
ABSTRACT 
 

Title of Thesis:  GEL FORMATION BY THE SELF-ASSEMBLY OF SMALL 
MOLECULES: INSIGHTS FROM SOLUBILITY 
PARAMETERS 

Kevin Diehn, Master of Science, 2014 

Directed by:  Prof. Srinivasa R. Raghavan 
   Department of Chemical & Biomolecular Engineering 
 

Many small molecules can self-assemble into long fibers and thereby gel organic 

liquids. However, no capability exists to predict whether a molecule in a given solvent 

will form a gel, a thin solution (sol), or an insoluble precipitate. In this thesis, we build 

a framework for gelation via a common gelator based on Hansen solubility parameters 
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with R0. Our approach can be used to design organogels of desired strength and gelation 
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GEL FORMATION BY THE SELF-ASSEMBLY OF SMALL 

MOLECULES: INSIGHTS FROM SOLUBILITY PARAMETERS  

 

 

 

 

Kevin K. Diehn 

 

Thesis submitted to the Faculty of the Graduate School of the 

University of Maryland, College Park, in partial fulfillment  

of the requirements for the degree of  

Master of Science  

2014 
 

 

 

Advisory Committee: 

Prof. Srinivasa R. Raghavan, Chair 

Prof. Mikhail Anisimov 

Prof. Jeffery Klauda 

 
 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Kevin K Diehn 

2014 

 

 

 

 

 
 



 

 

 

 

 

 

 

Dedication 

This thesis is dedicated to my family, friends, and co-workers,  

without whose support this work would have not been possible. 

ii 
 



Acknowledgements 

 

I would like to thank my advisor, Dr. Srinivasa Raghavan, who has guided me through 

my research career to this point. Dr. Raghavan’s has consistently offered a positive 

outlook and support in pursuing my research goals. Moreover, his emphasis on 

fundamental understanding and clear communication of research results has shaped my 

abilities as a scientist. 

 

I would also like to thank all of my Complex Fluids group labmates who have offered 

me support and friendship throughout this work. 

 

I would also like to thank Dr. Richard Weiss of Georgetown University who provided 

consistent encouragement and vision for the potential of this work.  

 

 

 

 

 

 

 iii 



TABLE OF CONTENTS 
 
Dedication ...................................................................................................... 
 
 

 
ii 

Acknowledgement ......................................................................................... 
 
 

iii 

Chapter 1. Introduction and Overview ....................................................... 
 

1 

 
Chapter 2. Background ................................................................................. 
 

 
5 

2.1 Molecular Organogels…............................................................................ 
 
2.2. Organogels Made from DBS..................................................................... 

5 
 
   6 
 

2.3 Hansen Solubility Parameters (HSPs)......................................................... 
 

 7 

2.4 Rheology………………….......................................................................... 
 

10 

 
Chapter 3. Observation and Characterization of DBS Behavior in 
Solvents via Hansen Solubility Parameters………………………………….... 
 

   
 
 12       

3.1 Introduction ................................................................................................. 
 

12 

3.2 Experimental Section .................................................................................. 
 

14 

3.3 Results and Discussion ............................................................................... 
 

18 

3.3.1. Observation and Classification of Sample Outcomes…......................... 
 

18 

3.3.2  Plotting Outcomes in 3D Hansen Space……………………………………... 
 

22 

3.3.3  3D Solubility Plots for DBS……………………………………………………. 
 
3.3.4  Significance of the S-SG-IG-G Concentric Shells…..…………………….. 
 
3.3.5  Gel Properties as a Function of R0………..…………………………….…….       
 
3.3.6  Prediction of Gelator Behavior in Solvent Mixture………………………. 
 
3.3.7  Thumb Rules and Outlook……………………………………………………...     
 

23 
 

29 
 

31 
 
 33     
 
 37 

 iv 



3.4  Conclusions .............................................................................................. 
 
 

 38 

Chapter 4.  Conclusions and Future Directions………………................... 
 

  40 

4.1 Conclusions ............................................................................................... 
 

40 

4.2 Future Directions ....................................................................................... 
 
 

40 

References ...................................................................................................... 44 
 
 

 

 

 

 

 v 



Chapter 1: INTRODUCTION AND OVERVIEW 

  
Molecular organogels are a fascinating class of materials that are attracting wide 

interest among chemists, physicists and engineers.1-3 They are formed by the non-

covalent self-assembly of small molecules in organic liquids. The molecular assembly 

results in long one-dimensional objects (“fibers”), which entangle and interconnect into 

a three-dimensional (3-D) network.4 Upon formation of such a self-assembled fibrous 

network (SAFIN), the liquid solvent (sol) is entrapped within the network, and the 

sample is transformed into an elastic gel (Figure 1.1). Molecular organogels are being 

explored for a variety of applications such as for treating oil spills,5 art conservation,6 

plasma and serum separation,7 and as materials in solar cells or lithium-ion batteries8.  

 
 
Figure 1.1. Schematic of Small Molecule Self-assembly into Fibers and Gels. At high 
temperature (left) gelator molecules (blue arrows) are discrete entities and the sample is a 
sol (solution). As the sample is cooled to room temperature (right), the molecules assemble 
into long fibers that entangle to entrap the solvent and form a gel. 
 

Sol @ 
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 Despite the wide interest in molecular gels, a fundamental understanding of 

self-assembly-based gelation is lacking. Most known organogelators have been 

discovered by serendipity, and trial-and-error experiments are still necessary to 

determine which solvents they can gel.2,9,10 It would be invaluable to have a framework 

that could be used to predict whether a given gelator could gel a new solvent of interest. 

For various solvents, important physical properties such as the dielectric constant, 

Hamaker constant, surface tension, Hildebrandt solubility parameter, and Hansen 

solubility parameters, are either tabulated or can be calculated. Can gelation be 

correlated with one or more of these physical properties? This question has generated 

much research,11-15 but the field still awaits a framework that has applicability across a 

wide range of molecular gelators.    

An important advance in connecting gelation with solvent properties was 

recently reported by Raynal and Bouteiller16 who performed a meta-analysis of eight 

earlier studies on organogelators. They interpreted these results in terms of the solvents’ 

Hansen solubility parameters (HSPs).17,18 HSPs quantify the cohesive energy density δ 

of a solvent in terms of contributions from three types of weak interactions:17 van der 

Waals or dispersive interactions (δD), dipole-dipole or polar interactions (δP), and 

hydrogen-bonding interactions (δH). Each solvent is thus a point on a 3-D plot in which 

the axes represent the three HSPs (δD, δP, and δH). The distance from the origin to that 

point represents the total cohesive energy density δ of the solvent.17 The same approach 

has also been subsequently used by other researchers.19-23 In this thesis, we develop a 

new HSP-based framework for interpreting gelation that offers important insights and 

useful predictive capabilities.    
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The focus of our studies is the well-known model organogelator 1,3:2,4-

dibenzylidene sorbitol (DBS). DBS is a butterfly-shaped molecule with a hydroxylated 

center and benzyl groups on either side (Figure 1.2) and it is capable of gelling many 

organic solvents at low concentrations (< 5 wt%).21,24-31 We examine DBS in a wide 

range of solvents with known HSPs and we plot our observations on 3-D Hansen plots. 

