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Members of the Poxviridae family have been known as human pathogens for centuries. 

Their impact in society included several epidemics that decimated the population. In the 

last few centuries, Smallpox was of great concern that led to the development of our 

modern vaccines. The systematic study of Poxvirus host-range and immunogenicity 

provided the knowledge to translate those observations into practice. After the global 

vaccination campaign by the World Health Organization, Smallpox was the first 

infectious disease to be eradicated. Nevertheless, diseases such as Monkeypox, 

Molluscum contagiosum, new bioterrorist threads, and the use of poxviruses as vaccines 

or vectors provided the necessity to further understand the host-range from a molecular 

level. Here, we take advantage of the newly developed technologies such as 454 

pyrosequencing and RNA-Seq to address previously unresolved questions for the field. 

First, we were able to identify the Erytrhomelagia-related poxvirus (ERPV) 25 years after 

its isolation in Hubei, China. Whole-genome sequencing and bioinformatics identified 

ERPV as an Ectromelia strain closely related to the Ectromelia Naval strain. Second, by 

using RNA-Seq, the first MOCV in vivo and in vitro transcriptome was generated. New 

tools have been developed to support future research and for this human pathogen. 



 

Finally, deep-sequencing and comparative genomes of several recombinant MVAs 

(rMVAs) in conjunction with classical virology allowed us to confirm several genes (O1, 

F5, C17, F11) association to plaque formation in mammalian cell lines. We also provided 

additional evidence that plaque formation and virus replication can be independent. More 

importantly, we identified vgf as the first gene outside MVA’s deletion that explains its 

host-restriction. Replacement of this region with a vgf cassette derived from a 

replication-competent virus demonstrated to be sufficient to increase viral yield in all 

mammalian cell lines tested. Several research and clinical applications can be envisioned 

derived from this work. 
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Chapter 1: Review of Literature 

The Poxviridae 

The Poxviridae is a large, family of enveloped viruses with linear, double-stranded DNA 

genomes. Members of the family have a broad host-range capable of infecting animals 

from insects to mammals. It is divided in two subfamilies, Chordopoxvirinae and 

Entomopoxvirinae, with additional unclassified strains. The Chordopoxvirinae subfamily 

is divided into nine genera (Avipoxvirus, Capripoxvirus, Cervidpoxvirus, 

Leporipoxvirus, Molluscipoxvirus, Orthopox-virus, Parapoxvirus, Suipoxvirus, and 

Yatapoxvirus) capable of infecting vertabrates [1-3]. Orthopoxviruses have been a major 

concern for centuries for their ability to infect a broad range of vertebrates including 

humans. In fact, Variola virus, the causative agent of smallpox, was responsible for 

pandemics decimating the human population several times in the last 12,000 years [4, 5].   

History and epidemiology 

As mentioned before, Variola virus distinguishes itself from the other Orthopoxviruses by 

being the causative agent of the deadly smallpox. The history of this disease has been 

comprehensively reviewed extensively [5, 6]. It has been suggested that smallpox was 

present before the Egyptian dynasties. Facial lesions found in Pharaoh Ramses V were 

compatible in morphology to the lesions caused by smallpox; nevertheless, virus was 

never isolated. In other latitudes, immunization using smallpox lesions from patients 

were documented as early as 1122 B.C. This practice was later named variolation, by 

association to ancient Greek chronicles. The practice of variolation became common in 

Asia and Africa, and was later brought to Britain in 1921 by Lady Mary Wortley 
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Montagu, who was personally affected by the disease [7].  Later on, in 1796, Edward 

Jenner identified the safety and cross protection against smallpox when milkmaids were 

exposed to a cowpox strain. In the following years, this new method called vaccination 

was widely implemented, reducing the mortality by smallpox in Europe and North 

America. Nevertheless, smallpox continued to be a major health problem for its high 

mortality ranging from 10 to 40% in non-vaccinated populations. Because of this, by 

1969 the World Health Organization (WHO) initiated a global program to eradicate 

smallpox [8]. Several years of systematic vaccination allowed the first eradication of an 

infectious disease [9]. Before and after eradication, ground-breaking discoveries in this 

field provided knowledge and new tools to understand this virus and interaction with its 

host. Although vaccination was a success, the vaccine had important but uncommon 

adverse effects that includes encephalitis, myocarditis, and other systemic infections [10]. 

This highlighted the need to develop a safer vaccine. For this reason, an attenuated virus 

was generated, incapable of replicating in most mammalian cell and proving to be safer 

in humans [11]. Serial passage of a replication-competent virus resulted in the attenuated 

virus called Modified Ankara Virus (MVA) which is currently used as a safe smallpox 

vaccine and a potential vaccine vector against several infectious diseases [12-15]. 

Other poxviruses also affect humans with a relatively milder impact. Molluscum 

contagiosum (MOCV) is another human pathogen that causes infection mainly in 

children and immunosuppressed patients [16]. Although it is similar in structure to other 

poxviruses, it significantly differs in sequence [17]. Currently, there is no specific anti- 

viral for this infection, making it very difficult to treat severe cases. The conventional 

treatment is the removal of the lesions which produce significant scars and pain in  



3 

 

 

Figure 1. Schematic representation of poxvirus replication cycle. Poxvirus viral cycle 

starts with (1) attachment of the virus followed by fusion of the lipidic membranes to the 

cellular membrane. (2) The core is released into the cytoplasm, which allows the factors 

within the virion to start early gene expression. (3) A less understood process of genome 

uncoating allows DNA replication to occur followed by intermediate transcription 

through the transcription factors synthesized in the previous stage. This occurs in 

perinuclear structures denominated viral factories. (4) Transitory DNA concatemers are 

formed and resolved with late gene expression. (5) Intermediate and late gene expression 

occurs using transcription factors expressed on each previous stage, allowing the virus to 

proceed into morphogenesis. (6) Concatemers are resolved into single genomes using a 

viral protein. (7) Formation of crescent-like structures occurs and shaped into IVs in 

which newly synthesized DNA and other proteins are packaged. Proteolytic cleavage 

allows the immature spherical virus to acquire a brick-shaped morphology and internal 

dumb-bell structure. (8) Additional lipidic membranes are acquired by the virus from 

Golgi and Trans-Golgi to form the enveloped virus (EV). (9) Egress occurs by fusion of 

the external lipidic membrane to the cytoplasmic membrane allowing the extracellular 

enveloped virus to the exterior of the cell. 

  



4 

patients [18]. Moreover, Monkeypox virus (MPXV), which is endemic in some regions in 

Africa, is also a concern. The infection is transmitted as a zoonosis, causing similar 

clinical manifestations to those in smallpox [19]. More recently, bioterrorism threats put 

poxvirus in the spotlight and identified the need for specific and effective antiviral drugs 

and vaccines [20]. To put our work in context, identifying the gene or genes that provides 

poxvirus with the ability to replicate in mammals serves as an important tool from the 

vaccinology, therapeutic and biodefense perspective. 

Virion structure and morphologies 

Vaccinia virus (VACV) is the prototype Orthopoxvirus that has been widely used in 

research.  Most of our understanding of poxviruses comes from several decades of 

research using VACV. In this literature review, I will refer mostly to VACV research 

except when noted otherwise. The basic infectious particle is the mature virion (MV) or 

intracellular mature virion (IMV). This particle is a brick-shaped structure with 

dimensions near 360 x 270 x 250 nm [21, 22]. A lipidic envelope surrounds the viral 

core. The viral core consists of a protein shell that forms a dumbbell structure with lateral 

densities of heterogeneous consistency [23]. The inner cavity of the core contains an 

electron dense material that embeds the viral genome in the form of a nucleoprotein 

complex. Chemical analysis of the MVs revealed they are mainly composed of protein, 

with an estimated 3.2% DNA, 5% lipids and 0.1% RNA [24]. Other morphologies can be 

observed as a byproduct of viral assembly and egress, which will be discussed later. 

Genome structure 

Poxviruses have a genome that consists of a single linear, double-stranded DNA genome 

that range from 130,000 up to 380,000 base pairs with similar features throughout all 
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strains. [17, 25-28]. For most VACV strains, the G+C content ranges from 33-35%, in 

contrast with other poxvirus that could reach 64% [17, 26, 29]. This linear DNA structure 

contains a central conserved region of ~80,000 bp that is flanked by two distal variable 

regions (Figure 2) [30, 31]. The central conserved region encodes most of the essential 

genes associated with replication and morphogenesis, while the variable regions encode 

genes related to immune-evasion. Additional features can be identified in these variable 

regions. Within each variable region, long inverted terminal repetitions (ITR’s) can be 

found [32, 33]. These ITR’s are mirror images of each other and they can be as long as 

10,000 bp in some strains. Moreover, tandem repeats of variable length, known as direct 

repeats (DR’s), are within each ITR [34, 35]. Both ends of the genome are composed of a 

polynucleotide hairpin with imperfect base pairing, which loops back and continues as 

the complementary strand, making the genome a covalently closed structure [36, 37].   

The VACV genome contains ~ 200 genes, with a density of 1 ORF every 1 kbp. 

Advances in genome sequencing and computational analysis allowed intensive 

comparison among poxvirus genomes. Essential genes involved in replication, 

transcription and morphogenesis are the highest conserved throughout the family [30]. A 

set of ~90 gene families were identified in all Chordopoxvirus; whereas 41 of these are 

present in all members of Poxviridae.  
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Figure 2. Common features for all poxvirus genomes. All poxvirus share a similar 

genomic structure and its size ranges from ~100kbp to ~300kbp. Each genome has a 

central region that codes mostly for the essential genes.  The distal terminal portions are 

complementary sequences called inverted terminal repetitions. Smaller regions with 

tandem repeats could be found within the ITRs. Each end is composed of a hairpin loop 

that produces a covalently closed genome. ITR: inverted terminal repeat; DR: direct 

repeats; CRS: concatemer resolution sequence. 
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Viral entry 

Cell entry starts with attachment of the virus to the cellular membrane followed by fusion 

of the membranes, allowing the viral core to be released into the cytoplasm [38, 39]. 

Entry and the viral cycle are depicted in Fig. 1. Fusion of the membranes is initiated by 

12 viral proteins, some of which are known to form the entry fusion complex (EFC) [39-

53]. Fusion can occur at the plasma membrane or following macropinocytosis or fluid-

phase uptake [54-60].  

Gene expression  

Poxvirus transcription occurs in a multi-stage fashion divided into three temporally 

defined and promoter-dependent events [61-63]. For each stage, a different subset of 

genes is expressed through the interaction of several viral and host factors [64-68]. The 

three stages have been identified as early, intermediate and late gene expression, and each 

one of them depends on the successful expression of the previous stage. This cascade-like 

interdependence occurs by the sequential expression of the transcription factors, which 

provides strict regulation of the transcriptional events [69]. Experiments limiting gene 

expression to this stage have revealed 118 early, 53 intermediate and 38 late genes 

respectively [70]. The two last stages are collectively known as post-replicative (PR) 

gene expression because both requires DNA replication in order to occur [67].   

Early gene expression occurs as soon as the viral core is released into the cytoplasm. This 

early stage is unique relative to the other two stages in that all the transcriptional enzymes 

and factors were previously packed into the viral core. [71-74]. Components of the early 

transcription system includes the viral DNA-dependent RNA polymerase (RPO), RPO-

associated protein of 94 kDa (RAP94), VACV early transcription factor (VETF), the 
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capping and methylation enzyme, the poly(A) polymerase, nucleic-acid dependent 

ATPase, and the topoisomerase. The specificity for early promoters and transcription 

termination depend on the RAP94 (H4) [64, 75-77]. Additional functions such as poly(A) 

polymerase-stimulatory, methyl-transferase and transcription elongation functions are 

provided by the viral J3 protein [78-80]. All these factors seem to be tightly bound 

through the viral protein H4 forming the RPO complex [81]. Interestingly, RAP94 has an 

exclusive role in early transcription, and is also required for the packaging of several 

RPO subunits into the virion [82-84].   

For intermediate gene expression, a different set of transcription factors is required. 

Similar to early transcription, the RNA polymerase is required for intermediate gene 

expression. Nevertheless, it has been suggested that newly synthesized RNA polymerase 

is required for intermediate and late gene expression [85]. Partial purification of the 

intermediate transcriptional components identified three factors (VITF-A, VITF-B and 

the RNA polymerase) as sufficient for transcription [86, 87]. Further purification of these 

components permitted the reclassification of these factors as VITF-1 and VITF-2. VITF-1 

was identified as a 30kDa (RPO30 or E4L) subunit of the RNA polymerase with 

homology to the human TFII transcription factor [88, 89]. Another factor functions as a 

cap methyl-transferase, a Poly(A) polymerase processivity factor and an elongation factor 

[78, 90]. VITF-2 is another intermediate transcription factor, which turned out to be a 

nuclear host factor involved in poxvirus gene expression. A third factor named VITF-3 

was also identified as an heterodimer composed of two viral proteins, A8 and A28 [91]. 

Finally, protein B1 is a serine/threonine kinase packaged within the virion [92, 93]. It has 

been shown that expression of B1 is required for intermediate gene expression [94]. More 
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recently, it was demonstrated that B1 is necessary to inhibit the antiviral activity of the 

host’s barrier of autointegration (BAF), suggesting an immune-evasion role that supports 

viral DNA replication [95]. 

Late gene expression has its own set of transcription factors as well. Three late 

transcription factors (G8, A1L and A2L) were demonstrated to be sufficient for late gene 

expression in conjunction with the RNA polymerase using naked DNA templates [67, 96-

98]. G8, A1L and A2L have been historically known as VLTF-1, VLTF-2 and VLTF-3 

respectively. A host transcription factor named YY1 has also been shown to have 

negative regulatory functions for late VACV transcription [99, 100]. Another host’s 

derived factor, VLTF-X, has been suggested as a late expression stimulator for VACV. 

Purification of this factor revealed a complex of two host proteins, hnRNP A2 and RBM3 

[101]. Interestingly, the use of yeast-two-hybrid (Y2H) has also depicted a more complex 

late gene regulation demonstrating that most of these transcription factors interact 

between each other. The Y2H assay also revealed interaction of these viral and host 

factors with the viral H5 protein [102]. Viral protein H5 has also been implicated in post-

replicative gene expression with a less clear role [103]. 

Viral protein NHP-I (nucleoside triphosphatephosphohydrolase-I) , also known as D11, is 

a DNA-dependent ATPase with a dual role in facilitating release of nascent RNAs from 

the elongation complex, and works as a polymerase elongation factor to avoid pause sites 

[104]. As mentioned previously, J3 has been shown to have methyl-transferase, 

processivity factor activity, and capability of stimulating post-replicative gene expression 

[105]. The role as elongation factor for viral protein G2 has been demonstrated when 

deletion mutants of the gene showed shorter transcripts [106].  
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Promoter motifs for each temporal class have been determined by computational and 

transcriptional analysis [62, 63, 107, 108]. For example, evaluation of early promoters 

revealed a core motif that consists of a stretch of A’s interrupted by TG between position 

-13 and -29 of the coding strand, with an increased amount of T’s upstream the 

transcription start site (TSS), and a AT-rich spacer. These two features were defined as 

essential for a functional TSS [62, 108]. On the other hand, intermediate promoters 

contain the sequence TAAA immediately upstream of the ORF, with no T in position -10, 

an AT rich region 15-19 nucleotides upstream of the TSS and a predominant T. Most late 

promoters contain the sequence TAAAT upstream of the ORF and a predominant T in 

position -18. Dual activity (intermediate and late) have also been observed, and later 

identified in a whole-genome scale [70]. By using a virus lacking intermediate and late 

transcription factors and a complementing cell line expressing only late viral transcription 

factors (TF), promoters with dual intermediate and late activity were identified. 

Viral transcripts have several common features. For example, they have a methylated cap 

at the 5’-UTR [109, 110] catalyzed by a viral encoded proteins [111-113] and a poly(A) 

tail at the 3’-UTR [114, 115] produced by the viral RNA polymerase and associated 

factors [116]. Additionally, poly-adenylation signals (PAS’s) have been associated with 

the location of poly(A) tails for each nascent transcript [108, 117]. Nevertheless, 

transcripts lacking PAS also occur, providing some variability in the transcription 

products [108, 117-122]. 

The function of each gene and its temporal expression is consistent with the requirements 

of the virus throughout the infection. Grouping genes with the temporal classification 

revealed that early genes are mostly associated with DNA replication, transcription, host 
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evasion and core-associated enzymes [70]. The intermediate genes are enriched in DNA 

binding and packaging proteins and core-associated non-enzymatic proteins. Also, late 

genes are associated with redox disulfide bond enzymes, morphogenesis, crescent 

formation, virion membrane proteins, and components of the entry-complex fusion. This 

provides some insight to the complexity and modularity acquired by poxvirus through 

evolution. 

DNA replication 

Poxviruses are large enveloped, double stranded DNA viruses with an exclusive 

cytoplasmic viral cycle. Factors and enzymes required for the viral DNA replication are 

encoded as early genes, and the new synthesized DNA serves as the template for further 

gene expression [70]. Discrete perinuclear structures called viral factories can be 

identified early in infection where DNA replication, transcription and viral assembly also 

occur [123-126].  

Poxviruses are very independent in that they provide their own DNA synthesis 

machinery.  VACV encodes at least eight genes directly associated with DNA replication 

[127]. E9 is a 117-kDa protein with primer and template dependent polymerase and 3’ to 

5’ proofreading exonuclease activity [128-130]. Additionally, it allows branching and 

recombination during DNA synthesis [131-133]. D5 is a multifunctional enzyme with 

helicase and primase function with a mass of 90-kDa [134]. Its ribonucleotide 

diphosphatase and desoxyribonucleotide dephosphatase activities seem to depend on its 

multimeric conformation [135]. Because of non-specific DNA primase activity, a role in 

lagging strand synthesis has been suggested [136]. D4 also has an essential role in DNA 

synthesis. It encodes a uracil DNA glycosylase (UDG), capable to excise and repair 
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misincorporated dUMP’s or deaminated cytosine [137]. Recovery of viruses with 

mutated D4 [138], and further characterization of deletion mutants demonstrated that D4 

is essential for virus growth in several cell lines [139]. Other experiments have suggested 

additional function yet unknown for this protein [140]. A20 is one of the replication-

associated proteins with indirect evidence of its function. It is considered a processivity 

factor that cooperates during DNA replication because of its ability to bind to other 

replication related proteins such as D4, D5 and H5 [141]. Furthermore, conditional lethal 

virus with mutations that map to this gene shows a defect in the DNA polymerase 

processivity [142]. B1R ORF encodes a 35-kDa protein with serine/threonine kinase 

activity [92, 93, 143]. This protein, packed within the virion, is released early in infection 

and blocks the antiviral effect of the protein Barrier of Autointegration (BAF) [95, 144, 

145]. BAF in its dimeric form binds viral DNA preventing viral replication. B1 also has a 

less clear function in replication since it also interacts with and phosphorylates viral 

protein H5 [141, 146-149]. A50 is a single-stranded DNA binding protein with ATP-

dependent DNA ligase activity [150]. Regardless of its important function, it is not 

present in all chordopoxviruses. Another VACV protein involved in DNA replication is 

A50, which is able to repair nicked DNA from a 5’-phosphate end to a 3’-hydroxyl strand 

when both are bridged by a template [151]. Interestingly deletion mutants for this gene 

were able to replicate but with a restricted host-range and lower pathogenicity (Colinas et 

al. 1990; Kerr and Smith 1991; Parks et al. 1998; Kerr et al. 1991). Recent findings show 

that a virus lacking this gene can use the cell’s DNA ligase I (Paran et al. 2009), which 

explains why A50 is not an essential gene and its absence in several chordopoxviruses.  
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As mentioned before, formation of genomic concatemers is an intermediate byproduct of 

the replication process [152]. Specific sequences near the hairpin loop are required for the 

resolution of the concatemers into individual genomes [153]. These concatemers 

resolution sequences (CRS) when inserted into plasmids, show a cruciform structure 

similar to Holiday Junctions (HJ) [32]. A22, a viral protein expressed late in the viral 

cycle has nuclease activity and was found to be capable of binding to these HJ structures 

[154-156]. Deletion mutants of A22 are incapable of resolving the genome concatemers 

[157]. A 32-kDa viral polypeptide (H7 in VACV genome) has been identified as a 

topoisomerase with homology and functions similar to the eukaryotes enzyme [158, 159]. 

Two main models have been suggested for poxvirus genome replication. The first one is 

similar to the parvovirus self-priming and rolling-cycle model, which uses its hairpins for 

strand displacement [160]. This model is compatible with findings in VACV in which a 

nick in one of the strands may provide an 3’ hydroxyl group available for extension of the 

sequence and formation of DNA concatemers [35, 37, 161]. The second model is the 

semi-discontinuous DNA replication model, which includes DNA synthesis in a lagging 

strand [162, 163]. This is further supported by the discovery of the viral primase and 

ligases that are required in a replication fork [136, 164]. The existence of an origin for 

replication is still unknown. Early research showed that poxviruses are able to replicate 

circular DNA molecules in an origin-independent manner [32, 165]. Nevertheless, viral 

sequences located at the telomeres have been associated with an increase in DNA 

replication [166], and the origin of replication was suggested to be within the first 150 

bases of the genome [167].  
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Morphogenesis and egress 

The first evidence of viral assembly is observed when membrane structures in the form of 

crescents appear in the cytoplasm. These crescents continue to grow forming a spherical 

container. The membranes are supported by the formation of a protein scaffold composed 

of trimers of the viral protein D13 [168]. The membranes were believed to be derived 

from the ERGIC complex [169] but are now known to be derived from the endoplasmic 

reticulum [170, 171]. Protein and newly synthesized viral genomes enters into these 

structures before the crescent closes, forming the immature virus (IV). The IVs suffer 

structural changes associated with proteolytic cleavages that allow the virion to form the 

naked or intracellular mature virus (IMV, see virion structure and morphology section) 

[172, 173]. A fraction of these IMVs go through the trans-golgi system, acquiring an 

additional lipidic layer and becoming the intracellular enveloped virus (IEV) [47]. Egress 

of the infectious particle occurs when the lipidic bilayer of the IEV fuses with the cellular 

membrane, releasing the particle into the extracellular space and leaving behind one of 

the envelopes. At this point, the virus is identified as the extracellular enveloped virus 

(EEV) [47, 174].   

