhardt, J. D. Lambkin, “Gi
gabits in the Home with Plugless Plastic Optical Fiber (POF) Interconnects”, E
lectronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd,
 pp. 1263-1266, 2008. 

[31] Lumileds, “Luxeon Reliability”, Reliability Datasheet RD25, Philips Lumileds
, 2006. 

[32] Y. N. Chang, C. C. Hung, and S. C. Tung, “Auto Mixed Light for RGB LED 
Backlight Module”, Industrial Electronics, 2009. ISIE 2009. IEEE Internationa
l Symposium, pp. 864-869, 2009. 

[33] S. W. Chang, “LED Lighting: High Efficiency and Environmental Benefit” Sa
msung Economic Research Institute Economic Focus, vol. 206, pp. 1-10, 2008. 

[34] L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghess
o, and E. Zanoni, “Accelerated Life Test of High Brightness Light Emitting Di
odes”, IEEE Transactions on Device and Materials Reliability, vol. 8, no. 2, pp
. 304-311, 2008. 

[35] Y. Deshayes, I. Bord, G. Barreau, M. Aiche, P. H. Moretto, L. Bechou, A.C. R
oehrig, and Y. Ousten, “Selective Activation of Failure Mechanisms in Packag
ed Double-Heterostructure Light Emitting Diodes Using Controlled Neutron E
nergy Irradiation”, Microelectronics Reliability, vol. 48, pp. 1354-1360, 2008. 

[36] Nichia, “Specifications for Nichia Chip Type White LED Model: NCSW119T-
H3”, Nichia STS-DA1-0990A, Nichia Corporation, 2009. 

[37] C. J. M. Lasance, “Recent Progress in Compact Thermal Models”, 19th IEEE 
SEMI-THERM Symposium, pp. 290-299, 2003. 

[38] N. Hwang, “Failure Analysis Matrix of Light Emitting diodes for General Ligh
ting Applications”, Physical and Failure Analysis of Integrated Circuits, 2008. 
IPFA 2008. 15th International Symposium, pp. 1-4, 2008. 

[39] Q. Hu and R. Zane, “LED Drive Circuit with Series Input Connected Converte



 

 

170

170 
 

r Cells Operating in Continuous Conduction Mode”, Applied Power Electronic
s Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE,
 pp. 1511-1517, 2009. 

[40] A. Christensen and S. Graham, “Thermal Effects in Packaging High Power Li
ght Emitting Diode Arrays”, Applied Thermal Engineering, vol. 29, pp. 364-37
1, 2009. 

[41] Q. Li and D. B. Kececioglu, “Design of an Optimal Plan for an Accelerated De
gradation Test: A Case Study”, International Journal of Quality & Reliability 
Management”, vol. 23, no. 4, pp. 426-440, 2006. 

[42] E. Nogueira, M. Vazquez, and N. Nunez, “Evaluation of AlGaInP LEDs Relia
bility Based on Accelerated Tests”, Microelectronics Reliability, vol. 49, pp. 1
240-1243, 2009. 

[43] J. -M. Kang, J. -W. Kim, J. -H. Choi, D. -H. Kim, and H. -K. Kwon, “Life-Ti
me Estimation of High-Power Blue Light-Emitting Diode Chips”, Microelectr
onics Reliability, vol. 49, pp. 1231-1235, 2009. 

[44] T. Cheng, X. Luo, S. Huang, and S. Liu, “Thermal Analysis and Optimization 
of Multiple LED Packaging Based on a General Analytical Solution”, Internati
onal Journal of Thermal Sciences, vol. 49, pp. 196-201, 2010. 

[45] G. Molnar, G. Nagy, and Z. Szucs, “A Novel Procedure and Device to Allow 
Comprehensive Characterization of Power LEDs over a Wide Range of Tempe
rature”, TERMINIC 2008, Rome, Italy, pp. 89-92, Sep. 2008. 

[46] V. Szekely, G. Somlay, P. G. Szabo, and M. Rencz, “Design of a Static TIM T
ester”, THERMINIC 2008, Rome, Italy, pp. 132-136, Sep. 2008. 

[47] R. Linderman, T. Brunschwiler, B. Smith, and B. Michel, “High-Performance 
Thermal Interface Technology Overviews”, THERMINIC 2007, 13th Internati
onal Workshop on, Budapest, Hungary, pp. 129-134, Sep. 2007. 

