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Let F0 = Q(
√
−d), K0 = Q(

√
d), and L0 = Q(

√
d, i) with d a square-free

positive integer such that 2 - d. Let Lj = L0(ζ22+j) so that L0 ⊂ L1 ⊂ · · · ⊂
⋃
j Lj

is the cyclotomic Z2-extension of L0. We determine when fourth roots of certain

elements of K0 generate unramified extensions of Lj. In particular, for elements

of K0 that are relatively prime to 2 and are generators of principal ideals that are

fourth powers, we give explicit congruence conditions under which the fourth root of

the element gives an unramified extension. For any such element γ, we show that if

there is some j such that Lj(γ
1/4)/Lj is unramified, then L2(γ

1/4)/L2 is unramified.

We also show that when (2) is split in F0, L2(γ
1/4)/L2 is unramified for any such γ.

This result is analogous to a result by Hubbard and Washington in which

they work with the cyclotomic Z3-extension of Q(
√
−d, ζ3) when 3 - d and consider

extensions generated by cube roots of elements in Q(
√

3d). However, many more

technical problems arise in the present work because the degree of the extension

Lj/Kj is not relatively prime to the degrees of the extensions being generated.



In order to prove our main results, we also give a congruence condition, which,

for any number field K containing i and for any element γ ∈ K with γ relatively

prime to 2 and γ a generator of an ideal that is a fourth power, dictates whether or

not adjoining a fourth root of γ to K gives an unramified extension.
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Chapter 1: Background

Let d ∈ Z be square-free and positive. In [1], the authors work with the

cyclotomic Z3-extensions of F0 = Q(
√
−d), K0 = Q(

√
3d), and L0 = Q(

√
d, ζ3).

Taking Bj to be the jth level of the cyclotomic Z3-extension of Q, they write Fj =

F0Bj, Kj = K0Bj, and Lj = L0Bj.

Q

K0

K1

L0

L1

F0

F1

Q(
√
−d) Q(

√
3d)= =

Figure 1.1: Cyclotomic Z3-extensions of Q(
√
−d), Q(

√
d), and Q(

√
d, ζ3)

For certain conditions on d and on the class group of K0, they note that as

we go up the tower of fields in the cyclotomic Z3-extension of F0, we find that there

are unramified extensions of degree 3. This suggests a natural question: what are

those unramified extensions? After adjoining a cube root of unity to Fj to get Lj,

they show that many of these unramified extensions can be generated by cube roots
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of elements of K0. Restricting to the case that j > 0 and d ≡ 2 mod 3 (so (3) splits

in F0 = Q(
√
−d) and in L0), they show that Lj(ε

1/3
0 )/Lj is unramified when ε0 is

the fundamental unit of K0 and that Lj(γ
1/3)/Lj is unramified when (γ) is a cube

of an order-3 ideal. Explicitly, their result as stated in [1] is:

Theorem 1.0.1. Let d ≡ 2 mod 3 and let ε0 be the fundamental unit of K0 =

Q(
√

3d). Let r be the 3-rank of the class group of K0 and let A1 be the 3-part

of the class group of F1. Then rank(A1) ≥ r + 1. Let I1, . . . , Ir represent inde-

pendent ideal classes of order 3 in K0, and write I3i = (γ) with γ ∈ K0. Let

L1 = Q(
√
d,
√

3d, ζ9).Then

L1(ε
1/3
0 , γ1/3, . . . , γ1/3r )/L1

is an everywhere unramified extension of degree 3r+1.

Some of these generators may also give an unramified extension of L0, but all

of them give unramified extensions of L1.

At a high level, we would like to prove something like an analogue to this result,

but for degree-2 extensions of a cyclotomic Z2-extension of F0 rather than degree-3

extensions of the cyclotomic Z3-extension of F0. If we want such an analogue, we

must first determine what K0 and L0 should be. For the Z3-extension, the role of

the L-tower is essentially to add ζ3 to the fields of the F -tower. This ensures that

the degree-3 extensions of fields of the L-tower are generated by the cube root of

some element of the field being extended.

If we are interested in degree-2 extensions of fields in the Z2-extension of F0,

this step is unnecessary because F0 already has a primitive square root of unity.
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It is natural, then, to take Lj = Fj for all j. In such a setup, the generators of

the unramified extensions of Fj are not particularly interesting. We know that any

such generator must be the square root of a non-square element in Fj. Moreover, if

γ1/2 is going to generate an unramified degree-2 extension, we must have (γ) = I2

for some ideal I of Fj. To see this, write (γ) = ℘a11 ℘
a2
2 · · ·℘ann . Then (γ1/2) =

℘
a1/2
1 ℘

a2/2
2 · · ·℘an/2n in Fj(γ

1/2). If any of the ais are odd, then the corresponding ℘i

must ramify because this is an integral ideal. Since the extension is unramified, this

is impossible, so all of the exponents must be even. This allows us to write (γ) as

I2 in Fj. So in this case, we do not need to resort to a K-tower or an L-tower to

understand the generators for the Hilbert 2-class field of Fn.

It turns out that a more interesting case, and one that more closely parallels

Theorem 1.0.1, is to look at degree-4 extensions of the L-tower. In this case, we

adjoin a primitive fourth root of unity to the F -tower to get the L-tower, so we take

K0 = Q(
√
d) and L0 = F0(i).

Q

K0

K1

L0

L1

F0

F1

Q(
√
−d) Q(

√
d)= =

Figure 1.2: Cyclotomic Z2-extensions of Q(
√
−d), Q(

√
d), and Q(

√
d, i)
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This means that degree-4 extensions of the L-tower are Kummer extensions

and are generated by fourth roots of elements in the base field. This is exactly

the scenario we explore in this paper. In particular, for d odd and for all j, when

γ ∈ K0 with γ relatively prime to 2,
√
γ 6∈ K0, and (γ) = I4 for some ideal I of OK0 ,

we establish exactly when Lj(γ
1/4)/Lj is unramified based on simple congruence

conditions on γ. Since ε0 satisfies all of those criteria for γ, the result includes ε0.

Combining and condensing these results, we have the following theorem, which

is the main result of the paper:

Theorem 1.0.2. Let γ ∈ OK0 be relatively prime to 2 and such that (γ) = I4 for

some ideal I of OK0.

When d ≡ 3 mod 4, write γ = a+b
√
d with a, b ∈ Z. Then, for all j ≥ 2, Lj(γ

1/4)/Lj

is unramified iff a ≡ 0 mod 4 or b ≡ 0 mod 4.

When d ≡ 1 mod 8, write γ = a+b
√
d with a, b ∈ Z. Then, for all j ≥ 2, Lj(γ

1/4)/Lj

is unramified iff a ≡ 0 mod 8 or b ≡ 0 mod 8.

When d ≡ 5 mod 8, write γ ≡ a + bz mod 8 with a, b ∈ Z and z = −1+k
√
d

2
where

k ∈ Z is such that k2d ≡ −3 mod 64. Then for all j ≥ 1, Lj(γ
1/4)/Lj is unramified

iff (a, b) ∈ {±(0, 1),±(1, 0),±(1, 1)}.

Moreover, if
√
γ 6∈ K0, these extensions are never trivial, and, in that case, if d 6≡ 7

mod 8 and the extension is unramified, then it is degree 4.

If I1, . . . , In represent independent ideal classes of order 4 in K0 with I4j = (γj) and

γj satisfying the constraints above, then the 2-rank of Lj(ε
1/4
0 , γ

1/4
1 , . . . , γ

1/4
n )/Lj is

n+ 1.

Similarly to Theorem 1.0.1, when (2) is split in F0, we find that the fourth
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root of any such γ generates an unramified extension of Lj for large enough j. In

this case, though, we may have to wait until L2 before the extension is unramified.

When (2) is not split in F0, some values for γ result in Lj(γ
1/4)/Lj being ramified

for all j. Also note that the independence result does not allow us to say that

the extension has degree 4n+1. Although none of the degree-4 extensions can totally

collapse, some could be degree 2 rather than degree 4 to begin with, or could become

degree 2 rather than degree 4 when combined with the other extensions.

Along the way to proving this result, we give a somewhat more complicated

congruence condition, which, for any number field K containing i and for any ele-

ment γ ∈ K with γ relatively prime to 2, dictates whether adjoining a fourth root

of γ to K gives an unramified extension.

We also prove everything necessary to give the following result regarding ad-

joining square roots:

Theorem 1.0.3. Let γ ∈ OK0 be relatively prime to 2 and such that (γ) = I4 for

some ideal I of OK0. Then for j ≥ 1, Lj(γ
1/2)/Lj is ramified iff d ≡ 5 mod 8

and Norm(γ) = −1. Moreover, when Lj(γ
1/2)/Lj is ramified, it is ramified at both

primes above (2).

Proof. We see in Proposition 4.1.3, Proposition 4.2.2, and Proposition 4.4.2 that

when d is not 5 mod 8, L1(γ
1/2)/L1 is unramified. When d ≡ 5 mod 8, combining

Lemma 4.3.1 and Proposition 4.3.2 with norm calculations gives the result.

For several reasons, looking at degree-2 and degree-4 extensions of fields in

the cyclotomic Z2-extension of F0 ends up being quite different from looking at
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degree-3 extensions of fields in the cyclotomic Z3-extension. One of these reasons

is that the degree of the extensions we are studying is not relatively prime to the

degree of Lj/Fj. In the context of the Z3-extension, any degree-3 extension of Fj is

guaranteed to lift to an extension of Lj of the same degree. In particular, non-trivial

extensions are guaranteed to lift to non-trivial extensions. For degree-2 and degree-4

extensions of the Z2-extension, that is not guaranteed because Lj/Fj might absorb

some or all of the extension of Fj that is being lifted. Still, if there are multiple

independent non-trivial extensions of Fj, all but at most one of them must lift to

non-trivial extensions of Lj.

Because our primary focus is degree-4 extensions, another key difference is that

3 is prime and 4 is not. In the next chapter, we begin by giving our fundamental

tool for showing whether an extension is unramified or not. The standard method

works only for extensions generated by adjoining pth roots to a field, where p is

prime. To handle extensions generated by fourth roots, we have to do some extra

work to see how to apply this method twice.

1.1 Basics

Before progressing to our results, we establish some notation that we use

throughout the paper:

• OK is the ring of integers of a number field K

• d is an odd integer greater than 1

• F0 = Q(
√
−d)
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• K0 = Q(
√
d)

• Lj = L0(
√
d, ζ22+j), so L0 = Q(

√
d, i)

• ε0 is the fundamental unit of OK0

• ζn is a primitive nth root of unity

• v℘(α) is the ℘-adic valuation of α, and v(α) is the 2-adic valuation of α.

We also note some facts that are relevant to the scenario described and that

we use repeatedly throughout the rest of the paper. The first two of these are easy

generalizations of lemmas in [3] and we follow the proofs there closely.

Lemma 1.1.1. Let n be a positive integer and K be a field containing ζ2n. Let r

and s be odd integers. Then (ζr2n − 1)/(ζs2n − 1) is a unit in OK.

Proof. Because r and s are both odd, we can write r ≡ st mod 2n for some t. Then

we have

ζr2n − 1

ζs2n − 1
=
ζst2n − 1

ζs2n − 1
= 1 + ζs2n + · · ·+ ζ

s(t−1)
2n ∈ OK .

The exact same argument shows that (ζs2n − 1)/(ζr2n − 1) ∈ OK .

Lemma 1.1.2. Let n be a positive integer and K be a field containing ζ2n. Then

(1− ζ2n)2
n−1

= (2) as ideals in OK.

Proof. Since X2n−1
+ 1 = Φ2n(X) =

∏2n−1
j=1;j odd(X − ζj2n), we can take X = 1 to

see that 2 =
∏2n−1

j=1;j odd(1 − ζj2n). Our previous lemma shows that, as ideals, each

of the terms in the product on the right are equal, so we get the equality of ideals

(2) = (1− ζ2n)φ(2
n) = (1− ζ2n)2

n−1
as desired.

Corollary 1.1.3. Let n be a positive integer and K be a field containing ζ2n. If

7



n ≥ 1, v2(1− ζ2n) = 2−(n−1). If n ≥ 2, v2(1 + ζ2n) = 2−(n−1).

Proof. The first claim follows immediately from the previous lemma. For the second

claim, note that 1 + ζ2n = (1− ζ2n) + 2ζ2n . The valuation of the final term is 1. For

n ≥ 2, v2(1− ζ2n) < 1, so we have v2(1 + ζ2n) = v2(1− ζ2n).

Corollary 1.1.4. Let n > 1 be an integer and K be a field containing ζ2n+1. As

ideals in OK, (1 + ζ2n+1)2 = (1 + ζ2n).

Proof. This follows immediately from the lemma above.

Lemma 1.1.5. K1 = K0(
√

2).

Proof. We know that ζ8 ∈ L1. This means that
√

2 = ζ78 (1 + i) ∈ L1. But
√

2 is

real, so must be in the maximal real subfield of L1, namely K1. Since we always

take d odd, we do not have
√

2 ∈ K0, so K1 = K0(
√

2).

Lemma 1.1.6. Let K be a number field such that there is only one prime above 2.

Let n be a positive integer and x, y ∈ OK be relatively prime to 2. If x2 ≡ y2 mod

2n+1, then x ≡ ±y mod 2n.

Proof. We can write (x−y)(x+y) = x2−y2 ≡ 0 mod 2n+1. The difference between

the two factors is 2y. Since y is relatively prime to 2, one of the two factors must

not be divisible by any power of (the prime above) 2 greater than 2 itself. Since

there is only one prime above 2, the other factor must be divisible by 2n, so x ≡ ±y

mod 2n as desired.

This is not necessarily true if (2) has split somewhere in K/Q. For example,

let (2) = ℘1℘2. Then we could have (x− y) divisible by ℘n1℘2 and (x+ y) divisible

8



by ℘1℘
n
2 . If these are the largest powers of ℘j dividing the two factors, then x ≡ y

mod 2, but not mod 2n for any n > 1. Still, x2− y2 is divisible by ℘n+1
1 ℘n+1

2 = 2n+1.

When (2) has more than one prime above it, we can say something similar as long

as we are working mod small enough powers of 2:

Lemma 1.1.7. Let K be a number field, let ℘ be a prime ideal in OK, and let n be a

positive integer with ℘n | (2). Let x, y ∈ OK. If x2 ≡ y2 mod ℘2n, then x ≡ y ≡ −y

mod ℘n.

Proof. As in the previous proof, we can write (x − y)(x + y) ≡ 0 mod ℘2n. These

two factors are congruent to each other mod 2. Since ℘n | 2, this means either of

the factors is divisible by ℘n iff the other is. Thus, both factors must be divisible

by ℘n for their product to be divisible by ℘2n.

9



Chapter 2: Machinery

Throughout the paper, our approach for showing whether adjoining something

to Lj gives an unramified extension is to apply Exercise 9.3 part c from [3]. Because

we rely on this exercise so heavily, we state it here, modified to be specific to the

situations we care about.

From the proof, it is easy to see that K(α1/2) is unramified at ℘ iff ∃µ ∈ OK

such that µ2 ≡ α mod ℘2a. Also note that although we have stated the result

globally, the proof works just as well when K is the completion of a number field.

This is true for the rest of our results as well. We are particularly interested in the

global results, but in proving these, we will often need temporarily to work locally

and then use the local result to deduce a global result. This situation will arise when

the congruence class of
√
d mod some power of 2 depends on the completion. When

we derive global results from local results, we rely on the fact that an extension is

ramified at a prime iff it is ramified in the completion at that prime.

Proposition 2.0.8. Let K be a number field that is totally complex, and let α ∈ OK

be relatively prime to 2 and not a square. Let ℘1, . . . , ℘n be the primes above 2 in

OK, and let aj be the largest integer such that ℘
aj
j | 2. Then K(α1/2)/K is unramified

at all primes iff (α) = I2 for some ideal I of K and for 1 ≤ j ≤ n, ∃µj ∈ OK such

10



that µ2
j ≡ α mod ℘

2aj
j .

Proof. (⇒) To see that (α) must be the square of an ideal, write (α) = ρb11 ρ
b2
2 · · · ρbrr .

Then (
√
α) = ρ

b1/2
1 ρ

b2/2
2 · · · ρbr/2r . If any of the bjs are odd, then to make this an inte-

gral ideal, the corresponding ρj must be ramified. Since the extension is unramified,

this is impossible, so all of the exponents must be even.

The proof that α is a square mod ℘
2aj
j in OK is identical for all j, so we will

simplify notation by simply using ℘, a, and µ. Let c be the largest power of ℘ such

that ∃x with x2 ≡ α mod ℘c. We will show by contradiction that c ≥ 2a, so assume

that c < 2a. We first claim that c is odd.

If c = 2b, then let w ∈ OK be such that v℘(w) = 1. Also, let y ∈ OK be

such that y2 ≡ α−µ2
w2b mod ℘. We know that such a y exists because squaring is the

Frobenius automorphism of OK/℘OK . Then (µ+ wby)2 − α = (µ2 − α) + 2µwby +

w2by2. Since 2a > c = 2b, we have a > b. Since both a and b are integers, we have

v℘(2µwby) = a + b ≥ 2b + 1. Thus (µ + wby)2 − α ≡ (µ2 − α) + w2by2 mod ℘2b+1.

By construction, w2by2 ≡ α−µ2 mod ℘2b+1, so (µ+wby)2−α ≡ 0 mod ℘2b+1. This

contradicts the fact that c = 2b is the largest power of ℘ such that α is a square

mod ℘c, so c must be odd.

If we have µ2 ≡ α mod ℘c, we can write (µ − α1/2)(µ + α1/2) ≡ 0 mod ℘c.

Since we have assumed c < 2a, one of the two factors must have ℘-adic valuation

less than a. Without loss of generality, assume v℘(µ− α1/2) < a. Since µ + α1/2 =

µ− α1/2 + 2α1/2 and v℘(2α1/2) = a, we must have v℘(µ− α1/2) = v℘(µ+ α1/2). But

then c = 2v℘(µ − α1/2), which is even. This is a contradiction, so we must have

11



c ≥ 2a as desired.

(⇐) First we show that (α) = I2 implies that K(α1/2)/K is unramified away

from (2). The completion of OK at any prime is a principal ideal domain, so I

becomes principal. We write it I = (γ). This means that we have α = uγ2 for some

℘-adic unit. Then α1/2 = u1/2γ, so in the completion, the extension is generated by

u1/2. The relative different for this extension is generated by (2u1/2) = (2), so only

primes above 2 can ramify.

Now we show that the extension is unramified at ℘j for 1 ≤ j ≤ n. Again,

the calculations are the same for all j, so we will use ℘, a, and µ. Consider the

polynomial f(X) = (2X+µ)2−α
4

= X2 + µX + µ2−α
4

. Clearly f(X) is monic and since

α ≡ µ2 mod 4, each of the coefficients is in OK .