Host-range determinants for VACV 

Right after the virus enters the cell, the transcription machinery packed within its core 

starts synthesizing early viral mRNAs. Many of these early genes are involved in the 

initial countermeasures against the host defense. Poxviruses have a large variety of genes 

that target the immune system; nevertheless, I will be focusing on those present on 

VACV strains that are relevant to our work.   
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Global mechanism for immune evasion 

Poxviruses are capable of inducing global effects in the cell to avoid cellular defenses. 

One of these strategies is disrupting the expression of host genes. Poxviruses contain 

proteins that snatch the methylated cap of the host’s mRNA and promotes its degradation. 

This global targeting to the host’s transcripts is mediated by two viral proteins, D9 and 

D10, both expressed at different times during the infection [175, 176]. 

Another global strategy acquired by the virus is the targeting of key cellular functions. 

For example, VACV C16 inhibits the host’s hydroxylase PHD2 [177]. This host protein 

is required for the normal degradation of HIF-1-alpha, which functions as an oxygen 

sensor. Stable concentrations of HIF-1-alpha have been shown to favor growth of other 

viruses, for which poxviruses may benefit as well [178]. 

Blocking external interferon (IFN) 

Since the discovery of IFN by Isaacs and Lindenmann [179-181], the mechanisms of 

cellular defense and virus-host interaction have been intensively studied. Early on, it was 

observed that viruses were equipped with a probable defense mechanism to avoid the 

cellular interference effect [182]. Poxviruses were not an exception, for as cells 

stimulated with IFN were capable of inducing an antiviral that and prevented viral growth 

[183]. Poxviruses have evolved to target this pathway and counteract its effect at several 

levels. For example, VACV B18 is a protein capable of directly binding IFN from a 

broad range of species [184]. It has specificity for INF-alpha [185]. By secreting this viral 

protein, the virus can protect itself even before IFN reaches its receptor [178]. Another 

viral protein that targets the IFN pathway is B8. It functions as a decoy IFN receptor, 
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which prevents IFN-gamma binding to its cellular receptor [186]. Together, these viral 

proteins (B18 and B8) intercept IFN before it reaches its cellular receptor. 

Vaccinia virus targets the IFN’s downstream effectors 

IFN’s signal transduction can also be blocked by VACV immune evasion proteins at 

different levels. IFN receptors have intracellular domains that play an important role in 

signal transduction [187]. When IFN and its cellular receptor interact, conformational 

changes in the receptors allow phosphorylation of both the Janus Kinases and the IFN 

receptor. This in turn allows activation of various STAT molecules, which continue 

transduction of the signal. The poxvirus protein VH1 is a phosphatase packaged within 

the core that is released early after entry [188, 189]. It causes dephosphorylation of 

STAT1 and STAT2. By targeting these kinases, it is able to block IFN’s signal from all 

IFN receptors. C12, another VACV protein, also diminishes the production of INF-

gamma and increases its virulence [190].   

PAMPs and PKR 

Another primitive immunological system is capable of recognizing foreign pathogen-

associated molecular patterns (PAMPS) through specialized receptors [191]. These 

cellular receptors known as Pathogen Recognition Receptors (PRR) are broadly 

distributed in the cytoplasm and in the cellular membrane, and have the ability to activate 

a broad immune response. Several of these PRRs have been recently characterized and 

include RIG-I, PKR, MDA-5, IPS-1, and the TLR’s family of receptors. PKR is an 

intracellular PRR capable of binding and detecting foreign dsRNA. It is a surprising hub 

for several antiviral pathways, and at the same time, capable of triggering multiple 
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downstream effectors to mount a strong antiviral response through its kinase activity 

[192-194]. Upon binding to dsRNA, PKR is activated and capable of phosphorylating the 

cellular translation factor eIF-2-alpha [195]. Phosphorylated eIF-2-alpha causes a general 

inhibition of translation reducing the ability of the virus to express its genes. 

To evade this defense mechanism, poxviruses have also acquired a protein capable of 

sequestering dsRNA, therefore blocking recognition of this PAMP by the host. The E3 

protein is a dsRNA binding protein that prevents activation of PKR, and OAS, allowing 

the virus to proceed efficiently into the post-replicative stages of its cycle [196-200]. E3 

is also capable of binding to an important member of the ubiquitin-like proteins, ISG15, 

preventing its antiviral activity [201]. Moreover, the viral protein K3 is a pseudo 

substrate for PKR. By competing as a substrate for PKR, it is able to prevent 

phosphorylation of eIF2-alpha [202], preventing downstream activation of the effectors 

molecules. The recent expansions in research on this pattern recognition system have 

increased the potential targets for poxviruses proteins. For example, it has been shown 

that poxvirus can be detected by TLR2, TLR6, MDA-5 and NALP3, causing up 

regulation of MDA-5 and IPS-1 followed by secretion of IFN-beta [203]. Interestingly, 

this is the first demonstration of MDA-5 sensing a DNA virus rather than a RNA virus 

and these pathways may also be targeted by viral proteins. 

VACV host-range genes 

Immune evasion genes have also the ability to extend the virus host-range. It has been 

shown that insertion of gene K1L into the attenuated MVA allows viral replication in 

RK13 cells [204]. K1 and also C7 proteins have both been associated with antagonizing 
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the IFN pathway in mammalian cells [205]. It was later shown that K1 was preventing 

PKR and eIF-2-alpha, allowing translation of viral proteins in HeLa and RK13 cells 

[206]. Interestingly, both C7L and K1L have been shown to prevent phosphorylation of 

eIF-2-alpha through a PKR-independent mechanism [207]. Restoration of each gene into 

an MVA deletion mutant showed a significant decrease in phosphorylated eIF-2-alpha, 

confirming their role as immune evasion genes. Interestingly, other poxvirus genes have 

been identified as host-range genes in different cells such as B23 (C18), B24, B13, C17, 

and B4 [208].   

Cytokines are targeted 

Cytokines are another group of molecules produced in response of a foreign threat, which 

are also targeted by poxviruses. Secretion of cytokines that have autocrine or paracrine 

effect could initiate an antiviral response. For example, interleukin-1 (IL-1) is a highly 

inflammatory cytokine with receptors present in nearly all cells [209]. It has an important 

role in amplifying the immune response against an aggressor. IL-1 needs two different 

signals in order to be active and secreted from the cell that are targeted by viral proteins. 

The first requirement is an activated NF-kB, which induces expression of pro-IL-1B. 

VACV peptides target NF-kB activation at multiple levels. Several proteins that belong 

to this category were discussed above. The second requirement for IL-1 secretion is 

activation of caspase-1, which occurs through the inflammasome, allowing cleavage of 

pro-IL-1b to IL-1b. Another viral protein, F1, binds NLRP1, a component of the 

inflammasome, and prevents cleavage of pro-IL-1 [210]. Furthermore, VACV B13 (also 

known as SPI-2) and the cytokine response modifier A (CrmA) from cowpox, both can 

bind to caspase-1, preventing the formation of the active IL-1 [211-213].  
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VACV B13 and B15 are both associated with IL-1 antagonism, but with different 

consequences after deletion. Deletion of B13 did not affect virulence [214]; nevertheless 

a lack of B15R reduced virulence in mice from intracranial inoculation [215], and 

allowed accelerated weight loss and fever [216]. C10 is another IL-1 antagonist inferred 

by sequence homology [26]. 

VACV codes for 6 additional proteins (A46, A49, A52, B14, C4 and N1) that inhibit IL-1 

mediated activation of NF-k-b (Reviewed by Smith 2013). It is important to note that 

even when these proteins are deleted independently, each mutant presents a variety of 

phenotypes [217-222]. The explanation by Smith is that these proteins have non-

redundant functions and possibly multiple binding partners. 

IL-18 is another pro-inflammatory cytokine targeted by poxviruses [223]. This cytokine 

is also produced in an inactive form that requires cleavage by caspase-1 [178]. So, it is 

inferred that VACV B13 also inhibits cleavage of this product and activation of IL-18.  

TNF is targeted 

Tumor necrosis factor (TNF) is another host cytokine with important antiviral roles. It 

promotes an antiviral state in uninfected cells, recruits lymphocytes to the infection site 

and induces selective cytolysis [178, 224]. VACV has evolved mechanism to target this 

immune system as well. A53 (CrmC) and CrmE are both viral TNF decoy receptors 

(vTNFRs) that contain similar extracellular domain to its cellular counterpart; 

nevertheless, they lack the intracellular signaling domain and are incapable of signal 

transduction [225]. CrmE has also been shown to inhibit TNF’s pro-apoptotic effect for 

human cells in vitro, and has proven to be a virulence factor in a murine model [226]. 
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Several VACV proteins have also been identified that target chemokines. The VACV 

chemokine-binding protein (vCKBP or vCCI), and protein A41, both are secreted early 

from infected cells and capable of binding CC-containing chemokines [227-231]. The 

former directly blocks interaction of the chemokine with its receptor, whereas the later 

reduces its affinity to the receptor [232]. B7 and B23 are two additional viral proteins 

with predicted chemokine binding ability based on sequence homology [229].  

Targeting apoptosis 

The process of apoptosis is also targeted by poxviruses. Poxviruses are capable of 

inhibiting apoptosis at several levels, including preventing activation of caspase-1 

through the inhibitory effect of F1 binding to NLRP-1, which activates this caspase 

[210]. F1 can also acquire a bcl-2-like conformation (mimics a bcl-2 domain) and bind to 

the host’s apoptosis effector molecule BAK [233-236]. N1 is another viral protein with a 

bcl-2-like structure capable of binding to several bcl-2 homologs and to the pro-apoptotic 

bcl-2 proteins BID and BAD [237-239]. Finally, VACV B13 (SPI-2) inhibits bcl-2 

activity and inhibit the apoptosis induced by extracellular TNF-alpha or by Fas ligand 

[213, 240, 241]. The dsRNA binding protein (E3) also shows anti apoptosis effect upon 

induction with external dsRNA [242, 243].  

Plaque formation phenotype and its determinants 

Poxvirus ability to form plaques have been widely used to estimate the amount of 

infectious particles ( or plaque-forming particles PFP) a viral preparation contains [244]. 

It was calculated for VACV that 1 out of 10 virions are able to form such a plaque. 

Changes in plaque sizes have also been used to identify genes involved in attenuation or 
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virulence upon deletion or re-insertion into the virus [245, 246]. Other applications of 

plaque formation include the use of genes as genetic markers to select for recombinant 

mutant [247, 248]. 

Plaque size varies depending on the cell lines used or the capacity to infect neighboring 

cells. Plaque formation have been shown to be dependent on several processes that 

include cell to cell spread, production of new progeny, efficiency of viral egress or 

formation of actin-tails, which favors infection of neighboring cells [249, 250]. Also, 

recent findings have shown that plaque formation is not necessarily correlated with viral 

replication. For example, repair of gene F5L from the attenuated strain MVA causes an 

increase in plaque size without affecting replication [251]. Similar observations have 

been documented showing the independence of plaque formation and the amount of 

infectious particles for recombinant MVA viruses [252]. This highlights the importance 

in evaluating plaque formation and replication independently. Plaque reduction for the 

purpose of identifying neutralizing antibodies has also been used, but does not overlap 

with the scope of this document [253]. 

Several VACV genes have been associated with the ability to produce larger plaques. The 

viral protein B5R affects plaque formation by promoting re-arrangement of actin and 

formation of the actin tails [250]. F12 is another important protein that if deleted affects 

both plaque formation and virulence [249]. The ability of F12 to affect plaque size has 

been associated with the formation of actin tails. O1L is a 78-kDa protein, which is also 

required for formation of large plaques. It was shown that O1 promotes sustained 

activation of the Raf/Mek/Erk pathway in human 293A cells, and its deletion reduced 

plaque size, virulence, and spread in BALB/c mice [254]. Repair of MVA’s truncated O1 
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showed sustain reactivation of the ERK1/2 pathway without contributing to virulence and 

replication [254], suggesting that these two processes can be independent. F11 is another 

early protein truncated in the attenuated MVA. It has also been associated with plaque 

formation in vitro and spreading in vivo, and is required for efficient release of viruses 

from infected cells [255-257]. More recently, F5 has also been involved in plaque 

formation [251]. Moreover, the ability to form plaques seems to be multigenic since 

repair of both F5 and F11 allowed formation of larger plaque in a replicative-competent 

virus. Another viral protein, C2, is also associated with plaque formation without 

affecting virulence or viral replication, and the effect seems to be mediated by 

modulating cellular projections and adhesion of cells to the extracellular matrix [258]. 

The immune evasion repertoire presented here represents a fraction of all immune-

evasion mechanism acquired by poxviruses. Most of the mechanism of action of these 

proteins has not been elucidated. Dissecting their mechanism and interaction with the 

host, may reveal new antiviral targets and the generation of new vaccines and vectors for 

human and veterinarian purposes.  
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Chapter 2: Whole-genome sequencing and identification of the Erythromelalgia-

related poxvirus 

Summary 

In 1987, a group of physicians identified an outbreak Erythromelalgia syndrome in the 

Chinese province of Hubei. Swab samples from the pharynx of the patients were cultured 

and a poxvirus isolated. Characterization of the virus using EM demonstrated a poxvirus 

particle. Further characterization of the virus by pathogenicity in mice and antibody 

neutralization assays turned inconclusive. The virus was deposited in ATCC but its 

identity was not determined. Since this human isolate could potentially be an interesting 

finding, we decided to take advantage of the sequencing tools recently developed to 

evaluate and identify this virus. 454 pyrosequencing and bioinformatics were carried on 

to performed whole-genome sequencing and compare this virus to the closest strains. We 

determined that the virus is very closely related to the Naval strain of ectromelia virus. 

Introduction 

In the mid 1980’s, a team of physicians detected an outbreak of the syndrome known as 

Erythromelalgia in the province of Hubei, China [259]. All patients were young students, 

that shared similar signs and symptoms that included fever, malaise, headache, sore 

throats, and edema of the lower limbs. Pharyngeal samples were taken and used to 

determine the presence of an infectious agent. A virus was isolated and then characterized 

showing the ability to grow in different cell lines and proved to have virulence for mice 

[260]. Morphological evaluation suggested a poxvirus; nevertheless, comparison to other 

poxvirus was inconclusive. Moreover, serological neutralization assays were also unable 
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to identify this agent for the cross-reactivity between strains. The virus was then 

deposited in ATCC as Erythromelalgia-related Poxvirus (ERPV). 

In collaboration with the researcher who isolated the virus, we decided to take advantage 

of the newly available sequencing technology to perform whole-genome sequencing of 

the isolate. A close evaluation of the genome sequence was used to determine if this virus 

was a novel Orthopoxvirus or a known strain. 

Materials and Methods 

Cells and virus growth 

ERPV was obtained from the American Type Culture Collection (VR-1431) and clonally 

purified by three successive plaque isolations on BS-C-1 cells (ATCC, CCL-26) and 

propagated in minimal Essential Medium with Earl’s balanced salts (Quality Biological, 

Gaithersburg, MD) supplemented with 2 mM L-Gln and 10% fetal bovine serum (Fig. 3). 

All experiments were carried out in a laboratory with no known Ectromelia virus (ECTV) 

contact. 

Virus purification and DNA extraction 

Infected BS-C-1 cells from five T-150 flasks were harvested, and the cell pellet was re-

suspended in 10 ml of 1 mM Tris-HCl, pH 9.0 and lysed with 40 strokes of a tight pestle 

Dounce homogenizer. Nuclei and cell debris were removed by centrifugation at 300 x g 

for 5 minutes at 5
o
C. The supernatant was sonicated three times and the viral suspension 

was overlaid on a 17 ml 36% sucrose cushion. The virus was purified as described 

elsewhere [261]. The virus pellet was suspended in 1 mM Tris-HCl pH 7.8 and incubated 

for 4 h at 37
o
C in a solution containing 10% SDS, 60% sucrose and 10 mg/ml of 
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proteinase K [261]. DNA was extracted with phenol:chloroform:isoamyl alchohol 

(25:24:1) and then with isopropanol, followed by DNA precipitation using 100% ethanol 

containing 0.3M sodium chloride [262]. Viral DNA was confirmed by HindIII digestion 

and gel electrophoresis (Figure 23). 

Library preparation and pyrosequencing 

Extracted DNA was quantified by light absorbance at 260 nm (A260) and a Picogreen 

assay (Life Technologies, Grand Island, NY). Separate libraries were constructed using 

Rapid Library Preparation Method Manual (October 2009) GS FLX Titanium Series 

(Roche, Branford, CT) and Paired End Library Preparation Method Manual – 3kb Span 

(October 2009) GS FLX Titanium Series. Each library was processed using emPCR 

Method Manual – Lib-L MV (October 2009) in separate emulsion reactions with the 

fragment library being combined with like samples. The paired-end sample was loaded 

on a single lane and the fragment sample was loaded in two lanes of an 8-region 454 GS 

FLX Titanium sequencing run.  

Assembly and completion of the genome sequence  

Paired-end and fragment reads were initially assembled using GS Assembler v.2.5 

(Roche/454 Life Sciences), using standard assembly parameters (Figure 4). De novo 

assembly resulted in five contigs with an estimated length of 200,971 nt. The five contigs 

of ERPV were provisionally ordered by comparison with the genome sequence of ECTV-

Mos (Accession NC_004105), which had the highest score on a BLAST search of the 

NCBI genome database, using the bioinformatic tool Mummer [263] and Geneious pro 

5.5 [264]. After identification of the ITR, a reverse complementary version of it was 

generated and concatenated into the genome draft. Primers were designed based on the  
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Figure 3. Summary of clone isolation and virus amplification process. The process of 

clone purification consists of serially diluting a virus preparation and picking a single 

plaque at the highest dilution possible. This process is repeated several times to eliminate 

any other virus and isolate the progeny of a single viral particle. Amplification consists of 

the infection of exponential number of cells until the desired amount of virus is reached. 

For virus purification, the cell membrane is disrupted to release the intracellular viruses 

using detergents. The extract is then placed on top of a sucrose cushion that allows 

pelleting of virus and removal of cell nuclei and lipids. If more purity is needed, a sucrose 

gradient can also be used in tandem. A solution containing SDS and Tris-HCl is used to 

disrupt the virus proteins from the genome, followed by ethanol precipitation of the viral 

DNA. Library generation for sequencing is done as described in the methods. 
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Figure 4. Bioinformatics workflow, genome assembly and genome annotation. After 

sequencing, (1) de novo assembly was used to form contigs of overlapping reads. (2) The 

order of the contigs was determined by comparing several references with all contigs 

using a tool called Nucmer. Since the ITR’s are homologous sequences, they grouped 

into the same contig. (3) The opposite ITR was manually assembled using the contig 

containing the ITR. (4) To fill the gaps (including both ITR junctions) amplification by 

PCR and Sanger sequencing were done, and inserted into each draft genome. (5) 

Reassembly of all reads using each draft genome as reference increased the accuracy of 

the final sequence. (6) Annotation was done using a tool called GATU, which uses 

translated sequences to determine homology.  
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physical location and gaps, followed by PCR and dual strand Sanger sequencing. The 5 

contigs were assembled using the additional Sanger sequence reads. All single nt 

polymorphisms located within coding regions were verified by PCR amplification with 

flanking primers and +/- strand Sanger sequencing. 

Genome annotation and ORF comparison 

The Genome Annotation Transfer Utility (GATU) [265] was used for annotation of 

ERPV based on the ECTV-Nav sequence. The criteria for annotation included a cut-off 

of at least 180 nt, 60% nt similarity score threshold, and less than 50% of overlap to other 

ORFs. The transferred annotations were back-compared to ECTV-Nav and ECTV-Mos 

genomes. Every mutation affecting an ORF relative to ECTV-NAV was confirmed by 

PCR and re-sequencing. ORFs not previously annotated in ECTV-Nav were designated 

“unassigned ORFs”. All ORFs were translated and compared to the predicted protein 

sequence from ECTV-Nav, ECTV-Mos (Accession NC_004105), CPXV-BR (Accession 

NC_003663) and VACV-COP (Accession M35027) using an in-house tool for 

comparative genomics called MyOrfeome (Mendez-Rios JD, MyOrfeome, Internet: 

http://myorfeome.sourceforge.net). All sequences were obtained from www.poxvirus.org. 

Protein alignments were visually evaluated and used to curate and correct for alternative 

start sites.   

Genome alignment and comparison of ERPV to closest sequences. 

Prior to comparing ERPV and ECTV genomes, regions containing repetitive sequences 

were masked using the Phobos Software plugin for Geneious Pro 5.5 software and each 

genome was truncated by removing the right ITR. The genomes were aligned using 

ClustalW2 [266, 267]. The ends of the alignments were hand edited using Geneious Pro 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=NC_004105
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=NC_003663
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=M35027
http://myorfeome.sourceforge.net/
http://www.poxvirus.org/
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5.5 Software for optimization purpose. All mutations on coding and non-coding regions 

were identified.  

Phylogenetic tree of ERPV and other poxviruses. 

Complete proteomes of representative poxviruses were downloaded from 

www.poxvirus.org.  Using the FASTA description, all proteins were imported and 

indexed on a MySQL database.  96 conserved ORFs were identified and translated for 

this analysis. Clustalw2 was used to align all sequences. An unrooted tree was generated 

by Maximum Likelyhood (ML)+ JTT method, with 1,000 boot-strap replications using 

MEGA Software [268]. 

Results 

ERPV genome sequence 

Whole-genome sequencing of ERPV resulted in 54,227 reads initially assembled into 5 

different contigs (Fig. 4). Homology search with NCBI Blast tool identified ECTV-Mos 

as the closest related genome. This genome was then used as a reference for physical 

mapping of the 5 contigs, followed by completion of the gaps. The gaps were completed 

by PCR and Sanger sequencing with newly designed primers. The final genome assembly 

showed a 63X coverage and a total of 206,409 bp counting from the start of the highly 

conserved 19-bp CRS [32, 152-154] to the end of the distal CRS. The conserved genomic 

region has a length of 192,365 bp and each ITR 7,022 bp (Fig. 6). Interestingly, 3 direct 

repeats were identified. These repeats were located at the ends of each contig, preventing 

the whole genome to be aligned de novo. DRI and DRII were located on each end of the 

genome, with a 69-bp repeat sequence (repeated 2.3 times) and 85-bp repeat sequence 

(repeated 10.4X times) respectively.  They were 316 bp apart with close proximity to the 
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CRSs. DRIII has a 20-bp repeat sequence (repeated 7.0X times), but located within the 

VACV F1 ortholog. 