(Note that the precise HSPs of DBS are not known a priori. Group contribution 

methods do exist to determine HSPs from the functional groups present in a given 

molecule;17, 21 however, these can be reliably applied only to simple molecules, not to 

complex structures like DBS.) Our central finding is a consistent, logical progression 

in 3-D Hansen space with spherical shells of solubility, gelation, and insolubility 

radiating out in order (see Chapter 3). This pattern offers insights into both the nature 

and the kinetics of gelation. In addition, we are also able to correlate the rheology of 

DBS gels with the solvent properties based on HSPs.  

The significance of this work lies in the framework we have advanced for 

characterizing the self-assembly of organogelators in different solvents. Our work 

suggests that gelation requires a moderate extent of incompatibility between the gelator 

 
Figure 1.2. Structure of DBS and Photographs of DBS Gels. (Left) The butterfly-
like structure of DBS is shown. (Right) Gels of DBS in various solvents is shown.  
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and solvent. Our approach gives reasonable predictions of gelator behavior in untested 

solvents, such as solvent blends. Some thumb rules based on our approach have been 

developed, and we hope these will be tested by experiments with other gelators. A 

MATLAB program and an associated graphical user interface (GUI) have been 

developed to allow other researchers to apply the same approach to other gelators.  
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Chapter 2: BACKGROUND 

 

In Chapter 2, we provide background on each of the key components of our study. 

Molecular organogels are the focus of our study and we have studied a particular 

gelator, 1:3,2:4-dibenzylidene sorbitol (DBS), as a model gelator. We have 

characterized the behavior of DBS in a variety of solvents, whose properties can be 

quantified by Hansen Solubility Parameters (HSPs). An introduction to HSPs is 

provided and their utility is discussed. Finally, we have characterized our gels via 

rheology, and we provide a basic background into rheological techniques. 

 

2.1. MOLECULAR ORGANOGELS  

Molecular organogels are a class of soft materials consisting of an organic solvent 

entrapped in a self-assembled fibrous network (SAFIN). The SAFIN is formed via the 

self-assembly of a small molecule, which is referred to as low-molecular weight 

organogelator (LMOG). To form an organogel, the LMOG is dissolved to form a 

transparent solution (sol) by heating. When this sol is cooled, the gelator molecules 

interact with one another via weak bonds (Van der Waals interactions, hydrogen bonds, 

π-π bonds etc.) to form long, one-dimensional fibrillar structures. As these fibrils grow, 

they entangle into a three-dimensional network that immobilizes solvent molecules to 

form a gel. The formation of the gel may be reversed by heating the gel to break the 

weak interactions between the LMOG molecules within each fibril.1-3  
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As mentioned, gelator molecules have drawn significant interest in the past two decades 

for their vast commercial potential.5-8 However, a major limitation currently is in 

determining a priori if a gelator will gel a given solvent. Currently, such predictive 

capability does not exist and researchers have to perform numerous tests in different 

solvents with each gelator that is synthesized or discovered.  

  

2.2. ORGANOGELS MADE FROM DBS 

 In this work, we have chosen 1:3,2:4-dibenzylidene sorbitol (DBS) as a model 

organogelator. DBS is a small, butterfly-shaped sorbitol derived molecule with a 

hydroxyl center and benzyl groups on either side (Figure 1.2) that is capable of 

assembling into long fibrils and thereby gelling a variety of organic solvents at low 

concentrations (in many cases at < 1%). DBS has been widely studied21,24-31 and even 

found industrial applications in the gelation of cosmetics products.32 Despite the 

numerous studies on DBS, little is understood about DBS self-assembly. The primary 

driving force for the self-assembly of DBS appears to be a combination of hydrogen 

bonding and π-π bonds, although the exact mechanism by which DBS self-assembles 

into fibrils remains largely unknown. 

Remarkably, the behavior of DBS varies widely from solvent to solvent. DBS 

is readily soluble in some solvents, such as n-methylpyrrolidone (NMP) and 

dimethylformamide (DMF), yet DBS is a potent gelator of glycols, silicone fluids, 

alcohols, and aromatics. In other solvents, such as non-polar aliphatics or water, DBS 

remains completely insoluble even at high temperature. Moreover, even among 

solvents gelled by DBS, the properties of the final gels vary widely. In some solvents 
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DBS forms a transparent gel, while in others the gel appears highly opaque (see Figure 

1.2). Some gels are very soft (low modulus), while others are very stiff (high modulus).  

Likewise, as we will discuss, even the kinetics of DBS gelation (i.e., how quickly the 

gel forms after the sol is cooled to room temperature) varies widely from a few seconds 

to days or weeks depending upon the choice of solvent. Up to this point, no conclusive 

studies exist to tie the highly varied behavior of DBS across solvents together into a 

simple framework.  

  

2.3. HANSEN SOLUBILITY PARAMETERS  

Hansen solubility parameters (HSPs) are a means to quantify the non-covalent 

interactions between molecules of a given solvent.17,18 The parameters are an extension 

of the Hildebrand solubility parameters, which have been commonly used by polymer 

scientists for predictive estimates of polymer solubility in solvents. The basis for 

Hildebrand solubility parameters is that the cohesive energy between molecules of a 

given solvent determines how likely it is to dissolve a given solute or be miscible with 

another solvent. The cohesive energy can be easily quantified from the enthalpy of 

vaporization (Evap) for the solvent. The Evap provides an estimate of how much energy 

is required to pull molecules apart from a highly interacting state (liquid phase) to a 

non-interacting state (vapor phase). While Hildebrand parameters are effective for 

predicting behavior of relatively non-polar species in non-polar solvents, they are 

limited for prediction of systems with significant polarity or hydrogen bonding effects. 

To overcome this limitation, HSPs quantify the cohesive energy density δ of a solvent 

in terms of contributions from three types of weak interactions: van der Waals or 
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dispersive interactions (δD), dipole-dipole or polar interactions (δP), and hydrogen-

bonding interactions (δH). Thus, each solvent has three HSPs assigned to it. Parameters 

for hundreds of solvents have been empirically determined and tabulated by Hansen in 

his book.17 Using these known HSP values for different solvents, it is possible to test 

an unknown solute (typically a polymer) in these solvents, plot the results in 3-D space 

(Figure 3.1; as described below), and thus predict the solubility of the solute in untested 

solvents.  

 
  

 
  
   Figure 2.1 Schematic of Hansen Solubility Parameters and 3-D Hansen Space. 
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Based on the three HSPs, one may construct a 3-D Hansen space in which each solvent 

is represented as a single point and the distance from the origin to the point represents 

the total cohesive energy density (δ) of the solvent (Figure 3.1). On this plot, non-polar 

solvents exist mainly near the origin, while highly polar solvents are far from the origin. 