[48] R. -H. Horng, H. -Y. Hsiao, C. -C. Chiang, D. -S. Wuu, Y. -L. Tsai, and H. -I. 
Lin, “Novel Device Design for High-Power InGaN/Sapphire LEDs using Copp
er Heat Spreader With Reflector”, IEEE Journal of Selected Topics in Quantu
m Electronics, vol. 15, no. 4, 2009. 

[49] J. H. Yu, W. Oepts, and H. Konijn, “PC Board Thermal Management of High 
Power LEDs”, Semiconductor Thermal Measurement and Management Sympo
sium, 2008. Semi-Therm 2008. Twenty-fourth Annual IEEE, pp. 63-67, 2008. 

[50] M. Pecht and M. –H. Chang, “Chapter 3: Failure Mechanisms and Reliability I
ssues in LEDs”, Solid State Lighting Reliability: Components to Systems: Soli
d State Lighting Technology and Application Series, vol. 1, Springer Science+
Business Media, (ISBN 978-1-4614-3066-7), pp. 43-110, 2013. 

[51] J. Liu, W. S. Tam, H. Wong, and V. Filip, “Temperature-Dependent Light-Emi
tting Characteristics of InGaN/GaN Diodes”, Microelectronics Reliability, vol.
 49, pp. 38-41, 2009. 

[52] S. Chhajed, Y. Xi, Th. Gessmann, J. –Q. Xi, J. M. Shah, J. K. Kim, and E. F. S
chubert, “Junction Temperature in Light-Emitting Diodes Assessed by Differe
nt Methods”, Progress in Biomedical Optics and Imaging – Proceedings of SPI
E, vol. 5739, pp. 16-24, 2005. 

[53] M. -H. Chang, D. Das, S.W. Lee, and M. Pecht, “Concerns with Interconnect 
Reliability Assessment of High Power Light Emitting Diodes (LEDs)”, SMTA



 

 

171

171 
 

 China South Technical Conference 2010, Shenzhen, China, pp. 63-69, 2010. 
[54] M. –H. Chang, D. Das, and M. Pecht, “Interconnect Reliability Assessment of 

High Power Light Emitting Diodes (LEDs) through Simulation”, ICHRESH 2
010, pp. 418-424, 2010. 

[55] U. S. Department of Energy, “Energy Star® Program Requirements for Solid 
State Lighting Luminaires”, Eligibility Criteria – Version 1.1, pp. 1-23, Decem
ber 19, 2008. 

[56] U. S. Department of Energy, “Energy Star® Program Requirements: Product S
pecification for Luminaires (Lighting Fixtures)”, Eligibility Criteria Version 1.
2, pp. 1-36, December 21, 2012. 

[57] S. Cheng, M. H. Azarian, and M. G. Pecht, “Sensor Systems for Prognostics a
nd Health Management”, Sensors, Vol. 10, pp. 5774-5797, 2010. 

[58] M. G. Pecht, “Chapter 1. Introduction”, Prognostics and Health Management o
f Electronics, 1st ed., Hoboken, New Jersey, John Wiley & Sons, pp. 1-24, 200
8. 

[59] S. Cheng, K. Tom, and M. Pecht, “Anomaly Detection of Polymer Resettable 
Circuit Protection Devices”, IEEE Transactions on Device and Materials Relia
bility, Vol. 12, No. 2, pp. 420-427, 2012. 

[60] T. Sutharssan, S. Stoynanov, C. Bailey, and Y. Rosunally, “Prognostics and He
alth Monitoring of High Power LED”, Micromachines, Vol. 3, pp. 78-100, 201
2. 

[61] J. –J. M. Avenel, “Technique for Identifying At Least One Faulty Light Emitti
ng Diode in a String of Light Emitting Diodes”, U. S. Patent Application No. 1
3/369,949, pp. 1-8, 2012. 

[62] J. Fan, K. C. Yung, and M. Pecht, “Anomaly Detection for Chromaticity Shift 
of High Power White LED with Mahalanobis Distance Approach”, Proceeding
 of the 14th International Conference on Electronics Materials and Packaging (
EMAP2012, Hong Kong), pp. 13-26, 2012. 

[63] S. B. Kotsiantis and P. E. Pintelas, “Recent Advances in Clustering: A Brief Su
rvey”, WSEAS Transactions on Information Science and Applications, vol.  1, 
pp. 73-81, 2004. 

[64] P. Berkhin, “Survey of Clustering Data Mining Techniques, Technical Report”
, Accrue Software, San Jose, CA, pp. 1-56, 2002. 

[65] A. K. Jain, M. N. Murty, and P. J. Flyn, “Data Clustering: A Review”, ACM C
omputing Surveys, vol. 31, no. 3, pp. 264-323, 1999. 