Comparison of ERPV with ECTV genomes 

In order to select the closest related genomes to ERPV, the contigs were blasted against 

NCBI’s sequence repository. After evidence of its similarity to ECTV Moscow (ECTV-

Mos) strain [269] and the ECTV Naval strain (ECTV-Nav), both genomes were used for 

comparison purposes. The ECTV-Nav genome is publicly available through 

www.poxvirus.org website [270], but not on NCBI.   

Multi-genome alignment of all three strains (ERPV, ECTV-Nav and ECTV-Mos) was 

used to highlight the differences among them. This comparison showed discrepancies 

when defining the  first nucleotide for each sequence. ECTV-MOS’s first nucleotide 

corresponded to the predicted 10
th

 base pair after the CRS, suggesting that these first 

nucleotides were not included in the final version of this genome. On the other hand, the 

ECTV-Nav genome sequence included sequences that correspond to the hairpin region, 

which were not included in ERPV final genome sequence. Because of this, all lengths 

were adjusted to account for nucleotides between the first base of the left CRS to the last 

base of the right CRS. All genomes were compared and features summarized in Table 1. 

Interestingly, ERPV length is similar to ECTV-Naval, and both are several thousand 

nucleotides shorter than ECTV-Mos. The differences in sequence length for all three 

genomes are mainly located within the ITR’s. A closer evaluation of the ITR’s for ERPV 

and ECTV-Nav revealed that differences in length are due to deletions and variability of 

the DR’s. Furthermore, all three DR’s were masked from all three genomes in order to  

http://www.poxvirus.org/
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Table 1. Comparison of ERPV’s genome with close related strains. 

 ERPV ECTV-Nav ECTV-Mos 

Genome length (bp) 206,409 207,516
a
 209,829

a
 

ITR length (bp) 7,022 7,325 9,442 

GC content 33.2% 33.1% 33.0% 

Annotated ORFs 183
b
 183 178 

Identical ORFs - 173 145 

Identity to ERPV - 99.8% 98.4% 

ORFs: open reading frames; bp: basepairs; ITR: inverted terminal 

repetition; ECTV-Nav: Ectromelia Naval strain; ECTV-Mos: 

Ectromelia Moscow strain.  
a 
genome sizes are from the first nt of the 

left CRS to the last nt of the right CRS. 
b 

the ORF number includes 

the homolog of O3, which was not originally annotated in ECTV-Nav 

or ECTV-Mos. 
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Table 2. Amino acid changes relative to Ectromelia Naval. 

 Size (aa)   

ORF ERPV Naval 
VACV-COP 

nomenclature 
 

ERPV_027 282 426 F1L 
Contains shorter DRIII within the 

sequence, shortening the ORF 

ERPV_048 332 342 E5R 
Deletion of “AT” at TSS of Naval 

causes truncation at N-terminus 

ERPV_066 112 112 G3L V66A 

ERPV_116 892 892 A10L R236G, V881A 

ERPV_152 126 100 A45R 
Single “A” deletion in Naval cause a 

frame shift and earlier termination 

ERPV_153 241 241 A46R S67P 

ERPV_160 564 564 A55R N358D 

ERPV_161 282 282 A56R Y139D 

ERPV_177 560 560 A55R M241V 

aa: amino acids; ORF: open reading frame; ERPV: Erythromelalgia-related poxvirus; 

Naval: Ectromelia Naval strain; VACV-COP: Vaccinia virus Copenhagen strain; 

 

  



33 

 

 

 

Figure 5. Phylogenetic relationship of ERPV relative to other poxviruses. A total of 

96 ortholog proteins from 16 poxviruses were concatenated and used to generate a 

phylogenetic tree to represent the closeness of all three Ectromelia genomes to the other 

poxviruses. VACV: Vaccinia strains; CPXV: Cowpox strains; CMLV: Camelpox strains; 

VARV: Variola strains; MPXV: Monkeypox strains; ERPV: Erythromelalgia-related 

poxvirus; ECTV: Ectromelia strains; 
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Figure 6. ERPV genome map and mutations relative to Ectromelia Naval strain. 

ERPV genome was aligned to ECTV-Nav after masking all repeats in both genomes. All 

ORFs were present in both genomes, and mutations are identified with a symbol over the 

sequence affected.  
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compare the global identity. ERPV shows 99.8% sequence similarity to ECTV-Nav, and 

98.4% similarity to ECTV-Mos. 

The Software GATU (Genome Annotation Transfer Utility) [265] was used to initially 

annotate and identified ERPV genome. All 183 ORF previously annotated in ECTV-Nav 

were successfully identified and transferred to ERPV. A total of 173 of these ORFs were 

identical in ECTV-Nav.  All mutations affecting protein coding were verified by PCR 

and re-sequencing. A summary of these mutations is presented in Table 2. However, 

essentially all coding mutations found in ERPV relative to ECTV-Nav were identical to 

ECTV-Mos. Fig. 6 shows the ERPV genome map indicating all differences found relative 

to ECTV-Nav.  

The ERPV genome contains 33 additional ORFs with homology to longer CPXV ORFs 

not identified in ECTV genomes. Of these, 17 had identical sequences in all ECTV 

genomes used here; an additional 10 ORFs were identical in ECTV-Nav; and 2 were 

identical in ECTV-Mos. Nevertheless, these 33 fragments are likely to be non-functional 

in either ECTV or ERPV. 

Phylogeny of ERPV and other orthopoxviruses 

A phylogenetic tree was generated using a total of 96 orthologs from several Ortho-

poxviruses (Fig. 5). Although ECTV-Nav is highly similar to ERPV, it was included to 

present their relative distance to other poxviruses. The separation of ECTV clade to other 

poxviruses and their proximity to CPXV is consistent with other analyses [3, 269, 271]. 
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Discussion 

Here I was able to sequence and identify ERPV using 454 sequencer technology 

supplemented with PCR and Sanger sequencing. Sequence homology identifies ERPV as 

a member of the Ectromelia species, closely related to the Naval strain. The differences 

between ERPV and ECTV-Nav include deletions in ECTV-Nav, and several mutations 

throughout the genome.  From the 183 ORF previously annotated for ECTV-Nav, a total 

of 173 ORF were identical in ERPV. These similarities highlight the closest relationship 

of these two viruses. The presence of multiple deletions in ECTV-Nav’s ITR’s suggests 

that ECTV-Nav could not be the immediate progenitor of ERPV.   

The origin of ECTV is still controversial. The Hampstead strain was the first ECTV 

isolated strain from laboratory mice in London [272]. Enzootic cases in breeding stocks 

of mice in Europe, China and Japan have been reported [273]. Other outbreaks have been 

reported in mouse colonies in the United States [274]; moreover, there is a single report 

of ECTV isolation in the wild in Europe [275]. The ECTV-Nav strain was isolated in an 

outbreak that occurred in the Naval Medical Research Institute in Bethesda, MD, whose 

source was a contaminated commercial mouse serum [276]. Other outbreaks have also 

been related to contaminated serum from the United Stated and China [277-279].  

The isolation of ERPV generates an interesting debate on the issue of human infection 

during the reported Chinese outbreak [259]. Reports of mouse serum as the source 

suggest contamination as a possibility; nevertheless, isolation of ERPV was done using 

fetal bovine serum, and not mouse serum. Further evidence that support human infection 

is the analysis of antibody titers in patient vs non-diseased population that showed 

significant increase of reactive antibodies [260].  Nevertheless, higher reactive antibody 
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titers can also be explained by cross-reactivity to ERPV epitopes. [280, 281]. Further 

efforts to elucidate the serology in these patients are being carried out by other groups. 

Conclusions 

ERPV is a member of the ECTV species. This report represents the third complete ECTV 

genome publicly available. Both, ERPV and the Naval strain show striking similarities 

that suggest a common source. To address the issue of human infection, new serology 

experiments would have to be designed to rule out vaccinees’ cross reactivity against 

ECTV antigens. The issue of human infection cannot be addressed from sequence 

analysis, for which further evaluation is being carried out by other groups. 
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Chapter 3: Generation of MOCV transcriptome profile from in vitro and in vivo 

samples. 

Summary 

Molluscum contagiousum is a human pathogen that infects children and immune-

suppressed patients. Our knowledge of the virus is limited for the lack of an in vitro and 

in vivo system to grow the virus. Currently, there is no specific treatment or anti-viral 

agants against the virus, and complicated cases are a real burden for patients and care 

providers. Here, we evaluate MOCV from the transcriptome point of view using RNA-

Seq to determine the genes expressed in vitro and from a human specimen (in vivo). A 

complete gene expression map was constructed using the in vivo and in vitro 

transcriptome, which confirmed the early nature of 60 predicted genes. Furthermore, new 

tools and assays were developed to facilitate further research of this virus. Finally, we 

conclude that MOCV’s replication blockage might be in uncoating of the viral core.  

Introduction 

For more than a century, the Molluscum contagiosum virus (MOCV) has been an 

intriguing member of the Poxviridae family. Humans are the only natural host known to 

date, and mostly children and immunosuppressed patients are infected [16, 282-284]. In 

healthy individuals, the virus causes papular lesions found mostly in the head and neck 

[16]. Our knowledge of this virus has been limited by the lack of viral growth in vitro and 

the absence of an animal model [285]; nevertheless, some progress has been made with 

the adoption of new technologies such as sequencing [17] and RNA detection [286, 287]. 

Bugert and co-workers were able to detect early gene expression by RT-PCR [286], and 

in-situ hybridization; nevertheless, DNA replication and post-replicative (PR) gene 
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expression have been controversial [287]. Xenographic models have been attempted with 

no success [288]. The blockage in MOCV’s viral cycle has been proposed to be in the 

uncoating steps, which is required for DNA replication and intermediate gene expression 

[289]. This model conflicts with detection of predicted post-replicative transcripts from in 

vitro experiments [287].  

Here, RNA-Seq technology was used to generate the first MOCV gene expression profile 

from in vitro and in vivo samples; moreover, the temporal classifications of several early 

genes were confirmed, and the compatibility of MOCV’s promoters with VACVand 

ERPV transcription machinery was demonstrated. The transcriptome map from in vivo 

samples was generated, thus expanding our knowledge and resources to study gene 

expression of this human pathogen. 

Materials and Methods 

Virus stock preparation 

Molluscum contagiosum (MOCV) lesions were removed by curettage from infected 

patients, were kindly provided by Jeffrey Cohen (NIAD/NIH). Infected tissues were 

frozen, transported in dry ice, and stored at -80
o
C. The tissue plugs used for direct-RNA 

sequencing were transported in RNAlater solution (Life technologies Cat. AM7021). 

Samples were stored at 4
o
C and processed within 72 h after removal. Virus stocks from 

infected skin were prepared by pooling two tissue plugs from the same patient, followed 

by maceration using a tight Dounce homogenizer in 1 ml Tris-HCl pH 9.0. The 

suspension was frozen and thawed three times, followed by three cycles of sonication. 

The virus preparation was then cleared by slow-speed centrifugation (300 x Gs for 10 

min) to remove cell debris. The cleared supernatant was collected and aliquots prepared 
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for further use. Virus particles (vp) were estimated using a virus counter (Virocyt LLC, 

Boulder, CO) [290].  

Cell culturing and infection 

MRC5 cell lines (ATCC CCL-171) were grown using 10% FBS-EMEM, supplemented 

with 1% L-glut and 1% Pen/Strep (growth media), in a 6-well plates for each in vitro 

transcriptome sample. Before infection, the medium was replaced with 2% FBS-EMEM, 

complemented with 1% L-glutamine and 1% Pen/Strep (infection media). A volume of 

10 µl of viral stock (~10 vp/cell) was used to infect cells in infection media. After 

adsorption for 2 h, the medium was aspirated and replaced with growth medium. Infected 

cells were incubated at 37
0
C, 5% CO2 (regular conditions) for the remainder of the 

assays. For the functional gene expression assays, MRC-5, HFF, HutK, HEKn, HOS, 

C32Tg, FL, and HEP2 cells were grown in 48-well plates following ATCC’s 

recommended methods and media. 

Electron microscopy evaluation 

Dilutions of the viral preparation were used for electron microscopy (EM). 3 µl of each 

dilution was loaded into an EM grid followed by negative staining for 5 minutes. For 

transmission EM analysis, carbon-coated Rh Flashed Copper mesh grids (400 mesh, Ted 

Pella) with nitrocellulose supporting film were placed on 15 µL droplets of solution for 5 

minutes before negative staining in 1% uranyl acetate. Virus particles were observed and 

photographed at 120 kV in a Tecnai 12. NIH Image J software was used for 

measurements. The whole mounting, staining and visualization procedures were kindly 

done by Karl Erlandson.  
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Cytopathic effect evaluation 

In order to test MOCV ability to induce a cytopathic effect (CPE), approximately 10 vp 

per cell were used to infect multiple cell lines. Different conditions such as pre-exposure 

of the inoculum to ultraviolet light or pre-incubation of cells with cycloheximide (CHX) 

were also used. A concentration of 300 µg/ml of CHX was used for pre-treatment of cells 

in all cases. For inactivation of the inoculum, 10 µl of virus stock were added to 2 ml of 

infection medium in a 34.8 mm 2 well (6-well plate). The plate with the inoculum was 

kept on ice and exposed to UV-light for 3 min.   

Plasmids and expression constructs 

For the functional assays, six plasmids containing reporter genes (luciferase or gfp) under 

VACV promoters or deleted promoters were kindly provided by Zhilong Yang. These 

constructs consisted of a single reporter gene (gfp or luciferase) under the control of 

intermediate (G8) or late (P11) VACV promoter [61, 85]. The constructs were verified by 

Sanger sequencing before the assay. Two constructs with no promoter (DP) were 

included as negative controls. Each construct was generated using a Zero-Blunt-II TOPO 

backbone (Life Technologies, CA, USA). An additional new plasmid was designed to 

test back-compatibility of MOCV promoters with VACV transcription machinery. For 

this, a plasmid containing gfp under the control of MOCV’s MC095 promoter was also 

generated again using a TOPO-Blunt backbone. MC095 promoter is a predicted post-

replicative (PR) promoter [17]. The exact promoter sequence CCTTTGGTG-

CAGATCTCGCGAATAATAA was chosen based on our current knowledge of VACV’s 

PR promoters. Overlapping primers to anneal the promoter to the gfp construct were 

designed, followed by PCR of each fragment. Fragments underwent overlapping PCR 
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and insertion of the final product into a TOPO vector. The plasmids were transduced into 

chemically-competent E. coli (Invitrogen, Cat. C4040-10), grown in LB media (Quality 

Biologicals Inc, Cat. 340-023-101), and selected in agar plates containing kanamycin. 

This new construct was also sequence verified. 

RNA extraction and RNASeq library preparation 

The clinical samples plugs were weighed and RNA extracted using 0.8 ml of Trizol 

Reagent (Ambion 15596-018) following the manufacturer’s protocol (Part 2. Phase 

Separation). RNA from the tissue plug for direct RNA-Seq was carried out using 

phenol:chlorophorm:iso-amylethanol (ratio 25:24:1). In all cases, RNA was precipitated 

with ethanol, and eluted in water or commercial elution buffer. RNA samples were 

aliquoted and purified using solid-phase selection to purify polyadenylated transcripts 

(Invitrogen, Dynabeads Oligo dT Cat. 61006, Ca, USA) RNA libraries were prepared 

using ScriptSeq v2 kit (Epicentre SSV21106) for both in vitro and in vivo samples.   

Sequencing and quality control 

Illumina libraries were sequenced using Illumina GA IIx sequencer using 68 base 

fragment reads, in multiplex across 7 lanes. Reads were processed computationally by 

removing adaptor sequences using RML program. Poor quality bases were eliminated 

and mapped to MOCV’s genome using TopHat. Default settings were used, except for 

allowing two alignments per read for the terminal repeats. Gene counts were determined 

by the number of MOCV reads mapped to an ORF in the corresponding strand. Read 

counts were normalized to total read counts used for mapping and then further 

normalized to ORF length. Sequencing and quality control was done by Craig Martens, 

Daniel Bruno and Stephen Porcella from NIH’s Rocky Mountain laboratories. 



43 

qRTPCR and primers 

Quantification of viral transcripts by qRTPCR was done using SuperScript qRTPCR kit 

(Invitrogen 12574-030). The following primers were used to quantify early and PR 

genes: MC104R (Fw, 5’-CTTGACCGTCTGCGGACGCAG-3’ & Rev 5’- GTGCTG-

GAGCAGGGCTACGAG-3’and), MC005R (Fw 5’-CTCCGAGAGAGGCTGGCTCC-3’ 

& Rev 5’-CGATGCAGTGCGGATGTGCT-3’), and ACTB (Fw 5’-GAGACCTTC-

AACACCCCAG-3’ & Rev 5’-CGATGCAGTGCGGATGTGCT-3’). Products were run 

and visualized in agarose gels using ethidium bromide for DNA staining (data not 

shown). 

Functional gene expression assays 

MOCV and VACV strain WR were used to infect cells in parallel. In all cases, infection 

was followed by transfection of 2 µg of plasmid using Opti-MEM medium (GIBCO 

31985-062) and Lipofectamine 2000 (Invitrogen 11668-500). Luciferase reactions were 

prepared using a luciferase detection kit (Promega, Cat. E1500), and measured using a 

luminometer (Sirius Luminometer). WR samples were diluted 10-fold before luciferase 

reading. Each luciferase reaction was prepared with 2 parts of sample and 5 parts reaction 

buffer. Detection of GFP expression was done by fluorescent microscopy and direct 

visualization. 

Transcriptome analysis 

MOCV tiling files of mapped viral reads were imported into Mochiview [291] to 

generate transcriptome maps. Images of each map were generated using the same 

software. Spreadsheets with the normalized read counts for each transcriptome dataset 

were imported, merged, and analyzed using GeneSpringGX version 12. (Agilent 
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Technologies). The dataset was organized by time point and each ORF associated to its 

predicted expression class. Principal Component Analysis (PCA) was performed and 

compared to the outlier CHX sample. Expression profiles were plotted and grouped based 

on each promoter classification [17]. Normalized counts were used to generate a gene 

expression map using a 10 count per ORF cut-off for all time points as the expression 

criteria. The results of the in vitro and in vivo transcriptome were converted into 

annotation files using an in-house script and imported into Geneious Software 6.0 

(Biomatter) to generate the complete transcriptome map (Figure 19). Evaluation of the 

read-through mechanism was done by direct examination using Mochiview (Figure 15).  

  



45 

Results 

Initial characterization of MOCV preparations 

Extraction of MOCV virus was done with a simplified version of previous MOCV 

purification protocols [292] to maximize the amount of virus extracted from the small 

tissue plugs. In order to evaluate the viability of the virus the virus preparations were 

characterized and quantified. Viral particles were visualized by EM to confirm the 

presence of intact particles (Fig. 7). EM visualization showed brick-shaped bodies of 

approximately 200 nm x 400 nm, consistent with poxvirus morphology [293-295]. The 

bodies were found as single particles or in clusters, similar to previous descriptions [293].   

Infection of MRC5 cells was carried out by inoculating approximately 10 vp per cell. In 

order to confirm that CPE was directly related to the virus, an aliquot of the preparation 

was exposed to UV-light to inactivate it (Fig. 8). Infected MRC5 cells with the 

inactivated inoculum showed no evidence of CPE in any time point. A mock infection 

was also included using the same solution used to generate the viral preparation. CPE 

effect was observed as early as 4 hpi with a peak between 8 and 12 hpi. As previously 

described, recovery of the monolayer was also observed at 72 hpi.  

The effect of translation inhibition upon an MOCV infection was also evaluated. MRC5 

cells were infected with MOCV with or without pre-treatment with CHX. Infection was 

followed for 15 h (Fig. 9). Similar to our previous findings, CPE in cells with no CHX 

was observable as early as 4 hpi. Nevertheless cells pre-treated with CHX did not show 

CPE even after 15 h. Taken together, inactivation of MOCV with UV light and pre-

incubation with CHX suggests that CPE depends on the virus early transcriptional events, 

and that all cells are infected at this viral dose. 
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Figure 7. Evaluation of Molluscum contagiosum virus by electron-microscopy. The 

MOCV stock preparation was evaluated using EM to detect intact viral particles. The 

morphology and size of viral particles observed was compatible with poxvirus, found 

singly or in clusters. Scarce cellular debris was observed. 
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Figure 8. MOCV induces CPE in MRC5 cells and it is inhibited with 

UV light. MRC5 cells were infected with ~10 vp/cell. An aliquot of the 

inoculum was pre-exposed for 15 seconds to UV-light before infection 

(MOCV-UV). At 24 hpi, the whole monolayer showed cytopathic effect, 

with partial recovery at 48 hpi. At 72 hpi, MRC5 cells were seen again 

at full confluency. Exposure of the inoculum to UV light before the 

infection inhibited CPE formation at 72 hpi and later times. The 

monolayer was completely recovered 72 hpi as shown by others [286, 

287]. 
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Figure 9. MOCV-induced CPE in MRC5 cells was inhibited with CHX. 

MRC5 cells were infected with ~10 vp/cell. CPE was documented at 4 hpi and 

15 hpi. Pre-treatment of MRC5 cells with CHX shows inhibition of CPE. 

MOCV: Molluscum contagiosum; CHX: cycloheximide; hpi: hours post-

infection; CPE: cytopathic effect. 
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Table 3. Detection of MOCV’s early and PR gene 

expression in different cell lines by qRT-PCR. 

 Raw dCt values 

Cell line MC005 MC104 

MRC5 23.83 25.18 

BHK21 23.47 34.69 

HFF 24.01 36.9 

dCt: raw delta-Ct values which represent the 

number of cycles needed to detect the transcript.  
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MOCV gene expression in multiple cell lines 

Until now, MRC5 cells have been the most commonly used cell line to study MOCV for 

the observed CPE when infected. Nevertheless, the identification of a cell line that allows 

growth of the virus will be valuable to study MOCV’s cycle. In order to identify such a 

cell line, MRC5 cells, BHK21, and HFF cells were compared in their ability to support 

MOCV’s gene expression. All cells were infected with the same dose and viral transcripts 

measured by q-RT-PCR at different time points. Primers for qRT-PCR were designed to 

detect expression of MC005 (early gene) and MC104R (PR gene). The results showed 

similar amounts of early transcripts in all cell lines, and low levels of PR transcripts 

(Table 3). The data are shown using Ct values that represent logarithmic differences in 

detection (the lower the value, the less PCR cycles were needed to meet a threshold). 