For example, n-hexane has co-ordinates (δD, δP, δH = 14.9, 0, 0), which means it falls 

very near the origin. In comparison, water is the farthest solvent from the origin (δD, 

δP, δH = 16.0, 42.3, 15.5). The essential idea of using this plot for solubility analysis is 

that a solute is likely to have greater solubility in a solvent that is close to its 

coordinates in 3-D Hansen space. Furthermore, for a given solute, Hansen’s work 

suggests that a sphere can be drawn around the solute’s 3-D coordinates that will 

encompass the solvents in which it is soluble (“good” solvents) and exclude the 

solvents in which it is not (“bad” solvents).  

 
        

Figure 2.2 Schematic of a solubility sphere for a solute in 3-D Hansen Space. 
The “good” solvents are indicated by open circles and the “bad” solvents by filled 
circles. The solubility sphere encompasses the good solvents while excluding the 
bad ones.  
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 In addition to empirical values for solvent HSPs, Hansen’s book provides a 

simple method to determine a solubility sphere (Figure 3.2) for a given solute at a given 

temperature and pressure. First, a solute (typically a polymer) of unknown solubility 

and HSPs is tested for solubility in a variety of solvents of known HSPs at a given 

temperature and pressure. Then, the “soluble” or “insoluble” data points are plotted in 

3D Hansen space. Next, a good guess for the center of the solubility sphere is made 

either by averaging the soluble points or by inspection. Finally, a sphere of radius R0 is 

drawn such as to include as many of the “soluble” points as possible inside the sphere 

and exclude as many of the “insoluble” points as possible outside the sphere (Figure 

3.2). This fitting process may be performed roughly by inspection or more precisely 

through iterations of a “goodness of fit” equation (see Chapter 3).  

 

2.4. RHEOLOGY 

Rheology is defined as the study of a material’s flow and deformation under stress. It 

is of great importance in the characterization of polymers and soft materials such as 

molecular gels. In particular, rheology is very useful for measuring the physical 

properties of viscoelastic materials, which contain both liquid-like viscous 

characteristics and solid-like elastic characteristics. In this study, we have utilized 

parallel plate rheology in which the sample is loaded onto a stationary bottom plate 

with a Peltier attachment to control temperature. After loading the sample, a top plate 

is lowered to the sample and rotates (or oscillates) to apply a stress on the sample. 

Rheological characterization is generally performed under two conditions: 1) steady 

shear rheology, in which the top plate shears the sample at a constant strain rate, or 2) 
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dynamic (or oscillatory) shear rheology, in which the top plate oscillates at a fixed 

strain at various frequencies. In our study, oscillatory rheology was used to measure 

the gel modulus to compare the properties of DBS gels in various solvents. 

 

 In a dynamic rheology measurement, the top plate applies a sinusoidal strain 

0 sin( )tγ γ ω=  to the sample, where γ0 is the maximum amplitude of the strain and ω is 

the frequency. The response of the sample will be a sinusoidal stress, 

0 sin( )tσ σ ω δ= + , where σ0 is the stress amplitude and  δ is the phase shift relative to 

the strain waveform. Using trigonometric identities, the stress response of the material 

can be decomposed into two components as follows: 

 0 0sin( ) cos( )G t G tσ γ ω γ ω′ ′′= +   (2.1) 

In this equation, G′ represents the solid-like or elastic modulus and G″ represents the 

liquid-like or viscous modulus of the material. In order for these values to be a true 

representation of a material’s properties, the measurements must be taken in the linear 

viscoelastic regime of the material, such that the elastic and viscous moduli are solely 

functions of frequency. Finally, in the case of an elastic or gel-like material, the value 

of G′ is approximately constant across all frequencies (i.e., the gel does not relax over 

all timescales). The constant value of G′ quantifies the stiffness of the material.  
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Chapter 3: INSIGHTS INTO DBS ORGANOGELATION VIA  

HANSEN SOLUBILITY PARAMETERS 

 

3.1. INTRODUCTION 

  In this chapter, we demonstrate a new framework in which we apply Hansen 

Solubility Parameters (HSPs) to characterize the varied outcomes of a model 

gelator. To do this, we study the behavior of our model organogelator, DBS, in 34 

organic solvents at three DBS concentrations and at room temperature. The sample 

outcomes vary greatly from solvent to solvent, and in this work, we have classified 

the outcomes into one of four classes: soluble, slow gel, instant gel, or insoluble. 

For each solvent we have access to the three HSP values, as discussed in Chapter 

2.3.17 Based on these parameters, we plot each sample in 3-D Hansen space. Then, 

using an algorithm proposed by Hansen for determining polymer solubility, we fit 

the data with spheres around each point via MATLAB. We find that the behavior 

of DBS in 3-D Hansen space is fit well by concentric spheres radiating out from a 

central solubility sphere. Likewise, we have correlated gel modulus and time of 

gelation with distance from the center of the central solubility sphere.  

 

  An additional aspect of our work is in the mapping and prediction of DBS 

behavior in blends of solvents. Herein, we have collected data on DBS sample 

outcomes in various mixtures of solvents. Remarkably, while complexity of solvent 

mixtures would suggest that prediction of gelator behavior would be quite difficult, 

our results are promising. Though the size of the soluble, slow gel, instant gel, and 

insoluble regions changes, generally, we have found that the trends observed in neat 
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solvents remains the same. For example, mixtures of a solvent that solubilizes DBS 

and a solvent in which DBS is insoluble will produce samples which show an 

expected transition from soluble to slow gel to instant gel to and insoluble as the 

composition of the mixture shifts. A recent study showed that a gelator could be 

combined with two neat solvents in which it is insoluble and that it would form a 

gel in mixtures of these solvents. Similarly, our results predict that nitromethane 

and octanol, in which DBS is initially insoluble, would show the three other DBS 

outcomes (soluble, slow gel, instant gel) in their mixtures. 

 

  In the process of this study, we have implemented our HSP fitting algorithm 

via MATLAB and generated a graphical user interface (GUI) for obtaining 3-D 

plots of the sample outcomes and the corresponding spherical fits. This program 

will be available upon request to other researchers, as it is our hope that the the 

methods presented in this thesis will facilitate greater understanding of all types of 

organogelator behavior.  
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3.2. EXPERIMENTAL SECTION 

Materials 

DBS (1,3:2,4-divinylbenzylidene sorbitol) was obtained from Milliken Chemicals. All 

solvents were acquired from Sigma-Aldrich and TCI America and used without further 

purification.  

 

Preparation of DBS Gels 

DBS powder was added to solvents at desired weight-by-volume percent. Samples 

were heated to 125°C until a transparent sol was obtained. (Note that for volatile 

samples with a boiling point near to or less than 125°C, special high- pressure capable 

vials were used to ensure that no sample evaporation occurred.)  If samples could not 

be dissolved, they were classified as insoluble. Samples were cooled with running 

water (22°C) for 90 seconds until they reached room temperature. They were then 

placed on the countertop for further observation. The classification scheme is further 

described in the main text.  

