
Abstract

Title of dissertation: UNRAMIFIED EXTENSIONS OF THE CYCLOTOMIC \mathbb{Z}_{2}-EXTENSION OF $\mathbb{Q}(\sqrt{d}, i)$ David Lee Blagg, Doctor of Philosophy, 2014 Dissertation directed by: Professor Lawrence Washington Department of Mathematics

Let $F_{0}=\mathbb{Q}(\sqrt{-d}), K_{0}=\mathbb{Q}(\sqrt{d})$, and $L_{0}=\mathbb{Q}(\sqrt{d}, i)$ with d a square-free positive integer such that $2 \nmid d$. Let $L_{j}=L_{0}\left(\zeta_{2^{2+j}}\right)$ so that $L_{0} \subset L_{1} \subset \cdots \subset \bigcup_{j} L_{j}$ is the cyclotomic \mathbb{Z}_{2}-extension of L_{0}. We determine when fourth roots of certain elements of K_{0} generate unramified extensions of L_{j}. In particular, for elements of K_{0} that are relatively prime to 2 and are generators of principal ideals that are fourth powers, we give explicit congruence conditions under which the fourth root of the element gives an unramified extension. For any such element γ, we show that if there is some j such that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified, then $L_{2}\left(\gamma^{1 / 4}\right) / L_{2}$ is unramified. We also show that when (2) is split in $F_{0}, L_{2}\left(\gamma^{1 / 4}\right) / L_{2}$ is unramified for any such γ.

This result is analogous to a result by Hubbard and Washington in which they work with the cyclotomic \mathbb{Z}_{3}-extension of $\mathbb{Q}\left(\sqrt{-d}, \zeta_{3}\right)$ when $3 \nmid d$ and consider extensions generated by cube roots of elements in $\mathbb{Q}(\sqrt{3 d})$. However, many more technical problems arise in the present work because the degree of the extension L_{j} / K_{j} is not relatively prime to the degrees of the extensions being generated.

In order to prove our main results, we also give a congruence condition, which, for any number field K containing i and for any element $\gamma \in K$ with γ relatively prime to 2 and γ a generator of an ideal that is a fourth power, dictates whether or not adjoining a fourth root of γ to K gives an unramified extension.

UNRAMIFIED EXTENSIONS OF THE CYCLOTOMIC \mathbb{Z}_{2}-EXTENSION OF $\mathbb{Q}(\sqrt{d}, i)$

by

David Lee Blagg

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy
 2014

Advisory Committee:
Professor Lawrence Washington, Chair/Advisor
Professor William Gasarch
Professor Thomas Haines
Professor Niranjan Ramachandran
Professor James Schafer

Acknowledgments

I am deeply indebted to my advisor, Professor Lawrence Washington. His time, his support, and his insights have been invaluable to me, and his flexibility allowed me to fit this dissertation into my life. Our frequent meetings were the highlight of the process, and I consider myself extremely lucky to have had the opportunity to work with him.

I would also like to thank my parents, Bill and Didi Blagg, and my brother, Jeff Blagg. They are the people who have made me who I am, and they deserve much of the credit for anything I do.

Finally, I would like to thank my wife, Julianna Blagg. She found so many ways to make this process easier for me, and I could not have finished without her support. I look forward to a lifetime of paying her back.

Table of Contents

List of Tables iv
List of Figures v
1 Background 1
1.1 Basics 6
2 Machinery 10
3 Ramification Implications of Particular Congruence Conditions 26
3.1 Congruences resulting in unramified extensions 26
3.2 Congruences resulting in ramified extensions 31
3.2.1 Tools for showing extensions are ramified 31
3.2.2 Some ramified extensions 40
4 Ramification Behavior of Elements of K_{0} 42
$4.1 d \equiv 1 \bmod 8$ 43
$4.2 d \equiv 3 \bmod 8$ 47
$4.3 d \equiv 5 \bmod 8$ 57
$4.4 d \equiv 7 \bmod 8$ 69
4.5 Properties of these extensions 73
4.5.1 Independence 73
4.5.2 Degrees 76
A Examples 84
A. $1 d \equiv 1 \bmod 8$ 85
A. $2 d \equiv 3 \bmod 8$ 86
A. $3 d \equiv 5 \bmod 8$ 88
A. $4 d \equiv 7 \bmod 8$ 90
Bibliography 92

List of Tables

A. 1 Examples of $\gamma=a+b \sqrt{d}$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 1 \bmod 8$
A. 2 Examples of $\varepsilon_{0}=a+b \sqrt{d}$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 1 \bmod 885$
A. 3 Examples of $\gamma=a+b \sqrt{d}$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 3 \bmod 8$
A. 4 Examples of $\varepsilon_{0}=a+b \sqrt{d}$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 3 \bmod 887$
A. 5 Examples of $\gamma \equiv x+y \zeta_{3} \bmod 8$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 5 \bmod 8$
A. 6 Examples of $\varepsilon_{0} \equiv x+y \zeta_{3} \bmod 8$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 5 \bmod 8$89
A. 7 Examples of $\gamma=a+b \sqrt{d}$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 7 \bmod 8$
A. 8 Examples of $\varepsilon_{0}=a+b \sqrt{d}$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 7 \bmod 891$

List of Figures

1.1 Cyclotomic \mathbb{Z}_{3}-extensions of $\mathbb{Q}(\sqrt{-d}), \mathbb{Q}(\sqrt{d})$, and $\mathbb{Q}\left(\sqrt{d}, \zeta_{3}\right) \ldots 1$
1.2 Cyclotomic \mathbb{Z}_{2}-extensions of $\mathbb{Q}(\sqrt{-d}), \mathbb{Q}(\sqrt{d})$, and $\mathbb{Q}(\sqrt{d}, i) \ldots 3$
$3.1 L_{0}\left(\gamma^{1 / 4}, \zeta_{8}\right) / L_{0}\left(\gamma^{1 / 4}\right)$ is the lift of $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}\left(\gamma^{1 / 2}\right) \ldots \ldots28$

Chapter 1: Background

Let $d \in \mathbb{Z}$ be square-free and positive. In [1], the authors work with the cyclotomic \mathbb{Z}_{3}-extensions of $F_{0}=\mathbb{Q}(\sqrt{-d}), K_{0}=\mathbb{Q}(\sqrt{3 d})$, and $L_{0}=\mathbb{Q}\left(\sqrt{d}, \zeta_{3}\right)$. Taking \mathbb{B}_{j} to be the j th level of the cyclotomic \mathbb{Z}_{3}-extension of \mathbb{Q}, they write $F_{j}=$ $F_{0} \mathbb{B}_{j}, K_{j}=K_{0} \mathbb{B}_{j}$, and $L_{j}=L_{0} \mathbb{B}_{j}$.

Figure 1.1: Cyclotomic \mathbb{Z}_{3}-extensions of $\mathbb{Q}(\sqrt{-d}), \mathbb{Q}(\sqrt{d})$, and $\mathbb{Q}\left(\sqrt{d}, \zeta_{3}\right)$

For certain conditions on d and on the class group of K_{0}, they note that as we go up the tower of fields in the cyclotomic \mathbb{Z}_{3}-extension of F_{0}, we find that there are unramified extensions of degree 3. This suggests a natural question: what are those unramified extensions? After adjoining a cube root of unity to F_{j} to get L_{j}, they show that many of these unramified extensions can be generated by cube roots
of elements of K_{0}. Restricting to the case that $j>0$ and $d \equiv 2 \bmod 3($ so (3) splits in $F_{0}=\mathbb{Q}(\sqrt{-d})$ and in $\left.L_{0}\right)$, they show that $L_{j}\left(\varepsilon_{0}^{1 / 3}\right) / L_{j}$ is unramified when ε_{0} is the fundamental unit of K_{0} and that $L_{j}\left(\gamma^{1 / 3}\right) / L_{j}$ is unramified when (γ) is a cube of an order-3 ideal. Explicitly, their result as stated in [1] is:

Theorem 1.0.1. Let $d \equiv 2 \bmod 3$ and let ε_{0} be the fundamental unit of $K_{0}=$ $\mathbb{Q}(\sqrt{3 d})$. Let r be the 3-rank of the class group of K_{0} and let A_{1} be the 3-part of the class group of F_{1}. Then $\operatorname{rank}\left(A_{1}\right) \geq r+1$. Let I_{1}, \ldots, I_{r} represent independent ideal classes of order 3 in K_{0}, and write $I_{i}^{3}=(\gamma)$ with $\gamma \in K_{0}$. Let $L_{1}=\mathbb{Q}\left(\sqrt{d}, \sqrt{3 d}, \zeta_{9}\right)$. Then

$$
L_{1}\left(\varepsilon_{0}^{1 / 3}, \gamma^{1 / 3}, \ldots, \gamma_{r}^{1 / 3}\right) / L_{1}
$$

is an everywhere unramified extension of degree 3^{r+1}.
Some of these generators may also give an unramified extension of L_{0}, but all of them give unramified extensions of L_{1}.

At a high level, we would like to prove something like an analogue to this result, but for degree-2 extensions of a cyclotomic \mathbb{Z}_{2}-extension of F_{0} rather than degree-3 extensions of the cyclotomic \mathbb{Z}_{3}-extension of F_{0}. If we want such an analogue, we must first determine what K_{0} and L_{0} should be. For the \mathbb{Z}_{3}-extension, the role of the L-tower is essentially to add ζ_{3} to the fields of the F-tower. This ensures that the degree-3 extensions of fields of the L-tower are generated by the cube root of some element of the field being extended.

If we are interested in degree- 2 extensions of fields in the \mathbb{Z}_{2}-extension of F_{0}, this step is unnecessary because F_{0} already has a primitive square root of unity.

It is natural, then, to take $L_{j}=F_{j}$ for all j. In such a setup, the generators of the unramified extensions of F_{j} are not particularly interesting. We know that any such generator must be the square root of a non-square element in F_{j}. Moreover, if $\gamma^{1 / 2}$ is going to generate an unramified degree-2 extension, we must have $(\gamma)=I^{2}$ for some ideal I of F_{j}. To see this, write $(\gamma)=\wp_{1}^{a_{1}} \wp_{2}^{a_{2}} \cdots \wp \wp_{n}^{a_{n}}$. Then $\left(\gamma^{1 / 2}\right)=$ $\wp_{1}^{a_{1} / 2} \wp_{2}^{a_{2} / 2} \cdots \wp_{n}^{a_{n} / 2}$ in $F_{j}\left(\gamma^{1 / 2}\right)$. If any of the a_{i} s are odd, then the corresponding \wp_{i} must ramify because this is an integral ideal. Since the extension is unramified, this is impossible, so all of the exponents must be even. This allows us to write (γ) as I^{2} in F_{j}. So in this case, we do not need to resort to a K-tower or an L-tower to understand the generators for the Hilbert 2-class field of F_{n}.

It turns out that a more interesting case, and one that more closely parallels Theorem 1.0.1, is to look at degree- 4 extensions of the L-tower. In this case, we adjoin a primitive fourth root of unity to the F-tower to get the L-tower, so we take $K_{0}=\mathbb{Q}(\sqrt{d})$ and $L_{0}=F_{0}(i)$.

Figure 1.2: Cyclotomic \mathbb{Z}_{2}-extensions of $\mathbb{Q}(\sqrt{-d}), \mathbb{Q}(\sqrt{d})$, and $\mathbb{Q}(\sqrt{d}, i)$

This means that degree- 4 extensions of the L-tower are Kummer extensions and are generated by fourth roots of elements in the base field. This is exactly the scenario we explore in this paper. In particular, for d odd and for all j, when $\gamma \in K_{0}$ with γ relatively prime to $2, \sqrt{\gamma} \notin K_{0}$, and $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$, we establish exactly when $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified based on simple congruence conditions on γ. Since ε_{0} satisfies all of those criteria for γ, the result includes ε_{0}.

Combining and condensing these results, we have the following theorem, which is the main result of the paper:

Theorem 1.0.2. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$.

When $d \equiv 3 \bmod 4$, write $\gamma=a+b \sqrt{d}$ with $a, b \in \mathbb{Z}$. Then, for all $j \geq 2, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $a \equiv 0 \bmod 4$ or $b \equiv 0 \bmod 4$.

When $d \equiv 1 \bmod 8$, write $\gamma=a+b \sqrt{d}$ with $a, b \in \mathbb{Z}$. Then, for all $j \geq 2, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $a \equiv 0 \bmod 8$ or $b \equiv 0 \bmod 8$.

When $d \equiv 5 \bmod 8$, write $\gamma \equiv a+b z \bmod 8$ with $a, b \in \mathbb{Z}$ and $z=\frac{-1+k \sqrt{d}}{2}$ where $k \in \mathbb{Z}$ is such that $k^{2} d \equiv-3 \bmod 64$. Then for all $j \geq 1, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $(a, b) \in\{ \pm(0,1), \pm(1,0), \pm(1,1)\}$.

Moreover, if $\sqrt{\gamma} \notin K_{0}$, these extensions are never trivial, and, in that case, if $d \not \equiv 7$ mod 8 and the extension is unramified, then it is degree 4.

If I_{1}, \ldots, I_{n} represent independent ideal classes of order 4 in K_{0} with $I_{j}^{4}=\left(\gamma_{j}\right)$ and γ_{j} satisfying the constraints above, then the 2-rank of $L_{j}\left(\varepsilon_{0}^{1 / 4}, \gamma_{1}^{1 / 4}, \ldots, \gamma_{n}^{1 / 4}\right) / L_{j}$ is $n+1$.

Similarly to Theorem 1.0.1, when (2) is split in F_{0}, we find that the fourth
root of any such γ generates an unramified extension of L_{j} for large enough j. In this case, though, we may have to wait until L_{2} before the extension is unramified. When (2) is not split in F_{0}, some values for γ result in $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ being ramified for all j. Also note that the independence result does not allow us to say that the extension has degree 4^{n+1}. Although none of the degree- 4 extensions can totally collapse, some could be degree 2 rather than degree 4 to begin with, or could become degree 2 rather than degree 4 when combined with the other extensions.

Along the way to proving this result, we give a somewhat more complicated congruence condition, which, for any number field K containing i and for any element $\gamma \in K$ with γ relatively prime to 2 , dictates whether adjoining a fourth root of γ to K gives an unramified extension.

We also prove everything necessary to give the following result regarding adjoining square roots:

Theorem 1.0.3. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Then for $j \geq 1, L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is ramified iff $d \equiv 5 \bmod 8$ and $\operatorname{Norm}(\gamma)=-1$. Moreover, when $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is ramified, it is ramified at both primes above (2).

Proof. We see in Proposition 4.1.3, Proposition 4.2.2, and Proposition 4.4.2 that when d is not $5 \bmod 8, L_{1}\left(\gamma^{1 / 2}\right) / L_{1}$ is unramified. When $d \equiv 5 \bmod 8$, combining Lemma 4.3.1 and Proposition 4.3.2 with norm calculations gives the result.

For several reasons, looking at degree- 2 and degree- 4 extensions of fields in the cyclotomic \mathbb{Z}_{2}-extension of F_{0} ends up being quite different from looking at
degree-3 extensions of fields in the cyclotomic \mathbb{Z}_{3}-extension. One of these reasons is that the degree of the extensions we are studying is not relatively prime to the degree of L_{j} / F_{j}. In the context of the \mathbb{Z}_{3}-extension, any degree-3 extension of F_{j} is guaranteed to lift to an extension of L_{j} of the same degree. In particular, non-trivial extensions are guaranteed to lift to non-trivial extensions. For degree-2 and degree-4 extensions of the \mathbb{Z}_{2}-extension, that is not guaranteed because L_{j} / F_{j} might absorb some or all of the extension of F_{j} that is being lifted. Still, if there are multiple independent non-trivial extensions of F_{j}, all but at most one of them must lift to non-trivial extensions of L_{j}.

Because our primary focus is degree- 4 extensions, another key difference is that 3 is prime and 4 is not. In the next chapter, we begin by giving our fundamental tool for showing whether an extension is unramified or not. The standard method works only for extensions generated by adjoining p th roots to a field, where p is prime. To handle extensions generated by fourth roots, we have to do some extra work to see how to apply this method twice.

1.1 Basics

Before progressing to our results, we establish some notation that we use throughout the paper:

- \mathcal{O}_{K} is the ring of integers of a number field K
- d is an odd integer greater than 1
- $F_{0}=\mathbb{Q}(\sqrt{-d})$
- $K_{0}=\mathbb{Q}(\sqrt{d})$
- $L_{j}=L_{0}\left(\sqrt{d}, \zeta_{2^{2+j}}\right)$, so $L_{0}=\mathbb{Q}(\sqrt{d}, i)$
- ε_{0} is the fundamental unit of $\mathcal{O}_{K_{0}}$
- ζ_{n} is a primitive nth root of unity
- $v_{\wp}(\alpha)$ is the \wp-adic valuation of α, and $v(\alpha)$ is the 2 -adic valuation of α.

We also note some facts that are relevant to the scenario described and that we use repeatedly throughout the rest of the paper. The first two of these are easy generalizations of lemmas in [3] and we follow the proofs there closely.

Lemma 1.1.1. Let n be a positive integer and K be a field containing $\zeta_{2^{n}}$. Let r and s be odd integers. Then $\left(\zeta_{2^{n}}^{r}-1\right) /\left(\zeta_{2^{n}}^{s}-1\right)$ is a unit in \mathcal{O}_{K}.

Proof. Because r and s are both odd, we can write $r \equiv s t \bmod 2^{n}$ for some t. Then we have

$$
\frac{\zeta_{2^{n}}^{r}-1}{\zeta_{2^{n}}^{s}-1}=\frac{\zeta_{2^{n}}^{s t}-1}{\zeta_{2^{n}}^{s}-1}=1+\zeta_{2^{n}}^{s}+\cdots+\zeta_{2^{n}}^{s(t-1)} \in \mathcal{O}_{K}
$$

The exact same argument shows that $\left(\zeta_{2^{n}}^{s}-1\right) /\left(\zeta_{2^{n}}^{r}-1\right) \in \mathcal{O}_{K}$.

Lemma 1.1.2. Let n be a positive integer and K be a field containing $\zeta_{2^{n}}$. Then $\left(1-\zeta_{2^{n}}\right)^{2^{n-1}}=(2)$ as ideals in \mathcal{O}_{K}.

Proof. Since $X^{2^{n-1}}+1=\Phi_{2^{n}}(X)=\prod_{j=1 ; j \text { odd }}^{2^{n}-1}\left(X-\zeta_{2^{n}}^{j}\right)$, we can take $X=1$ to see that $2=\prod_{j=1 ; j \text { odd }}^{2^{n}-1}\left(1-\zeta_{2^{n}}^{j}\right)$. Our previous lemma shows that, as ideals, each of the terms in the product on the right are equal, so we get the equality of ideals (2) $=\left(1-\zeta_{2^{n}}\right)^{\phi\left(2^{n}\right)}=\left(1-\zeta_{2^{n}}\right)^{2^{n-1}}$ as desired.

Corollary 1.1.3. Let n be a positive integer and K be a field containing $\zeta_{2^{n}}$. If
$n \geq 1, v_{2}\left(1-\zeta_{2^{n}}\right)=2^{-(n-1)}$. If $n \geq 2, v_{2}\left(1+\zeta_{2^{n}}\right)=2^{-(n-1)}$.

Proof. The first claim follows immediately from the previous lemma. For the second claim, note that $1+\zeta_{2^{n}}=\left(1-\zeta_{2^{n}}\right)+2 \zeta_{2^{n}}$. The valuation of the final term is 1 . For $n \geq 2, v_{2}\left(1-\zeta_{2^{n}}\right)<1$, so we have $v_{2}\left(1+\zeta_{2^{n}}\right)=v_{2}\left(1-\zeta_{2^{n}}\right)$.

Corollary 1.1.4. Let $n>1$ be an integer and K be a field containing $\zeta_{2^{n+1}}$. As ideals in $\mathcal{O}_{K},\left(1+\zeta_{2^{n+1}}\right)^{2}=\left(1+\zeta_{2^{n}}\right)$.

Proof. This follows immediately from the lemma above.

Lemma 1.1.5. $K_{1}=K_{0}(\sqrt{2})$.

Proof. We know that $\zeta_{8} \in L_{1}$. This means that $\sqrt{2}=\zeta_{8}^{7}(1+i) \in L_{1}$. But $\sqrt{2}$ is real, so must be in the maximal real subfield of L_{1}, namely K_{1}. Since we always take d odd, we do not have $\sqrt{2} \in K_{0}$, so $K_{1}=K_{0}(\sqrt{2})$.

Lemma 1.1.6. Let K be a number field such that there is only one prime above 2 . Let n be a positive integer and $x, y \in \mathcal{O}_{K}$ be relatively prime to 2. If $x^{2} \equiv y^{2} \bmod$ 2^{n+1}, then $x \equiv \pm y \bmod 2^{n}$.

Proof. We can write $(x-y)(x+y)=x^{2}-y^{2} \equiv 0 \bmod 2^{n+1}$. The difference between the two factors is $2 y$. Since y is relatively prime to 2 , one of the two factors must not be divisible by any power of (the prime above) 2 greater than 2 itself. Since there is only one prime above 2 , the other factor must be divisible by 2^{n}, so $x \equiv \pm y$ $\bmod 2^{n}$ as desired.

This is not necessarily true if (2) has split somewhere in K / \mathbb{Q}. For example, let $(2)=\wp_{1} \wp_{2}$. Then we could have $(x-y)$ divisible by $\wp_{1}^{n} \wp_{2}$ and $(x+y)$ divisible
by $\wp_{1} \wp_{2}^{n}$. If these are the largest powers of \wp_{j} dividing the two factors, then $x \equiv y$ $\bmod 2$, but not $\bmod 2^{n}$ for any $n>1$. Still, $x^{2}-y^{2}$ is divisible by $\wp_{1}^{n+1} \wp_{2}^{n+1}=2^{n+1}$. When (2) has more than one prime above it, we can say something similar as long as we are working mod small enough powers of 2 :

Lemma 1.1.7. Let K be a number field, let \wp be a prime ideal in \mathcal{O}_{K}, and let n be a positive integer with $\wp^{n} \mid(2)$. Let $x, y \in \mathcal{O}_{K}$. If $x^{2} \equiv y^{2} \bmod \wp^{2 n}$, then $x \equiv y \equiv-y$ $\bmod \wp^{n}$.

Proof. As in the previous proof, we can write $(x-y)(x+y) \equiv 0 \bmod \wp^{2 n}$. These two factors are congruent to each other mod 2 . Since $\wp^{n} \mid 2$, this means either of the factors is divisible by \wp^{n} iff the other is. Thus, both factors must be divisible by \wp^{n} for their product to be divisible by $\wp^{2 n}$.

Chapter 2: Machinery

Throughout the paper, our approach for showing whether adjoining something to L_{j} gives an unramified extension is to apply Exercise 9.3 part c from [3]. Because we rely on this exercise so heavily, we state it here, modified to be specific to the situations we care about.

From the proof, it is easy to see that $K\left(\alpha^{1 / 2}\right)$ is unramified at \wp iff $\exists \mu \in \mathcal{O}_{K}$ such that $\mu^{2} \equiv \alpha \bmod \wp^{2 a}$. Also note that although we have stated the result globally, the proof works just as well when K is the completion of a number field. This is true for the rest of our results as well. We are particularly interested in the global results, but in proving these, we will often need temporarily to work locally and then use the local result to deduce a global result. This situation will arise when the congruence class of \sqrt{d} mod some power of 2 depends on the completion. When we derive global results from local results, we rely on the fact that an extension is ramified at a prime iff it is ramified in the completion at that prime.

Proposition 2.0.8. Let K be a number field that is totally complex, and let $\alpha \in \mathcal{O}_{K}$ be relatively prime to 2 and not a square. Let \wp_{1}, \ldots, \wp_{n} be the primes above 2 in \mathcal{O}_{K}, and let a_{j} be the largest integer such that $\wp_{j}^{a_{j}} \mid 2$. Then $K\left(\alpha^{1 / 2}\right) / K$ is unramified at all primes iff $(\alpha)=I^{2}$ for some ideal I of K and for $1 \leq j \leq n, \exists \mu_{j} \in \mathcal{O}_{K}$ such
that $\mu_{j}^{2} \equiv \alpha \bmod \wp_{j}^{2 a_{j}}$.
Proof. (\Rightarrow) To see that (α) must be the square of an ideal, write $(\alpha)=\rho_{1}^{b_{1}} \rho_{2}^{b_{2}} \cdots \rho_{r}^{b_{r}}$. Then $(\sqrt{\alpha})=\rho_{1}^{b_{1} / 2} \rho_{2}^{b_{2} / 2} \cdots \rho_{r}^{b_{r} / 2}$. If any of the b_{j} s are odd, then to make this an integral ideal, the corresponding ρ_{j} must be ramified. Since the extension is unramified, this is impossible, so all of the exponents must be even.