MRC5 was the exception, showing similar levels for both targets, early and post-

replicative genes. Interestingly, the Ct values in MRC5 were lower, suggesting higher 

amounts of detected transcripts relative to the other two cell lines. The other cell lines 

show Ct values for the late transcript (MC104) compatible with background levels. 

Nevertheless, all cell lines showed similar Ct values for the early transcript. Since there is 

a much higher amount of PR transcripts in MRC5 cells, they were selected to be used in 

further assays.  

MOCV transcriptome from in vitro experiments 

RNA-Seq has proven to be a powerful tool to understand poxvirus transcriptional events 

[108]. In an attempt to address the multiple questions related to MOCV gene expression, 

a global transcriptome approach was designed to evaluate MOCV’s gene expression in 

vitro (Figure 10). MRC5 cells were infected in two different experiments with 
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overlapping time points. The first experiment evaluated gene expression up to 120 hpi. 

The second experiment served as an extension for later events up to 14 days pi. RNA was 

harvested at each time point followed by generation of Illumina libraries (Figure 11). 

After sequencing, the number of reads mapped to MOCV’s genome ranged from 

~150,000 to ~216,000 per sample (Table 4). The sample containing CHX had a total of 

302,481 sequence reads, the highest count among all samples. Comparison of viral versus 

host reads showed that no more than 2% of the reads corresponded to MOCV sequences.  

Gene counts were determined by mapping reads to each MOCV ORF. Normalization of 

the gene counts followed, taking into consideration read length and the total number of 

reads per sample. The Principal Component Analysis (PCA) was used to determine 

consistency throughout samples (Figure 12). This graphical representation of genes 

expressed for all samples highlighting the similarities between samples, and their relative 

difference with the CHX outlier.  

In order to have a genome-wide perspective of the gene expression events, expression 

maps were generated for each time point (Fig. 13). These maps showed incremental 

amounts of transcripts within the first 8 hpi. Similar findings of incremental amounts of 

transcripts have been documented [291]. Interestingly, all time points showed similar 

patterns compatible with early gene expression in which transcripts were located mainly 

at the ends of the genome, and few a scattered peaks located within the central conserved 

region. Moreover, no significant increments in the latter time points were observed. 
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MOCV gene profiling in MRC5 cells 

To determine which class or classes of genes are been expressed in vitro (early or PR 

genes), each MOCV gene was associated by its predicted promoter class [17]. The 

normalized gene counts were associated to each ORF and their promoter classification. 

The expression profile was then plotted as a time course. Overlapping time points from 

both experiments were averaged and used in this profile. A total of 60 out of 90 predicted 

early genes met our gene expression criteria (Fig. 14). Consistent with the observations 

from the genome expression maps, MOCV transcripts were increasingly detected 

throughout the first hours. Interestingly, at late time points gene expression seems to 

follow a steady-state kinetics that continued throughout the assay. Nine PR and eight 

unknown genes were also detected with this approach.  

Detection of PR genes explained by read-through mechanism 

In order to address the detection of these nine PR genes (Table 5), the possibility of read-

through transcription was considered. This phenomenon is well-known for VACV in 

which transcription continues further downstream of a gene’s 3’UTR, resulting in partial 

transcription of the downstream CDS into the transcript. If this transcriptional read-

through process occurs in MOCV, this could explain detection of PR genes for MOCV. 

For this reason, the gene context for all nine, PR genes was evaluated using MochiView 

to browse through the transcriptome tiling. A close-up into the transcriptome tiles 

revealed that transcriptional read-through is a possible explanation for all PR genes 

detected (Fig. 15). As expected for a read-through process, transcription starts at a gene 

classified as early and continuouses downstream to the PR gene.  
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Identification of incomplete transcription of the downstream PR gene could be used as a 

signature for this phenomenon. Only detection of MC014 (Fig. 15 Panel G) cannot be 

explained by a read-through mechanism. High amounts of transcripts derived from the 

opposite strand may be contrasted to the scarcity of transcripts found for MC014, 

suggesting no active expression of this gene. 
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Figure 10. Experimental design for MOCV’s transcriptome profiling. RNA 

extraction for RNA-Seq was carried out at several time points 

(0h,4h,8h,12h,120h,7d,9d,14d) in experiment 1 and 2 . In this figure, time is represented 

by the continuous or dashed line. A third experiment required RNA extraction from a 

non-frozen, recently acquired, MOCV-infected tissue plug (cloud shape). All RNA 

samples were used for the generation of Illumina-compatible libraries and sequencing. 

Exp: experiment; hpi: hours post-infection; dpi: days post-infection; 
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Figure 11. Workflow for RNA extraction and generation of Illumina-compatible 

libraries. MRC5 cells were infected with MOCV, and RNA extracted at different time 

points. mRNA was isolated from each sample using a solid-phase method that selecting 

for transcripts with polyA tails. The enriched mRNA samples were then copied to cDNA 

and barcoded using Epicenters RNA-Seq kit described in the methods. Libraries were 

pooled and sequenced using Illumina GAII sequencer. RNA from tissue plug was 

preserved in RNAlater solution (Invitrogen) and kept in cold (4
o
C or ice) throughout 

transportation and processing. Samples were barcoded and pooled for RNA-Seq as 

described previously. 
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Table 4. Summary of read counts for the 

MOCV transcriptome from the in vitro 

assay. 

Sample 
Total number of MOCV 

reads 

Mock 0 

4hpi 170,161 

8hpi 216,782 

12hpi 216,471 

120hpi 176,446 

CHX at 12hpi 302,481 

12hpi 150,892 

120hpi 166,219 

7dpi 153,895 

9dpi 153,036 

14dpi 141,327 

dpi: days post infection; hpi: hours post-

infection; CHX: RNA samples derived from 

infected cells pre-incubated with cyclo-

heximide. Mock: RNA derived from mock-

infected MRC5 cells. 
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Figure 12. Principal component analysis for all RNA-Seq samples. All in vitro 

samples and CHX control were analyzed and a PCA plot generated using GeneSpring 

Software. Clustering of all samples provided visual interpretation of similarities in gene 

expression pattern. Each circle represents a sample, with the axes representing the 

logarithmic value of the most prominent components expressed. CHX represents the 

outlier.Exp: experiment; CHX: cycloheximide; red circles: samples from experiment 1; 

brown circles: samples from experiment 2. 
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Figure 13. MOCV’s RNA expression patterns depict early gene expression in vitro. 

Sequenced reads that mapped to MOCV were imported into MochiView program and 

visualized as tiles over MOCV genome. The black peaks represent regions in MOCV 

genome (horizontal line) that were sequenced by RNA-Seq. Both in vitro experiments are 

summarized here. The ordinates display read counts. Reads above and below the 

horizontal indicate transcription to the right and left, respectively.  
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Early Post-replicative Unknown 

 

Figure 14. Promoter-based classification confirms enrichment of early genes in vitro. 

Genes were group by their promoter classification and gene counts plotted through time. 

60 genes were identified as early (shown in the left box), nine PR transcripts were 

detected (central box), and eight additional genes with unknown promoters were 

identified. Gene expression profile suggests a steady-state equilibrium of MOCV 

transcripts. MOCV profile continues to be of early nature 14 dpi. 
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Table 5. Summary of post-replicative genes detected in vitro. 

MOCV ORF 
VACV-COP 

nomenclature 

Detection explained by 

read-through 

MC013 No VACV homolog Possible 

MC014 No VACV homolog No /new ORF 

MC028 No VACV homolog Possible 

MC031 E1L Possible 

MC041 E11R Possible 

MC044 I1L Possible 

MC045 I2L Possible 

MC107 A4L Possible 
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Functional assay 

In order to evaluate the presence or absence of PR gene expression from a functional 

perspective, infection/transfection experiments were carried out by infecting multiple cell 

lines with MOCV or VACV. This was followed by transfection of plasmids containing 

reporter genes (GFP or LUC) under the control of intermediate (G8) or late promoters 

(P11). The experimental design (Fig. 16) included measuring LUC and GFP expression 

for several days. In order to consider the role of the IFN pathway in MOCV blockage, 

VERO cells known for defective IFN secretion were used [296]. For all cell lines tested, 

there was no evidence of GFP expression in the first 72 h. In order to evaluate longer 

time points, the infection was continued for an extended period up to 14 days. Cells 

infected with WR showed GFP expression over the entire monolayer. Since compatibility 

of VACV promoters with MOCV’s machinery was a concern, a plasmid was generated 

with a GFP cassette under the control of MOCV’s putative intermediate promoter 

pMC095 (Figure 17). BS-C-1 cells were infected with VACV and ERPV, followed by 

transfection of plasmid JM-MC095-gfp 2 hpi. Several controls were added to highlight 

the specificity of the promoter activity. GFP expression was then captured at 20 hpi, 

showing that MOCV’s PR promoter is compatible with VACV transcription machinery. 

The assay also showed that AraC inhibits GFP expression. No expression GFP 

expression was detected in any of the other controls. 

A similar experiment was done using a more sensitive detection method. Cells were again 

infected with MOCV or VACV and then transfected with a LUC-containing plasmid. 

Chemilumicense values for all MOCV infections were similar to negative controls (non- 
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Figure 15. Composite of transcription tiles for the PR transcripts detected. This is a 

close-up view of the MOCV transcriptome using MochiView. Each PR gene detected is 

depicted in one of the panels: A) MC028L, B) MC031L, C) MC041L, D) MC044L & 

MC045L, E) MC095R, F) MC107L, and G) MC013L & MC014R. Sequenced reads 

(black peaks) were mapped to MOCV genome (horizontal black line). The peaks and 

valleys represent the accumulative expression level of that region (counts). In most cases, 

reads from an early gene (green arrow) continues downstream over a PR gene (yellow 

arrow). Note that some extended reads do not reach the 3’UTR of the PR gene in certain 

cases.  
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Viruses: MOCV & WR 

(control) 

Plasmids: G8-gfp, G8-luc 

P11-gfp, P11-luc 

DP-gfp, DP-luc 

 

            Infection   

                         Transfection 

 

           0hpi        2hpi                        12hpi                     72hpi      7dpi    14dpi 

 

Measurements every 

12 hours. 

 

Figure 16. Experimental design to evaluate PR gene expression from a 

functional perspective. To evaluate PR gene expression from a functional 

perspective, an assay was used in which luciferase and GFP expression was 

measured from plasmids under the control of intermediate (G8) or late (P11) 

promoters. Cell lines were infected and evaluated at multiple time points. GFP was 

visualized with fluorescent microscopy and luciferase based on a colorimetric 

reaction and measured with a luminometer. WR: Vaccinia WR; MOCV: 

Molluscum contagiosum; G8: Vaccinia intermediate promoter; P11: Vaccinia late 

promoter; gfp: green fluorescent protein gene; luc: luciferase gene; hpi: hours post-

infection; DP: deleted promoter. 
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plasmid only 

 

 

virus + plasmid 

 

 

virus + plasmid  

+ AraC (2.5X) 

 

 

virus only 

 
Figure 17. Promoter pMC095 is cross-compatible with VACV transcription 

machinery and is specific for post-replicative gene expression. To test compatibility of 

MOCV’s promoters with VACV intermediate transcription machinery, the MOCV 

promoter MC095 was inserted into a plasmid controlling expression of gfp (A). BSC1 

cells were infected with VACV-WR or ERPV at an MOI of 5, and transfected with 

plasmid JM-MC095-gfp two hpi using Lipofectamine 2000. GFP expression was 

documented at 20 hours post infection (B). 

A. 
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infected cells and plasmids with no promoters) (Table 6 Panel A). Since intermediate 

gene expression was detected by Bugert and co-workers [287] after five days post 

infection, a late time point (seven days post infection) was included, and a total of eight 

cell lines were used (Table 7 Panel B). Failure to detect gene expression in trans- 

suggested that the minimum requirements for PR gene expression are not met even at 

seven days post infection for any of the cell lines tested. 

MOCV transcriptome from human infected tissues 

In order to generate MOCV’s transcriptome profile from an infected human tissue, 

preserving the integrity of the RNA was essential. In coordination with Dr. Jeffrey 

Cohen, the infected tissue were removed from the skin of patients at NIH Clinical Center 

and immersed in RNAlater®, which prevents RNA degradation. The samples were 

maintained at 4
o
C on ice during transportation until RNA extraction. RNA extraction, 

library preparation, and RNA-Seq were done as previously described. Read mapping, 

gene counts and normalization of the data were done following the same criteria 

described above.  

Figure 18 show the gene expression map generated from the tissue plug. In contrast with 

the in vitro dataset (Fig. 13), the transcriptome profile generated from this clinical sample 

showed a broader expression pattern in which most ORFs are represented by peaks 

distributed along the whole genome. All 60 genes confirmed as early were detected in the 

clinical sample transcriptome. Moreover, 97 additional genes were also detected (Table 

7). Only six genes did not meet our gene expression criteria (see methods). An expression 

map was constructed by color-coding each ORF to summarize the findings from the in 

vitro and in vivo transcriptome (Fig.19). This in vivo transcriptome serves as a reference 
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for an efficient MOCV infection in a human specimen. Simple subtraction of the 60 

confirmed early genes from the whole in vivo transcriptome allowed to infer the PR 

nature of the other 97 identified genes; nevertheless, subcategories of early or PR genes 

within this group cannot be discarded. 

Host transcriptome and absence of shutdown 

The MRC5 transcriptome was also detected in vitro. Reads were mapped to the human 

genome and gene counts quantified and normalized. An initial evaluation of the host gene 

expression was plotted as a heat-map throughout the first time points of the experiment 

(Fig. 20).  Interestingly, the host’s gene expression pattern slightly varies, but with no 

evidence of a shutdown as occurs with other poxviruses. This is in contrast with the 

significant shut-down reported for VACV’s infection in mammalian cells [297]. 
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Table 6. MOCV was unable to initiate PR gene expression in trans-. 

 

A. 

 
    RLU (luciferase) 

Cell 

line 

VACV 

promoter 
condition 4hpi 8hpi 12hpi WR (12hpi) 1:10 

MRC5 

G8 
I 66 56 69 6,753,898 

NI 64 85 68 63 

P11 
I 56 103 64 905,074 

NI 56 93 73 86 

DP 
I 66 73 78 78 

NI 62 88 90 71 

VERO 

G8 
I 90 102 66 45,983 

NI 78 78 69 75 

P11 
I 77 90 69 5,817 

NI 96 90 70 81 

DP 
I 74 97 67 95 

NI 62 96 71 79 

 

  

B. 

 Absolute RLU values 

Cell lines 12hpi 120hpi 7dpi 

HEP 23 213 37 

HUTK 36 646 121 

A431 9 7 8 

C32 11 96 23 

FL 271 1108 527 

HFF 10 74 51 

HOS 14 29 12 

 

A luciferase assay was carried out in MRC5 and VERO cells (Table A). A second 

luciferase assay included seven other cell lines in an extended time course. All cells were 

infected (I) with MOCV followed by transfection with a plasmid. Mock-infected cells 

(NI) were used as a negative control to detect background expression of reporter genes. 

An additional plasmid with a deleted promoter (DP) was used as an additional negative 

control. VACV WR was used in a parallel experiment using the same conditions as a 

positive control. 
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Figure 18. Global transcriptome expression map from an infected human tissue. 

MOCV sequence reads derived from an infected human tissue were mapped to MOCV 

genome (horizontal line). Regions of expression (peaks) on both strands of the genome 

were detected. The map shows expression at both ITRs and the central conserved region. 

The ordinates display read counts. Reads above and below the horizontal indicate 

transcription to the right and left, respectively. 
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  60 early genes   97 additional genes      6 not expressed 
 

Figure 19. Complete MOCV transcriptome map using in vitro and in vivo derived 

RNA. A total of 60 genes were confirmed as early genes by RNA-Seq from the in vitro 

experiments. 97 additional genes detected in vivo (tissue plug) were color coded brown. 

Six genes were not detected as being expressed or did not comply with our gene 

expression criteria. 
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Table 7. Summary of other findings from in vitro and in vivo experiments. 

Genes not detected in vivo 
Genes with unknown 

promoters 
PR genes detected in vitro 

MC092R,MC058R, 

MC033L,MC048L, 

MC032L, MC145R 

MC156R,MC071R, 

MC127R,MC142R, 

MC151L 

MC013L,MC014R, 

MC028L,MC031L, 

MC041L,MC044L, 

MC045L,MC095R, 

MC107L 

 

Early genes detected in vivo 

MC002L 

MC003L 

MC004L 

MC005L 

MC006L 

MC007L 

MC008L 

MC009L 

MC011L 

MC012L 

MC018L 

MC019L 

MC020L 

MC023L 

MC024L 

MC026L 

MC027L 

MC029L 

MC035R 

MC036R 

MC039L 

MC042L 

MC043L 

MC046L 

MC051L 

MC054L 

MC070R 

MC079R 

MC080R 

MC081R 

MC086R 

MC093R 

MC094R 

MC097R 

MC098R 

MC101L 

MC108R 

MC111R 

MC128R 

MC129R 

MC132L 

MC138R 

MC141R 

MC144R 

MC146R 

MC147R 

MC148R 

MC149R 

MC150R 

MC152R 

MC153R 

MC154R 

MC155R 

MC157R 

MC158R 

MC159L 

MC160L 

MC161R 

MC162R 

MOCVgp053 
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Figure 20. Host’s transcriptome shows no evidence of a transcription shut-down. 

MRC5 transcriptome was also detected and mapped to the human genome. MRC5 gene 

expression depicted in this heat-map shows no overall reduction (blue areas) of gene 

expression. Orange areas represent increased gene expression. 

  

1.9            2.8            3.6 

logs (counts) 
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Discussion 

MOCV is a human-specific pathogen that affects predominantly children and immune-

suppressed patients [16]. Our understanding of this virus has been limited for the lack of 

an in vitro system or animal model to grow it [285, 288]. Since infected tissue from 

patients is the only source of MOCV, a purification protocol [292] was simplified to 

maximize the amount of virus recovered. The initial EM evaluation of the viral 

preparation showed morphologically intact poxvirus (Fig. 7). It also confirmed that our 

simplified extraction method provided a relatively clean virus stock. 

UV light prevented CPE formation and confirmed the infectious nature of the preparation 

(Figure 8) [298]. Experiments using the translational inhibitor CHX provided evidence 

that gene expression was required for CPE similarly to other poxviruses [299].  

The CPE affecting the whole-monolayer also suggested that every cell was infected [300-

302].   These aspects are important since they provide evidence of early gene expression 

that has also been determined elsewhere [289, 303]. 

Previous reports also showed detection of early and PR gene expression by RT-PCR 

[286, 287].  MRC5 cells were infected with MOCV and followed through an extended 

time course. Early and PR gene expression was detected 4 hpi and 120 hpi respectively. 

Detection of both classes of genes continued up to 14 dpi. Since PR transcripts were 

detected 5 dpi in MRC5 cells, 3 cell lines were screened for PR transcript with time 

points that extended for several days (Table 3). Quantification of viral RNA by q-RT-

PCR showed similar amount of early transcripts in all cell lines. This suggested that the 

initial early gene expression occurred in all three cell lines.  Similar Ct values for early 
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and intermediate transcripts in MRC5 cells may be interpreted as a confirmation that both 

are derived from the same transcripts. In other words, if an early transcript was extended 

into a downstream PR gene, it would be detected in a similar amount. Interestingly, PR 

genes were not detected in BHK21 or HFF. This brings an interesting observation that 

processivity of MOCV’s transcription machinery may be impaired in these two cell lines. 

Without considering the possibility of read-through transcription at this point, MRC5 

cells were selected for the RNA-Seq experiments. Further evaluation of MOCV’s PR 

transcripts in MRC5 confirmed Bugert’s findings by q-RT-PCR (data not shown) [287]. 

The sequencing experiments were designed to match the time points from a previous 

report (Fig. 10) [287]. After RNA extraction and RNA-Seq, MOCV reads were mapped 

using MOCV genome type I as the reference (Accession number NC_001731). The total 

number of reads ranged between 150,000 to 400,000 (Table 4). Nevertheless, the cells 

pre-incubated with CHX showed higher amounts of viral transcripts. Greater expression 

of early genes in the presence of CHX has been previously described for VACV [108].  

Read counts per gene were calculated and normalized based on read length and total 

number of reads. Normalization of the whole dataset allowed comparison of gene counts 

across samples. PCA analysis was used to evaluate global gene expression tendencies 

within the samples (Fig. 12). All samples showed clustering of the principal components, 

with the exception of the CHX sample. Similarities among the samples demonstrate that 

genes were expressed in similar proportions in all samples. This analysis provided the 

initial evidence that the same set of genes were predominantly expressed in all in vitro 

samples.  
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A total of eight gene expression maps were generated to visualize the expression patterns 

in a global context (Fig. 13). Similarly to VACV early gene expression [108], MOCV 

shows expression predominantly within the left and right ends including the ITRs. Mirror 

images of the peaks on each end depict the complementary nature of the ITR’s. The 

central portion of the genome showed fewer peaks and suggested limited expression of 

genes in this region. Moreover, the extended assay, which included time points from 12 h 

up to 14 dpi, showed essentially no difference with the first assay. Taken together, all 

results indicated that MOCV’s gene expression is limited to early genes.  

In order to further evaluate MOCV’s transcriptome quantitatively, gene counts on each 

time point were associated to the predicted expression class. MOCV’s promoters have 

been carefully evaluated and classified based on homology information and 

computational predictions [17]. An arbitrary value of 10 counts per gene throughout the 

time course was used as the cut-off for gene expression. The incremental amount of 

transcripts in the first hours of infection was compatible with the expected kinetics of 

gene expression, and previous description of MOCV early events. Nevertheless, detection 

of transcripts as a plateau in later time points represents an interesting but unclear 

finding.  