A root β of this polynomial satisfies (2β + µ)2 = α, so we can take α1/2 to

be 2β + µ. This means that K(α1/2)/K = K(β)/K. In particular, they have the

same different. This different must divide f ′(β) = 2β + µ. Since v℘(β) ≥ 1 and µ is

relatively prime to ℘, this different is also relatively prime to ℘. Thus, the extension

is unramified at ℘.

From the proof, it is easy to see that K(α1/2) is unramified at ℘ iff ∃µ ∈ OK

such that µ2 ≡ α mod ℘2a. Also note that this proof works just as well when K is

the completion of a number field. This is true for the rest of our results as well. We

are particularly interested in the global results, but in proving these, we will often

need temporarily to work locally and then use the local result to deduce a global

result. This situation will arise when the congruence class of
√
d mod some power
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of 2 depends on the completion. When we derive global results from local results,

we rely on the fact that an extension is ramified at a prime iff it is ramified in the

completion at that prime.

When adjoining a fourth root, we need to be able to apply Proposition 2.0.8

twice: once for adjoining a square root of some element γ to Lj and once for adjoin-

ing a fourth root of γ to Lj(γ
1/2). To apply this proposition, we need to understand

whether certain elements are squares in the appropriate ring of integers. For the sec-

ond application of the proposition, then, we need to understand the ring of integers

of Lj(γ
1/2).

The following two lemmas allow us to prove easily the fact that we need about

this ring of integers. The resulting corollary shows us that if γ ≡ µ2 mod 4 for some

µ ∈ OLj , then an element of OLj(γ1/2) is a square mod some power of 2 in that ring

iff it is a square mod the same power of 2 in OLj
[
µ+γ1/2

2

]
. The latter ring is easier

to work with because it is easier to characterize its elements.

Lemma 2.0.9. Let K(α) be a quadratic extension of a number field K, with τ the

non-trivial element of Gal(K(α)/K). Let λ ∈ OK(α) be such that λτ −λ is relatively

prime to 2. Then for any n ∈ Z+ and x ∈ OK(α), there is some y ∈ OK [λ] such that

x ≡ y mod 2n.

Proof. Let S be the set of elements in OK that are relatively prime to (2) and let

(R)2 = RS−1 for any ring R containing S. We begin by showing that
(
OK(α)

)
2

=

(OK)2 [λ].

Since (OK)2 is a Dedekind domain with finitely many prime ideals, it must be

13



a principal ideal domain. Since (OK)2 is a P.I.D. and
(
OK(α)

)
2

is finitely generated

over it, we can write
(
OK(α)

)
2

= β1 (OK)2 ⊕ β2 (OK)2. We can also write (OK)2 [λ]

as (OK)2 ⊕ (OK)2 λ. Since (OK)2 [λ] ⊆
(
OK(α)

)
2
, we can write the basis of the

former in terms of the basis of the latter: 1 = aβ1 + bβ2 and λ = cβ1 + dβ2 with

a, b, c, d ∈ (OK)2. Applying τ to both of these equations gives 1 = aβτ1 + bβτ2 and

λτ = cβτ1 + dβτ2 . This gives us the following matrix equation: 1 1

λ λτ

 =

 a b

c d


 β1 βτ1

β2 βτ2

 .

The determinant of the left-most matrix is λτ − λ. We have assumed this to

be relatively prime to 2. This means that the determinant of

 a b

c d

 must also

be prime to 2, which means that we can invert

 a b

c d

 over (OK)2. By writing

 a b

c d


−1 1 1

λ λτ

 =

 β1 βτ1

β2 βτ2

 ,

we can write the βis in terms of 1 and λ with coefficients in (OK)2, so we have that(
OK(α)

)
2
⊆ (OK)2 [λ]. Since we already had the reverse inclusion, we get equality.

Now let x ∈ OK(α). Identifying x with its image under the natural injection,

we can think of x ∈
(
OK(α)

)
2
. We have just seen that this means x ∈ (OK)2 [λ].

This means that there is some m ∈ OK relatively prime to 2 such that xm ∈ OK [λ].

Since m is relatively prime to 2, then for any n, it has an inverse in OK mod 2n,

which we call m−1n . Then mm−1n is 1 mod 2n, so x ≡ xmm−1n mod 2n. Moreover, we

have xm,m−1n ∈ OK [λ], so xmm−1n ∈ OK [λ].
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Now we can apply the previous lemma to a more specific scenario that is

particularly relevant for us. In this more specific situation, we take on two additional

contraints: α is the square root of an element of the base field K, and its square is

a square mod 4 in that field.

Lemma 2.0.10. Let K be a number field with ring of integers OK. Let γ ∈ OK

be relatively prime to 2. If γ ≡ µ2 mod 4 for some µ ∈ OK, then OK
[
µ+γ1/2

2

]
⊆

OK(γ1/2) and, for any n ∈ Z+, every element of the ring of integers of K(γ1/2) is

congruent mod 2n to an element of OK
[
µ+γ1/2

2

]
.

Proof. Write γ = µ2 +4k with k ∈ OK . Then µ+γ1/2

2
satisfies x2−µx−k = 0. Thus,

µ+γ1/2

2
∈ OK(γ1/2). If γ1/2 ∈ OK , this tells us that OK ⊆ OK

[
µ+γ1/2

2

]
⊆ OK(γ1/2) =

OK . This immediately implies that all of these are equal, so OK(γ1/2) = OK
[
µ+γ1/2

2

]
,

and the rest of the lemma is trivially true.

If γ1/2 6∈ OK , then in the notation of Lemma 2.0.9, we can take λ = µ+γ1/2

2
.

Then λτ − λ = µ−γ1/2
2
− µ+γ1/2

2
= −γ1/2. Since γ is relatively prime to 2, −γ1/2 is

as well. Then taking α = γ1/2, the rest of the lemma is exactly the statement of

Lemma 2.0.9.

We can use the previous lemma to prove the following corollary, which gives

us the tool we need to answer whether something is a square mod 4 in OLj(γ1/2).

Corollary 2.0.11. Let K be a number field with ring of integers OK. Let γ ∈ OK

be relatively prime to 2. If γ ≡ µ2 mod 4 for some µ ∈ OK, then α ∈ OK(γ1/2) is a

square mod 2n in OK(γ1/2) iff it is a square mod 2n in OK
[
µ+γ1/2

2

]
.

Proof. If α is a square mod 2n in OK
[
µ+γ1/2

2

]
, it is clearly a square mod 2n in
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OK(γ1/2) because OK
[
µ+γ1/2

2

]
⊆ OK(γ1/2).

If α is a square mod 2n inOK(γ1/2), then write α ≡ x2 mod 2n with x ∈ OK(γ1/2).

The lemma shows that ∃y ∈ OK
[
µ+γ1/2

2

]
such that x ≡ y mod 2n. Thus, we have

α ≡ x2 ≡ y2 mod 2n.

To show whether or not something is a square mod 4 in OK(γ1/2), we examine

what a generic square mod 4 looks like in OK(γ1/2) and then see whether or not our

element can be written in that form. The previous corollary allows us to work in

OK
[
µ+γ1/2

2

]
, where we can easily write down what a square looks like.

The next few results apply Proposition 2.0.8 in OK(γ1/2) using the facts that

we have learned about elements being a square in that ring. They culminate in a

theorem that is our instrument any time we wish to show whether Lj(γ
1/4)/Lj is

ramified or not.

The first of these is similar to the obvious fact that if γ1/2 is a square in

OK(γ1/2) mod 4, then γ is a fourth power mod 4 in the same ring. This proposition

is stronger, though. In it, we show that γ actually has to be a fourth power mod 4

in OK . Before proving this proposition, we need to prove a brief lemma.

Lemma 2.0.12. Let K be a number field with ring of integers OK. Let γ ∈ OK be

relatively prime to 2 with γ1/2 6∈ OK. Let a, b, µ ∈ OK and µ+γ1/2

2
∈ OK(γ1/2). Then

0 ≡ a+ bµ+γ
1/2

2
mod 4 iff a ≡ 0 mod 4 and b ≡ 0 mod 4.

Proof. By assumption, we have 0 ≡ a + bµ+γ
1/2

2
mod 4. We can take the conjugate

of both sides, giving us 0 ≡ a+ bµ−γ
1/2

2
mod 4. If we subtract the latter congruence

from the former, we get bγ1/2 ≡ 0 mod 4. Since γ is relatively prime to 2, this
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means that b ≡ 0 mod 4. Replacing b with 0 in either of the two congruences gives

us a ≡ 0 mod 4.

The other direction is obvious.

Now we are in a position to prove the proposition we mentioned above.

Proposition 2.0.13. Let K be a number field with ring of integers OK. Let γ ∈ OK

be relatively prime to 2 and satisfy γ ≡ µ2 mod 4 for some µ ∈ OK. If γ1/2 is a

square in OK(γ1/2) mod 4, then γ is a fourth power mod 4 in OK.

Proof. If γ1/2 ∈ K, then OK(γ1/2) = OK , so the fact that γ1/2 is a square in OK(γ1/2)

mod 4 means there is some x ∈ OK such that γ1/2 ≡ x2 mod 4. Squaring both sides

gives γ ≡ α4 mod 4. (In fact, in this case, the congruence has to hold mod 8, and

the restriction that γ be relatively prime to 2 is unnecessary.)

Now we assume that γ1/2 is not in K. Corollary 2.0.11 shows that γ1/2 is

a square mod 4 in OK(γ1/2) iff it is a square mod 4 in OK
[
µ+γ1/2

2

]
. An arbitrary

square in OK
[
µ+γ1/2

2

]
is (x+ y µ+γ

1/2

2
)2 with x, y ∈ OK . Expanding this, we get the

following:

(x+ y
µ+ γ1/2

2
)2 = x2 + y2

µ2 + γ + 2µγ1/2

4
+ 2xy

µ+ γ1/2

2

= x2 + y2
2µ2 + 2µγ1/2 + γ − µ2

4
+ 2xy

µ+ γ1/2

2

= x2 + y2
µ2 + µγ1/2

2
+ y2

γ − µ2

4
+ 2xy

µ+ γ1/2

2

= x2 + y2
γ − µ2

4
+ (µy2 + 2xy)

µ+ γ1/2

2
.

Since this is what an arbitrary square in OK
[
µ+γ1/2

2

]
looks like, we now have
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that γ1/2 is a square mod 4 in OK(γ1/2) iff ∃x, y ∈ OK such that we can write

γ1/2 ≡ x2 + y2
γ − µ2

4
+ (µy2 + 2xy)

µ+ γ1/2

2
mod 4.

Subtracting γ1/2 from both sides, we can rewrite this as

0 ≡ x2 + y2
γ − µ2

4
+ µ+ (µy2 + 2xy − 2)

µ+ γ1/2

2
mod 4.

Applying the previous lemma, we find that this congruence is equivalent to the

following two congruences:

x2 + y2
γ − µ2

4
+ µ ≡ 0 mod 4

µy2 + 2xy − 2 ≡ 0 mod 4.

Reducing the second of these congruences mod 2, we see that µy2 ≡ 0 mod 2.

Since γ is relatively prime to 2, µ must be as well, so we have y2 ≡ 0 mod 2. Now if

we look at the first of the two congruences mod 2, we have x2 +µ ≡ 0 mod 2. Since

x2 + µ and x2 − µ differ by a multiple of 2, we get x4 − µ2 = (x2 + µ)(x2 − µ) ≡ 0

mod 4. This gives us γ ≡ µ2 ≡ x4 mod 4 as desired.

We have just seen that if γ1/2 is a square mod 4 in OK(γ1/2), then γ is a fourth

power mod 4 in OK . It is tempting to think that γ also must be a fourth power mod

8, reaching that conclusion by noting that if γ1/2 is a square mod 4 (say, γ1/2 ≡ α2

mod 4), we have (γ1/2 − α2)(γ1/2 + α2) divisible by 8. The problem with this line

of reasoning is that γ1/2 is a square mod 4 in OK(γ1/2) rather than in OK itself. So

this argument tells us only that γ is a fourth power mod 8 in this larger ring.

In fact, γ does not have to be a fourth power mod 8 in OK when γ1/2 is a

square mod 4 in OK(γ1/2). Consider, for example, the case that d = 155. In this
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case, the fundamental unit in OK0 is 249 + 20
√
d ≡ 1 + 4

√
d mod 8. Since d ≡ −1

mod 4, we have
√
d ≡ i mod 2, so ε0 ≡ 1 + 4i mod 8 in OL0 . To determine whether

this is a fourth power mod 8, we need only to consider potential fourth roots mod

2. If we take π = (1 + i) and complete L0 π-adically, then the only such potential

roots are 1 and 1 + (1 + i) ≡ i. The fourth power of both of these is 1, which is not

congruent to 1 + 4i mod 8. Since it is not a fourth power mod 8 in the completion,

it must not be one in L0. Our results show that ε
1/2
0 is a square mod 4 in O

L0(ε
1/2
0 )

.

Thus, γ being a fourth power mod 8 in OK is not necessary for γ1/2 being a square

mod 4 in OK(γ1/2).

On the other hand, if i ∈ K and there is only one prime above 2, it is easy to

see that if γ is a fourth power mod 8 in OK , then γ1/2 is a square mod 4 in OK(γ1/2).

(We see in the next result that this is also true when (2) is split.) This is because

if γ ≡ α4 mod 8, we have γ1/2 ≡ ±α2 mod 4, so γ1/2 is a square mod 4.

Here, we see that a necessary and sufficient condition is stronger than requiring

γ to be a fourth power mod 4 and is weaker than requiring γ to be a fourth power

mod 8.

Proposition 2.0.14. Let K be a number field with ring of integers OK with i ∈ K.

Let γ ∈ OK be relatively prime to 2 and satisfy γ ≡ α4 mod 4 for some α ∈ OK.

Then γ1/2 is a square in OK(γ1/2) mod 4 iff there exists β ∈ OK such that the

following congruence is satisfied:

γ ≡ α4(1 + 4i(1 + β)(1 + βi)) mod 8.

Proof. As in the previous proposition, if γ1/2 ∈ K, then OK(γ1/2) = OK . Then γ1/2
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is a square in OK(γ1/2) mod 4 means there is some x ∈ OK such that γ1/2 ≡ x2 mod

4. Then γ − x4 = (γ1/2 − x2)(γ1/2 + x2) ≡ 0 mod 8, because the two factors differ

by a multiple of 2. If we take α = x and β = 0, then γ can be written in the desired

form. On the other hand, if we can write γ as α4(1 + 4i(1 + β)(1 + βi)), take α−1

to be the inverse of α mod 4 and consider ((α+αβ(1 + i)) +α−1(1 + i)α
2+γ1/2

2
)2, we

find that this is congruent to α2 + 2α2β(1 + i) + 2iα2β2 + 2iα−2 γ−α
4

4
+ 2α

2+γ1/2

2
=

α2 + 2α2β(1 + i) + 2iα2β2 + 2iα−2 γ−α
4

4
+ α2 + γ1/2 mod 4. For this to be γ1/2 mod

4, we need 2α2 + 2α2β(1 + i) + 2iα2β2 + 2iα−2 γ−α
4

4
to be 0 mod 4. So we need to

show that 2iα−2 γ−α
4

4
≡ 2α2 + 2α2β(1 + i) + 2iα2β2 mod 4. If we multiply both sides

by 2iα2, this is equivalent to γ − α4 ≡ 4iα4 + 4α4β(1 + i) + 4α4β2 mod 8. This is

equivalent to γ ≡ α4(1 + 4i+ 4β(1 + i) + 4β2) mod 8. But this is the form that we

have already assumed for γ, so this is true. Thus, the two conditions are equivalent

when γ1/2 ∈ K.

If γ1/2 6∈ K, in our proof of Proposition 2.0.13, we saw that γ1/2 is a square

mod 4 in OK(γ1/2) mod 4 iff ∃x, y ∈ OK satisfying

x2 + y2
γ − µ2

4
+ µ ≡ 0 mod 4

µy2 + 2xy − 2 ≡ 0 mod 4.

In this case, we have taken µ to be α2, so γ1/2 being a square mod 4 in OK(γ1/2) mod

4 is equivalent to the existence of x, y ∈ OK satisfying

x2 + y2
γ − α4

4
+ α2 ≡ 0 mod 4

α2y2 + 2xy − 2 ≡ 0 mod 4.

The same argument we used in Proposition 2.0.13 shows that y2 is divisible
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by 2. Since i ∈ K, this means that y is divisible by (1 + i). We write y = z(1 + i)

with z ∈ OK . This lets us rewrite the two congruences as

x2 + 2z2i
γ − α4

4
+ α2 ≡ 0 mod 4

2α2z2i+ 2xz(1 + i) ≡ 2 mod 4.

We can divide the second of the two congruences by 2 to get

x2 + 2z2i
γ − α4

4
+ α2 ≡ 0 mod 4

α2z2i+ xz(1 + i) ≡ 1 mod 2.

Now note that looking at the first congruence mod 2 gives α2 ≡ x2 mod 2.

This means that α ≡ x mod (1 + i), so we can replace xz(1 + i) with αz(1 + i) in

the second congruence. This allows us to rewrite the two congruences as

x2 + 2z2i
γ − α4

4
+ α2 ≡ 0 mod 4

(αz)2i+ (αz)(1 + i) ≡ 1 mod 2.

Note that in the second congruence, we can move the 1 to the left-hand side

and factor to get (1 + αz)(1 + αzi) ≡ 0 mod 2. At least one of these factors must

be divisible by 1 + i and the two factors differ by a multiple of 1 + i, so both factors

are divisible by 1 + i. (The argument for this is essentially identical to the proof of

Lemma 1.1.7.) In particular, we have αz ≡ 1 mod 1 + i. Thus, the second of these

two congruences implies that αz ≡ 1 mod 1 + i. On the other hand, if αz ≡ 1 mod

1 + i, that congruence is certainly satisfied. Taken together, these two implications

mean that αz ≡ 1 mod 1 + i is equivalent to (αz)2i+ (αz)(1 + i) ≡ 1 mod 2.
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Thus, satisfying the two congruences above is equivalent to satisfying the fol-

lowing two congruences:

x2 + 2z2i
γ − α4

4
+ α2 ≡ 0 mod 4

αz ≡ 1 mod (1 + i).

Moreover, the second congruence implies that z ≡ α−1 mod (1 + i), which implies

that z2 ≡ α−2 mod 2. (This is because (z−α−1) and (z+α−1) are both divisible by

(1 + i).) Multiplying the latter congruence by 2 gives 2z2 ≡ 2α−2 mod 4. Replacing

2z2 with 2α−2 in the first congruence gives this equivalent pair of congruences:

x2 + 2α−2i
γ − α4

4
+ α2 ≡ 0 mod 4

αz ≡ 1 mod (1 + i).