The proof that α is a square $\bmod \wp_{j}^{2 a_{j}}$ in \mathcal{O}_{K} is identical for all j, so we will simplify notation by simply using \wp, a, and μ. Let c be the largest power of \wp such that $\exists x$ with $x^{2} \equiv \alpha \bmod \wp^{c}$. We will show by contradiction that $c \geq 2 a$, so assume that $c<2 a$. We first claim that c is odd.

If $c=2 b$, then let $w \in \mathcal{O}_{K}$ be such that $v_{\wp}(w)=1$. Also, let $y \in \mathcal{O}_{K}$ be such that $y^{2} \equiv \frac{\alpha-\mu^{2}}{w^{2 b}} \bmod \wp$. We know that such a y exists because squaring is the Frobenius automorphism of $\mathcal{O}_{K} / \wp \mathcal{O}_{K}$. Then $\left(\mu+w^{b} y\right)^{2}-\alpha=\left(\mu^{2}-\alpha\right)+2 \mu w^{b} y+$ $w^{2 b} y^{2}$. Since $2 a>c=2 b$, we have $a>b$. Since both a and b are integers, we have $v_{\wp}\left(2 \mu w^{b} y\right)=a+b \geq 2 b+1$. Thus $\left(\mu+w^{b} y\right)^{2}-\alpha \equiv\left(\mu^{2}-\alpha\right)+w^{2 b} y^{2} \bmod \wp^{2 b+1}$. By construction, $w^{2 b} y^{2} \equiv \alpha-\mu^{2} \bmod \wp^{2 b+1}$, so $\left(\mu+w^{b} y\right)^{2}-\alpha \equiv 0 \bmod \wp^{2 b+1}$. This contradicts the fact that $c=2 b$ is the largest power of \wp such that α is a square $\bmod \wp^{c}$, so c must be odd.

If we have $\mu^{2} \equiv \alpha \bmod \wp^{c}$, we can write $\left(\mu-\alpha^{1 / 2}\right)\left(\mu+\alpha^{1 / 2}\right) \equiv 0 \bmod \wp^{c}$. Since we have assumed $c<2 a$, one of the two factors must have \wp-adic valuation less than a. Without loss of generality, assume $v_{\wp}\left(\mu-\alpha^{1 / 2}\right)<a$. Since $\mu+\alpha^{1 / 2}=$ $\mu-\alpha^{1 / 2}+2 \alpha^{1 / 2}$ and $v_{\wp}\left(2 \alpha^{1 / 2}\right)=a$, we must have $v_{\wp}\left(\mu-\alpha^{1 / 2}\right)=v_{\wp}\left(\mu+\alpha^{1 / 2}\right)$. But then $c=2 v_{\wp}\left(\mu-\alpha^{1 / 2}\right)$, which is even. This is a contradiction, so we must have
$c \geq 2 a$ as desired.
(\Leftarrow) First we show that $(\alpha)=I^{2}$ implies that $K\left(\alpha^{1 / 2}\right) / K$ is unramified away from (2). The completion of \mathcal{O}_{K} at any prime is a principal ideal domain, so I becomes principal. We write it $I=(\gamma)$. This means that we have $\alpha=u \gamma^{2}$ for some \wp-adic unit. Then $\alpha^{1 / 2}=u^{1 / 2} \gamma$, so in the completion, the extension is generated by $u^{1 / 2}$. The relative different for this extension is generated by $\left(2 u^{1 / 2}\right)=(2)$, so only primes above 2 can ramify.

Now we show that the extension is unramified at \wp_{j} for $1 \leq j \leq n$. Again, the calculations are the same for all j, so we will use \wp, a, and μ. Consider the polynomial $f(X)=\frac{(2 X+\mu)^{2}-\alpha}{4}=X^{2}+\mu X+\frac{\mu^{2}-\alpha}{4}$. Clearly $f(X)$ is monic and since $\alpha \equiv \mu^{2} \bmod 4$, each of the coefficients is in \mathcal{O}_{K}.

A root β of this polynomial satisfies $(2 \beta+\mu)^{2}=\alpha$, so we can take $\alpha^{1 / 2}$ to be $2 \beta+\mu$. This means that $K\left(\alpha^{1 / 2}\right) / K=K(\beta) / K$. In particular, they have the same different. This different must divide $f^{\prime}(\beta)=2 \beta+\mu$. Since $v_{\wp}(\beta) \geq 1$ and μ is relatively prime to \wp, this different is also relatively prime to \wp. Thus, the extension is unramified at \wp.

From the proof, it is easy to see that $K\left(\alpha^{1 / 2}\right)$ is unramified at \wp iff $\exists \mu \in \mathcal{O}_{K}$ such that $\mu^{2} \equiv \alpha \bmod \wp^{2 a}$. Also note that this proof works just as well when K is the completion of a number field. This is true for the rest of our results as well. We are particularly interested in the global results, but in proving these, we will often need temporarily to work locally and then use the local result to deduce a global result. This situation will arise when the congruence class of \sqrt{d} mod some power
of 2 depends on the completion. When we derive global results from local results, we rely on the fact that an extension is ramified at a prime iff it is ramified in the completion at that prime.

When adjoining a fourth root, we need to be able to apply Proposition 2.0.8 twice: once for adjoining a square root of some element γ to L_{j} and once for adjoining a fourth root of γ to $L_{j}\left(\gamma^{1 / 2}\right)$. To apply this proposition, we need to understand whether certain elements are squares in the appropriate ring of integers. For the second application of the proposition, then, we need to understand the ring of integers of $L_{j}\left(\gamma^{1 / 2}\right)$.

The following two lemmas allow us to prove easily the fact that we need about this ring of integers. The resulting corollary shows us that if $\gamma \equiv \mu^{2} \bmod 4$ for some $\mu \in \mathcal{O}_{L_{j}}$, then an element of $\mathcal{O}_{L_{j}\left(\gamma^{1 / 2}\right)}$ is a square mod some power of 2 in that ring iff it is a square mod the same power of 2 in $\mathcal{O}_{L_{j}}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$. The latter ring is easier to work with because it is easier to characterize its elements.

Lemma 2.0.9. Let $K(\alpha)$ be a quadratic extension of a number field K, with τ the non-trivial element of $\operatorname{Gal}(K(\alpha) / K)$. Let $\lambda \in \mathcal{O}_{K(\alpha)}$ be such that $\lambda^{\tau}-\lambda$ is relatively prime to 2. Then for any $n \in \mathbb{Z}^{+}$and $x \in \mathcal{O}_{K(\alpha)}$, there is some $y \in \mathcal{O}_{K}[\lambda]$ such that $x \equiv y \bmod 2^{n}$.

Proof. Let S be the set of elements in \mathcal{O}_{K} that are relatively prime to (2) and let $(R)_{2}=R S^{-1}$ for any ring R containing S. We begin by showing that $\left(\mathcal{O}_{K(\alpha)}\right)_{2}=$ $\left(\mathcal{O}_{K}\right)_{2}[\lambda]$.

Since $\left(\mathcal{O}_{K}\right)_{2}$ is a Dedekind domain with finitely many prime ideals, it must be
a principal ideal domain. Since $\left(\mathcal{O}_{K}\right)_{2}$ is a P.I.D. and $\left(\mathcal{O}_{K(\alpha)}\right)_{2}$ is finitely generated over it, we can write $\left(\mathcal{O}_{K(\alpha)}\right)_{2}=\beta_{1}\left(\mathcal{O}_{K}\right)_{2} \oplus \beta_{2}\left(\mathcal{O}_{K}\right)_{2}$. We can also write $\left(\mathcal{O}_{K}\right)_{2}[\lambda]$ as $\left(\mathcal{O}_{K}\right)_{2} \oplus\left(\mathcal{O}_{K}\right)_{2} \lambda$. Since $\left(\mathcal{O}_{K}\right)_{2}[\lambda] \subseteq\left(\mathcal{O}_{K(\alpha)}\right)_{2}$, we can write the basis of the former in terms of the basis of the latter: $1=a \beta_{1}+b \beta_{2}$ and $\lambda=c \beta_{1}+d \beta_{2}$ with $a, b, c, d \in\left(\mathcal{O}_{K}\right)_{2}$. Applying τ to both of these equations gives $1=a \beta_{1}^{\tau}+b \beta_{2}^{\tau}$ and $\lambda^{\tau}=c \beta_{1}^{\tau}+d \beta_{2}^{\tau}$. This gives us the following matrix equation:

$$
\left(\begin{array}{ll}
1 & 1 \\
\lambda & \lambda^{\tau}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\beta_{1} & \beta_{1}^{\tau} \\
\beta_{2} & \beta_{2}^{\tau}
\end{array}\right)
$$

The determinant of the left-most matrix is $\lambda^{\tau}-\lambda$. We have assumed this to be relatively prime to 2. This means that the determinant of $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ must also be prime to 2, which means that we can invert $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ over $\left(\mathcal{O}_{K}\right)_{2}$. By writing

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 1 \\
\lambda & \lambda^{\tau}
\end{array}\right)=\left(\begin{array}{ll}
\beta_{1} & \beta_{1}^{\tau} \\
\beta_{2} & \beta_{2}^{\tau}
\end{array}\right)
$$

we can write the $\beta_{i} \mathrm{~S}$ in terms of 1 and λ with coefficients in $\left(\mathcal{O}_{K}\right)_{2}$, so we have that $\left(\mathcal{O}_{K(\alpha)}\right)_{2} \subseteq\left(\mathcal{O}_{K}\right)_{2}[\lambda]$. Since we already had the reverse inclusion, we get equality.

Now let $x \in \mathcal{O}_{K(\alpha)}$. Identifying x with its image under the natural injection, we can think of $x \in\left(\mathcal{O}_{K(\alpha)}\right)_{2}$. We have just seen that this means $x \in\left(\mathcal{O}_{K}\right)_{2}[\lambda]$. This means that there is some $m \in \mathcal{O}_{K}$ relatively prime to 2 such that $x m \in \mathcal{O}_{K}[\lambda]$. Since m is relatively prime to 2 , then for any n, it has an inverse in $\mathcal{O}_{K} \bmod 2^{n}$, which we call m_{n}^{-1}. Then $m m_{n}^{-1}$ is $1 \bmod 2^{n}$, so $x \equiv x m m_{n}^{-1} \bmod 2^{n}$. Moreover, we have $x m, m_{n}^{-1} \in \mathcal{O}_{K}[\lambda]$, so $x m m_{n}^{-1} \in \mathcal{O}_{K}[\lambda]$.

Now we can apply the previous lemma to a more specific scenario that is particularly relevant for us. In this more specific situation, we take on two additional contraints: α is the square root of an element of the base field K, and its square is a square $\bmod 4$ in that field.

Lemma 2.0.10. Let K be a number field with ring of integers \mathcal{O}_{K}. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2. If $\gamma \equiv \mu^{2} \bmod 4$ for some $\mu \in \mathcal{O}_{K}$, then $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right] \subseteq$ $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ and, for any $n \in \mathbb{Z}^{+}$, every element of the ring of integers of $K\left(\gamma^{1 / 2}\right)$ is congruent mod 2^{n} to an element of $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$.

Proof. Write $\gamma=\mu^{2}+4 k$ with $k \in \mathcal{O}_{K}$. Then $\frac{\mu+\gamma^{1 / 2}}{2}$ satisfies $x^{2}-\mu x-k=0$. Thus, $\frac{\mu+\gamma^{1 / 2}}{2} \in \mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$. If $\gamma^{1 / 2} \in \mathcal{O}_{K}$, this tells us that $\mathcal{O}_{K} \subseteq \mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right] \subseteq \mathcal{O}_{K\left(\gamma^{1 / 2}\right)}=$ \mathcal{O}_{K}. This immediately implies that all of these are equal, so $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}=\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$, and the rest of the lemma is trivially true.

If $\gamma^{1 / 2} \notin \mathcal{O}_{K}$, then in the notation of Lemma 2.0.9, we can take $\lambda=\frac{\mu+\gamma^{1 / 2}}{2}$. Then $\lambda^{\tau}-\lambda=\frac{\mu-\gamma^{1 / 2}}{2}-\frac{\mu+\gamma^{1 / 2}}{2}=-\gamma^{1 / 2}$. Since γ is relatively prime to $2,-\gamma^{1 / 2}$ is as well. Then taking $\alpha=\gamma^{1 / 2}$, the rest of the lemma is exactly the statement of Lemma 2.0.9.

We can use the previous lemma to prove the following corollary, which gives us the tool we need to answer whether something is a square $\bmod 4$ in $\mathcal{O}_{L_{j}\left(\gamma^{1 / 2}\right)}$.

Corollary 2.0.11. Let K be a number field with ring of integers \mathcal{O}_{K}. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2 . If $\gamma \equiv \mu^{2} \bmod 4$ for some $\mu \in \mathcal{O}_{K}$, then $\alpha \in \mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ is a square $\bmod 2^{n}$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ iff it is a square $\bmod 2^{n}$ in $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$.

Proof. If α is a square $\bmod 2^{n}$ in $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$, it is clearly a square $\bmod 2^{n}$ in
$\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ because $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right] \subseteq \mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$.
If α is a square $\bmod 2^{n}$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$, then write $\alpha \equiv x^{2} \bmod 2^{n}$ with $x \in \mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$. The lemma shows that $\exists y \in \mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$ such that $x \equiv y \bmod 2^{n}$. Thus, we have $\alpha \equiv x^{2} \equiv y^{2} \bmod 2^{n}$.

To show whether or not something is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$, we examine what a generic square mod 4 looks like in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ and then see whether or not our element can be written in that form. The previous corollary allows us to work in $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$, where we can easily write down what a square looks like.

The next few results apply Proposition 2.0.8 in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ using the facts that we have learned about elements being a square in that ring. They culminate in a theorem that is our instrument any time we wish to show whether $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified or not.

The first of these is similar to the obvious fact that if $\gamma^{1 / 2}$ is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod 4$, then γ is a fourth power mod 4 in the same ring. This proposition is stronger, though. In it, we show that γ actually has to be a fourth power mod 4 in \mathcal{O}_{K}. Before proving this proposition, we need to prove a brief lemma.

Lemma 2.0.12. Let K be a number field with ring of integers \mathcal{O}_{K}. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2 with $\gamma^{1 / 2} \notin \mathcal{O}_{K}$. Let $a, b, \mu \in \mathcal{O}_{K}$ and $\frac{\mu+\gamma^{1 / 2}}{2} \in \mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$. Then $0 \equiv a+b \frac{\mu+\gamma^{1 / 2}}{2} \bmod 4$ iff $a \equiv 0 \bmod 4 \operatorname{and} b \equiv 0 \bmod 4$.

Proof. By assumption, we have $0 \equiv a+b \frac{\mu+\gamma^{1 / 2}}{2} \bmod 4$. We can take the conjugate of both sides, giving us $0 \equiv a+b \frac{\mu-\gamma^{1 / 2}}{2} \bmod 4$. If we subtract the latter congruence from the former, we get $b \gamma^{1 / 2} \equiv 0 \bmod 4$. Since γ is relatively prime to 2 , this
means that $b \equiv 0 \bmod 4$. Replacing b with 0 in either of the two congruences gives us $a \equiv 0 \bmod 4$.

The other direction is obvious.

Now we are in a position to prove the proposition we mentioned above.
Proposition 2.0.13. Let K be a number field with ring of integers \mathcal{O}_{K}. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2 and satisfy $\gamma \equiv \mu^{2} \bmod 4$ for some $\mu \in \mathcal{O}_{K}$. If $\gamma^{1 / 2}$ is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod 4$, then γ is a fourth power $\bmod 4$ in \mathcal{O}_{K}.

Proof. If $\gamma^{1 / 2} \in K$, then $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}=\mathcal{O}_{K}$, so the fact that $\gamma^{1 / 2}$ is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ $\bmod 4$ means there is some $x \in \mathcal{O}_{K}$ such that $\gamma^{1 / 2} \equiv x^{2} \bmod 4$. Squaring both sides gives $\gamma \equiv \alpha^{4} \bmod 4$. (In fact, in this case, the congruence has to hold mod 8 , and the restriction that γ be relatively prime to 2 is unnecessary.)

Now we assume that $\gamma^{1 / 2}$ is not in K. Corollary 2.0 .11 shows that $\gamma^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ iff it is a square $\bmod 4$ in $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$. An arbitrary square in $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$ is $\left(x+y \frac{\mu+\gamma^{1 / 2}}{2}\right)^{2}$ with $x, y \in \mathcal{O}_{K}$. Expanding this, we get the following:

$$
\begin{aligned}
\left(x+y \frac{\mu+\gamma^{1 / 2}}{2}\right)^{2} & =x^{2}+y^{2} \frac{\mu^{2}+\gamma+2 \mu \gamma^{1 / 2}}{4}+2 x y \frac{\mu+\gamma^{1 / 2}}{2} \\
& =x^{2}+y^{2} \frac{2 \mu^{2}+2 \mu \gamma^{1 / 2}+\gamma-\mu^{2}}{4}+2 x y \frac{\mu+\gamma^{1 / 2}}{2} \\
& =x^{2}+y^{2} \frac{\mu^{2}+\mu \gamma^{1 / 2}}{2}+y^{2} \frac{\gamma-\mu^{2}}{4}+2 x y \frac{\mu+\gamma^{1 / 2}}{2} \\
& =x^{2}+y^{2} \frac{\gamma-\mu^{2}}{4}+\left(\mu y^{2}+2 x y\right) \frac{\mu+\gamma^{1 / 2}}{2}
\end{aligned}
$$

Since this is what an arbitrary square in $\mathcal{O}_{K}\left[\frac{\mu+\gamma^{1 / 2}}{2}\right]$ looks like, we now have
that $\gamma^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ iff $\exists x, y \in \mathcal{O}_{K}$ such that we can write

$$
\gamma^{1 / 2} \equiv x^{2}+y^{2} \frac{\gamma-\mu^{2}}{4}+\left(\mu y^{2}+2 x y\right) \frac{\mu+\gamma^{1 / 2}}{2} \bmod 4
$$

Subtracting $\gamma^{1 / 2}$ from both sides, we can rewrite this as

$$
0 \equiv x^{2}+y^{2} \frac{\gamma-\mu^{2}}{4}+\mu+\left(\mu y^{2}+2 x y-2\right) \frac{\mu+\gamma^{1 / 2}}{2} \bmod 4
$$

Applying the previous lemma, we find that this congruence is equivalent to the following two congruences:

$$
\begin{aligned}
x^{2}+y^{2} \frac{\gamma-\mu^{2}}{4}+\mu & \equiv 0 \bmod 4 \\
\mu y^{2}+2 x y-2 & \equiv 0 \bmod 4
\end{aligned}
$$

Reducing the second of these congruences $\bmod 2$, we see that $\mu y^{2} \equiv 0 \bmod 2$. Since γ is relatively prime to $2, \mu$ must be as well, so we have $y^{2} \equiv 0 \bmod 2$. Now if we look at the first of the two congruences $\bmod 2$, we have $x^{2}+\mu \equiv 0 \bmod 2$. Since $x^{2}+\mu$ and $x^{2}-\mu$ differ by a multiple of 2 , we get $x^{4}-\mu^{2}=\left(x^{2}+\mu\right)\left(x^{2}-\mu\right) \equiv 0$ $\bmod 4$. This gives us $\gamma \equiv \mu^{2} \equiv x^{4} \bmod 4$ as desired.

We have just seen that if $\gamma^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$, then γ is a fourth power $\bmod 4$ in \mathcal{O}_{K}. It is tempting to think that γ also must be a fourth power mod 8, reaching that conclusion by noting that if $\gamma^{1 / 2}$ is a square $\bmod 4\left(\right.$ say,$\gamma^{1 / 2} \equiv \alpha^{2}$ $\bmod 4)$, we have $\left(\gamma^{1 / 2}-\alpha^{2}\right)\left(\gamma^{1 / 2}+\alpha^{2}\right)$ divisible by 8 . The problem with this line of reasoning is that $\gamma^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$ rather than in \mathcal{O}_{K} itself. So this argument tells us only that γ is a fourth power $\bmod 8$ in this larger ring.

In fact, γ does not have to be a fourth power $\bmod 8$ in \mathcal{O}_{K} when $\gamma^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$. Consider, for example, the case that $d=155$. In this
case, the fundamental unit in $\mathcal{O}_{K_{0}}$ is $249+20 \sqrt{d} \equiv 1+4 \sqrt{d} \bmod 8$. Since $d \equiv-1$ $\bmod 4$, we have $\sqrt{d} \equiv i \bmod 2$, so $\varepsilon_{0} \equiv 1+4 i \bmod 8 \operatorname{in} \mathcal{O}_{L_{0}}$. To determine whether this is a fourth power $\bmod 8$, we need only to consider potential fourth roots mod 2. If we take $\pi=(1+i)$ and complete $L_{0} \pi$-adically, then the only such potential roots are 1 and $1+(1+i) \equiv i$. The fourth power of both of these is 1 , which is not congruent to $1+4 i \bmod 8$. Since it is not a fourth power mod 8 in the completion, it must not be one in L_{0}. Our results show that $\varepsilon_{0}^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{L_{0}\left(\varepsilon_{0}^{1 / 2}\right)}$. Thus, γ being a fourth power mod 8 in \mathcal{O}_{K} is not necessary for $\gamma^{1 / 2}$ being a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$.

On the other hand, if $i \in K$ and there is only one prime above 2 , it is easy to see that if γ is a fourth power $\bmod 8$ in \mathcal{O}_{K}, then $\gamma^{1 / 2}$ is a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}$. (We see in the next result that this is also true when (2) is split.) This is because if $\gamma \equiv \alpha^{4} \bmod 8$, we have $\gamma^{1 / 2} \equiv \pm \alpha^{2} \bmod 4$, so $\gamma^{1 / 2}$ is a square $\bmod 4$.

Here, we see that a necessary and sufficient condition is stronger than requiring γ to be a fourth power mod 4 and is weaker than requiring γ to be a fourth power $\bmod 8$.

Proposition 2.0.14. Let K be a number field with ring of integers \mathcal{O}_{K} with $i \in K$. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2 and satisfy $\gamma \equiv \alpha^{4} \bmod 4$ for some $\alpha \in \mathcal{O}_{K}$. Then $\gamma^{1 / 2}$ is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod \&$ iff there exists $\beta \in \mathcal{O}_{K}$ such that the following congruence is satisfied:

$$
\gamma \equiv \alpha^{4}(1+4 i(1+\beta)(1+\beta i)) \bmod 8
$$

Proof. As in the previous proposition, if $\gamma^{1 / 2} \in K$, then $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)}=\mathcal{O}_{K}$. Then $\gamma^{1 / 2}$
is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod 4$ means there is some $x \in \mathcal{O}_{K}$ such that $\gamma^{1 / 2} \equiv x^{2} \bmod$ 4. Then $\gamma-x^{4}=\left(\gamma^{1 / 2}-x^{2}\right)\left(\gamma^{1 / 2}+x^{2}\right) \equiv 0 \bmod 8$, because the two factors differ by a multiple of 2 . If we take $\alpha=x$ and $\beta=0$, then γ can be written in the desired form. On the other hand, if we can write γ as $\alpha^{4}(1+4 i(1+\beta)(1+\beta i))$, take α^{-1} to be the inverse of $\alpha \bmod 4$ and consider $\left((\alpha+\alpha \beta(1+i))+\alpha^{-1}(1+i) \frac{\alpha^{2}+\gamma^{1 / 2}}{2}\right)^{2}$, we find that this is congruent to $\alpha^{2}+2 \alpha^{2} \beta(1+i)+2 i \alpha^{2} \beta^{2}+2 i \alpha^{-2} \frac{\gamma-\alpha^{4}}{4}+2 \frac{\alpha^{2}+\gamma^{1 / 2}}{2}=$ $\alpha^{2}+2 \alpha^{2} \beta(1+i)+2 i \alpha^{2} \beta^{2}+2 i \alpha^{-2} \frac{\gamma-\alpha^{4}}{4}+\alpha^{2}+\gamma^{1 / 2} \bmod 4$. For this to be $\gamma^{1 / 2} \bmod$ 4, we need $2 \alpha^{2}+2 \alpha^{2} \beta(1+i)+2 i \alpha^{2} \beta^{2}+2 i \alpha^{-2} \frac{\gamma-\alpha^{4}}{4}$ to be $0 \bmod 4$. So we need to show that $2 i \alpha^{-2} \frac{\gamma-\alpha^{4}}{4} \equiv 2 \alpha^{2}+2 \alpha^{2} \beta(1+i)+2 i \alpha^{2} \beta^{2} \bmod 4$. If we multiply both sides by $2 i \alpha^{2}$, this is equivalent to $\gamma-\alpha^{4} \equiv 4 i \alpha^{4}+4 \alpha^{4} \beta(1+i)+4 \alpha^{4} \beta^{2} \bmod 8$. This is equivalent to $\gamma \equiv \alpha^{4}\left(1+4 i+4 \beta(1+i)+4 \beta^{2}\right) \bmod 8$. But this is the form that we have already assumed for γ, so this is true. Thus, the two conditions are equivalent when $\gamma^{1 / 2} \in K$.