The gene expression profile confirmed the early nature of 60 predicted genes (Fig. 14). It 

also showed quantitatively the overwhelming amounts of early transcripts compared to 

the PR genes; nevertheless, detection of nine PR genes complicated the interpretation of 

our results. In order to reach a more definitive conclusion, a careful examination of these 

nine PR genes was required. The process known as transcriptional read-through identified 

in several organisms and viruses is one possibility that could explain PR detection by RT-
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PCR and deep-sequencing [304-306]. In fact, this process have been shown for VACV 

[297], and is prevalent due to the overlap and closeness of most genes. In order to 

evaluate this possibility, a closer look into the context of each of the PR genes detected 

was needed. MochiView was again used to visualize and evaluate the tiling of reads and 

their distribution over those nine PR genes in the 120 hpi sample. This dataset was 

selected because it matches the time PR genes were detected. Evaluation of the upstream 

region for all PR genes detected showed the presence of an early gene and the possibility 

of overlapping transcripts for all, except one gene (Table 5 and Fig. 15). The exception 

was gene MC014R, which was annotated with a right orientation. The vast majority of 

transcripts of these regions belong to the opposite strand. Nevertheless, by focusing on 

this region, the expression of the putative gene MC014.1L was confirmed. As depicted 

from the expression pattern transcription of this gene occur from the negative strand. 

Identification and expression of MC014.1L may also explain detection of the predicted 

late gene MC013L, another PR gene detected in our assay. In summary, the results shown 

here provide additional evidence that transcriptional read-through may be responsible for 

false-positive detection of gene expression by traditional methods. 

Functional assay addressing PR gene expression 

In order to rule out PR gene expression from a functional perspective, plasmids 

expressing reporter genes under VACV promoters were used. For this experiment, 

compatibility of VACV promoters with MOCV transcription machinery was a concern. 

The compatibility of early VACV promoters with MOCV machinery has been recently 

demonstrated using early-late (synthetic) promoters [307], but not for authentic PR 

promoters. To address this, a construct containing gfp under the control of MOCV’s PR 
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promoter was used and tested for its compatibility with VACV’s transcription machinery 

(Fig. 17). This compatibility has been previously suggested due to sequence similarities 

between MOCV’s and VACV’s promoters, and the homology found for several 

transcription-related enzymes [17, 289]. To select MOCV’s promoter for this reporter 

plasmid, three criteria were used: a) the promoter should be a predicted PR, b) must have 

been detected by q-RT-PCR, and c) with no evidence expression in our RNA-Seq 

experiment. The MC095 promoter was selected using these criteria, and cloned to express 

GFP. The infection and transfection experiment using this novel plasmid confirmed that 

MOCV’s promoter is indeed functional and compatible with VACV and ERPV 

transcription machinery. This implies that PR promoters might all be compatible through 

poxviruses, or at least in several Orthopoxviruses. More importantly, pre-incubation of 

cells before and during infection with a DNA replication inhibitor (AraC) resulted in 

complete inhibition of GFP expression. This demonstrated that promoter pMC095 is 

post-replicative (PR), for which DNA replication is required. This result validated our 

assays and also showed the compatibility of both VACV and MOCV PR transcriptional 

machineries for the first time.  

The results for the functional assay of intermediate or late gene expression are 

summarized in Table 6. The data shows no evidence of intermediate or late gene 

expression in any cell lines tested. All levels of LUC, with the exception of the VACV 

control, were similar to background levels. Furthermore, VERO cells defective in IFN 

pathway [296] did not show any increment in luciferase nor expression of gfp. 

The failure to detect intermediate transcripts, and absence of gene expression in trans 

should be analyzed separately since they are in different contexts. First, a lack of PR gene 
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expression in MRC5 cells is better explained by the absence of DNA replication 

demonstrated elsewhere [287]. The viral genome is packaged as a nucleoprotein complex 

within the viral core. It is believed that uncoating of the genome is required for both 

DNA replication and intermediate gene expression. This is supported by in vitro 

experiments showing the requirement of a naked genome for PR gene expression [67]. 

One model for genome uncoating suggests that viral DNA in the form of 

desoxynucleoprotein is released from the core and transported into specific loci within 

the cytoplasm. These loci contain viral proteins, DNA, and newly synthesized viral RNA. 

Within these viral factories, it has been suggested that a) early viral proteins are able to 

modify the viral core in a way the exposes the viral DNA for replication and PR gene 

expression; or b) that viral proteins are able to alter the specificity of the viral polymerase 

toward PR gene expression [308]. For MOCV, it seems that viral uncoating does not 

occur and consequently, there is no naked template for intermediate gene expression. 

Moreover, DNA replication, which is required for PR gene expression, does not occur. 

Consequently, newly synthesized DNA is unavailable as a naked template for PR gene 

expression [309]. 

Studies of VACV replication have revealed several requirements for DNA replication 

and gene expression. The VACV B1 kinase is a serine/threonine viral kinase packed 

within the virus [93]. This protein has been associated to an important immune-evasion 

role by targeting BAF. BAF is a DNA binding protein and inhibits DNA replication for 

VACV [95]. MOCV has no B1 homolog, and has been suggested as an explanation for 

MOCV’s inability to replicate its DNA in vitro [17]. A model in which MOCV 

compensates using host kinases (VRK1 and VRK2) has been suggested [94]. 
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Nevertheless, this does not explain the absence of intermediate gene expression in trans 

shown here.   

By using plasmids with PR promoters, the requirements for DNA replication are 

bypassed [67, 94]. The plasmids function as naked templates readily available for the 

virus transcription machinery. The inability to express the reporter genes in trans- 

suggests that the intermediate translation machinery is incomplete or insufficient. In this 

scenario, one or more transcription components might be insufficient to initiate 

intermediate gene expression. Our finding that less than 2% of the total extracted RNA 

corresponded to viral transcripts is compatible with this model specially when contrasted 

with the 25-50% of viral RNA found for an VACV infection [297]. This is further 

supported by the absence of a host’s shut-down and the recovery of the whole monolayer. 

The components of the intermediate transcription machinery include the RNA 

polymerase-capping enzyme complex, VITF-1 (E4) VITF-3 (A8/A23) viral transcripton 

factors, and several host factors (See literature review). Nevertheless, the requirement for 

a functional B1 kinase for intermediate gene expression is highlighted again for gene 

expression in trans [94]. 

Transcriptome snapshot from tissue and generation of expression map 

The gene expression map derived from tissue provides a holistic view of an efficient viral 

cycle. In contrast with the in vitro transcriptome, gene expression is not restricted to the 

ends of the genome, and spans into the central genomic region, which contains most 

essential and morphogenesis-related genes (Figure 18). 
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The in vitro and in vivo transcriptome datasets were used to generate an MOCV gene 

expression map (Figure 19). By subtracting the early genes identified in vitro from those 

made in vivo, additional expressed genes were identified. A total of six genes did not 

meet our gene expression criteria. Failure to detect these six genes can be explained by 

the annotation strategy used for MOCV, in which stringency was reduced in order to 

produce the most complete annotation set [17]. This gene expression map will be a useful 

as a reference to expand our current knowledge and understanding of MOCV 

transcription. 

Conclusions 

MOCV is one of the poxviruses with clinical relevance, affecting mainly children and 

immunosuppressed patients. Our understanding of this virus has been limited for a lack of 

an in vitro system or animal model to do research. Here, new insights into MOCV gene 

expression are provided from in vitro and in vivo samples using RNA-Seq. We have 

confirmed the early nature of 60 MOCV genes in vitro and detected expression of 97 

additional genes in vivo. Detection of the predicted gene MC014.1L has been confirmed, 

providing evidence that this method is useful to confirm gene expression. 

The identification of the read-through mechanism for MOCV has significant 

repercussions for research. Detection of PR gene expression should be evaluated by 

taking into account this mechanism. Strategies such as paired-end sequencing and 

functional gene expression could prove useful in this scenario.  

The location of the MOCV block should be re-evaluated. Identification of the MOCV 

transcriptome as early in the MRC5 cells suggested that the MOCV block occurs before 
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DNA replication. Lack of DNA replication for MOCV in vitro has been the most 

supported model. Nevertheless, our data suggest that an insufficient early gene 

expression might contribute to MOCV’s block in vitro. Other possibilities that would 

need to be addressed are: a) the need for host factors, or b) the effect of the host’s 

antiviral mechanisms. A reductionist and systematical evaluation of each one of these 

possibilities would be useful to determine the cause of MOCV early block. 

Finally, the transcriptome generated from infected tissue could be used as a reference for 

an efficient MOCV expression, thus revealing the virus signature of a successful viral 

cycle. The host transcriptome also provide insights into the viral and host interaction in 

vitro and in vivo.   

 

  



81 

Chapter 4: Identification of host-range genes responsible for MVA’s attenuated 

phenotype. 

Summary 

MVA is a strain of VACV used as a smallpox vaccine, as a vector against several 

infectious diseases, and for viral oncolysis. Its attenuation in chicken embryonic 

fibroblasts (CEF) was accompanied by several deletions and mutations throughout the 

genome. To identify the genes responsible for its host-range restriction, whole-genome 

sequencing and comparative genomics were done on several recombinant MVAs (rMVA) 

that were generated by introducing long DNA sequences derived from a non-attenuated 

strain and selected by marker rescue. Several rMVA recovered intermediate phenotypes 

that ranged from the attenuated parental MVA to the wild type Ankara. The 44/47.1 

rMVA acquired similar replication properties as this non-attenuated strain. By 

comparative genomics, several genes were selected for deletion from 44/47.1 rMVA, and 

the contribution to plaque formation and replication of the genes were evaluated. O1 was 

confirmed to be important in plaque formation. Also, C17, F5 and C11 were individually 

identified as important for plaque formation and replication, whereas C11 was sufficient 

for extending MVA’s host-range into mammalian cells.  

Introduction 

MVA is an attenuated VACV strain used as a smallpox vaccine [310] and a potential 

vector against multiple infectious diseases[12-15, 310] and for viral oncotherapy [311, 

312]. Re-engineered MVA mutants have been used to induce viral oncolysis while 

maintaining its safety profile [313-316].   
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MVA’s parental virus was isolated from a horse lesion in Turkey and extensively 

passaged in chicken embryonic fibroblasts (CEF) causing several deletions and mutations 

throughout the genome [11, 29, 317]. During this process, its ability to replicate in most 

mammalian cells was lost, reducing its host-range to a few cell lines which includes CEF 

cells. MVA’s inability to replicate in HeLa cells was demonstrated by EM showing 

accumulation of IVs and dense spherical particles [318]. The inability to produce progeny 

efficiently provided the safety profile required for its use in humans. [319, 320]. Whole-

genome sequence of MVA’s genome and comparison to the parental virus genome 

demonstrated the changes suffered during the attenuation process. The changes included 

six major deletions that reduced the genome by ~12% [29, 321]. The six deletions are 

located in the distal and variable portions of the genome (Figure 21).  

Interest in identifying the gene or genes responsible for MVA’s attenuation led several 

groups to address this question in multiple ways. An attempt was carried out by 

generating multiple overlapping cosmids using a non-attenuated VACV strain and 

insertion of these long constructs into MVA. [204]. The rMVAs generated with a single 

cosmid recovered a partial phenotype. Nevertheless, a virus generated with two 

overlapping cosmids (virus 44/47.1 rMVA) recovered the ability to form large plaques 

and replication in mammalian cell lines, similarly to the parental, non-attenuated strain. 

The 44/47.1 rMVA phenotype indicates that all genes responsible for MVA’s replication 

and plaque formation were repaired. This experiment also confirmed that the major host-

range determinants were located in the left side of the genome. Other approaches have 

been attempted by repairing the six major deletions of MVA [322]. Systematic repair of 

those deletions showed that reinsertion of the deleted sequences was insufficient to rescue  
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Figure 21. Schematic representation of MVA’s deletions and overview of marker-

rescue experiments. Panel A depicts MVA six deletions and immune-evasion genes 

identified within those deletions. Panel B shows the strategy used by Wyatt et al (1998) 

to rescue MVA’s host-range. Cosmids (cos51, cos44, cos47) were generated from a non-

attenuated strain (Ankara genome). Arrows point to the regions of homology in MVA 

where the cosmids were theoretically inserted. Panel C shows how both cos44 and cos47 

overlaps an 80 kbp region in 44/47.1 rMVA. 
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the phenotype [322]. This indicated that mutations outside the deletion also account for 

MVA’s host-restriction. 

 Here, we took advantage of current sequencing technology to determine the genes 

repaired in many of the rMVAs generated by Wyatt and co-workers [204], and associated 

the contribution of these genes to the recovered phenotype in several mammalian cells. A 

set of genes repaired in the 44/47.1 rMVA were selected as potential host-range 

determinant and deletion mutants of these genes were generated to evaluate their 

contribution to plaque formation and replication. By dissecting the contribution of each 

gene to plaque formation and replication, the number of potential host-determinants was 

narrow down to a few genes. Moreover, this approach led us to the discovery of the first 

gene outside of MVA’s deletions responsible for its host-range restriction in mammalian 

cells. 

Materials and Methods 

Plaque formation assay and clonal purification 

Crude preparations of all rMVAs (44/47.1 rMVA, 44.1 rMVA, 44.7 rMVA, 51.1 rMVA 

and 51.2 rMVA) were kindly provided by Linda Wyatt. Procedures for plaque formation 

assays, clonal purification, amplification and virus purification were done following 

Current Protocols Unit 5.12 and 5.13 [261, 323].  

Plaque purification of all rMVAs was done in BS-C-1 cells, while plaque purification for 

the 44/47.1 rMVA deletion mutants was done in CEF cells. Medium was prepared by 

adding FBS, complemented with 1% L-glutamine and 1% P/S. Before infection, cells 

were pre-incubated with 2% FBS-EMEM (infection medium), and serial dilutions of each 
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virus used for the infection. Viral adsorption was allowed for two hours at 37
o
C, 5% CO2 

(regular incubation conditions), followed by replacement of the medium with an overlay 

of 0.5% methyl cellulose, +5% FBS (methyl cellulose overlay) or 10% FBS-EMEM 

(growth medium). Initial confirmation of plaque sizes for all rMVAs was done in BS-C-1 

cells using a methyl cellulose overlay (Figure 22). Staining of infected cells was carried 

out 36 hpi or 48 hpi by fixing cells with a methanol:acetone (1:1) solution and 

immunostaining using VACV antiserum (provided by Dr. Linda Wyatt) and protein G 

conjugated with peroxidase (Pierce, Cat. 32400).  

For virus amplification, infected CEF cells were incubated for at least 48 h and evaluated 

for CPE. The infection and harvesting procedure was repeated sequentially until cells 

from ten T-150 flasks were infected for each rMVA or deletion mutant. Half of the viral 

crude preparation was used for purification using a single sucrose cushion. The other half 

of the crude preparation was used for higher-quality viral purification that consisted of 

one sucrose cushion and two sucrose gradients. Titers of all viruses were determined by 

plaque assay using immunostaining techniques in CEF cells. 

Evaluation rMVAs by EM 

EM was used to evaluate the morphologies of each rMVA. HeLa cells were infected with 

an MOI of 5, and incubated at standard conditions for 24 h. Samples were fixed and 

prepared for EM. All EM staining and evaluation were kindly done by Andrea Weisberg.  

DNA extraction and electrophoresis of digested genome fragments  

DNA was released from purified virions using a solution containing 10% SDS, 60% 

glucose, 50 mM TRIS, pH 7.8, and 10 mg/ml proteinase K [323]. A phenolic extraction 
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(phenol:chlorophorm:IAA, ratio 25:24:1) was done twice for the removal of proteins. 

DNA precipitation was carried out with ethanol, and DNA eluted with water or EB 

Buffer (Quiagen Cat. 19086). Quantification of DNA was done with a NanoDrop device 

(Thermo Scientific). Aliquots of extracted DNA from each rMVA was digested with 

restriction enzyme HindIII and run on an 0.8% agarose gel at 10 volts at 4
o
C overnight 

(Figure 23) [324]. The gel was stained with ethidium bromide and visualized and 

recorded using the Carestream Image Station 4000MM.  

Library preparation and pyrosequencing 

The non-digested genomic DNA for each rMVA was also quantified using Picogreen 

assay (Life Technologies, Grand Island, NY). Separate libraries were constructed using 

Rapid Library Preparation Method Manual (October 2009) GS FLX Titanium Series 

(Roche, Branford, CT) and Paired End Library Preparation Method Manual – 3kb Span 

(October 2009) GS FLX Titanium Series. Each library was processed using emPCR 

Method Manual – Lib-L MV (October 2009) in separate emulsion reactions with the 

fragment library being combined with like samples. The paired-end sample was loaded 

on a single lane and the fragment sample was loaded in two lanes of an 8-region 454 GS 

FLX Titanium sequencing run. Library construction and initial de novo assembly was 

done by Rocky Mountain Team: Martens C, Bruno D, Porcella SF. 

Genome assembly and gap closure 

A de novo assembly strategy was used to generate all contigs (Fig. 4). Some genomes 

were fragmented in up to seven different contigs. Physical mapping was carried out using 

an in-house script coupled with Nucmer software [325]. Since these rMVAs were 

generated using an MVA backbone and the inserts were derived from a non-sequenced 
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virus, several different genomes (MVA, Lister, Copenhagen genome sequence) were 

used as references to find the consensus order of the contigs. After determining the order 

of all contigs, assembly of the drafts sequences, generation of the opposite ITR and 

identification of the gaps were done. Primers flanking each gap were designed for PCR 

and Sanger sequencing. The sequences derived from each gap were used to complete the 

drafted genomes. The final genome drafts were used as their own reference to remap all 

reads into a final most accurate genomic sequence. 
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Figure 22. Initial characterization of plaques formed by MVA and the 

rMVAs in mammalian cells. rMVAs were evaluated for their formation of 

plaques. The assay was done in three mammalian cell lines (BS-C-1, HeLa 

and VERO) showing differences in morphology and size at 48 hours post 

infection. 
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Figure 23. Restriction analysis of the rMVA genomic DNA demonstrated migratory 

shift of band “C”. The genomic DNA for each rMVA was digested with the restriction 

enzyme HindIII overnight at 37
o
C. The digested DNA was then loaded on a 0.8% agarose 

gel and run at 10V for 24 hours. The gel was stained with ethidium bromide. Changes in 

migration of the HindIII C fragments were observed. Additionally, the ERPV genome 

was also run in parallel (see chapter 2). 
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Multiple genome alignment and genome annotation. 

All five rMVAs and the MVA’s genome were aligned using ClustalW2 [326] under 

NIH’s Linux High-Performance Computing Cluster. Results were imported into 

Geneious Software (Biomatters) to visualize the alignment. Additional genome sequences 

were downloaded from www.poxvirus.org, which included VACV-Lister_107 

(Accession number DQ121394), VACV-CVA (Accession number AM501482), 

Acam2000 (Accession number AY313847), Acam3000 (Accession number AY603355), 

VACV-Cop (Accession number M35027). All genomes and the rMVA’s genome 

sequences were re-annotated using Acam2000 as the reference. All translated ORFs were 

compared to the protein sequence of Acam2000 using NCBI’s BLAST tool. A table with 

the ORF’s number, VACV-Cop nomenclature and size was produced to compare all viral 

proteins (Suppl. Table 1). 

Selection of candidate genes 

The virus 44/47.1 rMVA was determined to have the most number of genes repaired, and 

was used for the selection of the host-range candidates. Candidate genes from 44/47.1 

rMVA were selected using three criteria: a) genes in which truncations were repaired, b) 

genes re-inserted within MVA’s deleted region, or c) mutated genes with a known 

immune evasion role. From the selected genes, seven were located outside MVA’s 

deletion (C9L, C17L, F11L, F5L, O1L, C11R and C10L). Thirteen other selected genes 

were inserted within the deletions. Genes C12, C13, C14, C15 were repaired within 

deletion I, and K1L, M2L, M1L, N1L, C1L, C2L, C3L, C4L, and C5L within deletions V 

and II. A schematic representation of all rMVAs and mutations is shown in Figure 24. 
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Generation of GFP constructs and 44/47.1 rMVA deletion mutants 

To generate deletion mutants from the 44/47.1 rMVA, flanking regions for each 

candidate gene or genes were selected. In order to cover a greater extension, some genes 

were deleted in clusters (two or more genes at a time). A three-fragment cassette was 

designed per gene, with flanking sequences to facilitate homologous recombination 

(Figure 25). The distal fragments corresponded to flanking regions homologous to 

44/47.1 rMVA sequences; and the central fragment corresponded to the GFP gene under 

the control of the early/late synthetic VACV promoter [327]. Primers were designed to 

allow overlapping PCR and annealing of the fragments. CEF cells were infected with 

44/47.1 rMVA at an MOI of 0.05. Infected cell were transfected with 2 µg of the 

construct using Lipofectamine 2000 (Life Technolgies, cat. 11668027) following the 

manufacturer’s instruction. After the second round of clonal purification, single plaques 

showing GFP expression were purified and amplified as described previously. All 

deletion mutants were verified by PCR and Sanger sequencing. 

Plaque formation assay for the 44/47.1 rMVA deletion mutants. 

Three mammalian cell lines (HELA, VERO and BS-C-1) were selected for the initial 

plaque formation screening. Serial dilutions of each deletion mutant were used for the 

assay. GFP positive plaques were visualized at 24, 36, or 48 hpi using a fluorescent 

microscope, and images were captured using the same objectives. Brightness of the GFP 

plaques was adjusted for visualization purposes. 
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Figure 24. Alignment of the left-termini for all rMVAs and location of the selected 

candidate genes. All rMVA genomes (black lines) were aligned and visualized with 

Geneious. Acam3000 genome was included to identify the mutations and insertions in the 

others rMVA’s. Genes that differ to Acam3000 (green arrows). Genes selected for 

screening were also identified (red arrows). The region indicated with a “d” represents 

additional genes not present in Acam3000. dI, dV and dII regions indicate the location of 

MVA’s deletions. 
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Figure 25. Schematic representation of the gfp-cassettes used to generate the 44/47.1 

rMVA deletion mutants. To design the constructs, flanking regions were identified 

around the target genes. Primers were designed for each flanking region, with internal 

primers that overlaps with a pre-designed gfp cassette. Additional primers were designed 

to verify the inserts by PCR and Sanger sequencing. The selected genes were deleted by 

homologous recombination and isolated through the expression of gfp as a marker. A 

total of 13 deletion mutants were generated using this approach. 
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Virus yields of deletion mutants in mammalian cell lines 

Virus yields of each deletion mutant were measured by a high-throughput method based 

on GFP detection using a flow cytometer. This method consists of a three step process in 

which the first step consists of infecting the cells to evaluate virus growth. To minimize 

the effect of virus spreading, an MOI of 3 was used, followed by virus adsorption for 2 h. 