Since γ is relatively prime to 2, α is as well. This means that we know that

α has an inverse mod (1 + i). But now that z has been removed from the first con-

gruence, this is all that the second congruence is saying. So under our assumptions,

the existence of an x and z satisfying both of the above congruences is equivalent

to the existence of an x satisfying the single congruence:

x2 + 2α−2i
γ − α4

4
+ α2 ≡ 0 mod 4.

We can rewrite this as

2α−2i
γ − α4

4
≡ −(x2 + α2) mod 4.

Now multiplying both sides by −2iα2 and moving the α4 to the right-hand

side gives the equivalent

γ ≡ α4 + 2iα2(x2 + α2) mod 8.
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Since x2 ≡ α2 mod 2, we have x ≡ α mod (1 + i), so write x = α + b(1 + i) to get

γ ≡ α4 + 2iα2(α2 + 2b(1 + i)α + 2ib2 + α2) mod 8

≡ α4 + 4iα4(1 + b(1 + i)α−1 + ib2α−2) mod 8

≡ α4(1 + 4i(1 + b(1 + i)α−1 + ib2α−2)) mod 8.

Since bα−1 is relevant only mod 1+i and α is relatively prime to 2, multiplying

the set of possible b values by α−1 permutes, but does not change, that set of possible

values. Thus, the existence of a b that satisfies this congruence is equivalent to the

existence of a β satisfying the following congruence:

γ ≡ α4(1 + 4i(1 + β(1 + i) + iβ2)) mod 8

≡ α4(1 + 4i(1 + β)(1 + βi)) mod 8.

We often find it more convenient to work with a slightly different form of the

statement above:

Corollary 2.0.15. Let K be a number field with ring of integers OK. Let γ ∈ OK

be relatively prime to 2 and satisfy γ ≡ α4 mod 4 for some α ∈ OK. Then γ1/2 is a

square in OK(γ1/2) mod 4 iff there exists δ ∈ OK such that the following congruence

is satisfied:

γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8.

Proof. We have just seen that γ1/2 is a square in OK(γ1/2) mod 4 iff there is some

β ∈ OK satisfying γ ≡ α4(1 + 4i(1 + β)(1 + βi)) mod 8. Now we rewrite this

congruence after a change of variables of δ = 1 + β.

23



With δ = 1 + β, we have 1 + βi ≡ 1 + i + i + βi = (1 + i) + iδ mod 2. Then

the congruence can be written

γ ≡ α4(1 + 4iδ((1 + i) + δi)) mod 8.

Distributing the 4iδ (and ignoring the signs of terms divisible by 4) results in

γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8.

We can combine these results with Proposition 2.0.8 to get the following the-

orem:

Theorem 2.0.16. Let K be a number field with ring of integers OK with i ∈ K.

Let γ ∈ OK be relatively prime to 2 be such that (γ) = I4 for some ideal I in OK

and satisfies γ ≡ µ2 mod 4 for some µ ∈ OK. Then the following are equivalent:

1. K(γ1/4)/K is unramified

2. ∃α, β ∈ OK such that γ ≡ α4(1 + 4i(1 + β)(1 + βi)) mod 8

3. ∃α, δ ∈ OK such that γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8

4. ∃α ∈ OK such that γ ≡ α4 mod 4 and, for any such α, ∃β ∈ OK satisfying

γ ≡ α4(1 + 4i(1 + β)(1 + βi)) mod 8

5. ∃α ∈ OK such that γ ≡ α4 mod 4 and, for any such α, ∃δ ∈ OK satisfying

γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8.

Proof. K(γ1/4)/K is unramified iff K(γ1/2)/K and K(γ1/4)/K(γ1/2) are both un-

ramified. Because (γ) = (I2)2 and (γ1/2) = I2, we can apply Proposition 2.0.8. This

tells us that both of those extensions are unramified iff γ is a square mod 4 in K
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and γ1/2 is a square mod 4 in K(γ1/2). We have assumed that γ is a square mod 4

in K, so in our case, K(γ1/4)/K is totally unramified iff γ1/2 is a square mod 4 in

K(γ1/2).

Proposition 2.0.8, Proposition 2.0.13 and Proposition 2.0.14 show that 1 im-

plies 4. Proposition 2.0.8, Proposition 2.0.13 and Corollary 2.0.15 show that 1

implies 5. It is obvious that 4 implies 2 and 5 implies 3. Proposition 2.0.8 and

Proposition 2.0.14 together show that 2 implies 1 and Proposition 2.0.8 and Corol-

lary 2.0.15 shows that 3 implies 1. Thus, all five are equivalent.

The rest of our results come from applications of this theorem.
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Chapter 3: Ramification Implications of Particular Congruence Con-

ditions

Our main results give the generators of some unramified extensions of Lj for

various j. In particular, for d ≡ 1 mod 2 and for all j, we give necessary and

sufficient conditions for γ1/4 to give an unramified extension of Lj when γ ∈ K0 is

such that γ is relatively prime to 2,
√
γ 6∈ K0, and (γ) = I4 for some ideal I of OK0 .

Note that when γ = ε0, the fundamental unit of K0, these last three conditions are

satisfied. We also occasionally point out some additional restrictions that arise in

this special case.

Each congruence class of d mod 8 (with d ≡ 1 mod 2) is handled separately,

but before we delve into each of these congruence classes, it is useful to establish

the ramification behavior associated with the fourth roots of certain values.

3.1 Congruences resulting in unramified extensions

The first congruences we deal with are ones that have fourth roots that, at

least somewhere in the L-tower, result in unramified extensions. The proofs that

result in unramified extensions are very straightforward. They consist of providing

an α and β (or δ) that satisfy Proposition 2.0.14 or Corollary 2.0.15. The proofs

26



also show that, for some low values of j, adjoining some of these fourth roots results

in a ramified extension. These aspects of the proofs are slightly more complicated.

Lemma 3.1.1. Let γ ∈ OL0 be such that γ ≡ 1 mod 8. Then Lj(γ
1/4)/Lj is

unramified for all j ≥ 0.

Proof. We can take α = 1 and δ = 0 to have γ be of the proper form to satisfy

statement 3 of Theorem 2.0.16. This tells us that Lj(γ
1/4)/Lj is unramified for all

j ≥ 0.

The next lemma we would like to prove is one that shows what the ramification

behavior is when γ ≡ −1 mod 8. In that case, the extension of L0 turns out to be

ramified, which requires a little more work to prove. We need to reuse the argument

for this in other lemmas, so we find it useful to prove first a helper lemma.

Lemma 3.1.2. Let γ ∈ OL0 be such that L0((−γ)1/4)/L0 is unramified. Then

L0(γ
1/4)/L0 is ramified and Lj(γ

1/4)/Lj is unramified for all j ≥ 1.

Proof. Since L0((−γ)1/4)/L0 is unramified and unramified extensions lift to unram-

ified extensions, it follows that Lj(γ
1/4)/Lj = Lj((−γ)1/4)/Lj is unramified for all

j ≥ 1.

Note that L0(γ
1/4, ζ8)/L0(γ

1/4) is the lift of L0((−γ)1/4)/L0(γ
1/2). That ex-

tension is a subextension of L0((−γ)1/4)/L0, which we have assumed to be unrami-

fied. Since unramified extensions lift to unramified extensions, L0(γ
1/4, ζ8)/L0(γ

1/4)

must be unramified. But L0(γ
1/4, ζ8)/L0 cannot be unramified because it contains

L0(ζ8)/L0, which ramifies above 2 ((1 + i) = (1 + ζ8)
2). Thus L0(γ

1/4)/L0 must be

ramified.
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L0

L0(γ
1/2)

L0((−γ)1/4)

L0(γ
1/4, ζ8)

L0(γ
1/4)

Figure 3.1: L0(γ
1/4, ζ8)/L0(γ

1/4) is the lift of L0((−γ)1/4)/L0(γ
1/2)

Combining Lemma 3.1.1 and Lemma 3.1.2 immediately gives us:

Lemma 3.1.3. Let γ ∈ OL0 be such that γ ≡ −1 mod 8. Then L0(γ
1/4)/L0 is

ramified, and Lj(γ
1/4)/Lj is unramified for all j ≥ 1.

We can generalize these slightly to the following pair of lemmas where the

second one follows immediately from the first and Lemma 3.1.2.

Lemma 3.1.4. Let γ ∈ OL0 be such that γ ≡ 1 + bi with b ∈ Z satisfying b ≡ 0 mod

4. Then Lj(γ
1/4)/Lj is unramified for all j.

Proof. If b ≡ 0 mod 8, this is just Lemma 3.1.1.

If b ≡ 4 mod 8, then we have 1 + 4i. Now let α = δ = 1 and note that

α4(1 + 4(1 + i)δ + 4δ2) = (1 + 4 + 4i+ 4) ≡ 1 + 4i mod 8. Thus, the equivalence of

1 and 3 in Theorem 2.0.16 proves the result.

Lemma 3.1.5. Let γ ∈ OL0 be such that γ ≡ −1 + bi with b ∈ Z satisfying b ≡ 0

mod 4. Then L0(γ
1/4)/L0 is ramified and Lj(γ

1/4)/Lj is unramified for all j ≥ 1.

Now we deal with a scenario that requires us to show that both L0(γ
1/4)/L0

and L1(γ
1/4)/L1 ramify in a situation where L0((−γ)1/4)/L0 ramifies as well. This
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requires a little more work than the lemmas we have proved so far in this chapter.

Lemma 3.1.6. Let γ ∈ OL0 be such that γ ≡ a ± i with a ∈ Z satisfying a ≡ 0

mod 4. Then L0(γ
1/4)/L0 and L1(γ

1/4)/L1 are both ramified, while Lj(γ
1/4)/Lj is

unramified for j ≥ 2.

Proof. First, we show that adjoining γ1/4 to L0 or L1 gives a ramified extension.

Because unramified extensions lift to unramified extensions, it is sufficient to show

that L1(γ
1/4)/L1 is ramified.

Theorem 2.0.16 tells us that it is enough to show that γ is not a fourth power

mod 4 in L1. The congruence conditions on a and b imply that γ ≡ ±i mod 4. Since

−1 is a fourth power in L1, i is a fourth power mod 4 iff −i is. Thus, we need only

to show that i is not a fourth power mod 4 in L1.

Although we are trying to show something about L1, we find it convenient to

start by working in L2 where we have ζ16. Let α ∈ L2 be such that α4 ≡ i mod 4.

This is equivalent to α2 ≡ ζ8 mod 2, so α ≡ ζ16 mod (1 + i). This means we have

α = ζ16 + (1 + i)λ. Now write 1 + α − (1 + i)λ = 1 + ζ16 and consider the 2-adic

valuations on both sides. The right-hand side has valuation 1
8
. The valuation of the

left-hand side is at least as large as the minimum of v(1 + α) and v(1 + i) + v(λ),

and if those are not the same, it must be exactly that minimum. Moreover, since

λ must be in the ring of integers, it cannot have negative valuation. Thus, we have

v(1+ i)+v(λ) ≥ v(1+ i) = 1
2
> 1

8
. This means v(1+α) must be 1

8
. Since nothing in

L1 has such a valuation (the smallest positive valuation comes from (1 + ζ8) which

has valuation 1
4
), there can be no such α ∈ L2, which means there can also be no
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such α ∈ L1.

Now we consider Lj(γ
1/4)/Lj for j ≥ 2. Again, we show that γ has the

necessary form mod 8 and apply Theorem 2.0.16 . Since −1 is a fourth power this

far up on the L-tower, it is sufficient to consider the behavior when γ ≡ i mod 8

and when γ ≡ 4 + i mod 8.

If γ ≡ i mod 8, then we can satisfy the form α4(1+4(1+i)δ+4δ2) with α = ζ16

and δ = 0. If γ ≡ 4 + i mod 8, then we satisfy the form α4(1 + 4i(1 + β)(1 + βi))

by taking α = ζ16 and β = 0.

The previous lemmas have all shown congruence conditions on γ that cause

Lj(γ
1/4)/Lj to be unramified. The last such lemmas that we give are particularly

useful when there is a cube root of unity in the base field. Of course, sometimes

Lj does not have a primitive cube root of unity mod 4 or mod 8. It does, however,

when d ≡ ±3 mod a high enough power of 2, because
√
d ≡ ±

√
±3 mod 8, and,

√
−3 can be used to build the cube root of unity.

Lemma 3.1.7. Let γ ∈ OL0 be such that γ3 ≡ 1 mod 8. Then Lj(γ
1/4)/Lj is

unramified for all j.

Proof. We can take α = γ and δ = 0 to have γ be of the proper form to satisfy 3 of

Theorem 2.0.16. This tells us that Lj(γ
1/4)/Lj is unramified for all j ≥ 0.

Just as with Lemma 3.1.1, we can combine Lemma 3.1.2 with the previous

lemma to get a lemma describing the behavior of the negative.

Lemma 3.1.8. Let γ ∈ OL0 be such that γ3 ≡ −1 mod 8. Then L0(γ
1/4)/L0 is

ramified and Lj(γ
1/4)/Lj is unramified for all j ≥ 1.
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3.2 Congruences resulting in ramified extensions

In Section 3.1 we gave certain congruence conditions for γ that would mean

that Lj(γ
1/4)/Lj was unramified for some γ. Now we show some congruence condi-

tions on γ that imply that Lj(γ
1/4)/Lj is ramified for all j. Not surprisingly, this is

somewhat more complicated. One reason for this is that we are trying to show the

behavior for all j rather than for a particular j. (In the last section, we did this as

well, but trivially so because unramified extensions lift to unramified extensions.)

Another source of additional complication is that, when showing that extensions

were unramified, Theorem 2.0.16 allowed us to prove it simply by offering an α and

a β (or δ) that satisfy a particular congruence. Now we have to show that no such α

and β (or δ) can exist. We got a taste for this complication in the previous section.

The bulk of the work in that section was in proving Lemma 3.1.2 and in proving

that L0(γ
1/4)/L0 and L1(γ

1/4)/L1 ramify in Lemma 3.1.6.

3.2.1 Tools for showing extensions are ramified

The extra complications mean that we can benefit from some additional ma-

chinery. When we are trying to show that no such α and β (or δ) can exist, we

do one of two things. Either we show that there is no α anywhere in the L-tower

such that γ ≡ α4 mod 4, or we give some α such that γ ≡ α4 mod 4 and show that

there is no β satisfying γ ≡ α4(1 + 4i(1 + β)(1 + βi)) mod 8 (or that there is no δ

satisfying γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8). The extra machinery is for handling

this latter case, particularly in the δ form.
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Observe that if we have γ ≡ α4 mod 4, then α4 − γ = 4k. By subtracting γ

from both sides and dividing by 4, we convert γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8 to

0 ≡ k+(1+ i)δ+ δ2 mod 2. The following proposition and associated corollaries are

useful for working with congruences of this form, so are powerful tools for showing

that certain extensions are ramified everywhere in the L-tower. There are other,

similar, congruences that arise, so we make the proposition fairly general. Before

the proposition, we have a technical lemma that helps prove the proposition.

Lemma 3.2.1. Let n > 2 be a power of 2 and let ζn be a primitive nth root of unity.

Let k be an algebraic integer in Q. Let δ ∈ Q satisfy k + δ(1 + ζn)z + δ2 ≡ 0 mod

(1 + ζn)2z where z > 0 and z · v(1 + ζn) ≤ 1
2
. Then δ = k1/2 + λ(1 + ζ2n)z with λ

satisfying k1/2 + λ(1 + ζ2n)z + λ2 ≡ 0 mod (1 + ζn)z.

Proof. Reducing the congruence mod (1 + ζn)z, we have δ2 ≡ k mod (1 + ζn)z. This

means δ ≡ k1/2 mod (1 + ζ2n)z. Now we write δ = k1/2 + λ(1 + ζ2n)z. Substituting

this into the original congruence gives

0 ≡ k + δ(1 + ζn)z + δ2

≡ k + (k1/2 + λ(1 + ζ2n)z)(1 + ζn)z + k + λ2(1 + ζ2n)2z

≡ (k1/2 + λ(1 + ζ2n)z)(1 + ζn)z + λ2(1 + ζn)z mod (1 + ζn)2z.

Throughout this, we have taken advantage of the restriction on z, which ensures that

(1 + ζn)2z divides 2. Dividing through by (1 + ζn)z gives k1/2 + λ(1 + ζ2n)z + λ2 ≡ 0

mod (1 + ζn)z.

Now that we have that technical lemma, we can use it to prove the following

proposition. Note that the condition that k1/(2
j+3−N ) ∈ Lj is ensuring that we have a
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particular power of k in L0 and that, starting with that value, we can take successive

square roots as we move up the L-tower.

Proposition 3.2.2. Let j ∈ N. Let n = 2N ≥ 4 with j > N − 3, and let ζn be

a primitive nth root of unity. Let k be an algebraic integer in Q and z be an odd

integer such that the following conditions are true:

• ∃x ∈ Lj such that x2
j+3−N ≡ k mod (1 + ζn)2z

• v(k) < z21−N

• v(v(k)) > 2−N

• z · v(1 + ζn) ≤ 1
2
.

(Note that if k is relatively prime to 2, then v(k) = 0 and v(v(k)) =∞, so the second

and third conditions are immediately satisfied.) Let δ ∈ Q satisfy k+δ(1+ζn)z+δ2 ≡

0 mod (1 + ζn)2z. Then δ 6∈ Lj.

Proof. We can apply the previous lemma j + 4−N times to get

δ = k1/2 + k1/4(1 + ζ2n)z + · · ·+ k1/(2
j+4/n)(1 + ζ2n)z(1 + ζ4n)z · · · (1 + ζ2j+3)z

+(1 + ζ2n)z(1 + ζ4n)z · · · (1 + ζ2j+4)zα.

In an abuse of notation, we use k1/2
m

to represent x2
j+3−N−m

. In the last of the

j + 4 − N applications, we need k1/(2
j+4/n) = x1/2. There may not be such an

element in Lj, so we use the true root in Q.

Assume that δ ∈ Lj. Now we move all but the last two terms on the right-hand

side to the left-hand side to get

δ + k1/2 + k1/4(1 + ζ2n)z + · · ·+ k1/(2
j+3/n)(1 + ζ2n)z(1 + ζ4n)z · · · (1 + ζ2j+2)z =
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k1/(2
j+4/n)(1 + ζ2n)z(1 + ζ4n)z · · · (1 + ζ2j+3)z + (1 + ζ2n)z(1 + ζ4n)z · · · (1 + ζ2j+4)zα.

Note that ζ2j+2 ∈ Lj. Our powers of k on the left-hand side are actually powers of

x, which is also in Lj. Thus, the left-hand side is a sum of elements of Lj so is in

Lj itself.

Now consider the valuation of the right-hand side. The valuation of the first

term is 1
2j+4−N v(k) + z 1

2N
+ z 1

2N+1 + · · ·+ z 1
2j+2 because the valuation of (1− ζ2x) is

1
2x−1 . The valuation of the second term is z 1

2N
+ z 1

2N+1 + · · ·+ z 1
2j+2 + z 1

2j+3 + v(α).