 

Rheological Studies 

Dynamic rheological experiments were performed on an AR2000 stress-controlled 

rheometer (TA Instruments). Samples were run on a parallel-plate geometry (25 mm 

plate, 0.5 mm gap). Dynamic frequency spectra were obtained in the linear viscoelastic 

regime of each sample, as determined by dynamic strain-sweep experiments.  

 

Description of Fitting Procedures and Algorithm 
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In order to visualize the regions of DBS outcomes, each solvent point is plotted in 3-D 

Hansen space, where each axis represents one of the HSPs (δD, δP, and δH). The solvent 

points are color-coded based on the outcome of the sample (Soluble, S = blue; Slow 

Gel, SG = green; Instant Gel, IG = red; Insoluble, I = yellow). Next, spheres are drawn 

around these regions in 3-D space as prescribed by Hansen for polymer solubility 

studies. The spheres are defined by their center point (δDcenter, δPcenter, δHcenter) and their 

radius R. To determine the best placement and size of the sphere, the sphere must be 

drawn such that “good” solvent points lie inside it and “bad” solvent points are 

excluded from it. We start with the sphere for the sol (S) region. In this case, soluble 

points should be inside the S sphere and all other points should be outside. A 

desirability function is used to determine the goodness-of-fit for a given radius and 

center point of the sphere. The desirability function (DF) is defined as:  

  (3.1) 

where Ri is the distance in 3-D Hansen space from the solvent point i to the center of 

the S sphere and RS is the radius of the S sphere. n is the total number of solvent points. 

We use an algorithm based on Hansen’s work in which the center of the S sphere is 

guessed based upon the soluble points, the optimal value of the radius RS is determined 

via value of the DF, and the process is repeated for nearby values of the center point. 

The initial guess for the center of the S sphere is based on the average HSP of each of 

the solvents in which DBS is soluble. With this initial center point, the radius RS of this 

S

        1           for good solvent inside sphere
        1           for bad solvent outside sphere

          for all other casesiR Re− −

( )
1

1 2Desirability Function (DF) ...

where    

n
n

i

A A A

A

= × ×

=
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sphere is varied from very small values (RS,min = 1) to very large values (RS,max = 25). 

Based on the DF value at each of these radii, the optimal radius is selected.  

 

Next, a cube (usually of side length L = 1) is drawn around the initial guess of the center 

point. For each corner of the cube, the optimal value of the sphere radius is determined 

by varying the radius and calculating the value of the DF. From these nine points (eight 

points at the cube corners and one point in the cube center), the point with the highest 

value of the DF is selected. If the point with the highest DF is the cube center, the 

algorithm repeats the cube iteration with a cube of a smaller length (L= 0.5, then L = 

0.3) until the best center and radius combination is determined. If the point with the 

highest DF is one of the cube corners, the cube iteration is repeated. Ultimately, we 

determine the combination of center point and radius RS that maximizes the DF. This 

fixes the solubility S sphere.  

 

For the remaining 3 outcomes (SG, IG and I), the center point of the corresponding 

spheres is fixed to be identical to that of the S sphere (see below). The iteration is then 

done only to optimize the radii of these spheres. It should be noted that our analysis 

procedure is general enough and can account for each outcome having distinct sphere 

centers as well as radii. The MATLAB program written for this study (Figure 3.1) 

allows the user to choose between the two options.  
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Figure 3.1. Overview of MATLAB HSP 3D Plotting and Fitting Program 
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3.3. RESULTS AND DISCUSSION 

3.3.1 OBSERVATION AND CLASSIFICATION OF SAMPLE OUTCOMES  

The HSPs for hundreds of neat organic solvents are collected in the book by Hansen.17 

We studied DBS in many of these solvents, with some candidate solvents identified 

from the previous literature.21, 25-31 Our procedure employed visual observation of 

DBS-solvent mixtures and is schematically depicted in the top panel of Figure 3.2. 

First, DBS was added to the solvent at a desired concentration and the mixture was 

heated to 125°C while being stirred. This typically resulted in a thin, transparent liquid 

(sol). The vial containing the hot sol was then cooled to room temperature using 

running water (22°C) for 90s. From this point onwards, the vial was placed on the 

countertop and observed visually. Vial inversion was used to infer the formation of an 

organogel, i.e., a sample was termed a gel if it held its own weight in the inverted vial.33   

 

  Sample outcomes were categorized in the following manner (Table 3.1). A 

sample was classified to be insoluble (I) if: (a) it could not be dissolved after heating 

and stirring, or (b) it was soluble at high temperature (T) but gave a solid precipitate 

upon cooling to room temperature. Photo 4 in Figure 3.2 is an example of such a 

sample. Next, a sample was classified as a sol or soluble (S) if it remained a thin, clear 

solution indefinitely after cooling to room temperature (Photo 1). That is, sols remained 

so regardless of time; they did not subsequently convert into gels or become 

precipitates. Next, concerning the samples that did transform from sols at high T to gels 

at ambient temperature, we further distinguished two cases depending on the kinetics 

of the gelation. If the sample was already a gel (as indicated by vial inversion) by the 
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time it was cooled to room temperature (time t = 0), it was classified as an instant gel 

(IG). If the sample was not a gel at t = 0 but formed a gel at some finite time tgel after 

reaching room temperature, it was classified as a slow gel (SG) and the corresponding 

tgel was recorded. The distinction between IG and SG is important because gelation is 

a non-equilibrium process and there is a kinetic aspect to it.2, 34 For example, many 

gels, including DBS, form by the nucleation and growth of fibrils. Thus, a simple 

either-or approach could produce different results depending on the procedure and the 

time at which the sample is observed. The use of the four-pronged S-SG-IG-I scheme 

mitigates against these issues.    
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Table 3.1. Solvents tested and DBS sample outcomes in these solvents 

 