Each well was washed twice with 1X PBS before adding growth medium. Incubation was 

allowed for 24 h. For harvesting the infected cells, the medium was replaced by infection 

medium, followed by 3 freeze and thaw cycles and sonication as described in previous 

methods. The second step consisted of infecting S3-HeLa cells with serial dilutions of 

each virus in a 96-well configuration. Infection and incubation of S3-HeLa cells was in 

Spinner media (Quality Biological, Inc. Cat.112-038121), and AraC (80 μg/µl) to limit 

the viral cycle to early gene expression, allowing translation of the encoded GFP gene. 

Several controls were done before using the technique, and compared to traditional 

immunostaining techniques (data not published). Medium, incubation time and reagents 

to design this assay were adopted from a related protocol [328]. The FACSCalibur 

(Becton-Dickinson) cytometer coupled with a plate-reader module was used to gate for 

GFP and count all events. FlowJo software (TreeStar, ver. 8.5.3) was used to analyze all 

output from the flow cytometer. The statistical data was then expressed as fold increase 

calculated by dividing the GFP-positive counts at 24 hpi by the input measured at 2 hpi. 

Trans complementation assay of MVA 

PCR products encoding genes C11 and F11 were cloned into TOPO vector under E/L 

synthetic promoters. An additional plasmid kindly provided by Zhilong Yang with no 

promoter was used as the negative control. VERO and BS-C-1 cells were infected with 
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MVA and transfected 2 hpi with the plasmids. Infected cells were incubated at 37
o
C, 5% 

CO2. Infected cells were harvested at 24 hpi, and the virus titer determined by 

immunostaining using CEF cells. 

Simplified method to generate replicative-competent MVA for mammalian 

cell lines 

A simplified, one-tiered method allowed extension of a replication-incompetent virus to 

grow in mammalian cells. The method was based on our discovery that insertion of a 

DNA construct containing the vgf gene derived from a replication-competent virus was 

capable of extending the host-range of MVA into mammalian cells. For this, a ~800 bp 

region containing the vgf gene from the replication-competent virus 51.2 rMVA was 

amplified by PCR. Flanking regions were chosen to include all mutations related to vgf 

(promoter and 3’UTR) and to promote homologous recombination into MVA nucleic 

acid. A second construct containing the same vgf region from a different replication-

competent virus, VACV-WR, was generated to show a second example of this discovery 

and the usefulness of this procedure. In this example, a 769 bp region containing the vgf 

gene from VACV-WR was amplified, allowing flanking regions for homologous 

recombination. To ease the acquisition of these sequences, each PCR product was 

inserted into a TOPO plasmid and used in a modified infection/transfection procedure. 

Plasmids containing the exogenous vgf gene are pJM5, pJM8, and pJM11. The nucleic 

acids inserted into MVA is amplified with forward primer AGCAAAGAA-

TATAAGAATGAAGCGGT and reverse primer ACCCACTGTATTCATTTTCAAG-

GTA when using 51.2 rMVA nucleic acid as the template; or with forward primer 

ATCATTTTTAACAGCAACACATTCAATATTG and reverse primer ACCCACTGTA-

TTCATTTTCAAGGTA when using VACV-WR nucleic acid as the template. Plasmids 
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pJM5 and pJM8 include nucleic acid from 51.2 rMVA, while plasmid pJM11 contains 

the nucleic acid derived from VACV-WR. 

A non-permissive cell line for MVA (in this case, VERO cells) was infected with MVA 

and transfected with each plasmid independently. The construct containing the vgf region 

was used as a selection marker allowing selective growth of the recombinant mutant. 

Infected/transfected cells were incubated overnight and harvested. To maximize recovery 

of recombinant viruses and reduce the amount of the parental strain (MVA), the 

harvested infected cell preparation (crude viral sample) was used to infect again another 

monolayer of non-permissive cell lines for MVA (again VERO cells). Half of the crude 

viral sample was used to infect VERO cells (non-permissive condition for MVA). In this 

second round, the infection medium was replaced with 0.5% methyl cellulose overlay 2 h 

post infection. Foci with clumped cells were observed as early as 24 h post infection and 

served as an indication of the presence of the recombinant virus. It also facilitates the 

clonal purification process. Longer incubation may be used to allow growth of the foci 

using adherent plates. Serial infection and harvesting was repeated using non-permissive 

conditions such as VERO cells to ensure elimination of the replication-incompetent virus. 

This process may be repeated as desired to reduce the likelihood of contamination with 

the parental virus. The final viral clone was amplified in BS-C-1 cells and used for DNA 

extraction and sequencing verification. 

Results 

Confirmation of rMVA plaque formation ability 

All rMVAs were kindly provided by Dr. Linda Wyatt in the form of crude viral 

preparations. Each virus was purified and amplified to generate new viral stocks (Figure 
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3). All viruses were tested for their ability to form plaques in one human cell line (HeLa 

cells) and two African green monkey cell lines (VERO and BS-C-1). Previous plaque 

formation reports were confirmed, in which 44/47.1 rMVA formed the largest plaques 

(Figure 22), while the other rMVAs formed intermediate or small plaques in all three 

mammalian cell lines. The intermediate phenotypes suggest that plaque formation is 

regulated by the accumulative effect of several genes, and that viruses 51.2, 51.1 and 44.1 

rMVA recovered some of those gene involved in plaque formation and replication.  

Evaluation of rMVA morphogenesis by EM 

MVA is an attenuated virus that lost the ability to replicate efficiently in most 

mammalian cell lines. Characterization of MVA in non-permissive cells by EM revealed 

that the block occurs late in the viral cycle manifested by the accumulation of IVs and 

dense spherical particles [329] [318]. In order to determine if a defect in morphogenesis 

accounts for the different phenotypes, HeLa cells were infected with each rMVA and 

evaluated by EM. MVA and Ankara virus were also included as controls. Preparation of 

infected monolayers for electron microscopy and capture of images was kindly done by 

Andrea Weisberg. During an infection with wild type VACV, IVs and brick-shaped MVs 

predominate. However, in cells infected with MVA, there are dense spherical particles 

instead of MVs. In contrast, all of the rMVAs had a mixture of dense spherical particles 

and MVs (Fig. 26). The ratios of MVs to spherical particles were directly proportional to 

the abilities of the rMVAs to produce infectious virus (Table 8). Thus, 44.1/47.1 and 51.2 

had the highest ratios, while 47.1 and MVA had the lowest. 
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Figure 26. Evaluation of virus morphologies in HeLa cells at 24 hpi. A) MVA, B) 

51.2 rMVA, c) 44.1 rMVA, D) 47.1 rMVA E) 51.1 rMVA, F) 44/47.1 rMVA, and G) 

Ankara virus. 
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Table 8. Quantification of mature and dense 

particles for the rMVAs in HeLa cells. 

 

Dense 

Particles 

Normal 

Matures 

MVA 61 (25/25)  0 

47.1 81 (23/25) 26 (8/25)  

44.1 167 (24/25) 107 (19/25) 

51.1 51 (19/25) 88 (18/25) 

51.2 9 (9/25) 174 (24/25) 

44.1/47.1 16 (7/25) 420 (24/25) 

HeLa cells were infected with an MOI of 5 with 

each virus and their morphology evaluated by 

EM. Cells were fixed 24 hpi and cells quantify 

by the presence of each particle. 
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Identification of major recombination events on the left portion of the 

genome 

Wyatt and co-workers demonstrated that one or more host-range genes were located on 

the left terminal portion of the genome when MVA’s replication was rescued with long 

cosmids [204]. Identification of the inserted genes requires solving several challenges. 

First, mosaic-like recombination occurs with long constructs, making it erroneous to 

assume the insertion of the whole cosmid. Moreover, since the cosmid contains 

sequences similar to both ITRs, insertion could also have occurred in the right side of the 

genome. To confirm the location of the insertions, genomic DNA from each rMVA was 

digested with restriction enzyme HindIII. Electrophoresis of the digested DNA is shown 

in Figure 23. The HindIII C band corresponds to the left-most region of the genome, 

while bands A and B correspond to the right portion of the genomes. Migration of 

HindIII was slower for 44/47.1 rMVA and 51.1 rMVA, suggesting the acquisition of long 

sequences. Smaller changes were identified for virus 44.1 and 51.2 rMVA. Finally, the 

47.1 rMVA shows the fastest mobility for the HindIII C band demonstrating a smaller 

size relative to the other rMVAs. Nevertheless, migration of bands “A” and “B” show no 

changes in any of the 5 viruses. This provided evidence that the recombination events 

occurred exclusively in the left-most side of the genomes for all rMVAs. 

Genome annotation and comparison 

In order to compare the gene content of the genomes, a non-biased approach to identify 

genes was needed. For this, a tool called GATU (Genome Annotation Transfer Utility) 

was used, which performs de novo annotation by protein sequence homology [265]. A 

second round of annotation was done with a broader scope as described in the method. 

This time all viruses were re-annotated using Acam2000 that has all genes present in all 
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the viruses analyzed (Table 11 & Suppl. Table 1). This annotation allowed a better 

understanding of the evolution of the sequences used, and identification of all genes 

inserted into the rMVAs (Figure 24). Comparison of the sequences inserted into the 

rMVAs against other VACV genomes revealed that the inserts were more similar to 

Acam2000 (Table 11 & Suppl. Table 1). All 5 rMVAs and the MVA genomes were 

aligned using ClustalW2 ran in NIH’s High-Performance Computing Cluster (Figure 24). 

This provided the definitive evidence that all cosmids were inserted in the left genomic 

region. It also showed that partial insertions occurred. It is worth noting that the 44/47.1 

rMVA acquired the longest insertion affecting up to ~80 kbp, repairing deletion I, V and 

II, up to the “G” gene cluster. Virus 51.1 rMVA acquired a smaller insert that also 

repaired deletion as 44/47.1 rMVA plus a small cluster of genes near the end of the 

genome. Partial insertions were also observed for virus 51.2 rMVA and 47.1 rMVA. The 

cosmid 51 used to generate 51.2 rMVA only repaired deletion I and a few additional 

genes including C10 and C11. The virus with the smallest insert was 47.1 rMVA for 

which cosmid 47 modified the “cowpox host-range” region, causing a deletion instead of 

an insertion. The multi-genome alignment served as the main tool to identify the repaired 

genes and selected the host-range candidates.  

Replication and spreading are distinguishable phenomena. 

In order to integrate the gene constellation of each virus to the phenotype, several 

observations were made. Wyatt et al. [204], showed that some rMVAs formed small 

plaques, but produced virus yields similar to the parental strain. This is the case for 44.1, 

51.1, 51.2, but not 47.1 rMVA. These observations were first confirmed here (Suppl. 

Figure 2), and by two other groups showing similar viral yield for 44.1 rMVA, 51.1 
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rMVA and 51.2 rMVA [251, 252]. 51.2 rMVA represented an interesting virus since it 

replicates in mammalian cell lines with a relatively small region repaired. These 

observations highlighted the few repaired genes within 51.2 rMVA’s genome as potential 

host-range genes. 

Selection and deletion of candidate genes. 

Multi-genome alignment was used to compare rMVA’s genomes and for the 

identification of the repaired genes. Figure 24 shows the left portion of all genomes 

relative to MVA (Acambis 3000). Four out of six major deletions in MVA were located 

in this region. Virus 44/47.1 rMVA acquired repairs that spans up to 80 kbp, including 

three major deletions (I, V, II). In order to simplify our search in this broad region, 

several genes were selected to be deleted from 44/47.1 rMVA. Seven of these genes were 

located outside MVA’s deleted regions (O1, C17, F11, F5, C11, C10, C9). Additionally, 

there were three major deletions that were repaired in the 44/47.1 rMVA (dI, dII & dV) 

that included genes C12, C13, C14, and C15 from deletion I; genes C5, C4, C3, C2, C1, 

N1, M1, M2, and K1. This adds up to a total of 20 candidate genes to screen.  DNA 

constructs to generate deletion mutants were designed with GFP as the marker (Figure 

25).  Since there were a total of 20 genes to screen, some genes were deleted in groups. 

By deleting genes in clusters, the number of mutants to generate was reduced to 13. For 

practical purposes, the following nomenclature will be used for the deletion mutants: 

vdO1-gfp is an O1 deletion mutant from 44/47.1 rMVA expressing GFP, and so forth. 

After selection and clonal purification, all deletion mutants were amplified and virus 

stocks prepared. All mutated sequences were verified using flanking primers to the insert 

region.  
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Testing the screening strategy. 

In order to test the screening approach, deletion mutant vdO1-gfp was used to infect eight 

cell lines, to evaluate its plaque formation ability. Viruses 44/47.1 rMVA and MVA were 

included as controls. The results showed that vdO1-gfp formed smaller plaques in all cell 

lines when compared to the parental virus 44/47.1 rMVA (Figure 27). Nevertheless, the 

plaques were still larger than plaque produced by 51.1 rMVA, 44.1 rMVA and MVA. 

Statistical analysis of the plaque sizes for all cell lines showed that deletion of O1 

significantly reduced plaque size in A-549, VERO, BSC1, MA-104, 3T3 and L929 cells 

(Figure 28), but not in MRC5 or HeLa cells. Based on this initial assay, the strategy to 

evaluate the role of each candidate gene on plaque formation proved successful, for 

which a similar approach was used for all other deletion mutants. 

Plaque formation is regulated in a modular and cumulative fashion. 

In order to evaluate the role of the selected genes in plaque formation, all deletion 

mutants were used to infect mammalian cell lines and the plaques sizes were compared to 

those made by 44/47.1-gfp and MVA-gfp. Plaque sizes were evaluated 36 hpi (Figure 

29), and statistical analysis used to determine significance in plaque reduction (Figure 30 

and Table 9.1). By simple inspection, plaque sizes for all mutants, except for vdC9-gfp, 

were reduced in size. As expected, MVA-gfp is barely detectable, demonstrating its 

inability to efficiently plaque and replicate in mammalian cell lines. On the other hand, 

44/47.1 rMVA continues to form large plaques in all cell lines. Interestingly, a different 

pattern of genes involved in plaque formation for each cell line can be observed. For 

example, the plaque size of vdO1-gfp in HeLa cells is large, but not in BS-C-1 or VERO.  
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This cell-dependent variability is repeated with the other mutants. An important common 

feature is that vdF5-gfp formed small plaque in all three cell lines tested. Since plaque 

sizes vary within each well, statistical analysis of the plaque was required. For these, 

plaque sizes were quantified and analyzed digitally. In Figure 30, plaque sizes were 

plotted and compared among each deletion mutant. In order to present this data in a 

comprehensive way, the effect in plaque sizes were grouped as follows: a) reduction of 

50% or more in plaque size, b) less than 50% reduction, c) increase in plaque size, d) no 

significant difference detected. All values were calculated relative to the 44/47.1 rMVA 

plaque size of in the same cell line. The results are summarized in Table 9.1 and 9.2. 

Since our interest is evaluating the genes that provided that strongest effect, they were 

classified based on the percentage of reduction of plaque sizes. As described previously, 

dvF5-gfp showed a significant reduction in all three cell lines. vdO1-gfp, and vdC11C10-

gfp showed significant plaque reduction in BS-C-1 and VERO, both African green 

monkey cell lines. vdC17-gfp showed a significant reduction in VERO and HeLa. These 

results demonstrated that plaque size is determined in a modular fashion, and that 

deletion of a gene affects virus plaques in a cell-dependent manner. Moreover, 

intermediate plaque sizes provide evidence for the cumulative role of each one of the 

genes. Finally, this modularity requires a functional F5L gene for all cell lines tested. 

Measuring virus yield for 44/47.1 rMVA deletion mutants 

Virus yields for all deletion mutants in mammalian cell lines were determined using a 

high-throughput flow-cytometry method (see diagram in Figure 31). Several controls 

were used to test the validity and sensitivity of this approach (data not shown). Two 
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Figure 27. Plaque formation assay using one deletion mutant (vdO1-

gfp) to test the strategy. Human, primate and mouse cell lines were 

infected with vdO1-gfp and plaques compared. Deletion of gene O1 

was important for plaque formation in all cell lines tested. 
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Figure 28. Deletion of gene O1 from 44/47.1 rMVA reduced plaque size significantly 

in several mammalian cell lines. Since plaque size may not be homogeneous, statistical 

analysis was done after immunostaining and digital analysis of the plaque sizes. The 

statistical analysis was done using Student’s t-distribution. 
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Figure 29. Plaque assay for all 44/47.1 rMVA deletion mutants revealed that plaque 

size is determined in a modular fashion. Plaque sizes for seven deletion mutants, 

44/47.1-gfp and MVA-gfp were compared in one human cell lines (HeLa) and two green 

African monkey cells (VERO, BS-C-1). Plaque morphologies and sizes are shown (A) 

under a fluorescent microscope, or (B) after immunostaining. Deletion of F5 affected 

plaque sizes in all the tested cells lines. The effect of several genes on plaque formation 

was cell-dependent. 

 

  

A 

B. 
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Figure 30. Statistical analysis of plaque sizes for 44/47.1 rMVA deletion mutants. 

The plaque sizes were analyzed and compared to identify genes involved in plaque 

formation. Cells were infected with a low MOI and overlayed with methyl cellulose 2 

hpi. Cells were fixed at 36 hpi with acetone and methanol (1:1) and immunostained. An 

ordinary ANOVA test was used to determine the significance among the viruses. 
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Table 9.1. Results of plaque assay for 44/47.1 deletion mutants. 

A   44/47.1-gfp vdC9-gfp vdC17-gfp vdF11-gfp vdF5-gfp vdO1-gfp vdC11C10-gfp 
B

S
C

1
 

Avg. 

(mm) 
74.04 72.82 39.13 37.77 11.19 28.89 27.32 

N 10 10 10 10 6 10 10 

StdDev 14.64 18.46 8.63 13.98 2.48 10.01 9.9 

StdErr 4.63 5.84 2.73 4.42 1.01 3.17 3.13 

         

H
eL

a 

Avg. 

(mm) 
38.58 69.54 15.14 54.87 15.55 57.93 38.13 

N 11 11 10 10 12 10 14 

StdDev 13.71 19.7 4.85 15.35 3.3 15.03 12.16 

StdErr 4.13 5.94 1.53 4.85 0.95 4.75 3.25 

         

V
E

R
O

 

Avg. 

(mm) 
32.86 40.28 17.07 27.85 5.11 9.28 13.17 

                

N 9 10 9 10 5 10 11 

StdDev 10.06 10.04 7 11.71 1.92 2.62 4.81 

StdErr 3.35 3.17 2.33 3.7 0.86 0.83 1.45 
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Table 9.2. Results of plaque assay for 44/47.1 deletion mutants organized by 

the impact in plaque size. 

 Plaque reduction 

Cell lines >50% reduction 
<50% 

reduction 

No significant 

effect 
Increase 

BS-C-1 O1, F5, C11-C10 C17, F11 C9 - 

HeLa C17, F5 - C11-C10 
O1, C9 

F11 

VERO 
O1, C17, F5, C11-

C10 
- C9, F11 - 
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independent experiments were done and virus yields presented as percentages of the 

input. The results show that all deletion mutants have a lower yield at 24 hpi relative to 

44/47.1 rMVA (Figure 32). The results can be organized in three groups, in which vdO1-

gfp, vdf11-gfp and vdC9-gfp have around two-fold reduction in viral yield relative to 

44/47.1 rMVA. Replication was around four-fold lower for dC17-gfp; and finally, two 

deletion mutants, vdF5-gfp and vdC11-C10-gfp, showed virus yields similar to MVA, 

which was ~10-fold lower than 44/47.1 rMVA. Similar to plaque formation, the 

contribution of the genes to virus yield seemed to be cumulative. Nevertheless, deletion 

of F5L, C11R and C10L had a higher impact by reducing virus yield to levels similar to 

MVA. 

C11 is selected to evaluate its role as host-range gene 

Plaque size has been used as an indirect measure of attenuation for poxviruses. This is 

frequently true since a detrimental effect in the production or spread of infectious 

progeny can be observed as the formation of a small plaque. Nevertheless, our results 

(Suppl. Figure 2) and recent findings [251, 254] suggest that plaque formation can vary 

even when viruses replicate to the same extent in a single-step growth cycle and these 

two processes should be analyzed separately. Since our goal was to identify a gene or 

genes that explain MVA’s host-restriction, this can be better determined by measuring 

the number of infectious particles rather than plaque morphology.  

Up to now, gene F5L, C11L and/or C10R have been associated to plaque formation and 

viral replication. Going back to our comparative genomics analysis (Figure 24), an 

interesting correlation appeared. When identifying which viruses have these candidate 
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genes repaired, a common feature was present among all replicative viruses. Mutations in 

the C11R and C10L region were all present in the replication-competent viruses (44/47.1 

rMVA, 51.1 rMVA, 44.1 rMVA, 51.1 rMVA), but not in the restricted viruses (47.1 

rMVA nor MVA). F5L was repaired in all rMVAs with the exception of 51.1 rMVA and 

47.1 rMVA. This precludes F5L as required for viral replication in these cells since virus 

51.1 rMVA replicates in mammalian cells. This put C11 and C10 at the top of the list to 

be tested for their ability to rescue MVA’s replication. More importantly, review of the 

literature revealed that C11, also known as vgf, shares amino acid sequence homology 

and functional properties with cellular growth factors EGF and TGF-[330]. It has been 

shown that vgf is required for efficient replication in vivo and for virulence [330, 331]; 

and more recently, it has also been associated with an immune evasion mechanism [332].  

From now on, gene C11L and vgf ( or C11 and VGF ) will be used interchangeably in 

this text. For this reason, vgf was selected for further evaluation as a potential host-range 

determinant. 