By assumption v(k) < z21−N , so the valuation of the first term is strictly less than

z(
1

2j+4−N 21−N +
1

2N
+

1

2N+1
+ · · ·+ 1

2j+2
)

= z(2−(j+3) +
1

2N
+

1

2N+1
+ · · ·+ 1

2j+2
)

= z(
1

2N
+

1

2N+1
+ · · ·+ 1

2j+2
+

1

2j+3
)

≤ z(
1

2N
+

1

2N+1
+ · · ·+ 1

2j+2
+

1

2j+3
) + v(α),

which is the valuation of the second term. Since the valuations of the two terms

are not equal, the sum of their valuations is the minimum of the two valuations.

Thus, the valuation of the right-hand side is the valuation of its first term, namely

1
2j+4−N v(k) + z 1

2N
+ z 1

2N+1 + · · ·+ z 1
2j+2 .

Since v(v(k)) > 2 − N , the valuation of the first term of this valuation is

greater than −(j + 4 − N) + 2 − N = −(j + 2). Thus, the valuation of the sum

1
2j+4−N v(k) + z 1

2N
+ z 1

2N+1 + · · ·+ z 1
2j+2 is exactly the valuation of the term with the

minimum valuation, namely −(j + 2), which is the valuation of z 1
2j+2 (recall that

z is an odd integer). But the minimum valuation of a valuation in Lj is −(j + 1).

Thus, the right-hand side cannot be in Lj.
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This contradicts the fact that the left-hand side is in Lj, so we must have

δ 6∈ Lj.

In proving our corollaries, we use the fact that the second and third conditions

above are satisfied if k is relatively prime to 2. The first of these corollaries addresses

the case that k is congruent to a root of unity ζm. In order to satisfy the condition

in the previous proposition that we can keep taking square roots as we go up the

L-tower, we have to put some restrictions on the value of m.

Corollary 3.2.3. Let n = 2N ≥ 4 and let ζn be a primitive nth root of unity. Let

m,M,m1 ∈ Z be such that m = m12
M , M ≤ N −1, and m1 is relatively prime to 2.

Let z be an odd, positive integer satisfying z · v2(1 + ζn) ≤ 1
2
. Let k, ke ∈ L0 be such

that k ≡ keζ2M mod (1 + ζn)2z and km1
e ≡ 1 mod (1 + ζn)2z. Let δ be an algebraic

integer in Q satisfying k + δ(1 + ζn)z + δ2 ≡ 0 mod (1 + ζn)2z. Then δ 6∈ Lj for any

j.

Proof. Showing that δ 6∈ LJ for J > j also shows that δ 6∈ Lj. This means that it

suffices to show the result for sufficiently large j. In particular, we may assume that

j > N − 3 so that we can apply the previous proposition.

Note that km ≡ 1 mod (1+ζn)2z, so k is relatively prime to 2, and the valuation

conditions from Proposition 3.2.2 are satisfied. It remains to show that, for every

j, ∃kj ∈ Lj such that k
(2j+3−N )
j ≡ k mod (1 + ζn)2z.

We claim that we can take kj to be k
tj
e ζ2sj+M where sj = j + 3 −N and tj is

the inverse of 2sj mod m1, which must exist since 2 is relatively prime to m1. To

confirm this, we must show that this choice of kj is in Lj and that k
(2j+3−N )
j ≡ k
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mod (1 + ζn)2z. We have assumed ke ∈ L0, so ke ∈ Lj for all j. Moreover, ζ2sj+M

is a 2j+3−N+Mth root of unity. We know that Lj has a 2j+2th root of unity. Since

M ≤ N − 1, we know that j+ 3−N +M ≤ j+ 2, so ζ2sj+M ∈ Lj. Thus, kj ∈ Lj for

all j. Moreover, k
(2j+3−N )
j = k2

sj

j = (k
tj
e ζ2sj+M )2

sj
= k

tj2
sj

e ζ2M . Since km1
e ≡ 1 mod

(1+ζn)2z and tj was chosen to be the inverse of 2sj mod m1, it follows that k
tj2

sj

e ≡ ke

mod (1 + ζn)2z. Thus, k
(2j+3−N )
j ≡ keζ2M ≡ k mod (1 + ζn)2z as desired.

We now use the preceding corollary to prove the same result for three specific

congruence conditions on k. The first of these has k ≡ 1. Based on Proposition 3.2.2,

we should expect this to work, because we can obviously start with 1 and keep taking

square roots as often as we want. The roots do not have to be primitive, so 1 suffices

at each level.

Corollary 3.2.4. Let n = 2N ≥ 4 and let ζn be a primitive nth root of unity. Let δ

be an algebraic integer in Q satisfying 1 + δ(1 + ζn)z + δ2 ≡ 0 mod (1 + ζn)2z, where

z is an odd, positive integer satisfying z · v(1 + ζn) ≤ 1
2
. Then δ 6∈ Lj for any j.

Proof. In terms of the previous corollary, we have m1 = 1 and M = 0. Obviously

m1 = 1 is relatively prime to 2. Moreover, since n > 2, we have N > 1, so

M = 0 < N − 1, so the conditions of the corollary are met.

In fact, the same argument suffices for proving something slightly more general.

If we have something congruent to ζm in L0, we can expect to be able to take a new

square root each time we move up the L-tower because when m is relatively prime

to 2, any power of 2 has an inverse mod m, so a 1
2n

th root of ζm can just be written

as a power of ζm.
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Corollary 3.2.5. Let n = 2N ≥ 4 and let ζn be a primitive nth root of unity. Let

δ be an algebraic integer in Q satisfying k + δ(1 + ζn)z + δ2 ≡ 0 mod (1 + ζn)2z,

where z is an odd, positive integer with z · v(1 + ζn) ≤ 1
2
, m is odd, and km ≡ 1 mod

(1 + ζn)2z. Then δ 6∈ Lj for any j.

Proof. This is the same argument as in Corollary 3.2.4. In terms of Corollary 3.2.3,

we have m1 = m and M = 0. We have taken m to be odd, so it is relatively prime

to 2. Moreover, since n > 2, we have N > 1, so M = 0 < N − 1, so the conditions

of the corollary are met.

There are times, however, that we need to deal with a more complicated value

for k. In particular, we have to consider cases where k is congruent to a sum of

roots of unity, some of which are not in L0 mod 4. For this situation, we have the

following corollary:

Corollary 3.2.6. Let n = 2N ≥ 4 and let ζn be a primitive nth root of unity. Let k

be a finite sum of roots of unity in LN−3 with v(k) < z21−N and v(v(k)) > 2 − N .

Let δ be an algebraic integer in Q satisfying k + δ(1 + ζn)z + δ2 ≡ 0 mod (1 + ζn)2z,

where z is an odd, positive integer with z · v(1 + ζn) ≤ 1
2
. Then δ 6∈ Lj for any j.

Proof. As in the proof of Corollary 3.2.3, we can take j > N−3. Then we have kept

most of the conditions of Proposition 3.2.2. The only thing that we need to prove

is that if k is a finite sum of roots of unity in LN−3, then ∃kj ∈ Lj with k2
j+3−N
j ≡ k

mod (1 + ζn)2z. Since k is a finite sum of roots of unity and we are looking at it

only mod some divisor of 2, we can create kj by replacing each term ζyx in k with

ζy2mx. Because ζx was in LN−3, this term must be in LN−3+m. In particular, kj must
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be in LN−3+j+3−N = Lj.

An alternate approach

Although the previous proposition and corollaries are our tools throughout the rest

of this section, it is interesting to note another approach to handling congruences of

the form 0 ≡ k + (1 + i)δ + δ2 mod 2 (or similar forms). Because (1 + i) ∈ L0, the

following proposition tells us that if there is going to be a δ satisfying the congruence,

it must come from the same field as k. When k comes from a particularly low field

on the tower, there are not many possibilities for δ and the fact that none of them

satisfies the congruence can be proven directly. While this does not seem to be

as powerful or easy to work with as the tools above, it has the advantage that it

limits the search space that must be explored to look for possible δs if it is unknown

whether one exists.

Proposition 3.2.7. Let ℘ be a prime above 2 in Lj. Let c, k ∈ OLj−1
and δ ∈ OLj

satisfy δ2 + cδ + k ≡ 0 mod ℘x for some x ∈ Z with ℘x dividing 2 and v℘(c) ≤ x
2
.

Then ∃λ ∈ OLj−1
such that λ2 + cλ+ k ≡ 0 mod ℘x.

Proof. We will work locally at ℘. Since ζ22+j ∈ Lj, ζ23+j 6∈ Lj and (1+ζ22+j)
21+j = (2)

as ideals, πj = (1 + ζ22+j) is a uniformizer in the local ring with (πj) = ℘. Now all

the proposition’s assumptions involving ℘ hold for πj as well.

We write δ πj-adically as
∑

n gnπ
n
j . Then we can write

x
2
−1∑

n=0

g2nπ
2n
j + c

x−1∑
n=0

gnπ
n
j + k ≡ 0 mod πxj .
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Breaking the middle sum into two pieces based on the parity of the indices, we get

x
2
−1∑

n=0

g2nπ
2n
j + c

x
2
−1∑

n=0

g2nπ
2n
j + c

x
2
−1∑

n=0

g2n+1π
2n+1
j + k ≡ 0 mod πxj .

Because Lj/Lj−1 is ramified, we can take the gn coefficients in the πj-adic

expansion in the localization of OLj to be from OLj−1
. Moreover π2m

j ≡ πmj−1 mod 2

for any m ∈ Z, and the latter element is in Lj−1. Thus, we rewrite the congruence

as

x
2
−1∑

n=0

g2nπ
n
j−1 + c

x
2
−1∑

n=0

g2nπ
n
j−1 + k ≡ c

x
2
−1∑

n=0

g2n+1π
2n+1
j mod πxj .

We find that the left-hand side is a sum of terms in OLj−1
, so must also be in that

ring. This means that it has even πj-adic valuation. But since c ∈ Lj−1, it has even

πj-adic valuation. Thus, any non-zero term on the right-hand side has odd π-adic

valuation. This means the right-hand side must be 0:

x
2
−1∑

n=0

g2nπ
n
j−1 + c

x
2
−1∑

n=0

g2nπ
n
j−1 + k ≡ 0 mod πxj .

It also means that g2n+1 = 0 when 2n+ 1 + vπj(c) < x, so when 2n+ 1 < x− vπj(c).

In order to get λ to behave identically to δ in the congruence, it is sufficient for δ2

to be congruent to λ2 mod πxj and cλ ≡ cδ mod πxj . For the former, it is enough

for λ to match δ up to the x
2
th coefficient; for the latter, it is enough for the two to

match up to the (x− vπj(c))th coefficient. Since vπj(c) ≤ x
2
, satisfying the second of

these also satisfies the former. We take λ =
∑x−vπj (c)

2
−1

n=0 g2nπ
n
j−1. Then λ is in OLj−1

because the gn coefficients and πj−1 are both in that ring.

As we have seen, to show that λ satisfies the same congruence that δ did, it

is sufficient to see that λ matches δ up to the (x − vπj(c))th coefficient. We have
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given λ the same coefficients for π2n
j ≡ πnj−1 that δ has, and we have seen that the

coefficient of πnj in the πj-adic expansion of δ is 0 when n is odd and less than

x− vπj(c), so λ ≡ δ mod π
x−vπj (c)
j , which is exactly what we needed.

We can use this proposition as the inductive step allowing us to move δ from

anywhere in the L-tower down to any field that contains c, k, and πx.

Corollary 3.2.8. Let ℘ be a prime above 2 in Ln. Let c, k ∈ OLj with j < n, and

let δ ∈ OLn satisfy δ2 + cδ + k ≡ 0 mod ℘x for some x ∈ Z with x a multiple of

2n−j−1, ℘x dividing 2, and v℘(c) ≤ x
2
. Then ∃λ ∈ OLj−1

such that λ2 + cλ + k ≡ 0

mod ℘x.

Proof. If n = j + 1, this is just the statement of the previous proposition. Now

assume the statement is true for some n = N and take n = N + 1. Then a single

application of the previous proposition says that ∃λ ∈ LN such that λ2 + cλ+k ≡ 0

mod ℘x. (Here ℘ is a prime above 2 in LN+1.) Since x is a multiple of 2N+1−j−1 =

2N−j and N > j, x is even, so ℘x is also a power of ℘2, which is a prime above 2 in

LN . This gives us the necessary conditions to apply the induction, so the claim is

true for all j > n.

3.2.2 Some ramified extensions

If γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8, then γ−α4

4
+ (1 + i)δ + δ2 ≡ 0 mod 2.

Combining this fact with Corollary 3.2.4 and Corollary 3.2.5 gives us the following

summarizing corollary:

Corollary 3.2.9. Let γ ∈ OLj and let α, k ∈ OLj be such that γ ≡ α4 mod 4 and
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γ−α4

4
= k. If km ≡ 1 mod 2 for some odd m, then Lj(γ

1/4)/Lj is ramified for all j.

Proof. By Theorem 2.0.16 (parts 1 and 5), we know that Lj(γ
1/4)/Lj is ramified if

there is no δ ∈ OLj satisfying γ ≡ α4(1 + 4(1 + i)δ + 4δ2) mod 8. Since γ−α4

4
= k,

this is equivalent to 0 ≡ k + (1 + i)δ + δ2 mod 2. Now apply Corollary 3.2.4 and

Corollary 3.2.5.

One specific application of this which arises a couple of times is the following:

Corollary 3.2.10. Let γ ∈ OLj be such that γ ≡ ±3 mod 8. Then Lj(γ
1/4)/Lj is

ramified for all j.

Proof. Since unramified extensions lift to unramified extensions, it is sufficient to

show this for j ≥ 1 where we have ζ8 available. Since Lj(γ
1/4) = Lj((−γ)1/4) for

j ≥ 1, it is enough to prove the claim when γ ≡ 3 mod 8. In this case γ ≡ −1 = ζ48

mod 4. If we write γ = 3 + 8l, then, in terms of the previous corollary, we have

k =
3+8l−ζ48

4
= 4+8l

4
= 1 + 2l ≡ 1 mod 2. The result now follows immediately from

the previous corollary.
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Chapter 4: Ramification Behavior of Elements of K0

We now look at the ramification behavior of fourth roots (and square roots)

of certain elements of OK0 . Specifically, we are interested in generators of principal

ideals that are fourth powers. Although the tools we have detailed above are useful

for all values of d, the ramification behavior still differs substantially depending on

the value of d mod 8. Thus, we handle each of these cases separately. We consider

only the cases where d ≡ 1 mod 2.

For each value of d mod 8, we follow the same general approach. We begin by

showing congruence conditions that must be satisfied by an element that has norm

±1 mod 16. For most values of d mod 8, we do this by thinking of the element

as a + b
√
d and then by showing restrictions on the possible values of a and b.

Obviously, the restriction that the element of K0 has norm ±1 is satisfied by all

units. Since the only odd fourth power in Z/16Z is 1, it is also satisfied by any

generator of a principal ideal that is a fourth power and is relatively prime to 2.

We then show the ramification behavior that results when we adjoin a square

root of such an element to a field in the L-tower. Finally, we show the ramification

behavior that results from adjoining a fourth root.

The case that d ≡ 1 mod 8 is, perhaps, the most straightforward. It is the
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first one that we examine, and we think of it as a baseline. For each of the others,

we discuss what makes them different from this baseline case.

4.1 d ≡ 1 mod 8

Lemma 4.1.1. Let d ∈ Z be congruent to 1 mod 8. Let γ ∈ OK0 be such that

Norm(γ) ≡ 1 mod 16, and write γ = a + b
√
d with a, b ∈ 1

2
Z. Then a, b ∈ Z with

a ≡ ±1 mod 8 and b ≡ 0 mod 4.

Proof. First, we write a = a1
2

and b = b1
2

with a1, b1 ∈ Z. Then we can rewrite the

norm calculation (a2 − db2 ≡ 1 mod 16) as a21 − db21 ≡ 4 mod 64. Since d ≡ 1 mod

8, this gives us a21 − b21 ≡ 4 mod 8. The only squares mod 8 in Z are 0, 1, and 4, so

the only possible choices for a21 and b21 are 0 and 4 in some order. This means that

both a1 and b1 are even, so a, b ∈ Z.

Now we have a2 − db2 ≡ 1 mod 16. Since d ≡ 1 mod 8, this is a2 − b2 ≡ 1

mod 8. Because the only squares mod 8 are 0, 1, and 4, we must have a2 ≡ 1 mod 8

and b2 ≡ 0 mod 8. The latter fact means that b ≡ 0 mod 4, which, in turn, implies

that b2 ≡ 0 mod 16. This means that db2 ≡ 0 mod 16, so we can write the norm

calculation as a2 ≡ 1 mod 16. This forces a ≡ ±1 mod 8.

Lemma 4.1.2. Let d ∈ Z be congruent to 1 mod 8. Let γ ∈ OK0 be such that

Norm(γ) ≡ −1 mod 8 and write γ = a + b
√
d with a, b ∈ 1

2
Z. Then a, b ∈ Z with

a ≡ 0 mod 4 and b ≡ 1 mod 2. Moreover, if Norm(γ) = −1, then b ≡ 1 mod 4.

Proof. The argument to show that a, b ∈ Z is essentially identical to that used in

Lemma 4.1.1. We begin by writing a = a1
2

and b = b1
2

with a1, b1 ∈ Z. Then we can
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rewrite the norm calculation as a21 − db21 ≡ −4 mod 64. Since d ≡ 1 mod 8, this

gives us a21 − b21 ≡ 4 mod 8. The only squares mod 8 in Z are 0, 1, and 4, so the

only possible choices for a21 and b21 are 0 and 4 in some order. This means that both

a1 and b1 are even, so a, b ∈ Z.

Now we have a2 − b2 ≡ −1 mod 8. Because the only squares mod 8 are 0, 1,

and 4, we must have a2 ≡ 0 mod 8 and b2 ≡ 1 mod 8. This means that a must be

0 mod 4 and that b must be odd.

Now consider the case that a2 − db2 = −1. In this case, −1 is a quadratic

residue mod b. This means that b ≡ 1 mod 4.

In the next couple of results, we take advantage of the fact that if (γ) = I4

for some ideal I of OK0 , then Norm(γ) ≡ ±1 mod 16 because 1 is the only fourth

power mod 16 in Z that is relatively prime to 2. This fact lets us apply the previous

lemmas to γ when we have (γ) = I4 rather than an explicit condition on the norm.

Now we begin by establishing that under these conditions Lj(γ
1/2)/Lj is always

unramified.

Proposition 4.1.3. Let d be 1 mod 8. Let γ ∈ OK0 be relatively prime to 2 and

such that (γ) = I4 for some ideal I of OK0. Then Lj(γ
1/2)/Lj is an unramified

extension for all j.