Species Abbr. 𝛿P 𝛿H 2𝛿D
1 wt% 
DBS

5 wt% 
DBS

10 wt% 
DBS

Acetone ACT 10.40 7.00 31.00 S IG IG
Triethyl phosphate TEP 11.40 9.20 33.40 S SG IG
Cyclopentanone CPN 11.90 5.20 35.80 S SG IG
N-methyl-2-pyrrolidone NMP 12.30 7.20 36.00 S S S
Chloroacetonitrile CAN 13.60 2.00 34.80 S IG IG
Dimethyl formamide DMF 13.70 11.30 34.80 S S S
Caprolactone (epsilon) CAP 15.00 7.40 39.40 S SG SG
Dimethyl sulfoxide DMSO 16.40 10.20 36.80 S S S
2-pyrrolidone PYR 17.40 11.30 38.80 S S S
Ethylene glycol butyl ether EGBE 5.10 12.30 32.00 SG IG IG
Diethylene glycol butyl ether dEGBE 7.00 10.60 32.00 SG IG IG
Cyclopentanol CPOH 7.60 15.60 36.20 SG IG IG
Acetophenone ATP 8.60 3.70 39.20 SG IG IG
Diethylene glycol ethyl ether dEGEE 9.20 12.20 32.20 SG IG IG
Ethylene glycol ethyl ether EGEE 9.20 14.30 32.40 SG IG IG
Dimethyl phthalate DMPH 10.80 4.90 33.20 SG IG IG
Ethylene Glycol EG 11.00 26.00 34.00 SG IG I
Methanol MOH 12.30 22.30 30.20 SG IG IG
Triethylene glycol TEG 12.50 18.60 32.00 SG SG IG
Hydroxyethyl acrylate HEA 13.20 13.40 32.00 SG IG IG
Propionitrile PPN 14.30 5.50 30.60 SG IG IG
Acetonitrile ATN 18.00 6.10 30.60 SG IG IG
Xylene XYL 1.00 3.10 35.20 IG I I
Toluene TOL 1.40 2.00 36.00 IG I I
1-decanol DOH 2.60 10.00 35.00 IG I I
1-octanol OOH 3.30 11.90 34.00 IG I I
1-butanol BOH 5.70 15.90 32.00 IG I I
n-butyl methacrylate BMA 6.40 6.60 31.20 IG I I
Methyl methacrylate MMA 6.50 5.40 31.60 IG I I
1-propanol POH 6.80 17.40 32.00 IG I I
Isooctanol iOOH 7.30 12.90 28.80 IG IG I
Ethanol EOH 8.80 19.40 31.60 IG IG I
Nitromethane NM 18.80 5.10 31.60 IG IG I
Decane DEC 0 0 31.4 I I I
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Figure 3.2. Schematic of the experimental setup (top) and the corresponding results in 
3-D Hansen space (bottom). DBS was added to various solvents and heated to 125°C, 
followed by cooling to room temperature (22°C). Visual observations were used to 
classify the samples as soluble or sols (S, blue), slow gels (SG, green), instant gels (IG, 
red) and insoluble (I, yellow). Photographs of samples corresponding to these outcomes 
are shown. These outcomes were then plotted for the solvents on a 3-D plot where the 
axes are the three Hansen solubility parameters (D = dispersive, P = polar, and H = 
hydrogen-bonding interactions). Our key finding, shown by the schematic is that the 
four regions radiate out as concentric shells: i.e., a central sol (S) sphere, followed in 
order by SG, IG, and I spheres. 
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3.3.2 PLOTTING OUTCOMES IN 3-D HANSEN SPACE 

To visualize the regions of DBS outcomes, each solvent was plotted as a point in 3-D 

Hansen space where each axis represents one of the HSPs (δD, δP, and δH). The solvent 

points were color-coded based on the outcome of the sample, with blue for soluble (S), 

green for slow gel (SG), red for instant gel (IG), and yellow for insoluble (I). Next, 

color-coded spheres were drawn around each of these regions on the 3-D plot. The use 

of spherical regions mirrors the method used by Hansen for polymer-solvent 

interactions.17, 18 In our approach, we have made a few critical choices that departs from 

previous work on HSP-gelator correlations. First, we begin by focusing on the blue 

sphere corresponding to the soluble (S) region in Figure 3.2. The criterion for this 

sphere is that it must encompass all the solvents in which DBS gives a sol (the “good” 

solvents) while excluding all other solvents (the “bad” solvents). The size of the S 

sphere (i.e., its radius RS) and its location (i.e., its origin in 3-D space) are the two 

variables. We used a MATLAB program (Figure 3.1) to find the location and size of 

the optimal S sphere that satisfied the above criterion. As discussed, we make an initial 

guess for the location of the origin and an initial value of the radius based on our data. 

Taking cues from Hansen’s work, we employ a desirability function (DF, eq 3.1) to 

determine the goodness-of-fit for this radius and origin.17, 18 We then iterate the location 

and size of the S sphere until the DF is maximized.  

  Once the soluble (S) sphere is correctly sized and placed, we then use the same 

origin for the subsequent SG, IG and I spheres. This is a crucial distinction from 

previous studies and we believe it leads to a simpler and more intuitive framework. The 

resulting plots are shown schematically in Figure 3.2. Considering the SG (green) 
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sphere, we fix its origin as that of the S (blue) sphere and iterate its radius RSG such that 

it encompasses the solvents in which DBS forms a slow gel while excluding the 

solvents corresponding to the IG and I outcomes. Similarly, we draw the IG (red) 

sphere under the criterion that it includes the solvents in which DBS forms an instant 

gel while excluding the solvents in which DBS is insoluble. Finally, we plot the I 

(yellow) sphere by extending it up to the solvent points corresponding to DBS 

insolubility. Our central result is that the four regions radiate out as concentric shells 

(Figure 3.2): i.e., the central soluble (S) sphere is followed in order by spheres 

corresponding to the SG, IG, and I regions. We will discuss the implications of this 

result after first presenting the actual data.        

 

3.3.3  3-D SOLUBILITY PLOTS FOR DBS 

DBS sample outcomes were determined and plotted by the above procedure for 

three DBS concentrations: 1%, 5% and 10% (weight/volume). A total of 34 solvents 

were tested and their HSPs are provided in Table 3.1. The plots in 3-D Hansen space 

are shown in Figure 3.3. Note also that these results pertain to room temperature (~ 

22°C). For convenient representation, the vertical axis is not extended to the origin 

and its values correspond to 2δD; the other two axes correspond to δP, and δH. The 

use of 2δD is per the recommendation of Hansen as it is conducive to spherical 

fits.17,18  
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(a) 1% DBS

RS = 5.5

RSG = 12.0

RIG = 14.5

RI = 15.6

Sol (S) Center: 

(δP , δH , 2δD) = 

(13.6, 6.4, 35.6)
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(b) 5% DBS

RS = 4.6

RSG = 6.9

RIG = 12.9

RI = 18.6 

Sol (S) Center: 

(δP , δH , 2δD) = 

(15.7, 9.3, 35.1)
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Figure 3.3. Results for DBS in various solvents, plotted in 3-D Hansen space: 
(a) 1%; (b) 5%; and (c) 10% DBS. The axes represent the three Hansen solubility 
parameters (δD = dispersive, δP = polar, and δH = hydrogen-bonding interactions). 
Each solvent is represented as a color-coded point on these plots. The results show 
a pattern of concentric spheres, i.e., the central sol (S) sphere in blue, followed in 
order by spheres corresponding to slow gel (SG) in green, instant gel (IG) in red, 
and insoluble (I) in yellow. The co-ordinates for the center of the S sphere and the 
radii of each sphere are indicated.  
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(c) 10% DBS
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RSG = 4.7

RIG = 10.6

RI = 18.6

Sol (S) Center: 

(δP , δH , 2δD) = 

(15.7, 9.3, 35.1)
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  The plots in Figure 3.3 clearly reveal the key result mentioned above, which 

is the presence of a central solubility (S) sphere in blue followed by radiating 

spherical shells corresponding to SG (green), IG (red) and I (yellow) regions. The 

concentric spheres reflect our analysis procedure, but it is derived from the 

empirical observations. To emphasize this aspect, we show the empirical outcomes 

in the various solvents as discrete color-coded points. Note that the blue points are 

clustered in the center of the blue (S) sphere and as one moves radially outward, a 

number of green (SG) points appear, then several red (IG) points and finally some 

yellow (I) points. (As an aside, viewing the 3-D plots in 2-D can sometimes be 

misleading; i.e., points that appear to be inside a given sphere may actually be 

outside it.) There is uncertainty in the fitting of these spheres from the fact that 

solvent HSPs provided by Hansen are not exact values, from our fitting method, and 

from experimental error. It was found that this error does not take away from the 

trends observed. For example, the solubility 5% DBS sample shows a greater than 

a 0.95 goodness of fit within ±0.2 MPa1/2 (thus RS = 4.4-4.8). However, the 

underlying result in terms of a progression in Hansen space from solubility to gel 

to insoluble is in accord with the seminal paper by Raynal and Bouteiller,16 although 

they did not separate out the SG and IG regions. 