C11 expression in trans increases MVA’s yield in VERO and BS-C-1 cells 

Gene vgf and F11 were both cloned separately into expression plasmids under the control 

of VACV early/late promoters. Here, the ability of each transfected plasmid to 

complement MVA was compared in two cell lines. Virus yield was measured at 24 hpi 

using two different non-permissive cell lines for MVA. Interestingly, transfection with 

vgf increased MVA’s replication up to ~25% in both cell lines, relative to the negative 

control (Figure 33). In contrast, transfection of F11 showed a ~15% increase in virus 

yield only in VERO cells. These preliminary results suggested that vgf is capable of  
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Figure 31. Workflow for high-throughput method to measure virus yield by flow-

cytometry. This flow cytometry-based method of quantifying virus progeny allows high-

throughput comparison of virus yields by detecting gfp expression. Step 1 consists in 

infection of the target cells, and incubation for 24 hours. In step 2, the infected cells are 

harvested and used to infect HeLa-S3 cells pre-incubated in AraC which limits the viral 

cycle to early gene expression.  Serial dilutions of the virus are used to detect gfp at the 

linear portion of the curve. In step 3, HeLa cells were fixed and read in a flow-cytometer 

by counting gfp positive events. 
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Figure 32. Virus yields were significantly reduced for several 44/47.1 rMVA deletion 

mutants revealing the contribution of each gene to viral replication. VERO cells 

were infected and harvested at 3 hpi and 24 hpi . Virus yields were then read using a 

high-throughput method based on gfp expression and flow cytometry. The numbers of 

gfp-positive cells at 24 hpi were normalized by the input at (3 hpi) and plotted using 

Prism. Statistical significance was determined for all groups using an ordinary ANOVA 

analysis. 
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Figure 33. Trans-complementation experiment provides initial evidence for C11 as a 

host-range determinant. To test the effect of some of the selected genes, C11 and F11 

were initially cloned into TOPO vector under the control of an early/late promoter. An 

additional TOPO plasmid with a deleted promoter was used as a negative control. BSC1 

and VERO cells were infected followed by transfection of each plasmid independently. 

Infected cells were harvested 24 hours post infection and viral titers evaluated by 

immunostaining in CEF cells. 
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complementing replication of the defective MVA in these non-permissive cell lines. 

Although complementation occurred, the effect measured in trans should be confirmed by 

repairing the endogenous vgf from MVA genome. 

Conceptualization and development of a one-tier recombination method and 

generation of MVA-C11 

To confirm the trans-complementation screening experiment and confirmed vgf host-

range function, the endogenous vgf from MVA genome needed to be replaced by a 

homologous sequence derived from a replication competent virus. Recent methods to 

replace a gene by recombination are frequently done in a two-tier process when the 

replacement does not cause a change in plaque phenotype, host range or drug resistance. 

Using this common method, the gene to be removed from the virus needs to be replaced 

with a DNA construct containing a genetic marker flanked by homologous regions to the 

target gene. The marker gene (gfp, tk, or any other marker) facilitates selection of this 

first mutant. The second step requires the use of a second construct that contain the gene 

to be inserted into the genome, again, flanked by homologous sequences to replace the 

marker gene previously inserted. The resulting mutant is a virus with the new insert, 

forming “white plaques” that lacks a marker. The resulting white plaques also represent a 

challenge to purify especially when the virus does not form plaques that helps in the 

selection. To solve these challenges, I designed a one-tier method for replacing the 

endogenous vgf gene from MVA and recover the replication ability provided by the 

exogenous vgf derived from a replication competent virus. This method provides several 

advantages over the historical one-tiered and the common two-tiered methods: a) this 

method generates a MVA mutant in a simplified one-step tier; b) this method 
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complements MVA by inserting vgf into the genome, c) this method uses vgf as its own 

selection marker under MVA’s non-permissive condition, and e) this method minimizes 

growth of the parental, non-replicative MVA strain by using a non-permissive condition, 

f) this method generates an MVA mutant with no traditional marker which is required for 

its use in humans, and g) this method does not requires plaque formation for the virus 

purification process.   

As the initial hypothesis, the role of vgf as a host-range determinant would be revealed by 

using this method to replace MVA’s endogenous vgf under non-permissive condition, 

allowing selective growth of the recombinant virus. This invention can be applied in 

many contexts (oncolytic vectors, increase vaccines production, vectors with conditional 

expression of vgf, selection marker, etc…) for which a vgf-containing sequence derived 

from a replication-competent virus could extend the host-range of a non-replicative virus 

into mammalian cell lines in cis or in trans. The protocol was carried out as described in 

the methods. After purification of the recombinant mutant in VERO cells, all replication-

competent viruses were amplified in BS-C-1 cells. Verification of the insert was done by 

PCR and Sanger sequencing. By generating two viruses, one containing the vgf region 

derived from 51.2 rMVA, and the other sequence derived from VACV-WR, two 

examples are provided in which replication-competent viruses can be generated using a 

one-tier procedure and selection under non-permissive condition, using vgf as its own 

marker. 
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MVA-C11 as a novel host-range gene without affecting plaque size 

The MVA-C11 produced with the one-tier method was compared to MVA and 44/47.1 

rMVA in its ability to form plaques in several mammalian cell lines. Figure 34 compares 

the plaque formation ability of MVA-C11, MVA and 44/47.1 rMVA. MVA-C11 is able 

to form plaques, slightly larger than MVA, but much smaller than 44/47.1rMVA. In order 

to demonstrate the contribution of the newly inserted vgf to MVA’s growth, a one-step 

growth curved was used to determine virus replication. An MOI of 3 was used to infect 

the three mammalian cells lines. Virus yields were then measured by traditional 

immunostaining methods at 24 hpi. In all cases, MVA-C11 showed ~10 fold increase in 

virus yield. Nevertheless, it still replicated lower than 44/47.1 rMVA. This suggests the 

existence of other genes that contribute in some extend to 44/47.1 rMVA replication. In 

this respect, deletion of both copies of the vgf gene from VACV WR did not cause a 

replication defect [331, 333]. 

Evaluation of wild-type vgf and other poxvirus sequences 

The vgf construct used to generate the replication-competent MVA contains several 

polymorphisms when compared with the endogenous vgf. The differences are 

summarized in Table 10 and include mutations in the 5’ and 3’UTR of the vgf gene. 

Changes within the coding region for vgf also occurred, causing substitutions within the 

predicted protein. Although there are several mutations in the amino acid sequence, it is 

worth mentioning a few important observations. The second, third and fourth amino acids 

that correspond to the amino acid sequence “LIN” were substituted for “SMK” (Figure 

35). The sequence is located within a predicted secretion signal. Other substitutions also 

occurred in the transmembrane domain and in the tyrosine kinase domain. Importantly, 
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several changes are common to all replication-competent VACVs, including the SMK 

sequence, but neither for Acam3000 nor VACV-Lister. Other mutations were found in 

the 5’ and 3’ UTR that might also contribute to vgf’s effect as host-range determinant 

(Table 10 and Suppl. Figure 4). Further characterization of this vgf gene will be needed 

to determine the exact mechanism and structural changes responsible for its function. 

The similarity of vgf to other sequences was also evaluated. Protein alignment confirmed 

that the identity of the amino acid sequence is 98.6% similar to VACV-Acam2000, but 

96.5% similar to the suggested parental strain (Table 11). Further genome-wide analysis 

will be useful to have a global view in the matter. 
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Figure 34. Repair of endogenous vgf with a homologous sequence derived from a 

replication-competent virus was sufficient to recover MVA’s host-range in 

mammalian cells. Replacement of MVA’s endogenous vgf and flanking sequences 

derived from replication-competent virus 51.2 rMVA did not affect plaque size 3 dpi (A), 

but increased virus yield at 24 hpi by one log (B). Foci are formed in VERO cells by 

MVA-C11 24hpi (C) and MVA-C11-luc-gfp 5dpi (D). The statistical analysis used was 

an ordinary ANOVA test. 

A. 

 

 

 

 

 

 

 

B. 

 

 

 

C.                                  D. 

MVA-C11 (Ank)                                                     MVA-C11-gfp-luc (WR) 
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Table 10. Sequence differences in vgf gene and flanking sequences between the 

replication-competent MVA-C11 (Ank) and MVA 

Position 

(bp)
a
 

nt change
b
 

codon 

affected
b
 

aa change
b
 type 

-81 T -> C - - SNP (transition) 

-46 C -> T - - SNP (transition) 

-41 A -> T - - SNP (transversion) 

-13 A -> G - - SNP (transition) 

5 T -> C TTG -> TCG L -> S SNP (transition) 

9 A -> G ATA -> ATG I -> M SNP (transition) 

12 T -> A AAT -> AAA N -> K SNP (transversion) 

86 C -> T TCG -> TTG S -> L SNP (transition) 

103 G -> A GCT -> ACT A -> T SNP (transition) 

348 -TAC 
ATT,ACG -> 

ATG 
IT -> M Deletion 

385 C -> A CGA -> AGA 
 

SNP (transversion) 

388 +TAA 
ACT -> 

ACT,AAT 
T -> TN Insertion 

400 A -> C ATA -> CTA I -> L SNP (transversion) 

503 A -> G - - SNP (transition) 

548 C -> T - - SNP (transition) 

a
Position relative to TSS of gene vgf; 

b
changes relative to MVA. bp: base 

pairs; nt: nucleotide; aa: amino acid; SNP: single nucleotide polymorphism; 
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Figure 35. Multi-sequence alignment of C11 for several orthopoxviruses. This 

multiple-sequence alignment showed several amino acid changes for the replication-

competent rMVAs (represented by 51.2 rMVA) relative to other orthopoxviruses. 

Changes were found through the whole protein, including the SMK sequence in the 

signal peptide region at the N-terminus. Also changes were found in the predicted 

transmembrane domain and the kinase domain. Purple bar: single peptide; blue arrows: 

turns; orange arrows: beta strands; gray: coil; 
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Discussion 

MVA is an attenuated poxvirus that has been used as vaccine against smallpox and other 

infectious diseases [310]. Its attenuation was achieved by passaging the virus in chicken 

embryonic cells for over 500 times, causing several deletions and mutations throughout 

the genome [321]. Attempts to identify the gene or genes responsible for this attenuation 

have provided partial explanations to such a complex question [204, 251, 254, 322]. 

Importantly, systematic repair of MVA’s deletion were not sufficient to explain its 

attenuation, suggesting that important host-range genes were located outside the deleted 

regions [322]. Wyatt and co-workers inserted long cosmids that allowed them to recover 

MVA mutants by plaque selection in BS-C-1 cells [204]. Some mutants generated with a 

single cosmid showed intermediate phenotypes, demonstrating that recovery of the full 

phenotype requires more than one gene. Because of the extensive insertions and the 

different phenotypes of each rMVA, whole-genome sequencing and comparative 

genomic approach seemed to be the most efficient technique to address the issue. The 

multi-genome comparison performed here allowed the identification of the genes repaired 

in the rMVAs, allowing the selection of candidate host-range genes for further 

investigation. 

Initial characterization of all rMVAs was done to confirm that plaque formation ability 

was still retained for all rMVAs (Figure 22). The initial clonal purification was also 

important for sequencing, in order to have a homogenous viral preparation that minimize 

the presence of quasi-species. For this reason, all mutants were clonally purified, new 

viral stocks prepared, and the plaque formation phenotypes confirmed. Furthermore, 

evaluation by EM was also carried out to rule out possible differences in virus 
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morphogenesis (Figure 26). As expected, MVA showed accumulation of abnormal dense 

spherical particles and no MVs at late times during the infection. The viruses 44/47.1, 

44.1, 51.1 & 51.2 rMVA all showed clear formation of MVs in addition to some dense 

spherical particles, suggesting that the differences in plaque formation and replication are 

directly linked to morphogenesis. Indeed, the rMVAs that replicated best had the highest 

number of MVs compared to dense spherical particles. 

Because some cosmids overlapped with the ITRs, recombination could have occurred 

virtually in either side of the genome. Electrophoresis of the digested genomic DNA 

showed a clear shift in the C bands, which correspond to the left-most portion of the 

genome (Figure 23). The bands A and B, which are located in the right part of the 

genome, are identical in all rMVAs. These results provided further evidence that 

mutations in all rMVAs were restricted to the left side of the genomes. Additionally, 

migration of the C band for the 44/47.1 rMVA also confirmed that a longer insertion 

occurred in this virus, which is compatible with the rescued phenotype. 

After sequencing and solving the assembly challenges, all genomes were aligned and 

annotated (Figure 24). By detecting all mutations relative to MVA, the inserted genes and 

regions were visually identified. As suggested by gel electrophoresis, the sequence 

alignment confirmed that all recombination events occurred on the left side of the 

genome. For 44/47.1 rMVA, the repaired region spanned up to 80 kbp. Moreover, some 

viruses showed partial repair, which highlights the importance of doing whole-genome 

sequencing. For example, cosmid 44 did not repair deletion V & II, but it repaired the 

flanking regions. Also, cosmid 47 was partially inserted in the C region  
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Table 11. Amino acid identity of the vgf 

ORF of 51.2 rMVA is closest to that of 

ACAM2000 

Virus Identity 

51.2 rMVA - 

Acam2000 98.60% 

VACV-CVA 96.50% 

CMLX_CMS 95.70% 

VACV-COP 95.10% 

VACV-WR 95.00% 

Acambis3000 93.60% 

Cowpox-BR 92.90% 

VACV-Lister 92.90% 

VAR-AFG70 92.20% 

MPXV-Zar 90.80% 
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causing deletion of several MVA genes. This occurred because MVA has a segment of 

genes denominated cowpox host-range genes, which are absent in the virus used to 

generate the cosmids [334]. Also, this deletion explains the increase in migration of the 

HindIII C segment in this virus and the replication in any mammalian cells. Nevertheless, 

deletion of the cowpox host-range cluster does not explain the increase in 

cytopathogenicity shown for 47.1 rMVA in BS-C-1 cells documented elsewhere [204]. 

Nevertheless, the report by Wyatt et al. [204] was confirmed by showing that 47.1 rMVA 

was indeed forming plaques with small clearance. It seems counterintuitive that loss of 

genes can increase cytopathology, but a report has described similar findings for other 

regions [322]. 

Since 44/47.1 rMVA showed a similar plaque phenotype as the parental strain, the 

repaired genes from this virus were considered as potential host-range genes. The initial 

strategy to evaluate the gene contribution to the 44/47.1 rMVA phenotype was by 

deleting each candidate gene at a time, and comparing plaque sizes of the deletion 

mutants. Our early observations that plaque formation and viral yield may be independent 

(Suppl. Figure 2) and further confirmations by others [251], made it essential to include 

the virus replication assay.  

A total of 20 genes were selected for screening based on visual evaluation of the 

mutations throughout all rMVAs. In order to make the numbers of mutants more 

manageable, some genes were deleted in pairs. In this way, the number of mutants was 

reduced to a total of 13. Soon after generating all deletion mutants, a new report 

demonstrated that repair of genes within the six deletions were not sufficient to explain 
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MVA’s phenotype [322]. For this reason, efforts were concentrated in investigating the 

role of those seven genes outside MVA’s deletions. A plaque assay for all 13 deletion 

mutants initially generated can be found in Supplementary figure 3. 

The seven deletion mutants were then used in plaque formation assay in three different 

mammalian cell lines (VERO, HeLa, and BS-C-1). These cell lines were used in order to 

compare results to previous reports. Moreover, VERO cells are mammalian cell lines 

approved for vaccine/vector development and represent an interesting cell line to test 

[252]. The results from our plaque assay showed that different genes were required for 

plaque formation in a cell-dependent manner (Figure 29 and 29). It also suggested that 

plaque formation is determined in a modular fashion in which spreading is affected by the 

micro environment of that particular cell.  For example, deletion of O1, F5 and C11/C10 

show significant reduction in plaque size in BSC1 cells. C17 and F5 are both necessary 

for plaque formation in HeLa cells. And finally, a broader group composed of genes O1, 

C15, C17, F5, and C11/C10 are required for plaque formation in VERO cells. It was also 

striking to see that deletion of F5 negatively impacted plaque formation in all cell lines 

tested. This is compatible with recent findings describing the recovering of plaque 

formation of 51.2 rMVA by repairing F5 and F11, but not F11 by itself [251]. 

Nevertheless, the mechanism for which F5 affects plaque formation has not been 

determined. Whether F5 or F11 are sufficient to increase plaque size for MVA has not 

been demonstrated neither. Moreover, the rest of the data can be interpreted as if the 

other genes contribute indirectly or partial to plaque formation. 
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As explained before, plaque formation may not correlate directly with virus yield. 

Therefore, the ability to produce progeny in mammalian cells seems to be a better 

indicator of host-range. In order to screen a large number of mutants, a flow-cytometry 

based method was first used to determine viral yield of each deletion mutant (Figure 31). 

An MOI of 3 was used to ensure infection of the whole monolayer and eliminate the 

effect caused by spreading, which is related to plaque formation. Comparison of virus 

yields in VERO cells showed different degrees of replication. Arbitrarily grouping of the 

viral yields simplified the interpretation of the data. For example, deletion of O1, F11, 

and C9 all showed some negative effect in virus yield; nevertheless statistical 

significance for F11 and C9 was not determined. This could be explained together with 

the plaque assay in which plaque sizes for these two viruses included a broad range. It 

can be speculated that the absence of these two genes could cause a delay in some viral 

process, causing desynchronized plaque formation. The effect of O1 in plaque formation, 

but not virus replication is supported in a recent publication. [254]. Deletion of genes 

such as C17, led to replication five-fold lower than 44/47.1 rMVA, which indicates that 

they provide an accumulative effect on viral replication. Finally, F5, C11 and/or C10 

showed the most significant reduction in virus yield, comparable to that found for MVA. 

Here, the genes with the strongest contribution to viral replication must have a higher 

likelihood to have an essential role such as host-range determination. Based on this 

approach, F5, C11 and C10 were all interesting candidates for further evaluation. 

Nevertheless, the absence of a repaired F5 from the replication-competent 51.1 rMVA 

suggested C11 or C10 to be considered first. 
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Plaque formation and replication data can be coupled with the genome alignments to 

identify the candidate genes repaired in the rMVAs (Figure 24). C17 is partially repaired 

in 44/47.1, and completely repaired in 51.1 rMVA. F5, F11 are all repaired in 44/47.1 

rMVA and 44.1 rMVA. O1 is only repaired in 44/47.1 rMVA. Now, the most interesting 

observation that provided the strongest evidence for C11 and C10 was that mutations in 

that region were all common to the replication-competent viruses (44/47.1 rMVA, 51.1 

rMVA, 51.2 rMVA and 44.1 rMVA). This, together with the plaque and replication data, 

suggests that one or both of these genes are host-range determinant in mammalian cell 

lines. 

A closer look into the literature revealed that C11, also known as vgf, codes for a secreted 

protein that structurally and functionally resembles the mammalian EGF [330, 335]. 

Deletion of this gene causes significant reduction of virulence and virus growth [331, 

333]. One of the mechanisms demonstrated for vgf is the ability to prevent apoptosis, and 

promote cell growth [336]. Since vgf showed to be important for plaque formation and 

replication in our experiments, I decided to test its effect in trans- by cloning vgf into a 

plasmid under the control of an early/late synthetic promoter. Although early promoters 

are not efficiently expressed by transfection, the experiment showed that expression of 

vgf increases MVA replication by ~25% for both mammalian cell lines tested (Figure 

33). Because transfection efficiency could be a concern in this approach, I decided to 

replace MVA’s endogenous vgf with the homologous region derived from 51.2 rMVA 

(replication-competent virus). 
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The replication-competent MVAs (MVA-C11) lacking any traditional marker (gfp, luc, 

tk) are potential candidates as smallpox vaccines or vectors. The construction of these 

viruses has several challenges. In the absence of a selectable marker, a two-tier procedure 

in which the endogenous sequence is replaced with a construct containing a marker is 

frequently used. The sequence to be inserted has flanking sequences homologous to the 

target region. Purification and amplification of this deletion mutant is usually done with 

the help of the marker. The second step consists of infecting cells with the mutant virus 

and transfection of a second DNA construct. This second construct contains the gene to 

be inserted, flanked with regions that allow replacement of the previously inserted 

marker. One challenge in this method is that the clonal purification is done blindly, with 

no marker. This is further complicated by the absence of plaque formation in the resulting 

virus.  

To facilitate the generation of the recombinant virus, and at the same time demonstrate 

the role of vgf, I developed a one-tier procedure, similar to some degree to previous 

methods [204], but with additional unique features. The unique features of this 

procedures also include: a) the generation of a recombinant mutant in a one-tier 

procedure that simplifies and reduces the time to obtain the replication-competent mutant, 

b) the use of vgf as its own marker in VERO cells, allowing selective growth of the 

recombinant mutant in an otherwise non-permissive condition, c) the expansion of 

MVA’s host-range into mammalian cell lines as evidence of its host-range determination 

for mammalian cell lines, d) the negative selection for the replication-incompetent virus 

(MVA) in the selected non-permissive condition, e) the generation of a product (MVA-

C11) with no traditional marker, which is suitable for as vaccine or therapeutics, and g) 
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this method does not requires plaque formation for the virus purification process and 

clonal purification can also be done selecting clumps or foci. Other benefits or a 

replication-competent virus have been previously suggested as capable of enhancing the 

immunogenicity for the vaccines or vectors against the infectious diseases they were 

designed for [332]. 

VERO cells were used because they are non-permissive for MVA, and commonly used 

for vaccine production. The use of a non-permissive cell line (or condition) reduced the 

chances of recovering the attenuated parental strain. Also, it provided the proper selection 

pressure that allows the growth of a replication-competent virus.   

The first virus to be generated with this method (MVA-C11) was cloned purified and 

amplified, and sequence verified. This virus was then characterized, showing formation 

of small foci comparable to MVA, and the ability to increase virus yield by at least one 

log in all cell lines tested (Figure 34). The findings that MVA-C11 formed foci similar in 

size to MVA was not surprising, since virus as 51.2 rMVA showed a similar phenotype. 

The surprising finding was that a single repair was able to increase virus yield by one log 

at 24 hpi.    

The vgf gene has been associated with immune-evasion roles, by targeting the NF-kB 

pathway [332]. Since MVA does not grow in other mammalian cell lines (like VERO, 

BS-C-1, etc.), the role of vgf in the NF-kB pathway has not been determined. 

Nevertheless, the vgf gene derived from the replicative-competent virus 51.2 rMVA 

(identical to all other replication-competent rMVAs) and the vgf derived from VACV-

WR are sufficient to extend MVA’s host range into mammalian cells. In the second 
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example mentioned previously, the vgf derived from VACV-WR was inserted into an 

MVA strain that contains LUC and GFP genes (Figure 34-C). This virus was constructed 

to further evaluate and elucidate the mechanism of action of vgf and its role in host-range 

determination for mammalian cells.   