[66] L. Talavera, “Dependency-Based Dimensionality Reduction for Clustering Sy
mbolic Data”, In Proceedings of the Workshop on Pre- and Post-Processing in 
machine Learning and Data Mining (ACAI ’99), Advanced Course on Artifici
al Intelligence, pp.1-8, 1999. 

[67] R. Xu and D. Wunsch II, “Survey of Clustering Algorithms”, IEEE Transactio
ns on Neural Networks, vol. 16, no. 3, pp. 645-678, 2005. 

[68] Z. Huang, “Extensions to the k-Means Algorithms for Clustering Large Data S
ets with Categorical Values”, Data Mining and Knowledge Discovery, vol. 2, 
pp. 283-304, 1998. 

[69] L. Ertőz, M. Steinbach, and V. Kumar, “Finding Clusters of Different Sizes, S
hapes, and Densities in Noisy, High Dimensional Data”, Proceedings of Secon



 

 

172

172 
 

d SIAM International Conference on Data Mining, pp. 1-12, 2003. 
[70] M. Ester, H. –P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm f

or Discovering Clusters in Large Spatial Data Sets with Noise”, Proceedings of
 2nd International Conference on KDD, pp. 226-231, 1996. 

[71] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace 
Clustering of High Dimensional Data for Data Mining Applications”, Proceedi
ngs of the 1998 ACM-SIGMOD Conference on the Management of Data, pp. 
94-105, 1998. 

[72] T. N. Tran, R. Wehrens, and L. M. C. Buydens, “Clustering Multispectral Ima
ges: A Tutorial”, Chemometrics and Intelligent Laboratory Systems, vol. 77, n
o. 1-2, pp. 3-17, 2005. 

[73] T. N. Tan, R. Wehrens, and L. M. C. Buydens, “KNN-Kernel Density-Based 
Clustering for High-Dimensional Multivariate Data”, Computational Statistics 
& Data Analysis, vol. 51, no. 2, pp. 513-525, 2006. 

[74] A. Webb, “Statistical Pattern Recognition”, Wiley, Malvern, UK, pp. 81-122, 
2002. 

[75] S. Zhong and J. Ghosh, “A Unified Framework for Model-based Clustering”, J
ournal of Machine Learning Research, vol. 4, pp. 1001-1037, 2003. 

[76] Illuminating Engineering Society of North America, “TM-21-11: Projecting Lo
ng Term Lumen Maintenance of LED Light Sources”, IES, pp. 1-25, 2011. 

[77] CIE (Commission Internationale de l’Eclairage), “Technical Reports and Guid
es”, October 13, 2013, “http://www.cie.co.at/index.php/Publications/ 
Technical+Reports+and+Guides”. 

[78] A. Albertini, M. G. Masi, G. Mazzanti, L. Peretto, and R. Tinarelli, “A Test Se
t for LEDs Life Model Estimation”, Instrumentation and Measurement Techno
logy Conference (2010 IEEE), pp. 424-431, 2010. 

[79] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-State Light
ing: Failure Analysis of White LEDs”, Journal of Crystal Growth, vol. 268, pp.
 449-456, 2004. 

[80] J. Beringer, K. Borer, C. B. Brooks, A. Fox-Murphy, R. B. Nickerson, and A. 
R. Weidberg, “A Life Time Test of Neutron Irradiated Light Emitting Diodes”,
 Nuclear Instruments and Methods in Physics Research A, vol. 373, pp. 320-32
4, 1996. 

[81] J. F. Fan, K. C. Yung, and M. Pecht, “Physics-of-Failure-Based Prognostics an
d Health Management for High-Power White Light-Emitting Diode Lighting”, 
IEEE Transactions on Device and Materials Reliability, vol. 11, pp. 407-416, 
2011. 

[82] B. –M. Song, B. Han, A. Bar-Cohen, R. Sharma, and M. Arik, “Hierarchical Li
fe Prediction Model for Actively Cooled LED-Based Luminaire”, IEEE Trans
actions on Components and Packaging Technologies, vol. 33, no. 4, pp. 728-73
7, 2010. 

[83] T. Yanagisawa, “Estimation of the Degradation of InGaN/AlGaN Blue Light-
Emitting Diodes”, Microelectronics Reliability, vol. 37, pp. 1239-1241, 1997. 