If $\gamma^{1 / 2} \notin K$, in our proof of Proposition 2.0.13, we saw that $\gamma^{1 / 2}$ is a square $\bmod 4 \operatorname{in} \mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod 4$ iff $\exists x, y \in \mathcal{O}_{K}$ satisfying

$$
\begin{aligned}
x^{2}+y^{2} \frac{\gamma-\mu^{2}}{4}+\mu & \equiv 0 \bmod 4 \\
\mu y^{2}+2 x y-2 & \equiv 0 \bmod 4
\end{aligned}
$$

In this case, we have taken μ to be α^{2}, so $\gamma^{1 / 2}$ being a square $\bmod 4$ in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod$ 4 is equivalent to the existence of $x, y \in \mathcal{O}_{K}$ satisfying

$$
\begin{aligned}
x^{2}+y^{2} \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} & \equiv 0 \bmod 4 \\
\alpha^{2} y^{2}+2 x y-2 & \equiv 0 \bmod 4
\end{aligned}
$$

The same argument we used in Proposition 2.0.13 shows that y^{2} is divisible
by 2 . Since $i \in K$, this means that y is divisible by $(1+i)$. We write $y=z(1+i)$ with $z \in \mathcal{O}_{K}$. This lets us rewrite the two congruences as

$$
\begin{aligned}
x^{2}+2 z^{2} i \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} & \equiv 0 \bmod 4 \\
2 \alpha^{2} z^{2} i+2 x z(1+i) & \equiv 2 \bmod 4
\end{aligned}
$$

We can divide the second of the two congruences by 2 to get

$$
\begin{aligned}
x^{2}+2 z^{2} i \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} & \equiv 0 \bmod 4 \\
\alpha^{2} z^{2} i+x z(1+i) & \equiv 1 \bmod 2
\end{aligned}
$$

Now note that looking at the first congruence $\bmod 2$ gives $\alpha^{2} \equiv x^{2} \bmod 2$. This means that $\alpha \equiv x \bmod (1+i)$, so we can replace $x z(1+i)$ with $\alpha z(1+i)$ in the second congruence. This allows us to rewrite the two congruences as

$$
\begin{aligned}
x^{2}+2 z^{2} i \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} & \equiv 0 \bmod 4 \\
(\alpha z)^{2} i+(\alpha z)(1+i) & \equiv 1 \bmod 2
\end{aligned}
$$

Note that in the second congruence, we can move the 1 to the left-hand side and factor to get $(1+\alpha z)(1+\alpha z i) \equiv 0 \bmod 2$. At least one of these factors must be divisible by $1+i$ and the two factors differ by a multiple of $1+i$, so both factors are divisible by $1+i$. (The argument for this is essentially identical to the proof of Lemma 1.1.7.) In particular, we have $\alpha z \equiv 1 \bmod 1+i$. Thus, the second of these two congruences implies that $\alpha z \equiv 1 \bmod 1+i$. On the other hand, if $\alpha z \equiv 1 \bmod$ $1+i$, that congruence is certainly satisfied. Taken together, these two implications mean that $\alpha z \equiv 1 \bmod 1+i$ is equivalent to $(\alpha z)^{2} i+(\alpha z)(1+i) \equiv 1 \bmod 2$.

Thus, satisfying the two congruences above is equivalent to satisfying the following two congruences:

$$
\begin{aligned}
x^{2}+2 z^{2} i \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} & \equiv 0 \bmod 4 \\
\alpha z & \equiv 1 \bmod (1+i)
\end{aligned}
$$

Moreover, the second congruence implies that $z \equiv \alpha^{-1} \bmod (1+i)$, which implies that $z^{2} \equiv \alpha^{-2} \bmod 2$. (This is because $\left(z-\alpha^{-1}\right)$ and $\left(z+\alpha^{-1}\right)$ are both divisible by $(1+i)$.) Multiplying the latter congruence by 2 gives $2 z^{2} \equiv 2 \alpha^{-2} \bmod 4$. Replacing $2 z^{2}$ with $2 \alpha^{-2}$ in the first congruence gives this equivalent pair of congruences:

$$
\begin{aligned}
x^{2}+2 \alpha^{-2} i \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} & \equiv 0 \bmod 4 \\
\alpha z & \equiv 1 \bmod (1+i)
\end{aligned}
$$

Since γ is relatively prime to $2, \alpha$ is as well. This means that we know that α has an inverse mod $(1+i)$. But now that z has been removed from the first congruence, this is all that the second congruence is saying. So under our assumptions, the existence of an x and z satisfying both of the above congruences is equivalent to the existence of an x satisfying the single congruence:

$$
x^{2}+2 \alpha^{-2} i \frac{\gamma-\alpha^{4}}{4}+\alpha^{2} \equiv 0 \bmod 4
$$

We can rewrite this as

$$
2 \alpha^{-2} i \frac{\gamma-\alpha^{4}}{4} \equiv-\left(x^{2}+\alpha^{2}\right) \bmod 4
$$

Now multiplying both sides by $-2 i \alpha^{2}$ and moving the α^{4} to the right-hand side gives the equivalent

$$
\gamma \equiv \alpha^{4}+2 i \alpha^{2}\left(x^{2}+\alpha^{2}\right) \bmod 8
$$

Since $x^{2} \equiv \alpha^{2} \bmod 2$, we have $x \equiv \alpha \bmod (1+i)$, so write $x=\alpha+b(1+i)$ to get

$$
\begin{aligned}
\gamma & \equiv \alpha^{4}+2 i \alpha^{2}\left(\alpha^{2}+2 b(1+i) \alpha+2 i b^{2}+\alpha^{2}\right) \bmod 8 \\
& \equiv \alpha^{4}+4 i \alpha^{4}\left(1+b(1+i) \alpha^{-1}+i b^{2} \alpha^{-2}\right) \bmod 8 \\
& \equiv \alpha^{4}\left(1+4 i\left(1+b(1+i) \alpha^{-1}+i b^{2} \alpha^{-2}\right)\right) \bmod 8
\end{aligned}
$$

Since $b \alpha^{-1}$ is relevant only mod $1+i$ and α is relatively prime to 2 , multiplying the set of possible b values by α^{-1} permutes, but does not change, that set of possible values. Thus, the existence of a b that satisfies this congruence is equivalent to the existence of a β satisfying the following congruence:

$$
\begin{aligned}
\gamma & \equiv \alpha^{4}\left(1+4 i\left(1+\beta(1+i)+i \beta^{2}\right)\right) \bmod 8 \\
& \equiv \alpha^{4}(1+4 i(1+\beta)(1+\beta i)) \bmod 8
\end{aligned}
$$

We often find it more convenient to work with a slightly different form of the statement above:

Corollary 2.0.15. Let K be a number field with ring of integers \mathcal{O}_{K}. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2 and satisfy $\gamma \equiv \alpha^{4} \bmod 4$ for some $\alpha \in \mathcal{O}_{K}$. Then $\gamma^{1 / 2}$ is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod 4$ iff there exists $\delta \in \mathcal{O}_{K}$ such that the following congruence is satisfied:

$$
\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8
$$

Proof. We have just seen that $\gamma^{1 / 2}$ is a square in $\mathcal{O}_{K\left(\gamma^{1 / 2}\right)} \bmod 4$ iff there is some $\beta \in \mathcal{O}_{K}$ satisfying $\gamma \equiv \alpha^{4}(1+4 i(1+\beta)(1+\beta i)) \bmod 8$. Now we rewrite this congruence after a change of variables of $\delta=1+\beta$.

With $\delta=1+\beta$, we have $1+\beta i \equiv 1+i+i+\beta i=(1+i)+i \delta \bmod 2$. Then the congruence can be written

$$
\gamma \equiv \alpha^{4}(1+4 i \delta((1+i)+\delta i)) \bmod 8
$$

Distributing the $4 i \delta$ (and ignoring the signs of terms divisible by 4) results in

$$
\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8
$$

We can combine these results with Proposition 2.0.8 to get the following theorem:

Theorem 2.0.16. Let K be a number field with ring of integers \mathcal{O}_{K} with $i \in K$. Let $\gamma \in \mathcal{O}_{K}$ be relatively prime to 2 be such that $(\gamma)=I^{4}$ for some ideal I in \mathcal{O}_{K} and satisfies $\gamma \equiv \mu^{2} \bmod 4$ for some $\mu \in \mathcal{O}_{K}$. Then the following are equivalent:

1. $K\left(\gamma^{1 / 4}\right) / K$ is unramified
2. $\exists \alpha, \beta \in \mathcal{O}_{K}$ such that $\gamma \equiv \alpha^{4}(1+4 i(1+\beta)(1+\beta i)) \bmod 8$
3. $\exists \alpha, \delta \in \mathcal{O}_{K}$ such that $\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8$
4. $\exists \alpha \in \mathcal{O}_{K}$ such that $\gamma \equiv \alpha^{4} \bmod 4$ and, for any such $\alpha, \exists \beta \in \mathcal{O}_{K}$ satisfying $\gamma \equiv \alpha^{4}(1+4 i(1+\beta)(1+\beta i)) \bmod 8$
5. $\exists \alpha \in \mathcal{O}_{K}$ such that $\gamma \equiv \alpha^{4} \bmod 4$ and, for any such $\alpha, \exists \delta \in \mathcal{O}_{K}$ satisfying $\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8$.

Proof. $K\left(\gamma^{1 / 4}\right) / K$ is unramified iff $K\left(\gamma^{1 / 2}\right) / K$ and $K\left(\gamma^{1 / 4}\right) / K\left(\gamma^{1 / 2}\right)$ are both unramified. Because $(\gamma)=\left(I^{2}\right)^{2}$ and $\left(\gamma^{1 / 2}\right)=I^{2}$, we can apply Proposition 2.0.8. This tells us that both of those extensions are unramified iff γ is a square $\bmod 4$ in K
and $\gamma^{1 / 2}$ is a square $\bmod 4$ in $K\left(\gamma^{1 / 2}\right)$. We have assumed that γ is a square $\bmod 4$ in K, so in our case, $K\left(\gamma^{1 / 4}\right) / K$ is totally unramified iff $\gamma^{1 / 2}$ is a square $\bmod 4$ in $K\left(\gamma^{1 / 2}\right)$.

Proposition 2.0.8, Proposition 2.0.13 and Proposition 2.0 .14 show that 1 implies 4. Proposition 2.0.8, Proposition 2.0.13 and Corollary 2.0.15 show that 1 implies 5. It is obvious that 4 implies 2 and 5 implies 3. Proposition 2.0 .8 and Proposition 2.0.14 together show that 2 implies 1 and Proposition 2.0.8 and Corollary 2.0.15 shows that 3 implies 1 . Thus, all five are equivalent.

The rest of our results come from applications of this theorem.

Chapter 3: Ramification Implications of Particular Congruence Conditions

Our main results give the generators of some unramified extensions of L_{j} for various j. In particular, for $d \equiv 1 \bmod 2$ and for all j, we give necessary and sufficient conditions for $\gamma^{1 / 4}$ to give an unramified extension of L_{j} when $\gamma \in K_{0}$ is such that γ is relatively prime to $2, \sqrt{\gamma} \notin K_{0}$, and $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Note that when $\gamma=\varepsilon_{0}$, the fundamental unit of K_{0}, these last three conditions are satisfied. We also occasionally point out some additional restrictions that arise in this special case.

Each congruence class of $d \bmod 8($ with $d \equiv 1 \bmod 2)$ is handled separately, but before we delve into each of these congruence classes, it is useful to establish the ramification behavior associated with the fourth roots of certain values.

3.1 Congruences resulting in unramified extensions

The first congruences we deal with are ones that have fourth roots that, at least somewhere in the L-tower, result in unramified extensions. The proofs that result in unramified extensions are very straightforward. They consist of providing an α and β (or δ) that satisfy Proposition 2.0.14 or Corollary 2.0.15. The proofs
also show that, for some low values of j, adjoining some of these fourth roots results in a ramified extension. These aspects of the proofs are slightly more complicated.

Lemma 3.1.1. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma \equiv 1 \bmod 8$. Then $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 0$.

Proof. We can take $\alpha=1$ and $\delta=0$ to have γ be of the proper form to satisfy statement 3 of Theorem 2.0.16. This tells us that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 0$.

The next lemma we would like to prove is one that shows what the ramification behavior is when $\gamma \equiv-1 \bmod 8$. In that case, the extension of L_{0} turns out to be ramified, which requires a little more work to prove. We need to reuse the argument for this in other lemmas, so we find it useful to prove first a helper lemma.

Lemma 3.1.2. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}$ is unramified. Then $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$.

Proof. Since $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}$ is unramified and unramified extensions lift to unramified extensions, it follows that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}=L_{j}\left((-\gamma)^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$.

Note that $L_{0}\left(\gamma^{1 / 4}, \zeta_{8}\right) / L_{0}\left(\gamma^{1 / 4}\right)$ is the lift of $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}\left(\gamma^{1 / 2}\right)$. That extension is a subextension of $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}$, which we have assumed to be unramified. Since unramified extensions lift to unramified extensions, $L_{0}\left(\gamma^{1 / 4}, \zeta_{8}\right) / L_{0}\left(\gamma^{1 / 4}\right)$ must be unramified. But $L_{0}\left(\gamma^{1 / 4}, \zeta_{8}\right) / L_{0}$ cannot be unramified because it contains $L_{0}\left(\zeta_{8}\right) / L_{0}$, which ramifies above $2\left((1+i)=\left(1+\zeta_{8}\right)^{2}\right)$. Thus $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ must be ramified.

Figure 3.1: $L_{0}\left(\gamma^{1 / 4}, \zeta_{8}\right) / L_{0}\left(\gamma^{1 / 4}\right)$ is the lift of $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}\left(\gamma^{1 / 2}\right)$

Combining Lemma 3.1.1 and Lemma 3.1.2 immediately gives us:
Lemma 3.1.3. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma \equiv-1 \bmod 8$. Then $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$.

We can generalize these slightly to the following pair of lemmas where the second one follows immediately from the first and Lemma 3.1.2.

Lemma 3.1.4. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma \equiv 1+$ bi with $b \in \mathbb{Z}$ satisfying $b \equiv 0 \bmod$ 4. Then $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j.

Proof. If $b \equiv 0 \bmod 8$, this is just Lemma 3.1.1.
If $b \equiv 4 \bmod 8$, then we have $1+4 i$. Now let $\alpha=\delta=1$ and note that $\alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right)=(1+4+4 i+4) \equiv 1+4 i \bmod 8$. Thus, the equivalence of 1 and 3 in Theorem 2.0.16 proves the result.

Lemma 3.1.5. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma \equiv-1+b i$ with $b \in \mathbb{Z}$ satisfying $b \equiv 0$ mod 4. Then $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$.

Now we deal with a scenario that requires us to show that both $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ and $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ ramify in a situation where $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}$ ramifies as well. This
requires a little more work than the lemmas we have proved so far in this chapter.
Lemma 3.1.6. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma \equiv a \pm i$ with $a \in \mathbb{Z}$ satisfying $a \equiv 0$ mod 4. Then $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ and $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ are both ramified, while $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for $j \geq 2$.

Proof. First, we show that adjoining $\gamma^{1 / 4}$ to L_{0} or L_{1} gives a ramified extension. Because unramified extensions lift to unramified extensions, it is sufficient to show that $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ is ramified.

Theorem 2.0.16 tells us that it is enough to show that γ is not a fourth power $\bmod 4$ in L_{1}. The congruence conditions on a and b imply that $\gamma \equiv \pm i \bmod 4$. Since -1 is a fourth power in L_{1}, i is a fourth power $\bmod 4 \mathrm{iff}-i$ is. Thus, we need only to show that i is not a fourth power $\bmod 4$ in L_{1}.

Although we are trying to show something about L_{1}, we find it convenient to start by working in L_{2} where we have ζ_{16}. Let $\alpha \in L_{2}$ be such that $\alpha^{4} \equiv i \bmod 4$. This is equivalent to $\alpha^{2} \equiv \zeta_{8} \bmod 2$, so $\alpha \equiv \zeta_{16} \bmod (1+i)$. This means we have $\alpha=\zeta_{16}+(1+i) \lambda$. Now write $1+\alpha-(1+i) \lambda=1+\zeta_{16}$ and consider the 2 -adic valuations on both sides. The right-hand side has valuation $\frac{1}{8}$. The valuation of the left-hand side is at least as large as the minimum of $v(1+\alpha)$ and $v(1+i)+v(\lambda)$, and if those are not the same, it must be exactly that minimum. Moreover, since λ must be in the ring of integers, it cannot have negative valuation. Thus, we have $v(1+i)+v(\lambda) \geq v(1+i)=\frac{1}{2}>\frac{1}{8}$. This means $v(1+\alpha)$ must be $\frac{1}{8}$. Since nothing in L_{1} has such a valuation (the smallest positive valuation comes from $\left(1+\zeta_{8}\right)$ which has valuation $\frac{1}{4}$), there can be no such $\alpha \in L_{2}$, which means there can also be no
such $\alpha \in L_{1}$.
Now we consider $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ for $j \geq 2$. Again, we show that γ has the necessary form mod 8 and apply Theorem 2.0.16. Since -1 is a fourth power this far up on the L-tower, it is sufficient to consider the behavior when $\gamma \equiv i \bmod 8$ and when $\gamma \equiv 4+i \bmod 8$.

If $\gamma \equiv i \bmod 8$, then we can satisfy the form $\alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right)$ with $\alpha=\zeta_{16}$ and $\delta=0$. If $\gamma \equiv 4+i \bmod 8$, then we satisfy the form $\alpha^{4}(1+4 i(1+\beta)(1+\beta i))$ by taking $\alpha=\zeta_{16}$ and $\beta=0$.

The previous lemmas have all shown congruence conditions on γ that cause $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ to be unramified. The last such lemmas that we give are particularly useful when there is a cube root of unity in the base field. Of course, sometimes L_{j} does not have a primitive cube root of unity $\bmod 4$ or mod 8 . It does, however, when $d \equiv \pm 3 \bmod$ a high enough power of 2 , because $\sqrt{d} \equiv \pm \sqrt{ \pm 3} \bmod 8$, and, $\sqrt{-3}$ can be used to build the cube root of unity.

Lemma 3.1.7. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma^{3} \equiv 1 \bmod 8$. Then $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j.

Proof. We can take $\alpha=\gamma$ and $\delta=0$ to have γ be of the proper form to satisfy 3 of Theorem 2.0.16. This tells us that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 0$.

Just as with Lemma 3.1.1, we can combine Lemma 3.1.2 with the previous lemma to get a lemma describing the behavior of the negative.

Lemma 3.1.8. Let $\gamma \in \mathcal{O}_{L_{0}}$ be such that $\gamma^{3} \equiv-1 \bmod 8$. Then $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$.

3.2 Congruences resulting in ramified extensions

In Section 3.1 we gave certain congruence conditions for γ that would mean that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ was unramified for some γ. Now we show some congruence conditions on γ that imply that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j. Not surprisingly, this is somewhat more complicated. One reason for this is that we are trying to show the behavior for all j rather than for a particular j. (In the last section, we did this as well, but trivially so because unramified extensions lift to unramified extensions.) Another source of additional complication is that, when showing that extensions were unramified, Theorem 2.0.16 allowed us to prove it simply by offering an α and a β (or δ) that satisfy a particular congruence. Now we have to show that no such α and β (or δ) can exist. We got a taste for this complication in the previous section. The bulk of the work in that section was in proving Lemma 3.1.2 and in proving that $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ and $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ ramify in Lemma 3.1.6.

3.2.1 Tools for showing extensions are ramified

The extra complications mean that we can benefit from some additional machinery. When we are trying to show that no such α and β (or δ) can exist, we do one of two things. Either we show that there is no α anywhere in the L-tower such that $\gamma \equiv \alpha^{4} \bmod 4$, or we give some α such that $\gamma \equiv \alpha^{4} \bmod 4$ and show that there is no β satisfying $\gamma \equiv \alpha^{4}(1+4 i(1+\beta)(1+\beta i)) \bmod 8($ or that there is no δ satisfying $\left.\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8\right)$. The extra machinery is for handling this latter case, particularly in the δ form.

Observe that if we have $\gamma \equiv \alpha^{4} \bmod 4$, then $\alpha^{4}-\gamma=4 k$. By subtracting γ from both sides and dividing by 4 , we convert $\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8$ to $0 \equiv k+(1+i) \delta+\delta^{2} \bmod 2$. The following proposition and associated corollaries are useful for working with congruences of this form, so are powerful tools for showing that certain extensions are ramified everywhere in the L-tower. There are other, similar, congruences that arise, so we make the proposition fairly general. Before the proposition, we have a technical lemma that helps prove the proposition.

Lemma 3.2.1. Let $n>2$ be a power of 2 and let ζ_{n} be a primitive nth root of unity. Let k be an algebraic integer in $\overline{\mathbb{Q}}$. Let $\delta \in \overline{\mathbb{Q}}$ satisfy $k+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \equiv 0 \bmod$ $\left(1+\zeta_{n}\right)^{2 z}$ where $z>0$ and $z \cdot v\left(1+\zeta_{n}\right) \leq \frac{1}{2}$. Then $\delta=k^{1 / 2}+\lambda\left(1+\zeta_{2 n}\right)^{z}$ with λ satisfying $k^{1 / 2}+\lambda\left(1+\zeta_{2 n}\right)^{z}+\lambda^{2} \equiv 0 \bmod \left(1+\zeta_{n}\right)^{z}$.

Proof. Reducing the congruence $\bmod \left(1+\zeta_{n}\right)^{z}$, we have $\delta^{2} \equiv k \bmod \left(1+\zeta_{n}\right)^{z}$. This means $\delta \equiv k^{1 / 2} \bmod \left(1+\zeta_{2 n}\right)^{z}$. Now we write $\delta=k^{1 / 2}+\lambda\left(1+\zeta_{2 n}\right)^{z}$. Substituting this into the original congruence gives

$$
\begin{aligned}
0 & \equiv k+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \\
& \equiv k+\left(k^{1 / 2}+\lambda\left(1+\zeta_{2 n}\right)^{z}\right)\left(1+\zeta_{n}\right)^{z}+k+\lambda^{2}\left(1+\zeta_{2 n}\right)^{2 z} \\
& \equiv\left(k^{1 / 2}+\lambda\left(1+\zeta_{2 n}\right)^{z}\right)\left(1+\zeta_{n}\right)^{z}+\lambda^{2}\left(1+\zeta_{n}\right)^{z} \bmod \left(1+\zeta_{n}\right)^{2 z}
\end{aligned}
$$

Throughout this, we have taken advantage of the restriction on z, which ensures that $\left(1+\zeta_{n}\right)^{2 z}$ divides 2. Dividing through by $\left(1+\zeta_{n}\right)^{z}$ gives $k^{1 / 2}+\lambda\left(1+\zeta_{2 n}\right)^{z}+\lambda^{2} \equiv 0$ $\bmod \left(1+\zeta_{n}\right)^{z}$.

Now that we have that technical lemma, we can use it to prove the following proposition. Note that the condition that $k^{1 /\left(2^{j+3-N}\right)} \in L_{j}$ is ensuring that we have a
particular power of k in L_{0} and that, starting with that value, we can take successive square roots as we move up the L-tower.

Proposition 3.2.2. Let $j \in \mathbb{N}$. Let $n=2^{N} \geq 4$ with $j>N-3$, and let ζ_{n} be a primitive nth root of unity. Let k be an algebraic integer in $\overline{\mathbb{Q}}$ and z be an odd integer such that the following conditions are true:

- $\exists x \in L_{j}$ such that $x^{2^{j+3-N}} \equiv k \bmod \left(1+\zeta_{n}\right)^{2 z}$
- $v(k)<z 2^{1-N}$
- $v(v(k))>2-N$
- $z \cdot v\left(1+\zeta_{n}\right) \leq \frac{1}{2}$.
(Note that if k is relatively prime to 2, then $v(k)=0$ and $v(v(k))=\infty$, so the second and third conditions are immediately satisfied.) Let $\delta \in \overline{\mathbb{Q}}$ satisfy $k+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \equiv$ $0 \bmod \left(1+\zeta_{n}\right)^{2 z}$. Then $\delta \notin L_{j}$.

