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Hardware designers are constantly looking for ways to squeeze waste out of

architectures to achieve better power efficiency. Cache resizing is a technique that

can remove wasteful power consumption in caches. The idea is to determine the

minimum cache a program needs to run at near-peak performance, and then recon-

figure the cache to implement this efficient capacity. While there has been significant

previous work on cache resizing, existing techniques have focused on controlling re-

sizing for a single level of cache only. This sacrifices significant opportunities for

power savings in modern CPU hierarchies which routinely employ 3 levels of cache.

Moreover, as CMP scaling will likely continue for the foreseeable future, eliminating

wasteful power consumption from a CMP multi-level cache hierarchy is crucial to

achieve better power efficiency.

In this dissertation, we propose a noble technique, greedy coordinate descent

CMP multi-level cache resizing, that minimizes a power consumption while main-

taining a high performance. We simutaneously resizes all caches in a modern CMP



cache hierarchy to minimize the power consumption. Specifically, our approach pre-

dicts the power consumption and the performance level without direct evaluations.

We also develop greedy coordinate descent to search an optimal cache configuration

utilizing power efficiency gain (PEG) that we propose in this dissertation.

This dissertation makes three contributions for a CMP multi-level cache resiz-

ing. First, we discover the limits of power savings and performance. This limit study

identifies the potential power savings in a CMP multi-level cache hierarchy when

wasteful power consumption is eliminated. Second, we propose a prediction-based

greedy coordinate descent (GCD) method to find an optimal cache configuration and

to orchestrate them. Third, we implement online GCD technique for a CMP multi-

level cache resizing. Our approach exhibits 13.9% power savings and this achieves

91% of the power savings of the static oracle cache hierarchy configuration.
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Chapter 1

Introduction

1.1 Motivation

The power wall is currently the main limiter to achieving high performance

in modern CPUs, and has been one of the most critical problems facing computer

architects over the past several years [1]. Unfortunately, this problem will only

get worse in the future as process technologies continue to scale to smaller feature

sizes. Moreover, CMPs are prevalent to provide better performance in a power

envelope; computer architects utilize efficient cores rather than exploiting instruction

level parallelism (ILP) which incurs high power dissipation but yield only modest

performance gains. As a result, CMP scaling–i.e. increasing the number of cores–

will continue in the foreseeable future as transistor count increases. As such, power

efficiency will remain an extremely important design goal.

A key place to look for better power efficiency is in an on-chip cache hierarchy.

Caches occupy a large portion of the CPU’s available die area–upwards of 50% in

today’s CPUs–so they contribute significantly to a processor’s overall power dissi-

pation. In addition, caches are sized for the worst case. This means an average

computation cannot effectively utilize all of the cache capacity. Such cache over-

provisioning can result in significant waste that, if eliminated, can yield large power

savings without sacrificing much performance. On the other hand, a cache hierar-
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chy is crucial to achieve high performance in CMPs by eliminating off-chip traffics

when efficiently utilized. As such, it is required that hardware designers continue to

make efforts to squeeze wasteful power consumption out of the cache hierarchy and

maintain high performance at the same time.

1.2 Important Problems in Cache Resizing

As both low power consumption and high performance are required, on-chip

cache hierarchies face three challenging problems. First, controlling sizes of multi-

level caches is imperative to eliminate wasteful power consumption because multi-

level cache hierarchies distribute the power consumption across different caching

levels. Controlling the size of a single level cache [2, 3, 4, 5, 6, 7, 8, 9, 10] will

miss significant opportunities for power savings because L1 caches are the greatest

culprit for dynamic power consumption of a cache hierarchy and last level caches

(LLCs) are by far the greatest concern for static power consumption due to its

large area. Second, resource distribution in an LLC gets crucial to achieve high

system throughput by efficient utilization of the LLC. Otherwise, cache misses at the

LLC incur more off-chip traffics that results in poorer system throughput. Third,

controlling sizes of multi-level caches in CMPs is an NP-hard problem. As such,

having a scalable algorithm is crucial to alleviate the power inefficiency in the cache

hierarchy of CMPs.
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1.2.1 Multi-Level Cache Resizing

The trend for modern CPUs is towards deeper cache hierarchies, however,

which distributes the power consumption across many caching levels. Today, three

levels of cache is commonplace. For dynamic power consumption, the L1 is the

greatest culprit, but the L2 and L3 can also consume non-negligible dynamic power,

especially for memory-intensive workloads. For static power consumption, the L3 is

by far the greatest concern due to its large area. But non-trivial static power can

also be dissipated in the L2 as well. By only controlling the size of a single level

of cache, existing techniques potentially miss significant opportunities for power

savings.

The current lack of comprehensive multi-level cache resizing is partly due to

the latency tolerance of multi-level cache hierarchy. Because there are multi-caching

levels, CPU performance is somewhat insensitive to its actual delay caused by addi-

tional cache misses when a single level of cache is resized: e.g. the additional cache

misses from a L2 cache may hit in the next level of cache and result in only small

increase in AMAT compared to a two-level cache hierarchy where those additional

cache misses result in DRAM accesses that increase AMAT significantly. However,

negligent multi-level cache resizing will eventually result in cascaded aggregate off-

chip traffics. As a result, an improvident multi-level cache resizing will turn into

significant performance degradation.

3



1.2.2 Power Efficient Cache Partitioning

Cache-partitioning techniques have been widely investigated mainly for higher

performance [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, power efficient cache-

partitioning has not been comprehensively studied yet. In particular, a shared LLC

can be considers as a single cache, so we can apply existing cache resizing techniques

to the LLC. A recent study [10] applies a cache resizing technique to a shared LLC

in CMPs on top of the utility-based cache partitioning scheme [11]. This study

explores the wasteful power consumption of an LLC, mostly from the static power

consumption, thus reducing the power consumption of the LLC without noticeable

performance degradation by not allocating ways with lower utility. However, this

approach can not search the global optimum because its allocation paths are al-

ready defined in the UCP algorithm. In other words, disabling part of partitions

that were distributed to achieve the best performance can not find power-efficient

partitions. Therefore, such local-search-based/performance-oriented cache configu-

rations is prone to results in local minima.

1.2.3 CMP Multi-level Cache Resizing

For the foreseeable future, the number of cores will likely grow. Moreover,

multi-level cache hierarchy will continue to being crucial for bridging the processor-

memory speed gap. Hence, CMP multi-level cache hierarchy is not only crucial

to achieve higher performance, but also significant contributor in the total power

dissipation for being towards deeper cache hierarchy to bridge the processor-memory

4



speed gap.

As such, eliminating wasteful power consumption from the CMP multi-level

cache hierarchy while maintaining high throughput is extremely important problem.

However, the current trend of CMP scaling will only exacerbate the complexity of

this problem. Moreover, CMP multi-level cache resizing problem is an NP-hard. We

study CMPs with a shared last-level cache and finding an optimal partitions in the

shared last-level cache has been shown to be NP-hard [22]. And finding an optimal

partitions is only a subroutine of finding optimal CMP multi-level cache hierarchy

configurations. For this reason, we need a scalable solution to orchestrate all caches

as by optimizing private caches as well as LLC partitions to eliminate wasteful power

consumption in the entire system level, while maintaining high throughput.

1.3 Thesis Statement and Contributions

This thesis investigates greedy coordinate descent (GCD) CMP multi-level

cache resizing (MCR) to minimize power consumption at all caching levels simulta-

neously at a given performance degradation limit. Our work quantifies the potential

power benefits of uniprocessor MCR, LLC partitioning, and CMP MCR, providing

insights into where savings come from as well as the challenges that must be over-

come in order to attain the full benefits. We also investigate controlling uniprocessor

MCR, LLC partitioning, and CMP MCR. Cache hierarchies with multiple reconfig-

urable caches exhibit a large number of resizing configurations. Our work develops

techniques to navigate this complex search space to quickly find the best configura-
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tions. In particular, we develop greedy search iterations in using coordinate descent

method [23] to reduce the complexity of a multi-level cache resizing problem with-

out direct power/performance evaluations. We define power efficiency gain (PEG)

to select a caching level and to decide the amount of cache resizing in the caching

level in searching the solution space. We compute a PEG value by predicting power

consumption and performance changes utilizing way counters. In other words, we

reduce the evaluation complexity by predicting performance and power by utiliz-

ing way-counter hardware. In particular, we reduce the evaluation complexity from

O(km) to O(km), where k is the number of possible configurations per caching level

and m is the number of caching level. More specifically, we make the following

contributions.

First, we study the limits of power consumption and performance by dis-

covering statically optimal cache hierarchy configurations to quantify the potential

benefits of our approach. Our study presents a static-optimal version of uniproces-

sor MCR, LLC partitioning, and CMP MCR that use exhaustive off-line search to

find the best configurations. In particular, we show that architectural techniques

are still crucial to optimize power consumption in a cache hierarchy by employing

the state-of-the-art circuit- and device-level techniques to reduce power consump-

tion. We find static-optimal configurations for each application can reduce total

cache hierarchy power consumption by 15.4%, 3.3%, and 15.2%, respectively, while

degrading the performance by less than 1% across our workloads.

Second, we propose a way-counter-based performance/power prediction tech-

nique. Direct performance/power evaluation in a time-varying system introduces
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significant errors due to dynamic program phase changes. This makes evaluation-

based techniques difficult to succeed because such oscillations of performance and

power generate an unstable system. As such, we predict performance and power

utilizing way counters.

Third, we develop a novel search technique, greedy coordinate descent. Because

direct methods or gradient-based methods are not achievable in the CMP multi-

level cache resizing problem, we use coordinate descent method instead to solve

this problem. Moreover, we propose our new technique, greedy coordinate descent,

to solve this problem efficiently. We define power efficiency gain (PEG) to enable

efficient and fast search in our technique. PEG not only provides power savings per

unit performance degradation, but also considers a balance between two adjacent

cacheing levels so that we can optimize towards the global optimal.

Fourth, we implement our GCD approach to find such global optimal config-

urations for uniprocessor MCR, LLC partitioning, and CMP MCR.

Fifth, we implement ideal GCD by eliminating errors caused by AMAT and

power prediction using way counts. To quantify the impact of errors caused by our

prediction, we use measured performance, power and AMAT information from our

extensive simulations. We show that our ideal GCD approach can approximate the

global optimal by 98%, 84%, and 94% compared to the power savings of the global

optimal.

Fifth, we study online algorithms to enable our approach at runtime. Our

online implementation exhibits fast convergence rates. As a result, our periodically

repeated GCD search can adapt to dynamically changing program behavior. Our
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results show that online GCD techniques save significant power savings, providing

13.4%, 1.8%, and 13.9% power savings for uniprocessor MCR, LLC partitioning,

and CMP MCR, respectively, on average.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 explains

the background of our study including chip multi-processors, multi-level caches,

cache resizing, power efficient cache partitioning and multi-level cache resizing in

chip multi-processors. Chapter 3 lists the previous studies related to our study cov-

ering cache resizing, cache partitioning, multi-level cache optimization, and circuit–

level and design–time optimization. In Chapter 4 we analyze the multi-level cache

resizing behavior to understand the complexity of multi-level cache resizing and the

interaction between caching level when we resize them. Chapter 5 presents our

greedy coordinate descent approach in details. In Chapter 6, we develop our GCD

method for uniprocessor multi-level cache resizing and show the power savings of

our GCD method that approximates the global optimal cache configuration both at

offline and online. And then, we also apply our GCD method for last level cache

partitioning and present the power savings in Chapter 7. In Chapter 8, we further

extend our GCD method for CMP multi-level cache resizing and show the power

savings. Finally, Chapter 9 concludes this dissertation and suggests future work.
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Chapter 2

Background and Motivation

2.1 Chip Multi-Processors

The trend for modern CMPs is towards more cores [24, 25, 26, 27, 28]. How-

ever, current CPUs are constrained by power consumption [29, 1, 30]. As a result,

power efficiency is one of the most important metric for achieving high performance

in future CPUs. As such, modern processors are getting more efficient as power ef-

ficiency becomes one of the most important design goals. This trend is playing out

in industry. For example, Figure 2.1 shows power consumption of server processors

from Intel. The power consumption of server processors is generally decreasing. In

particular, the Intel Gainstown processor consumes as little as 7.5W per core.

A fixed power envelope and continued technology scaling are the main factors

which drive efforts in power efficient designs. We want to fully utilize transistors,

which are more available than ever before, but with power constraints in mind.

For this reason, we need more power efficient architectures. We cannot continue

using performance-oriented techniques which may exhibit lower power efficiency,

such as higher clock rates, deeper pipelining, wider instruction windows, etc. In

other words, clock rate scaling and ILP exploitation are not solutions to achieve high

performance anymore. Therefore, it is extremely important to continue efforts to

squeeze inefficient power consumption out of architectures. For this reason, modern
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Figure 2.1: Power consumption per core and per clock speed of modern commodity

processors. 1

processors commonly adopt simple core designs that have narrow instruction width

and shallow pipeline depth to achieve higher power efficiency.

Our goal in this thesis is to save power consumption in multi-level caches,

which can consume as much as half of the overall processor’s power. We conduct

our study with a power efficient processor, comparable to state-of-art commodity

processors. To compare with commodity processors, as can be seen in Table 2.1,

our target processor consumes 5W per core on average and runs at a clock rate of

2GHz. We will cover the details of the processor in Section 4.3.2.

1All power consumptions are based on Intel’s TDP (Thermal Design Power) reports. ’L’ stands for a low-voltage

model. Specific model names are L5335 and E5345 for Clovertown, L5430 and E5472 for Harpertown, L5530 and

E5540 for Gainstown, L5645 and E5649 for Westmere−EX and E3-1265L and E3-1270 for SandyBridge− EP .
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CPU Process # of Cores Clock Rate (GHz) TDP (W)

Clovertown L 65nm 4 2 50

Clovertown 65nm 4 2.33 80

Harpertown L 45nm 4 2.66 50

Harpertown 45nm 4 3 80

Gainstown L 45nm 8 2.4 60

Gainstown 45nm 8 2.53 80

Westmerer-EX L 32nm 6 2.4 60

Westmere-EX 32nm 6 2.53 80

Sandy Bridge-EP L 32nm 4 2.5 45

Sandy Bridge-EP 32nm 4 3.5 69

Table 2.1: Server processors specifications.
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Intel Atom Intel Sandy Bridge AMD Opteron

L1 Capacity 24KB 32KB 64KB

Latency 3 4 3

L2 Capacity 512KB 256KB 512KB

Latency 15 12 12

L3 Capacity N/A 0.5 - 2M 0.5 - 2M

Latency 26 - 31 34 -

Table 2.2: Cache hierarchy of modern commodity processor.

2.2 Multi-level Caches

The trend for modern CPUs is towards deeper cache hierarchies to bridge

the processor-memory speed gap. Modern multi-level caches mostly consist of three

levels of cache with each caching level exhibiting different access times and capacities.

Table 2.2 shows cache hierarchies of some modern commodity processors. At lower

levels within the cache hierarchy, cache capacities are growing to exploit larger

working sets at the expense of higher cache latency.

2.3 Cache Resizing

Cache resizing, an architectural technique to save caches’ power consumption

while maintaining near-peak performance i.e. intelligently turning off/disabling

ways and/or sets of under-utilized cache to save power, has been known for several

decades. But its application for a multi-level cache hierarchy within a multicore
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CPU has not been fully investigated. Although there has been significant work

on cache resizing, existing techniques are limited to single-level cache resizing. In

particular, most studies consider resizing a single level of cache for a uniprocessor

only [2, 5, 6, 7, 8, 9], (typically the L1 cache).

The current lack of comprehensive cache resizing is partly due to the availabil-

ity of other power management options, especially for caches below the L1. Because

these caches are only referenced on an L1 miss, CPU performance is somewhat in-

sensitive to their actual delay. Hence, it is feasible to trade off delay for power in

the post-L1 caches. This has been exploited extensively by circuit-level techniques

to mitigate static power consumption. In particular, multiple Vt devices [31, 32],

adaptive body bias (ABB) [18, 33], and dynamic voltage scaling (DVS) [34, 35]

all convert modest increases in cache access latency into significant static power

reductions.

While extremely effective, circuit-level techniques for mitigating static power

do not obviate the need for architectural approaches like cache resizing. Circuit

mitigation only reduces leakage current. In contrast, cache resizing (plus power

gating) can suppress leakage practically to zero for the gated portions of cache.

Moreover, circuit- and architecture-level approaches are orthogonal. So, applying

them in concert may ultimately yield the greatest static power savings.

In addition to flexibility for reducing static power, the low latency sensitivity

of post-L1 caches also offer alternatives for reducing dynamic power. For example,

serializing tag and data access ensures only a single data way is energized regardless

of the number of total active ways, thus reducing dynamic power at the expense

13



of some increased delay. But again, this does not preclude cache resizing. A serial

cache still incurs wasteful tag energy as well as significant interconnect energy that

resizing can address. And in some cases, serial caches may be too slow–for example,

at the L2 given an L1 with a high miss rate–limiting their application.

2.3.1 Multi-Level Cache Resizing

Deeper cache hierarchies distribute the power consumption across different

caching levels. For dynamic power consumption, the L1 cache is the greatest culprit,

but for static power consumption, the LLC is by far the greatest concern due to its

large area. Figure 2.2 shows the power consumption breakdowns for the SPEC

2006 benchmarks in a 2-way out-of-order core with a three-level cache hierarchy

(details will follow in Section 4.3.2). The power consumption of the cache hierarchy

accounts for up to 38% (31% on average) of the total system power consumption.

Figure 2.3 shows the cache power consumption breakdown. As Figure 2.3 shows,

the dynamic power of the L1 cache alone can take up to 47% with average of 26%,

and the static power of the LLC can take up to 37% with average of 28%, of the

total power consumption of the three-level cache hierarchy. As such, investigating

multi-level resizing is mandatory to eliminate all wasteful power consumption in the

cache hierarchy.
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2.3.2 Optimal Multi-level Caches

An optimal multi-level cache hierarchy saves power in two ways. First, it

eliminates wastful power consumption caused by over-provisioning of each cache.

Modern multi-level caches are designed to perform well under worst case conditions.

But not all programs have large working sets that require the worst-case amount

of cache. Thus, by eliminating unnecessary portions of caches, significant power

savings can occur. Second, optimal multi-level hierarchies achieve balance between

different adjacent caching levels. A smaller L1 cache can reduce total L1 access

energy, but will increase access energy to the L2 energy due to increased L2 traffic.

There are three balance points, L1/L2, L2/L3 and L3/Memory, and these are all tied

together. Unbalanced caches waste energy. By balancing/changing traffic between

caching levels, one can reduce power consumption. Unlike previous single-level cache

resizing studies, this is not only a much more challenging problem for the large

solution space, but also a more interesting problem to understand the source of

power savings, right cache provisioning and traffic controls between caches.

Finding the optimal cache hierarchy configuration requires considering the in-

teractions between resizing decisions across different caching levels. Multi-level cache

resizing balances the power consumed by a cache against the power consumption it

inflicts on the next level of cache through its cache misses. Notice, a cache’s bal-

ance point depends on both the upstream and downstream caches (if any), which in

multi-level cache resizing are themselves resizable. Thus, the optimal configuration

is the one that achieves balance globally across all the caches at the same time.
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Optimal cache hierarchy configuration not only eliminates wasteful power con-

sumption from the cache hierarchy, but also maintains high performance as well,

achieving higher power efficiency. We conduct a limit study to find Pareto-frontiers

in the performance-power domain. Based on our extensive simulations, which will

be discussed in Section 4.4, we search exhaustively over the entire solution space

to generate a set of Pareto-frontiers. Figure 2.4 shows the power consumption and

the performance level per average performance degradation using SPEC CPU 2006

benchmarks. We find that optimal cache configurations outperform both in the

power savings and the performance locally compared to other cache hierarchy con-

figurations. For example, within 5% performance degradation, the optimal cache

hierarchy configuration can save as much as 20% of the total system power with

3.3% of performance degradation. Moreover, within 10% performance degradation,

the optimal cache hierarchy configuration saves power consumption by as much as

20.6% while maintains the performance degradation level of 5.4%.

2.3.3 Dynamic Reconfiguration

Optimal cache hierarchy configurations vary across different benchmarks. Fig-

ure 2.5 shows different optimal cache hierarchy configurations of SPEC CPU 2006

benchmarks (due to the difficulties in plotting 3-dimensional result of a 3-level

cache hierarchy, we conduct a study for a 2-level cache hierarchy). We find optimal

cache hierarchy configurations that consume least power while maintain performance

degradation level less than 10% compare to the baseline configuration (baseline cache
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Figure 2.4: Lowest Power Consumption with Limited Performance Degradation.

hierarchy configuration consists of 8-way L1 cache and 8-way L2 cache). In partic-

ular, Figure 2.5-(a) shows optimal cache configurations per benchmark and their

relative power consumption in the cache hierarchy colored differently. For example,

the optimal cache hierarchy configuration of astar is 2-way L1 cache and 16-way L2

cache and this optimal cache hierarchy configuration consumes 70-80% of the power

consumption of the baseline cache hierarchy configuration. As shown in Figure 2.5-

(b),(c), and (d), optimal cache hierarchy configurations of omnetpp, astar, and namd

are 4-way L1 cache and 10-way L2 cache, 2-way L1 cache and 16-way L2 cache, and

8-way L1 cache and 2-way L2 cache, respectively. As a result, to eliminate wasteful

power consumption from a cache hierarchy, we need a novel architecture that can

adapt to diverse application behaviors.
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benchmarks. Due to the difficulties in plotting 3-dimensional result, we plot result
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a corresponding L2 cache configuration.
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2.4 Power Efficient Cache Partitioning

Cache-partitioning techniques have been widely investigated for higher per-

formance [11, 12, 13, 14, 15, 16, 17, 36, 19, 20, 21]. However, cache partitioning

for better power efficiency has not been extensively studied yet. Cooperative Parti-

tioning [10], or LLC Resizing, is a previous technique focused on resizing a CMP’s

shared LLC to save power with a given threshold. It disables ways of the LLC when

the utility of the way is not high enough. Although it proposes a way to save power

consumption in the LLC by disabling ways with low utility, it is derived from the

performance optimization technique in [11], and hence, it does not capitalize on all

of the potential power savings from LLC partitioning.