[84] S. Levada, M. Meneghini, G. Meneghesso, and E. Zanoni, “Analysis of DC Cu
rrent Accelerated Life Tests of GaN LEDs Using a Weibull-based Statistical 
Model”, IEEE Transaction Device Material Reliability, vol. 5, pp. 688-693, 20



 

 

173

173 
 

05. 
[85] S. –L. Chuang, A. Ishibashi, S. Kijima, N. Nakayama, M. Ukita, and S. Tanigu

chi, “Kinetic Model for Degradation of Light-Emitting Diodes”, IEEE Journal 
of Quantum Electronics, vol. 33, pp. 970-979, 1997. 

[86] J. Fan, K. –C. Yung, and M. Pecht, “Lifetime Estimation of High-Power Whit
e LED Using Degradation-Data-Driven Method”, IEEE Transactions on Devic
e and Materials Reliability, vol. 12, no. 2, pp. 470-477, 2012. 

[87] M. Bürmen, F. Pernuš, and B. Likar, “Prediction of Intensity and Color Degrad
ation of LEDs”, Proceedings of SPIE, vol. 6486, pp. 64860M-1-10, 2007. 

[88] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identifi
cation of Aging Mechanisms in the Optical and Electrical Characteristics of Li
ght-Emitting Diodes”, Applied Physics Letter, vol. 79, pp. 2895-2897, 2001. 

[89] X. A. Cao, P. M. Sandvik, S. F. LeBoeuf, and S. D. Arthur, “Defect Generatio
n in InGaN/GaN Light-Emitting Diodes Under Forward and Reverse Electrical
 Stresses”, Microelectronics Reliability, vol. 43, pp. 1987-1991, 2003. 

[90] F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, and M. Manfredi, “Influence o
f Short-term Low Current DC Aging on the Electrical and Optical Properties o
f InGaN Blue Light-Emitting Diodes”, Journal of Applied Physics, vol. 99, pp.
 053104-1-7, 2006. 

[91] M. Meneghini, S. Podda, A. Morelli, R. Pintus, L. Trevisanello, G. Meneghess
o, M. Vanzi, and E. Zanoni, “High Brightness GaN LEDs Degradation During 
DC-aged GaN LEDs”, Microelectronics Reliability, vol. 46, pp. 1720-1724, 20
06. 

[92] Z. –Q. Fang, D. C. Reynolds, and D. C. Look, “Changes in Electrical Characte
ristics Associated with Degradation of InGaN Blue Light-Emitting Diodes”, Jo
urnal of Electronic materials, vol. 29, pp. 448-451, 2000. 

[93] H. Chen, A. Keppens, P. Hanselaer, Y. Lu, Y. Gao, R. Zhuang, and Z. Chen, “
Failure Analysis of Electrical-Thermal-Optical Characteristics of LEDs Based 
on AlGaInP and InGaN/GaN”, Physics of Semiconductor Devices, vol. 46, no.
 10, pp. 1310-1315, 2012. 

[94] A. Keppens, H. Chen, Y. Lu, Z. Chen, Y. Gao, G. Deconinck, and P. Hanselae
r, “Light-Emitting Diode Junction Temperature and Power Determination from
 Forward Current”, Light & Engineering, vol. 19, no. 1, pp. 34-44, 2011. 

[95] M. –H. Chang, C. Chen, D. Das, and M. Pecht, “New Failure Precursors for Re
liability Assessment of Light-Emitting Diodes (LEDs)”, under internal revision
, pp. 1-10, submission to journal in 2014. 

[96] Avago Technologies, “ASMT-Jx3x 3W Mini Power LED Light Source: Data 
Sheet”, AV02-1941EN, pp. 1-15, 2009. 

[97] A. K. Jain, M. N. Murty, and P. J. Flyn, “Data Clustering: A Review”, ACM C
omputing Surveys, Vol. 31, pp. 264-323, 1999. 

[98] A. W. F. Edwards and L. L. Cavalli-Sforza, “A Method for Cluster Analysis”, 
Biometrics, Vol. 21, no. 2, pp. 362-375, 1965. 

[99] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering A
lgorithm”, Journal of the Royal Statistical Society. Series C (Applied Statistics
), Vol. 28, no. 1, pp. 100-108, 1979. 

[100] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Cluste



 

 

174

174 
 

ring Method for Very large Databases”, SIGMOD Record 1996 ACM SIGMO
D International Conference on Management of Data, Vol. 25, pp. 103-114, 199
6. 

[101] K. Burbeck and S. Nadjm-Tehrani, “ADWICE – Anomaly Detection with Real
-Time Incremental Clustering”, Proceedings of Seventh International Conferen
ce: Information Security and Cryptology (ICISC 2004), LNCS 3506, pp.407-4
24, 2005. 