Proof. We can apply the previous lemma $j+4-N$ times to get

$$
\begin{aligned}
\delta= & k^{1 / 2}+k^{1 / 4}\left(1+\zeta_{2 n}\right)^{z}+\cdots+k^{1 /\left(2^{j+4} / n\right)}\left(1+\zeta_{2 n}\right)^{z}\left(1+\zeta_{4 n}\right)^{z} \cdots\left(1+\zeta_{2^{j+3}}\right)^{z} \\
& +\left(1+\zeta_{2 n}\right)^{z}\left(1+\zeta_{4 n}\right)^{z} \cdots\left(1+\zeta_{2^{j+4}}\right)^{z} \alpha .
\end{aligned}
$$

In an abuse of notation, we use $k^{1 / 2^{m}}$ to represent $x^{2^{j+3-N-m}}$. In the last of the $j+4-N$ applications, we need $k^{1 /\left(2^{j+4} / n\right)}=x^{1 / 2}$. There may not be such an element in L_{j}, so we use the true root in $\overline{\mathbb{Q}}$.

Assume that $\delta \in L_{j}$. Now we move all but the last two terms on the right-hand side to the left-hand side to get
$\delta+k^{1 / 2}+k^{1 / 4}\left(1+\zeta_{2 n}\right)^{z}+\cdots+k^{1 /\left(2^{j+3} / n\right)}\left(1+\zeta_{2 n}\right)^{z}\left(1+\zeta_{4 n}\right)^{z} \cdots\left(1+\zeta_{2^{j+2}}\right)^{z}=$

$$
k^{1 /\left(2^{j+4} / n\right)}\left(1+\zeta_{2 n}\right)^{z}\left(1+\zeta_{4 n}\right)^{z} \cdots\left(1+\zeta_{2 j+3}\right)^{z}+\left(1+\zeta_{2 n}\right)^{z}\left(1+\zeta_{4 n}\right)^{z} \cdots\left(1+\zeta_{2^{j+4}}\right)^{z} \alpha .
$$

Note that $\zeta_{2^{j+2}} \in L_{j}$. Our powers of k on the left-hand side are actually powers of x, which is also in L_{j}. Thus, the left-hand side is a sum of elements of L_{j} so is in L_{j} itself.

Now consider the valuation of the right-hand side. The valuation of the first term is $\frac{1}{2^{j+4-N}} v(k)+z \frac{1}{2^{N}}+z \frac{1}{2^{N+1}}+\cdots+z \frac{1}{2^{j+2}}$ because the valuation of $\left(1-\zeta_{2^{x}}\right)$ is $\frac{1}{2^{x-1}}$. The valuation of the second term is $z \frac{1}{2^{N}}+z \frac{1}{2^{N+1}}+\cdots+z \frac{1}{2^{j+2}}+z \frac{1}{2^{j+3}}+v(\alpha)$. By assumption $v(k)<z 2^{1-N}$, so the valuation of the first term is strictly less than

$$
\begin{aligned}
& z\left(\frac{1}{2^{j+4-N}} 2^{1-N}+\frac{1}{2^{N}}+\frac{1}{2^{N+1}}+\cdots+\frac{1}{2^{j+2}}\right) \\
= & z\left(2^{-(j+3)}+\frac{1}{2^{N}}+\frac{1}{2^{N+1}}+\cdots+\frac{1}{2^{j+2}}\right) \\
= & z\left(\frac{1}{2^{N}}+\frac{1}{2^{N+1}}+\cdots+\frac{1}{2^{j+2}}+\frac{1}{2^{j+3}}\right) \\
\leq & z\left(\frac{1}{2^{N}}+\frac{1}{2^{N+1}}+\cdots+\frac{1}{2^{j+2}}+\frac{1}{2^{j+3}}\right)+v(\alpha),
\end{aligned}
$$

which is the valuation of the second term. Since the valuations of the two terms are not equal, the sum of their valuations is the minimum of the two valuations. Thus, the valuation of the right-hand side is the valuation of its first term, namely $\frac{1}{2^{j+4-N}} v(k)+z \frac{1}{2^{N}}+z \frac{1}{2^{N+1}}+\cdots+z \frac{1}{2^{j+2}}$.

Since $v(v(k))>2-N$, the valuation of the first term of this valuation is greater than $-(j+4-N)+2-N=-(j+2)$. Thus, the valuation of the sum $\frac{1}{2^{j+4-N}} v(k)+z \frac{1}{2^{N}}+z \frac{1}{2^{N+1}}+\cdots+z \frac{1}{2^{j+2}}$ is exactly the valuation of the term with the minimum valuation, namely $-(j+2)$, which is the valuation of $z \frac{1}{2^{j+2}}$ (recall that z is an odd integer). But the minimum valuation of a valuation in L_{j} is $-(j+1)$. Thus, the right-hand side cannot be in L_{j}.

This contradicts the fact that the left-hand side is in L_{j}, so we must have $\delta \notin L_{j}$.

In proving our corollaries, we use the fact that the second and third conditions above are satisfied if k is relatively prime to 2 . The first of these corollaries addresses the case that k is congruent to a root of unity ζ_{m}. In order to satisfy the condition in the previous proposition that we can keep taking square roots as we go up the L-tower, we have to put some restrictions on the value of m.

Corollary 3.2.3. Let $n=2^{N} \geq 4$ and let ζ_{n} be a primitive nth root of unity. Let $m, M, m_{1} \in \mathbb{Z}$ be such that $m=m_{1} 2^{M}, M \leq N-1$, and m_{1} is relatively prime to 2. Let z be an odd, positive integer satisfying $z \cdot v_{2}\left(1+\zeta_{n}\right) \leq \frac{1}{2}$. Let $k, k_{e} \in L_{0}$ be such that $k \equiv k_{e} \zeta_{2^{M}} \bmod \left(1+\zeta_{n}\right)^{2 z}$ and $k_{e}^{m_{1}} \equiv 1 \bmod \left(1+\zeta_{n}\right)^{2 z}$. Let δ be an algebraic integer in $\overline{\mathbb{Q}}$ satisfying $k+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \equiv 0 \bmod \left(1+\zeta_{n}\right)^{2 z}$. Then $\delta \notin L_{j}$ for any j.

Proof. Showing that $\delta \notin L_{J}$ for $J>j$ also shows that $\delta \notin L_{j}$. This means that it suffices to show the result for sufficiently large j. In particular, we may assume that $j>N-3$ so that we can apply the previous proposition.

Note that $k^{m} \equiv 1 \bmod \left(1+\zeta_{n}\right)^{2 z}$, so k is relatively prime to 2 , and the valuation conditions from Proposition 3.2.2 are satisfied. It remains to show that, for every $j, \exists k_{j} \in L_{j}$ such that $k_{j}^{\left(2^{j+3-N}\right)} \equiv k \bmod \left(1+\zeta_{n}\right)^{2 z}$.

We claim that we can take k_{j} to be $k_{e}^{t_{j}} \zeta_{2^{s_{j}+M}}$ where $s_{j}=j+3-N$ and t_{j} is the inverse of $2^{s_{j}} \bmod m_{1}$, which must exist since 2 is relatively prime to m_{1}. To confirm this, we must show that this choice of k_{j} is in L_{j} and that $k_{j}^{\left(2^{j+3-N}\right)} \equiv k$
$\bmod \left(1+\zeta_{n}\right)^{2 z}$. We have assumed $k_{e} \in L_{0}$, so $k_{e} \in L_{j}$ for all j. Moreover, $\zeta_{2^{s_{j}+M}}$ is a $2^{j+3-N+M}$ th root of unity. We know that L_{j} has a 2^{j+2} th root of unity. Since $M \leq N-1$, we know that $j+3-N+M \leq j+2$, so $\zeta_{2^{s_{j}+M}} \in L_{j}$. Thus, $k_{j} \in L_{j}$ for all j. Moreover, $k_{j}^{\left(2^{j+3-N}\right)}=k_{j}^{2^{s_{j}}}=\left(k_{e}^{t_{j}} \zeta_{2^{s_{j}+M}}\right)^{2^{s_{j}}}=k_{e}^{t_{j} 2^{s_{j}}} \zeta_{2^{M}}$. Since $k_{e}^{m_{1}} \equiv 1 \bmod$ $\left(1+\zeta_{n}\right)^{2 z}$ and t_{j} was chosen to be the inverse of $2^{s_{j}} \bmod m_{1}$, it follows that $k_{e}^{t_{j} 2^{s_{j}}} \equiv k_{e}$ $\bmod \left(1+\zeta_{n}\right)^{2 z}$. Thus, $k_{j}^{\left(2^{j+3-N}\right)} \equiv k_{e} \zeta_{2^{M}} \equiv k \bmod \left(1+\zeta_{n}\right)^{2 z}$ as desired.

We now use the preceding corollary to prove the same result for three specific congruence conditions on k. The first of these has $k \equiv 1$. Based on Proposition 3.2.2, we should expect this to work, because we can obviously start with 1 and keep taking square roots as often as we want. The roots do not have to be primitive, so 1 suffices at each level.

Corollary 3.2.4. Let $n=2^{N} \geq 4$ and let ζ_{n} be a primitive nth root of unity. Let δ be an algebraic integer in $\overline{\mathbb{Q}}$ satisfying $1+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \equiv 0 \bmod \left(1+\zeta_{n}\right)^{2 z}$, where z is an odd, positive integer satisfying $z \cdot v\left(1+\zeta_{n}\right) \leq \frac{1}{2}$. Then $\delta \notin L_{j}$ for any j.

Proof. In terms of the previous corollary, we have $m_{1}=1$ and $M=0$. Obviously $m_{1}=1$ is relatively prime to 2 . Moreover, since $n>2$, we have $N>1$, so $M=0<N-1$, so the conditions of the corollary are met.

In fact, the same argument suffices for proving something slightly more general. If we have something congruent to ζ_{m} in L_{0}, we can expect to be able to take a new square root each time we move up the L-tower because when m is relatively prime to 2 , any power of 2 has an inverse $\bmod m$, so a $\frac{1}{2^{n}}$ th root of ζ_{m} can just be written as a power of ζ_{m}.

Corollary 3.2.5. Let $n=2^{N} \geq 4$ and let ζ_{n} be a primitive nth root of unity. Let δ be an algebraic integer in $\overline{\mathbb{Q}}$ satisfying $k+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \equiv 0 \bmod \left(1+\zeta_{n}\right)^{2 z}$, where z is an odd, positive integer with $z \cdot v\left(1+\zeta_{n}\right) \leq \frac{1}{2}, m$ is odd, and $k^{m} \equiv 1 \bmod$ $\left(1+\zeta_{n}\right)^{2 z}$. Then $\delta \notin L_{j}$ for any j.

Proof. This is the same argument as in Corollary 3.2.4. In terms of Corollary 3.2.3, we have $m_{1}=m$ and $M=0$. We have taken m to be odd, so it is relatively prime to 2. Moreover, since $n>2$, we have $N>1$, so $M=0<N-1$, so the conditions of the corollary are met.

There are times, however, that we need to deal with a more complicated value for k. In particular, we have to consider cases where k is congruent to a sum of roots of unity, some of which are not in $L_{0} \bmod 4$. For this situation, we have the following corollary:

Corollary 3.2.6. Let $n=2^{N} \geq 4$ and let ζ_{n} be a primitive nth root of unity. Let k be a finite sum of roots of unity in L_{N-3} with $v(k)<z 2^{1-N}$ and $v(v(k))>2-N$. Let δ be an algebraic integer in $\overline{\mathbb{Q}}$ satisfying $k+\delta\left(1+\zeta_{n}\right)^{z}+\delta^{2} \equiv 0 \bmod \left(1+\zeta_{n}\right)^{2 z}$, where z is an odd, positive integer with $z \cdot v\left(1+\zeta_{n}\right) \leq \frac{1}{2}$. Then $\delta \notin L_{j}$ for any j.

Proof. As in the proof of Corollary 3.2.3, we can take $j>N-3$. Then we have kept most of the conditions of Proposition 3.2.2. The only thing that we need to prove is that if k is a finite sum of roots of unity in L_{N-3}, then $\exists k_{j} \in L_{j}$ with ${k_{j}^{2 j+3-N}}_{\equiv k}$ $\bmod \left(1+\zeta_{n}\right)^{2 z}$. Since k is a finite sum of roots of unity and we are looking at it only \bmod some divisor of 2 , we can create k_{j} by replacing each term ζ_{x}^{y} in k with $\zeta_{2^{m} x}^{y}$. Because ζ_{x} was in L_{N-3}, this term must be in L_{N-3+m}. In particular, k_{j} must
be in $L_{N-3+j+3-N}=L_{j}$.

An alternate approach
Although the previous proposition and corollaries are our tools throughout the rest of this section, it is interesting to note another approach to handling congruences of the form $0 \equiv k+(1+i) \delta+\delta^{2} \bmod 2$ (or similar forms). Because $(1+i) \in L_{0}$, the following proposition tells us that if there is going to be a δ satisfying the congruence, it must come from the same field as k. When k comes from a particularly low field on the tower, there are not many possibilities for δ and the fact that none of them satisfies the congruence can be proven directly. While this does not seem to be as powerful or easy to work with as the tools above, it has the advantage that it limits the search space that must be explored to look for possible δ s if it is unknown whether one exists.

Proposition 3.2.7. Let \wp be a prime above 2 in L_{j}. Let $c, k \in \mathcal{O}_{L_{j-1}}$ and $\delta \in \mathcal{O}_{L_{j}}$ satisfy $\delta^{2}+c \delta+k \equiv 0 \bmod \wp^{x}$ for some $x \in \mathbb{Z}$ with \wp^{x} dividing 2 and $v_{\wp}(c) \leq \frac{x}{2}$. Then $\exists \lambda \in \mathcal{O}_{L_{j-1}}$ such that $\lambda^{2}+c \lambda+k \equiv 0 \bmod \wp^{x}$.

Proof. We will work locally at \wp. Since $\zeta_{2^{2+j}} \in L_{j}, \zeta_{2^{3+j}} \notin L_{j}$ and $\left(1+\zeta_{2^{2+j}}\right)^{2^{1+j}}=(2)$ as ideals, $\pi_{j}=\left(1+\zeta_{2^{2+j}}\right)$ is a uniformizer in the local ring with $\left(\pi_{j}\right)=\wp$. Now all the proposition's assumptions involving \wp hold for π_{j} as well.

We write $\delta \pi_{j}$-adically as $\sum_{n} g_{n} \pi_{j}^{n}$. Then we can write

$$
\sum_{n=0}^{\frac{x}{2}-1} g_{n}^{2} \pi_{j}^{2 n}+c \sum_{n=0}^{x-1} g_{n} \pi_{j}^{n}+k \equiv 0 \bmod \pi_{j}^{x}
$$

Breaking the middle sum into two pieces based on the parity of the indices, we get

$$
\sum_{n=0}^{\frac{x}{2}-1} g_{n}^{2} \pi_{j}^{2 n}+c \sum_{n=0}^{\frac{x}{2}-1} g_{2 n} \pi_{j}^{2 n}+c \sum_{n=0}^{\frac{x}{2}-1} g_{2 n+1} \pi_{j}^{2 n+1}+k \equiv 0 \bmod \pi_{j}^{x}
$$

Because L_{j} / L_{j-1} is ramified, we can take the g_{n} coefficients in the π_{j}-adic expansion in the localization of $\mathcal{O}_{L_{j}}$ to be from $\mathcal{O}_{L_{j-1}}$. Moreover $\pi_{j}^{2 m} \equiv \pi_{j-1}^{m} \bmod 2$ for any $m \in \mathbb{Z}$, and the latter element is in L_{j-1}. Thus, we rewrite the congruence as

$$
\sum_{n=0}^{\frac{x}{2}-1} g_{n}^{2} \pi_{j-1}^{n}+c \sum_{n=0}^{\frac{x}{2}-1} g_{2 n} \pi_{j-1}^{n}+k \equiv c \sum_{n=0}^{\frac{x}{2}-1} g_{2 n+1} \pi_{j}^{2 n+1} \bmod \pi_{j}^{x}
$$

We find that the left-hand side is a sum of terms in $\mathcal{O}_{L_{j-1}}$, so must also be in that ring. This means that it has even π_{j}-adic valuation. But since $c \in L_{j-1}$, it has even π_{j}-adic valuation. Thus, any non-zero term on the right-hand side has odd π-adic valuation. This means the right-hand side must be 0 :

$$
\sum_{n=0}^{\frac{x}{2}-1} g_{n}^{2} \pi_{j-1}^{n}+c \sum_{n=0}^{\frac{x}{2}-1} g_{2 n} \pi_{j-1}^{n}+k \equiv 0 \bmod \pi_{j}^{x}
$$

It also means that $g_{2 n+1}=0$ when $2 n+1+v_{\pi_{j}}(c)<x$, so when $2 n+1<x-v_{\pi_{j}}(c)$. In order to get λ to behave identically to δ in the congruence, it is sufficient for δ^{2} to be congruent to $\lambda^{2} \bmod \pi_{j}^{x}$ and $c \lambda \equiv c \delta \bmod \pi_{j}^{x}$. For the former, it is enough for λ to match δ up to the $\frac{x}{2}$ th coefficient; for the latter, it is enough for the two to match up to the $\left(x-v_{\pi_{j}}(c)\right)$ th coefficient. Since $v_{\pi_{j}}(c) \leq \frac{x}{2}$, satisfying the second of these also satisfies the former. We take $\lambda=\sum_{n=0}^{\frac{x-v \pi_{j}(c)}{2}}-1 g_{2 n} \pi_{j-1}^{n}$. Then λ is in $\mathcal{O}_{L_{j-1}}$ because the g_{n} coefficients and π_{j-1} are both in that ring.

As we have seen, to show that λ satisfies the same congruence that δ did, it is sufficient to see that λ matches δ up to the $\left(x-v_{\pi_{j}}(c)\right)$ th coefficient. We have
given λ the same coefficients for $\pi_{j}^{2 n} \equiv \pi_{j-1}^{n}$ that δ has, and we have seen that the coefficient of π_{j}^{n} in the π_{j}-adic expansion of δ is 0 when n is odd and less than $x-v_{\pi_{j}}(c)$, so $\lambda \equiv \delta \bmod \pi_{j}^{x-v_{\pi_{j}}(c)}$, which is exactly what we needed.

We can use this proposition as the inductive step allowing us to move δ from anywhere in the L-tower down to any field that contains c, k, and π^{x}.

Corollary 3.2.8. Let \wp be a prime above 2 in L_{n}. Let $c, k \in \mathcal{O}_{L_{j}}$ with $j<n$, and let $\delta \in \mathcal{O}_{L_{n}}$ satisfy $\delta^{2}+c \delta+k \equiv 0 \bmod \wp^{x}$ for some $x \in \mathbb{Z}$ with x a multiple of $2^{n-j-1}, \wp^{x}$ dividing 2, and $v_{\wp}(c) \leq \frac{x}{2}$. Then $\exists \lambda \in \mathcal{O}_{L_{j-1}}$ such that $\lambda^{2}+c \lambda+k \equiv 0$ $\bmod \wp^{x}$.

Proof. If $n=j+1$, this is just the statement of the previous proposition. Now assume the statement is true for some $n=N$ and take $n=N+1$. Then a single application of the previous proposition says that $\exists \lambda \in L_{N}$ such that $\lambda^{2}+c \lambda+k \equiv 0$ $\bmod \wp^{x}$. (Here \wp is a prime above 2 in L_{N+1}.) Since x is a multiple of $2^{N+1-j-1}=$ 2^{N-j} and $N>j, x$ is even, so \wp^{x} is also a power of \wp^{2}, which is a prime above 2 in L_{N}. This gives us the necessary conditions to apply the induction, so the claim is true for all $j>n$.

3.2.2 Some ramified extensions

$$
\text { If } \gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8, \text { then } \frac{\gamma-\alpha^{4}}{4}+(1+i) \delta+\delta^{2} \equiv 0 \bmod 2
$$

Combining this fact with Corollary 3.2.4 and Corollary 3.2 .5 gives us the following summarizing corollary:

Corollary 3.2.9. Let $\gamma \in \mathcal{O}_{L_{j}}$ and let $\alpha, k \in \mathcal{O}_{L_{j}}$ be such that $\gamma \equiv \alpha^{4} \bmod 4$ and
$\frac{\gamma-\alpha^{4}}{4}=k$. If $k^{m} \equiv 1 \bmod 2$ for some odd m, then $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j.

Proof. By Theorem 2.0.16 (parts 1 and 5), we know that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified if there is no $\delta \in \mathcal{O}_{L_{j}}$ satisfying $\gamma \equiv \alpha^{4}\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8$. Since $\frac{\gamma-\alpha^{4}}{4}=k$, this is equivalent to $0 \equiv k+(1+i) \delta+\delta^{2} \bmod 2$. Now apply Corollary 3.2.4 and Corollary 3.2.5.

One specific application of this which arises a couple of times is the following:
Corollary 3.2.10. Let $\gamma \in \mathcal{O}_{L_{j}}$ be such that $\gamma \equiv \pm 3 \bmod 8$. Then $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j.

Proof. Since unramified extensions lift to unramified extensions, it is sufficient to show this for $j \geq 1$ where we have ζ_{8} available. Since $L_{j}\left(\gamma^{1 / 4}\right)=L_{j}\left((-\gamma)^{1 / 4}\right)$ for $j \geq 1$, it is enough to prove the claim when $\gamma \equiv 3 \bmod 8$. In this case $\gamma \equiv-1=\zeta_{8}^{4}$ mod 4. If we write $\gamma=3+8 l$, then, in terms of the previous corollary, we have $k=\frac{3+8 l-\zeta_{8}^{4}}{4}=\frac{4+8 l}{4}=1+2 l \equiv 1 \bmod 2$. The result now follows immediately from the previous corollary.

Chapter 4: Ramification Behavior of Elements of K_{0}

We now look at the ramification behavior of fourth roots (and square roots) of certain elements of $\mathcal{O}_{K_{0}}$. Specifically, we are interested in generators of principal ideals that are fourth powers. Although the tools we have detailed above are useful for all values of d, the ramification behavior still differs substantially depending on the value of $d \bmod 8$. Thus, we handle each of these cases separately. We consider only the cases where $d \equiv 1 \bmod 2$.

For each value of $d \bmod 8$, we follow the same general approach. We begin by showing congruence conditions that must be satisfied by an element that has norm $\pm 1 \bmod 16$. For most values of $d \bmod 8$, we do this by thinking of the element as $a+b \sqrt{d}$ and then by showing restrictions on the possible values of a and b. Obviously, the restriction that the element of K_{0} has norm ± 1 is satisfied by all units. Since the only odd fourth power in $\mathbb{Z} / 16 \mathbb{Z}$ is 1 , it is also satisfied by any generator of a principal ideal that is a fourth power and is relatively prime to 2 .

We then show the ramification behavior that results when we adjoin a square root of such an element to a field in the L-tower. Finally, we show the ramification behavior that results from adjoining a fourth root.

The case that $d \equiv 1 \bmod 8$ is, perhaps, the most straightforward. It is the
first one that we examine, and we think of it as a baseline. For each of the others, we discuss what makes them different from this baseline case.

$4.1 d \equiv 1 \bmod 8$

Lemma 4.1.1. Let $d \in \mathbb{Z}$ be congruent to $1 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be such that $\operatorname{Norm}(\gamma) \equiv 1 \bmod 16$, and write $\gamma=a+b \sqrt{d}$ with $a, b \in \frac{1}{2} \mathbb{Z}$. Then $a, b \in \mathbb{Z}$ with $a \equiv \pm 1 \bmod 8$ and $b \equiv 0 \bmod 4$.

Proof. First, we write $a=\frac{a_{1}}{2}$ and $b=\frac{b_{1}}{2}$ with $a_{1}, b_{1} \in \mathbb{Z}$. Then we can rewrite the norm calculation $\left(a^{2}-d b^{2} \equiv 1 \bmod 16\right)$ as $a_{1}^{2}-d b_{1}^{2} \equiv 4 \bmod 64$. Since $d \equiv 1 \bmod$ 8 , this gives us $a_{1}^{2}-b_{1}^{2} \equiv 4 \bmod 8$. The only squares $\bmod 8$ in \mathbb{Z} are 0,1 , and 4 , so the only possible choices for a_{1}^{2} and b_{1}^{2} are 0 and 4 in some order. This means that both a_{1} and b_{1} are even, so $a, b \in \mathbb{Z}$.