Most state-of-the-art LLC partitioning techniques dynamically change parti-

tion sizes. As such, resizing private caches above the LLC in CMPs will encounter

a dynamically changing LLC partition size. Although LLCs commonly use the seri-

alized access technique, which saves the data-array access power when a cache miss

occurs, its tag access power can be significant compared to the potential power sav-

ings from private cache resizing. The dynamic power consumption of tag accesses

is dependent on the LLC partitioning, the allocated LLC ways and thus, private

cache resizing increases the power consumption of the LLC. To alleviate this prob-

lem, private cache resizing should be performed with the awareness of the increased

dynamic power at the LLC constrained by a threshold to avoid severe performance

degradation.
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2.5 Multi-Level Cache Resizing in CMPs

A CMP’s cache hierarchy is crucial in determining its performance and power

consumption. Already, a large body of research on LLC resource distribution or

LLC partitioning has been conducted for this reason. However, previous studies

did not provide a solution for multi-level cache resizing in CMPs, which resizes

the CPU’s private caches along with LLC partitioning. Unfortunately, there is no

comprehensive study on cache resizing for a modern CMP yet.

As discussed earlier, power consumption in multi-level cache hierarchies is

distributed across the different levels. Each level of cache exhibits its own power

savings and performance degradation when the waste is squeezed out. Since the

overall performance impact and power savings are not trivial, when multiple cache-

resizing techniques are combined, it is crucial to predict potential power savings and

performance loss to control each caching level to save most of the wasteful power

while maintaining high performance.

One possible way to achieve this goal is by applying uni-processor MCR to

each core in the CMP assuming an even partitioning of the LLC across cores. Each

workload would achieve near-peak performance with bounded degradation. But

this simplistic approach would be suboptimal because each LLC partition is limited

to the evenly distributed capacity. On the other hand, it is possible to consider

all combinations of possible cache configurations in the CMP to find the globally

optimal configuration given a bounded performance degradation compared to the

achievable maximum performance. However, finding such a solution is infeasible in
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a real system due to the huge search space. For this reason, we need a novel way to

approximate the global optimum with low complexity.
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Chapter 3

Related Work

This chapter summarizes and discusses related studies of power efficient caches.

3.1 Cache Resizing

As we discussed earlier, cache over-provisioning causes significant waste in

the power consumption of a cache hierarchy. Moreover, this waste harms the total

power efficiency of the system due to the large portion of the cache hierarchy’s power

consumption. However, such waste can be eliminated by reconfiguring a cache to

the minimum size that the cache is not incapacitated.

A large body of work exists on cache resizing and most of the work solves

the problem by addressing three fundamental aspects: how to resize a cache , how

to decide its size, and which power to save. First, most of the work is based on

the idea that caches consist of subarrays. Because most of caches already utilize

partitioned organization for performance reasons, minor changes to a conventional

cache organization can result in a reconfigurable cache. For example, number of

sets or ways, or block sizes can be reconfigured to meet a certain size at different

granularities. Second, deciding ideal cache size is another aspect to eliminate the

waste. There are static and dynamic approaches. Static approach utilizes off-line

profiling information to capture ideal cache sizes. On the other hands, dynamic
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approach employs heuristic- or approximation-based searching/learning/prediction

methods. Third, cache consumes dynamic and static power. Either one or both can

be an objective function for the optimization. We will compare related studies with

these perspectives.

Selective cache ways [2] uses off-line profiling to drive disabling of cache ways

for dynamic power savings. DRI caches [7, 9] use cache-miss counts to detect over-

provisioning, and resize across cache sets. In addition, DRI caches also gate the

power supply to unused portions of cache, conserving both dynamic and static power.

A hybrid approach, selective sets and ways, was proposed [8] to provide better

granularity compared to previous studies. We use selective sets and ways cache

organization for L1 caches for its finer granularity and use selective ways cache

organization for L2 and L3 to reduce flushing overhead caused by changing sets.

Malik et al [6] study selective ways in the MCore CPU. Madan et al [5] propose

resizing L2 caches by dynamically extending their capacity into stacked DRAM. In

this study, 3D-stacked SRAM and DRAM dies provide heterogeneous configurations

to the cache hierarchy and its impacts were studied. However, interaction between

caching levels or controlling sizes of different caching levels are not discussed. All of

these prior studies consider resizing a single level of cache only, whereas we address

the problem of resizing multiple levels of caches in CMPs. In particular, we develop

novel algorithms for solving an NP-hard problem in O(N2) time complexity with a

greedy approach.

Besides resizing, researchers have studied other adaptive cache techniques as

well. Dropsho et al [37] propose accounting caches which divide a cache’s ways
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into primary and secondary groups. Each cache access searches the two groups

sequentially, accessing the secondary only on a primary miss. This saves power if

secondary accesses are infrequent. Zhang et al [38] propose way concatenation which

permits flexible organization of cache banks to form direct-mapped, 2-way, or 4-way

set-associative caches. Neither accounting caches nor way concatenation address

capacity allocation across different levels of cache, the main focus of our study.

3.2 Cache Partitioning

The limits of exploiting ILP and frequency scaling lead to CMP scaling. The

growth in the number of cores in CMPs make shared-resource distribution critical

to achieve both high performance and low power consumption. In most CMPs the

LLC is shared between threads and its utilization has significant impacts on both

performance and power because LLC misses cause off-chip traffics which result in

high latency and power consumption. Cache partitioning explicitly allocates shared

cache across multiprogrammed workloads, providing cache to those programs that

can best utilize it.

The majority of techniques focus on performance [19, 36, 20, 11, 21, 17, 13].

Suh et al propose an online monitoring scheme to partition the cache to maximize the

overall performance, and implements marginal-gain counters to predict the overall

miss rate and improves partitioning scheme based on the miss-rate information [19,

20]. Fairness in cache sharing was studied in [36]. This study implements static

and dynamic LLC partitioning algorithms to improve fairness between threads. In
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addition, the relationship between fairness and throughput was shown that fairness

usually increases throughput, but not vice versa. Qureshi et al proposes utitliy-

based cache partitioning [11]. This study captures best partitioning at run time

by utilizing way-counters based monitoring. The lookahead algorithm considers

the marginal utility for all possible ways which can be distributed to each thread.

Time-sharing cache partitioning scheme allows each thrashing thread to occupy large

portion of the shared cache capacity to achieve significant speedup in turn [17]. In

this study, Chang et al shows that time-sharing based cache partitioning not only

results in better performance, but better fairness whiling maintaining QoS. Liu et

al [13] conducts off-line study to analyze best cache allocations and develops a

run-time cache partitioning technique to victimize aggressor threads to achieve high

performance.

More recently, techniques have also tried to reduce power consumption [39, 10]

by withholding allocation and shutting down portions of the shared cache, similar to

cache resizing. Like our study, cache partitioning also employs reuse distance pro-

files to drive allocation decisions. But LLC partitioning saves mostly static power

consumption compared to our study which also resizes private caches where dy-

namic power dominates. ReCac, Reconfigurable Cache for CMPs, was proposed

[39] not only for performance, but for power savings. ReCac dynamically falls back

to performance centric cache partitioning if the power savings are not desirable.

Cooperative partitioning utilizes a way-aligned LLC for cache partitioning to save

power while maintaining high performance [10]. This study uses utility-based metric

and extends the lookahead algorithm [11] to decide partitions. In addition, migra-
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tion overhead, caused by cache flush, is reduced by allowing multi threads to read

the transitional ways simultaneously, but only a single thread to write, during the

transitional period after a partitioning decision made.

We use similar approach to [39, 10] to resize a LLC in our study. In addition,

our online monitoring scheme, including PEG monitoring which will be discussed in

Chapter 5, is inspired a way counter [19] that approximates stack distance as most

of the work [36, 20, 11, 10] utilize it either for dynamic or static partitioning scheme.

Although our work and existing techniques are similar in that both approaches are

“horizontal” allocation technique, out work is distinguished from previous work by

out approach is “vertical” as well. While both can save power, cache partitioning

does so by optimizing utility across competing threads whereas we do so by optimiz-

ing balance between caching levels and across threads. For this reason, our scheme

outperforms previous techniques in both performance and power savings.

3.3 Multi-level Cache Optimization

The trend for modern CPUs is towards deeper cache hierarchies to hide mem-

ory latency. As such, multi-level cache hierarchies distribute power consumption

across many cache levels. Although there has been significant work on cache resizing

and partitioning as we discussed in Section 3.1 and 3.2, most of existing techniques

are limited in their optimization scope, i.e. single caching level. Unfortunately,

there was no comprehensive “vertical” study yet.

Balasubramonian et al [3, 4] propose resizing two levels of cache, either the

27



L1/L2 or the L2/L3, by partitioning a common pool of SRAM arrays to different

caching levels. Because partitionings always utilize all of the available SRAM, only

one cache’s size is controlled independently. Hence, in this technique, it is impos-

sible to optimize the balance point of different caching levels simultaneously as is

done in our study. Moreover, the technique is only limited to uniprocessors. Wang

et al [40] propose private cache resizing in conjunction with LLC partitioning. This

technique requires off-line profiling to generate the profile tables for each task in-

cluding information of energy consumptions, L1/L2 partitions, and execution times.

Although the proposed algorithm considers L1 cache resizing impacts on L2 cache

partitions, its computation overhead is significant, O(MN2) with M cores and N

configurations per caching level. Besides, its off-line profiling requirement makes

the algorithms not feasible in real world in that off-line profiling is neither always

available nor cheap.

3.4 Circuit-level and Design-time Optimization

Finally, significant number of researches has explored circuit-level techniques

for reducing a cache’s static power consumption. Both feature-size scaling and

threshold-voltage scaling result in high leakage energy dissipation, i.e. high static

power consumption. Gated-VDD [7, 9] employ an extra transistor in VDD of the

SRAM cells in caches to gate the power supply. The extra transistor is turned

off in the unused portions of the cache and the stacking effect of reverse-biased

series-connected transistors reduces the leakage energy in the unused portions. This
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technique also adapts DRI, an architectural scheme to reduce power consumption

of cache as we discussed in Section 3.1, hence achieves leakage power reduction with

an integrated circuit and architecture approach.

As process technologies continue to scaling down feature sizes, below 100 nm,

subthreshold leakage power has become a dominant fraction of static power dissi-

pation. Since scaling down voltage increases the leakage power exponentially and

improves switching frequencies, there is a trade-off between access time and leakage

power. For this reason, there is a large body of work exist to explore the trade-

off and to reduce the leakage power while maintaining the performance. Multi-Vt

techniques [32, 31] employ low-Vt devices along critical paths and high-Vt devices

along non-critical paths to save power while still maintaining performance. Simi-

larly, drowsy cache studies [34, 35] employ dynamic voltage scaling to reduce the

leakage power of inactive cache lines by putting the cache lines into a low-power

standby mode. Consequently, drowsy caches are able to reduce the leakage power

because large portion of the cache lines can be put in a standby mode without

significant performance degradation. The state transition can be switched between

standby and active modes by scaling the supply voltage.

Unlike these static or design-time Vt assigning, there is a dynamic approach to

control Vt as well. Most of studies [33, 18, 41, 42, 43, 44] adopt body biasing tech-

nique to change Vt. FBB controls the back-gate voltage to place devices in a standby

low-leakage mode when not in use, but then restores the devices to an active high-

performance mode when the cache is accessed. RBB works in the opposite way, it

lowers Vt in active mode for fast access while suppressing leakage current in standby
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mode with high Vt. Nii et al propose auto-backgate-controlled MTCMOS [45, 46]

which increases Vt in sleep mode by backdate biasing in order to reduce undesirable

leakage current during the inactivated time while retaining the data stored in the

SRAM [33]. Kim et al further improves the scope of leakage power reduction by

proposing active leakage reduction [18]. This technique, inspired by DVS [41, 42],

scales Vt by employing body bias control. Like DVS, this technique utilizes a slack

time in computation to increase Vt, hence reduces active leakage power.

Similar to these, Tschanz et al evaluates sleep transistor and body bias to

reduce active leakage power [43]. This study finds that both MTCMOS sleep tran-

sistor and FBB, which lowers Vt in use while maintaining low-leakage current by

applying ZBB or RBB in idle mode, can be used dynamically for active leakage

control. Kim et al reduces active and standby leakage power in cache memories [44].

This study employs super high Vt devices to reduce standby leakage current and

dynamically applies FBB only for active SRAM cells in active mode.

Jacob et al derives a closed-form solution as a first-order approximation to

provide optimal sizes of each caching level [47]. This lacks of power model and does

not capture dynamic phase changes for its static model. Silva-Filho et al [48] and

Gordon-Ross et al [49] study design-time techniques for optimizing 2-level cache hi-

erarchies. This body of work tries to find the best block size and associativity–as

well as cache capacity–for two caching levels. They consider a more complex de-

sign space than we do, and employ more costly search techniques that are suitable

for design analysis only. In contrast, our approach is an architecture-level power

management technique. It solves a more constrained problem, but provides algo-
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rithms suitable for runtime use. Similarly, Zhang and Vahid [50] search for the best

cache architecture using a reconfigurable hardware platform. But they only consider

optimizing a single level of cache.
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Chapter 4

Multi-Level Cache Resizing Behavior Analysis

A deeper cache hierarchy bridges the memory-processor speed gap. Besides

contributing power consumption significantly with each additional caching level, the

multi-level cache hierarchy also determines the CPU’s overall performance. There-

fore, saving wasteful power in the cache hierarchy should be done without harming

overall performance. In other words, we wish to identify the best configurations

that eliminate virtually all wasteful power consumption while maintaining near-peak

performance. In this thesis, we view this problem as a constrained multi-variable

optimization problem.

This chapter conducts limit studies to understand the potential of multi-level

cache resizing and the difficulties in performance-evaluation based search approaches

to solve this constrained multi-variable optimization problem.

4.1 Complexity of Multi-Level Cache Resizing

As we discussed, there is significant potential in multi-level cache resizing. Un-

fortunately, multi-level cache resizing becomes an NP-hard problem as the number

of cores scales out. Even in a uniprocessor, optimizing a three-level cache hierarchy

is very challenging. If we have a k-way configurable cache per level, then we solve

the problem in the space complexity of O(kl), where l is the number of caching
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# cores 1 2 4 8

space complexity O(kl) O(k2l) O(k4l) O(k8l)

space volume 256 114, 688 3.1× 1010 3.0× 1020

Table 4.1: Multi-level cache resizing problem space scaling.

levels in the hierarchy. For example, we have 256 possible configurations for the

three level cache hierarchy consists of 8-way configurable L1, 8-way configurable L2,

and 4-way configurable L3. In CMP, problem space grows exponentially. Table 4.1

summaries the multi-level cache resizing problem scaling.

4.2 Power and Performance Impact of Varying Cache Sizes

We conduct exhaustive simulations over all possible combinations of cache

configurations per level. In particular, we compare 2,048 cache hierarchy configu-

rations to understand the power consumptions and the performance according to a

cache hierarchy configuration. Our base line cache hierarchy configuration consists

of 32KB L1 cache, 256KB L2 cache, and 2MB LLC. Performance and power con-

sumption values are normalized to the performance and the power consumption of

the baseline cache hierarchy configuration. Details of this simulation environment

will be discussed in Section 4.4. As shown in Figure 4.1, the different cache configu-

rations significantly affect the overall performance. For example, the optimal cache

configuration achieves 1.65X performance compared to the baseline for the sphinx3

workload. On the other hand, some cache configurations harm the performance.
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     (a) Integer Benchmarks               (b) Floating-point Benchmarks 

Figure 4.1: Best and worst performance of workloads by changing cache configura-

tions. IPC is normalized to the IPC of the baseline configuration.

For example, the worst configuration achieves 0.73X of the baseline performance for

the povray workload. On average, we can expect 18% performance improvement

comparing the best configurations to the worst configurations.

On the other hand, cache configurations also affect the total system power con-

sumption. As shown in Figure 4.2, an optimal cache configuration reduces the total

system power consumption by up to 28% of the power consumption of the baseline.

Similar to the performance comparisons, some cache configurations increase the to-

tal system power consumption. For example, the worst cache configuration exhibits

1.85X of the power consumption of the baseline configuration for the hmmer work-

load. On average, the best configurations can save 50% of the total system power

of the worst configurations.
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Figure 4.2: Best and worst power consumption of workloads by changing cache

configurations. Power is normalized to the power consumption of the baseline con-

figuration.

4.3 Experimental Methodology

In this section, we detail our experimental methodology. Figure 4.3 shows our

framework for this study. We generate our workloads using SPEC CPU 2006, and

conduct performance and power simulations.

4.3.1 Single-program Workload Generation

We use 22 SPEC CPU2006 benchmarks (11 integer and 11 floating point),

as shown in Table 4.2. Because we use a SimpleScalar ported to Alpha/Linux, we

compile the SPEC CPU 2006 benchmarks on a native Linux environment. We in-

stalled an Alpha CPU emulator [51] on a Windows PC and then installed the Linux
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SimpleScalar 
- Cycle-level Sim 

- Linux Ported 

- CMP Support 

- Reconfigurable 

   Cache 

XML Parser 
- System Configs 

- Device Type 

- Arch. Param 

- Machine Stats 

Hardware 

Access 

Counts 

MASTAR 

- Process Model 

- ABB Param 

CACTI 
- Cache Model 

- Reconfigurable 

  Cache Support 

McPAT 

- Power Model       

  for CMPs 

- LP DRAM 

Tech. File 

Performance Power 

XML 

Interface 

Trace 

Files 

Performance  
Simulation 

Power 
Simulation 

Alpha Emulator 
- Alpha Linux 

- GNU GCC 4.1.1 

- SPEC CPU 2006 

  - 11 INT WLs 

  - 11 FP WLs 

Sim-EIO 

- I/O traces 

Alpha 

Binaries 

SimPoint 
- Choosing SPs 

- 1B instruction 

SPs 

Workload 
Generation 

Figure 4.3: Simulation framework. We use AlphaVM, SimPoint, and Sim-EIO to

generate our workloads. We use SimpleScalar for performance simulation. Lastly,

we use MASTAR, CACTI, and McPAT to simulate power consumption of the target

system.

36



(Debian Lenny) system on the emulator. We compile the benchmarks natively us-

ing an Alpha compiler, gcc-4.1.1 (provided along with Debian). We compile the

benchmarks with the -O2 option and link glibc-2.5 statically. We were not able

to compile 447.dealII. Moreover, one integer benchmark (403.gcc) and five floating

point benchmarks (416.gamess, 433.milc, 450.soplex, 465.tonto, and 481.wrf) either

could not be finished or did not match to the reference outputs. For these rea-

sons, they have been omitted from our study. Using the reference inputs, all of

the compiled benchmarks were run to completion on SimPoint [52]. We take the

most representative simpoint, consisting of 1B instructions per benchmark. Each

simulation point contains 1.1B instructions. In our experiments, we simulate the

first 100M instructions to warmup the cache, and then we simulate the next 800M

cycles after cache warmup to acquire detailed statistics. Because benchmarks’ IPCs

differ, we simulate a fixed cycle count instead of a fixed instruction count to ensure

all benchmarks within each multiprogrammed workload are active simultaneously.

4.3.2 Performance Simulation

We use a modified Simplescalar simulator for the Alpha ISA [53] to conduct

our study. Table 4.3 shows our baseline processor configuration. As mentioned

in Chapter 2, we model state-of-the-art power-efficient cores. As such, we use a

relatively narrow 2-way issue core to achieve high power efficiency. The cores are

attached to a three-level cache hierarchy. In particular, the on-chip cache hierarchy

has a split 8-way 32KB L1 private cache, a unified 256KB L2 private cache, and
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Group Benchmark MPKI Group Benchmark MPKI

(h4) Mcf 51

Libquantum 29 (l9) Astar 0.82

High Lbm 22 Perlbench 0.69

Omnetpp 15 Hmmer 0.66

(h0) GemsFDTD 14 H264ref 0.54

(m6) Leslie3d 9.5 Low Sjeng 0.27

Sphinx3 8.2 Gobmk 0.2

Xalan 6.8 Calculix 0.2

Medium Bwaves 4.8 Gromacs 0.13

Zeusmp 4.1 Namd 0.07

CactusADM 2.3 (l0) Povray 0.03

(m0) Bzip2 1.9

Table 4.2: Benchmarks classification based on misses per kilo instructions (MPKI)

of 2MB LLC.
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a shared LLC. The LLC is 2MB for a single core, 4MB for two cores, 8MB for 4

cores, and 16MB for 8 cores. Its associativity increases by 4 ways for each additional

core. The cache block size is 64 bytes for all caches. The baseline cache hierarchy

maintains the noninclusive inclusion property for the L2 cache and the LLC. We

model DDR-3 memory of 32GB with a 140ns access latency [54]. We assume a low

power version of DRAM to align with our power efficient core model.