  Several trends are evident from the plots in Figure 3.3. First, note that the 

blue sol (S) sphere is relatively large at 1% DBS (Figure 3.3a) and then shrinks to 

a constant size as the DBS concentration is increased to 5 and 10% (Figures 3.3b, 

3.3c). This result reveals the concentration-dependent nature of molecular gelation: 

i.e., samples that are sols at low gelator concentrations may become gels at higher 
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gelator concentrations. Note also that the origin of the S sphere in the three above 

plots has a nearly constant location. The co-ordinates of the origin in terms of HSPs 

(δD°, δP°, δH°) are (17.8, 13.6, 6.4) for 1% DBS, (17.6, 15.7, 9.3) for 5% DBS and 

(17.6, 15.7, 9.3) for 10% DBS (all numbers have units of MPa½). The origin of the 

S sphere is significant because it provides an estimate for the HSPs of DBS itself. 

Interestingly, however, the above estimates are quite different from a recent 

calculation of the HSPs of DBS by a group contribution method, which determined 

(δD°, δP°, δH°) to be (15.9, 3.9, 18.3) (again in MPa½).21 We believe this discrepancy 

indicates the difficulty of using group contribution methods to calculate HSPs for 

complex molecules. Note that the HSPs of DBS are expected to be close to those of 

the solvents in which it is most soluble. Empirically, we find that DBS is highly 

soluble (even at 10%) in polar aprotic solvents such as n-methylpyrrolidone (NMP), 

dimethylsulfoxide (DMSO), and dimethylformamide (DMF). All these solvents fall 

near the center of the S sphere and in turn, their HSPs are close to the values for the 

origin.   

  Next, we discuss trends in the SG, IG and I regions. At a low concentration 

(1%) of DBS, many gels form slowly after cooling and therefore the green SG 

region is large. Correspondingly, only few solvents reveal a gel as soon as the 

sample is cooled, and thus the red IG region is just a thin shell. As DBS is increased 

to 5%, the SG region shrinks while the IG region substantially expands. Finally, at 

10% DBS, the SG region is a very thin, almost non-existent shell surrounding the 

S sphere and most of the gels are instant gels, i.e., fall in the IG region. In other 

words, when the conentration of gelator is high, gels rapidly form regardless of 
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solvent. Note also that the boundary of the IG region, i.e., the radius RIG of the 

sphere, shrinks with increasing DBS. This means that some solvents are unable to 

completely solubilize high concentrations of DBS, which leads to a classification 

of these samples as insoluble (I). In turn, the I region expands with increasing DBS.  

  We will now mention a few trends regarding the chemical nature of the 

solvents tested and its impact on DBS gelation. As mentioned, DBS is highly 

soluble and non-gelling in polar aprotic solvents like NMP25 and DMF. Conversely, 

in non-polar aliphatic liquids like n-alkanes, DBS is insoluble, as noted by previous 

studies.21 DBS forms strong, instant gels even at low concentrations in aromatic 

solvents such as toluene and xylene, as well as in short-chain alcohols like propanol 

and butanol. In diols such as ethylene glycol as well as in glycol ethers, DBS shows 

slow gelation at low concentration and instant gelation at higher concentrations. 

Based on these findings, DBS gelation appears to be a complex process mediated 

by several weak interactions, which may include van der Waals, H-bonding, and 

possibly π-π stacking.29 One cannot attribute the gelation ability of DBS simply to 

H-bonding26 even though the molecule has two primary –OH groups. Indeed, DBS 

is able to gel solvents like the diols, which also have –OH groups that can compete 

for H-bonding.  

 

3.3.4  SIGNIFICANCE OF THE S-SG-IG-I CONCENTRIC SHELLS 

The 3-D plots for DBS shown in Figure 3.3 and illustrated in Figure 3.2 provide a 

logical framework for gelation. Researchers have recognized that gelation requires 

a balance between solubility and insolubility.1-3 If a gelator is too soluble in a 
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solvent, i.e., if it is too similar or compatible with the solvent, it forms a sol. The 

HSPs allow us to quantify this intermolecular similarity. That is, if the HSPs of the 

gelator and the solvent are very close, then the mixture will fall in the solubility (S) 

sphere and will correspond to a sol.16, 19 On the other extreme, if the gelator and 

solvent are too incompatible, i.e., if their HSPs are widely different, the gelator will 

be insoluble and the sample will fall in the I region. The incompatibility between 

solvent and gelator is proportional to the distance R0 in 3-D space from the solvent 

point to the origin of the S sphere.17 When R0 is small such that R0 < RS, it 

corresponds to the soluble (S) region and when R0 is large such that  R0 > RIG, it 

corresponds to the I region. Note that R0 can be calculated for a given solvent j (of 

known HSPs) if we know the HSPs at the origin of the S sphere:17  

 ( ) ( ) ( )2 2 2

0 D P HD P H° ° °4 j j jR δ δ δ δ δ δ= − + − + −          (3.2) 

  Between the above extremes, if the gelator is in a solvent that is moderately 

incompatible (RS < R0 < RIG) then it forms a gel. Moreover, if the HSPs of the 

solvent are such that it falls just outside the sol (S) sphere, i.e., if RS ≈ R0, then the 

gelator forms a slow gel (SG) in this solvent, at least at low gelator concentrations. 