Proof. To show that this extension is unramified, we can show that γ is a square

mod 4 in L0 and apply Proposition 2.0.8.

By Lemma 4.1.1 and Lemma 4.1.2, we see that γ is ±1 mod 4 or ±
√
d mod

4. Clearly, 1 is a square. Since i ∈ L0, −1 is also a square. Since d ≡ 1 mod 8,
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we have
√
d ≡ ±1 mod 4, so γ is either 1 or −1 mod 4, depending on the choice

of prime over 2 at which we complete. (Note that (2) is split in this case.) Since

γ is a square mod 4 in each completion γ1/2 gives an unramified extension at both

completions, so also gives one in the global case.

Since L0(γ
1/2)/L0 is an unramified extension and unramified extensions lift

to unramified extensions, Lj(γ
1/2)/Lj is an unramified extension for all j. (In fact,

since Lj+1/Lj is ramified above 2 for all j, this lift can never be absorbed, so Lj+1/Lj

has the same degree as L0(γ
1/2)/L0. Later in the paper we explore this further.)

We can now address what happens when we adjoin a fourth root of such a γ

to Lj. Note that we use the results in Lemma 4.1.1 and Lemma 4.1.2 to be able to

take a, b ∈ Z in the statement of the following theorem.

Theorem 4.1.4. Let d ∈ Z be congruent to 1 mod 8. Let γ ∈ OK0 be relatively

prime to 2 and such that (γ) = I4 for some ideal I of OK0, and write γ = a+ b
√
d

with a, b ∈ Z. Then for j > 0, Lj(γ
1/4)/Lj is unramified iff a ≡ 0 mod 8 or b ≡ 0

mod 8. Moreover, L0(γ
1/4)/L0 is unramified iff a ≡ 1 mod 8 and b ≡ 0 mod 8.

When the extensions are ramified, they are ramified at both primes above (2)

unless a ≡ 0 mod 8, in which case they are ramified at exactly one of the two primes

above (2).

Proof. Our previous lemmas Lemma 4.1.1 and Lemma 4.1.2 tell us that it is equiv-

alent to show that exactly one of the following is true:

• a ≡ 1 mod 8, b ≡ 0 mod 8, and Lj(γ
1/4)/Lj is unramified for all j

• a ≡ −1 mod 8, b ≡ 0 mod 8, L0(γ
1/4)/L0 is ramified at both primes above
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(2), and Lj(γ
1/4)/Lj is unramified for all j ≥ 1

• a ≡ 1 mod 8, b ≡ 4 mod 8, and Lj(γ
1/4)/Lj is ramified at both primes above

(2) for all j

• a ≡ −1 mod 8, b ≡ 4 mod 8, and Lj(γ
1/4)/Lj is ramified at both primes above

(2) for all j

• a ≡ 4 mod 8, b ≡ 1 mod 2, and Lj(γ
1/4)/Lj is ramified at both primes above

(2) for all j

• a ≡ 0 mod 8, b ≡ 1 mod 2, L0(γ
1/4)/L0 is ramified at exactly one of the two

primes above (2), and Lj(γ
1/4)/Lj is unramified for all j > 0.

The first and second cases are proven by Lemma 3.1.1 and Lemma 3.1.3,

respectively.

Since d ≡ 1 mod 8,
√
d ≡ ±1 mod 4, so

√
d ≡ 1 mod 2. This means that

4
√
d ≡ 4 mod 8. Thus, in the next two cases, we have γ ≡ ±5 mod 8, depending

on the choice of completion. That this results in ramified extensions was proved in

Corollary 3.2.10. Since the result is true for both completions, we have ramification

at both primes above (2).

In the final two cases, we have a ≡ 0 mod 4, so a2 ≡ 0 mod 16. Since we

have assumed that a2 − db2 ≡ ±1 mod 16, this gives us db2 ≡ ±1 mod 16. Recall

that a was even only when the norm was −1 mod 16. This means we actually have

a2 − db2 ≡ −1 mod 16, so db2 ≡ 1 mod 16.

Since db2 ≡ 1 mod 16, we know that b
√
d ≡ ±1 mod 8. Now we can examine

the final two congruence possibilities for a and b. If a is 4 mod 8, then γ = a+b
√
d is

±5 mod 8. Again, we work locally, apply Corollary 3.2.10 to see that the extensions
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must be ramified in the local case, and then use the fact that the extension is

ramified at a prime iff it is ramified in the completion at that prime.

If a is 0 mod 8, then γ = a + b
√
d is ±1 mod 8. Note that whether γ is 1

mod 8 or −1 mod 8 depends on the choice of completion. Using Lemma 3.1.1 and

Lemma 3.1.3, we find that at L0, the extension is unramified in one completion, but

ramified in the other, so the extension ramifies at exactly one of the prime above

(2). The same lemmas show that Lj(γ
1/4)/Lj is unramified for j > 0.

4.2 d ≡ 3 mod 8

When d ≡ 1 mod 8,
√
d is always congruent to an integer mod 8 because d has

a square root in the 2-adics. When d ≡ 3 mod 8, this is no longer true. In this case,

we have
√
d ≡ ±i(2ζ3 + 1) mod 4 if we are in a field that has i and the cube roots

of unity. Since we are always looking at extensions of the L-tower, we can think of

this congruence as a congruence in OL0 , where we have i available. Note that we do

not have ζ3 in the L-tower, but we can get arbitrarily close to ζ3 2-adically. When

we need to work with this form, we can choose some element sufficiently close to ζ3.

We will abuse notation and call that element ζ3.

Working with the γs, then, requires working with elements of the form x +

yi(2ζ3 + 1). This turns out to be somewhat more complicated. These extra com-

plications do not arise until we try to understand the ramification behavior of

Lj(γ
1/4)/Lj, so as with d ≡ 1 mod 8, we begin by establishing the possibilities

for γ mod 8 and understanding the ramification behavior of Lj(γ
1/2)/Lj.
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Lemma 4.2.1. Let d ∈ Z be congruent to 3 mod 8. Let γ ∈ OK0 be such that

Norm(γ) ≡ ±1 mod 16, and write γ = a + b
√
d with a, b ∈ Z. Then one of the

following is true:

• a ≡ 2 mod 4 and b ≡ 1 mod 2

• a ≡ ±1 mod 8 and b ≡ 0 mod 4.

Proof. The norm of γ to Q is a2−db2 ≡ a2−3b2 mod 8, and this must be congruent

to ±1. Because the only squares mod 8 are 0, 1, and 4, we must have a2 ∈ {0, 1, 4}

and 3b2 ∈ {0, 3, 4}. So the only possibilities for [a2, 3b2] are [1, 0] and [4, 3]. (Note

that in both cases, the norm is 1 mod 16.) This gives us that either a is odd and b

is 0 mod 4, or a is 2 mod 4 and b is odd.

If b ≡ 0 mod 4, then looking at the congruence mod 16, we get a2 ≡ 1 mod

16, so a ≡ ±1 mod 8.

Again, we take advantage of the fact that taking (γ) = I4 is sufficient for

forcing Norm(γ) ≡ ±1 mod 16.

When d was 1 mod 8, Proposition 4.1.3 tells us that Lj(γ
1/2)/Lj is always

unramified. When d is 3 mod 8, the situation is not quite as simple.

Proposition 4.2.2. Let d be 3 mod 8. Let γ ∈ OK0 be relatively prime to 2 and

such that (γ) = I4 for some ideal I of OK0. Then L0(γ
1/2)/L0 is unramified iff a ≡ 1

mod 2. Moreover, in all cases Lj(γ
1/2)/Lj is an unramified extension for j ≥ 1.

Proof. It is sufficient to show that L0(γ
1/2)/L0 and L1(γ

1/2)/L1 are unramified under

the claimed conditions.

Proposition 2.0.8 tells us that, to show these extensions are unramified, it
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is equivalent to show that γ is a square mod 4 in the field being extended. By

Lemma 4.2.1, we know that mod 4, γ is 1,−1, 2 +
√
d, or 2 + 3

√
d = −(2 +

√
d).

Our claim that L0(γ
1/2)/L0 is unramified iff a ≡ 1 mod 2 is now equivalent to the

claim that 1 and −1 are both squares mod 4 in L0 and that 2±
√
d is not. That 1

and −1 are squares is clear since both 1 and i are in L0. If 2±
√
d is a square mod

4, it is also one mod 2. This would mean that
√
d is a square mod 2. Since d ≡ −1

mod 4, we have (
√
d + i)(

√
d− i) ≡ 0 mod 4. At least one of the two factors must

be divisible by 2 and since their difference is 2i, both are. So we have
√
d ≡ i mod

2. This means that if 2±
√
d were a square mod 2, then i would be a square mod 2.

We would need only to define its square root mod 1 + i, and the only such value in

L0 is 1, which does not square to i mod 2. So 2±
√
d is not a square mod 4 in L0.

To prove our claim for L1, we need to see that ±1 and 2 ±
√
d are squares

mod 4 in L1. Again, this is clearly true for ±1. Since 2 −
√
d = −(2 +

√
d) and

−1 is a square, it is sufficient to show that 2 +
√
d is a square mod 4 in L1. Note

that 1+d
2
≡ 2 mod 4 because 1 + d ≡ 4 mod 8. Thus, we need only to note that

( 1√
2
(1 +

√
d))2 = 1

2
(1 + d+ 2

√
d) = 1+d

2
+
√
d is a square in L1.

Theorem 4.2.3. Let d ∈ Z be congruent to 3 mod 8. Let γ ∈ OK0 be relatively

prime to 2 and such that (γ) = I4 for some ideal I of OK0, and write γ = a+ b
√
d

with a, b ∈ Z. Then for j > 0, Lj(γ
1/4)/Lj is unramified iff a is odd. Moreover,

L0(γ
1/4)/L0 is unramified iff a ≡ 1 mod 8.

Proof. With Lemma 4.2.1, we see that this is equivalent to showing that exactly

one of the following is true:
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• a ≡ 1 mod 8, b ≡ 0 mod 4, and Lj(γ
1/4)/Lj is unramified for all j

• a ≡ −1 mod 8, b ≡ 0 mod 4, L0(γ
1/4)/L0 is ramified, and Lj(γ

1/4)/Lj is

unramified for all j ≥ 1

• a ≡ 2 mod 4, b ≡ 1 mod 2, and Lj(γ
1/4)/Lj is ramified for all j.

Since
√

3 = −i(2ζ3 + 1) and d ≡ 3 mod 8, we have
√
d ≡ ±i(2ζ3 + 1) mod

4. This means that in the first two cases, we have γ ≡ ±1 mod 8 or γ ≡ ±1 +

4i(2ζ3 + 1) ≡ ±1 + 4i mod 8. Then for these two cases, the claims follow directly

from Lemma 3.1.4 and Lemma 3.1.5.

The third case is more complicated. Note that this can be broken into 8 cases

for a+ b
√
d, based on the two choices for a mod 8 and the four choices for b mod 8.

Moreover, note that if d ≡ 3 mod 16, then
√
d ≡ ±

√
3 mod 8. If d ≡ 11 ≡ 27 mod

16, then
√
d ≡ ±3

√
3 mod 8. This means that the 8 possibilities for a + b

√
d with

a ≡ 2 mod 4 and b ≡ 1 mod 2, cover the cases for either congruence condition on

d mod 16. We find it convenient to write
√

3 as i(2ζ3 + 1), so our 8 cases become

x + yi(2ζ3 + 1). (Recall that by ζ3, we mean an element that is congruent to a

primitive cube root of unity mod a high power of 2.)

These 8 cases can be grouped into 4 pairs: ±(2+ i(2ζ3+1)), ±(2+5i(2ζ3+1)),

±(2 + 3i(2ζ3 + 1)), and ±(2 + 7i(2ζ3 + 1)). Since ζ8 ∈ L1, adjoining the fourth root

of one member of a pair to Lj is the same as adjoining the other member as long

as j ≥ 1. This means that if we can show that adjoining the fourth root of one

member to Lj gives a ramified extension for all j, that would imply the same for

the other member of the pair when j ≥ 1. Since unramified extensions lift to

unramified extensions, that would also force ramified extensions of L0. In fact, we
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find it convenient to work in Lj with j ≥ 2, where ζ16 is available and use the fact

that unramified extensions lift to unramified extensions to obtain the result for L0

and L1.

We work with 2 + 2iζ3 + i, 2 + 10iζ3 + 5i ≡ 2 + 2iζ3 + 5i, −(2 + 6iζ3 + 3i) ≡

6+2iζ3+5i, and −(2+14iζ3+7i) ≡ 6+2iζ3+i. Note that each of these is congruent

to 2 + 2iζ3 + i mod 4, so we can use the same α for all of them.

We claim that we can take α = ζ1948 +ζ−1948 . For the purposes of doing arithmetic

on these roots of unity, we mention that we choose an element to be ζ48 and then

define ζm = ζ
48
m
48 . To see that we can take α = ζ1948 + ζ−1948 , note that

α4 = ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712

≡ ζ712 + 2 + ζ−712 mod 4.

To show that α4 ≡ γ mod 4, we must show that ζ712 + ζ−712 ≡ 2iζ3 + i = 2ζ312ζ
4
12 + ζ312

mod 4. Subtracting ζ712 from both sides, we find that this reduces to showing that

ζ−712 ≡ ζ712 + ζ312 mod 4. In fact, the two sides are equal, which can be seen by

multiplying both sides by ζ12: ζ
−6
12 = ζ812+ζ412. This can be rewritten as −1 = ζ23 +ζ3,

which is true.

With α established, we first consider the case that γ ≡ 2 + 2iζ3 + i mod 8. By

Theorem 2.0.16, Lj(γ
1/4)/Lj is unramified iff ∃δ ∈ Lj satisfying

2 + 2iζ3 + i ≡ (ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712 )(1 + 4(1 + i)δ + 4δ2)

≡ (ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712 ) +

(ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712 )(4(1 + i)δ + 4δ2) mod 8.

We saw above that ζ712 + ζ−712 = 2iζ3 + i, so we can subtract 2 + ζ712 + ζ−712 from both
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sides to get

0 ≡ (4ζ1924 + 4 + 4ζ−1924 ) + (ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712 )(4(1 + i)δ + 4δ2) mod 8.

Dividing through by 4, we get an equivalent congruence mod 2:

0 ≡ (ζ1924 + 1 + ζ−1924 ) + (ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712 )((1 + i)δ + δ2)

≡ (ζ1924 + 1 + ζ−1924 ) + (ζ712 + ζ−712 )((1 + i)δ + δ2)

≡ (ζ1924 + 1 + ζ−1924 ) + (2iζ3 + i)((1 + i)δ + δ2)

≡ (ζ1924 + 1 + ζ−1924 ) + i((1 + i)δ + δ2)

≡ (ζ1924 + 1 + ζ−1924 ) + (1 + i)δ + iδ2 mod 2.

We can multiply both sides by i = ζ624 to get

0 ≡ (ζ24 + i+ ζ−1324 ) + (1 + i)δ + δ2 mod 2.

But ζ−1224 = −1 ≡ 1 mod 2, so this is

0 ≡ (ζ24 + i+ ζ−124 ) + (1 + i)δ + δ2 mod 2.

At this point, it would be nice to appeal directly to Corollary 3.2.6, but we are

not able to do so because in the terms of our proposition, we would have n = 4, so

N = 2. But then k is not in LN−3 = L−1 = Q. Note, however, that (ζ24 + i+ ζ−124 ) ≡

ζ8(1 + ζ8)(1 + ζ1624 + ζ1924 ) mod 2, so is divisible by (1 + ζ8). Reducing mod (1 + i)

gives us

δ2 ≡ ζ8(1 + ζ8)(1 + ζ1624 + ζ1924 ) mod 1 + i.
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In particular, δ2 must be divisible by 1 + ζ8, so δ must be divisible by 1 + ζ16. If we

let κ = δ/(1 + ζ16), we can rewrite our congruence as

0 ≡ ζ8(1 + ζ8)(1 + ζ1624 + ζ1924 ) + (1 + i)(1 + ζ16)κ+ (1 + ζ16)
2κ2 mod 2.

Dividing through by (1 + ζ16)
2 ≡ (1 + ζ8) gives the equivalent

0 ≡ ζ8(1 + ζ1624 + ζ1924 ) + (1 + ζ8)(1 + ζ16)κ+ κ2 mod (1 + i)(1 + ζ8).

We can rewrite this as

0 ≡ ζ8(1 + ζ1624 + ζ1924 ) + (1 + ζ16)
3κ+ κ2 mod (1 + ζ16)

6.

Now we claim we can invoke Corollary 3.2.6. This time, we have n = 16, so

N = 4. Our constant k = ζ8(1+ ζ1624 + ζ1924 ) = ζ8(1+ ζ23 + ζ8ζ
2
3 ) is a finite sum of roots

of unity in L1 because L1 has ζ8 and also has ζ3 mod 2. Moreover, k is relatively

prime to 2 because we have

k = ζ8(1 + ζ1624 + ζ1924 )

= ζ8(1 + ζ23 + ζ324ζ
2
3 )

= ζ8(1 + ζ23 + ζ8ζ
2
3 )

≡ 1 + 2ζ23

≡ 1 mod 1 + ζ8.

This means that v(k) = 0 < 3
8

= z21−N and v(v(k)) =∞ > 2−N = −2. All

of the conditions for the corollary are satisfied, so δ 6∈ Lj for any j. This means that

Lj(γ
1/4)/Lj is ramified for all j.
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Now we consider the second case, where γ ≡ 2 + 2iζ3 + 5i mod 8. This time

Lj(γ
1/4)/Lj is unramified iff ∃δ ∈ Lj satisfying

2 + 2iζ3 + 5i ≡ (ζ712 + 4ζ1924 + 6 + 4ζ−1924 + ζ−712 )(1 + 4(1 + i)δ + 4δ2) mod 8.

We can perform the same manipulation on this congruence that we did in the first

case and get a similar congruence. This time we are starting with an extra 4i and

all of the manipulations in the first case were subtracting things from both sides,

dividing through by 4, and multiplying both sides by ζ624 = i. So we end up with

the same congruence, except with an additional term of −1 ≡ 1:

0 ≡ (1 + ζ24 + i+ ζ−124 ) + (1 + i)δ + δ2 mod 2.

Note that δ2 ≡ ζ24 + ζ−124 mod 1 + i. Thus, δ ≡ ζ48 + ζ−148 mod 1 + ζ8. Write

δ = ζ48 + ζ−148 + κ(1 + ζ8) and substitute this back in to get

0 ≡ (1 + i+ ζ24 + ζ−124 ) + (1 + i)(ζ48 + ζ−148 ) + κ(1 + i)(1 + ζ8) +

ζ24 + ζ−124 + κ2(1 + i)

≡ (1 + i) + (1 + i)(ζ48 + ζ−148 ) + κ(1 + i)(1 + ζ8) + κ2(1 + i) mod 2.