We extend our performance simulator to support reconfigurable caches and to

generate hardware access counts for a power simulation. As shown in Figure 4.3,

we define system configurations including number of cores, cache hierarchy and

memory/ memory controller topology. Moreover, our XML parser also includes

device type, architectural parameters, and machine statistics in the XML file that

will be fed into our power simulator.

4.3.3 Power Simulation

We use McPAT [55] and CACTI 6.5 [56] for power modeling. Our baseline

model uses the 32nm technology node and ITRS high performance devices.

Multi-level Caches We adopt a state-of-art circuit- and device-level static power

reduction technique to model the static power of the shared LLC more realistically.

Specifically, we assume high-Vt devices throughout [44], but apply reverse body

bias (RBB) in standby mode to further reduce standby leakage [43]. When an

access occurs, we apply a forward body bias (FBB) to restore the threshold voltage

for low access delay. We assume that applying FBB does not impact the access
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Cores

2.0 GHz 2-way out-of-order

64-entry ROB, 24-entry LSQ

Gshare/bimodal hybrid branch predictor

2048-entry meta table

512-entry BTB

L1 I-Cache 32 KB, 2-way, 64-byte blocks, 1 cycle

L1 D-Cache 32 KB, 2-ports, 8-way, 64-byte blocks, 4 cycles

L2 Unified Cache 256 KB, 8-way, 64-byte blocks, 7 cycles

L3 Shared Cache
up to 16 MB, 32-way, 64-byte blocks, 19 cycles

Noninclusive, Bus-type interconnect

Memory
32 GB Low Voltage Quad-rank RDIMM

DDR3-800, 140ns loaded latency

Table 4.3: Architectural configuration.

delay for the cache [43]. We utilize stack effect in conjunction with ABB to model

way selection [57, 43]. We use the Model for Assessment of cmoS Technologies

And Roadmaps (MASTAR 2011) from ITRS [58] to derive parameters required for

CACTI according to our assumptions.

We model up to 8 out-of-order cores attached to thee-level cache hierarchies

consisting of private L1 and L2 caches, and a shared L3 cache. The baseline cache

hierarchy maintains noninclusive inclusion properties for L2 and L3 caches. Before

resizing caches, we apply existing techniques to ensure the baseline cache hierarchy

is reasonably efficient. In particular, we assume the L3 cache serializes tag and

data accesses such that only a single data way is ever accessed regardless of the

number of configured cache ways. Due to greater latency sensitivity, we perform
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parallel tags and data access in the L2 cache, though we serialize broadcasting the

accessed data block in data array h-tree. Figure 2.3 from Chapter 2 shows this

cache-hierarchy power breakdown of the baseline multi-level caches for each SPEC

CPU2006 benchmark.

4.4 Limits of Multi-Level Cache Resizing

The goal of offline analysis is to provide the global view of the performance

and power curves. To achieve this goal, we search the whole solution space of the

performance and power functions for all (x, y, z) in Eq. 5.7 by simulating all data

points in the solution space.

Exhaustive Search We conduct an off-line exhaustive search to study the limits

on performance improvement and power savings that our technique can potentially

provide. This provides a reference by which to compare other schemes.

To facilitate the study, we run all possible combinations of configurable caches.

The extensive simulations enable the exhaustive search over the entire solution space

to find the best static solution. Table 4.5 shows the cache configurations for this

study. Each workload is simulated 3,072 times to search the entire solution space,

and 67,584 simulations are conducted to run all of the workloads.

Benefits of Multi-Level Cache Resizing with Performance Constraint

Multi-level cache resizing is crucial to eliminate wasteful power consumption in

a cache hierarchy because deeper cache hierarchies distribute power consumption

41



Table 4.4: Cache parameters for the baseline multi-level caches.

L1 Cache

Access (tag array / data array / data array h-tree) Parallel / Parallel / Parallel

Read energy per access 0.396 nJ

Write energy per access 0.483 nJ

Subthreshold leakage 41.5 mW

Gate leakage 22.3 mW

L2 Cache

Access (tag array / data array / data array h-tree) Parallel / Parallel / Serial

Read energy per access 0.258 nJ

Write energy per access 0.279 nJ

Subthreshold leakage 154.5 mW

Gate leakage 78.5 mW

L3 Cache

Access (tag array / data array / data array h-tree) Serial / Serial / Serial

Read energy per access 4.38 nJ

Write energy per access 6.6 nJ

(Standby) Subthreshold leakage 237.5 mW

(Standby) Gate leakage 1666 mW
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Config # 1 2 3 4 5 6 7 8 9 10 11 12 ... 32

L1 16:2 4 6 8 32:5 6 7 8 64:5 6 7 8 ... N/A

L2 512:1 2 3 4 5 6 7 8 N/A N/A N/A N/A ... N/A

LLC 8192:1 2 3 4 5 6 7 8 9 10 11 12 ... 32

Table 4.5: Reconfigurable cache configurations (set:ways). For example, #7 config-

uration of L2 is 512:7 (set number is omitted if it is same to the set number of a

previous configuration). In total, 67,584 simulations are conducted.

across more levels. As we pointed out earlier, we wish to consider Pareto-optimal

cache hierarchy configuration because a cache hierarchy configuration determines

the overall system performance as well. To do so, we enforce a performance degra-

dation level within 1% compared to the performance level of the baseline cache

hierarchy configuration. Note that such Pareto-optimal cache hierarchy configura-

tions may increase the total energy consumption in some cases, but we focus on

reducing the total system power consumption and our approach generally reduces

energy as well due to the negligible performance degradation while reducing power

consumption significantly. Figure 4.4 summarizes the limits of power savings from

different approaches; comparing power savings from L1-only, L2-only, L3-only and

multi-level exhaustive searches. These results demonstrate multi-level cache resiz-

ing can provide significant power savings compared to single level cache resizing at

the same performance degradation level. Multi-level cache resizing can save total

system power by as much as 27%, and 15.4% on average, while L1-only, L2-only,

and L3-only resizing provide, on average, 8.6%, 5.1%, and 3.3% respectively.
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Workload L1 L2 L3 Power Workload L1 L2 L3 Power

perlbench 2 2 3 0.785 bwaves 1 1 1 0.730

bzip2 1 2 4 0.826 zeusmp 4 4 4 0.888

mcf 2 3 3 0.935 gromacs 3 2 4 0.866

gobmk 4 6 3 0.835 cactusADM 12 6 1 0.910

hmmer 4 3 3 0.828 leslie3d 8 3 2 0.871

sjeng 7 4 1 0.814 namd 11 4 1 0.861

libquantum 1 1 1 0.840 povray 8 8 1 0.855

h264ref 1 4 4 0.766 calculix 2 1 1 0.760

omnetpp 2 2 4 0.894 GemsFDTD 8 1 2 0.860

astar 2 3 4 0.811 lbm 1 5 3 0.926

xalan 1 2 2 0.865 sphinx3 2 1 4 0.874

INT AVG 2.5 2.9 2.9 0.836 FP AVG 5.5 3.3 2.2 0.855

WL AVG 4.0 3.1 2.5 0.846

Table 4.6: Statically optimal multi-level configurations.

44



0.96 

0.97 

0.98 

0.99 

1.00 

1.01 

Workload 

E-ML E-L1 E-L2 E-L3 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

Workload 

P
o
w

e
r 

 

P
e
rf

o
rm

a
n
c
e
 

Figure 4.4: Power and performance comparison between exhaustive and per-level ex-

haustive searches. (For example, E-L1 only searches by resizing L1 cache capacity.)

Figures 4.5, 4.6, 4.7, and 4.8 show power consumption breakdown in the cache

hierarchy per technique. Generally, workloads with higher MPKI consume more

power in the cache hierarchy. In the first group with low MPKI workloads, the

workloads consume 0.8W in the cache hierarchy given the baseline configurations.

In the second group, workloads with low, medium, and high MPKI consume 1.2W,

0.9W, and 1.7W, respectively.

L1 cache resizing saves significant power consumption for workloads that dis-

sipate a large portion of their power in the L1 cache. For example, in h264ref,

Figure 4.6, the dynamic power consumption at the L1 caching level alone exhibits

51.6% of the total power consumption in this workload. As such, L1 cache resizing

can reduce the power consumption in the cache hierarchy by more than 50%.

45



Likewise, L2 cache resizing saves significant power consumption for workloads

that dissipate a large portion of their power in the L2 cache. namd and calculix

in Figure 4.5, and cactusADM and xalan in Figure 4.7 exhibit more than 20%

power reduction in the cache hierarchy with L2 cache resizing. Unlike L1 cache

resizing, static power consumption in the L2 caching level makes up a significant

portion of the total power consumption in the cache hierarchy: namd, calculix,

cactusADM, and xalan show 32%, 36%, 27%, and 34%, respectively, of their total

power consumption in the cache hierarchy, at the L2 caching level. As a result, L2

cache resizing effectively reduces the total power consumption of the cache hierarchy

by down sizing the L2 cache.

Similarly, L3 cache resizing is effective when a workload consumes significant

power at the L3 caching level. For example, namd saves around 24% of the total

power consumption by down sizing the L3 cache. In this case, the static power

consumption in the L3 cache takes 32% of the total power consumption.

On the other hand, multi-level cache resizing achieves best power reduction at

a similar performance level compared to other techniques by orchestrating resizing

at all three caching levels. Note that multi-level cache resizing never down sizes a

caching level smaller than the size chosen by the other techniques. For example,

the L1 cache size of multi-level cache resizing is always equal to or larger than the

L1 cache size under L1 resizing. In particular, the L1 cache size of multi-level cache

resizing for grimaces is three times larger than the L1 cache size under L1 cache

resizing in Figure 4.5 and in Table 4.6. In this case, it is more power efficient to stop

downsizing the L1 capacity at three and to reduce the size of the L2 cache down to
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two rather than downsizing the L1 capacity all the way to one.

Moreover, multi-level cache resizing introduces bigger power dissipation at

certain caching levels compared to the power consumption in the baseline cache

configuration. xalan in Figure 4.7 exhibits significant power dissipation at the L3

cache in its dynamic power, which is 25% of the total power consumption or 93mW,

in multi-level cache resizing technique. The L3 cache, in the baseline configuration,

consumes only 36mW and it is 5% of the total power consumption in the cache

hierarchy. However, even with such increase in the power consumption of the L3

cache, multi-level cache resizing reduces the total power consumption as much as

46% for xalan.

The other important consideraten is performance. We cannot simply combine

the cache resizing decisions from each caching level to achieve the best power re-

duction because cache resizing at each level in isolation introduces more traffic to

the next caching level. Theses traffic increases taken together result in worse per-

formance than the aggregate performance degradation. However, multi-level cache

resizing achieves best power reduction while maintaining a high performance level.

Therefore, we conclude that we need multi-level cache resizing for two reasons.

First, no single-level approach captures all of the wasteful power consumption be-

cause a multi-level cache hierarchy distributes power consumption across different

caching levels. And second, multi-level cache resizing can balance multiple caching

levels to achieve acceptable performance degradation while at the same time signif-

icantly reducing the power consumption.
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Figure 4.5: Power breakdown of workloads with low MPKI (first group).
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Figure 4.6: Power breakdown of workloads with low MPKI (second group).
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Figure 4.7: Power breakdown of workloads with medium MPKI.
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Figure 4.8: Power breakdown of workloads with high MPKI.
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Chapter 5

Greedy Coordinate Descent Method

Given a deep cache hierarchy, Chapter 4 uses exhaustive search to identify

the best cache resizing configurations. In this chapter, we develop a feasible algo-

rithm for finding the best resizing configurations that can eventually be used in an

online fashion. We propose to solve the multi-level cache resizing problem using

the coordinate descent method [23]. Since there is no generalized solution for a

constrained coordinate descent method, we take a greedy approach to iterate be-

tween coordinate directions and to select subsequent points in the search space to

visit. In the following sections, we first discuss our prediction-based approach that

does not require direct evaluations. And then, we define a greedy way in which our

coordinate-descent method to iterate to find the optimal cache sizes.

5.1 Analytical Model for MCR

Consider solving a problem of finding optimal multi-level cache sizes for a

uniprocessor. Let x, y, and z be the cache sizes in a three-level cache hierarchy. Let

f(x, y, z) be the power consumption of the system consisting of a core with a three

levels of cache. Let g(x, y, z) be the performance of the system.

Power = f(x, y, z), Performance = g(x, y, z)
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Let µ be the normalized value of a degraded performance level (i.e. between 0 and

1) relative to the cache hierarchy with baseline sizes of xB, yB and zB.

The goal of studying this analytical model is to provide a mathematical back-

ground to solve the constrained optimization problem. To achieve this goal, we

present a generalized form of the coordinate descent method and explain our greedy-

based heuristic iterations.

A simple form of the problem we want to solve is

minimize f(x, y, z), subject to g(x, y, z) ≥ c = µg(xB , yB , zB) (5.1)

The Lagrangian for this is

L(x, y, z, λ) = −f(x, y, z) + λ(g(x, y, z) − c) (5.2)

So,

∂L

∂x
= −

∂f(x, y, z)

∂x
+ λ

∂g(x, y, z)

∂x
= 0 (5.3)

∂L

∂y
= −

∂f(x, y, z)

∂y
+ λ

∂g(x, y, z)

∂y
= 0 (5.4)

∂L

∂z
= −

∂f(x, y, z)

∂z
+ λ

∂g(x, y, z)

∂z
= 0 (5.5)

∂L

∂λ
= g(x, y, z) − c ≥ 0 (5.6)

From Eq. 5.3, 5.4 and 5.6 we obtain the equations,

∇f(x, y, z) = λ∇g(x, y, z) and g(x, y, z) ≥ c, (5.7)

which are satisfied if and only if (x, y, z) is a minimum of f(x, y, z) and satisfies

g(x, y, z) ≥ c [59].
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5.2 Performance Approximation

Solving Eq. 5.7 is very challenging. One of the most challenging parts is per-

formance characterization, i.e. g(x, y, z), because even differences between two

configurations, ∆g(x, y, z), require performance evaluations and evaluating perfor-

mance is unstable in a time-varying system. For this reason, we approximate the

solution by replacing the performance constraint such that

g′(x, y, z) ∝ g(x, y, z) and g′(x, y, z) ≥ c = µg′(x, y, z) (5.8)

Rather than performance (e.g. IPC), we use a proxy, g′(x, y, z), that mimics per-

formance for the purposes of optimization, but which is much easier to predict.

In particular, we use AMAT (Average Memory Access Time) for g′(x, y, z). The

main benefit of using AMAT is that we can predict it with performance events, e.g.

cache-miss counts, so that we are not dependent on direct performance evaluations.

5.3 Stack Distance Measurement

AMAT can be computed from cache miss and memory reference counts. In

this section, we review techniques for predicting cache misses given cache of different

sizes. These techniques are based on stack distance profiling [60].

5.3.1 Stack Distance

Assume a memory-reference stream, A0, B0, C0, A1, B1, D0, C1, B2, A2, A3, B3....

The stack distance of a given memory reference is defined by the number of unique

memory references between the reference and its previous use. For example, the
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Figure 5.1: LRU stack, stack distance, and distance counter.

stack distance of the first reference to a memory block, such as A0, B0, C0, and D0,

is ∞. The stack distances of A1, B1, C1, B2, and A3 are 3, 3, 4, 3, and 1, respectively.

Again, stack distance counts only unique memory references. Stack distance of A2

and B3 are 4 and 2, respectively. Figure 5.1 illustrates LRU stack and corresponding

stack distance and distance counters.

Stack distance counters provide cache miss information for caches that main-

tain an LRU policy. Figure 5.1 shows a histogram, providing the counts of stack

distance value from the example address trace. As shown in Figure 5.1, the num-

ber of references with infinite stack distance signify the cold misses. In Figure ??,

there are 4 such occurrences. If we have a cache size of 4, there are no more cache

misses besides these cold misses. The distance counters provide complete informa-
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tion about cache misses corresponding to any cache size. For example, if we have

a cache size of 3, there will be two additional misses, i.e. capacity misses, which

would not have occurred if the cache size were 4. In general, stack distance counters

provide cache hit and miss information for caches of any capacity.

5.3.2 Way Counters

Stack distance counters provide cache miss-rates as a function of cache size.

Despite the benefit of stack distance counters, there are two problems. First,

cache miss-rates based on stack distance counters are only strictly valid for a fully-

associative cache because the LRU stack does not consider set-associative caches.

Second, implementing stack distance counters is nontrivial. Stack distance coun-

ters require memory reference traces and LRU stack profiling. The overhead of

implementing an LRU stack is significant because it requires nontrivial amount of

memory space to store LRU information and efficient algorithm to maintain the

LRU property.

To solve these problems, Suh et. al. proposed a low overhead, on-line memory

monitoring scheme: way counters [19]. Way counters utilize existing hardware in

a cache to capture LRU information and require negligible extra hardware to store

distance counter values. Although way counters approximate cache misses, it has

two main strengths. First, way counters account for real cache hits and misses hence

it results in better characterization of cache behavior. Second, way counters work

at runtime, and require minimal extra hardware.
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For these reasons, we use way counters to approximate stack distances and

employ them to drive cache resizing. For simplicity, we only use way counters

and exclude set counters because we have sufficient cache associativity, and assume

uniform memory reference distribution across sets. In other words, we use aggregate

way counters throughout all sets in the cache rather than maintaining separate way

counters per set. Figure 5.2 shows a working example for way counters. As shown,

way counter values approximate the stack distance counters in Figure 5.1. In this

example, we assume two cache sets. Notice, we can approximate the stack distance

at distances 2 and 5 by adding stack distance counters 1 and 2, and counters 3

and 4, for new counter 0 and 1, respectively. However, the final way counter values

are 3 and 4. This is because stack distance for a fully associative cache can not

account for the set mappings of individual memory references. On the other hand,

way counters have the advantage of reflecting the actual set mappings in an existing

cache organization.

Figure 5.3 illustrates the implementation of way counters. As shown, same

way LRU from two different sets will increase the same way counters by aggregating

way LRU using a MUX and the way LRU will increase corresponding way counters

through DEMUX.

5.4 Power Efficiency Gain

We predict performance and power savings based on way counter values. Uti-

lizing this prediction, we search an optimal cache hierarchy configuration. To enable
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such search iterations following the coordinate descent method, we define new met-

ric, power efficiency gain (PEG), to select a coordinate and a subsequent point that

will maximize power savings. We define PEG as the power savings per unit perfor-

mance degradation. If powera and powerb are two power consumption levels that

two configurations of a system dissipate when the system receives cache capacities of

a and b respectively, and performancea and performanceb are their corresponding

performance levels, then the power efficiency gain, PEGa
b of decreasing the capacity

from a to b is defined as,

PEGa
b = (powera − powerb)/(performancea − performanceb) (5.9)

Fundamentally, PEG approximates Equation 5.15. Our greedy iteration reduces

the number of iterations by searching the maximum PEG value per caching level.

In other words, we solve Equation 5.7 by disabling the way of a caching level with

maximum power efficiency gain. The pseudo code for the our GCD MCR algorithm

is shown in Algorithm 1.

5.5 Greedy Coordinate Descent Method

The problem, as defined in Equation. 5.1, is a nonlinear equation and solving it

is very challenging mainly due to the infeasibility of characterizing the performance

and power functions. Thus, we resort to an iterative method. The iterative meth-

ods are commonly used to solve problems of nonlinear programming, which evaluate

gradients or function values. First, we exclude heuristics because it requires per-

formance evaluations of intermediate solutions which may degrade the performance
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Technique Complexity Quality Feasibility Example

Direct methods High High Extremely low Lagrangian multiplier

Newton’s method,

Iterative methods Medium High Medium Conjugate gradient methods,

Gradient decent

Hill climbing,

Heuristics Low Medium High Genetic algorithms,

Nelder-Mead method

Coordinate descent Low High High MCR

methods

Table 5.1: Optimization technique classification.

severely, but we compare MCR to one popular heuristic in Section 6.3.1, the Nelder-

Mead simplex method.

Iterative methods commonly evaluate Hessians or gradients to solve problems.

Among these, we can generalize the sequence of such steps to solve a problem using

gradients,

xn+1 = h(xn,∇f(xn)), n ≥ 0. (5.10)

Solving the problem by following a sequence in Equation 5.10 is more feasible than

directly solving Equation 5.7. For example, the gradient descent method is a well-

known [61] optimization method to find a local optimum. The number of steps it

takes is proportional to the negative of the gradient function. However, we do not

usually have gradient functions in cache resizing, so we are better of considering
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non-derivative optimization. In particular, coordinate descent [23] is very popular

to solve non-differentiable functions. Compared to other techniques such as gradient

descent and Nelder-Mead, coordinate descent has strength in its capability to solve

huge problems efficiently [62]. The iterative steps of coordinate descent, Nelder-

Mead, and greedy iterative, method are illustrated in Figure 5.4.

Despite its efficiency, the coordinate descent can still potentially require a

large number of steps because each step cyclically iterates through each direction,

i.e. the coordinate direction of each variable, minimizing objective functions. The

other problem is that coordinate descent works well with unconstrained functions.

However, we have a constraint: the bounded performance degradation. For this rea-

son, we propose a greedy approach which utilizes the observation from Equation 5.7:

parallel gradients of performance and power functions.

Greedy algorithms are well known in the literature for solving computer sci-

ence/engineering problems due to their low complexity and their ability to obtain

locally optimal, and in some cases, globally optimal solutions [61]. Note, our use of

the greedy approach simply refers to the sequence, on each iteration, of taking the

decision that provides the best immediate solution which is close to the state of two

parallel gradients above. Here, we clarify that we do not use the greedy approach in

a heuristic way to solve the problem. Instead, we approximate the Lagrangian as in

Equation 5.7 by using the coordinate descent method and by generating its descent

via a greedy-style approach.