[102] B. –M. Song and B. Han, “Spectral Power Distribution Deconvolution Scheme
 for Phosphor-Converted White Light-Emitting Diode Using Multiple Gaussia
n Functions”, Applied Optics, vol. 52, no. 5, pp. 1016-1024, 2013. 

[103] M. D. Fairchild, “Color Appearance Models”, 2nd Edition, John Wiley and So
ns, West Chester, England, 2005. 

[104] Y. –H. Lin, J. P. You, Y. –C. Lin, N. T. Tran, and F. G. Shi, “Development of 
High-Performance Optical Silicone for the Packaging of High-Power LEDs”, I
EEE Transactions on Components and Packaging Technologies, vol. 33, no. 4,
 pp. 761-766, 2010. 

[105] P. Jähnigen, C. Nebelung, and G. Bernhard, “Simultaneous Determination of 
Beta Nuclides by Liquid Scintillation Spectrometry”, FZD – IRC Annual Repo
rt 2007, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, 
Dresden, Germany, pp. 60, 2007. 

[106] E. F. Shubert, “Chapter 17. Colorimetry”, Light-Emitting Diodes, 2nd Edition, 
Cambridge University Press, New York, pp. 292-305, 2006. 

[107] R. M. Boynton, “History and Current Status of a Physiologically Based Syste
m of Photometry and Colorimetry”, Journal of Optical Society of America A, 
vol. 13, no. 8, pp. 1609-1621, 1996. 

[108] P. F. M. Stalmeier and C. M. M. de Weert, “Large Color Differences and Selec
tive Attention”, Journal of Optical Society of America A, vol. 8, no. 1, pp. 237
-247, 1991. 

[109] D. L. Macadam, “Visual Sensitivities to Color Differences in Daylight”, Journ
al of the Optical Society of America, vol. 32, no. 5, pp. 247-273, 1942. 

[110] M. E. Tipping, “Bayesian Inference: An Introduction to Principles and Practice
 in Machine Learning”, Advanced Lectures on Machine Learning, Springer, pp
. 41-62, 2006. 

[111] V. A. Sotiris, P. W. Tse, and M. G. Pecht, “Anomaly Detection Through a Bay
esian Support Vector Machine”, IEEE Transactions on Reliability, vol. 59, no. 
2, pp. 277-286, 2010. 

[112] V. N. Vapnik, “An Overview of Statistical Learning Theory”, IEEE Transactio
ns on Neural Networks, vol. 10, no. 5, pp. 988-999, 1999. 

[113] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine
”, Journal of Machine Learning Research, vol. 1, pp. 211-244, 2001. 

[114] M. E. Tipping, “The Relevance Vector machine”, Advances in Neural Informa
tion Processing Systems, MIT Press, vol. 12, pp. 652-658, 2000. 

[115] P. Wang, B. D. Youn, and C. Hu, “A Generic Probabilistic Framework for Str
uctural Health Prognostics and Uncertainty Management”, Mechanical System
s and Signal Processing, vol. 28, pp. 622-637, 2012. 

[116] T. Wang, J .Yu, D. Siegel, and J. Lee, “A Similarity-Based Prognostics Appro



 

 

175

175 
 

ach for Remaining Useful Life Estimation of Engineered Systems”, 2008 Inter
national Conference on Prognostics and Health Management, pp. 1-6, Oct 6-9, 
Denver, CO, 2008. 

[117] N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran, “Residual Life Predict
ion from Vibration-Based Degradation Signals: A Neural Network Approach”,
 IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 694-700, 2004. 

[118] M. –H. Chang, D. Das, and M. Pecht, “Junction Temperature Characterization 
of High Power Light Emitting Diodes”, IMAPS Mid-Atlantic Microelectronics
 Conference 2011, Atlantic City, New Jersey, pp. 1-6, 2011. 

[119] S. Kumar, T. W. S. Chow, and M. Pecht, “Approach to Fault Identification for 
Electronic Products Using Mahalanobis Distance”, IEEE Transactions on Instr
umentation and Measurement, vol. 59, no. 8, pp. 2055-2064, 2010. 

[120] S. Kumar, V. Sotiris, and M. Pecht, “Health Assessment of Electronic Product
s Using Mahalanobis Distance and Projection Pursuit Analysis”, International 
Journal of Computer and Information Engineering, vol. 2, no. 4, pp. 242-250, 
2008. 
 