On the other hand, if the HSPs of the solvent place it far from the S sphere and close 

to the I boundary (i.e., if RS << R0 ≈ RIG, the gelator forms an instant gel (IG) in 

this solvent even at low concentrations. There is a continuum between the SG and 

IG regions: increasing the gelator concentration causes the SG region to shrink and 

the IG region to expand. Conversely, the reverse (expansion of SG, shrinking of 

IG) is expected on increasing temperature.     
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3.3.5  GEL PROPERTIES AS A FUNCTION OF R0   

 

The above analysis implies a systematic variation in gel properties with the distance R0 

from the center of the S sphere. That is, gels near the S boundary should take longer to 

form and should be weaker than those that are farther away from this boundary. To test 

these predictions, we have measured the elastic modulus G′ from dynamic rheology for 

5% DBS in a variety of solvents corresponding to the SG and IG regions. Figure 3.4 

plots G′ vs. the R0 of the solvent. Note that the R0 axis is on a linear scale while the G′ 

axis is on a log scale. We confirmed that all the samples showed the signature of gels:4, 

33 i.e., in frequency sweeps, both the elastic modulus G′ and the viscous modulus G″ 

 
 
Figure 3.4. Correlation of gel modulus with Hansen parameters. The elastic 
modulus G’ of 5% DBS gels in various solvents is plotted as a function of the 
distance R0 of the corresponding solvent from the center of the solubility (S) sphere 
in Figure 3.3b. The values of R0 at the boundaries of the S and SG regions are shown 
for reference. The data reveal an increasing trend in G’ with R0. The line is drawn 
to guide the eye.  
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were independent of frequency and G′ exceeded G″. (In the case of the slow gels, we 

measured the rheology well after the gelation was complete.) For reference, the values 

of R0 at the boundaries of the S and SG regions are indicated on Figure 3.4. The plot 

does show an increasing trend in gel modulus G′ with increasing R0 indicating that gels 

farther from the S boundary are stiffer. The trend is not perfect and many slow gels end 

up with moduli that are comparable to those of the instant gels. The one slow gel that 

lies closest to the S boundary has the lowest G′.  

Next, we explored the relationship between gelation time tgel and R0, and this is 

presented in Figure 3.5. These measurements were done in various solvents 

corresponding to the SG and IG regions for 5% DBS. Again, note that the tgel axis is 

on a log scale while the R0 axis is on a linear scale. For representing the instant gels on 

a log scale, we have arbitrarily designated a low value of tgel = 10−1 min for them. The 

plot shows a decreasing trend in tgel with increasing R0 within the SG region. Again, 

this trend is not perfect and moreover, the distinction between slow and instant gel 

regions is not always clear-cut. Nevertheless, the limiting behavior is revealed by this 

plot. That is, at the edge of the soluble (S) region (R0 = 4.6), tgel  ∞ as the favorable 

solvent-gelator interactions strongly interfere with the assembly of fibers. As the 

distance from the S region increases, tgel decreases and at the other extreme, the plot 

levels out at tgel  0 in the IG region.  
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3.3.6  PREDICTION OF GELATOR BEHAVIOR IN SOLVENT MIXTURES  

  Based on the above analysis, we can offer a few predictions and put them to the 

test. For example, consider mixtures of two miscible solvents with known HSPs. The 

HSPs of the mixtures can be estimated by linear interpolation based on the HSPs of the 

pure solvents and their volume fractions (assuming ideal mixing).17 On the 3-D plot, 

this corresponds to straight lines between the two solvent points. Can we predict the 

 

 
Figure 3.5. Correlation of gelation time with Hansen parameters. For the case 
of 5% DBS gels in various solvents, the time to form a gel after cooling to room 
temperature (tgel) is plotted as a function of the distance R0 of the corresponding 
solvent from the center of the solubility (S) sphere in Figure 3.3b. For each of the 
instant gel (IG) points (red circles), a gelation time of 10-1 min is arbitrarily 
assigned. The slow gel (SG) points are shown as green circles. Note that some SG 
points occur in the IG region and vice versa; this is unavoidable with the fitting 
algorithm employed. The values of R0 at the boundaries of the S and SG regions are 
shown for reference. At the boundary of the S region, tgel diverges. As one moves 
away from this boundary, tgel tends to decrease with increasing R0. The curve is 
drawn to guide the eye. 
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outcomes for the gelator DBS in such mixtures based on the locations of the points on 

the 3-D plot?  

  To test this, we have considered DMSO as one of the solvents. DBS is highly 

soluble in DMSO and thus this solvent point occurs in the middle of the S region 

(Figure 3.6). We then considered five solvents: three fatty alcohols (decanol, octanol, 

and butanol), toluene, and ethylene glycol. These solvents fall in the I or IG regions. 

We examined 5% DBS in blends of DMSO with these five solvents. The points 

corresponding to these mixtures fall along five lines on the 3-D plot, as shown in Figure 

3.6, and the color-coded empirical outcomes for each of these mixtures is indicated. 

For each solvent pair, we see a progression from solubility (blue points) in DMSO to 

slow gel (green points) to instant gel (red points). For the three alcohols and toluene, 

insolubility (yellow points) are seen at high alcohol fractions. Note that the blue points 

fall a bit outside the solubility (S) sphere determined previously for neat solvents; 

however, the correct trend is seen in all cases. The differences may arise due to non-

ideal mixing of the solvents.   
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Figure 3.6. Outcomes for DBS in solvent blends, plotted in 3-D Hansen space: side 
view (top) and overhead view (bottom). DBS was studied at a concentration of 5% 
in mixtures of DMSO and the following solvents: toluene (TOL), 1-decanol (DOH), 1-
octanol (OOH), 1-butanol (BOH) and ethylene glycol (EG). On the Hansen plot, 
solvent mixtures fall on straight lines between the points corresponding to the 
individual solvents. DBS is highly soluble in DMSO, and the pure DMSO point is near 
the center of the solubility (S) sphere. For the mixtures, the sample outcomes are color 
coded as: sols (S, blue), slow gels (SG, green), instant gels (IG, red) and insoluble (I, 
yellow). A systematic progression in sample outcomes is seen for all the solvent pairs.  
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We conclude from Figure 3.6 that our analysis based on HSPs has reasonably good 

predictive power. That is, for a given gelator, once the center of the S sphere and the 

sizes of the S, SG and IG spheres are determined, we can predict to a first 

approximation the behavior of the gelator in a new solvent (with unknown identity) 

based only on the solvent’s HSP values.22, 23 One application of this approach has been 

reported recently and it involved taking a gelator that was insoluble in two neat 

 
Figure 3.7. Predicted behavior of DBS in blends of two solvents in which it is 
insoluble. As an example, for the case of 10% DBS, we consider nitromethane (NM) 
and 1-octanol (OOH) as two solvents in which it is insoluble. As seen above, the 
two solvents occur on either side of the solubility (S) sphere. Thus, a line drawn 
between the solvents is expected to pass through all the 4 regions, i.e., sol (S, blue), 
slow gels (SG, green), instant gels (IG, red) and insoluble (I, yellow), depending on 
the ratios of the solvents. 
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solvents, but allowing it to form a gel in mixtures of these two solvents.23 Similarly, 

for the present study, we apply similar logic behind such an experimental outcome to 

predict the behavior of DBS in nitromethane and octanol solvent mixtures in Figure 

3.7. If the gelator is insoluble (I) in two solvents that fall on either side of the solubility 

(S) sphere, then a line drawn between the two solvents cuts through the S, SG and IG 

regions. For example, two such solvents in the case of DBS are nitromethane and 1-

octanol. Depending on the ratio of these two solvents, DBS samples are predicted to 

range from sols to slow gels to instant gels, as shown by Figure 3.7. 

 

3.3.7  THUMB RULES AND OUTLOOK  

In terms of thumb rules (independent of concentration) for the distance R0 from the 

center of the S sphere, we estimate that R0 < 5 MPa½ results in solubility; R0 ~ 10 MPa½ 

results in gelation; and R0 ~ 15 MPa½ results in insolubility. It will be interesting to 

apply this analysis to other gelators and to test the validity of the above thumb rules. 