In other words, our approach uses a combination of features from the com-

mon approaches to derive an alternative method to approximate the solution of
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Figure 5.4: Comparison between Coordinate Descent, Nelder-Mead, and Gradient

Descent method. Contour lines of objective function f(x) and constraint function

g(x) are plotted in solid lines and dotted lines, respectively.

61



Equation. 5.7. Again, our goal is to design a method to achieve high performance

with low complexity. To achieve this, we propose an iterative greedy-style algorithm

following coordinate descent method in the way that makes two gradients parallel

∇f(x, y, z) = λ∇g(x, y, z). (5.11)

We define sequence function, h(xn,∇f(xn)) as:

xn+1 = xn + ~v (5.12)

such that

~v = kêi that maximize
f(xn)− f(xn + ~v)

g(xn)− g(xn + ~v)
, (5.13)

where

êi ∈ {ê1, ê2, ...ênum of variable}. (5.14)

In our greedy approach, we eliminate outlier, i.e. maximum value of

∂f(x)

∂êi
/
∂g(x)

∂êi
, (5.15)

to converge quickly to the parallel state of Equation 5.11 as shown in Equation 5.13.

The pseudo code for our method for the problem is shown in Algorithm 1.
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Algorithm 1: Greedy Coordinate Descent Method

1.1 greedy coordinate descent method():

1.2 begin

1.3 while g(x) ≥ c do

1.4 foreach level i do

1.5 candidate xi = get outlier(x, i)

1.6 end

1.7 next x = maximum of candidate xi

1.8 end

1.9 end

1.10 get outlier(x, i):

1.11 begin

1.12 foreach available k do

1.13 candidiate xk = x + kêi

1.14 evaluate (f(x)− f(xk))/(g(x) − g(xk))

1.15 end

1.16 return maximum of candidiate xk

1.17 end
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Chapter 6

GCD Uniprocessor Multi-Level Cache Resizing

In this chapter, we design greedy coordinate descent multi-level cache resiz-

ing algorithm that searches for the optimal cache configuration for a uniprocessor.

We implement the PEG-based sequence function that we defined in Chapter 5. As

we described, PEG approximates the partial derivative of the gradient in our con-

strained multi-variable optimization which consists of the objective function, total

power consumption of a given cache hierarchy, and the constraint function, bounded

performance degradation. As a result, we realize an evaluation-less search utilizing

our PEG-based greedy coordinate descent method.

6.1 GCD Uniprocessor MCR Algorithm Design

6.1.1 GCD MCR Algorithm Description

GCD MCR Framework We optimize multi-level cache configurations per cache

level at each iteration cyclically. Each cache size is mapped to a separate coordinate

within our greedy coordinate descent method and a new configuration is determined

per iteration according to the allocation that has maximum PEG. Figure 6.1 illus-

trates the framework for MCR. First, each caching level emits way counter values

every corresponding epoch and these values are stored in the way-counter registers.

Second, MCR logic concurrently compares PEGs from each caching level and re-
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sizes the caching level, for each corresponding epoch, which the has maximum PEG

value. Finally, MCR stops if no PEG value greater than zero presents.

Power Efficiency Gain (PEG) We implement Algorithm 1. To do so, we first

design a method to generate a search sequence (Equation 5.12) by defining the

search vectors (Equation 5.13). Algorithm 3 shows the pseudo code for computing

PEG in our study. Line 3.12 computes ∆ power by resizing the cache from a to b.

In particular, ∆ power at a down sizing event is the sum of the power reduction

of the dynamic power consumption and the static power consumption of the cache,
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and the increased power consumption of the next level of cache. For the static

power reduction, all three caching levels exhibit static power consumption roughly

in proportion to their sizes. On the other hand, only the L1 and L2 caches show

near-proportional dynamic power consumption to their sizes because the L3 cache

exploits serialized data array accesses after a tag hit to optimize the dynamic power

consumption in the organization. The increased power consumption of the next level

of cache is determined by the additional cache misses caused by the down sizing and

the dynamic access energy of the next-level cache.

∆ AMAT can be estimated by calling the get amat() procedure in Algorithm

4. The difference between computing balance in Line 2.7 and ∆ AMAT in 3.13 is

that ∆ AMAT considers additional cache misses by adding the way counts associated

with each disabled way.

Because of the ∆ power computation, our GCD MCR algorithm does not

shrink a cache beyond the balance point that saves more power consumption from

the dynamic and static power consumption of the cache due the current cache’s re-

sizing than the increased power consumption from the dynamic power consumption

of the next-level cache. Moreover, PEG enables comparisons across caching levels

because it provides the metric of power saving per unit AMAT increase to which

different caching levels contribute separately. As such, the maximum PEG value

from the caching levels determines the search direction in the coordinate system.

Uni-directional Searches Algorithm 2 describes the outermost loop of our GCD

MCR algorithm. The gcd mcr() procedure is invoked every Epoch within the corre-
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sponding interrupt handler and it continues to down size the cache hierarchy within

the performance degradation range. To prevent oscillation, our GCD MCR search

direction is uni-directional towards smaller caches. However, to make our GCDMCR

algorithm responsive to dynamically changing behavior, we start a new search every

reset period, as shown in Line 2.13. Moreover, we update each set of way counters

at different frequencies. As shown in Lines 2.10, 2.11, and 2.12, we update each set

of way counters at certain epoch boundaries only. Also, reconfiguration can only

happen at those corresponding epoch boundaries.

The while loop in Line 5.16 iterates until there is no more candidate for further

down sizing in the corresponding cache level according to the Epoch count. As shown

in Line 2.17, the while loop terminates if the winner does not belong to the current

resizable cache level.

6.1.2 Scalability of GCD MCR Algorithm

We measure the time complexity of our GCD MCR algorithm using two met-

rics: search complexity and computation complexity. We define search complexity

as the number of iterations (epochs) needed to find the optimal cache configurations.

For the Nelder-Mead simplex method, search complexity is the number of steps until

it converges.

On the other hand, computation complexity is measured in the number cycles

to execute the algorithm at each epoch. For example, the computation complexity

of the Nelder-Mead simplex method is O(nm), where n is the number of cores and
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Algorithm 2: GCD MCR

2.1 gcd mcr(perfLimit):

2.2 begin

2.3 /* main epoch loop */

2.4 while true do

2.5 totalAccesses = sum of caching level zero’s all way counts and misses

2.6 /* Maximum AMAT increase to guarantee performance */

2.7 balance = get delta amat(wcL, totalAccesses, perfLimit)

2.8 balance -= increased deltaAMAT because of current cache allocations

2.9 /* update PEG at different frequencies */

2.10 if not (epoch % L1 FREQ) then maxPEG[0] = update max peg(L1)

2.11 else if not (epoch % L2 FREQ) then maxPEG[1] = update max peg(L2)

2.12 else if not (epoch % L3 FREQ) then maxPEG[2] = update max peg(L3)

2.13 else if not ( epoch % RESET FREQ) then start new search

2.14 /* computation loop*/

2.15 while balance do

2.16 winner = caching level with maximum value of maxPEG

2.17 if winner is from the caching level can be reconfigured then

2.18 balance = balance – winner.deltaAMAT

2.19 allocL[winner.level] = winner.alloc

2.20 update max peg(current level)

2.21 else break

2.22 end

2.23 /* Send reconfiguration command */

2.24 if allocL is changed then reconfigure()

2.25 end

2.26 end

68



Algorithm 3: GCD MCR (continued)

3.1 update max peg(current level):

3.2 begin

3.3 alloc = current allocation of caching level of current level

3.4 balance = current remained balance

3.5 foreach available way-off i do

3.6 peg[i] = get peg value(wc, alloc, alloc – i , balance)

3.7 end

3.8 winner = allocation with maximum peg value return winner

3.9 end

3.10 get peg value(wc, a, b, balance):

3.11 begin

3.12 deltaPower = sum of dynamic and static power changes caused by change in misses

when the assigned way decreases from a to b

3.13 deltaAMAT = increased AMAT caused by change in misses when the assigned way

decreases from a to b

3.14 peg = 0

3.15 if deltaAMAT is smaller than balance then

3.16 peg = deltaPower / delatAMAT

3.17 end

3.18 return peg

3.19 end
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Algorithm 4: GCD MCR (continued)

4.1 get delta amat(wcL, totalAccesses, perfLimit):

4.2 begin

4.3 AMAT = get amat(wcL, totalAccesses) /* predict AMAT with given way counts */

4.4 /* convert perf limit to AMAT limit */

4.5 deltaAMAT = AMAT * (1.0 – perfLimit) / perfLimit

4.6 return deltaAMAT

4.7 end

4.8 get amat(wcL, totalAccesses):

4.9 begin

4.10 AMAT = cacheLat[0] /* all data reference goes to level-1 cache */

4.11 foreach level i do

4.12 AMAT = AMAT + cacheLat[i+1] * misses of caching level i / totalAccesses

4.13 end

4.14 return AMAT

4.15 end
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m is the number of caching levels. For this uniprocessor study, it is O(m) because

the Nelder-Mead simplex method requires comparisons between m+ 1 vertices per

iteration.

From the perspective of search complexity, finding the optimal cache sizes in

a multi-level cache hierarchy is an NP-hard problem as the depth increases. This

is because it has a search complexity of O(km), where the cache hierarchy has m-

level caches and each cache has up to k configurable sizes. We reduce the search

complexity down to O(km) in worst case, but O(k) in average case due to our

greedy approach which reduces the number of iterations of the main while loop.

Asymptotic analysis is shown in Algorithm 5.

The worst case arise when all km PEG values are sorted and interleaved across

different caching levels. In this case, every epoch iteration in the main loop in

Line 5.7 will traverse between different caching levels in the PEG order. Moreover,

because of the sorted PEG order in each caching level, the cache reconfiguration

step in Line 5.20 will be fixed at one. Therefore, in such a case, our GCD MCR

algorithm exhibits O(km) search complexity.

However, in the average case, the PEG values are not in sorted order and

our GCD MCR algorithm does not suffer from alternating resizing between caching

levels nor from the fixed down stepping of each one. In the average case, it can

be done within O(k) epochs because moderate numbers of alternations between

caching levels are bounded by the maximum configurations. We will present search

time results to show the search complexity in the average case in Section 6.3.1 of

Chapter ??.
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From the perspective of computation complexity, our GCD MCR algorithm

exhibits O(k2). We can reduce the complexity down to O(km) by comparing the

LRU way’s PEG value. However, it might cause a suboptimal search for not con-

sidering the best PEG value per level before comparing these PEGs across different

caching levels. Besides, this will increase the number of alternating PEG com-

parisons across caching levels of the main Epoch loop in Line 2.4 of Algorithm 2.

Moreover, search complexity is more important than computation complexity in our

study because each search takes more cycles compared to that of the computation

orders of magnitude. As such, we realize the computation complexity of O(k2) both

to reduce the search complexity and to enhance the chances of finding the global

optimum.

6.1.3 Hardware Overhead

To predict power consumption and AMAT of a given cache hierarchy, we use

shadow tag arrays [63, 11]. A shadow tag is similar to a regular cache structure,

but has no data array. The major source of hardware overhead is the shadow tags.

Shadow tags require s ∗ w ∗ t bits, where s is the number of sampled sets, w is the

number of ways, and t is the tag entry bits. Way counters require 4 ∗ w bits. In

addition to the storage bits, we need an adder for incrementing the way counters.

Our shadow tags contain one sampled set per 32 regular tags and we assume

a 42-bit physical address. The shadow tags array requires 4034 Bytes of overhead

which is an increase of 0.15% in the storage requirement compared to the base line
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Algorithm 5: GCD MCR Complexity Asymptotic Analysis

5.1 gcd mcr():

5.2 begin

5.3 ...

5.4 /* Search Complexity */

5.5 /* loop will be executed O(km) in the worst case, however */

5.6 /* our greedy approach enhances convergence rate, hence O(k) in the average case */

5.7 while true do

5.8 /* Computation Complexity */

5.9 /* Initialization requires O(km) */

5.10 ...

5.11 /* update PEG at different frequencies */

5.12 /* update max peg requires O(k) */

5.13 ...

5.14 /* computation loop*/

5.15 /* this computation loop requires O(k2) */

5.16 while balance do

5.17 ...

5.18 end

5.19 /* Send reconfiguration command */

5.20 if allocL is changed then reconfigure()

5.21 end

5.22 end
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Level L1 L2 LLC

Sets 64 512 8192

Ways 8 8 4

Size of tag entry (bits) 33 30 26

( valid bit + tag bits + LRU bits) (1 + 29 + 3) (1 + 26 + 3) (1 + 23 + 2)

Tags (Byte) 2112 15360 106496

Data (KB) 32 512 2048

Area of baseline cache (KB) 34 527 2152

Shadow tag sets 2 16 256

Shadow tags (Byte) 66 480 3328

Way counters (Byte) 64 64 32

Area overhead of shadow tags (Byte) 130 544 3360

Total area overhead (%) 0.37 0.1 0.15

Table 6.1: Storage overhead of shadow tags.

caches. Table 6.1 shows area overhead details for the shadow tags.

6.1.4 Implementation

We implement our GCD MCR algorithm in the simulator from Section 4.3.2 of

Chapter 4. In particular, we modify our simulator to emit an interrupt every epoch

(epoch size will be discussed in Section 6.3.3), and execute an interrupt handler. The

interrupt handler, which runs on our modified SimpleScalar simulator, gathers way
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counts and sends them to the MCR server which runs as another process. We also

start to run new GCD MCR search after a certain number of epochs has elapsed.

This reset interval will also be discussed in Section 6.3.3. We also modify the

simulator to allow software to reconfigure the caches within the interrupt handler.

Performance and power estimations are calculated within the MCR server. In

particular, the MCR server requires per-access energies and leakage energies from

CACTI to predict power consumption per epoch based on the way counts, so we

implement configurable registers to store these per-access energy values. These

energy registers can be implemented either in hardware or in software.

Cache Reconfiguration To enable cache reconfiguration, we modified Simplescalar’s

cache module to model selective ways [2] for the L2 cache and LLC, and selective

sets and ways [8] for the L1 cache. We assume all caches in the hierarchy, except

for the L1 I-cache, are reconfigurable and can change their size in increments of a

cache way from 1 to the associativity number of ways in the L2 cache and LLC,

and of a corresponding number of sets and ways in the L1 cache. (Our work does

not consider I-cache resizing, and assumes the I-cache is always fixed). Hence, for

our hierarchy, there are 12, 8, and 32 different configurations for the L1, L2, and L3

caches, respectively. In the static-optimal version of MCR from Chaper 4, we try

all possible permutations of the per-cache configurations to identify the one that is

most power-efficient. While each cache’s access delay also changes across different

configurations, we assume a constant number of CPU cycles to access each cache

chosen to handle that cache’s worst-case access delay (i.e. with all ways enabled).
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Our simulator accounts for the overheads associated with resizing each cache.

When up-sizing the caches, we assume 2/4/7 cycles to power up and to flash in-

validate each way for L1/L2/LLC respectively. When down-sizing, we walk the

down-sized way(s) to flush their contents. Clean cache blocks are discarded after

checking upstream caches to maintain inclusion. Dirty cache blocks check upstream

caches and are also written back to the next-lower level. We assume these operations

are pipelined such that flushing takes 1 cycle per walked cache block. Down-sized

ways are selected in reverse way ID order. Because we do not physically move cache

blocks once they are filled, the flushed cache blocks have an equal probability of be-

ing at any position in the LRU stack. Moreover, we do not attempt to reconstruct

the per-set LRU stacks after flushing.

Low-Pass Filter in Dynamic Cache Reconfiguration Online cache hierar-

chy reconfiguration introduces many issues, most of which are caused by transient

occurrences in our GCD MCR algorithm. Moreover, such occurrences may form a

positive feedback loop resulting in exacerbated performance degradation. As such,

we employ two mechanisms in our technique: search-restart and low-pass filter.

First, search-restart prevents forming a positive feedback loop along with the uni-

directional search in Section 6.1.1. By resetting cache configurations to the baseline

configuration, GCD MCR is not only able to avoid forming a feedback loop, but also

can adapt to the dynamically changing phases of workloads. Second, we employ a

low-pass filter in our GCD MCR. In our study, this is implemented by averaging

previous cache configuration and the new configuration from the GCD MCR algo-
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rithm. There are two reasons for having such a low-pass filter. Online GCD MCR

utilizes way counts of the past epoch because our GCD MCR does not require any

a priori information. As such, the solution of GCD MCR is speculative and brings

the possibility of miss prediction. Moreover, there could be transient behavior due

to the relatively fine granularity in the epoch size of our GCD MCR compared to

other possible evaluation-based search techniques. As a result, we employ a low-

pass filter to reduce the penalty from a miss prediction and the excessive numbers

of reconfigurations due to transient behaviors.

6.2 Experimental Methodology

Static MCR We conduct an offline static MCR to examine its potential power

savings and performance improvement compared to other schemes. This static MCR

study has two goals: first, identify potential performance gains and power savings

compared to the other techniques, and second, determine the limit on the maximum

performance and the power savings from perfect information, e.g. way counts as a

priori information. The latter will allow us to assess how well our dynamic MCR

technique performs.

To facilitate the study, we take way counts of the baseline cache configuration,

and use theses as input to Algorithm 2. Since the way counts of lower caching levels

can be changed with a cache resizing at the upper level cache, we update way counts

as the algorithm proceeds and needs way counts from different cache configurations

as we already have exhaustive simulation results.
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Random We conduct an offline evaluation of random search to compare static

MCR to randomly generated solutions. We generate cache configurations randomly

and evaluate their performance and power savings against the exhaustive simulation

results. Note that we randomly select LLC sizes up to 16MB.

Nelder-Mead Nelder-Mead simplex method is a simple minimization algorithm

which was first introduced in 1965 [64]. Since then, NM simplex method was com-

monly used in various fields of science, especially in multi-variable optimization

problems, and this work has been cited more than 18,000 times so far. We conduct

an offline evaluation of the NM method. We use a classical simplex method by

Nelder and Mead, which consists of Sort, Reflection, Expansion, Contraction, and

Reduction [64]. Pseudo code for this study is shown in Algorithm 6.

Epoch Size The choice of the epoch size affects the performance of our greedy

iterative method. Reducing the epoch size generally provides a better chance to

capture dynamic phase changes during a workload run, but at the same time en-

counters more reconfiguration overheads due to frequent reconfigurations. On the

other hand, Increasing the epoch size generally reduces the reconfiguration over-

heads, but loses adaptability for its limited number of chances to reconfigure. We

tried 40K, 200K, 400K, 500K, and 1M, cycle epoch sizes and pick a 200K cycle epoch

size for this study because it exhibits adaptiveness with low overhead. Moreover,

different caching levels employ different reconfiguration frequencies due to different

access frequencies. For our study, the L1 cache reconfigures every epoch and the L2
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Algorithm 6: Nelder-Mead Method

6.1 nelder mead method():

6.2 begin

6.3 while true do

6.4 sort vertices such that f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1)

6.5 if all vertices are same or differences are within threshold then goto end

6.6 calculate center of gravity x0 except x0

6.7 reflection

6.8 compute reflected point xr

6.9 if f(x1) ≤ f(xr) ≤ f(xn) then replace xn+1 with xr goto sort

6.10 expansion

6.11 if f(xr) < f(x1) then

6.12 compute expanded point xe

6.13 if f(xe) < f(xr) then replace xn+1 with xe goto sort

6.14 else replace xn+1 with xr goto sort

6.15 contraction

6.16 compute contracted point xc

6.17 if f(xc) < f(xn+1) then replace xn+1 with xc

6.18 reduction

6.19 for all but the best point, replace the point with reduced point

6.20 end

6.21 end
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cache reconfigures every 5 epochs. Lastly, the LLC reconfigures every 25 epochs.

6.3 Evaluation of the GCD Uniprocessor MCR

In this section, we evaluate the power savings and the performance degradation

of our GCD multi-level cache resizing implementation. We will first show the offline

analysis and then, we will present the power savings and performance degradation

of our online GCD multi-level cache resizing implementation.

6.3.1 Offline Analysis

The goal of this offline analysis is to understand limits of our GCD multi-level

cache resizing implementation.

Total System Power Consumption and Performance We compare the power

and performance of static MCR to three schemes: random, Nelder-Mead, and ex-

haustive. Random scheme shows wide variance both in power and performance.

While its average shows only 0.7% performance degradation and 1.7% power in-

crease, it degrades performance by as much as 7.1% and increases power by as much

as 37.9%. Static MCR exhibits significant power savings, 8.8%, while Nelder-Mead

achieves 9.1%. These results show that the static MCR’s solution quality is slightly

worse than that of the Nelder-Mead method. In terms of the performance degrada-

tion, both MCR and the Nelder-Mead method exhibit similar performance levels.
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Figure 6.2: Power and performance comparison between random, Nelder-Mead, and

MCR.)

Search Complexity Although Nelder-Mead exhibits slightly better off-line per-

formance, significant benefit of MCR is its fast convergence rate. In other words,

our GCD MCR algorithm requires a very small number of cache reconfigurations

to find an optimal configuration. Figure 6.3 shows the number of iterations of the

MCR and Nelder-Mead methods. The Nelder-Mead method requires almost 6 times

the number of iterations at the MCR method requires, 3.2 compared to 18.9. As we

discussed in Section 6.1.2, our GCD MCR exhibits fewer number of search iterations

than the number of the worst case analysis.