We divide through by (1 + i) to get

0 ≡ 1 + ζ48 + ζ−148 + κ(1 + ζ8) + κ2 mod (1 + i).
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Since

1 + ζ48 + ζ−148 = 1 + ζ3ζ
11
16 + ζ23ζ

5
16

= −(1− ζ16)(ζ3(1 + ζ16 + ζ216 + · · ·+ ζ1016 ) +

ζ23 (1 + ζ16 + ζ216 + ζ316 + ζ416))

≡ (1 + ζ16)(ζ3(1 + ζ16 + ζ216 + · · ·+ ζ1016 ) +

ζ23 (1 + ζ16 + ζ216 + ζ316 + ζ416)) mod 2,

we know that κ2 ≡ 0 mod (1 + ζ16), so κ ≡ 0 mod (1 + ζ32). We can replace κ with

(1 + ζ32)λ to get

0 ≡ 1 + ζ48 + ζ−148 + λ(1 + ζ32)(1 + ζ8) + λ2(1 + ζ16) mod (1 + i).

Now we can divide by (1 + ζ16) to get a congruence mod (1 + ζ32)
6:

0 ≡ ζ3(1 + ζ16 + ζ216 + · · ·+ ζ1016 ) + ζ23 (1 + ζ16 + ζ216 + ζ316 + ζ416)) +

λ(1 + ζ32)(1 + ζ16) + λ2

= ζ3(1 + ζ16 + ζ216 + · · ·+ ζ1016 ) + ζ23 (1 + ζ16 + ζ216 + ζ316 + ζ416)) +

λ(1 + ζ32)
3 + λ2.

Now we again invoke our corollary. This time, we have n = 32, so N = 5.

The constant term k = ζ3(1 + ζ16 + ζ216 + · · · + ζ1016 ) + ζ23 (1 + ζ16 + ζ216 + ζ316 + ζ416))

is a finite sum of roots of unity in L2. Also, looking at it mod 1 + ζ16, we find that

k ≡ 11ζ3 + 5ζ23 ≡ ζ3 + ζ23 ≡ 1, so k is again relatively prime to 2. As before, this

ensures the conditions on the valuation of k are satisfied, so again δ 6∈ Lj.

For the third case, we have γ ≡ 6 + 2iζ3 + 5i mod 8. This time, we are

starting with an extra 4i + 4 relative to the first case. This means that after the

55



manipulations we have added an i+ 1 to the congruence that needed to be satisfied

in the first case. This yields the following congruence:

0 ≡ (ζ24 + 1 + ζ−124 ) + (1 + i)δ + δ2 mod 2.

We can avoid going through the rest of the manipulations. Note that 0 ≡

k+(1+i)δ+δ2 mod 2 has a solution iff (k+i)+(1+i)γ+γ2 mod 2 does. To see this, let

γ = δ+1, and the second congruence becomes (k+i)+(1+i)+(1+i)δ+δ2+2δ+1 ≡

k + (1 + i)δ + δ2 mod 2. This proves one direction, but since we are working mod

2, applying the same argument works for the other direction.

In our second case, we already saw that there is no solution for

0 ≡ (1 + ζ24 + i+ ζ−124 ) + (1 + i)δ + δ2 mod 2.

Applying the argument from the previous paragraph immediately gives us that there

is no solution in this third case either.

Finally, we treat the fourth case: γ ≡ −(2 + 6iζ3 + 7i) mod 8. This time, we

are starting with an extra 4 relative to the first case, so after the manipulations we

have added an i to the congruence that needed to be satisfied in the first case. We

then have the following congruence:

0 ≡ (ζ24 + ζ−124 ) + (1 + i)δ + δ2 mod 2.

The same trick that we used in the third case works just as well in this case. The

only difference is that we are basing our result here on the result from the first case

rather than the result from the second case.
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4.3 d ≡ 5 mod 8

In the case that d ≡ 5 mod 8, we again have ζ3 mod 8 present. Unlike in the

d ≡ 3 mod 8 case, in this case we find it more convenient to look at γ mod 8 in

terms of ζ3 rather than in terms of
√
d. Again, we will abuse notation and write ζ3

when we mean some element of Lj that is sufficiently close to ζ3 2-adically.

There are a couple of reasons that we prefer to look at γ in terms of ζ3. First,

since d ≡ 1 mod 4, if we write a+ b
√
d, then we have to take a, b ∈ 1

2
Z rather than

in Z. When we took d ≡ 1 mod 8, the norm condition forced a, b ∈ Z, but this does

not happen when d ≡ 5 mod 8. Another, perhaps more subtle, reason can be seen

by considering the following two cases:

• d = 77, ε0 = 9
2

+ 1
2

√
d

• d = 85, ε0 = 9
2

+ 1
2

√
d.

If we look at ε0 as a + b
√
d and try to determine the ramification behavior

solely by looking at conditions on a and b, as we have done for d ∈ {1, 3} mod 8,

we are bound to fail: these two examples have the same a and b, but have different

ramification behavior. It turns out that when we write these two in terms of ζ3, we

have ε0 ≡ 1 + ζ3 mod 8 for d = 77 and ε0 ≡ 7 + 5ζ3 mod 8 for d = 85. We see in this

section that this means that L1(ε
1/4
0 )/L1 is unramified when d = 77, but is ramified

when d = 85.

We begin the section by looking at the relationship between the representation

in terms of
√
d and the representation in terms of ζ3.

Since −3d−1 ≡ 1 mod 8, it has a square root mod 64 in Z. In fact, it has two:
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one that is 1 mod 4 and one that is −1 mod 4. Let k be the square root that is

1 mod 4. We think of −1+k
√
d

2
as ζ3. This will not cause any problems because we

will be working mod 8, and the only properties of ζ3 we will use are the fact that

its cube is 1 and the fact that ζ23 + ζ3 + 1 = 0. The former is implied by the latter,

and the following calculation shows the latter is true mod 8:(
−1 + k

√
d

2

)2

+

(
−1 + k

√
d

2

)
+ 1 =

1 + dk2 − 2k
√
d

4
+
−1 + k

√
d

2
+ 1

=
1 + dk2

4
+
−1

2
+ 1

=
dk2 − 1

4
+ 1

= 0.

The last line follows because we have chosen k such that k2 ≡ −3d−1 mod 64, so

dk2 ≡ −3.

In this conversion from writing in terms of
√
d to writing in terms of ζ3, it

is important to note that, when taking
√
d to be positive or negative, we are also

choosing a value for our ζ3. (This determines whether our ζ3 is congruent to e
2πi
3 or

e
−2πi

3 . The behavior of the two is the same, so which we choose does not matter.)

To make our final notation a little cleaner, we will take c = k−1. If we write
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γ = a+b
√
d

2
with a, b ∈ Z, then we have

γ =
a+ b

√
d

2

=
a+ bck

√
d

2

=
a+ bc− bc+ bck

√
d

2

=
a+ bc

2
+ bc
−1 + k

√
d

2

≡ a+ bc

2
+ bcζ3 mod 8.

Since a and b have the same parity, and c is odd, we know that a+ bc is even. Thus,

we can write γ ≡ x+ yζ3 mod 8 with x, y ∈ Z. To be explicit, the conversion is that

x ≡ a+bc
2

mod 8 and y ≡ bc mod 8. Note that since c ≡ 1 mod 4, y has the same

parity as a and b (which must have the same parity as each other because the ring

of integers of K0 is Z
[
1+
√
d

2

]
).

It is also useful to be able to convert from x and y to a and b. Since c ≡ 1

mod 4, we can write y ≡ bc ≡ b mod 4. Since x ≡ a+bc
2

mod 8, we can multiply by

2 to get 2x ≡ a+ bc mod 16. We already know that y ≡ bc mod 8, so this gives us

a ≡ 2x− y mod 8.

Lemma 4.3.1. Let d ∈ Z be congruent to 5 mod 8. Let γ ∈ OK0 be such that

Norm(γ) ≡ ±1 mod 8, and let γ ≡ x + yζ3 with x, y ∈ Z. Then exactly one of the

following is true:

1. x ≡ 0 mod 8 and y ≡ 1 mod 2

2. x ≡ 1 mod 2 and y ≡ 0 mod 8

3. x ≡ 1 mod 2 and y ≡ x mod 8

4. x ≡ 1 mod 2 and y ≡ 6x mod 8
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5. x ≡ 6y mod 8 and y ≡ 1 mod 2

6. x ≡ 1 mod 2 and y ≡ 3x mod 8.

Moreover, if Norm(γ) = ±1, then we have the following additional restrictions:

• if y ≡ 2 mod 4, then y ≡ 2 mod 8

• if x ≡ 1 mod 4 and y ≡ 1 mod 2, then y ≡ x mod 8

• if x ≡ 2 mod 4, then x ≡ 6 mod 8.

Proof. Our restrictions on x and y all follow from the norm calculation: (x+yζ3)(x+

yζ23 ) ≡ ±1 mod 8. This gives us x2 + xyζ3 + xyζ23 + y2 ≡ ±1 mod 8. Because

1 + ζ3 + ζ23 = 0, we can write this more simply as x2 − xy + y2 ≡ ±1 mod 8.

First consider the case that y is even. In this case, we must have x odd because

otherwise the norm would be even rather than ±1. With x odd, the norm calculation

gives us ±1 ≡ x2 − xy + y2 ≡ 1− xy + y2 mod 8.

If y ≡ 0 mod 4, then we have ±1 ≡ 1−xy mod 8. Also, with y ≡ 0 mod 4 and

x odd, xy ≡ y mod 8, so we actually have ±1 ≡ 1 − y mod 8. The forces y to be

0 mod 8. So in this case, we have x ≡ 1 mod 2 and y ≡ 0 mod 8. This establishes

possibility 2.

If y ≡ 2 mod 8, then we have y2 ≡ 4 mod 8, so ±1 ≡ 5 − xy mod 8. This

means xy ≡ 4 mod 8 or xy ≡ 6 mod 8. Since x is odd and y ≡ 2 mod 8, the former

is impossible. Thus, we have xy ≡ 6 mod 8. This gives us x ≡ 3 mod 4. Similarly

if y ≡ 6 mod 8, we have x ≡ 1 mod 4. This gives us possibility 4.

Now we consider the case that y is odd. This means that y2 ≡ 1 mod 8, so we

have x2 − xy ∈ {0,−2} mod 8.
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If x is odd, then x2 ≡ 1 mod 8 as well, so we have −xy ∈ {−1,−3}, so

xy ∈ {1, 3}. This means that y is either x−1 mod 8 or 3x−1 mod 8. Since x is odd,

x−1 ≡ x mod 8, so y is either x or 3x mod 8. This gives possibilities 3 and 6.

If x is 0 mod 4, then x2 ≡ 0 mod 8, so we have −xy ∈ {0,−2} mod 8, so

xy ∈ {0, 2} mod 8. Since we are taking x to be 0 mod 4, xy ≡ 2 mod 8 is impossible,

so we have xy ≡ 0 mod 8, which means y ≡ 0 mod 2 or x ≡ 0 mod 8. We are working

in a case where y is odd, so we must have x ≡ 0 mod 8. With x ≡ 0 mod 8, the

norm calculation is satisfied with any odd value for y. This gives possibility 1.

If x is 2 mod 4, then x2 ≡ 4 mod 8, so we have −xy ∈ {4,−6}, so xy ∈ {4, 6}.

Since x is 2 mod 4 and y is odd, xy cannot be divisible by 4. This means that in

this case xy ≡ 6 mod 8. If x is 2 mod 8, we have 2y ≡ 6 mod 8, so y ≡ 3 mod 4. If

x is 6 mod 8, we have 6y ≡ 6 mod 8, so y ≡ 1 mod 4. This is possibility 5, the last

possibility.

Now, we take on the additional restriction that Norm(γ) = ±1 rather than

that just being a congruence relationship. In this case, we need to work with γ in

terms of
√
d rather than ζ3, so we write γ = a+b

√
d

2
.

First consider the case that y ≡ 2 mod 4, which also means x ≡ 1 mod 2.

Looking at the norm mod 4, we have x2 − xy + y2 ≡ 1− 2 + 4 = 3 ≡ −1. Since the

norm is ±1, it must be −1. We can take a′ = a
2

mod 4 and b′ = b
2

mod 2. Note that

b ≡ y ≡ 2 mod 4 and a ≡ 2x − y ≡ 0 mod 4, so a′, b′ ∈ Z. Looking at the norm,

we have (a′)2 − d(b′)2 = −1. This means that for every prime p dividing b′, −1 is a

square mod b′. Since b ≡ y ≡ 2 mod 4, we have b′ ≡ 1 mod 2. Since b′ is odd and

−1 is a quadratic residue mod b′, p is 1 mod 4 for every prime dividing b′, so b′ ≡ 1
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mod 4. Equivalently, b ≡ 2 mod 8. Since c ≡ 1 mod 4 and b ≡ 2 mod 8, we have

y ≡ bc ≡ 2 mod 8 as desired.

Now consider the case that x ≡ 1 mod 4 and y ≡ 1 mod 2. The norm of γ is

congruent to x2−xy+y2 ≡ 1−y+1 = 2−y mod 4. We claim we must have y ≡ 1 mod

4. If we had y ≡ 3 mod 4, the norm would be congruent to −1, so would actually

be −1. Then, as in the previous paragraph, if we write γ = a+b
√
d

2
= a′ + b′

√
d, we

can write the norm as (a′)2 − d(b′)2 = −1. This gives us a2 − db2 = −4. Again, b

is odd because b ≡ y mod 4. This means that 2 has an inverse mod b, so the fact

that −4 is a quadratic residue mod b implies that −1 is. Since b is odd, this means

that b ≡ 1 mod 4. Thus, we have y ≡ b ≡ 1 mod 4. This contradicts our having

taken y ≡ 3 mod 4, so we must have had y ≡ 1 ≡ x mod 4 in the first place. We

have already seen that if x and y are both odd, then y ≡ x mod 8 or y ≡ 3x mod

8. Since y ≡ x mod 4, we must be in the former case, so y ≡ x mod 8.

Finally, we claim that x cannot be 2 mod 8. If x ≡ 2 mod 4, we have already

seen that y ≡ 1 mod 2, so the norm of γ is congruent to x2 − xy + y2 ≡ 0 −

2 + 1 = −1 mod 4, so the norm of γ must actually be −1. Again, we can write

γ = a+b
√
d

2
= a′+ b′

√
d, and we can write the norm as (a′)2−d(b′)2 = −1. This gives

us a2 − db2 = −4. Just as in the last paragraph, this means that −1 is a quadratic

residue mod b, which means b ≡ 1 mod 4. This gives us y ≡ b ≡ 1 mod 4. We have

already seen that when x ≡ 2 mod 4 and y ≡ 1 mod 4, it is always the case that

x ≡ 6 mod 8.

Looking at the congruence possibilities when the norm is just congruent to ±1
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mod 8, we can see a symmetry between x and y. Swapping them throughout the set

of possibilities results in exactly the same set. This is because all of these restrictions

arose from analysis of the norm of x+ yζ3, namely x2 − xy + y2. The symmetry in

the results arises because swapping x and y in this function gives exactly the same

function.

When restricting to cases where the norm was ±1 rather than just being con-

gruent to ±1, we had to convert to the a and b representation, establish the restric-

tions there, and then convert back to the x and y representation. The conversion

back to the x and y representation was just to be consistent in how we are listing the

possible congruence conditions on γ. The conversion to the a and b representation,

though, plays a more interesting role.

It is not surprising that we should have to do this because these extra restric-

tions rely on the norm value itself rather than on a congruence condition on the

norm value. When we are working with the x and y representation, we are able

to work only with a congruence condition on the norm. This is because in this

representation, we are not working with γ itself, we are working with something

congruent to it. If we tried to use the same argument on the x and y representation,

we would end up trying to say something like: since x2−xy+y2 ≡ −1, we have that

−1 is a quadratic residue mod any prime dividing y. But in order for that statement

to be true, we need an equality there, not a congruence. In order to get equality,

we must go back to working with γ itself rather than something of the form x+ yζ3

that is congruent to γ.

In this case, the norm condition we needed was not as strong as it was in the
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previous two cases. Again, though, we satisfy that condition by taking (γ) = I4 for

some ideal I of OK0 .

As with the case that d ≡ 3 mod 8, adjoining a square root of γ to a field in the

L-tower sometimes yields a ramified extension and other times yields an unramified

extension.

Proposition 4.3.2. Let d be 5 mod 8. Let γ ∈ OK0 be relatively prime to 2 and such

that (γ) = I4 for some ideal I of OK0. Let x, y ∈ Z be such that γ ≡ x+ yζ3 mod 8.

Then Lj(γ
1/2)/Lj is an unramified extension for all j if either x or y is congruent

to 0 mod 8 or if x ≡ y mod 8, and is a ramified extension for all j otherwise.

Moreover, when Lj(γ
1/2)/Lj is ramified, it is ramified at both primes above

(2).

Proof. Because unramified extensions lift to unramified extensions, when we are

showing that the extensions are unramified, it is sufficient to show that L0(γ
1/2)/L0

is unramified. Proposition 2.0.8 tells us that for this, it is sufficient to show that

γ is a square mod 4 in L0. When we are showing that the extensions are ramified

Proposition 2.0.8 tells us we need to show that γ is not a square mod 4 in Lj for

any j.

Taking the congruence possibilities for γ from the previous lemma and reducing

them mod 4 tells us that the possibilities for γ mod 4 are ±1, 3 + 2ζ3 ≡ −(1 + 2ζ3),

1 + 2ζ3, ±(1 + ζ3), ±(1 + 3ζ3), ±ζ3, 2 + 3ζ3 ≡ −(2 + ζ3), and 2 + ζ3.

Combining the previous two paragraphs, we find that to prove our claim we

must show that ±1, ±(1+ζ3), and ±ζ3 are squares mod 4 in L0 and that ±(1+2ζ3),
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±(1 − ζ3), and ±(2 + ζ3) are not. Since −1 = i2 is a square in Lj for all j, it is

equivalent to show that 1, 1 + ζ3, and ζ3 are squares mod 4 in L0 and that 2 +
√
d,

1− ζ3, and 2 + ζ3 are not squares mod 4 in Lj for any j.

Clearly, 1 and ζ3 ≡ (ζ23 )2 are squares mod 4. Since 1 + ζ3 ≡ −ζ23 = (iζ3)
2 mod

4, i ∈ L0, and there are elements in L0 that are congruent to ζ3 mod arbitrarily high

powers of 2, it follows that 1 + ζ3 is a square mod 4 in L0, so in Lj for all j.

It remains to show that none of 1 + 2ζ3, 1− ζ3, and 2 + ζ3 is a square mod 4

in Lj for any j. We show this by showing that 1 + 2ζ3 is not a square mod 4 in Lj

for any j and that either of the other two values is a square mod 4 in Lj iff 1 + 2ζ3

is. Again, recall that ζ3 is an element sufficiently close to being a cube root of unity

2-adically.