A recent publication showed an interesting perspective about vgf. It was demonstrated 

that MVA’s endogenous vgf is capable of inhibiting NF-k-beta and ERK activation in 

two cell lines, 293T cells and Hacat [332]. Although this protein shows some functions in 

some cell lines, its role as a host-range determinant has not been demonstrated until now.  

It is important to point out that the repairs inserted into MVA capable of extending their 

host-range include several mutations in the 5’ & 3’ UTR (Table 10). In order to identify a 

mechanism behind the host-range rescue, further experiments are required. Changes in 

the RNA sequence may contribute to the stability and role of the vgf transcript. For 

example, bioinformatics analysis of sequences from MVA and the replication-competent 

viruses (VACV-WR and 51.2 rMVA) shows a more stable secondary structure (data not 

shown). From the vaccinology point of view, the role of vgf is important since the current 

MVA vaccine has the disadvantage in that it induces lower immunogenicity when 

compared with other VACV vaccines. The use of a replication-competent virus as 

vaccine or vector has been suggested to induce a better immunogenicity [252, 332]. 

Additional experiments should be done to determine the impact of this replication-

competent MVA to the mechanism and its immunogenicity to measure its value as 

vectors or vaccines. Moreover, replication of these viruses are important from the 

production point of view, since the use of chicken cells represents a challenge when 
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compared to the use of mammalian cell lines such as MRC5 or VERO cells. Although the 

safety of the rMVAs containing this vgf sequence has been evaluated in mice [252], it 

will also be important to confirm the safety of these new replication-competent MVA for 

humans. The potential applications of this discovery are broad and include designing new 

replicative-competent vectors and vaccines capable of replicating in approved 

mammalian cell lines such as VERO. This could be potentially applied to other non-

Orthopoxviruses. Moreover, similarly to the VACV tyrosine kinase gene, the vgf gene 

can be effectively used as a selection marker to generate recombinant strains in a non-

permissive cell for research.  

Conclusions 

Here, a comprehensive survey for new poxvirus host-range genes and the discovery of a 

new host-range determinant gene (vgf) is presented. The results showed that deletion of 

five genes (O1, F5, C11-C10 and C17) was associated with a significant reduction in 

plaque formation. Deletion mutants lacking F5, and C11-C10 also showed significant 

impaired viral replication. Here, we also demonstrated the functional redundancy in 

plaque formation and the requirement for gene F5 in several mammalian cells. This 

functional redundancy can be imagined as a cluster of genes that targets similar 

pathways, but can be counteracted by host factors that are differentially expressed in 

these cell lines. Those genes associated with plaque formation can be considered 

redundant in the sense that each one facilitates viral spreading independently.  

Moreover, this approach also let us to the identification and demonstration that mutations 

within the vgf region are sufficient to extend MVAs host-range to mammalian cells. 
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Moreover, the method describe here teaches a simplify procedure using vgf as a selection 

marker, and demonstrated the generation of replication-competent viruses that can be 

used as vaccine or therapeutics for humans and veterinarian purposes. Further 

characterizations of the mutations related to vgf will be valuable to determine a specific 

mechanism. This discovery represents the first gene outside MVA’s deletion capable of 

rescuing its replication in mammalian cells; thus providing the bases to further improve 

Poxvirus-based vaccines and vectors. 
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Chapter 5: Significance of our findings from a clinical point of 

view. 

The three projects presented here used sequencing technology to address different aspects 

of Poxvirus host-range and the identification of a viral isolate. Whole-genome sequencing 

and RNA-Seq have demonstrated to be useful complements to traditional techniques in 

addressing unresolved questions for the Poxvirology field. The use of deep-sequencing 

allowed us to simplify the sequencing process from laborious Sanger sequencing of 

overlapping PCR products to simplified library generation and automated sequencing. 

 

Erythromelalgia-related poxvirus and future research 

In the first chapter, the identity of the Erythromelalgia-related poxvirus (ERPV) was 

revealed 25 years after its isolation [27, 259, 260]. This is one of many examples 

available in the literature showing that whole-genome sequencing can be used in the 

discovery and identification of viruses in clinical scenarios [337]. Traditional methods 

were unable to identify this isolate because of their intrinsic limitations these techniques 

poses. Although we expected to identify a novel poxvirus, our findings demonstrated that 

ERPV is closely related to the Ectromelia Naval strain.  

ECTV’s outbreaks in laboratory mice and the detection of viral DNA in mouse serum 

used for tissue culturing raise the question of whether ERPV is a human pathogen or a 

contaminant [338-341]. There is evidence that support both perspectives. First, the 

elevated neutralizing antibody titers found in patients diagnosed with Erythromelalgia, 

but not in healthy population, suggests a real human exposure to ERPV [260]. 

Nevertheless, this can also be explained by cross-reactivity of antibodies induced by the 
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Smallpox vaccine. It is believed that vaccination in China ended in the early 1980s and 

these outbreaks were documented in 1987, increasing the likelihood of cross-reactivity as 

the explanation. Second, the existence of other Orthopoxviruses capable of infecting 

multiple species also suggests that a human infection is not far-fetched, but a frequent 

event when humans get in close proximity with their vectors [342, 343]. From an 

epidemiologic point of view, crowded living conditions can facilitate zoonosis especially 

with those vectors that cohabit with humans as mice do. Since ERPV is almost identical 

to ECTV-Nav, further characterization of the virus and host-range genes will require 

confirmation of ERPV as a human pathogen. Current efforts are underway by another 

group to evaluate the antibody titers using novel methods not available at the time of its 

isolation. 

 

Molluscum contagiosum transcriptome and new tools to study the virus. 

Molluscum contagiosum is an interesting virus, especially from a research point of view. 

The virus is unable to grow in vitro, and there is no animal model for research [285, 288]. 

Although it is a human pathogen, the requirements to replicate are more stringent when 

compared to other Poxviruses. For decades, researchers have tried to understand the 

genetic and molecular basis of its blockage. The data presented here is a step forward in 

our understanding of this intriguing virus. Reports showing detection of PR genes in the 

absence of DNA replication [287] were in conflict with our current knowledge of 

poxvirus’ gene expression. In VACV, PR gene expression only occurs after DNA 

replication [67], which does not occur in vitro experiments for MOCV. Nevertheless, PR 

transcripts were detected by qPCR in the absence of MOCV DNA replication [287]. By 
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using RNA-Seq, we demonstrated the absence of PR gene expression in vitro. This was 

further supported by functional assays using reporter genes in trans for which we were 

not able to detect PR gene expression. We concluded that MOCV’s transcriptome from in 

vitro assays is early in nature. This is an important finding for the field since it allows 

future research to re-focus in the early steps of the viral cycle and to determine the 

location of the MOCV blockage. Future research should evaluate aspects of the viral 

cycle such as viral uncoating, early gene translation and DNA replication in order to 

further address this issue.   

From the clinical point of view, the transcriptome generated from infected human tissue 

provided evidence of the genes expressed in a clinical specimen. We were able to 

confirm sixty early genes and demonstrate the expression of MOCV genes in vivo. The 

identification of the genes expressed in vivo and their temporal classification could be 

used as a tool for the selection of new viral targets in the designing of new antiviral 

treatments. 

Our knowledge of MOCV has been limited by the inability to grow the virus in vitro and 

the absence of an animal model. Since there is a need for an in vitro system to grow the 

virus, methods and tools to detect events pass the MOCV blockage are required. I have 

designed and tested a plasmid containing the MOCV promoter MC095, which is 

compatible with VACV and ERPV transcription machinery. The results showed that 

expression of gfp using this plasmid is inhibited with a DNA replication inhibitor. This 

property highlights the specificity of this promoter for PR event and makes the plasmid 

an ideal tool to screen for conditions that allow MOCV to continue in the viral cycle. The 
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identification of such conditions will facilitate further studies to understand the bases of 

this blockage and hopefully lead to the development of new drugs against MOCV.   

MVA and improvements to current vaccines and vectors. 

The story presented here for MVA and rMVAs compiles knowledge of Poxvirus for the 

past 50 years. MVA is an attenuated virus proven to be safe as a Smallpox vaccine [319, 

344, 345]. The need for a safe vaccine came after the global campaigns against Smallpox 

and the adverse effects of the original vaccine. Currently, MVA represents an interesting 

candidate not only as a Smallpox vaccine but as a vector against several infectious 

diseases and for viral oncolysis [13, 15, 199, 346]. The elements evaluated for the use of 

MVA as a vaccine or vector includes the ease of production, the immunogenicity, and its 

safety profile. Several groups have been continuously looking for new ways to improve 

MVA and make it comparable or better than other vaccines (Acam2000, Acam3000, 

Lister, etc.) [204, 252, 347]. The work presented here confirms genes recently associated 

with plaque formation (O1, F5, F11, C17) and has the potential to be used to improve 

MVA and expands our knowledge of the viral-host interaction. A potential application of 

these findings is the repair of these genes in MVA to allow better spread during 

production. Nevertheless, an increase in spreading might be a concern in terms of safety 

from a clinical or veterinarian point of view.   

The exact mechanism by which these genes are able to increase plaque formation is not 

clear. For example, O1 is known to activate the ERK2 pathway, which is similar to what 

has been shown for the vgf gene [254]. This suggests that both O1 and vgf modulate the 

same pathway at different levels. C17 is an ankyrin-like protein [26]. This family of 
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domains is conserved throughout mammals and plays an important role in the cell’s 

cytoskeleton [348-350]. Although a specific mechanism hasn’t been elucidated for most 

of these viral proteins, we can speculate that they might be involved in actin filaments 

formation to some degree. For example, VACV F11 protein is known to increase plaque 

formation in cells by its ability to modulate the host’s actin filaments, especially those 

filaments within the cell’s cortex [256, 257]. Experiments using a poxvirus that does not 

form plaques (Myxoma virus) showed that insertion of VACV F11 into its genome 

allows plaque formation by modulating the formation and the speed at which the actin 

filaments form [351]. The final outcome is an increased ability of the virus in cell to cell 

spreading. Importantly, we also showed that a non-truncated F5 is required for plaque 

formation in all cell lines tested demonstrating a central role.  

Interestingly, our data also shows that the role of these genes is cell-line dependent, for 

which a different subset of genes are required on each cell type. This requirement for 

different subset of genes may be explained if these genes are functionally redundant but 

with different targets. This functional redundancy provides the means for the virus to 

spread in different tissues or cells. This property makes more sense in a real infection for 

which a dynamic microenvironment is the norm. During a real infection, the virus goes 

through several tissues and different cells that have different gene expression [352, 353]. 

The virus is equipped with these functionally redundant genes that possibly target the 

same pathway at different levels [178]. In this regard, the cell-dependence effect 

observed in our assays could be explained by the presence or absence of cell factors that 

interact with the viral proteins on each cell line.  
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Evidence of modularity was also observed as we dissected replication and spreading 

phenotypes.  Some genes specifically contribute to the ability of the virus to spread (eg. 

O1), while other genes specifically increase viral replication (vgf/C11). One interesting 

example is the previously identified K1L host-range gene, which extends viral replication 

of MVA into RK-13 cells, but not to other mammalian cell lines [204, 256]. The function 

of K1L is dependent on its antagonizing effect of IFN. Nevertheless, this host-range 

specificity is not seen with every viral IFN antagonists. Taken together, replication and 

plaque formation genes depend on the presence or absence of particular host-factors to 

counteract viral proteins in a cell-type or tissue- dependent manner; this is a property that 

can be better appreciated when imagining a real infection.   

Throughout MVA’s attenuation process, the virus not only lost the ability to spread but 

also lost its ability to replicate in mammalian cell lines [317, 354, 355]. The identification 

of the genes responsible for this replication defect has been a major topic of research for 

the past four decades. Several authors have envisioned repairs to the MVA genome to 

allow the virus to replicate in mammalian cell lines without compromising its safeness 

[252, 322, 355]. Fortunately, we have been able to identify the vgf gene and its flanking 

sequences (3’ UTR and 5’ UTR) as sufficient to extend MVA’s host-range into HeLa, 

Vero, and BS-C-1 cells. Two vgf encoding plasmids from different replication-competent 

viruses were used to demonstrate our findings. vgf’s role in morphogenesis is inferred by 

its ability to restore MVA’s replication has not been elucidated. Nevertheless, it has been 

suggested that vgf has an anti-apoptotic effect [204] by activating the EGF pathway [333] 

and allowing the viral cycle to proceed. Activation of the EGF pathway allows the cell to 

grow and transform, providing additional metabolites that facilitate viral DNA 
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replication. This finding represents a major breakthrough not only for the Poxvirology 

field, but also from a vaccinology and therapeutics perspective. The method described 

here provides sufficient details to reproduce the recovery of replication for other 

poxviruses and vaccine strains. These enhancements might contribute significantly to 

virus production, and possibly enhance immunogenicity when used as a vaccine. The 

growth of MVA-based vaccine and vectors is a challenging and tedious process when 

using CEF cells, and the use of other mammalian cell lines are preferred [356]. As 

primary cells, CEF cells need to be constantly screened for contamination which raises 

the cost of vaccine production. Also, traces of avian peptides are a concern for the 

possibility of anaphylactic reactions in the vaccinees. A virus capable of replicating in 

FDA-approved mammalian cells has been envisioned and desired for decades. The use of 

recombinant viruses such as those generated here fulfills all these desired properties. 

Safety of the virus containing these sequences has been demonstrated elsewhere [252]. 

Moreover, it has been hypothesized that by repairing MVA with such a gene, the 

immunogenicity of the vaccines will also be enhanced while retaining the safety profile 

[252, 332]. Other applications can also be envisioned for different clinical situations. It 

includes the selective expression of vgf enhancing growth of the virus only in cancer 

cells; or the generation of cell lines that conditionally express vgf, and allow the growth 

of vgf deletion mutants. Finally, the gene and the method described here can be readily 

used to re-engineer the viruses currently used in clinical and veterinary applications 

providing several advantages of using a replication-competent virus. 
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Final words 

The available technology is continuously shaping our future. Sequencing technology is 

serving its purpose in expanding our knowledge and increasing our ability to address 

unanswered questions. It also has accelerated our ability to translate basic research into 

clinical applications. Nevertheless, we are still in infant times for sequencing for which 

we envisioned significant changes in the way we do research and do clinical diagnostic. 

We have already seen a dramatic increase in knowledge in all fields, including virology, 

and expect these technologies to be prevalent in our daily life. 

This unique experience has allowed me to understand research in an interesting way. It is 

the desire of most researchers to have a positive impact on human health. This includes 

providing benefits to those in undeveloped countries that do not have the infrastructure or 

resources to generate solutions by themselves. Developed countries have the resources, 

while the undeveloped countries suffer from the viral diversity and emerging diseases 

that constantly threaten their population. Scientific cooperation and partnership between 

institutions of these two worlds should be more intensively promoted. By co-developing 

and patenting in partnership, developed countries could directly contributing 

economically, academically and logistically with these undeveloped countries. Done 

properly, science and research might contribute to re-balance a world in need for the 

greater good of humanity. 
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Appendices 

Supplementary table 1. Comparative table of all predicted proteins on the 

left side of the genome for all rMVAs and other relevant Vaccinia viruses. 
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    Size (AA) 

1 C23L 241 37 37 37 37 136 244 241 258 136 

2 - 146 176 176 42 176 176 63 126 63 176 

3 C22L 122 - - 122 - - 122 - 122 - 

4 C21L 111 - - 113 - - 113 - 64 - 

5 - 128 - - 109 - - 103 - 128 - 

6 - 137 - - 128 - - 259 75 144 - 

7 - 198 45 54 198 37 45 38 97 145 45 

8 C17L 382 251 251 375 382 233 386 81 424 102 

9 C16L 181 181 181 181 181 57 181 200 147 57 

10 C15L 89 89 89 - 89 - 91 63 89 - 

11 - 51 51 51 51 51 - 51 - - - 

12 - 190 190 190 190 190 - 114 80 190 - 

13 C12L 357 357 357 357 357 - 357 357 357 - 

14 C11R 139 140 140 140 140 140 142 140 140 140 

15 C10L 331 331 331 331 331 326 331 326 331 326 

16 - 44 - - - - - - 44 - - 

17 - 83 - - - 91 - - 83 180 91 

18 - 62 - - - 60 - - 62 62 60 

19 - 124 - - - 120 - - 120 126 120 

20 - 90 - - - 93 - - 93 93 93 

21 - 142 - - - 142 100 - 142 142 142 

22 - 135 - - - 197 197 - 197 199 197 

23 - 77 - - - 90 90 - 90 77 90 

24 - 71 - - - 85 85 - 85 85 85 

25 - 55 - - - 69 69 - 59 69 69 

26 C9L 634 634 634 634 179 113 634 297 634 297 
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27 C8L 177 184 184 184 177 177 184 177 177 177 

28 C7L 150 150 150 150 150 150 150 150 158 150 

29 C6L 151 151 155 151 155 155 151 151 151 157 

30 C5L 204 224 36 224 36 36 224 224 224 36 

31 - 62 - - - - - - - - - 

32 - 136 222 - 222 - - 316 189 316 - 

33 - 59 39 - 39 - - - 39 - - 

34 C3L 263 263 - 263 - - 263 263 263 - 

35 C2L 506 512 - 512 - - 512 495 512 - 

36 C1L 224 227 - 227 - - 227 227 227 - 

37 N1L 117 117 113 117 113 113 117 117 117 113 

38 N2L 175 175 170 175 170 170 175 175 175 170 

39 - - - - - - - - - - - 

40 - - - - - - - - - - - 

41 M1L 469 472 - 472 - - 472 299 470 - 

42 M2L 220 227 - 227 - - 227 227 227 - 

43 K1L 284 284 98 284 98 98 284 284 284 98 

44 K2L 369 369 369 369 369 369 369 369 369 369 

45 K3L 88 88 88 88 88 88 88 88 88 88 

46 K4L 424 424 424 424 424 424 424 424 424 424 

47 K5L 136 175 174 174 174 174 140 174 175 174 

48 K6L 81 81 81 64 64 64 81 81 81 64 

49 K7R 149 149 149 149 149 149 149 149 149 149 

50 F1L 226 226 226 222 222 222 226 226 226 222 

51 F2L 147 147 147 147 147 147 147 147 147 147 

52 F3L 480 480 480 476 476 476 480 480 480 476 

53 F4L 319 319 319 319 319 319 319 319 319 319 

54 F5L 321 332 332 97 229 97 332 330 332 97 

55 F6L 74 74 74 74 74 74 74 74 74 74 

56 F7L 80 80 80 80 80 80 92 80 80 80 

57 F8L 65 65 65 65 65 65 65 65 65 65 

58 F9L 212 212 212 212 212 212 212 212 212 212 

59 F10L 439 439 439 439 439 439 439 439 439 439 

60 F11L 348 354 354 100 100 168 354 354 354 100 

61 F12L 635 635 635 635 635 635 635 635 635 635 

62 - 372 372 372 372 372 372 372 372 372 372 
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63 F14L 73 87 87 87 87 87 87 87 87 87 

64 F15L 158 158 158 158 158 158 158 158 158 158 

65 F16L 231 231 231 231 231 231 231 231 231 231 

66 F17R 101 101 101 101 101 101 101 101 101 101 

67 E1L 479 479 479 346 479 479 479 479 479 479 

68 E2L 737 737 737 737 737 737 737 737 737 737 

69 E3L 190 190 190 190 190 190 190 190 190 190 

70 E4L 259 259 259 259 259 259 259 259 259 259 

71 - 189 331 331 331 331 331 331 331 331 331 

72 - 149 - - - - - - - - - 

73 E6R 567 567 567 501 567 567 567 567 567 567 

74 E7R 166 166 166 166 166 166 166 166 166 166 

75 E8R 273 273 273 273 273 273 273 273 273 273 

76 E9L 1005 1006 1006 1006 1006 1006 1006 1006 1006 1006 

77 E10R 95 95 95 95 95 95 95 95 95 95 

78 E11L 129 129 129 129 129 129 129 129 129 129 

79 O1L 666 684 204 50 50 204 684 684 684 204 

80 O2L 108 108 108 108 108 108 108 108 108 108 

81 I1L 312 312 312 312 312 312 312 312 312 312 

82 I2L 73 73 56 56 73 73 73 73 73 73 

83 I3L 269 269 269 269 269 269 269 269 269 269 

84 I4L 771 771 771 771 771 771 771 771 771 771 

85 I5L 79 79 79 79 79 79 79 79 79 79 

86 I6L 382 393 393 393 393 393 382 382 382 382 

87 I7L 423 423 423 423 423 423 423 423 423 423 

88 I8R 676 683 683 683 683 683 683 683 683 683 

89 G1L 591 591 591 591 591 591 591 591 591 591 

90 G3L 111 111 111 111 111 111 111 111 111 111 

91 G2R 220 220 220 220 220 220 220 220 220 220 

92 G4L 124 124 124 124 124 124 124 124 124 124 

93 G5R 434 434 434 434 434 434 434 434 434 434 

94 G5.5R 63 63 63 63 63 63 63 63 63 63 

95 G6R 165 165 165 165 165 165 165 165 165 165 

96 G7L 371 371 371 371 371 371 371 371 371 371 

97 G8R 260 275 275 275 275 275 275 275 275 275 

98 G9R 340 340 340 340 340 340 340 340 340 340 
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Supplementary figure 2. Replication of MVA and 51.2 rMVA in BS-C-1 cells 24 hpi. 

Initial observations that the virus yield from 51.2 rMVA was 2 logs higher than MVA 

served as the start point to further evaluate replication, especially in genes acquired by 

this virus. Statistical significance was determined using Student’s t-test. 
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Supplementary figure 3. Additional deletion mutants generated. 13 deletion mutants 

were initially generated for this screening. Either single genes or clusters of genes were 

deleted in 44/47.1 rMVA. The plaques were visualized by fluorescent microscopy 48 

hours post infection. Panel A are viruses in which deleted genes are located outside 

MVA’s deleted region. Panel B are viruses with deleted genes located within MVA’s 

deletions. 

  

A. 

B. 
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Supplementary figure 4. Sequence inserted into MVA responsible for the host-range 

extension. The sequence identified as responsible for MVA’s host-range extension 

consist of the vgf ORF and its 3’ & 5’ UTR presented above. This sequence corresponds 

to the insert derived from 51.2 rMVA. 
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