Now we have $a^{2}-d b^{2} \equiv 1 \bmod 16$. Since $d \equiv 1 \bmod 8$, this is $a^{2}-b^{2} \equiv 1$ $\bmod 8$. Because the only squares $\bmod 8$ are 0,1 , and 4 , we must have $a^{2} \equiv 1 \bmod 8$ and $b^{2} \equiv 0 \bmod 8$. The latter fact means that $b \equiv 0 \bmod 4$, which, in turn, implies that $b^{2} \equiv 0 \bmod 16$. This means that $d b^{2} \equiv 0 \bmod 16$, so we can write the norm calculation as $a^{2} \equiv 1 \bmod 16$. This forces $a \equiv \pm 1 \bmod 8$.

Lemma 4.1.2. Let $d \in \mathbb{Z}$ be congruent to $1 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be such that $\operatorname{Norm}(\gamma) \equiv-1 \bmod 8$ and write $\gamma=a+b \sqrt{d}$ with $a, b \in \frac{1}{2} \mathbb{Z}$. Then $a, b \in \mathbb{Z}$ with $a \equiv 0 \bmod 4$ and $b \equiv 1 \bmod 2$. Moreover, if $\operatorname{Norm}(\gamma)=-1$, then $b \equiv 1 \bmod 4$.

Proof. The argument to show that $a, b \in \mathbb{Z}$ is essentially identical to that used in Lemma 4.1.1. We begin by writing $a=\frac{a_{1}}{2}$ and $b=\frac{b_{1}}{2}$ with $a_{1}, b_{1} \in \mathbb{Z}$. Then we can
rewrite the norm calculation as $a_{1}^{2}-d b_{1}^{2} \equiv-4 \bmod 64$. Since $d \equiv 1 \bmod 8$, this gives us $a_{1}^{2}-b_{1}^{2} \equiv 4 \bmod 8$. The only squares $\bmod 8$ in \mathbb{Z} are 0,1 , and 4 , so the only possible choices for a_{1}^{2} and b_{1}^{2} are 0 and 4 in some order. This means that both a_{1} and b_{1} are even, so $a, b \in \mathbb{Z}$.

Now we have $a^{2}-b^{2} \equiv-1 \bmod 8$. Because the only squares $\bmod 8$ are 0,1 , and 4 , we must have $a^{2} \equiv 0 \bmod 8$ and $b^{2} \equiv 1 \bmod 8$. This means that a must be $0 \bmod 4$ and that b must be odd.

Now consider the case that $a^{2}-d b^{2}=-1$. In this case, -1 is a quadratic residue $\bmod b$. This means that $b \equiv 1 \bmod 4$.

In the next couple of results, we take advantage of the fact that if $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$, then $\operatorname{Norm}(\gamma) \equiv \pm 1 \bmod 16$ because 1 is the only fourth power $\bmod 16$ in \mathbb{Z} that is relatively prime to 2 . This fact lets us apply the previous lemmas to γ when we have $(\gamma)=I^{4}$ rather than an explicit condition on the norm.

Now we begin by establishing that under these conditions $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is always unramified.

Proposition 4.1.3. Let d be $1 \bmod$ 8. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Then $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is an unramified extension for all j.

Proof. To show that this extension is unramified, we can show that γ is a square $\bmod 4$ in L_{0} and apply Proposition 2.0.8.

By Lemma 4.1.1 and Lemma 4.1.2, we see that γ is $\pm 1 \bmod 4$ or $\pm \sqrt{d} \bmod$ 4. Clearly, 1 is a square. Since $i \in L_{0},-1$ is also a square. Since $d \equiv 1 \bmod 8$,
we have $\sqrt{d} \equiv \pm 1 \bmod 4$, so γ is either 1 or $-1 \bmod 4$, depending on the choice of prime over 2 at which we complete. (Note that (2) is split in this case.) Since γ is a square mod 4 in each completion $\gamma^{1 / 2}$ gives an unramified extension at both completions, so also gives one in the global case.

Since $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ is an unramified extension and unramified extensions lift to unramified extensions, $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is an unramified extension for all j. (In fact, since L_{j+1} / L_{j} is ramified above 2 for all j, this lift can never be absorbed, so L_{j+1} / L_{j} has the same degree as $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$. Later in the paper we explore this further.)

We can now address what happens when we adjoin a fourth root of such a γ to L_{j}. Note that we use the results in Lemma 4.1.1 and Lemma 4.1.2 to be able to take $a, b \in \mathbb{Z}$ in the statement of the following theorem.

Theorem 4.1.4. Let $d \in \mathbb{Z}$ be congruent to $1 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$, and write $\gamma=a+b \sqrt{d}$ with $a, b \in \mathbb{Z}$. Then for $j>0, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $a \equiv 0 \bmod 8$ or $b \equiv 0$ $\bmod 8$. Moreover, $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is unramified iff $a \equiv 1 \bmod 8$ and $b \equiv 0 \bmod 8$.

When the extensions are ramified, they are ramified at both primes above (2) unless $a \equiv 0 \bmod 8$, in which case they are ramified at exactly one of the two primes above (2).

Proof. Our previous lemmas Lemma 4.1.1 and Lemma 4.1.2 tell us that it is equivalent to show that exactly one of the following is true:

- $a \equiv 1 \bmod 8, b \equiv 0 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j
- $a \equiv-1 \bmod 8, b \equiv 0 \bmod 8, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified at both primes above
(2), and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$
- $a \equiv 1 \bmod 8, b \equiv 4 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified at both primes above (2) for all j
- $a \equiv-1 \bmod 8, b \equiv 4 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified at both primes above (2) for all j
- $a \equiv 4 \bmod 8, b \equiv 1 \bmod 2$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified at both primes above (2) for all j
- $a \equiv 0 \bmod 8, b \equiv 1 \bmod 2, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified at exactly one of the two primes above (2), and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j>0$.

The first and second cases are proven by Lemma 3.1.1 and Lemma 3.1.3, respectively.

Since $d \equiv 1 \bmod 8, \sqrt{d} \equiv \pm 1 \bmod 4$, so $\sqrt{d} \equiv 1 \bmod 2$. This means that $4 \sqrt{d} \equiv 4 \bmod 8$. Thus, in the next two cases, we have $\gamma \equiv \pm 5 \bmod 8$, depending on the choice of completion. That this results in ramified extensions was proved in Corollary 3.2.10. Since the result is true for both completions, we have ramification at both primes above (2).

In the final two cases, we have $a \equiv 0 \bmod 4$, so $a^{2} \equiv 0 \bmod 16$. Since we have assumed that $a^{2}-d b^{2} \equiv \pm 1 \bmod 16$, this gives us $d b^{2} \equiv \pm 1 \bmod 16$. Recall that a was even only when the norm was $-1 \bmod 16$. This means we actually have $a^{2}-d b^{2} \equiv-1 \bmod 16$, so $d b^{2} \equiv 1 \bmod 16$.

Since $d b^{2} \equiv 1 \bmod 16$, we know that $b \sqrt{d} \equiv \pm 1 \bmod 8$. Now we can examine the final two congruence possibilities for a and b. If a is $4 \bmod 8$, then $\gamma=a+b \sqrt{d}$ is $\pm 5 \bmod 8$. Again, we work locally, apply Corollary 3.2.10 to see that the extensions
must be ramified in the local case, and then use the fact that the extension is ramified at a prime iff it is ramified in the completion at that prime.

If a is $0 \bmod 8$, then $\gamma=a+b \sqrt{d}$ is $\pm 1 \bmod 8$. Note that whether γ is 1 $\bmod 8$ or $-1 \bmod 8$ depends on the choice of completion. Using Lemma 3.1.1 and Lemma 3.1.3, we find that at L_{0}, the extension is unramified in one completion, but ramified in the other, so the extension ramifies at exactly one of the prime above (2). The same lemmas show that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for $j>0$.

$4.2 d \equiv 3 \bmod 8$

When $d \equiv 1 \bmod 8, \sqrt{d}$ is always congruent to an integer $\bmod 8$ because d has a square root in the 2 -adics. When $d \equiv 3 \bmod 8$, this is no longer true. In this case, we have $\sqrt{d} \equiv \pm i\left(2 \zeta_{3}+1\right) \bmod 4$ if we are in a field that has i and the cube roots of unity. Since we are always looking at extensions of the L-tower, we can think of this congruence as a congruence in $\mathcal{O}_{L_{0}}$, where we have i available. Note that we do not have ζ_{3} in the L-tower, but we can get arbitrarily close to $\zeta_{3} 2$-adically. When we need to work with this form, we can choose some element sufficiently close to ζ_{3}. We will abuse notation and call that element ζ_{3}.

Working with the $\gamma \mathrm{s}$, then, requires working with elements of the form $x+$ $y i\left(2 \zeta_{3}+1\right)$. This turns out to be somewhat more complicated. These extra complications do not arise until we try to understand the ramification behavior of $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$, so as with $d \equiv 1 \bmod 8$, we begin by establishing the possibilities for $\gamma \bmod 8$ and understanding the ramification behavior of $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$.

Lemma 4.2.1. Let $d \in \mathbb{Z}$ be congruent to $3 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be such that $\operatorname{Norm}(\gamma) \equiv \pm 1 \bmod 16$, and write $\gamma=a+b \sqrt{d}$ with $a, b \in \mathbb{Z}$. Then one of the following is true:

- $a \equiv 2 \bmod 4 a n d b \equiv 1 \bmod 2$
- $a \equiv \pm 1 \bmod 8$ and $b \equiv 0 \bmod 4$.

Proof. The norm of γ to \mathbb{Q} is $a^{2}-d b^{2} \equiv a^{2}-3 b^{2} \bmod 8$, and this must be congruent to ± 1. Because the only squares $\bmod 8$ are 0,1 , and 4 , we must have $a^{2} \in\{0,1,4\}$ and $3 b^{2} \in\{0,3,4\}$. So the only possibilities for $\left[a^{2}, 3 b^{2}\right]$ are $[1,0]$ and $[4,3]$. (Note that in both cases, the norm is $1 \bmod 16$.) This gives us that either a is odd and b is $0 \bmod 4$, or a is $2 \bmod 4$ and b is odd.

If $b \equiv 0 \bmod 4$, then looking at the congruence $\bmod 16$, we get $a^{2} \equiv 1 \bmod$ 16, so $a \equiv \pm 1 \bmod 8$.

Again, we take advantage of the fact that taking $(\gamma)=I^{4}$ is sufficient for forcing $\operatorname{Norm}(\gamma) \equiv \pm 1 \bmod 16$.

When d was $1 \bmod 8$, Proposition 4.1.3 tells us that $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is always unramified. When d is $3 \bmod 8$, the situation is not quite as simple.

Proposition 4.2.2. Let d be 3 mod 8. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Then $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ is unramified iff $a \equiv 1$ mod 2. Moreover, in all cases $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is an unramified extension for $j \geq 1$.

Proof. It is sufficient to show that $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ and $L_{1}\left(\gamma^{1 / 2}\right) / L_{1}$ are unramified under the claimed conditions.

Proposition 2.0.8 tells us that, to show these extensions are unramified, it
is equivalent to show that γ is a square mod 4 in the field being extended. By Lemma 4.2.1, we know that $\bmod 4, \gamma$ is $1,-1,2+\sqrt{d}$, or $2+3 \sqrt{d}=-(2+\sqrt{d})$. Our claim that $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ is unramified iff $a \equiv 1 \bmod 2$ is now equivalent to the claim that 1 and -1 are both squares $\bmod 4$ in L_{0} and that $2 \pm \sqrt{d}$ is not. That 1 and -1 are squares is clear since both 1 and i are in L_{0}. If $2 \pm \sqrt{d}$ is a square mod 4 , it is also one $\bmod 2$. This would mean that \sqrt{d} is a square $\bmod 2$. Since $d \equiv-1$ $\bmod 4$, we have $(\sqrt{d}+i)(\sqrt{d}-i) \equiv 0 \bmod 4$. At least one of the two factors must be divisible by 2 and since their difference is $2 i$, both are. So we have $\sqrt{d} \equiv i \bmod$ 2. This means that if $2 \pm \sqrt{d}$ were a square $\bmod 2$, then i would be a square $\bmod 2$. We would need only to define its square root mod $1+i$, and the only such value in L_{0} is 1 , which does not square to $i \bmod 2$. So $2 \pm \sqrt{d}$ is not a square $\bmod 4$ in L_{0}.

To prove our claim for L_{1}, we need to see that ± 1 and $2 \pm \sqrt{d}$ are squares $\bmod 4$ in L_{1}. Again, this is clearly true for ± 1. Since $2-\sqrt{d}=-(2+\sqrt{d})$ and -1 is a square, it is sufficient to show that $2+\sqrt{d}$ is a square $\bmod 4$ in L_{1}. Note that $\frac{1+d}{2} \equiv 2 \bmod 4$ because $1+d \equiv 4 \bmod 8$. Thus, we need only to note that $\left(\frac{1}{\sqrt{2}}(1+\sqrt{d})\right)^{2}=\frac{1}{2}(1+d+2 \sqrt{d})=\frac{1+d}{2}+\sqrt{d}$ is a square in L_{1}.

Theorem 4.2.3. Let $d \in \mathbb{Z}$ be congruent to $3 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$, and write $\gamma=a+b \sqrt{d}$ with $a, b \in \mathbb{Z}$. Then for $j>0, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff a is odd. Moreover, $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is unramified iff $a \equiv 1 \bmod 8$.

Proof. With Lemma 4.2.1, we see that this is equivalent to showing that exactly one of the following is true:

- $a \equiv 1 \bmod 8, b \equiv 0 \bmod 4$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j
- $a \equiv-1 \bmod 8, b \equiv 0 \bmod 4, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$
- $a \equiv 2 \bmod 4, b \equiv 1 \bmod 2$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j.

Since $\sqrt{3}=-i\left(2 \zeta_{3}+1\right)$ and $d \equiv 3 \bmod 8$, we have $\sqrt{d} \equiv \pm i\left(2 \zeta_{3}+1\right) \bmod$ 4. This means that in the first two cases, we have $\gamma \equiv \pm 1 \bmod 8$ or $\gamma \equiv \pm 1+$ $4 i\left(2 \zeta_{3}+1\right) \equiv \pm 1+4 i \bmod 8$. Then for these two cases, the claims follow directly from Lemma 3.1.4 and Lemma 3.1.5.

The third case is more complicated. Note that this can be broken into 8 cases for $a+b \sqrt{d}$, based on the two choices for $a \bmod 8$ and the four choices for $b \bmod 8$. Moreover, note that if $d \equiv 3 \bmod 16$, then $\sqrt{d} \equiv \pm \sqrt{3} \bmod 8$. If $d \equiv 11 \equiv 27 \bmod$ 16, then $\sqrt{d} \equiv \pm 3 \sqrt{3} \bmod 8$. This means that the 8 possibilities for $a+b \sqrt{d}$ with $a \equiv 2 \bmod 4$ and $b \equiv 1 \bmod 2$, cover the cases for either congruence condition on $d \bmod 16$. We find it convenient to write $\sqrt{3}$ as $i\left(2 \zeta_{3}+1\right)$, so our 8 cases become $x+y i\left(2 \zeta_{3}+1\right)$. (Recall that by ζ_{3}, we mean an element that is congruent to a primitive cube root of unity mod a high power of 2.)

These 8 cases can be grouped into 4 pairs: $\pm\left(2+i\left(2 \zeta_{3}+1\right)\right), \pm\left(2+5 i\left(2 \zeta_{3}+1\right)\right)$, $\pm\left(2+3 i\left(2 \zeta_{3}+1\right)\right)$, and $\pm\left(2+7 i\left(2 \zeta_{3}+1\right)\right)$. Since $\zeta_{8} \in L_{1}$, adjoining the fourth root of one member of a pair to L_{j} is the same as adjoining the other member as long as $j \geq 1$. This means that if we can show that adjoining the fourth root of one member to L_{j} gives a ramified extension for all j, that would imply the same for the other member of the pair when $j \geq 1$. Since unramified extensions lift to unramified extensions, that would also force ramified extensions of L_{0}. In fact, we
find it convenient to work in L_{j} with $j \geq 2$, where ζ_{16} is available and use the fact that unramified extensions lift to unramified extensions to obtain the result for L_{0} and L_{1}.

We work with $2+2 i \zeta_{3}+i, 2+10 i \zeta_{3}+5 i \equiv 2+2 i \zeta_{3}+5 i,-\left(2+6 i \zeta_{3}+3 i\right) \equiv$ $6+2 i \zeta_{3}+5 i$, and $-\left(2+14 i \zeta_{3}+7 i\right) \equiv 6+2 i \zeta_{3}+i$. Note that each of these is congruent to $2+2 i \zeta_{3}+i \bmod 4$, so we can use the same α for all of them.

We claim that we can take $\alpha=\zeta_{48}^{19}+\zeta_{48}^{-19}$. For the purposes of doing arithmetic on these roots of unity, we mention that we choose an element to be ζ_{48} and then define $\zeta_{m}=\zeta_{48}^{\frac{48}{m}}$. To see that we can take $\alpha=\zeta_{48}^{19}+\zeta_{48}^{-19}$, note that

$$
\begin{aligned}
\alpha^{4} & =\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7} \\
& \equiv \zeta_{12}^{7}+2+\zeta_{12}^{-7} \bmod 4
\end{aligned}
$$

To show that $\alpha^{4} \equiv \gamma \bmod 4$, we must show that $\zeta_{12}^{7}+\zeta_{12}^{-7} \equiv 2 i \zeta_{3}+i=2 \zeta_{12}^{3} \zeta_{12}^{4}+\zeta_{12}^{3}$ mod 4. Subtracting ζ_{12}^{7} from both sides, we find that this reduces to showing that $\zeta_{12}^{-7} \equiv \zeta_{12}^{7}+\zeta_{12}^{3} \bmod 4$. In fact, the two sides are equal, which can be seen by multiplying both sides by $\zeta_{12}: \zeta_{12}^{-6}=\zeta_{12}^{8}+\zeta_{12}^{4}$. This can be rewritten as $-1=\zeta_{3}^{2}+\zeta_{3}$, which is true.

With α established, we first consider the case that $\gamma \equiv 2+2 i \zeta_{3}+i \bmod 8$. By Theorem 2.0.16, $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $\exists \delta \in L_{j}$ satisfying

$$
\begin{aligned}
2+2 i \zeta_{3}+i \equiv & \left(\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7}\right)\left(1+4(1+i) \delta+4 \delta^{2}\right) \\
\equiv & \left(\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7}\right)+ \\
& \quad\left(\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7}\right)\left(4(1+i) \delta+4 \delta^{2}\right) \bmod 8
\end{aligned}
$$

We saw above that $\zeta_{12}^{7}+\zeta_{12}^{-7}=2 i \zeta_{3}+i$, so we can subtract $2+\zeta_{12}^{7}+\zeta_{12}^{-7}$ from both
sides to get

$$
0 \equiv\left(4 \zeta_{24}^{19}+4+4 \zeta_{24}^{-19}\right)+\left(\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7}\right)\left(4(1+i) \delta+4 \delta^{2}\right) \bmod 8
$$

Dividing through by 4 , we get an equivalent congruence $\bmod 2$:

$$
\begin{aligned}
0 & \equiv\left(\zeta_{24}^{19}+1+\zeta_{24}^{-19}\right)+\left(\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7}\right)\left((1+i) \delta+\delta^{2}\right) \\
& \equiv\left(\zeta_{24}^{19}+1+\zeta_{24}^{-19}\right)+\left(\zeta_{12}^{7}+\zeta_{12}^{-7}\right)\left((1+i) \delta+\delta^{2}\right) \\
& \equiv\left(\zeta_{24}^{19}+1+\zeta_{24}^{-19}\right)+\left(2 i \zeta_{3}+i\right)\left((1+i) \delta+\delta^{2}\right) \\
& \equiv\left(\zeta_{24}^{19}+1+\zeta_{24}^{-19}\right)+i\left((1+i) \delta+\delta^{2}\right) \\
& \equiv\left(\zeta_{24}^{19}+1+\zeta_{24}^{-19}\right)+(1+i) \delta+i \delta^{2} \bmod 2
\end{aligned}
$$

We can multiply both sides by $i=\zeta_{24}^{6}$ to get

$$
0 \equiv\left(\zeta_{24}+i+\zeta_{24}^{-13}\right)+(1+i) \delta+\delta^{2} \bmod 2
$$

But $\zeta_{24}^{-12}=-1 \equiv 1 \bmod 2$, so this is

$$
0 \equiv\left(\zeta_{24}+i+\zeta_{24}^{-1}\right)+(1+i) \delta+\delta^{2} \bmod 2
$$

At this point, it would be nice to appeal directly to Corollary 3.2.6, but we are not able to do so because in the terms of our proposition, we would have $n=4$, so $N=2$. But then k is not in $L_{N-3}=L_{-1}=\mathbb{Q}$. Note, however, that $\left(\zeta_{24}+i+\zeta_{24}^{-1}\right) \equiv$ $\zeta_{8}\left(1+\zeta_{8}\right)\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right) \bmod 2$, so is divisible by $\left(1+\zeta_{8}\right)$. Reducing $\bmod (1+i)$ gives us

$$
\delta^{2} \equiv \zeta_{8}\left(1+\zeta_{8}\right)\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right) \bmod 1+i
$$

In particular, δ^{2} must be divisible by $1+\zeta_{8}$, so δ must be divisible by $1+\zeta_{16}$. If we let $\kappa=\delta /\left(1+\zeta_{16}\right)$, we can rewrite our congruence as

$$
0 \equiv \zeta_{8}\left(1+\zeta_{8}\right)\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right)+(1+i)\left(1+\zeta_{16}\right) \kappa+\left(1+\zeta_{16}\right)^{2} \kappa^{2} \bmod 2
$$

Dividing through by $\left(1+\zeta_{16}\right)^{2} \equiv\left(1+\zeta_{8}\right)$ gives the equivalent

$$
0 \equiv \zeta_{8}\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right)+\left(1+\zeta_{8}\right)\left(1+\zeta_{16}\right) \kappa+\kappa^{2} \bmod (1+i)\left(1+\zeta_{8}\right)
$$

We can rewrite this as

$$
0 \equiv \zeta_{8}\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right)+\left(1+\zeta_{16}\right)^{3} \kappa+\kappa^{2} \bmod \left(1+\zeta_{16}\right)^{6} .
$$

Now we claim we can invoke Corollary 3.2.6. This time, we have $n=16$, so $N=4$. Our constant $k=\zeta_{8}\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right)=\zeta_{8}\left(1+\zeta_{3}^{2}+\zeta_{8} \zeta_{3}^{2}\right)$ is a finite sum of roots of unity in L_{1} because L_{1} has ζ_{8} and also has $\zeta_{3} \bmod 2$. Moreover, k is relatively prime to 2 because we have

$$
\begin{aligned}
k & =\zeta_{8}\left(1+\zeta_{24}^{16}+\zeta_{24}^{19}\right) \\
& =\zeta_{8}\left(1+\zeta_{3}^{2}+\zeta_{24}^{3} \zeta_{3}^{2}\right) \\
& =\zeta_{8}\left(1+\zeta_{3}^{2}+\zeta_{8} \zeta_{3}^{2}\right) \\
& \equiv 1+2 \zeta_{3}^{2} \\
& \equiv 1 \bmod 1+\zeta_{8}
\end{aligned}
$$

This means that $v(k)=0<\frac{3}{8}=z 2^{1-N}$ and $v(v(k))=\infty>2-N=-2$. All of the conditions for the corollary are satisfied, so $\delta \notin L_{j}$ for any j. This means that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j.