First note that because 2+2ζ3 +2ζ23 ≡ 0 mod 4, we have 2+ζ3 ≡ 2ζ23−ζ3 mod

4. But 2ζ23−ζ3 ≡ −ζ3(2ζ3+1) mod 4. Because −1 and ζ3 ≡ ζ23 are both squares mod

4, 2 + ζ3 is a square mod 4 iff 1 + 2ζ3 is. Similarly, 1− ζ3 ≡ −2ζ3− ζ23 = −ζ3(2 + ζ3),

so 1− ζ3 is a square iff 2 + ζ3 is.

Assume that there is some v ∈ Lj such that v2 ≡ 1 + 2ζ3 mod 4. Then v2 ≡ 1

mod 2, so we have v ≡ 1 mod (1 + i), and we can write v = 1 + δ(1 + i). Squaring

this, we have v2 = 1 + 2δ(1 + i) + 2iδ2. Since we have assumed that v2 ≡ 1 + 2ζ3

mod 4, this gives us 1 + 2ζ3 ≡ 1 + 2δ(1 + i) + 2iδ2 mod 4. We can subtract 1 + 2ζ3

from both sides and divide through by 2 to get 0 ≡ ζ3 + (1 + i)δ + iδ2 mod 2.

We can multiply both sides of the entire congruence by i to get 0 ≡ iζ3 + (1 +

i)δ + δ2 mod 2. Note that we have the same problem that we had when adjoining

fourth roots with d ≡ 3 mod 8, namely that iζ3 is not in a low enough field to
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apply Corollary 3.2.6. (We would need it to be in Q.) Now consider the congruence

mod (1 + i): δ2 ≡ ζ3 mod (1 + i). Then δ ≡ ζ23 mod (1 + ζ8), so we can write

δ = ζ23 + λ(1 + ζ8) and δ2 ≡ ζ3 + λ2(1 + i) mod 2. Substituting this back in, we get

0 ≡ iζ3 + ζ23 (1 + i) + λ(1 + ζ8)(1 + i) + ζ3 + λ2(1 + i)

= (ζ3 + ζ23 )(1 + i) + λ(1 + i)(1 + ζ8) + λ2(1 + i)

≡ (1 + i) + λ(1 + i)(1 + ζ8) + λ2(1 + i) mod 2.

Dividing through by (1 + i), we get 1 + λ(1 + ζ8) + λ2 mod (1 + i). But now we can

apply Corollary 3.2.4 to see that no such λ can exist. This means no such δ, thus

no such v can exist. This shows that x is not a square mod 4 in Lj for any j. These

calculations are valid in the completion at both primes above (2), so the extension

is ramified at both of these primes.

With the knowledge of the ramification behavior that arises when adjoining

a square root of γ to fields in the L-tower, we can now look at the ramification

behavior we get when we adjoin a fourth root of γ.

Theorem 4.3.3. Let d ∈ Z be congruent to 5 mod 8. Let γ ∈ OK0 be relatively

prime to 2 and such that (γ) = I4 for some ideal I of OK0. Let k ∈ Z be such that

k2d ≡ −3 mod 64, and let ζ3 =
(
−1+k

√
d

2

)
. Let x, y ∈ Z be such that γ ≡ x+yζ3 mod

8. Then for j > 0, Lj(γ
1/4)/Lj is unramified iff (x, y) ∈ {±(0, 1),±(1, 0),±(1, 1)}.

Moreover, L0(γ
1/4)/L0 iff (x, y) ∈ {(0, 1), (7, 7)}.

Proof. Based on Lemma 4.3.1, we wish to show that exactly one of the following is

true:

1. x ≡ 0 mod 8, y ≡ 1 mod 8, and Lj(γ
1/4)/Lj is unramified for all j
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2. x ≡ 0 mod 8, y ≡ ±3 mod 8, and Lj(γ
1/4)/Lj is ramified for all j

3. x ≡ 0 mod 8, y ≡ 7 mod 8, L0(γ
1/4)/L0 is ramified, and Lj(γ

1/4)/Lj is

unramified for all j ≥ 1

4. x ≡ 1 mod 8, y ≡ 0 mod 8, and Lj(γ
1/4)/Lj is unramified for all j

5. x ≡ ±3 mod 8, y ≡ 0 mod 8, and Lj(γ
1/4)/Lj is ramified for all j

6. x ≡ 7 mod 8, y ≡ 0 mod 8, L0(γ
1/4)/L0 is ramified, and Lj(γ

1/4)/Lj is

unramified for all j ≥ 1

7. x ≡ 1 mod 8, y ≡ 1 mod 8, L0(γ
1/4)/L0 is ramified, and Lj(γ

1/4)/Lj is

unramified for all j ≥ 1

8. x ≡ ±3 mod 8, y ≡ x mod 8, and Lj(γ
1/4)/Lj is ramified for all j

9. x ≡ 7 mod 8, y ≡ 7 mod 8, and Lj(γ
1/4)/Lj is unramified for all j

10. x ≡ 1 mod 2, y ≡ 6x mod 8, and Lj(γ
1/4)/Lj is ramified for all j

11. x ≡ 6y mod 8, y ≡ 1 mod 2, and Lj(γ
1/4)/Lj is ramified for all j

12. x ≡ 1 mod 2, y ≡ 3x mod 8, and Lj(γ
1/4)/Lj is ramified for all j.

We handle this case by case:

Case 1: x ≡ 0 mod 8, y ≡ 1 mod 8

This follows immediately from Lemma 3.1.7.

Case 2: x ≡ 0 mod 8, y ≡ ±3 mod 8

We have γ ≡ ±3ζ3 = ∓(3 + 3ζ23 ) mod 8. Since −1 is a fourth power in L1,

showing the result for all j for −3ζ3 also shows it for j ≥ 1 for 3ζ3. But since

unramified extensions lift to unramified extensions, this also shows it for −(3 + 3ζ23 )

for L0. Thus, it is enough to prove the claim for x ≡ −3ζ3 = 3 + 3ζ23 mod 8.

Mod 4, this is ζ3, so we can take α = γ, since γ ≡ ζ3 mod 4. Also γ ≡ ζ3 mod
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4 implies that γ2 ≡ ζ23 mod 8, so γ4 ≡ ζ3 mod 8. Then we have γ − α4 = γ − γ4 ≡

−3ζ3 − ζ3 = −4ζ3 mod 8, so γ−α4

4
≡ ζ3 mod 2. The result now follows immediately

from Corollary 3.2.9.

This argument works locally, but that is sufficient for the global case.

Case 3: x ≡ 0 mod 8, y ≡ 7 mod 8

This follows immediately from Lemma 3.1.8.

Case 4: x ≡ 1 mod 8, y ≡ 0 mod 8

This is Lemma 3.1.1.

Case 5: x ≡ ±3 mod 8, y ≡ 0 mod 8

This is Corollary 3.2.10.

Case 6: x ≡ 7 mod 8, y ≡ 0 mod 8

This is Lemma 3.1.3.

Case 7: x ≡ 1 mod 8, y ≡ 1 mod 8

Here γ ≡ 1+ζ3 = −ζ23 mod 8. With this observation, this follows immediately

from Lemma 3.1.8.

Case 8: x ≡ ±3 mod 8, y ≡ x mod 8

In this case, γ ≡ ±(3 + 3ζ3) = ±(ζ23 ). This is the same as case 2 with a

different choice for the primitive cube root of unity, so the argument is the same as

in that case.

Case 9: x ≡ 7 mod 8, y ≡ 7 mod 8

Here, γ ≡ 7 + 7ζ3 ≡ −1 − ζ3 = ζ23 . Now the result follows immediately from

Lemma 3.1.7.

Case 10: x ≡ 1 mod 2, y ≡ 6m mod 8
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Case 11: x ≡ 6y mod 8, y ≡ 1 mod 2

Case 12: x ≡ 1 mod 2, y ≡ 3x mod 8

In each of these cases, we saw in the previous proposition that for this value

of γ, Lj(γ
1/2)/Lj is ramified, so Lj(γ

1/4)/Lj must be as well.

There is an interesting symmetry in the above result: swapping x and y gives

the same result. Although the underlying reason is the same, it is not as straightfor-

ward to see as it was in Lemma 4.3.1, where it just arose because of the symmetry

in the norm calculation. Here, it is caused by a pair of properties working together.

The first is that multiplying γ by something that is a fourth power mod 8 cannot

affect its behavior because that can just be absorbed in α. The second, which we

used a couple of times in the proof, is that ζ23 also satisfies x2 + x + 1 ≡ 0 mod

8 and, as a result, x3 ≡ 1 mod 8. These are the only properties of ζ3 we used, so

the behavior of ζ23 must be the same as that of ζ3. Combining these, we find that

if we multiply γ ≡ x + yζ3 mod 8 by something that is congruent to ζ23 mod 8, we

get something congruent to y + xζ23 mod 8. This, in turn, must behave exactly like

y + xζ3, which is what comes out of swapping x and y in the original γ.

4.4 d ≡ 7 mod 8

In this section, we find that when d ≡ 7 mod 8, we have some elements that

are congruent to ±i mod 8. In order for the fourth root of such an element to give

an unramified extension, i must be a fourth power. For this to happen, ζ16 must

be available, and this is not true in the L-tower until L2. Thus, it is reasonable to
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expect that, unlike in the other sections, we might have extensions that are ramified

at both L0 and L1, but are unramified beginning at L2. In fact, this is precisely

what we find.

Lemma 4.4.1. Let d ∈ Z be congruent to 7 mod 8. Let γ ∈ OK0 be such that

Norm(γ) ≡ ±1 mod 16, and write γ = a + b
√
d with a, b ∈ Z. Then one of the

following is true:

• a ≡ 0 mod 4 and b ≡ 1 mod 2

• a ≡ ±1 mod 8 and b ≡ 0 mod 4.

Proof. Consider the norm to Q: a2 − db2. We have assumed that this is congruent

to ±1. If we look at this mod 4, we have d ≡ −1, so a2 + b2 ≡ ±1. Since 0 and

1 are the only squares mod 4, we find that one of a and b must be odd, the other

must be even, and the norm must be 1.

Looking at the norm mod 8, we still have a2 + b2 ≡ 1. If either a or b were

2 mod 4, this congruence could not be satisfied, so one of a and b is 0 mod 4, and

the other is odd. Now look at the norm mod 16: we have either a2 + b2 ≡ 1 or

a2 − 7b2 ≡ 1. If b is 0 mod 4, we have a2 ≡ 1 mod 16, so a ≡ ±1 mod 8.

As in the previous three cases, instead of explicitly making an assumption

about the norm of γ, we get that as a consequence of γ being the fourth power of

an ideal of OK0 .

In the following proposition, we see that the ramification behavior from ad-

joining γ1/2 is identical to the behavior we got when d was 3 mod 8.

Proposition 4.4.2. Let d be 7 mod 8. Let γ ∈ OK0 be relatively prime to 2 and
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such that (γ) = I4 for some ideal I of OK0. Then L0(γ
1/2)/L0 is unramified iff

a ≡ 1 mod 2. If it is ramified, it is ramified at both primes above (2). Moreover,

Lj(γ
1/2)/Lj is an unramified extension for j ≥ 1.

Proof. The proof that we used when d ≡ 3 mod 8 case works just as well for this

case, with the exception that we need to prove that ±
√
d are not squares mod 4 in

L0 but are squares in L1. (In the d ≡ 3 mod 8 case, we needed to prove this for

±(2 +
√
d)). Since i ∈ L0 ⊂ L1, it is sufficient to prove that

√
d is a square mod 4

in L1, but not in L0.

Since d ≡ −1 mod 8, we must have
√
d ≡ ±i mod 4, depending on the

completion chosen. Since ζ8 ∈ L1, both of these are squares in L1. If ±i were a

square mod 4 in L0, it would be a square mod 2 as well. We would need only to

define its square root mod 1 + i, and the only such value in L0 is 1. This does not

square to i mod 2, so
√
d is not a square mod 4 in L0 as desired. This calculation is

valid in either completion, so the extension is ramified at both primes above (2).

Theorem 4.4.3. Let d ∈ Z be congruent to 7 mod 8. Let γ ∈ OK0 be relatively

prime to 2 and such that (γ) = I4 for some ideal I of OK0. Let a, b ∈ Z be such that

γ = a+ b
√
d. Then for j > 1, Lj(γ

1/4)/Lj is unramified. Moreover, L1(γ
1/4)/L1 is

unramified iff a is odd. Finally, L0(γ
1/4)/L0 iff a ≡ 1 mod 8.

When these extensions are ramified, they are ramified at both primes above

(2).

Proof. This time, we need to show that exactly one of the following is true:

• a ≡ 1 mod 8, b ≡ 0 mod 4, and Lj(γ
1/4)/Lj is an unramified extension for all
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j

• a ≡ −1 mod 8, b ≡ 0 mod 4, L0(γ
1/4)/L0 is ramified at both primes above

(2), and Lj(γ
1/4)/Lj is an unramified extension for j ≥ 1

• a ≡ 0 mod 4, b ≡ 1 mod 2, Lj(γ
1/4)/Lj is ramified at both primes above (2)

for j ∈ {0, 1}, and Lj(γ
1/4)/Lj is unramified for j ≥ 2.

With the exception of the modification to address the fact that there are two

primes above (2) in OL here, this is exactly the same situation as the corresponding

theorem for d ≡ 3 mod 8, except for the third case. In the third case, a is 0 mod

4 rather than being 2 mod 4, and the extension becomes unramified at L2 rather

than staying ramified all the way up the L-tower. When b ≡ 4 mod 8, one might

expect the proof for the first two cases to differ from the proof for d ≡ 3 mod 8

because we have γ ≡ ±(1 + 4
√
d) mod 8, and

√
d is different when d ≡ 3 mod 8

and d ≡ 7 mod 8. But since
√
d has a coefficient of 4, we are concerned here only

with the congruence class of
√
d mod 2. It turns out that this is the same any time

d ≡ 3 ≡ −1 mod 4. In that case
√
d ≡ ±i ≡ i mod 2. So the proof we used when

d ≡ 3 mod 8 still works for the first two cases here. The calculation does not change

based on the choice of completion, so when we get ramification at all, we get it at

both primes above (2).

The only place where the proof needs to change is in the third case. For this,

we want to change our representation of γ. If d ≡ 7 ≡ −9 mod 16, then
√
d ≡ ±3i

mod 8. If d ≡ −1 mod 16, then
√
d ≡ ±i mod 8. In either case, the 8 possibilities

we need to deal with are x + yi with x ≡ 0 mod 4 and y ≡ 1 mod 2. We can

further restrict the possibilities for y. As usual, we do this by looking at the norm:
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x2 + y2 ≡ ±1 mod 16. Since x ≡ 0 mod 4, this gives us y2 ≡ ±1 mod 16. Since −1

is not a quadratic residue mod 16, we have y2 ≡ 1 mod 16, so y ≡ ±1 mod 8.

Now the result for the third case is exactly the statement of Lemma 3.1.6.

Note that the ramification results are the same at either completion, so when we

get ramification, we get it at both primes above (2).

In Theorem 1.0.1, which is from [1], the authors restrict to the case that d

splits in F0. In this sense, the case that d ≡ 7 mod 8 is the most direct analogue to

their result. Perhaps, then, it is not surprising that this is the one case where every

possible choice of γ results in Lj(γ
1/4)/Lj being unramified for sufficiently large j.

Unlike their result, which always gives an unramified extension when j = 1, the

result here does not always give an unramified extension until j = 2.

4.5 Properties of these extensions

4.5.1 Independence

In [1], the authors show that if I1, · · · , In represent independent ideal classes

of order 3 with I3j = (γj), then L1(ε
1/3
0 , γ

1/3
1 , . . . , γ

1/3
n )/L1 has degree 3n+1. We show

an analogous result, but first we need a pair of easy results.

Lemma 4.5.1. Let L = K(
√
d) be a quadratic field extension and let γ ∈ K. If γ

is a fourth power in L, then one of the following is true:

• γ = α4 for some α ∈ K

• γ = d2α4 for some α ∈ K

• L = K(i) and γ = −4α4 for some α ∈ K.
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Proof. If γ is a fourth power in L, we have a, b ∈ K such that

γ = (a+ b
√
d)4

= a4 + 4a3b
√
d+ 6a2b2d+ 4ab3d

√
d+ b4d2

= (a4 + 6a2b2d+ b4d2) + 4ab(a2 + db2)
√
d.

Since L is a quadratic extension,
√
d 6∈ K, so we must have 4ab(a2 + db2) = 0.

This means a = 0, b = 0, or a2 + db2 = 0. If a = 0, then γ = b4d2, which is the

second option in the list. If b = 0, then γ = a4, which is the first option in the list.

If a2 + db2 = 0, then d = −(a
b
)2 is the negative of a square in K. This means that

L = K(
√
d) = K(

√
−1). Now if γ is a fourth power in L, we have a, b ∈ K such

that γ = (a4 − 6a2b2 + b4) + 4ab(a2 − b2)i. If either a or b is 0, the first case above

is satisfied. If not, we must have a2 = b2, so γ = −4a4.

The value −4α4 here is related to the element of the same form referenced in

Theorem 4.5.4. In fact, if we weaken our condition from γ being a fourth power in

L to X4 − γ is reducible in K[X], that theorem tells us that either γ is a square in

K, or that γ is of the form −4α4 for some α ∈ K.

Corollary 4.5.2. Let γ ∈ K0 be such that γ > 0 in at least one embedding of K0

into R. If γ is a fourth power in Lj for any j, then γ is a fourth power in K0.

Proof. We do this in two steps. First, we show that γ must be a fourth power in

L0. Then, we show that this implies it must be a fourth power in K0.

If j > 0, consider the extension Lj/Lj−1. The previous lemma tells us that

either γ is a fourth power in Lj−1 or γ = ζ2j+1α4 for some α ∈ Lj−1. (The third
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option is not relevant because Lj is not Lj−1(i) for any j > 0.) We claim that it is

impossible to have γ = ζ2j+1α4 for some α ∈ Lj−1.

Let σ be the non-trivial element of the Galois group of Lj−1/Kj−1. Applying

this to that equation gives us σ(γ) = ζ−1
2j+1σ(α)4. Since γ ∈ K0, we have γ = σ(γ),

so ζ2j+1α4 = ζ−1
2j+1σ(α)4. Multiplying both sides by ζ2j+1α−4 gives ζ2j = α−4σ(α)4.

But this means ζ2j is a fourth power in Lj−1, which isn’t true.

So γ must be a fourth power in Lj−1. Repeating this argument j times, we

find that γ is a fourth power in L0.