Note that all three HSPs need to be used to calculate R0 by eq 1. That is, the difference 

in total cohesive energy density between gelator and solvent is what dictates gelation 

behavior.  

  To facilitate the application of our approach to other gelators, we have 

developed a standalone program and graphical user interface (based on underlying 

MATLAB code) and we will make this freely available on the Internet (upon request). 

Our program enables a user to input data for their gelator of interest in different solvents 

in the form of a Microsoft Excel spreadsheet. The spreadsheet has to adhere to a set 

template, which includes a list of solvents with their HSPs and the outcomes with the 
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gelator (sol, slow gel, instant gel, insoluble) for each case. The program then generates 

3-D Hansen plots similar to those shown in Figure 3.3. Screenshots of the program 

were shown in Figure 3.1. Two modes of fitting are offered. In one mode, the user may 

fit the regions as shells radiating from a central solubility sphere, as was done in Figure 

3.3. In the other mode, the user may fit the regions as discrete spheres in Hansen space. 

The program calculates the centers and radii of the spheres corresponding to optimal 

goodness-of-fit values. Our method enables simple benchtop data on gelators to be 

visualized and analyzed for insights.  

 

3.4. CONCLUSIONS 

We have applied a simple methodology to systematically characterize the behavior of 

the model organogelator DBS in a number of organic solvents. We visually classified 

gelator behavior through benchtop experiments and plotted the various outcomes on 3-

D plots where the axes correspond to the three Hansen solubility parameters (HSPs). 

The results follow a pattern of concentric spheres with a central solubility (S) sphere 

surrounded by spherical regions corresponding to slow gelation (SG), instant gelation 

(IG), and insolubility (I). The pattern suggests that gelation requires a moderate extent 

of incompatibility between the gelator and solvent. The latter can be quantified by the 

distance R0 from the center of the S sphere. The modulus of the organogels increases 

with R0 while the time to form the gels decreases with R0. Our approach gives 

reasonable predictions of gelator behavior in untested solvents, such as solvent blends. 

Some thumb rules based on the above approach have been developed for DBS for 

prediction of behavior in untested solvents. We believe that similar thumb rules can be 
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established for other gelators via our approach. A MATLAB program and an associated 

graphical user interface (GUI) have been developed to allow other researchers to apply 

the same approach to their gelators.   
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Chapter 4: CONCLUSIONS & FUTURE DIRECTIONS 

 
 
4.1. CONCLUSIONS  

In this thesis, we have presented a simple framework for understanding the self-

assembly outcomes of a model organogelator DBS in various solvents at three 

concentrations. We observed four distinct outcomes from the addition of DBS to a 

given sample: soluble, slow gel, instant gel, insoluble. Each sample outcome was 

plotted in three-dimensional Hansen space according to the solvent’s Hansen parameter 

and the sample outcome. Spheres were fit to the regions of DBS behavior via an 

algorithm in MATLAB and it was found that concentric spheres of slow gel, instant 

gel, and insoluble regions radiating out from the central solubility sphere provided a 

good fit. Likewise, DBS behavior in mixtures of solvents of a good solvent (solubilizes 

DBS) and a bad solvent (DBS is insoluble) were observed and plotted. For these solvent 

mixtures, the regions of solubility were generally larger than those of the neat solvents. 

Still, for each solvent mixture, a transition through the expected regions of soluble, 

slow gel, instant gel, and insoluble was observed.   

 
 
4.2. FUTURE DIRECTIONS 

The work presented in this thesis lays the groundwork for future studies to gain deeper 

insights into the principles behind organogelation for DBS and for all other gelators. 

As mentioned, in the process of our analysis, we have developed an algorithm coded 

in MATLAB and an easy-to-use graphical user interface (GUI) that will be made 
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available to the scientific community at no cost upon request. It is our hope that this 

software will enable our lab and others to tackle some significant questions that remain 

in the field. Three such questions are indicated below. 

 

1. Does the pattern of concentric shells of sample outcomes moving from solubility 

to gelation to insolubility hold for other gelators or is this phenomenon unique to 

DBS? In our study, we chose DBS as a model organogelator because of its well-known 

ability to gel many different types of solvents and our previous familiarity with it. The 

trends seen in our 3D Hansen plots are surprisingly accurate and elegant. Indeed this 

sort of behavior has not been shown in the literature studies around HSPs and gelators. 

However, this model for gelator behavior does make intuitive sense. One possibility is 

that the reliance of DBS on two-types of weak bonding (hydrogen bonding and bonds) 

may introduce a strong dependence on δP, and δH in Hansen space. On the contrary, a 

gelator that relies solely on hydrogen bonding may show a much stronger dependence 

on δH than on δP. It will be interesting to see if the concentric shell model holds for 

other types of gelators and could significantly boost the community’s understanding of 

the mechanisms underlying various gelators.  

 

2. What are the effects of various functional substituents on the 3D Hansen plot 

DBS? Can we learn to tune a molecule such as DBS to gel specific solvents with 

simple chemical modifications? In this work we have establish clear boundaries to 

the behavior of DBS in various solvents at three different concentrations. In the future, 

it might be interesting to re-test the same solvents on a DBS-derivative with various 
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functional substituents, such as (electron-donating, electron-accepting, bulky steric, 

etc.). It is possible that by adding groups we may be able shift the DBS regions to 

achieve gelation in a solvent which was previously soluble or insoluble. This method 

of testing substituents and applying our mapping method to chart the gelator behavior 

also provides a systematic means of determining the function of substituent groups. 

Likewise, the same method may be applied to other existing molecular gelators. First, 

the preliminary behavior of the native molecule can be characterized by our method. 

Then by substituting new functional groups onto the molecule, a researcher can 

potentially tune the behavior of the gelator to achieve gels in solvents for which the 

molecule was initially non-gelling. 

 

3. Can we draw understanding into the mixture behaviors that lead to shift in the 

solubility and gelation regions from the neat solvent Hansen plots to the DMSO 

mixture Hansen plots? In our study, we have generated 3D Hansen plots for our 

gelator in both a collection of neat solvents and in mixtures of solvents in which DBS 

is typically soluble and non-soluble. In comparing these plots, it is noted that there is a 

shift in the sample outcome boundaries between the two plots. For example, in the 

DMSO blends, the solubility sphere is greatly expanded compared to the neat solvent 

data. However, the same trend in sample behavior, moving from soluble to slow gel to 

instant gel to insoluble remains for all solvent mixtures studied. While we have not 

been able to draw a full understanding of the complexities of gelation of solvent 

mixtures, our study represents a promising step toward gaining clarity. In the future, 

studies on the mixture properties governing these systems would be of great interest. 

 42 



This knowledge would eventually enable the design of gelator systems with controlled 

gelation kinetics, with controlled elastic modulus and without harmful solvents. Each 

of these properties could be tuned to the final application of the molecular gel, thus 

unlocking the potential of these fascinating molecules.  
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