Now we consider the second case, where $\gamma \equiv 2+2 i \zeta_{3}+5 i \bmod 8$. This time $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $\exists \delta \in L_{j}$ satisfying

$$
2+2 i \zeta_{3}+5 i \equiv\left(\zeta_{12}^{7}+4 \zeta_{24}^{19}+6+4 \zeta_{24}^{-19}+\zeta_{12}^{-7}\right)\left(1+4(1+i) \delta+4 \delta^{2}\right) \bmod 8
$$

We can perform the same manipulation on this congruence that we did in the first case and get a similar congruence. This time we are starting with an extra $4 i$ and all of the manipulations in the first case were subtracting things from both sides, dividing through by 4 , and multiplying both sides by $\zeta_{24}^{6}=i$. So we end up with the same congruence, except with an additional term of $-1 \equiv 1$:

$$
0 \equiv\left(1+\zeta_{24}+i+\zeta_{24}^{-1}\right)+(1+i) \delta+\delta^{2} \bmod 2
$$

Note that $\delta^{2} \equiv \zeta_{24}+\zeta_{24}^{-1} \bmod 1+i$. Thus, $\delta \equiv \zeta_{48}+\zeta_{48}^{-1} \bmod 1+\zeta_{8}$. Write $\delta=\zeta_{48}+\zeta_{48}^{-1}+\kappa\left(1+\zeta_{8}\right)$ and substitute this back in to get

$$
\begin{aligned}
& 0 \equiv\left(1+i+\zeta_{24}+\zeta_{24}^{-1}\right)+(1+i)\left(\zeta_{48}+\zeta_{48}^{-1}\right)+\kappa(1+i)\left(1+\zeta_{8}\right)+ \\
& \zeta_{24}+\zeta_{24}^{-1}+\kappa^{2}(1+i) \\
& \equiv(1+i)+(1+i)\left(\zeta_{48}+\zeta_{48}^{-1}\right)+\kappa(1+i)\left(1+\zeta_{8}\right)+\kappa^{2}(1+i) \bmod 2
\end{aligned}
$$

We divide through by $(1+i)$ to get

$$
0 \equiv 1+\zeta_{48}+\zeta_{48}^{-1}+\kappa\left(1+\zeta_{8}\right)+\kappa^{2} \bmod (1+i)
$$

Since

$$
\begin{aligned}
1+\zeta_{48}+\zeta_{48}^{-1}= & 1+\zeta_{3} \zeta_{16}^{11}+\zeta_{3}^{2} \zeta_{16}^{5} \\
= & -\left(1-\zeta_{16}\right)\left(\zeta_{3}\left(1+\zeta_{16}+\zeta_{16}^{2}+\cdots+\zeta_{16}^{10}\right)+\right. \\
& \left.\zeta_{3}^{2}\left(1+\zeta_{16}+\zeta_{16}^{2}+\zeta_{16}^{3}+\zeta_{16}^{4}\right)\right) \\
\equiv & \left(1+\zeta_{16}\right)\left(\zeta_{3}\left(1+\zeta_{16}+\zeta_{16}^{2}+\cdots+\zeta_{16}^{10}\right)+\right. \\
& \left.\zeta_{3}^{2}\left(1+\zeta_{16}+\zeta_{16}^{2}+\zeta_{16}^{3}+\zeta_{16}^{4}\right)\right) \bmod 2
\end{aligned}
$$

we know that $\kappa^{2} \equiv 0 \bmod \left(1+\zeta_{16}\right)$, so $\kappa \equiv 0 \bmod \left(1+\zeta_{32}\right)$. We can replace κ with $\left(1+\zeta_{32}\right) \lambda$ to get

$$
0 \equiv 1+\zeta_{48}+\zeta_{48}^{-1}+\lambda\left(1+\zeta_{32}\right)\left(1+\zeta_{8}\right)+\lambda^{2}\left(1+\zeta_{16}\right) \bmod (1+i)
$$

Now we can divide by $\left(1+\zeta_{16}\right)$ to get a congruence $\bmod \left(1+\zeta_{32}\right)^{6}$:

$$
\begin{gathered}
\left.0 \equiv \zeta_{3}\left(1+\zeta_{16}+\zeta_{16}^{2}+\cdots+\zeta_{16}^{10}\right)+\zeta_{3}^{2}\left(1+\zeta_{16}+\zeta_{16}^{2}+\zeta_{16}^{3}+\zeta_{16}^{4}\right)\right)+ \\
\lambda\left(1+\zeta_{32}\right)\left(1+\zeta_{16}\right)+\lambda^{2} \\
\left.=\zeta_{3}\left(1+\zeta_{16}+\zeta_{16}^{2}+\cdots+\zeta_{16}^{10}\right)+\zeta_{3}^{2}\left(1+\zeta_{16}+\zeta_{16}^{2}+\zeta_{16}^{3}+\zeta_{16}^{4}\right)\right)+ \\
\lambda\left(1+\zeta_{32}\right)^{3}+\lambda^{2}
\end{gathered}
$$

Now we again invoke our corollary. This time, we have $n=32$, so $N=5$. The constant term $\left.k=\zeta_{3}\left(1+\zeta_{16}+\zeta_{16}^{2}+\cdots+\zeta_{16}^{10}\right)+\zeta_{3}^{2}\left(1+\zeta_{16}+\zeta_{16}^{2}+\zeta_{16}^{3}+\zeta_{16}^{4}\right)\right)$ is a finite sum of roots of unity in L_{2}. Also, looking at it $\bmod 1+\zeta_{16}$, we find that $k \equiv 11 \zeta_{3}+5 \zeta_{3}^{2} \equiv \zeta_{3}+\zeta_{3}^{2} \equiv 1$, so k is again relatively prime to 2 . As before, this ensures the conditions on the valuation of k are satisfied, so again $\delta \notin L_{j}$.

For the third case, we have $\gamma \equiv 6+2 i \zeta_{3}+5 i \bmod 8$. This time, we are starting with an extra $4 i+4$ relative to the first case. This means that after the
manipulations we have added an $i+1$ to the congruence that needed to be satisfied in the first case. This yields the following congruence:

$$
0 \equiv\left(\zeta_{24}+1+\zeta_{24}^{-1}\right)+(1+i) \delta+\delta^{2} \bmod 2
$$

We can avoid going through the rest of the manipulations. Note that $0 \equiv$ $k+(1+i) \delta+\delta^{2} \bmod 2$ has a solution iff $(k+i)+(1+i) \gamma+\gamma^{2} \bmod 2$ does. To see this, let $\gamma=\delta+1$, and the second congruence becomes $(k+i)+(1+i)+(1+i) \delta+\delta^{2}+2 \delta+1 \equiv$ $k+(1+i) \delta+\delta^{2} \bmod 2$. This proves one direction, but since we are working mod 2, applying the same argument works for the other direction.

In our second case, we already saw that there is no solution for

$$
0 \equiv\left(1+\zeta_{24}+i+\zeta_{24}^{-1}\right)+(1+i) \delta+\delta^{2} \bmod 2
$$

Applying the argument from the previous paragraph immediately gives us that there is no solution in this third case either.

Finally, we treat the fourth case: $\gamma \equiv-\left(2+6 i \zeta_{3}+7 i\right) \bmod 8$. This time, we are starting with an extra 4 relative to the first case, so after the manipulations we have added an i to the congruence that needed to be satisfied in the first case. We then have the following congruence:

$$
0 \equiv\left(\zeta_{24}+\zeta_{24}^{-1}\right)+(1+i) \delta+\delta^{2} \bmod 2
$$

The same trick that we used in the third case works just as well in this case. The only difference is that we are basing our result here on the result from the first case rather than the result from the second case.

$4.3 d \equiv 5 \bmod 8$

In the case that $d \equiv 5 \bmod 8$, we again have $\zeta_{3} \bmod 8$ present. Unlike in the $d \equiv 3 \bmod 8$ case, in this case we find it more convenient to look at $\gamma \bmod 8$ in terms of ζ_{3} rather than in terms of \sqrt{d}. Again, we will abuse notation and write ζ_{3} when we mean some element of L_{j} that is sufficiently close to $\zeta_{3} 2$-adically.

There are a couple of reasons that we prefer to look at γ in terms of ζ_{3}. First, since $d \equiv 1 \bmod 4$, if we write $a+b \sqrt{d}$, then we have to take $a, b \in \frac{1}{2} \mathbb{Z}$ rather than in \mathbb{Z}. When we took $d \equiv 1 \bmod 8$, the norm condition forced $a, b \in \mathbb{Z}$, but this does not happen when $d \equiv 5 \bmod 8$. Another, perhaps more subtle, reason can be seen by considering the following two cases:

- $d=77, \varepsilon_{0}=\frac{9}{2}+\frac{1}{2} \sqrt{d}$
- $d=85, \varepsilon_{0}=\frac{9}{2}+\frac{1}{2} \sqrt{d}$.

If we look at ε_{0} as $a+b \sqrt{d}$ and try to determine the ramification behavior solely by looking at conditions on a and b, as we have done for $d \in\{1,3\} \bmod 8$, we are bound to fail: these two examples have the same a and b, but have different ramification behavior. It turns out that when we write these two in terms of ζ_{3}, we have $\varepsilon_{0} \equiv 1+\zeta_{3} \bmod 8$ for $d=77$ and $\varepsilon_{0} \equiv 7+5 \zeta_{3} \bmod 8$ for $d=85$. We see in this section that this means that $L_{1}\left(\varepsilon_{0}^{1 / 4}\right) / L_{1}$ is unramified when $d=77$, but is ramified when $d=85$.

We begin the section by looking at the relationship between the representation in terms of \sqrt{d} and the representation in terms of ζ_{3}.

Since $-3 d^{-1} \equiv 1 \bmod 8$, it has a square root $\bmod 64$ in \mathbb{Z}. In fact, it has two:
one that is $1 \bmod 4$ and one that is $-1 \bmod 4$. Let k be the square root that is $1 \bmod 4$. We think of $\frac{-1+k \sqrt{d}}{2}$ as ζ_{3}. This will not cause any problems because we will be working $\bmod 8$, and the only properties of ζ_{3} we will use are the fact that its cube is 1 and the fact that $\zeta_{3}^{2}+\zeta_{3}+1=0$. The former is implied by the latter, and the following calculation shows the latter is true $\bmod 8$:

$$
\begin{aligned}
\left(\frac{-1+k \sqrt{d}}{2}\right)^{2}+\left(\frac{-1+k \sqrt{d}}{2}\right)+1 & =\frac{1+d k^{2}-2 k \sqrt{d}}{4}+\frac{-1+k \sqrt{d}}{2}+1 \\
& =\frac{1+d k^{2}}{4}+\frac{-1}{2}+1 \\
& =\frac{d k^{2}-1}{4}+1 \\
& =0 .
\end{aligned}
$$

The last line follows because we have chosen k such that $k^{2} \equiv-3 d^{-1} \bmod 64$, so $d k^{2} \equiv-3$.

In this conversion from writing in terms of \sqrt{d} to writing in terms of ζ_{3}, it is important to note that, when taking \sqrt{d} to be positive or negative, we are also choosing a value for our ζ_{3}. (This determines whether our ζ_{3} is congruent to $e^{\frac{2 \pi i}{3}}$ or $e^{\frac{-2 \pi i}{3}}$. The behavior of the two is the same, so which we choose does not matter.)

To make our final notation a little cleaner, we will take $c=k^{-1}$. If we write
$\gamma=\frac{a+b \sqrt{d}}{2}$ with $a, b \in \mathbb{Z}$, then we have

$$
\begin{aligned}
\gamma & =\frac{a+b \sqrt{d}}{2} \\
& =\frac{a+b c k \sqrt{d}}{2} \\
& =\frac{a+b c-b c+b c k \sqrt{d}}{2} \\
& =\frac{a+b c}{2}+b c \frac{-1+k \sqrt{d}}{2} \\
& \equiv \frac{a+b c}{2}+b c \zeta_{3} \bmod 8
\end{aligned}
$$

Since a and b have the same parity, and c is odd, we know that $a+b c$ is even. Thus, we can write $\gamma \equiv x+y \zeta_{3} \bmod 8$ with $x, y \in \mathbb{Z}$. To be explicit, the conversion is that $x \equiv \frac{a+b c}{2} \bmod 8$ and $y \equiv b c \bmod 8$. Note that since $c \equiv 1 \bmod 4, y$ has the same parity as a and b (which must have the same parity as each other because the ring of integers of K_{0} is $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$).

It is also useful to be able to convert from x and y to a and b. Since $c \equiv 1$ $\bmod 4$, we can write $y \equiv b c \equiv b \bmod 4$. Since $x \equiv \frac{a+b c}{2} \bmod 8$, we can multiply by 2 to get $2 x \equiv a+b c \bmod 16$. We already know that $y \equiv b c \bmod 8$, so this gives us $a \equiv 2 x-y \bmod 8$.

Lemma 4.3.1. Let $d \in \mathbb{Z}$ be congruent to $5 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be such that $\operatorname{Norm}(\gamma) \equiv \pm 1 \bmod 8$, and let $\gamma \equiv x+y \zeta_{3}$ with $x, y \in \mathbb{Z}$. Then exactly one of the following is true:

1. $x \equiv 0 \bmod 8$ and $y \equiv 1 \bmod 2$
2. $x \equiv 1 \bmod 2$ and $y \equiv 0 \bmod 8$
3. $x \equiv 1 \bmod 2$ and $y \equiv x \bmod 8$
4. $x \equiv 1 \bmod 2$ and $y \equiv 6 x \bmod 8$
5. $x \equiv 6 y \bmod 8$ and $y \equiv 1 \bmod 2$
6. $x \equiv 1 \bmod 2$ and $y \equiv 3 x \bmod 8$.

Moreover, if $\operatorname{Norm}(\gamma)= \pm 1$, then we have the following additional restrictions:

- if $y \equiv 2 \bmod 4$, then $y \equiv 2 \bmod 8$
- if $x \equiv 1 \bmod 4$ and $y \equiv 1 \bmod 2$, then $y \equiv x \bmod 8$
- if $x \equiv 2 \bmod 4$, then $x \equiv 6 \bmod 8$.

Proof. Our restrictions on x and y all follow from the norm calculation: $\left(x+y \zeta_{3}\right)(x+$ $\left.y \zeta_{3}^{2}\right) \equiv \pm 1 \bmod 8$. This gives us $x^{2}+x y \zeta_{3}+x y \zeta_{3}^{2}+y^{2} \equiv \pm 1 \bmod 8$. Because $1+\zeta_{3}+\zeta_{3}^{2}=0$, we can write this more simply as $x^{2}-x y+y^{2} \equiv \pm 1 \bmod 8$.

First consider the case that y is even. In this case, we must have x odd because otherwise the norm would be even rather than ± 1. With x odd, the norm calculation gives us $\pm 1 \equiv x^{2}-x y+y^{2} \equiv 1-x y+y^{2} \bmod 8$.

If $y \equiv 0 \bmod 4$, then we have $\pm 1 \equiv 1-x y \bmod 8$. Also, with $y \equiv 0 \bmod 4$ and x odd, $x y \equiv y \bmod 8$, so we actually have $\pm 1 \equiv 1-y \bmod 8$. The forces y to be $0 \bmod 8$. So in this case, we have $x \equiv 1 \bmod 2$ and $y \equiv 0 \bmod 8$. This establishes possibility 2.

If $y \equiv 2 \bmod 8$, then we have $y^{2} \equiv 4 \bmod 8$, so $\pm 1 \equiv 5-x y \bmod 8$. This means $x y \equiv 4 \bmod 8$ or $x y \equiv 6 \bmod 8$. Since x is odd and $y \equiv 2 \bmod 8$, the former is impossible. Thus, we have $x y \equiv 6 \bmod 8$. This gives us $x \equiv 3 \bmod 4$. Similarly if $y \equiv 6 \bmod 8$, we have $x \equiv 1 \bmod 4$. This gives us possibility 4 .

Now we consider the case that y is odd. This means that $y^{2} \equiv 1 \bmod 8$, so we have $x^{2}-x y \in\{0,-2\} \bmod 8$.

If x is odd, then $x^{2} \equiv 1 \bmod 8$ as well, so we have $-x y \in\{-1,-3\}$, so $x y \in\{1,3\}$. This means that y is either $x^{-1} \bmod 8$ or $3 x^{-1} \bmod 8$. Since x is odd, $x^{-1} \equiv x \bmod 8$, so y is either x or $3 x \bmod 8$. This gives possibilities 3 and 6 .

If x is $0 \bmod 4$, then $x^{2} \equiv 0 \bmod 8$, so we have $-x y \in\{0,-2\} \bmod 8$, so $x y \in\{0,2\} \bmod 8$. Since we are taking x to be $0 \bmod 4, x y \equiv 2 \bmod 8$ is impossible, so we have $x y \equiv 0 \bmod 8$, which means $y \equiv 0 \bmod 2$ or $x \equiv 0 \bmod 8$. We are working in a case where y is odd, so we must have $x \equiv 0 \bmod 8$. With $x \equiv 0 \bmod 8$, the norm calculation is satisfied with any odd value for y. This gives possibility 1 .

If x is $2 \bmod 4$, then $x^{2} \equiv 4 \bmod 8$, so we have $-x y \in\{4,-6\}$, so $x y \in\{4,6\}$. Since x is $2 \bmod 4$ and y is odd, $x y$ cannot be divisible by 4 . This means that in this case $x y \equiv 6 \bmod 8$. If x is $2 \bmod 8$, we have $2 y \equiv 6 \bmod 8$, so $y \equiv 3 \bmod 4$. If x is $6 \bmod 8$, we have $6 y \equiv 6 \bmod 8$, so $y \equiv 1 \bmod 4$. This is possibility 5 , the last possibility.

Now, we take on the additional restriction that $\operatorname{Norm}(\gamma)= \pm 1$ rather than that just being a congruence relationship. In this case, we need to work with γ in terms of \sqrt{d} rather than ζ_{3}, so we write $\gamma=\frac{a+b \sqrt{d}}{2}$.

First consider the case that $y \equiv 2 \bmod 4$, which also means $x \equiv 1 \bmod 2$. Looking at the norm $\bmod 4$, we have $x^{2}-x y+y^{2} \equiv 1-2+4=3 \equiv-1$. Since the norm is ± 1, it must be -1 . We can take $a^{\prime}=\frac{a}{2} \bmod 4$ and $b^{\prime}=\frac{b}{2} \bmod 2$. Note that $b \equiv y \equiv 2 \bmod 4$ and $a \equiv 2 x-y \equiv 0 \bmod 4$, so $a^{\prime}, b^{\prime} \in \mathbb{Z}$. Looking at the norm, we have $\left(a^{\prime}\right)^{2}-d\left(b^{\prime}\right)^{2}=-1$. This means that for every prime p dividing $b^{\prime},-1$ is a square $\bmod b^{\prime}$. Since $b \equiv y \equiv 2 \bmod 4$, we have $b^{\prime} \equiv 1 \bmod 2$. Since b^{\prime} is odd and -1 is a quadratic residue $\bmod b^{\prime}, p$ is $1 \bmod 4$ for every prime dividing b^{\prime}, so $b^{\prime} \equiv 1$
$\bmod 4$. Equivalently, $b \equiv 2 \bmod 8$. Since $c \equiv 1 \bmod 4$ and $b \equiv 2 \bmod 8$, we have $y \equiv b c \equiv 2 \bmod 8$ as desired.

Now consider the case that $x \equiv 1 \bmod 4$ and $y \equiv 1 \bmod 2$. The norm of γ is congruent to $x^{2}-x y+y^{2} \equiv 1-y+1=2-y \bmod 4$. We claim we must have $y \equiv 1 \bmod$ 4. If we had $y \equiv 3 \bmod 4$, the norm would be congruent to -1 , so would actually be -1 . Then, as in the previous paragraph, if we write $\gamma=\frac{a+b \sqrt{d}}{2}=a^{\prime}+b^{\prime} \sqrt{d}$, we can write the norm as $\left(a^{\prime}\right)^{2}-d\left(b^{\prime}\right)^{2}=-1$. This gives us $a^{2}-d b^{2}=-4$. Again, b is odd because $b \equiv y \bmod 4$. This means that 2 has an inverse $\bmod b$, so the fact that -4 is a quadratic residue mod b implies that -1 is. Since b is odd, this means that $b \equiv 1 \bmod 4$. Thus, we have $y \equiv b \equiv 1 \bmod 4$. This contradicts our having taken $y \equiv 3 \bmod 4$, so we must have had $y \equiv 1 \equiv x \bmod 4$ in the first place. We have already seen that if x and y are both odd, then $y \equiv x \bmod 8$ or $y \equiv 3 x \bmod$ 8. Since $y \equiv x \bmod 4$, we must be in the former case, so $y \equiv x \bmod 8$.

Finally, we claim that x cannot be $2 \bmod 8$. If $x \equiv 2 \bmod 4$, we have already seen that $y \equiv 1 \bmod 2$, so the norm of γ is congruent to $x^{2}-x y+y^{2} \equiv 0-$ $2+1=-1 \bmod 4$, so the norm of γ must actually be -1 . Again, we can write $\gamma=\frac{a+b \sqrt{d}}{2}=a^{\prime}+b^{\prime} \sqrt{d}$, and we can write the norm as $\left(a^{\prime}\right)^{2}-d\left(b^{\prime}\right)^{2}=-1$. This gives us $a^{2}-d b^{2}=-4$. Just as in the last paragraph, this means that -1 is a quadratic residue $\bmod b$, which means $b \equiv 1 \bmod 4$. This gives us $y \equiv b \equiv 1 \bmod 4$. We have already seen that when $x \equiv 2 \bmod 4$ and $y \equiv 1 \bmod 4$, it is always the case that $x \equiv 6 \bmod 8$.

Looking at the congruence possibilities when the norm is just congruent to ± 1
mod 8 , we can see a symmetry between x and y. Swapping them throughout the set of possibilities results in exactly the same set. This is because all of these restrictions arose from analysis of the norm of $x+y \zeta_{3}$, namely $x^{2}-x y+y^{2}$. The symmetry in the results arises because swapping x and y in this function gives exactly the same function.

When restricting to cases where the norm was ± 1 rather than just being congruent to ± 1, we had to convert to the a and b representation, establish the restrictions there, and then convert back to the x and y representation. The conversion back to the x and y representation was just to be consistent in how we are listing the possible congruence conditions on γ. The conversion to the a and b representation, though, plays a more interesting role.

It is not surprising that we should have to do this because these extra restrictions rely on the norm value itself rather than on a congruence condition on the norm value. When we are working with the x and y representation, we are able to work only with a congruence condition on the norm. This is because in this representation, we are not working with γ itself, we are working with something congruent to it. If we tried to use the same argument on the x and y representation, we would end up trying to say something like: since $x^{2}-x y+y^{2} \equiv-1$, we have that -1 is a quadratic residue mod any prime dividing y. But in order for that statement to be true, we need an equality there, not a congruence. In order to get equality, we must go back to working with γ itself rather than something of the form $x+y \zeta_{3}$ that is congruent to γ.

In this case, the norm condition we needed was not as strong as it was in the
previous two cases. Again, though, we satisfy that condition by taking $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$.

As with the case that $d \equiv 3 \bmod 8$, adjoining a square root of γ to a field in the L-tower sometimes yields a ramified extension and other times yields an unramified extension.

Proposition 4.3.2. Let d be $5 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Let $x, y \in \mathbb{Z}$ be such that $\gamma \equiv x+y \zeta_{3} \bmod 8$. Then $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is an unramified extension for all j if either x or y is congruent to $0 \bmod 8$ or if $x \equiv y \bmod 8$, and is a ramified extension for all j otherwise.

Moreover, when $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is ramified, it is ramified at both primes above (2).

Proof. Because unramified extensions lift to unramified extensions, when we are showing that the extensions are unramified, it is sufficient to show that $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ is unramified. Proposition 2.0.8 tells us that for this, it is sufficient to show that γ is a square $\bmod 4$ in L_{0}. When we are showing that the extensions are ramified Proposition 2.0.8 tells us we need to show that γ is not a square $\bmod 4$ in L_{j} for any j.

Taking the congruence possibilities for γ from the previous lemma and reducing them mod 4 tells us that the possibilities for $\gamma \bmod 4$ are $\pm 1,3+2 \zeta_{3} \equiv-\left(1+2 \zeta_{3}\right)$, $1+2 \zeta_{3}, \pm\left(1+\zeta_{3}\right), \pm\left(1+3 \zeta_{3}\right), \pm \zeta_{3}, 2+3 \zeta_{3} \equiv-\left(2+\zeta_{3}\right)$, and $2+\zeta_{3}$.

Combining the previous two paragraphs, we find that to prove our claim we must show that $\pm 1, \pm\left(1+\zeta_{3}\right)$, and $\pm \zeta_{3}$ are squares mod 4 in L_{0} and that $\pm\left(1+2 \zeta_{3}\right)$,
$\pm\left(1-\zeta_{3}\right)$, and $\pm\left(2+\zeta_{3}\right)$ are not. Since $-1=i^{2}$ is a square in L_{j} for all j, it is equivalent to show that $1,1+\zeta_{3}$, and ζ_{3} are squares $\bmod 4$ in L_{0} and that $2+\sqrt{d}$, $1-\zeta_{3}$, and $2+\zeta_{3}$ are not squares $\bmod 4$ in L_{j} for any j.