Search Movement and Search Iterations Figure 6.4 illustrates the epoch

taken by our GCD MCR method search iterations and cache reconfigurations for

several representative workloads. Figure 6.4-(a), (b), and(c) show the cases that
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Figure 6.3: Number of evaluations comparison between Nelder-Mead and MCR.

invoke only one movement or reconfiguration per coordinate. In particular, bzip2

requires only one reconfiguration to find the optimal configuration by downsizing

the L1 cache all at once in Figure 6.4-(a). Likewise, mcf and perlbench require two

and three search iterations to find the optimal configurations.

GemsFDTD exhibits PEG-ordered cache reconfiguration between the L1 and

L2 caches in Figure 6.4-(d). First, GCD MCR shrinks the L2 size to 3 and continues

to downsize the L1 cache to 7 because the L1’s PEG value from 8 to 7 is bigger than

the PEG value of L2 from 3 to 2. After that, downsizing alters again between the

L1 and L2, and finally, reaches the optimal configuration of (6,2) for the L1 and L2

configurations.

sjeng and bwaves demonstrate a greater number of alternating downsizing

steps between caching levels. In particular, sjeng exhibits the order of L2, L3, L2,

L1, L3, and L2, in its downsizing decisions, resulting in a total of 6 iterations in
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Figure 6.4-(e). Likewise, bwaves shows the downsizing order of L2, L1, L2, L1, L2,

L3, L2, and L1, in Figure 6.4-(f).

GCD MCR Power Savings Compared to Static Optimal In the bars labeled

“MCR”, Figure 6.5 shows the relative power savings of the total power consumption

of the cache hierarchy normalized to the power savings of the static optimal cache

configurations (the other bars in Figure 6.5 will be explained later). Three work-

loads, braves, calculix, libquantum, exhibit more than 90% of the power savings of

the static optimal. On the other hand, two workloads, xalan, h264ref, demonstrate

less than 20% of the power savings of the static optimal. The rest of the workloads

exhibit the relative power savings between 39% and 73% (on average 54%).

Cache Power Consumption Breakdown of INT and FP Workloads Ta-

ble 6.3 shows the cache configurations of the static optimal and our GCD MCR. In

the integer (INT) workloads, the optimal cache configurations of our GCD MCR is

larger than the cache configuration of the static optimal. In particular, differences

in the L1 and L2 cache configurations in the integer workloads are larger than that

in floating point (FP) workloads: 6.1 (SO: 2.5, MCR: 8.6) and 2.2 (SO: 2.9, MCR:

5.1) for INT workload, respectively, compared to 3.8 (SO: 5.5, MCR: 9.3) and 0.4

(SO: 3.3, MCR: 3.7). In other words, GCD MCR shows better prediction in FP

workloads. As a result, our GCD MCR achieves 65% of the power savings of the

static optimal for FP workloads, while achieving only 48% for INT workloads, as

shown in Figures 6.7 and 6.8. For the L3 configurations, GCD MCR predicts better
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Figure 6.4: GCD multi-level cache resizing solution-search steps.
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in INT workloads than in FP workloads. As shown in Table 6.3, GCD MCR esti-

mates the L3 configuration of 3.2 on average, compared to the L3 configuration of

2.5 of the static optimal. On the other hand, GCD MCR predicts the L3 configu-

ration of 3.0 while the static optimal is 2.2. There errors are directly translated in

to higher power consumption in the cache hierarchy. Figures 6.7 and 6.8 show the

cache power consumption breakdowns.

6.3.2 Discussion

Our GCD MCR algorithm is based on prediction to avoid errors and overheads

in the actual evaluations. Moreover, we implement our greedy coordinate descent

heuristically in the decision and the PEG value comparisons to approximate the

global optimum in the solution space. Therefore, it is important to understand what

are the sources of errors that cause the suboptimal cache configurations identified

by our GCD MCR algorithm.

GCD MCR with a Priori Information There are two main parts in our GCD

MCR algorithm in which the errors commence to be accumulated: performance

approximation with AMAT and AMAT/power estimation with way counts. As we

discussed in Section 5.2, we utilize AMAT to approximate the performance changes

by reconfiguring a cache hierarchy. Moreover, we also employ way counts to estimate

AMAT/power changes without actual evaluations. First, we present the power

savings of a GCD MCR with AMAT of the static optimal as a priori information

(P-MCR). We acquire ∆AMAT from the exhaustive searches and then, provide
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Figure 6.7: Power consumption breakdown comparisons of static optimal (SO) and

MCR for INT benchmarks.
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(b) FP-part II

Figure 6.8: Power consumption breakdown comparisons of static optimal (SO) and

MCR for FP benchmarks.
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∆AMAT to our GCD MCR algorithm as balance in Line 2.7 of Algorithm 2 in

Section 6. Figure 6.5 summarizes the power savings of an ideal GCD MCR having

AMAT as a priori information. Eliminating errors caused by the part of performance

approximation with AMAT improves the power savings to 81% compared to the

power savings of 54% using our GCD MCR implementation.

Errors in AMAT and Power Consumption Estimation with Way Counts

Second, the AMAT estimation based on way counts is another source of the errors.

We conduct a study to understand the errors introduced by way counts based esti-

mations by substituting the approximation logic to the actual power consumption

and AMAT information from the exhaustive searches. We present the power savings

and performance degradation level of an ideal GCD MCR in Figure 6.5 and 6.6 in

the bars labeled “I-MCR”. As shown in Figure 6.5, the ideal GCD MCR achieves

around 98% of the power savings of the static optimal cache configurations. We can

conclude that among the 46% gap comparing the power savings of our GCD MCR

implementation and the power savings of static optimum, 27% of the power savings

of static optimum is not achievable in our implementation due to the performance

approximate with AMAT estimation. Likewise, 17% of the power savings of static

optimum is not achievable due to the error in AMAT/power estimation with way

counts. Moreover, unachievable 1.7% of the power savings of static optimum is

caused by the suboptimization of our greedy coordinate descent.
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Non-monotonicity in the Performance Function of AMAT The other no-

table observation is that GemsFDTD, sjeng, h264ref, perlbench, and gobmk exhibit

worse performance degradation level than 1%. For these workloads, AMAT of ideal

GCD MCR is lower than the AMAT of static optimum. However, the IPC of ideal

GCD MCR is worse than that of static optimal. The non-monotonicity in the per-

formance function of AMAT occurs for these workloads. In particular, the ideal

GCD MCR finds an optimal solution of (2, 4, 2) compared to the optimal cache

configuration of (1, 4, 4) for h264ref. Although these two configurations result in

the similar AMAT, but their impacts on the IPC are different. As shown in Ta-

ble 6.2, the difference exhibits 5.7% in the IPC. The solution from the ideal GCD

MCR has a larger L1 cache and a smaller cache comparing the cache configuration

of the static optimum. We observe that cache misses at different caching levels

have different impacts on the IPC although they result in the same AMAT. We

suspect that there are more chance to tolerate additional memory latency of the L2

cache, 7 cycles, in our out-of-order processor, than the dram latency cached by L3

cache misses, around 300 cycles. Likewise, both cache configurations of the ideal

GCD MCR for perlbench and gobmk have smaller L3 caches and larger L1 caches

compared to the cache configurations of static optimum. Similarly, for sjeng, the

cache configurations of the ideal GCD MCR has smaller L2 cache and larger L1

cache and thus, the additional L3 cache latency degrades the performance despite

of the lower AMAT. On the other hands, GemsFDTD shows the opposite case: the

smaller L1 and the larger L3 result in lower AMAT, but degrades the performance

more severely. In this case, both L3 caches suffer from high miss rates of 0.883 and

90



AMAT IPC

SO I-MCR SO I-MCR

GemsFDTD 22.172 21.836 0.228 0.226

sjeng 4.416 4.396 0.939 0.935

h264ref 4.714 4.712 1.217 1.159

perlbench 4.454 4.289 1.115 1.114

gobmk 4.35 4.283 1.005 0.995

Table 6.2: AMAT and IPC of static optimal (SO) and ideal GCD MCR (I-MCR).

0.737, for SO and I-MCR, respectively. For the raw miss counts, I-MCR exhibits

lower counts of 2,314,094 compared to 2,437,957 of SO. So, we conclude that I-MCR

causes more L3 cache hits with the larger L3, but the more misses in the L1 harms

the IPC more severely because of the relatively high AMAT of 22.

6.3.3 Online Analysis

Online GCD MCR Power Savings and Performance Degradation Level

We compare the power and performance of online GCD MCR to two schemes: static

MCR, and the static optimal from the exhaustive search study in Section 6.3.1. Fig-

ure 6.9 summaries the power savings and performance degradation level of our online

implementation. Online GCD MCR has the benefit of being able to adapt to dy-

namically changing memory reference characteristics at the cost of reconfiguration

overhead. Our online GCD MCR exhibits both benefits and costs. Online GCD

MCR saves the total power consumption 13.4% on average while maintaining per-
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L1 L2 L3

SO MCR I-MCR SO MCR I-MCR SO MCR I-MCR

perlbench 2 8 3 2 5 2 3 3 2

bzip2 1 8 1 2 8 2 4 4 4

mcf 2 6 1 3 7 3 3 4 3

gobmk 4 10 6 6 7 4 3 3 2

hmmer 4 9 4 3 4 3 3 4 3

sjeng 7 11 8 4 3 3 1 2 1

libquantum 1 2 1 1 1 1 1 1 1

h264ref 1 12 2 4 4 4 4 4 2

omnetpp 2 10 2 2 5 2 4 4 4

astar 2 8 2 3 4 3 4 4 4

xalan 1 11 1 2 8 2 2 4 2

AVG 2.5 8.6 2.8 2.9 5.1 2.6 2.9 3.4 2.5

bwaves 1 4 1 1 1 1 1 1 1

zeusmp 4 12 4 4 4 4 4 4 4

gromacs 3 9 3 2 6 2 4 4 4

cactusADM 12 12 12 6 4 1 1 4 4

leslie3d 8 11 8 3 3 3 2 4 2

namd 11 12 12 4 4 3 1 2 1

povray 8 12 9 8 7 7 1 1 1

calculix 2 6 2 1 1 1 1 1 1

GemsFDTD 8 10 3 1 2 1 2 4 4

lbm 1 6 1 5 5 4 3 4 4

sphinx3 2 8 2 1 4 1 4 4 4

AVG 5.5 9.3 5.2 3.3 3.7 2.5 2.2 3.0 2.7

AVG 4.0 9.0 4.0 3.1 4.4 2.6 2.5 3.2 2.6

Table 6.3: Cache configurations of static optimal (SO), GCD MCR (MCR), and

ideal GCD MCR (I-MCR).
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Figure 6.9: Power and performance comparison between dynamic MCR and Nelder-

Mead (with static MCR and static optimal).

formance degradation of 0.45% on average. It shows more power savings compared

to 10% of static MCR, but two workloads of online GCD MCR shows 1.4% and

1.6% performance degradation level (gromacs and namd).

Comparison to Static GCD MCR Figure 6.10 shows power savings compar-

isons between static and online GCD MCR, which are normalized to the power

savings of static optimum. The power savings of our online GCD MCR is generally

improved compared to the power savings of our static GCD MCR, resulting in 77%

of the power savings of static optimum. It is 42% improvement from the power

savings of our static GCD MCR. It is also notable that such improvements of xalan

and h264ref are as high as 10X and 5X, respectively. In term of the performance

degradation level, results from our online are generally worse than the performance
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Figure 6.10: Relative power savings of online GCD MCR (D-MCR) and static GCD

MCR (S-MCR) compared to the power savings of static optimal (SO).

degradation level of static MCR, but its average is still bound within the perfor-

mance degradation level of 1%. It is also notable that our online GCD MCR exhibits

performance improvement for h264ref and omnetpp. On the other hands, grimaces

and name exhibit worse performance degradation level than the bound of 1%.

Cache Power Breakdown of Online GCD MCR Figures 6.12 and 6.13 show

the cache power consumption breakdown of our online GCD MCR. Throughout the

entire workloads, our online implementation achieves more power savings from the

dynamic and static power consumptions of L1 cache. On average, online Gcd MCR

reduces the power consumption of L1 by 32% compared to the power consumption

of static MCR. The bigger power savings from integer workloads are achieved by

reducing the power consumptions of 38% and 33% in L1 dynamic and static power

consumption, respectively, as shown in Figure 6.12. On the other hands, the L1
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Figure 6.11: Relative performance degradation level in percentile of online GCD

MCR (D-MCR) and static GCD MCR (S-MCR) compared to the power savings of

static optimal (SO).

power consumption of our online GCD MCR is around 74% and 68% for dynamic

and static power, respectively, as shown in Figure 6.13. The power savings of L1

cache is as high as 78% and 81% for h264ref, and 67% and 66% for lbm, in its

dynamic and static power consumption, respectively. Online GCDMCR also further

reduces the power consumption of L2 cache by reducing 8% and 19% in dynamic

and static power, respectively, on average, compared to the power consumption of

L2 of static GCD MCR. However, online GCD MCR shows worse power savings

for L3 cache by exhibiting 6% and 1% increase in its dynamic and static power

consumption, respectively. For name, our online implementation consumes 2.8X

and 1.5X compared to the L3 dynamic and static power consumption, respectively.
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(b) INT-part II

Figure 6.12: Power consumption breakdown comparisons of online GCD MCR for

INT benchmarks.
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(a) FP-part I
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(b) FP-part II

Figure 6.13: Power consumption breakdown comparisons of online GCD MCR for

FP benchmarks.
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Search Movement and Search Iterations Table 6.4 summarizes the reconfig-

uration numbers per workload. On average, there were 2.1, 1.8, and 0.6 reconfigu-

rations in L1, L2, and L3 cache, respectively (there are 32 new searches according

to the reset frequency and these number are divided by this number of new searches

from the numbers shown in Table 6.4), for having 32 search windows per simula-

tion (4,000 epochs per run and reset frequency is every 125 epochs). The iteration

numbers are 4.4 on average, sum of reconfiguration number of each caching level, is

comparable to the number of 3.2 of static MCR which was shown in Figure 6.2 of

Section 6.3.1. Despite of transient behaviors and dynamically changing way counts,

our GCD MCR shows its fast convergence rate by showing little difference in the

iteration numbers of static and online GCD MCR.

6.3.4 Discussion

Correlation Study We conduct a statistical analysis to understand the relation-

ship between the improvement of power savings and other parameters, which in our

online implementation compare to the power savings in the static study. First, we

calculate the improvement ratio of power savings of online scheme to power savings

of static scheme. Then, we collect parameters as candidates to test the correlations.

We use IPC, AMAT, and L1/L2/L3/Total cache reconfigurations numbers in this

study. Table 6.5 shows parameters used in this test. Likewise, we conduct another

statistical analysis to understand the relationship between the performance degra-

dation levels and these parameters. Table 6.6 shows parameters used in this test as
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WL Cache Reconfig.# WL Cache Reconfig. #

L1 L2 L3 Total L1 L2 L3 Total

perlbench 52 61 31 144 bwaves 15 8 58 81

bzip2 90 70 13 173 zeusmp 99 68 25 192

mcf 91 82 4 177 gromacs 48 99 26 173

gobmk 96 52 36 184 cactusADM 6 58 0 64

hmmer 79 47 11 137 leslie3d 63 55 15 133

sjeng 72 60 36 168 namd 70 73 34 177

libquantum 24 21 21 66 povray 47 44 26 117

h264ref 120 41 0 161 calculix 37 33 40 110

omnetpp 97 75 0 172 GemsFDTD 67 70 31 168

astar 72 67 0 139 lbm 67 5 16 88

xalan 91 83 2 176 sphinx3 45 70 0 115

INT AVG 80 60 14 154 FP AVG 51 53 25 129

WL AVG 66 56 19 142

Table 6.4: Number of cache reconfigurations of GCD MCR
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well.

Table 6.7 shows the correlation coefficients and their statistical significances.

The L1-cache reconfiguration numbers are significantly correlated with the power

savings improvement in our online implementation compared to the static study. It

is notable that the L3-cache reconfiguration numbers are significantly correlated with

the power savings improvement, reversely, having a negative correlation coefficient

of −0.4. Their p-values are 0.063 and 0.0653, respectively. As such, we conclude

that the frequent L1 cache resizing improved the power savings in the L1 cache

by capturing dynamically changing memory-access characteristics in our workloads.

However, online GCD MCR exhibits increased power consumptions because of the

frequent L3 cache resizing being enacted adversely.

Epoch Sizes and Glitches from Transient Errors and Search Resets There

are three workloads that underperform compared to the results in the static study:

libquantum, calculix, and bwaves. Figure 6.14 shows the traces of dynamic cache

reconfigurations in libquantum workload. It seems like that there are program phase

changes during around the epoch number of 1,000 and 3,000. However, it turned out

that the way counts during the period do not provide enough resolution to search

an optimal for being low counts due to short epoch cycles. libquantum exhibits the

longest AMAT among the entire workloads, 70.7 cycles. Due to the longest AMAT,

this workload requires a longer epoch size in cycles to accumulate reasonable amount

of cache hits, and thus way counts. For being failing in such accumulating way

counts, our online GCD MCR fails to achieve the power savings as high as of the
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Number of Reconfigurations

WL Static Online Ratio IPC AMAT L1 L2 L3 Total

xalan 0.040 0.403 9.983 0.124 8.014 91 83 2 176

h264ref 0.144 0.695 4.819 1.229 4.248 120 41 0 161

gromacs 0.391 0.943 2.414 0.858 4.498 48 99 26 173

bzip2 0.406 0.814 2.003 0.982 5.152 90 70 13 173

mcf 0.423 0.823 1.943 0.195 43.500 91 82 4 177

zeusmp 0.478 0.893 1.865 0.338 7.569 99 68 25 192

cactusADM 0.506 0.907 1.793 0.296 5.287 6 58 0 64

omnetpp 0.414 0.735 1.777 0.293 17.262 97 75 0 172

gobmk 0.435 0.735 1.691 1.015 4.181 96 52 36 184

leslie3d 0.464 0.768 1.655 0.315 13.591 63 55 15 133

GemsFDTD 0.524 0.817 1.561 0.230 21.454 67 70 31 168

sphinx3 0.590 0.907 1.538 0.376 15.597 45 70 0 115

perlbench 0.620 0.840 1.356 1.126 4.187 52 61 31 144

astar 0.628 0.844 1.344 1.002 4.462 72 67 0 139

lbm 0.623 0.811 1.302 0.319 17.575 67 5 16 88

hmmer 0.526 0.656 1.246 1.261 4.025 79 47 11 137

sjeng 0.568 0.617 1.087 0.947 4.282 72 60 36 168

povray 0.559 0.568 1.017 0.643 4.264 47 44 26 117

namd 0.725 0.719 0.992 0.581 4.240 70 73 34 177

bwaves 0.915 0.847 0.925 0.687 4.014 15 8 58 81

calculix 0.921 0.844 0.917 0.528 4.015 37 33 40 110

libquantum 0.982 0.717 0.730 0.227 70.748 24 21 21 66

average 0.540 0.768 1.998 0.617 12.371 66 56 19 142

Table 6.5: Parameters to test the correlation of the improvement of the power

savings in online GCD MCR.
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Number of Reconfigurations

WL Static Online Ratio IPC AMAT L1 L2 L3 Total

h264ref 0.0022 -0.0008 -0.365 1.229 4.248 120 41 0 161

gobmk 0.0034 0.0014 0.403 1.015 4.181 96 52 36 184

libquantum -0.0001 0.0000 0.688 0.227 70.748 24 21 21 66

sjeng 0.0028 0.0021 0.728 0.947 4.282 72 60 36 168

povray 0.0034 0.0028 0.824 0.643 4.264 47 44 26 117

calculix 0.0006 0.0007 1.100 0.528 4.015 37 33 40 110

sphinx3 0.0003 0.0005 1.546 0.376 15.597 45 70 0 115

astar 0.0033 0.0055 1.659 1.002 4.462 72 67 0 139

bwaves 0.0003 0.0007 2.077 0.687 4.014 15 8 58 81

cactusADM 0.0041 0.0092 2.227 0.296 5.287 6 58 0 64

perlbench 0.0031 0.0081 2.648 1.126 4.187 52 61 31 144

mcf 0.0020 0.0053 2.671 0.195 43.500 91 82 4 177

hmmer 0.0006 0.0017 2.764 1.261 4.025 79 47 11 137

leslie3d 0.0028 0.0087 3.131 0.315 13.591 63 55 15 133

gromacs 0.0029 0.0141 4.950 0.858 4.498 48 99 26 173

GemsFDTD 0.0014 0.0083 5.849 0.230 21.454 67 70 31 168

xalan 0.0000 0.0000 6.610 0.124 8.014 91 83 2 176

zeusmp 0.0011 0.0091 8.265 0.338 7.569 99 68 25 192

namd 0.0019 0.0157 8.420 0.581 4.240 70 73 34 177

bzip2 0.0009 0.0088 9.368 0.982 5.152 90 70 13 173

omnetpp -0.0001 -0.0026 20.777 0.293 17.262 97 75 0 172

lbm 0.0000 0.0003 35.296 0.319 17.575 67 5 16 88

average 0.0017 0.0045 5.529 0.617 12.371 66 56 19 142

Table 6.6: Parameters to test the correlation of the performance degradation levels

in online GCD MCR.
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Number of Reconfiguration

IPC AMAT L1 L2 L3 Total

Power -0.148 -0.128 0.403* 0.321 -0.400* 0.324

Performance -0.318 0.0417 0.206 -0.164 -0.156 -0.0109

Table 6.7: Correlation coefficient of each metric. * indicates statistical significance

at 10% level.

power savings in the static study.