Clearly, 1 and $\zeta_{3} \equiv\left(\zeta_{3}^{2}\right)^{2}$ are squares mod 4 . Since $1+\zeta_{3} \equiv-\zeta_{3}^{2}=\left(i \zeta_{3}\right)^{2} \bmod$ $4, i \in L_{0}$, and there are elements in L_{0} that are congruent to $\zeta_{3} \bmod$ arbitrarily high powers of 2 , it follows that $1+\zeta_{3}$ is a square $\bmod 4$ in L_{0}, so in L_{j} for all j.

It remains to show that none of $1+2 \zeta_{3}, 1-\zeta_{3}$, and $2+\zeta_{3}$ is a square $\bmod 4$ in L_{j} for any j. We show this by showing that $1+2 \zeta_{3}$ is not a square $\bmod 4$ in L_{j} for any j and that either of the other two values is a square $\bmod 4$ in L_{j} iff $1+2 \zeta_{3}$ is. Again, recall that ζ_{3} is an element sufficiently close to being a cube root of unity 2-adically.

First note that because $2+2 \zeta_{3}+2 \zeta_{3}^{2} \equiv 0 \bmod 4$, we have $2+\zeta_{3} \equiv 2 \zeta_{3}^{2}-\zeta_{3} \bmod$ 4. But $2 \zeta_{3}^{2}-\zeta_{3} \equiv-\zeta_{3}\left(2 \zeta_{3}+1\right) \bmod 4$. Because -1 and $\zeta_{3} \equiv \zeta_{3}^{2}$ are both squares mod $4,2+\zeta_{3}$ is a square mod 4 iff $1+2 \zeta_{3}$ is. Similarly, $1-\zeta_{3} \equiv-2 \zeta_{3}-\zeta_{3}^{2}=-\zeta_{3}\left(2+\zeta_{3}\right)$, so $1-\zeta_{3}$ is a square iff $2+\zeta_{3}$ is.

Assume that there is some $v \in L_{j}$ such that $v^{2} \equiv 1+2 \zeta_{3} \bmod 4$. Then $v^{2} \equiv 1$ $\bmod 2$, so we have $v \equiv 1 \bmod (1+i)$, and we can write $v=1+\delta(1+i)$. Squaring this, we have $v^{2}=1+2 \delta(1+i)+2 i \delta^{2}$. Since we have assumed that $v^{2} \equiv 1+2 \zeta_{3}$ $\bmod 4$, this gives us $1+2 \zeta_{3} \equiv 1+2 \delta(1+i)+2 i \delta^{2} \bmod 4$. We can subtract $1+2 \zeta_{3}$ from both sides and divide through by 2 to get $0 \equiv \zeta_{3}+(1+i) \delta+i \delta^{2} \bmod 2$.

We can multiply both sides of the entire congruence by i to get $0 \equiv i \zeta_{3}+(1+$ i) $\delta+\delta^{2} \bmod 2$. Note that we have the same problem that we had when adjoining fourth roots with $d \equiv 3 \bmod 8$, namely that $i \zeta_{3}$ is not in a low enough field to
apply Corollary 3.2 .6 . (We would need it to be in \mathbb{Q}.) Now consider the congruence $\bmod (1+i): \delta^{2} \equiv \zeta_{3} \bmod (1+i)$. Then $\delta \equiv \zeta_{3}^{2} \bmod \left(1+\zeta_{8}\right)$, so we can write $\delta=\zeta_{3}^{2}+\lambda\left(1+\zeta_{8}\right)$ and $\delta^{2} \equiv \zeta_{3}+\lambda^{2}(1+i) \bmod 2$. Substituting this back in, we get

$$
\begin{aligned}
0 & \equiv i \zeta_{3}+\zeta_{3}^{2}(1+i)+\lambda\left(1+\zeta_{8}\right)(1+i)+\zeta_{3}+\lambda^{2}(1+i) \\
& =\left(\zeta_{3}+\zeta_{3}^{2}\right)(1+i)+\lambda(1+i)\left(1+\zeta_{8}\right)+\lambda^{2}(1+i) \\
& \equiv(1+i)+\lambda(1+i)\left(1+\zeta_{8}\right)+\lambda^{2}(1+i) \bmod 2
\end{aligned}
$$

Dividing through by $(1+i)$, we get $1+\lambda\left(1+\zeta_{8}\right)+\lambda^{2} \bmod (1+i)$. But now we can apply Corollary 3.2.4 to see that no such λ can exist. This means no such δ, thus no such v can exist. This shows that x is not a square $\bmod 4$ in L_{j} for any j. These calculations are valid in the completion at both primes above (2), so the extension is ramified at both of these primes.

With the knowledge of the ramification behavior that arises when adjoining a square root of γ to fields in the L-tower, we can now look at the ramification behavior we get when we adjoin a fourth root of γ.

Theorem 4.3.3. Let $d \in \mathbb{Z}$ be congruent to $5 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Let $k \in \mathbb{Z}$ be such that $k^{2} d \equiv-3 \bmod 64$, and let $\zeta_{3}=\left(\frac{-1+k \sqrt{d}}{2}\right)$. Let $x, y \in \mathbb{Z}$ be such that $\gamma \equiv x+y \zeta_{3} \bmod$ 8. Then for $j>0, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified iff $(x, y) \in\{ \pm(0,1), \pm(1,0), \pm(1,1)\}$. Moreover, $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ iff $(x, y) \in\{(0,1),(7,7)\}$.

Proof. Based on Lemma 4.3.1, we wish to show that exactly one of the following is true:

1. $x \equiv 0 \bmod 8, y \equiv 1 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j
2. $x \equiv 0 \bmod 8, y \equiv \pm 3 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j
3. $x \equiv 0 \bmod 8, y \equiv 7 \bmod 8, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$
4. $x \equiv 1 \bmod 8, y \equiv 0 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j
5. $x \equiv \pm 3 \bmod 8, y \equiv 0 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j
6. $x \equiv 7 \bmod 8, y \equiv 0 \bmod 8, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$
7. $x \equiv 1 \bmod 8, y \equiv 1 \bmod 8, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all $j \geq 1$
8. $x \equiv \pm 3 \bmod 8, y \equiv x \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j
9. $x \equiv 7 \bmod 8, y \equiv 7 \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for all j
10. $x \equiv 1 \bmod 2, y \equiv 6 x \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j
11. $x \equiv 6 y \bmod 8, y \equiv 1 \bmod 2$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j
12. $x \equiv 1 \bmod 2, y \equiv 3 x \bmod 8$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified for all j.

We handle this case by case:
Case 1: $x \equiv 0 \bmod 8, y \equiv 1 \bmod 8$
This follows immediately from Lemma 3.1.7.
Case 2: $x \equiv 0 \bmod 8, y \equiv \pm 3 \bmod 8$
We have $\gamma \equiv \pm 3 \zeta_{3}=\mp\left(3+3 \zeta_{3}^{2}\right) \bmod 8$. Since -1 is a fourth power in L_{1}, showing the result for all j for $-3 \zeta_{3}$ also shows it for $j \geq 1$ for $3 \zeta_{3}$. But since unramified extensions lift to unramified extensions, this also shows it for $-\left(3+3 \zeta_{3}^{2}\right)$ for L_{0}. Thus, it is enough to prove the claim for $x \equiv-3 \zeta_{3}=3+3 \zeta_{3}^{2} \bmod 8$.
$\operatorname{Mod} 4$, this is ζ_{3}, so we can take $\alpha=\gamma$, since $\gamma \equiv \zeta_{3} \bmod 4$. Also $\gamma \equiv \zeta_{3} \bmod$

4 implies that $\gamma^{2} \equiv \zeta_{3}^{2} \bmod 8$, so $\gamma^{4} \equiv \zeta_{3} \bmod 8$. Then we have $\gamma-\alpha^{4}=\gamma-\gamma^{4} \equiv$ $-3 \zeta_{3}-\zeta_{3}=-4 \zeta_{3} \bmod 8$, so $\frac{\gamma-\alpha^{4}}{4} \equiv \zeta_{3} \bmod 2$. The result now follows immediately from Corollary 3.2.9.

This argument works locally, but that is sufficient for the global case.
Case 3: $x \equiv 0 \bmod 8, y \equiv 7 \bmod 8$
This follows immediately from Lemma 3.1.8.

Case 4: $x \equiv 1 \bmod 8, y \equiv 0 \bmod 8$
This is Lemma 3.1.1.

Case 5: $x \equiv \pm 3 \bmod 8, y \equiv 0 \bmod 8$

This is Corollary 3.2.10.
Case 6: $x \equiv 7 \bmod 8, y \equiv 0 \bmod 8$
This is Lemma 3.1.3.
Case 7: $x \equiv 1 \bmod 8, y \equiv 1 \bmod 8$
Here $\gamma \equiv 1+\zeta_{3}=-\zeta_{3}^{2} \bmod 8$. With this observation, this follows immediately from Lemma 3.1.8.

Case 8: $x \equiv \pm 3 \bmod 8, y \equiv x \bmod 8$
In this case, $\gamma \equiv \pm\left(3+3 \zeta_{3}\right)= \pm\left(\zeta_{3}^{2}\right)$. This is the same as case 2 with a different choice for the primitive cube root of unity, so the argument is the same as in that case.

Case 9: $x \equiv 7 \bmod 8, y \equiv 7 \bmod 8$
Here, $\gamma \equiv 7+7 \zeta_{3} \equiv-1-\zeta_{3}=\zeta_{3}^{2}$. Now the result follows immediately from Lemma 3.1.7.

Case 10: $x \equiv 1 \bmod 2, y \equiv 6 m \bmod 8$

Case 11: $x \equiv 6 y \bmod 8, y \equiv 1 \bmod 2$
Case 12: $x \equiv 1 \bmod 2, y \equiv 3 x \bmod 8$
In each of these cases, we saw in the previous proposition that for this value of $\gamma, L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is ramified, so $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ must be as well.

There is an interesting symmetry in the above result: swapping x and y gives the same result. Although the underlying reason is the same, it is not as straightforward to see as it was in Lemma 4.3.1, where it just arose because of the symmetry in the norm calculation. Here, it is caused by a pair of properties working together. The first is that multiplying γ by something that is a fourth power mod 8 cannot affect its behavior because that can just be absorbed in α. The second, which we used a couple of times in the proof, is that ζ_{3}^{2} also satisfies $x^{2}+x+1 \equiv 0 \bmod$ 8 and, as a result, $x^{3} \equiv 1 \bmod 8$. These are the only properties of ζ_{3} we used, so the behavior of ζ_{3}^{2} must be the same as that of ζ_{3}. Combining these, we find that if we multiply $\gamma \equiv x+y \zeta_{3} \bmod 8$ by something that is congruent to $\zeta_{3}^{2} \bmod 8$, we get something congruent to $y+x \zeta_{3}^{2} \bmod 8$. This, in turn, must behave exactly like $y+x \zeta_{3}$, which is what comes out of swapping x and y in the original γ.

$4.4 \quad d \equiv 7 \bmod 8$

In this section, we find that when $d \equiv 7 \bmod 8$, we have some elements that are congruent to $\pm i \bmod 8$. In order for the fourth root of such an element to give an unramified extension, i must be a fourth power. For this to happen, ζ_{16} must be available, and this is not true in the L-tower until L_{2}. Thus, it is reasonable to
expect that, unlike in the other sections, we might have extensions that are ramified at both L_{0} and L_{1}, but are unramified beginning at L_{2}. In fact, this is precisely what we find.

Lemma 4.4.1. Let $d \in \mathbb{Z}$ be congruent to $7 \bmod 8$. Let $\gamma \in \mathcal{O}_{K_{0}}$ be such that $\operatorname{Norm}(\gamma) \equiv \pm 1 \bmod 16$, and write $\gamma=a+b \sqrt{d}$ with $a, b \in \mathbb{Z}$. Then one of the following is true:

- $a \equiv 0 \bmod 4$ and $b \equiv 1 \bmod 2$
- $a \equiv \pm 1 \bmod 8$ and $b \equiv 0 \bmod 4$.

Proof. Consider the norm to $\mathbb{Q}: a^{2}-d b^{2}$. We have assumed that this is congruent to ± 1. If we look at this $\bmod 4$, we have $d \equiv-1$, so $a^{2}+b^{2} \equiv \pm 1$. Since 0 and 1 are the only squares $\bmod 4$, we find that one of a and b must be odd, the other must be even, and the norm must be 1 .

Looking at the norm $\bmod 8$, we still have $a^{2}+b^{2} \equiv 1$. If either a or b were $2 \bmod 4$, this congruence could not be satisfied, so one of a and b is $0 \bmod 4$, and the other is odd. Now look at the norm mod 16: we have either $a^{2}+b^{2} \equiv 1$ or $a^{2}-7 b^{2} \equiv 1$. If b is $0 \bmod 4$, we have $a^{2} \equiv 1 \bmod 16$, so $a \equiv \pm 1 \bmod 8$.

As in the previous three cases, instead of explicitly making an assumption about the norm of γ, we get that as a consequence of γ being the fourth power of an ideal of $\mathcal{O}_{K_{0}}$.

In the following proposition, we see that the ramification behavior from adjoining $\gamma^{1 / 2}$ is identical to the behavior we got when d was $3 \bmod 8$.

Proposition 4.4.2. Let d be $7 \bmod$ 8. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and
such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Then $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ is unramified iff $a \equiv 1 \bmod 2$. If it is ramified, it is ramified at both primes above (2). Moreover, $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is an unramified extension for $j \geq 1$.

Proof. The proof that we used when $d \equiv 3 \bmod 8$ case works just as well for this case, with the exception that we need to prove that $\pm \sqrt{d}$ are not squares mod 4 in L_{0} but are squares in L_{1}. (In the $d \equiv 3 \bmod 8$ case, we needed to prove this for $\pm(2+\sqrt{d}))$. Since $i \in L_{0} \subset L_{1}$, it is sufficient to prove that \sqrt{d} is a square $\bmod 4$ in L_{1}, but not in L_{0}.

Since $d \equiv-1 \bmod 8$, we must have $\sqrt{d} \equiv \pm i \bmod 4$, depending on the completion chosen. Since $\zeta_{8} \in L_{1}$, both of these are squares in L_{1}. If $\pm i$ were a square $\bmod 4$ in L_{0}, it would be a square $\bmod 2$ as well. We would need only to define its square root mod $1+i$, and the only such value in L_{0} is 1 . This does not square to $i \bmod 2$, so \sqrt{d} is not a square $\bmod 4$ in L_{0} as desired. This calculation is valid in either completion, so the extension is ramified at both primes above (2).

Theorem 4.4.3. Let $d \in \mathbb{Z}$ be congruent to $7 \bmod$ 8. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. Let $a, b \in \mathbb{Z}$ be such that $\gamma=a+b \sqrt{d}$. Then for $j>1, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified. Moreover, $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ is unramified iff a is odd. Finally, $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ iff $a \equiv 1 \bmod 8$.

When these extensions are ramified, they are ramified at both primes above (2).

Proof. This time, we need to show that exactly one of the following is true:

- $a \equiv 1 \bmod 8, b \equiv 0 \bmod 4$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is an unramified extension for all
- $a \equiv-1 \bmod 8, b \equiv 0 \bmod 4, L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is ramified at both primes above (2), and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is an unramified extension for $j \geq 1$
- $a \equiv 0 \bmod 4, b \equiv 1 \bmod 2, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified at both primes above (2)
for $j \in\{0,1\}$, and $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for $j \geq 2$.
With the exception of the modification to address the fact that there are two primes above (2) in \mathcal{O}_{L} here, this is exactly the same situation as the corresponding theorem for $d \equiv 3 \bmod 8$, except for the third case. In the third case, a is $0 \bmod$ 4 rather than being $2 \bmod 4$, and the extension becomes unramified at L_{2} rather than staying ramified all the way up the L-tower. When $b \equiv 4 \bmod 8$, one might expect the proof for the first two cases to differ from the proof for $d \equiv 3 \bmod 8$ because we have $\gamma \equiv \pm(1+4 \sqrt{d}) \bmod 8$, and \sqrt{d} is different when $d \equiv 3 \bmod 8$ and $d \equiv 7 \bmod 8$. But since \sqrt{d} has a coefficient of 4 , we are concerned here only with the congruence class of $\sqrt{d} \bmod 2$. It turns out that this is the same any time $d \equiv 3 \equiv-1 \bmod 4$. In that case $\sqrt{d} \equiv \pm i \equiv i \bmod 2$. So the proof we used when $d \equiv 3 \bmod 8$ still works for the first two cases here. The calculation does not change based on the choice of completion, so when we get ramification at all, we get it at both primes above (2).

The only place where the proof needs to change is in the third case. For this, we want to change our representation of γ. If $d \equiv 7 \equiv-9 \bmod 16$, then $\sqrt{d} \equiv \pm 3 i$ $\bmod 8$. If $d \equiv-1 \bmod 16$, then $\sqrt{d} \equiv \pm i \bmod 8$. In either case, the 8 possibilities we need to deal with are $x+y i$ with $x \equiv 0 \bmod 4$ and $y \equiv 1 \bmod 2$. We can further restrict the possibilities for y. As usual, we do this by looking at the norm:
$x^{2}+y^{2} \equiv \pm 1 \bmod 16$. Since $x \equiv 0 \bmod 4$, this gives us $y^{2} \equiv \pm 1 \bmod 16$. Since -1 is not a quadratic residue $\bmod 16$, we have $y^{2} \equiv 1 \bmod 16$, so $y \equiv \pm 1 \bmod 8$.

Now the result for the third case is exactly the statement of Lemma 3.1.6. Note that the ramification results are the same at either completion, so when we get ramification, we get it at both primes above (2).

In Theorem 1.0.1, which is from [1], the authors restrict to the case that d splits in F_{0}. In this sense, the case that $d \equiv 7 \bmod 8$ is the most direct analogue to their result. Perhaps, then, it is not surprising that this is the one case where every possible choice of γ results in $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ being unramified for sufficiently large j. Unlike their result, which always gives an unramified extension when $j=1$, the result here does not always give an unramified extension until $j=2$.

4.5 Properties of these extensions

4.5.1 Independence

In [1], the authors show that if I_{1}, \cdots, I_{n} represent independent ideal classes of order 3 with $I_{j}^{3}=\left(\gamma_{j}\right)$, then $L_{1}\left(\varepsilon_{0}^{1 / 3}, \gamma_{1}^{1 / 3}, \ldots, \gamma_{n}^{1 / 3}\right) / L_{1}$ has degree 3^{n+1}. We show an analogous result, but first we need a pair of easy results.

Lemma 4.5.1. Let $L=K(\sqrt{d})$ be a quadratic field extension and let $\gamma \in K$. If γ is a fourth power in L, then one of the following is true:

- $\gamma=\alpha^{4}$ for some $\alpha \in K$
- $\gamma=d^{2} \alpha^{4}$ for some $\alpha \in K$
- $L=K(i)$ and $\gamma=-4 \alpha^{4}$ for some $\alpha \in K$.

Proof. If γ is a fourth power in L, we have $a, b \in K$ such that

$$
\begin{aligned}
\gamma & =(a+b \sqrt{d})^{4} \\
& =a^{4}+4 a^{3} b \sqrt{d}+6 a^{2} b^{2} d+4 a b^{3} d \sqrt{d}+b^{4} d^{2} \\
& =\left(a^{4}+6 a^{2} b^{2} d+b^{4} d^{2}\right)+4 a b\left(a^{2}+d b^{2}\right) \sqrt{d}
\end{aligned}
$$

Since L is a quadratic extension, $\sqrt{d} \notin K$, so we must have $4 a b\left(a^{2}+d b^{2}\right)=0$. This means $a=0, b=0$, or $a^{2}+d b^{2}=0$. If $a=0$, then $\gamma=b^{4} d^{2}$, which is the second option in the list. If $b=0$, then $\gamma=a^{4}$, which is the first option in the list. If $a^{2}+d b^{2}=0$, then $d=-\left(\frac{a}{b}\right)^{2}$ is the negative of a square in K. This means that $L=K(\sqrt{d})=K(\sqrt{-1})$. Now if γ is a fourth power in L, we have $a, b \in K$ such that $\gamma=\left(a^{4}-6 a^{2} b^{2}+b^{4}\right)+4 a b\left(a^{2}-b^{2}\right) i$. If either a or b is 0 , the first case above is satisfied. If not, we must have $a^{2}=b^{2}$, so $\gamma=-4 a^{4}$.

The value $-4 \alpha^{4}$ here is related to the element of the same form referenced in Theorem 4.5.4. In fact, if we weaken our condition from γ being a fourth power in L to $X^{4}-\gamma$ is reducible in $K[X]$, that theorem tells us that either γ is a square in K, or that γ is of the form $-4 \alpha^{4}$ for some $\alpha \in K$.

Corollary 4.5.2. Let $\gamma \in K_{0}$ be such that $\gamma>0$ in at least one embedding of K_{0} into \mathbb{R}. If γ is a fourth power in L_{j} for any j, then γ is a fourth power in K_{0}.

Proof. We do this in two steps. First, we show that γ must be a fourth power in L_{0}. Then, we show that this implies it must be a fourth power in K_{0}.

If $j>0$, consider the extension L_{j} / L_{j-1}. The previous lemma tells us that either γ is a fourth power in L_{j-1} or $\gamma=\zeta_{2^{j+1}} \alpha^{4}$ for some $\alpha \in L_{j-1}$. (The third
option is not relevant because L_{j} is not $L_{j-1}(i)$ for any $j>0$.) We claim that it is impossible to have $\gamma=\zeta_{2^{j+1}} \alpha^{4}$ for some $\alpha \in L_{j-1}$.

Let σ be the non-trivial element of the Galois group of L_{j-1} / K_{j-1}. Applying this to that equation gives us $\sigma(\gamma)=\zeta_{2^{j+1}}^{-1} \sigma(\alpha)^{4}$. Since $\gamma \in K_{0}$, we have $\gamma=\sigma(\gamma)$, so $\zeta_{2^{j+1}} \alpha^{4}=\zeta_{2^{j+1}}^{-1} \sigma(\alpha)^{4}$. Multiplying both sides by $\zeta_{2^{j+1}} \alpha^{-4}$ gives $\zeta_{2^{j}}=\alpha^{-4} \sigma(\alpha)^{4}$. But this means $\zeta_{2^{j}}$ is a fourth power in L_{j-1}, which isn't true.

So γ must be a fourth power in L_{j-1}. Repeating this argument j times, we find that γ is a fourth power in L_{0}.

Now the previous lemma tells us that either γ is a fourth power in K_{0} or $\gamma=-4 \alpha^{4}$ for some $\alpha \in K_{0}$. (The second of the three options in the lemma is redundant because $d=-1$ in this case, so $d^{2}=1$.) Since $\alpha \in K_{0}$, which is real, $\alpha^{4}>0$. Since $\gamma>0$ in at least one real embedding, it is impossible for $\gamma=-4 \alpha^{4}$, so we must have γ a fourth power in K_{0}.

We can now follow the same argument as appears in [1] to get the following proposition:

Proposition 4.5.3. Let I_{1}, \ldots, I_{n} represent independent ideal classes of order 4 in K_{0} with I_{j} relatively prime to 2 for all j. Write $I_{j}^{4}=\left(\gamma_{j}\right)$ with $\gamma_{j} \in K_{0}$ and $\gamma_{j}>0$ for all j in at least one embedding of K_{0} into \mathbb{R}. Then $\varepsilon_{0}, \gamma_{1}, \ldots, \gamma_{n}$ are independent mod fourth powers in L_{j}.

Proof. Suppose that $\varepsilon_{0}^{a_{0}} \gamma_{1}^{a_{1}} \cdots \gamma_{n}^{a_{n}}=\beta^{4}$ in L_{j}. Since β^{4} is a product of elements in K_{0}, we have $\beta^{4} \in K_{0}$. Now applying the previous corollary tells us that we can take $\beta \in K_{0}$.

Now we can write $I_{1}^{a_{1}} \cdots I_{n}^{a_{n}}=(\beta)$. Since these ideals represent independent classes, each with order 4 , we must have $a_{j} \equiv 0 \bmod 4$ for all j. This means that $\varepsilon_{0}^{a_{0}}=\beta^{4} \gamma_{1}^{-a_{1}} \cdots \gamma_{n}^{-a_{n}}$ is a fourth power in K_{0}, which means that $a_{0} \equiv 0 \bmod 4$.

In [1], $L_{1}\left(\varepsilon_{0}^{1 / 3}, \gamma_{1}^{1 / 3}, \ldots, \gamma_{n}^{1 / 3}\right) / L_{1}$ is a degree- 3^{n+1} extension. The analogue in our case is not necessarily a degree- $4{ }^{n+1}$ extension.