Figure 6.15 shows the traces in bwaves workloads. Unlike the libquantum,

bwaves has a relatively short AMAT of 4 cycles. However, this workload exhibits

the oscillating patterns in the L3 cache reconfigurations. In this case, the L3 cache’s

way counts appear in marginal counts so that it’s PEG value can be translated into

the different sizes according to slight changes in the way counts. As a result, bwaves

exhibits the largest number of the L3 cache reconfigurations. Such transient errors

can be enacted online and results in inferior power savings compared to the static

study.

Likewise, calculix shows the second largest number in the L3 cache reconfigu-

rations. Moreover, calculix also exhibits several glitches in the L2 cache reconfigura-

tions. In particular, these glitches in the L2 cache reconfigurations follow the reset

frequency in our online GCD MCR. After the reset frequency, marginal way counts

are prone to result in the different result than the result from the static study or

the average cache size of adjacent epochs. As a result–having both transient errors
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Figure 6.14: Dynamic cache reconfigurations of online GCD MCR in libquantum

workload.

in the L3 caches and glitches in the L2 caches–, calculix exhibits the second worst

power-savings improvement compared to the power savings of the static study.

Dynamic Adaptation in Online GCD MCR On the other hands, our on-

line implementation generally increase the power savings by capturing dynamically

changing memory-access characteristics. In particular, xalan exhibits 10X improve-

ment in the power savings by achieving 40% of the power savings of the static

optimal, from 4% in the static study. Figure 6.17 shows the traces of the dynamic

cache reconfigurations in xalan workload. The capacities of the L1 and the L2 caches

are dynamically changing in alternative patterns: smaller L1 and larger L2 or vice

versa. As a result, the online GCD MCR achieves significant power savings while

maintaining the performance degradation level.

Similarly, h264ref achieves a notable improvement of 5X in the power savings
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Figure 6.15: Dynamic cache reconfigurations of online GCD MCR in bwaves work-

load.
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Figure 6.16: Dynamic cache reconfigurations of online GCD MCR in calculix work-

load.
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Figure 6.17: Dynamic cache reconfigurations of online GCDMCR in xalan workload.

compared to the power savings in the static study. As shown in Figure 6.18, h264ref

exhibits the largest number in the L1 cache reconfigurations, 120 times. Despite

of the significant number of glitches are visible in the L1 cache reconfigurations,

the power-savings improvement shows that h264ref ’s dynamic adaptation results in

better power savings even with a slight performance improvement as we discussed

earlier. In particular, h264ref exhibits dynamic adaptation in the L2 cache recon-

figuration without noticeable glitches.
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Figure 6.18: Dynamic cache reconfigurations of online GCD MCR in h264ref work-

load.
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Chapter 7

PEG-based Last Level Cache Partitioning

In Chapter 6, we have studied the greedy coordinate descent multi-level cache

resizing method for a uniprocessor, and evaluated its power savings and performance

degradation. In this chapter, we first discuss the cache partitioning problem for

shared last level caches (LLC) in CMPs. And then, we will conduct a limit study to

understand the peak performance and power savings with a performance degradation

constraint that we can expect from cache partitioning. After that, we discuss our

PEG-based cache partitioning algorithm and present power savings and performance

degradation results.

7.1 Last Level Cache Partitioning Problem

Modern CMPs are commonly equipped with a shared LLC to efficiently utilize

cache capacity and share data between cores. For multiprogrammed workloads, par-

titioning a shared LLC amongst the cores is an effective technique to avoid cache

interference between cores so that one can efficiently utilize the shared capacity.

Ideally, finding optimal private-cache sizes and partition sizes in the shared LLC

leads to saving most of the wasteful power consumption in the CMP on-chip cache

hierarchy without noticeable performance degradation. However, we can not ap-

ply our previous uniprocessor GCD multi-level cache resizing technique directly to
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the CMP multi-level cache resizing problem to achieve power savings because the

cache partitioning problem is somewhat different from the cache resizing problem.

Specifically, there are two major differences.

First, the cache partitioning problem is constrained by the total capacity in

the shared LLC. In uniprocessor GCD multi-level cache resizing, cache capacities at

different caching levels are independent of each other. The only way different caches

are coupled is in how they affect performance. However, in the cache partitioning

problem, the sum of all partitions is strictly limited to the total size of the LLC.

In other words, all variables in a cache partitioning problem are coupled due to the

maximum capacity of the LLC.

Second, cache partitions not only change the power consumption in an LLC,

but also determine the CMP performance. More importantly, the optimal cache

partitioning can improve the CMP performance significantly. There has been a large

body of research in cache partitioning, and most of these efforts improve the overall

performance compared to some baseline (usually even partitioning, or EP). As we

discussed earlier, the uniprocessor GCD MCR mostly decreases the performance by

down sizing caches, and we limit the maximum performance degradation. As such,

to apply the GCD approach similarly in a cache partitioning problem, we need to

know the maximum performance level of a given CMP with an LLC partitioning

technique to define a performance degradation level.

In addition to these differences, the cache partitioning problem also has a

strong motivation in the perspective of power efficiency. Although there have been

many performance-oriented online LLC partitioning methods, only a few exist to
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improve power efficiency. A shared LLC can be considered as a single cache, so we

can apply a smiler approach in the GCD multi-level cache resizing by considering

PEG. A recent study [10] (COOP) applies a cache resizing technique to a shared LLC

in CMPs on top of the utility-based cache partitioning scheme [11]. However, this

approach still does not consider the power efficiency gain as we do in the uniprocessor

multi-level cache resizing.

For these reasons, we begin by discussing our PEG-based LLC partitioning

method in this chapter as the first step towards solving the multi-level cache resizing

problem for CMPs.

7.2 Experimental Methodology

7.2.1 Simulator

We modify our SimpleScalar simulator, described in Section 4.3.2, to support

multiprogrammed workloads. Since we implement way-aligned partitioning, we de-

velop a multi-process simulator consisting of concurrent processes. Each process

simulates one of the cores in CMP, and there is one additional master process con-

trolling and synchronizing the concurrent simulation processes. The master process

also orchestrates each simulation process so that each core can receive the designated

LLC partition size. It is assigned according to an LLC partitioning policy. We simu-

late communication channels between cores by utilizing interprocess communication

and implement it via the Linux socket library.

The master process simulates our GCD CMP multi-level cache resizing al-
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gorithm and the master process and other concurrent processes communicate with

each other to send/receive way counts and reconfiguration commands at every epoch.

The total computation/execution time in the master process is either added to the

cycle counts of slave processes, or considered as concurrent computation in the extra

hardware according to the implementation methods of our algorithms. Note that

we account for the computational overheads in the total execution time by adding

measured cycle counts obtained via running the algorithm in the simulated core for

the case of software implementation.

7.2.2 Metrics

Measuring performance in multi-program workloads is a non-trivial process.

There are several metrics to quantify the performance of a system which runs mul-

tiple programs concurrently. We discuss performance improvement with respect to

three metrics which are popular in systems research: weighted speedup, harmonic

mean of weighted IPCs, and total system power consumption. Weighted speedup

will be used to quantify system throughput and harmonic mean of normalized IPC

will be considered as a system fairness metric as it measures average turn-around-

time increases [65].

Weighted Speedup =
N∑

i=1

IPCMP
i

IPCSP
i

(7.1)

Harmonic Mean of Weighted IPCs =
N

N∑
i=1

IPCSP
i

IPCMP
i

(7.2)
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Total System Power =

N∑

i=1

PwrMP
i (7.3)

7.2.3 Multiprogrammed Workloads

We generate multi-program workloads randomly to mix all three categories in

Table 4.2. We created 20 workloads each for 2-, 4- and 8-core CMPs, resulting in

a total of 60 workloads. Table 7.1 shows all combinations of our multiprogrammed

workloads.

7.3 Limits of Last Level Cache Partitioning

The performance limit of last level cache partitioning will show the ideal peak

performance. Finding the optimal cache partitions is an NP-hard problem [22] and

thus it requires an exhaustive search over the solution space. Because of this com-

plexity of the cache partitioning problem, we need an online algorithm to approxi-

mate an optimal partitioning. As such, we first need to understand the gap between

the ideal peak performance and the online performance level that we will take as

local optimal at run time. In particular, we use the utility-based cache partitioning

(UCP) scheme [11] to implement an online algorithm to approximate the global

optimal at runtime. One of the main reasons of picking UCP as an online algorithm

to approximate an ideal partitioning is that UCP does not require additional extra

hardware on top of the hardware we need for GCD multi-level cache resizing, and

it is considered one of the state-of-the-art cache partitioning techniques.
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Workload Benchmarks (2, 4 and 8 Cores)

G2/4/8-A m{0,2} l{0,1},m{2,3} l{3,6},m{4,5,6}, h{1,3,4}

G2/4/8-B m{0,6} l{5,6,9},m6 l{1,2,5,7},m{1,4,4}, h2

G2/4/8-C l0,m0 l2,m{1,4}, h2 l{0,1,3,3,9},m{0,2,6}

G2/4/8-D m0, h0 l9,m5, h{0,1} l{1,3,6}, h{0,0,1,2,2}

G2/4/8-E l{4,6} l1,m{4,6}, h0 l{0,3,4,6},m{1,4,6}, h3

G2/4/8-F l5,m6 l{5,9},m6, h1 l{1,5},m{0,2,4,4}, h{3,4}

G2/4/8-G l5, h0 l{1,8,9},m2 l{1,3,6,7,7,9},m1, h2

G2/4/8-H l5,m5 l3,m6, h{1,2} l3,m{1,3,5,5,6}, h{0,2}

G2/4/8-I l{2,6} l{2,3,4}, h0 l{4,4},m{1,4,5}, h{0,1,3}

G2/4/8-J l6,m1 l{0,3,7}, h0 l{3,7},m{3,4,6,6}, h{1,4}

G2/4/8-K l{3,6} l{0,6},m{1,6} l{0,4,5,6,7,9},m{3,4}

G2/4/8-L m2, h1 l{3,4},m{2,5} l4,m{1,1,3,4,4,5,6}

G2/4/8-M l2, h1 l{0,5},m0, h0 l{0,0,1,2},m{3,5,5}, h3

G2/4/8-N m1, h1 l{1,6,8},m2 l{2,4,5},m{2,3,4}, h{0,2}

G2/4/8-O m5, h1 l{1,3,6},m2 l{1,1},m{1,4,4}, h{1,1,2}

G2/4/8-P l9,m2 l{4,6},m4, h4 l{5,7,7},m{4,4}, h{0,3,4}

G2/4/8-Q l{0,9} m{0,3}, h{1,2} l{2,4,6},m6, h{0,0,1,3}

G2/4/8-R m{3,4} l{5,6,9}, h2 l{1,5},m{1,2,2,2,4}, h2

G2/4/8-S m{3,6} l{0,1,5,7} l{2,7},m{2,5,6}, h{2,3,4}

G2/4/8-T l{1,2} l{6,8},m5, h6 l{1,4,5},m{2,3,5}, h{0,1}

Table 7.1: Multi-program workloads. Each benchmark is shown in abbreviations

according to the benchmark classification based on MPKI in Chapter 4. Benchmark

classifications are shown in Table 4.2. For example, G2-A workload consists of m0

and m2 and these are bzip2 and zeusmp as shown in Table 4.2, respectively.
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Exhaustive Search and Runtime Maximum Power Savings with 1% Per-

formance Degradation To conduct this limit study, we utilize our extensive

simulation results from Section 4.4 to find the limit in performance of cache parti-

tioning by searching those results exhaustively (we label this search as E). Moreover,

we also search the limit in last level cache resizing as we did in the uniprocessor MCR

limit study in Section 4.4: we set a maximum performance degradation level of 1%

based on the performance level that UCP achieves (we label this search as U+PD).

This limit study in a last level cache resizing will show the power savings goal that

our PEG-based cache partitioning algorithm may potentially achieve.

Performance Limit of Cache Partitioning Figure 7.1 summarizes the result

of these limit studies (Figure 7.1 also shows results for our technique which we will

discuss later). Note that all values are normalized to the result of even partition-

ing (EP). On average, the exhausitive-search-based performance-oriented optimal

partitioning (E) improves the system throughput by 2.8% and also increases the

total system power consumption by 0.6%. On the other hand, UCP (U), an online

scheme to find a performance-oriented optimal partitioning, improves the system

throughput by 2.2% by achieving almost 81% of the throughput improvement of the

optimal partitioning, and increases the total system power consumption by 0.3%.

The limit of power savings with 1% performance degradation, if we take the LLC

partition of UCP as the reference, is around 3% as the U+PD line in Figure 7.1

shows. Moreover, U+PD achieves a system throughput improvement of 1.8%, so

this is within the 1% performance degradation compared to UCP.
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Figure 7.1: Power and system throughput comparison between exhaustive search to

find the optimal partitioning for the best throughput (E), UCP (U), exhaustive LLC

resizing search to find the optimal partitioning for the best power savings based on

UCP with the performance degradation level of 1% (U+PD), COOP (C), and our

PEG-based cache partitioning (P). Power and system throughput are normalized to

the results of even partitioning (EP).
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Power Savings Limit in Cache Partitioning We compare results for the ex-

haustive search (EXH) and best power savings with the performance degradation

level of 1% (U+PD) against the result for UCP because we employ cache parti-

tions of UCP as the reference to define performance degradation at runtime. This

comparison will show us the power savings goals for our on-line techniques that

we will present in Section 7.5. In particular, Figure 7.2 shows power consump-

tion breakdown per core for a few representative examples in our limit study. For

example, G2-C/G/R/T shows the relative total power consumption of 97%, 89%,

82%, and 80%, respectively, compared to the total system power consumption of

UCP. This limit study is only limited to the LLC partitioning and hence, most of

the power savings comes from the power consumption of LLC dynamic and static

power consumption, and dynamic power consumption of DRAM. Comparing these

power consumption only, for example, G2-C/G/R/T exhibit 92%, 76%, 54%, and

44% savings compared to the power consumption of UCP, respectively. Figure 7.3

summarizes such power consumption across the entire 60 workloads for this study.

The limit study in the LLC resizing with the performance degradation level of 1%

shows that up to 63% power savings can be achieved, compared to the LLC and

DRAM power consumptions of UCP. On average, the power savings across all the

workloads is 16%.

Global Optimum vs. Local Optimum As we pointed out earlier in Section 7.1,

COOP finds power-efficient cache partitions based on utility, and follows the same

sequence that the UCP algorithm generates. This approach is prone to end up with
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Figure 7.2: Power consumption breakdown for performance-oriented optimal (EXH),

UCP, and exhaustive LLC resizing search to find the optimal partitioning for the

best power savings with the performance degradation level of 1%(U+PD).
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namic power consumption of DRAM (compared to UCP).
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sub optimal partitions because UCP allocates partitions according to the utility

of each thread, which is performance oriented. As a result, the COOP approach

will miss opportunities to find global optimal and we consider COOP as a local

search for this reason. Table 7.2 shows cache partitions from an online algorithm,

UCP, and the exhaustive search with 1% performance degradation, U+PD, for G2

workloads. We observe that a local search may result in suboptimal cache partitions:

e.g. G2-E shows cache partitions of 1-7 and 2-4 for UCP and U+PD, respectively.

A local search, downsizing each partition individually, comes up with 1-4; however,

the global optimum is 2-4. As such, we need an algorithm that can search beyond

the scope of a local search.

7.4 PEG-based Cache Partitioning Algorithm Design

To address the local minima problem, we design our heuristic by taking inspi-

ration from simulated annealing [66]. Simulated annealing is a probabilistic meta-

heuristic for a global optimization. It often finds the global optimal by mutating

search directions so that local minima do not dominate the search direction. Such

mutation is designed to find neighbours, and this enables it to escape local minima.

We design a GCD approach for LLC partitioning and add upsizing step to define

neighbours in the simulated annealing.

Upsizing We add a mutation step when searching for power-efficient cache parti-

tions. This mutation step should change direction during a search to escape from a

local optimal. Also it must eventually converge. To achieve these goals, we imple-
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ment an upsizing step to escape from the down-sized partitions from the partitions

given by UCP so that we can find the global optimal.

Our GCD approach normally searches for a solution by downsizing the parti-

tion with the biggest PEG value. This approach does not search different combi-

nations of partitions from the UCP partitions. For example, partitions of 5/2 are

not discoverable with this approach if the given UCP partitions are 3/4 because the

first partition starts from 3 and it will continue the search with downsizing steps;

however, the optimal partition is 5. To overcome this limited search scope, we

consider most power efficient upsizing cases across all cores. To guarantee conver-

gence, we limit upsizing to partitions which increase power consumption less than

the power savings achieved by the current downsizing. In contrast to downsizing in

which we used the metric, ∆Power/∆AMAT to pick the most profitable cache to

downsize, for upsizing, we use the metric, ∆AMAT/∆Power to pick the partition

which improves performance most within power constraints.

In terms of GCD, the coordinate system consists of each partition of the CMP

and the constraint is the performance degradation compared to the performance

of UCP. We start from the cache partitions of UCP and reduce the capacity while

upsizing partitions when the power consumption increase caused by the upsizing is

smaller than the power savings from the downsizing. We pick maximum PEG value

for downsizing and minimum reciprocal PEG value for upsizing.

PCP Algorithm Description Our greedy coordinate descent LLC partitioning

algorithm is shown in Algorithm 7. First, we relax the AMAT constraints by mul-
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tiplying the number of cores in Line 7.5 so that our PCP can explore beyond local

minima. Second, we use AMAT to approximate a weighted speedup. We used

AMAT to approximate performance level for our uniprocessor algorithm in Chap-

ter 6; however, we need to estimate a weighted speedup for CMPs. As such, we

implement the get amat WS procedure in Line 7.8 to estimate a weighted speedup

according to the current LLC partitions. As we did in our uniprocessor MCR, we

estimate each AMAT per core, and then we estimate a weighted speedup as in

Equation 7.1. We substitute IPC for 1/AMAT in this case.

Inside of the main loop below Line 7.8, we implement our greedy search which

consists of downsizing and upsizing. From Line 7.9 to Line 7.14, we find the best

candidate partition to resize by picking the maximum PEG. In Line 7.13, we termi-

nate our greedy search if there is no more candidates with a positive PEG value. In

Line 7.14, we set the number of ways in the downsizing to limit maximum ways in

the following upsizing step.

As we mentioned earlier, in our greedy search we search neighbors to escape

potential local minima. To define the neighbors, we search up-sizable partitions:

upsizing should not increase the power consumption more than the power savings

achieved by the previous downsizing, and the maximum ways in upsizing are limited

to the previous number of ways in the downsizing. First, we implement get min peg

in Line 7.16 to find a potential up-sizable partition which reduces AMAT most

at the smallest power overhead. Its objective function is the reciprocal of PEG.

This is a minimization problem. As such, the implementation of get min peg is

straightforward.
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Algorithm 7: PEG-based Cache Partitioning

7.1 begin

7.2 foreach cpu i do

7.3 prepare wcL1, wcL2, wcL3 and totalAccesses per cpu i

7.4 /* gives more room to find a global maximum */

7.5 balances[i] = get delta amat(wcL1[i], wcL2[i], wcL3[i], allocLLC[i], 1-(1-perfLimit)

x ncpus)

7.6 end

7.7 /* main loop */

7.8 while get amat WS(wcL1, wcL2, wcL3, allocUCP, allocLLC ) >= perfLimit do

7.9 foreach cpu i do

7.10 peg[i] = get max peg(wcL3[i], totalAccesses[i], allocLLC[i], balances[i])

7.11 end

7.12 winner = core with maximum value of peg

7.13 if peg[winner] < 0 then break

7.14 plus alloc = allocLLC[winner] - peg[winner].alloc

7.15 foreach cpu i and i is not equal to winner do

7.16 up peg[i] = get min peg(wcL3[i], totalAccesses[i], allocLLC[i], balances[i],

plus alloc)

7.17 end

7.18 up winner = core with minimum value of 1/ peg

7.19 if peg[winner].deltaPower > 0 and peg[winner].alloc >= 1 then allocLLC[winner]

= peg[winner].alloc

7.20 if up peg[up winner].deltaPower < peg[winner].deltaPower and get amat WC) >=

perfLimit then allocLLC[up winner] = up peg[up winner].alloc

7.21 end

7.22 return allocLLC

7.23 end
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Lastly, we update the partitions when desired conditions are met. In Line 7.19,

we downsize a partition only when the ∆ power is positive (i.e. power savings). In

Line 7.20, we upsize a partition only when the ∆ power when upsizing is smaller

than the ∆ power that would occur for downsizing.

7.5 Evaluation of PEG-based Cache Partitioning

7.5.1 Offline Analysis

In this section, we compare our off-line version of PCP to U+PD and COOP.

To realize an off-line version of PCP, we apply our PCP algorithm in Algorithm 7

on the exhaustive simulations acquired in Chapter 4.

Threshold Issue Unlike our PCP implementation, COOP requires a threshold to

control the aggressiveness in resizing the LLC. For a fair comparison, we ran COOP

repeatedly with different thresholds until it showed similar performance level to our

PCP implementation. We were able to find thresholds for COOP, which results

in similar performance levels, and the thresholds are 0.8039, 0.9, and 0.902 for

G2, G4, and G8 workloads, respectively. So, our results represent a best-effort

implementation for COOP.