4.5.2 Degrees

For all of these extensions, it is valuable to understand what degree the extension has. In particular, to say that a trivial extension is unramified is distinctly uninteresting. In many cases, we can say exactly what the degree of the extension is. When proving results about the degrees of these extensions, we frequently use the following theorem:

Theorem 4.5.4. Let K be a field and n an integer ≥ 2. Let $\gamma \in K, \gamma \neq 0$. Assume that for all prime numbers p such that $p \mid n$ we have $\gamma \notin K^{p}$, and if $4 \mid n$ then $\gamma \notin-4 K^{4}$. Then $X^{n}-\gamma$ is irreducible in $K[X]$.

The above theorem is the subject of Section 9 of Chapter 8 in [2]. We need only the following interesting corollary, which arises from taking $n=4$ and K a field in the L-tower:

Corollary 4.5.5. Let $\gamma \in L_{j}, \gamma \neq 0$. Then the following are equivalent:

1. γ is not a square in L_{j}
2. $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is a degree-2 extension
3. $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is a degree-4 extension.

Proof. Part 1 and Part 2 are obviously equivalent. Also, Part 3 clearly implies Part 2. To prove the result, then, it is sufficient to prove that Part 1 implies Part 3. To do this, we use the previous theorem.

Although we are taking $n=4$, so $4 \mid n$, we do not have to take on the extra assumption that $\gamma \notin-4\left(L_{j}\right)^{4}$. This is because $-4=(2 i)^{2}$ is a square in L_{j} for all j. Thus, the fact that γ is not a square already implies that this extra assumption is satisfied. Our corollary now follows from noting that if $X^{n}-\gamma$ is irreducible in $K[X]$ for some field K, then $K\left(\gamma^{1 / n}\right) / K$ is a degree- n extension.

Understanding the degree of $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is often important for understanding the degree of $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$. The following two results, in addition to Proposition 2.0.8, are critical for this.

Proposition 4.5.6. Let d be a positive square-free integer with $d>2$. Let $K_{0}=$ $\mathbb{Q}(\sqrt{d}), K_{1}=K_{0}(\sqrt{2})$, and let ε_{0} be the fundamental unit of K_{0}. Then $\sqrt{\varepsilon_{0}} \in K_{1}$ iff (2) ramifies principally in K_{0}.

Proof. (\Rightarrow) If $\sqrt{\varepsilon_{0}} \in K_{1}=K_{0}(\sqrt{2})$, then $\sqrt{\varepsilon_{0}} / \sqrt{2} \in K_{0}$ because it is fixed by the action of the non-trivial element of $\operatorname{Gal}\left(K_{1} / K_{0}\right)$. Thus, $\sqrt{2 \varepsilon_{0}} \in K_{0}$. Let $(a+b \sqrt{d})^{2}=$ $2 \varepsilon_{0}$. Then as ideals, we have $(a+b \sqrt{d})^{2}=(2)$ so (2) is the square of a principal ideal.
(\Leftarrow) If (2) ramifies principally, there is some unit $u \in K_{0}$ such that $2 u$ has a square root in K_{0}. Since ε_{0} is the fundamental unit, we can write $u= \pm \varepsilon_{0}^{n}$. Since 2 and ε_{0} are positive in at least one real embedding and K_{0} is real, we must have $u=\varepsilon_{0}^{n}$ for some $n \in \mathbb{Z}$. Since $2 \varepsilon_{0}^{n}$ has a square root in K_{0} iff $2 \varepsilon_{0}^{n} \bmod 2$ has one, one
of the following must be true: $2 \varepsilon_{0}^{0}=2$ has a square root in K_{0} or $2 \varepsilon_{0}^{1}=2 \varepsilon_{0}$ has a square root in K_{0}. The former can be true only for $d=2$, but we have taken $d>2$. Thus, we have that $2 \varepsilon_{0}$ has a square root in K_{0}, so $\sqrt{\varepsilon_{0}} \in K_{1}$.

Since ε_{0} is positive in at least one real embedding, we cannot have $\sqrt{\varepsilon_{0}} \in L_{0}$. If it were, we would have $L_{0}=K_{0}\left(\varepsilon_{0}^{1 / 2}\right)$. This is impossible because L_{0} is totally imaginary, so must be generated by the square root of a totally negative element. The same argument shows that $\sqrt{\varepsilon_{0}}$ is not in $K_{0}(\sqrt{-2})$. Since $K_{0}\left(\varepsilon_{0}^{1 / 2}\right)$ is degree 2, if $\varepsilon_{0}^{1 / 2} \in L_{1}$, it must also be in one of the degree- 2 sub-extensions of L_{1} / K_{0}. We have just seen that the only possibility is K_{1}. So the result above can actually be stated as $\sqrt{\varepsilon_{0}} \in L_{1}$ iff $\sqrt{\varepsilon_{0}} \in K_{1}$ iff (2) ramifies as the square of a principal ideal in K_{0}.

If we are not dealing exclusively with units, we cannot say as much, but we can say something if γ is relatively prime to 2 :

Proposition 4.5.7. Let d be a positive square-free integer with $d>2$. Let $K_{0}=$ $\mathbb{Q}(\sqrt{d}), K_{1}=K_{0}(\sqrt{2})$, and let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 with $\sqrt{\gamma} \notin K_{0}$. Then $\sqrt{\gamma} \in K_{1}$ implies that (2) ramifies in K_{0}.

Proof. If $\sqrt{\gamma} \in K_{1}=K_{0}(\sqrt{2})$, then $\sqrt{\gamma} / \sqrt{2} \in K_{0}$ because it is fixed by the action of the non-trivial element of $\operatorname{Gal}\left(K_{1} / K_{0}\right)$. Thus, $\sqrt{2 \gamma} \in K_{0}$. Let $(a+b \sqrt{d})^{2}=2 \gamma$. Then as ideals, we have $(a+b \sqrt{d})^{2}=(2 \gamma)$ in K_{0}. Since γ is relatively prime to 2 , (2) must be ramified.

Now we have the tools we need to start examining the degrees of the extensions we have dealt with throughout the paper. We start with a pair of propositions that
shed light on the degree of $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ when $j \leq 1$.
Proposition 4.5.8. Let $\gamma \in K_{0}$ be such that $\sqrt{\gamma} \notin K_{0}$ and $\gamma>0$ in at least one embedding of K_{0} into \mathbb{R}. Then $L_{0}\left(\gamma^{1 / 2}\right) / L_{0}$ is a degree-2 extension and $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is a degree-4 extension.

Proof. Since γ is positive, we cannot have $\sqrt{\gamma} \in L_{0}$. If it were, we would have $L_{0}=K_{0}\left(\gamma^{1 / 2}\right)$, which would mean the square root of a positive element is generating a non-real extension. Since $\sqrt{\gamma} \notin L_{0}$, the result follows immediately from Corollary 4.5.5.

Proposition 4.5.9. Let $\gamma \in \mathcal{O}_{K_{0}}$ be such that $\sqrt{\gamma} \notin K_{0}$ and $\gamma>0$ in at least one embedding of K_{0} into \mathbb{R}. Assume that (2) does not ramify in K_{0}. Then $L_{1}\left(\gamma^{1 / 2}\right) / L_{1}$ is a degree-2 extension and $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ is a degree- 4 extension.

Moreover, if $\gamma=\varepsilon_{0}$, the fundamental unit of K_{0}, then the following are equivalent:

1. (2) does not ramify as the square of a principal ideal in K_{0}
2. ε_{0} is not a square in L_{1}
3. $L_{1}\left(\varepsilon_{0}^{1 / 2}\right) / L_{1}$ is a degree-2 extension
4. $L_{1}\left(\varepsilon_{0}^{1 / 4}\right) / L_{1}$ is a degree-4 extension.

Proof. We saw in Proposition 4.5 .7 that if (2) does not ramify in K_{0}, then $\sqrt{\gamma} \notin K_{1}$. The same argument that we used in the previous proposition about γ being positive and the field in the L-tower being non-real holds here as well. Thus $\sqrt{\gamma} \notin L_{1}$. Now the result follows from Corollary 4.5.5.

For ε_{0}, we again use Corollary 4.5.5. With this, it is sufficient to show that ε_{0} is a square in L_{1} iff (2) ramifies principally in K_{0}. First note that ε_{0} is a square
in L_{1} iff ε_{0} is a square in K_{1}. Obviously, ε_{0} being a square in K_{1} implies it is one in L_{1}. To see the reverse direction, note that ε_{0} is positive, so $\varepsilon_{0}^{1 / 2}$ is real. Since K_{1} is real and L_{1} is not, we cannot have $L_{1}=K_{1}\left(\varepsilon_{0}^{1 / 2}\right)$. Thus, if $\varepsilon_{0}^{1 / 2} \in L_{1}$, it must also be the case that $\varepsilon_{0}^{1 / 2} \in K_{1}$. The rest of the claim follows immediately from Proposition 4.5.6.

Degrees of unramified extensions
Note that L_{j} / L_{j-1} is always ramified at 2. Since unramified extensions lift to unramified extensions, the degrees of unramified extensions are maintained as those extensions are lifted to extensions of higher fields in the L-tower. Using this argument, we claim that all of the unramified extensions mentioned in Theorem 4.1.4, Theorem 4.2.3, and Theorem 4.3.3 have degree 4 so long as $\gamma>0$. The same is true for many of the extensions in Theorem 4.4.3.

Again, it is possible that we must choose a completion in order to say whether $\gamma>0$, but if the extension is degree 4 in any completion, it must be globally as well. Once we have chosen a completion, we can always choose a $\gamma>0$ as the generator of (γ) by multiplying γ by -1 if necessary. In addition to requiring $\gamma>0$, the previous two propositions also require that $\sqrt{\gamma} \notin K_{0}$. One way of accomplishing this is to strengthen the restriction that $(\gamma)=I^{4}$ with the requirement that I be an ideal of order 4. When $\gamma=\varepsilon_{0}$, we do not need this extra restriction to ensure that $\sqrt{\gamma} \notin K_{0}$.

Consider the case that $d \equiv 1 \bmod 4$. We wish to show that all of the unramified extensions mentioned in Theorem 4.1.4 and Theorem 4.3.3 are degree-4 extensions
when $\gamma>0$ and $\sqrt{\gamma} \notin K_{0}$. Since $d \equiv 1 \bmod 4$, (2) does not ramify in K_{0}, so our last two propositions show that the unramified extensions of L_{0} and L_{1} all have degree 4. In Theorem 4.1.4 and Theorem 4.3.3, every time $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is unramified for $j>1$, it is the lift of an unramified extension $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$. Thus, applying the previous two propositions and the argument that unramified extensions lift to unramified extensions, we find that all of the unramified extensions are degree- 4 extensions.

When $d \equiv 3 \bmod 8$, a slightly different argument shows the same for Theorem 4.2.3. Note that for every congruence possibility for γ in that theorem such that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}=L_{j}\left((-\gamma)^{1 / 4}\right) / L_{j}$ is unramified for $j>1$, it is also the case that either $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ or $L_{0}\left((-\gamma)^{1 / 4}\right) / L_{0}$ is unramified. In either case, $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is the lift of an unramified extension of L_{0}. Thus, it is sufficient to note that the unramified extensions of L_{0} in this theorem are degree 4. Again, taking $\gamma>0$ and $\sqrt{\gamma} \notin K_{0}$, we get this from Proposition 4.5.8.

Finally, we consider $d \equiv 7 \bmod 8$ and Theorem 4.4.3, which is the most complicated case. The same argument we used for $d \equiv 3 \bmod 8$ establishes that all of the unramified extensions have degree 4 when a is odd. When a is even, however, we have a scenario where $L_{1}\left(\gamma^{1 / 4}\right) / L_{1}$ is still ramified, and we do not get an unramified extension until L_{2}. If $\gamma=\varepsilon_{0}$ and (2) fails to ramify principally, we know from Proposition 4.5.6 and Proposition 4.4.2 that $L_{j}\left(\gamma^{1 / 2}\right)$ is an unramified degree- 2 extension for $j \geq 1$. Then Corollary 4.5 .5 tells us that $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is degree 4. If $\gamma=\varepsilon_{0}$ and (2) ramifies principally, we know that $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is trivial for $j \geq 1$. This means that $L_{j}\left(\varepsilon_{0}^{1 / 4}\right) / L_{j}$ is either degree 2 or trivial. Proposition 4.5.3 tells us the extension cannot be trivial. For $\gamma \mathrm{s}$ other than ε_{0}, the tools we have developed
here do not tell us about the degrees of these extensions other than that they are non-trivial.

Degrees of ramified extensions
When we look at ramified extensions, one might expect us to lose one of the tools that we have available when we look at unramified extensions: non-trivial extensions are no longer guaranteed to keep their degree as they are lifted up the L tower. Some of our ramified extensions, though, result from extending an unramified extension by a ramified one. This means that that tool continues to be useful in this case. We also gain an additional tool that we did not have before: ramified extensions cannot be trivial.

When looking at the case where $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified, we want to consider two different scenarios. The first is that $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is ramified. The second is that $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is unramified, but $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified.

In the first case, the argument is straightforward. Since $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is ramified, γ is not a square in L_{j}. Applying Corollary 4.5.5, we see that the degree of $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is 4.

In the second case, the argument is slightly more complicated. First we consider what happens when this situation arises at L_{0}. In this case, since we continue to take $\gamma>0$ with $\sqrt{\gamma} \notin K_{0}$, we know from Proposition 4.5.8 that $L_{0}\left(\gamma^{1 / 4}\right) / L_{0}$ is degree 4.

Now we look at L_{j} for $j \geq 1$. Because we are in the case where $L_{j}\left(\gamma^{1 / 2}\right) / L_{j}$ is unramified but $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is ramified, we must have $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}\left(\gamma^{1 / 2}\right)$ ramified.

This means it is non-trivial, so must be degree 2. Thus $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is either degree 4 or degree 2 depending on whether $\gamma^{1 / 2} \in L_{j}$. We can use Proposition 4.5.9 to see that these extensions are always degree 4 when $d \equiv 1 \bmod 4$ (so that (2) does not ramify in K_{0}). When $d \equiv 3 \bmod 4$, if $\gamma=\varepsilon_{0}, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is degree 4 iff (2) fails to ramify principally.

Over the last two sections, we have proved the following proposition:
Proposition 4.5.10. Let $\gamma \in \mathcal{O}_{K_{0}}$ be relatively prime to 2 and such that $\sqrt{\gamma} \notin K_{0}$ and $(\gamma)=I^{4}$. If $d \equiv 1 \bmod 4$, then $L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is a degree-4 extension. If $d \equiv 3$ $\bmod 8, L_{j}\left(\gamma^{1 / 4}\right) / L_{j}$ is a degree-4 extension if it is an unramified extension.

Chapter A: Examples

For each congruence class of d, we showed that a number of congruences mod 8 could not be satisfied by γ when $\operatorname{Norm}(\gamma) \equiv \pm 1 \bmod 16$ (or, in one case, mod 8). When $d \equiv 1 \bmod 4$, we gave further restrictions on the possible value of γ when $\operatorname{Norm}(\gamma)= \pm 1$. In the former case, we did this because we were interested in values of γ such that $(\gamma)=I^{4}$ for some ideal I of $\mathcal{O}_{K_{0}}$. In the latter, we were particularly interested in $\gamma=\varepsilon_{0}$.

Here, we give examples of $\gamma \mathrm{s}$ such that $(\gamma)=I^{4}$ for some ideal I of order 4 in $\mathcal{O}_{K_{0}}$. We also give examples of fundamental units of K_{0}. We have an example for each congruence condition on γ or ε_{0} that we have not shown is impossible. This shows that we did actually need to consider each of those possibilities mod 8 .

A. $1 \quad d \equiv 1 \bmod 8$

$a \bmod 8$	$b \bmod 8$	d	γ
1	0	897	$-32607+1008 \sqrt{d}$
7	0	897	$32607-1008 \sqrt{d}$
1	4	145	$521-36 \sqrt{d}$
7	4	145	$-521+36 \sqrt{d}$
4	1	689	$7691764+293033 \sqrt{d}$
4	3	505	$8588-421 \sqrt{d}$
4	5	505	$-8588+421 \sqrt{d}$
4	7	689	$-7691764-293033 \sqrt{d}$
0	1	145	$1032+89 \sqrt{d}$
0	3	505	$-706088-31421 \sqrt{d}$
0	5	505	$706088+31421 \sqrt{d}$
0	7	145	$-1032-89 \sqrt{d}$

Table A.1: Examples of $\gamma=a+b \sqrt{d}$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 1 \bmod 8$

$a \bmod 8$	$b \bmod 8$	d	ε_{0}
1	0	561	$522785+22072 \sqrt{d}$
7	0	161	$11775+928 \sqrt{d}$
1	4	105	$41+4 \sqrt{d}$
7	4	33	$23+4 \sqrt{d}$
4	1	17	$4+\sqrt{d}$
4	5	73	$1068+125 \sqrt{d}$
0	1	41	$32+5 \sqrt{d}$
0	5	137	$1744+149 \sqrt{d}$

Table A.2: Examples of $\varepsilon_{0}=a+b \sqrt{d}$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 1 \bmod 8$
A. $2 d \equiv 3 \bmod 8$

$a \bmod 8$	$b \bmod 8$	d	γ
2	1	291	$122-7 \sqrt{d}$
2	3	939	$338+11 \sqrt{d}$
2	5	219	$194+13 \sqrt{d}$
2	7	1139	$42-\sqrt{d}$
6	1	1139	$-42+\sqrt{d}$
6	3	219	$-194-13 \sqrt{d}$
6	5	939	$-338-11 \sqrt{d}$
6	7	291	$-122+7 \sqrt{d}$
1	0	219	$121-8 \sqrt{d}$
1	4	291	$-751-44 \sqrt{d}$
7	0	219	$-121+8 \sqrt{d}$
7	4	291	$751+44 \sqrt{d}$

Table A.3: Examples of $\gamma=a+b \sqrt{d}$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 3 \bmod 8$

$a \bmod 8$	$b \bmod 8$	d	ε_{0}
2	1	3	$2+\sqrt{d}$
2	3	11	$10+3 \sqrt{d}$
2	5	59	$530+69 \sqrt{d}$
2	7	17	$170+39 \sqrt{d}$
6	1	35	$6+\sqrt{d}$
6	3	235	$46+3 \sqrt{d}$
6	5	91	$1574+165 \sqrt{d}$
6	7	515	$17406+767 \sqrt{d}$
1	0	579	$385+16 \sqrt{d}$
1	4	155	$249+20 \sqrt{d}$
7	0	299	$415+24 \sqrt{d}$
7	4	651	$1735+68 \sqrt{d}$

Table A.4: Examples of $\varepsilon_{0}=a+b \sqrt{d}$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 3 \bmod 8$

A. $3 d \equiv 5 \bmod 8$

$x \bmod 8$	$y \bmod 8$	d	γ
0	1	3341	$\frac{12543}{2}+\frac{217}{2} \sqrt{d}$
0	3	1045	$\frac{37}{2}-\frac{1}{2} \sqrt{d}$
0	5	1045	$-\frac{37}{2}+\frac{1}{2} \sqrt{d}$
0	7	3341	$-\frac{12543}{2}-\frac{217}{2} \sqrt{d}$
1	0	445	$169+8 \sqrt{d}$
3	0	2501	$-3001-60 \sqrt{d}$
5	0	2501	$3001+60 \sqrt{d}$
7	0	445	$-169-8 \sqrt{d}$
1	1	1221	$\frac{457}{2}+\frac{13}{2} \sqrt{d}$
3	3	1045	$\frac{227}{2}+\frac{7}{2} \sqrt{d}$
5	5	1045	$-\frac{227}{2}-\frac{7}{2} \sqrt{d}$
7	7	1221	$-\frac{457}{2}-\frac{13}{2} \sqrt{d}$
1	6	2005	$-8642-193 \sqrt{d}$
3	2	2605	$-242+5 \sqrt{d}$
5	6	2605	$242-5 \sqrt{d}$
7	2	2005	$8642+193 \sqrt{d}$
6	1	445	$\frac{11}{2}+\frac{1}{2} \sqrt{d}$
2	3	2533	$-\frac{47}{2}-\frac{1}{2} \sqrt{d}$
6	5	2533	$\frac{47}{2}+\frac{1}{2} \sqrt{d}$
2	7	445	$-\frac{11}{2}-\frac{1}{2} \sqrt{d}$
1	3	2005	$-\frac{41}{2}-\frac{1}{2} \sqrt{d}$
3	1	2669	$\frac{13}{2}+\frac{1}{2} \sqrt{d}$
5	7	2669	$-\frac{13}{2}-\frac{1}{2} \sqrt{d}$
7	5	2005	$\frac{41}{2}+\frac{1}{2} \sqrt{d}$

Table A.5: Examples of $\gamma \equiv x+y \zeta_{3} \bmod 8$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 5 \bmod 8$

$x \bmod 8$	$y \bmod 8$	d	ε_{0}
0	1	221	$\frac{15}{2}+\frac{1}{2} \sqrt{d}$
0	3	93	$\frac{29}{2}+\frac{3}{2} \sqrt{d}$
0	5	357	$\frac{19}{2}+\frac{1}{2} \sqrt{d}$
0	7	69	$\frac{25}{2}+\frac{3}{2} \sqrt{d}$
1	0	1605	$641+16 \sqrt{d}$
3	0	381	$1015+52 \sqrt{d}$
5	0	1173	$137+4 \sqrt{d}$
7	0	141	$95+8 \sqrt{d}$
1	1	77	$\frac{9}{2}+\frac{1}{2} \sqrt{d}$
3	3	205	$\frac{43}{2}+\frac{3}{2} \sqrt{d}$
5	5	21	$\frac{5}{2}+\frac{1}{2} \sqrt{d}$
7	7	805	$\frac{1447}{2}+\frac{51}{2} \sqrt{d}$
3	2	37	$6+\sqrt{d} \equiv$
7	2	101	$10+\sqrt{d} \equiv$
6	1	13	$\frac{3}{2}+\frac{1}{2} \sqrt{d}$
6	5	53	$\frac{7}{2}+\frac{1}{2} \sqrt{d}$
3	1	29	$\frac{5}{2}+\frac{1}{2} \sqrt{d}$
7	5	5	$\frac{1}{2}+\frac{1}{2} \sqrt{d}$

Table A.6: Examples of $\varepsilon_{0} \equiv x+y \zeta_{3} \bmod 8$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 5$ $\bmod 8$

A. $4 \quad d \equiv 7 \bmod 8$

$a \bmod 8$	$b \bmod 8$	d	γ
0	1	399	$-32+\sqrt{d}$
0	3	791	$-88+3 \sqrt{d}$
0	5	791	$88-3 \sqrt{d}$
0	7	399	$32-\sqrt{d}$
4	1	1023	$292+9 \sqrt{d}$
4	3	1239	$388+11 \sqrt{d}$
4	5	1239	$-388-11 \sqrt{d}$
4	7	1023	$-292-9 \sqrt{d}$
1	0	799	$1585+56 \sqrt{d}$
7	0	799	$-1585-56 \sqrt{d}$
1	4	399	$241+12 \sqrt{d}$
7	4	399	$-241-12 \sqrt{d}$

Table A.7: Examples of $\gamma=a+b \sqrt{d}$ with $(\gamma)=I^{4}$ for some ideal I of order 4 in \mathcal{O}_{K} for $d \equiv 7 \bmod 8$

$a \bmod 8$	$b \bmod 8$	d	ε_{0}
0	1	31	$1520+273 \sqrt{d}$
0	3	7	$8+3 \sqrt{d}$
0	5	23	$24+5 \sqrt{d}$
0	7	47	$48+7 \sqrt{d}$
4	1	15	$4+\sqrt{d}$
4	3	87	$28+3 \sqrt{d}$
4	5	231	$76+5 \sqrt{d}$
4	7	447	$148+7 \sqrt{d}$
1	0	791	$225+8 \sqrt{d}$
7	0	1271	$32799+920 \sqrt{d}$
1	4	39	$25+4 \sqrt{d}$
7	4	95	$39+4 \sqrt{d}$

Table A.8: Examples of $\varepsilon_{0}=a+b \sqrt{d}$, the fundamental unit in \mathcal{O}_{K} for $d \equiv 7 \bmod 8$

Bibliography

[1] D. Hubbard and L. Washington. Kummer generators and lambda invariants. J. Number Theory, 130(1):61-81, January 2010.
[2] S. Lang. Algebra. Addison-Wesley, 2nd edition, 1984.
[3] L. Washington. Introduction to Cyclotomic Fields. Springer-Verlag, 2nd edition, 1997.