Evaluation We first compare the power savings of PCP to COOP as shown in

Figure 7.1. PCP exhibits power savings of 1.6% compared to the total power con-

sumption of UCP. Meanwhile, COOP shows power savings of 0.5%. Not only is

PCP’s power savings greater than COOP’s, it also achieves slightly better system
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throughput. However, compared to U+PD, PCP performs worse, achieving only

57% of the power savings of U+PD. This shows off-line exhaustive search still does

better than our off-line version of our PCP algorithm.

Table 7.2 shows the cache partition solutions by each techniques and their

power consumption (includes both LLC and DRAM). Note that for theDRAM

power, we only consider its dynamic power consumption. As can be seen, PCP

is superior to COOP in two ways. First, the cache partitions of PCP are not limited

to individual down sizing from the partition of UCP. As we pointed out earlier,

COOP follows the same algorithm in UCP and it stops when the utility is below

the given threshold. Besides the overhead of setting the threshold, COOP finds

suboptimal partitions due to the limitation in exploring other possible (non-UCP)

partitions. In contrast, PCP can search beyond the UCP partitions as shown in G2-

A, G2-C, G2-E, G2-F, and G2-I due to the upsizing step discussed in Section 7.4.

As a result, PCP achieves greater power savings compared to COOP.

Second, PCP shows better adaptiveness across the workloads. COOP exhibits

LLC resizing only in three workloads, G2-F and G2-G, and G2-S. However, PCP

exhibits LLC resizing in half of the workloads. As a result, PCP results in 7.0 active

ways on average compared to 7.3 ways of COOP.

From the perspective of fairness, UCP improves fairness and U+PD achieves

slightly better fairness compared to EP while showing worse fairness compared to

UCP as shown in Figure 7.4. COOP achieves similar, but slightly worse fairness

compared to UCP and our off-line version of PCP achieves similar, but slightly

better fairness compared to U+PD.
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Partition Power Consumption

UCP U+PD COOP PCP U+PD COOP PCP

G2-A 6-2 5-2 6-2 5-3 0.931 1.000 1.001

G2-B 6-2 5-2 6-2 5-1 0.954 1.000 0.970

G2-C 7-1 6-1 7-1 5-2 0.916 1.000 0.927

G2-D 6-2 5-2 6-2 5-1 0.953 1.000 0.930

G2-E 1-7 2-4 1-7 2-4 0.824 1.000 0.824

G2-F 2-6 1-6 1-2 1-7 0.945 0.729 0.991

G2-G 2-6 1-2 1-2 1-6 0.760 0.760 0.941

G2-H 1-7 1-7 1-7 1-7 1.000 1.000 1.000

G2-I 7-1 5-1 7-1 4-2 0.815 1.000 0.838

G2-J 6-2 5-1 6-2 4-1 0.851 1.000 0.797

G2-K 7-1 5-1 7-1 4-1 0.798 1.000 0.729

G2-L 6-2 5-2 6-2 6-2 0.967 1.000 1.000

G2-M 7-1 6-1 7-1 7-1 0.962 1.000 1.000

G2-N 7-1 6-1 7-1 7-1 0.965 1.000 1.000

G2-O 7-1 3-5 7-1 7-1 0.939 1.000 1.000

G2-P 6-2 6-1 6-2 6-2 0.940 1.000 1.000

G2-Q 7-1 6-1 7-1 6-1 0.924 1.000 0.924

G2-R 7-1 2-1 7-1 7-1 0.542 1.000 1.000

G2-S 1-7 1-7 1-2 1-7 1.000 0.727 1.000

G2-T 6-2 2-1 6-2 4-1 0.441 1.000 0.659

AVG 8.0 6.4 7.3 7.0 0.871 0.961 0.927

Table 7.2: Cache partition and power consumptions of LLC and DRAM.
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Figure 7.4: Fairness comparison between exhaustive search to find the optimal par-

titioning for the best throughput (E), UCP (U), exhaustive LLC resizing search to

find the optimal partitioning for the best power savings based on UCP with the per-

formance degradation level of 1% (U+PD), COOP (C), and our PEG-based cache

partitioning (P). Fairness is normalized to the fairness of even partitioning (EP).
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Discussion As we discussed in Section 6.3.2, our prediction-based approach in-

troduces errors. To understand the gap between the power savings of PCP and the

power savings from U+PD, we study two ideal cases which eliminate two main er-

rors in PCP: weighted speedup approximation, and AMAT and power estimations.

I-PCP-1 eliminates the error from our weighted speedup (WS) approximation. In-

stead of approximating the WS by means of AMAT, I-PCP-1 computes the actual

WS based on our extensive simulation results in Section 4.4. Likewise, I-PCP-2

further removes errors from our way-counts based AMAT and power estimations.

Figure 7.5 summarizes the results from this study. I-PCP-1 achieves power savings

of 63% compared to the power savings of U+PD. I-PCP-2 achieves power savings

of 84% compared to the power savings of U+PD. In comparison, PCP only achieves

power savings of 57%. This shows the WS approximation and way-counts-based

prediction introduce errors that limit limit the realizable power savings.

Although I-PCP-2 achieves more than 80% of the power savings of exhaustive

search, U+PD, the gap in the power savings of 16% still persists. This is because our

PCP algorithm does not always find the optimal solution and Table 7.3 shows a few

representative cases. As we discussed earlier, the exhaustive search, U+PD, often

exhibits cache partitions different from cache partitions consisting of each shrunken

partition of the UCP solution, e.g. UCP cache partition of 1/7 vs. U+PD cache

partition of 2/4 in G2-D. To cope with this, our PCP algorithm searches beyond

local optima via the upsizing step in Algorithm 7. In particular, workloads G4-H

and G4-Q show successful upsize-assisted searches. However, there are also counter

examples. G2-D fails to find the solution of 2/4 by upsizing the partition of Core 0.
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Figure 7.5: Power and system throughput comparison between PCP, I-PCP-1, and

I-PCP-2. Power savings is normalized to the power savings of U+PD. Throughput

is normalized to the throughput of UCP.

G2-O exhibits a large separation between the partitions of UCP and the partitions

of U+PD (8-way differences: 4 ways per core). PCP is only able to find 6/2 instead

of 3/5 of U+PD. In other words, PCP is stuck in the local optimum of 6/2 and

fails to search the global optimum of 3/5. Likewise, G4-C shows another example

of returning a local optimum: PCP was able to upsize the partition of Core 2 from

2 to 4, but failed to upsize to the partition of 13 in U+PD. G8-O exhibits another

example of local optimum: PCP finds the optimal partition of Core4 by increasing

its size up to 4, but fails to find the optimal partition of Core2 and Core6. So, we

conclude that the heuristic global search in PCP results in the loss of power savings

of 16% compared the power savings of U+PD.
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WL UCP U+PD I-PCP-2

G2-D 1/7 2/4 1/5

G2-O 7/1 3/5 6/2

G4-C 4/7/2/3 1/1/13/1 1/2/4/1

G4-H 2/2/11/1 2/4/7/1 2/4/7/1

G4-Q 6/1/7/2 4/1/7/4 4/1/7/4

G8-O 1/9/5/1/2/9/4/1 1/6/2/1/4/6/2/1 1/6/3/1/4/6/3/1

Table 7.3: Cache partition from UCP, U+PD, and I-PCP-2.

7.5.2 Online Analysis

Epoch Size As mentioned before, selecting an epoch size is crucial for our on-

line techniques. To determine an appropriate epoch size for cache partitioning, we

evaluate the performance of UCP using 3 different epoch sizes: 5M, 10M, and 20M

cycles. Table 7.4 reports the throughput achieved for each epoch size normalized

to the weighted speedup of even partitioning (EP). The last column in Table 7.4

shows the normalized throughput for the static (off-line) UCP technique. Online

cache partitioning does not exceed the throughput of static UCP on average. There

are two reasons for this. First, generally, a last level cache requires longer epochs

compared to the L1 or L2 caches because it has a larger capacity and thus has a

longer transient of the cache resizing event that occurs at the beginning of each

epoch. Second, larger epochs sacrifices opportunities for adaptation. As a result,

online throughput results are worse than the results for static UCP which has an
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Epoch Size 5M 10M 20M Static

Normalized WS 1.0125 1.0189 1.0186 1.0203

Table 7.4: Throughput of UCP according to the epoch size for G2 workloads.

oracle view over the way counts. So, we pick a 10M-cycle epoch size which shows

the best throughput among these candidates.

Evaluation We first compare the power savings of PCP to COOP as shown in

Figure 7.6. Note that power consumption levels are normalized to the power con-

sumption of UCP. Throughput is also normalized to the weighted speedup of UCP.

PCP exhibits 1.8% power savings while COOP shows 0.35% power savings. Hence

PCP has better power savings compared to COOP while maintaining slightly higher

performance. (The performance difference is not significant because both techniques

are within the 1% performance degradation level on average.) Note that for PCP,

there are 10 workloads with more than 1% performance degradation. This is due

to errors in approximating the weighted speedup, already discussed in Section 7.5.1

for static PCP. Another important point is that PCP does not require threshold ad-

justment as COOP does. Note that we carefully tuned thresholds for COOP offline

to achieve similar performance degradation level compared to the performance level

of PCP.

Online PCP reduces the total system power consumption by almost the same

amount as static PCP. However, online PCP exhibits worse performance degrada-

tion: performance degradation in online PCP is as high as 4% compared to 1.3%
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Figure 7.6: Power and system throughput comparison between online PCP, COOP,

and PCP.

for static PCP.
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Chapter 8

GCD CMP Multi-Level Cache Resizing

The search complexity in optimizing cache sizes in a CMP multi-level cache

hierarchy is O(knm). We showed that the GCD method can reduce the search com-

plexity of uniprocessor multi-level cache resizing from O(km) to O(km). With a

similar approach, we can expect to reduce the search complexity of CMP multi-level

cache resizing from O(knm) to O((km)n). But this still involves non-polynomial

search complexity. Such high search complexity is infeasible for a run-time algo-

rithm. As such, we need to further reduce the search complexity. In this chapter,

we provide a limit study of CMP multi-level cache resizing to show the motivation

of our approach, and then we present two techniques to reduce the complexity of

CMP multi-level cache resizing.

8.1 Limits of CMP Multi-Level Cache Resizing

Quasi Optimal Search via NM Method We conduct an offline limit study for

CMP multi-level cache resizing to understand the limit of power savings with a given

performance degradation level. Although this limit study requires O(knm) simula-

tions, we approximate the limits by combining the exhaustive simulations that we

have discussed in Section 4.4. Combining the exhaustive simulation results does

not consider contention at the shared bus between L3 caches and private caches.
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Moreover, because the off-chip bandwidth is not accurately simulated, those combi-

nations are one of approximations to predict total system power consumption and

throughput.

Unfortunately, even this approximation requires exponential computation times

and it is not feasible to get the approximation result beyond a two core system. In-

stead of performing an exhaustive search over the entire solution space, we run the

Nelder-Mead simplex method to estimate the limit. While the Nelder-Mead (NM)

simplex method does not always produce a global optimum, it often finds the global

optimum, e.g. NM method finds the global optimum in 7 out of 20 G2 workloads

(see below). As such, for G4 and G8 workloads, we repeat the method 100–1,000

times and pick the best one to estimate the global optimal.

Since we have the global optimal result for a two-core system based on our

extensive simulation results, we first compare the result from exhaustive search and

the NM result to assess the quality of our NM-based approximation. As shown in

Table 8.1, the NM method’s search results are similar to the solutions from the

exhaustive search from the perspective of weighted speedup and power savings.

Weighted speedup and power consumption are normalized to the result of EP. In

particular, the solutions from exhaustive search and the NMmethod for G2-B, G2-C,

G2-F, G2-G, G2-K, G2-L, G2-R, and G2-S show the exact same weighted speedup

and power consumption. Moreover, the weighted speedup and power consumption

of exhaustive search and NM method averaged across all workload, show only 0.05%

and 0.16% differences, respectively. As a result, NM method shows 18.3% power

savings compared to the power savings of 18.4% in the exhaustive search. Therefore,
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we can conclude that the quality of the solutions from the two different approaches

are essentially the same.

Comparing the CMP cache configurations, as shown in Table 8.2, in 7 out

of 20 cases (G2-B, G2-F, G2-G, G2-K, G2-L, G2-R, and G2-S), the solutions from

NM method are identical to the cache configurations from the exhaustive search.

And in the cases where the NM method does not find the global optimal, one core’s

cache configuration is identical to the cache configuration of the global optimal in

7 out of 13 cases (G2-A, G2-C, G2-D, G2-E, G2-I, G2-N, and G2-Q) and at least 3

variables are matched for all 13 cases (there are 6 variables, L1/L2/L3 per core). In

particular, among 13 local minima of NM method, 5/4/3 variables are matched in

1/7/5 cases, respectively. On average, the errors are 2.9 ways across these 13 local

minima, e.g. the error in G2A is 2 ways because L1 and L2 cache configurations are

not matched and the sum of the differences are 2.

As such, we estimate the limits of CMP multi-level cache resizing by using

NM method instead of exhaustive search which is virtually impossible to finish.

Due to the huge problem space for 8-core system, we repeat 1,000 times and each

run consists of 500 iterations in the NM method. We repeat 100 times for 2- and

4-core systems. We refer to this NM-based approximation as a quasi optimal and

treat it as an upper bound against which we we compare our CMP MCR techniques.

Maximum Power Savings with 1% Performance Degradation We exam-

ine the limits of power savings and performance of CMP multi-level cache resizing

using the quasi optimal solution from the NM method. In this limit study, we take
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Exhaustive Search Nelder-Mead Simplex Search

WL Weighted Speedup Power Weighted Speedup Power

G2-A 0.99938 0.83831 1.00057 0.84058

G2-B 1.00955 0.84244 1.00955 0.84244

G2-C 1.01473 0.82938 1.01473 0.82938

G2-D 1.00843 0.84256 1.00927 0.84562

G2-E 0.99268 0.76075 0.99195 0.76105

G2-F 1.00602 0.82744 1.00602 0.82744

G2-G 0.99499 0.79515 0.99499 0.79515

G2-H 1.14518 0.80926 1.14549 0.81048

G2-I 0.99282 0.77028 0.99419 0.77495

G2-J 0.99702 0.76576 0.99649 0.76952

G2-K 1.00461 0.74897 1.00461 0.74897

G2-L 0.99955 0.85878 0.99955 0.85878

G2-M 1.00707 0.85408 1.00830 0.85697

G2-N 1.01450 0.84741 1.01468 0.84814

G2-O 1.05188 0.86533 1.05698 0.86801

G2-P 1.00258 0.81240 1.00158 0.81539

G2-Q 1.02004 0.80579 1.02019 0.80648

G2-R 0.99856 0.76866 0.99856 0.76866

G2-S 1.01744 0.82609 1.01744 0.82609

G2-T 0.99168 0.84874 0.99177 0.84918

AVG 1.01344 0.81588 1.01385 0.81716

Table 8.1: Performance and power of static optimal CMP cache configurations from

exhaustive search and Nelder-Mead simplex search with 1% performance degrada-

tion. All values are normalized to the result of the even partitioning (EP).
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Exhaustive Search Nelder-Mead Simplex Search

Core 0 Core 1 Core 0 Core 1

WL L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

G2-A 3 3 6 4 3 2 3 3 6 3 4 2

G2-B 3 3 6 4 3 1 3 3 6 4 3 1

G2-C 3 3 7 4 7 1 2 3 7 4 7 1

G2-D 1 3 6 4 1 2 2 2 6 4 1 2

G2-E 2 4 2 1 4 5 4 6 1 1 4 5

G2-F 4 4 1 4 2 6 4 4 1 4 2 6

G2-G 4 4 1 4 2 3 4 4 1 4 2 3

G2-H 3 3 1 2 1 7 2 4 1 1 1 7

G2-I 1 4 5 2 1 2 1 4 5 3 2 2

G2-J 1 4 6 4 3 1 1 5 5 4 5 1

G2-K 1 4 5 1 1 1 1 4 5 1 1 1

G2-L 3 3 6 3 4 1 3 3 6 3 4 1

G2-M 3 3 6 2 1 2 4 3 6 4 1 2

G2-N 3 2 7 4 2 1 2 3 7 4 2 1

G2-O 1 2 2 1 1 6 4 2 2 2 1 6

G2-P 1 2 7 3 3 1 2 3 7 1 3 1

G2-Q 1 3 7 4 7 1 2 2 7 4 7 1

G2-R 1 2 2 1 1 1 1 2 2 1 1 1

G2-S 1 1 1 2 2 7 1 1 1 2 2 7

G2-T 2 2 4 8 3 1 4 3 3 8 4 1

AVG 2.1 2.95 4.4 3.1 2.6 2.6 2.5 3.2 4.25 3.1 2.85 2.6

Table 8.2: CMP cache configurations from exhaustive search and Nelder-Mead sim-

plex search with 1% performance degradation.
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Figure 8.1: Power consumption and throughput of CMP multi-level cache resizing.

Approximated by Nelder-Mead simplex method.

the performance of UCP as a reference and allow 1% performance degradation as

we did in Chapter 7 for U+PD. Figure 8.1 summarizes the power consumption and

performance of the quasi optimal configuration. On average, the static quasi opti-

mal exhibits 83.2% of the power consumption compared to even partitioning (EP),

demonstrating power savings of 16.8%. Note, unlike uniprocessor MCR, there are

around 20 workloads (between workload 0 and workload 20 in the throughput chart

in Figure 8.1) which underperform EP. UCP generally results in better performance

than EP, but in some cases, UCP underperforms EP. As a result, our approxima-

tion of static optimal cache configurations also shows worse performance degradation

than 1% in some cases. In other words, if we have a better-performing online cache-

partitioning technique, our static optimal performance level will exhibit no worse

than 99% of EP.
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Power Savings in the Cache Hierarchy CMP multi-level cache resizing ef-

fectively reduces wasteful power consumption from the cache hierarchy. Table 8.3

summarizes the relative power consumption of our static quasi-optimal search using

the NM method. And Figures 8.2, 8.3, and 8.4 show the power consumption break-

down for G2, G4, and G8 workloads, respectively. Relative power consumption level

in Table 8.3 is normalized to the power consumption of UCP while Figures 8.2, 8.3,

and 8.4 report actual power values. Each bar in Figures 8.2, 8.3, and 8.4 breaks

down the power consumption across all cores, and hence, the values in G8 workloads

are higher than the values in G2 or G4 workloads.

The static power consumption of each caching level reveals the relative cache

size because we assume power gated sub-arrays of unused portions of cache do not

consume any static power. On average, the quasi optimal reduces the L1 and L2

sizes by more than half, as seen by comparing the static power consumption of the

L1 and L2 caches in Table 8.3. On the other hand, the total L3 cache size is reduced

by around 18% and the dynamic power in the L3 cache is increased by 21%. This

active L3 size on average indicates that the L1 caches have highest PEG, the second

highest PEG for the L2 caches, and the L3-cache partitions have lowest PEG on

average.

The power savings in the cache hierarchy not only vary across workload groups,

but also show significant variance within a group. In particular, G2-R exhibits the

biggest power savings, 70%, with the cache configuration of 1/1, 2/1, and 2/1 for

L1, L2, and L3 caches, respectively (core 0 / core 1 configuration), while overall

the G2 workload group shows a power savings of 45.3% on average, as shown in
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Group L1D L1S L2D L2S L3D L3S All

G2 0.320 0.353 0.833 0.387 1.250 0.857 0.547

G4 0.316 0.355 0.961 0.463 1.163 0.788 0.559

G8 0.444 0.447 0.777 0.493 1.226 0.821 0.645

AVG 0.360 0.385 0.857 0.448 1.213 0.822 0.584

Table 8.3: Average relative power consumption per caching level and per dynam-

ic/static power. Values are normalized to the power consumption of UCP.

Figure 8.2. On the other hand, G2-C exhibits the smallest power savings of 32.8%

among the G2 workload group. Among G4 workloads, G4-P shows the biggest power

savings of 55.6% with the cache configuration of 1/1/1/1, 3/4/2/4, and 3/3/2/1.

G4-M exhibits the smallest power savings of 30.2% while overall the G4 workload

group shows power savings of 44.1%. Lastly, for G8 workloads, G8-N achieves power

savings 53.1% with the cache configuration of 2/2/3/2/3/2/2/3, 3/2/4/4/4/4/5/4,

and 2/1/1/1/1/2/1/3. On the other hand, G8-M exhibits power savings of 18.1%

while overall the G8 workload group shows power savings of 35.5% on average, as

shown in Figure 8.4.

Although only L3 dynamic power is increased on average, there are 14 work-

loads that exhibit increased L2 dynamic power. On average, however, L2 dynamic

power is decreased by 14%. In particular, G2-J and G4-B show L2 dynamic power

increase by 70% as shown in Figure 8.2 and 8.3, respectively. Moreover, L3 dynamic

power is increased by as much as 160% for G2-R, as shown in Figure 8.2.
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Figure 8.2: Power consumption breakdown of UCP (U) and Static Quasi-Optimal

(S) for G2 workloads.

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S U S 

A B C D E F G H I J K L M N O P Q R S T AVG 

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
at

t)
 

L1D L1S L2D L2S L3D L3S 

Figure 8.3: Power consumption breakdown of UCP (U) and Static Quasi-Optimal

(S) for G4 workloads.
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Figure 8.4: Power consumption breakdown of UCP (U) and Static Quasi-Optimal

(S) for G8 workloads.

Comparing Uniprocessor MCR and CMP MCR Figure 8.5 shows cache

power consumption breakdown for some representative G2 workloads. In particu-

lar, we compare the static optimal found via exhaustive search for the 2-core system

against the optimal found individually for each of the two benchmarks for a unipro-

cessor, as discussed in Chapter 6. We can see that the optimal multi-level cache

configurations are different from the combination of the corresponding uniprocessor

MCR configurations.

First, an LLC partitioning determines the system throughput so, it is crucial

to know the partitions that will achieve best performance online as we pointed out in

Chapter 7. However, in some cases, cache partitions in uniprocessor static optimal

(UM) and in static optimal in CMP (SO) are similar. In particular, G2-R and G2-T

show that cache configuration of UM and SO are identical, as shown in Table 8.4,

resulting in the same power breakdown. This is mainly due to the lack of contention
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in the shared LLC so that each core’s uniprocessor optimization can fit in the CMP

cache without considering the interaction between the cores at the LLC level.

However, G2-C and G2-L show cache partitions that improve the system

throughput also change private cache sizes too. In other words, due to the dif-

ferent size of the LLC, per core optimization also results in different balance points.

In the case of G2-C, it achieves an improved weighted speedup: more L3 cache allo-

cation and bigger private caches in core 0 boost the performance and its impact is

big enough to cancel out the performance degradation from shrunken L2’s capacity

in core 1, as shown in Figure 8.5 and Table 8.4. Similarly, G2-L shows core 0’s

bigger caches across the entire cache hierarchy and core 1’s L1 cache is also bigger

at the cost of the shrunken L3.

Therefore, we can conclude that we can not apply our uniprocessor MCR

technique on each core to solve the CMP multi-level cache resizing problem, except

in some cases where there are no constraints in the LLC partitioning. In the next

section, we will discuss other methods crucial to CMP multi-level cache resizing.

8.2 Dividing CMP Multi-level Cache Resizing into Subproblems

The CMP multi-level cache resizing problem scales exponentially as the num-

ber of cores grows, e.g. there are 24 variables for our 8-core system study and the

solution space is larger than 824 (the number of L3 configurations grows with the

number of cores). As we pointed out earlier in Chapter 7, a cache partitioning

problem is quite different from the cache resizing problem in private caches. As
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Figure 8.5: Cache power breakdown for baseline and static optimal (BL:baseline,

UM:uniprocessor MCR, SO: static optimal with exhaustive search in CMP)

Uniprocessor SO CMP SO

WL Core 0 Core 1 Core 0 Core 1

G2-C 1/2/4 4/8/1 3/3/7 4/7/1

G2-L 1/2/4 2/4/4 3/3/6 3/4/1

G2-R 1/2/2 1/1/1 1/2/2 1/1/1

G2-T 2/2/4 8/4/1 2/2/4 8/4/1

Table 8.4: Cache configurations from uniprocessor static optimal and CMP static

optimal.
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such, the nm-variable CMP MCR problem is divided into an n-variable cache par-

titioning problem and an n(m − 1)-variable cache resizing problem. Among these

subproblems, we already implemented PCP to solve the n-variable cache partition-

ing problem (see Chapter 7).

One of the challenges in solving the n(m− 1)-variable cache resizing problem

is the convergence rate. Optimizing a problem consisting of n(m− 1) variables may

suffer from a slow convergence rate because the number of steps in finding minima

will increase as the number of cores grows. Such slow convergence will result in poor

adaptability in the cache resizing. To prevent such a slow convergence rate, we divide

the cache resizing problem into subproblems by grouping variables. Optimizing these

subproblems might result in suboptimal solutions compared to the global optimal

attained from optimizing the n(m − 1)-variable cache resizing problem. However,

there was a significant power savings achieved by the adaptability of our GCD

MCR for a uniprocessor, as we discussed in Section 6.3.3. We want to preserve the

adaptability of our GCD approach in the CMP multi-level cache resizing problem as

well. As such, we compare the convergence rate and the power savings/performance

level. For this comparison, we conduct an offline study to compare power savings

and performance achieved via different grouping techniques.

Two straight forward approaches are vertical and horizontal groupings. Verti-

cal grouping joins variables of each caching level from the same core and results in

n subproblems. On the other hand, horizontal grouping joins variables in the same

caching level and results in (m− 1) subproblems. For example, a vertical grouping

divides the problem into 8 subproblems for a 8-core system, and a horizontal group-
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Figure 8.6: CMP multi-level cache resizing and variable grouping.

ing divides the problem into 2 subproblems for a 3-level cache hierarchy. Figure 8.6

illustrates these two different grouping techniques.

Vertical Grouping: Independent Uniprocessor MCR Vertical grouping is

highly related to our previous GCD MCR technique for a uniprocessor in that its

optimization scope is limited to each core. Although the number of subproblems

scales linearly to the number of cores, a vertical grouping has its strength in its

simplicity because it runs n uniprocessor GCD MCR independently. The difference

is that the L3 capacity is not determined by the uniprocessor MCR algorithm;

instead it is determined as a byproduct of L3 partitioning using our PCP algorithm.
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Moreover, each solution per core reduces wasteful power consumption effectively, as

we already discussed in Section 6.3.3.

Horizontal Grouping: L1– and L2–cache Groups Horizontal grouping com-

pares PEG values across cores so that the optimization within a horizontal group

results in local optimal cache configurations. Each private cache consumes dynamic

power that is proportional to the number of accesses which can vary significantly

across cores. As such, disabling a single way in private caches may have different

PEG values. Decisions made by monitoring only each core, i.e. vertical grouping

are prone to be destructive because each core’s increased data traffic to the LLC

aggravates resource conflicts in the LLC.

Horizontal grouping addresses this problem by selecting the way that provides

the biggest PEG value first. This will result in saving more power by selecting ways

that provide higher PEG value. As such, horizontal grouping prioritizes the ways in

PEG order within the expected performance degradation estimated by ∆ AMAT.

Convergence Rate Comparison We conduct an offline study to compare con-

vergence rates between three different approaches: optimizing the entire CMP multi-

level cache resizing problem, optimizing vertical groups separately, and optimizing

horizontal groups separately. Figure 8.7 shows the median convergence rate of each

workload group. Both vertical and horizontal groupings show reduced convergence

rates compared to the convergence rate of no grouping, which increases as the num-

ber of cores grows.

145



0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

G2 G4 G8 

No Grouping 

Vertical Grouping 

Horizontal Grouping 

N
u
m

b
er

 o
f 

E
v
al

u
at

io
n
 

Figure 8.7: Convergence rate comparison between no gropuing, vertical grouping,

and horizontal grouping.

8.3 GCD CMP Multi-Level Cache Resizing Algorithm Design

We implement the vertical and horizontal grouping for CMP multi-level cache

resizing. The implementation of vertical grouping is straight forward because we can

simply combine our PCP and uniprocessor MCR algorithms. The only difference

between the previous implementation of PCP and the implementation for PCP and

CMP cache resizing is that the new PCP will also consider an increases AMAT

caused by cache resizing in the private caches. This change to PCP also occurs

in our implementation of horizontal grouping. For this reason, we focus on the

implementation of horizontal grouping in this section.
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8.3.1 Algorithm Description

Algorithm 8 shows the main procedure of the GCD CMP multi-level cache

resizing, i.e. horizontal grouping. Like GCD MCR for a uniprocessor, GCD CMP

multi-level cache resizing algorithm collects way-counter values at epoch granularity,

and each caching level has different granularity. As such, per-level cache resizing,

horizontal grouping, is executed at different frequencies as shown in Line 8.7, 8.10,

and 8.13. Moreover, the entire search procedure starts over every reset epoch counts

in Line 8.16.

Loosely Coupled Performance Bound We add all ∆AMAT in an entire sys-

tem to broaden search space. Unlike we strictly enforced the performance degrada-

tion in a uniprocessor GCD MCR, we allow each core exhibiting worse performance

degradation. Independent control of ∆AMAT or balance per core prone to end up

suboptimal solutions for not considering overall PEG order because relaxing per-

formance constraints per core has better chance to explore bigger PEG gain in each

core.

Balance in the Line 8.3 controls the overall system performance degradation

in the relaxed manner. Each per-level cache resizing procedure, cmp mcr per level,

takes the balance as input parameters and decreases it along with cyclical way

selection in the group.

Optimization within a Horizontal Group cmp mcr per level(), as shown in

Algorithm 9, implement the optimization within a horizontal group. Line 9.9 shows
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cyclical iteration through the group, horizontal grouping–set of cores. As we dis-

cussed earlier, our online analysis is focused on the number of evaluations or re-

configurations, not the computation time in this iteration. In other words, this

computational overhead in this iteration, O(n), is actually O(1) in our evaluation-

time analysis domain.

Figure 8.8 shows our GCD CMP multi-level cache resizing framework. The

computational overhead in each MCR logic, shaded round box, is corresponding the

described Algorithm 9 and this is computational overhead in our design. On the

other hand, the convergence rate, which is determined by the number of iteration

of switching between each MCR logic, is corresponding the described Algorithm 8.

This convergence rate dominates the speed of reconfiguration and thus, determines

the power savings and performance of this algorithm.

8.3.2 Implementation

Our GCD CMP multi-level cache resizing algorithm can be implemented ei-

ther entirely in hardware or partially in software with support of hardware. Entire

hardware implementation needs less software modification and can be stand-alone

solution, and software implementation with hardware support has fewer hardware

modification and flexibility in the implementation.

Hardware Overhead The solid boxes in Figure 8.8 shows the minimal hardware

modification for either hardware or software implementation. These mandatory

hardware modifications consist of two components. First way counters should be
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Algorithm 8: GCD CMP Multi-Level Cache Resizing Algorithm

8.1 gcd cmp mcr(perfLimit):

8.2 begin

8.3 balance = sum of each core’s AMAT (get delta amat())

8.4 alloc = current allocation of CMP caches, LLC follows UCP partitions

8.5 /* main loop */

8.6 while true do

8.7 if not (epoch % L1 FREQ) then

8.8 cmp mcr per level(L1, balance, alloc)

8.9 end

8.10 if not (epoch % L2 FREQ) then

8.11 cmp mcr per level(L2, balance, alloc)

8.12 end

8.13 if not (epoch % L3 FREQ) then

8.14 pcp(alloc)

8.15 end

8.16 if not ( epoch % RESET FREQ) then

8.17 start new search

8.18 end

8.19 end

8.20 end
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Algorithm 9: CMP Multi-Level Cache Resizing Per-Level Algorithm

9.1 cmp mcr per level(level, balance, alloc):

9.2 begin

9.3 /* main loop */

9.4 while balance do

9.5 foreach cpu i do

9.6 budgetUsed += ∆ AMAT caused by current cache resizing

9.7 end

9.8 balance -= budgetUsed

9.9 foreach cpu i do

9.10 totalAccesses = total memory references of cpu i

9.11 wc[i] = current way counts of cpu i

9.12 peg[i] = get max peg(wc[i], totalAccesses, alloc[i][level], balance)

9.13 end

9.14 winner = cpu with maximum value of peg

9.15 if peg[winner].peg <= 0 then

9.16 break

9.17 end

9.18 balance = balance – peg[winner].deltaAMAT

9.19 alloc[level][winner] = peg[winner].alloc

9.20 end

9.21 return

9.22 end
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Figure 8.8: GCD CMP multi-level cache resizing framework.
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added to approximate stack distances. Even software techniques can be adopted to

approximate the stack distances, but our granularity is around 10-100K cycles, so

we assume that hardware way counters are mandatory.

Lightly shaded boxes can be also implemented in hardware. In such case,

MCR logics require way counters and PEG registers, and energy constant registers

as memory and divider to compute PEG from way counter and energy constant.

Software Overhead The software implementation needs minimal hardware sup-

port. The lightly shaded boxes can be implemented inside interrupt handler routine

of OS.

8.4 Evaluation of GCD CMP Multi-level Cache Resizing

In this section, we evaluate the power savings and performance degradation of

our GCD CMP multi-level cache resizing. We will first evaluate our offline study.

And then, we will discuss our online results.

8.4.1 Offline Analysis

Evaluation We first compare the power savings of vertical grouping (VG) and

horizontal grouping (HG) CMP multi-level cache resizing. VG and HG exhibit the

total system power consumption of 92.4% and 91%, compared to the total system

power consumption of UCP, respectively. Comparing to the power savings of our

static quasi-optimal (SQO) that exhibit the total system power consumption of

84.8% (15.2% power savings), VG and HG achieve as mush as 50% and 60% in power
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Figure 8.9: Power and system throughput comparison between static quasi-optimal

(SQO), vertical grouping (VG), and horizontal grouping (HG).

savings, showing power savings of 7.6% and 9%, respectively. From the perspective

of performance degradation compared to the performance level of UCP, SQO, VG,

and HG show 0.8%, 0.32%, and 0.41% throughput degradation, respectively.

Discussion Our GCD-based vertical and horizontal groupings show suboptimal

result compared to the result of static quasi-optimal (SQO) in Figure 8.9. There

are mainly two sources of errors: power and performance approximation errors and

suboptimization errors from optimizing subproblems. As we pointed out in Sec-

tion 6.3.2 and 7.5.1, both AMAT-based performance approximating and way-count-

based AMAT and power approximating introduce significant errors. Eliminating

these errors helps us understand not only the degree of these errors, but also the

limit of power savings that our approach may achieve. Likewise, we conduct a limit
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study to eliminate these errors so that we can breakdown the errors that we observe

in Figure 8.9 into approximation and suboptimization errors.

We eliminate errors from way-count-based AMAT and power approximating

by employing our extensive simulation result in Section 4.4. We implement this ideal

approach for no-grouping, vertical grouping, and horizontal grouping. Figure 8.10

shows power savings and performance degradation level of ideal no-grouping (I-NG),

ideal vertical grouping (I-VG), and ideal horizontal grouping (I-HG).

I-NG, I-VG, and I-HG exhibit the total system power consumption of 85.5%,

87.5%, and 85.7%, compared to the total system power consumption of UCP, re-

spectively. Comparing to the power savings of our static quasi-optimal (SQO) that

exhibit the total system power consumption of 84.8% (15.2% power savings), I-NG,

I-VG, and I-HG achieve as much as 95%, 82% and 94% in power savings, showing

power savings of 14.5%, 12.5%, and 14.3%, respectively. It is notable that I-HG

achieves almost same power savings to the power savings of I-NG while reducing

the convergence rate significantly as we showed earlier in Section 8.2. Based on the

power savings result, we can conclude that the quality of the solution from our GCD

approach is as good as 95% of the SQO for I-NG. Moreover, I-HG finds the solutions

of the almost same quality compared to I-NG.

From the perspective of the performance degradation level, although I-NG,

I-VG, and I-HG exhibit 1.23%, 1.01%, and 1.15% performance degradation level,

on average, all these approaches show more than 2% performance degradation for

some cases as show in Figure 8.10. The main reason is that we use loosely coupled

performance bound we explained in Section 8.3.1. This relaxed performance control
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Figure 8.10: Power and system throughput comparison between static quasi-optimal

(SQO), ideal vertical grouping (I-VG), and ideal horizontal grouping (I-HG).

enables a global search over the solution space, but results in worse performance

degradation level than the level by which we want a performance degradation level

is bound.

8.4.2 Online Analysis

We evaluate the power and performance of dynamic vertical grouping (D-VG),

and dynamic horizontal grouping (D-HG) as shown in Figure 8.11. All values are

normalized to the result of UCP. D-VG and D-HG exhibit the total system power

consumption of 86.8% and 86.1%, compared to the total system power consumption

of UCP, respectively. Comparing to the power savings of our static quasi-optimal

(SQO) that exhibit the total system power consumption of 84.8% (15.2% power

savings), D-VG, and D-HG achieve as much as 87% and 91% in power savings,
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Figure 8.11: Power and system throughput comparison between static quasi-optimal

(SQO), static vertical grouping (S-VG), static horizontal grouping (S-HG), dynamic

vertical grouping (D-VG), and dynamic horizontal grouping (D-HG).

showing power savings of 13.2% and 13.9%, respectively. Comparing to the power

savings of static implementation in the offline study (7.6% and 9% for S-VG and

S-VG), D-VG and D-HG achieve 5.6% and 4.9% more power savings, respectively.

It is also notable that the difference between power savings of VG and HG, 0.7%, for

this online study is smaller than the difference, 1.4%, for the offline study. From the

perspective of power savings, D-VG and D-HG does not exhibit significant difference.

However, HG compares PEG values across cores and has better chance to explore

towards the global optimal. Although, the average power savings are similar between

two different grouping manners, HG shows better power savings with more cores. As

shown in Table 8.5, we compare differences between two approaches per workload

groups. Comparing the normalized difference (difference divided by power savings
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D-VG D-HG Diff. Normalized Diff .

G2 0.870 0.866 0.004 0.028

G4 0.869 0.862 0.007 0.052

G8 0.872 0.863 0.009 0.066

Table 8.5: Performance per workload groups. Normalized difference is calculated by

Diff/(1-D-HG).

of D-HG), G2/4/8 groups exhibit differences of 2.8%, 5.2%, and 6.6%, respectively.

These increasing differences with more cores support that HG approximates the

global optimal better than VG in that HG compares PEG vales across cores and its

optimization scope expands as the number of cores grows. Our online GCD CMP

MCR implementation shows 1.5% performance degradation level compared to the

performance level of UCP, on average (same for both D-VG and D-HG). It is worse

than the performance degradation level in the static study of 0.3% and 0.4%.

It is notable that D-VG exceeds the power savings of I-VG (13.2% vs. 12.5%)

while maintaining slightly worse performance degradation level (1.5% vs. 1.01%).

Likewise, D-HG shows comparable power savings to the power savings of I-DG

(13.9% vs. 14.3%). Considering the additional power savings compared to the offline

study and the similar power savings compare to the ideal study, we conclude that

our online implementation is able to adapt to the program phase changes efficiently.
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Chapter 9

Conclusion

9.1 Summary and Conclusion

In this dissertation, we propose a new greedy coordinate descent method that

optimizes a CMP multi-level cache configuration without direct power/performance

evaluations. Our approach predicts power and performance in the optimization,

because direct evaluations may cause erroneous probing due to dynamic program

phase changes. Instead of a direct power/performance feedback, we employ way

counters to define power efficiency gain (PEG) that we use to decide search steps

in the optimization. By descending according to the coordinate that has the max-

imum/minimum PEG value, we approximate a gradient-based optimization with

manhattan movements over the coordinate system. We develop GCD techniques for

uniprocessor MCR, LLC partitioning, and CMP MCR that efficiently search local

minima. Although these techniques do not find global optimal cache configurations

always, the power savings that these techniques achieve at runtime is similar to the

power savings of the statically optimal cache configurations due to their dynamic

adaptability.

From this study, we conclude followings. First, we find that approximated

partial-derivative-based search for a coordinate descent method is effective as shown

in Chapter 6. Although multi-level cache hierarchy complicates the optimization
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problem with deeper caching levels, separating each caching level and searching the

maximum PEG with a given performance limit is possible. This greedy coordinate

descent effectively reduces the evaluation complexity. Second, our heuristic that

approximates the partial derivative based on way counter shows feasibility for a CMP

multi-level cache resizing at runtime, which is an NP-hard problem. Third, the PEG

metric not only reduces the evaluation complexity, but also enables comparisons

between different caching levels. PEG values in the same caching level enables a

line search by selecting the maximum PEG value. Moreover, each maximum PEG

values per caching level further enables comparisons between different caching levels

which effectively removes search complexity over all possible combination of different

cache sizes at different caching levels. Due to the fast convergence rate of our GCD

method, we were able to achieve better power savings at runtime compared to the

power savings of it static implementation. Fourth, we showed that the traditional

way counters can be used for power efficiency as well.

9.2 Future Work

In this dissertation, we showed that our greedy coordinate descent method

is effective to reduce wasteful power consumption from a CMP multi-level cache

hierarchy. We believe that the idea presented in this dissertation can be extended

in wider range of problems.

First, we can extend our study by considering task scheduling. We assumed

given task scheduling to simply the CMP multi-level cache resizing problem. How-
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ever, task scheduling problem to minimize the total system power consumption while

maintaining high throughput is another very challenging problem. For example, if

we have a set of programs to finish, task scheduling should optimize workload com-

position, context-switch frequency, and its implementation in OS to reduce power

consumptions.

Second, we can apply our GCD approach to change number of caching levels

adaptively. Cache thrashing is one of the cache interference problem caused by

different working sets across threads. As such, cache bypassing which skips certain

caching level of a cache hierarchy is one of techniques that can prevent such cache

interference. Cache bypassing can virtually change the number of caching level.

For example, a thread having a memory reference stream of a larger working set

that does not efficiently utilize a last level cache can be bypassed at the LLC. Our

GCD approach can be extended to dynamically reorganize the cache hierarchy to

determine bypassing of a given thread at each caching level.

Third, we can apply our technique in conjunction with dynamic voltage scaling

technique. Dynamic voltage scaling (DVS) technique is an architectural technique

to save dynamic power consumption of CPUs and have been studied widely. DVS

will eventually change computation speed and cause AMAT changes in the cache

hierarchy. And this will result in non trivial performance change if they are managed

separately. This is a very interesting problem in that computation and load times

contribute differently across various programs and the power efficiency changes from

optimal power savings from DVS and GCD CMP multi-level cache resizing are not

known yet.
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Fourth, we can apply our technique for distributed last level caches in a many-

core system. We assume a shared LLC in this thesis, however there are other

topologies in CMPs as well. For example, distributed LLCs are employed in Tilera

CMPs [26]. Distributed LLCs can have an additional caching level by allowing

sharing in other tile’s LLC. This will complicate the cache hierarchy and extend-

ing our GCD approach can be one of the possible solutions to optimize the power

consumption of such a cache hierarchy.
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