Now the previous lemma tells us that either γ is a fourth power in K0 or

γ = −4α4 for some α ∈ K0. (The second of the three options in the lemma is

redundant because d = −1 in this case, so d2 = 1.) Since α ∈ K0, which is real,

α4 > 0. Since γ > 0 in at least one real embedding, it is impossible for γ = −4α4,

so we must have γ a fourth power in K0.

We can now follow the same argument as appears in [1] to get the following

proposition:

Proposition 4.5.3. Let I1, . . . , In represent independent ideal classes of order 4 in

K0 with Ij relatively prime to 2 for all j. Write I4j = (γj) with γj ∈ K0 and γj > 0

for all j in at least one embedding of K0 into R. Then ε0, γ1, . . . , γn are independent

mod fourth powers in Lj.

Proof. Suppose that εa00 γ
a1
1 · · · γann = β4 in Lj. Since β4 is a product of elements in

K0, we have β4 ∈ K0. Now applying the previous corollary tells us that we can take

β ∈ K0.
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Now we can write Ia11 · · · Iann = (β). Since these ideals represent independent

classes, each with order 4, we must have aj ≡ 0 mod 4 for all j. This means that

εa00 = β4γ−a11 · · · γ−ann is a fourth power in K0, which means that a0 ≡ 0 mod 4.

In [1], L1(ε
1/3
0 , γ

1/3
1 , . . . , γ

1/3
n )/L1 is a degree-3n+1 extension. The analogue in

our case is not necessarily a degree-4n+1 extension.

4.5.2 Degrees

For all of these extensions, it is valuable to understand what degree the ex-

tension has. In particular, to say that a trivial extension is unramified is distinctly

uninteresting. In many cases, we can say exactly what the degree of the extension

is. When proving results about the degrees of these extensions, we frequently use

the following theorem:

Theorem 4.5.4. Let K be a field and n an integer ≥ 2. Let γ ∈ K, γ 6= 0. Assume

that for all prime numbers p such that p | n we have γ 6∈ Kp, and if 4 | n then

γ 6∈ −4K4. Then Xn − γ is irreducible in K[X].

The above theorem is the subject of Section 9 of Chapter 8 in [2]. We need

only the following interesting corollary, which arises from taking n = 4 and K a

field in the L-tower:

Corollary 4.5.5. Let γ ∈ Lj, γ 6= 0. Then the following are equivalent:

1. γ is not a square in Lj

2. Lj(γ
1/2)/Lj is a degree-2 extension

3. Lj(γ
1/4)/Lj is a degree-4 extension.
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Proof. Part 1 and Part 2 are obviously equivalent. Also, Part 3 clearly implies Part

2. To prove the result, then, it is sufficient to prove that Part 1 implies Part 3. To

do this, we use the previous theorem.

Although we are taking n = 4, so 4 | n, we do not have to take on the extra

assumption that γ 6∈ −4(Lj)
4. This is because −4 = (2i)2 is a square in Lj for all

j. Thus, the fact that γ is not a square already implies that this extra assumption

is satisfied. Our corollary now follows from noting that if Xn − γ is irreducible in

K[X] for some field K, then K(γ1/n)/K is a degree-n extension.

Understanding the degree of Lj(γ
1/2)/Lj is often important for understanding

the degree of Lj(γ
1/4)/Lj. The following two results, in addition to Proposition 2.0.8,

are critical for this.

Proposition 4.5.6. Let d be a positive square-free integer with d > 2. Let K0 =

Q(
√
d), K1 = K0(

√
2), and let ε0 be the fundamental unit of K0. Then

√
ε0 ∈ K1

iff (2) ramifies principally in K0.

Proof. (⇒) If
√
ε0 ∈ K1 = K0(

√
2), then

√
ε0/
√

2 ∈ K0 because it is fixed by the

action of the non-trivial element of Gal(K1/K0). Thus,
√

2ε0 ∈ K0. Let (a+b
√
d)2 =

2ε0. Then as ideals, we have (a + b
√
d)2 = (2) so (2) is the square of a principal

ideal.

(⇐) If (2) ramifies principally, there is some unit u ∈ K0 such that 2u has a

square root in K0. Since ε0 is the fundamental unit, we can write u = ±εn0 . Since

2 and ε0 are positive in at least one real embedding and K0 is real, we must have

u = εn0 for some n ∈ Z. Since 2εn0 has a square root in K0 iff 2εn mod 2
0 has one, one

77



of the following must be true: 2ε00 = 2 has a square root in K0 or 2ε10 = 2ε0 has a

square root in K0. The former can be true only for d = 2, but we have taken d > 2.

Thus, we have that 2ε0 has a square root in K0, so
√
ε0 ∈ K1.

Since ε0 is positive in at least one real embedding, we cannot have
√
ε0 ∈ L0.

If it were, we would have L0 = K0(ε
1/2
0 ). This is impossible because L0 is totally

imaginary, so must be generated by the square root of a totally negative element.

The same argument shows that
√
ε0 is not in K0(

√
−2). Since K0(ε

1/2
0 ) is degree

2, if ε
1/2
0 ∈ L1, it must also be in one of the degree-2 sub-extensions of L1/K0. We

have just seen that the only possibility is K1. So the result above can actually be

stated as
√
ε0 ∈ L1 iff

√
ε0 ∈ K1 iff (2) ramifies as the square of a principal ideal in

K0.

If we are not dealing exclusively with units, we cannot say as much, but we

can say something if γ is relatively prime to 2:

Proposition 4.5.7. Let d be a positive square-free integer with d > 2. Let K0 =

Q(
√
d), K1 = K0(

√
2), and let γ ∈ OK0 be relatively prime to 2 with

√
γ 6∈ K0.

Then
√
γ ∈ K1 implies that (2) ramifies in K0.

Proof. If
√
γ ∈ K1 = K0(

√
2), then

√
γ/
√

2 ∈ K0 because it is fixed by the action

of the non-trivial element of Gal(K1/K0). Thus,
√

2γ ∈ K0. Let (a + b
√
d)2 = 2γ.

Then as ideals, we have (a + b
√
d)2 = (2γ) in K0. Since γ is relatively prime to 2,

(2) must be ramified.

Now we have the tools we need to start examining the degrees of the extensions

we have dealt with throughout the paper. We start with a pair of propositions that
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shed light on the degree of Lj(γ
1/4)/Lj when j ≤ 1.

Proposition 4.5.8. Let γ ∈ K0 be such that
√
γ 6∈ K0 and γ > 0 in at least one

embedding of K0 into R. Then L0(γ
1/2)/L0 is a degree-2 extension and L0(γ

1/4)/L0

is a degree-4 extension.

Proof. Since γ is positive, we cannot have
√
γ ∈ L0. If it were, we would have

L0 = K0(γ
1/2), which would mean the square root of a positive element is gener-

ating a non-real extension. Since
√
γ 6∈ L0, the result follows immediately from

Corollary 4.5.5.

Proposition 4.5.9. Let γ ∈ OK0 be such that
√
γ 6∈ K0 and γ > 0 in at least one

embedding of K0 into R. Assume that (2) does not ramify in K0. Then L1(γ
1/2)/L1

is a degree-2 extension and L1(γ
1/4)/L1 is a degree-4 extension.

Moreover, if γ = ε0, the fundamental unit of K0, then the following are equivalent:

1. (2) does not ramify as the square of a principal ideal in K0

2. ε0 is not a square in L1

3. L1(ε
1/2
0 )/L1 is a degree-2 extension

4. L1(ε
1/4
0 )/L1 is a degree-4 extension.

Proof. We saw in Proposition 4.5.7 that if (2) does not ramify in K0, then
√
γ 6∈ K1.

The same argument that we used in the previous proposition about γ being positive

and the field in the L-tower being non-real holds here as well. Thus
√
γ 6∈ L1. Now

the result follows from Corollary 4.5.5.

For ε0, we again use Corollary 4.5.5. With this, it is sufficient to show that

ε0 is a square in L1 iff (2) ramifies principally in K0. First note that ε0 is a square
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in L1 iff ε0 is a square in K1. Obviously, ε0 being a square in K1 implies it is one

in L1. To see the reverse direction, note that ε0 is positive, so ε
1/2
0 is real. Since

K1 is real and L1 is not, we cannot have L1 = K1(ε
1/2
0 ). Thus, if ε

1/2
0 ∈ L1, it must

also be the case that ε
1/2
0 ∈ K1. The rest of the claim follows immediately from

Proposition 4.5.6.

Degrees of unramified extensions

Note that Lj/Lj−1 is always ramified at 2. Since unramified extensions lift to

unramified extensions, the degrees of unramified extensions are maintained as those

extensions are lifted to extensions of higher fields in the L-tower. Using this argu-

ment, we claim that all of the unramified extensions mentioned in Theorem 4.1.4,

Theorem 4.2.3, and Theorem 4.3.3 have degree 4 so long as γ > 0. The same is true

for many of the extensions in Theorem 4.4.3.

Again, it is possible that we must choose a completion in order to say whether

γ > 0, but if the extension is degree 4 in any completion, it must be globally as well.

Once we have chosen a completion, we can always choose a γ > 0 as the generator

of (γ) by multiplying γ by −1 if necessary. In addition to requiring γ > 0, the

previous two propositions also require that
√
γ 6∈ K0. One way of accomplishing

this is to strengthen the restriction that (γ) = I4 with the requirement that I be an

ideal of order 4. When γ = ε0, we do not need this extra restriction to ensure that

√
γ 6∈ K0.

Consider the case that d ≡ 1 mod 4. We wish to show that all of the unramified

extensions mentioned in Theorem 4.1.4 and Theorem 4.3.3 are degree-4 extensions

80



when γ > 0 and
√
γ 6∈ K0. Since d ≡ 1 mod 4, (2) does not ramify in K0, so our last

two propositions show that the unramified extensions of L0 and L1 all have degree 4.

In Theorem 4.1.4 and Theorem 4.3.3, every time Lj(γ
1/4)/Lj is unramified for j > 1,

it is the lift of an unramified extension L1(γ
1/4)/L1. Thus, applying the previous

two propositions and the argument that unramified extensions lift to unramified

extensions, we find that all of the unramified extensions are degree-4 extensions.

When d ≡ 3 mod 8, a slightly different argument shows the same for Theo-

rem 4.2.3. Note that for every congruence possibility for γ in that theorem such that

Lj(γ
1/4)/Lj = Lj((−γ)1/4)/Lj is unramified for j > 1, it is also the case that either

L0(γ
1/4)/L0 or L0((−γ)1/4)/L0 is unramified. In either case, Lj(γ

1/4)/Lj is the lift

of an unramified extension of L0. Thus, it is sufficient to note that the unramified

extensions of L0 in this theorem are degree 4. Again, taking γ > 0 and
√
γ 6∈ K0,

we get this from Proposition 4.5.8.

Finally, we consider d ≡ 7 mod 8 and Theorem 4.4.3, which is the most

complicated case. The same argument we used for d ≡ 3 mod 8 establishes that

all of the unramified extensions have degree 4 when a is odd. When a is even,

however, we have a scenario where L1(γ
1/4)/L1 is still ramified, and we do not get

an unramified extension until L2. If γ = ε0 and (2) fails to ramify principally, we

know from Proposition 4.5.6 and Proposition 4.4.2 that Lj(γ
1/2) is an unramified

degree-2 extension for j ≥ 1. Then Corollary 4.5.5 tells us that Lj(γ
1/4)/Lj is degree

4. If γ = ε0 and (2) ramifies principally, we know that Lj(γ
1/2)/Lj is trivial for j ≥ 1.

This means that Lj(ε
1/4
0 )/Lj is either degree 2 or trivial. Proposition 4.5.3 tells us

the extension cannot be trivial. For γs other than ε0, the tools we have developed
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here do not tell us about the degrees of these extensions other than that they are

non-trivial.

Degrees of ramified extensions

When we look at ramified extensions, one might expect us to lose one of the

tools that we have available when we look at unramified extensions: non-trivial

extensions are no longer guaranteed to keep their degree as they are lifted up the L-

tower. Some of our ramified extensions, though, result from extending an unramified

extension by a ramified one. This means that that tool continues to be useful in

this case. We also gain an additional tool that we did not have before: ramified

extensions cannot be trivial.

When looking at the case where Lj(γ
1/4)/Lj is ramified, we want to consider

two different scenarios. The first is that Lj(γ
1/2)/Lj is ramified. The second is that

Lj(γ
1/2)/Lj is unramified, but Lj(γ

1/4)/Lj is ramified.

In the first case, the argument is straightforward. Since Lj(γ
1/2)/Lj is ram-

ified, γ is not a square in Lj. Applying Corollary 4.5.5, we see that the degree of

Lj(γ
1/4)/Lj is 4.

In the second case, the argument is slightly more complicated. First we con-

sider what happens when this situation arises at L0. In this case, since we continue

to take γ > 0 with
√
γ 6∈ K0, we know from Proposition 4.5.8 that L0(γ

1/4)/L0 is

degree 4.

Now we look at Lj for j ≥ 1. Because we are in the case where Lj(γ
1/2)/Lj

is unramified but Lj(γ
1/4)/Lj is ramified, we must have Lj(γ

1/4)/Lj(γ
1/2) ramified.
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This means it is non-trivial, so must be degree 2. Thus Lj(γ
1/4)/Lj is either degree

4 or degree 2 depending on whether γ1/2 ∈ Lj. We can use Proposition 4.5.9 to see

that these extensions are always degree 4 when d ≡ 1 mod 4 (so that (2) does not

ramify in K0). When d ≡ 3 mod 4, if γ = ε0, Lj(γ
1/4)/Lj is degree 4 iff (2) fails to

ramify principally.

Over the last two sections, we have proved the following proposition:

Proposition 4.5.10. Let γ ∈ OK0 be relatively prime to 2 and such that
√
γ 6∈ K0

and (γ) = I4. If d ≡ 1 mod 4, then Lj(γ
1/4)/Lj is a degree-4 extension. If d ≡ 3

mod 8, Lj(γ
1/4)/Lj is a degree-4 extension if it is an unramified extension.
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Chapter A: Examples

For each congruence class of d, we showed that a number of congruences mod

8 could not be satisfied by γ when Norm(γ) ≡ ±1 mod 16 (or, in one case, mod

8). When d ≡ 1 mod 4, we gave further restrictions on the possible value of γ when

Norm(γ) = ±1. In the former case, we did this because we were interested in values

of γ such that (γ) = I4 for some ideal I of OK0 . In the latter, we were particularly

interested in γ = ε0.

Here, we give examples of γs such that (γ) = I4 for some ideal I of order 4 in

OK0 . We also give examples of fundamental units of K0. We have an example for

each congruence condition on γ or ε0 that we have not shown is impossible. This

shows that we did actually need to consider each of those possibilities mod 8.
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A.1 d ≡ 1 mod 8

a mod 8 b mod 8 d γ

1 0 897 −32607 + 1008
√
d

7 0 897 32607− 1008
√
d

1 4 145 521− 36
√
d

7 4 145 −521 + 36
√
d

4 1 689 7691764 + 293033
√
d

4 3 505 8588− 421
√
d

4 5 505 −8588 + 421
√
d

4 7 689 −7691764− 293033
√
d

0 1 145 1032 + 89
√
d

0 3 505 −706088− 31421
√
d

0 5 505 706088 + 31421
√
d

0 7 145 −1032− 89
√
d

Table A.1: Examples of γ = a + b
√
d with (γ) = I4 for some ideal I of order 4 in

OK for d ≡ 1 mod 8

a mod 8 b mod 8 d ε0

1 0 561 522785 + 22072
√
d

7 0 161 11775 + 928
√
d

1 4 105 41 + 4
√
d

7 4 33 23 + 4
√
d

4 1 17 4 +
√
d

4 5 73 1068 + 125
√
d

0 1 41 32 + 5
√
d

0 5 137 1744 + 149
√
d

Table A.2: Examples of ε0 = a+ b
√
d, the fundamental unit in OK for d ≡ 1 mod 8
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A.2 d ≡ 3 mod 8

a mod 8 b mod 8 d γ

2 1 291 122− 7
√
d

2 3 939 338 + 11
√
d

2 5 219 194 + 13
√
d

2 7 1139 42−
√
d

6 1 1139 −42 +
√
d

6 3 219 −194− 13
√
d

6 5 939 −338− 11
√
d

6 7 291 −122 + 7
√
d

1 0 219 121− 8
√
d

1 4 291 −751− 44
√
d

7 0 219 −121 + 8
√
d

7 4 291 751 + 44
√
d

Table A.3: Examples of γ = a + b
√
d with (γ) = I4 for some ideal I of order 4 in

OK for d ≡ 3 mod 8
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a mod 8 b mod 8 d ε0

2 1 3 2 +
√
d

2 3 11 10 + 3
√
d

2 5 59 530 + 69
√
d

2 7 17 170 + 39
√
d

6 1 35 6 +
√
d

6 3 235 46 + 3
√
d

6 5 91 1574 + 165
√
d

6 7 515 17406 + 767
√
d

1 0 579 385 + 16
√
d

1 4 155 249 + 20
√
d

7 0 299 415 + 24
√
d

7 4 651 1735 + 68
√
d

Table A.4: Examples of ε0 = a+ b
√
d, the fundamental unit in OK for d ≡ 3 mod 8
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A.3 d ≡ 5 mod 8

x mod 8 y mod 8 d γ

0 1 3341 12543
2

+ 217
2

√
d

0 3 1045 37
2
− 1

2

√
d

0 5 1045 −37
2

+ 1
2

√
d

0 7 3341 −12543
2
− 217

2

√
d

1 0 445 169 + 8
√
d

3 0 2501 −3001− 60
√
d

5 0 2501 3001 + 60
√
d

7 0 445 −169− 8
√
d

1 1 1221 457
2

+ 13
2

√
d

3 3 1045 227
2

+ 7
2

√
d

5 5 1045 −227
2
− 7

2

√
d

7 7 1221 −457
2
− 13

2

√
d

1 6 2005 −8642− 193
√
d

3 2 2605 −242 + 5
√
d

5 6 2605 242− 5
√
d

7 2 2005 8642 + 193
√
d

6 1 445 11
2

+ 1
2

√
d

2 3 2533 −47
2
− 1

2

√
d

6 5 2533 47
2

+ 1
2

√
d

2 7 445 −11
2
− 1

2

√
d

1 3 2005 −41
2
− 1

2

√
d

3 1 2669 13
2

+ 1
2

√
d

5 7 2669 −13
2
− 1

2

√
d

7 5 2005 41
2

+ 1
2

√
d

Table A.5: Examples of γ ≡ x+ yζ3 mod 8 with (γ) = I4 for some ideal I of order
4 in OK for d ≡ 5 mod 8
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x mod 8 y mod 8 d ε0

0 1 221 15
2

+ 1
2

√
d

0 3 93 29
2

+ 3
2

√
d

0 5 357 19
2

+ 1
2

√
d

0 7 69 25
2

+ 3
2

√
d

1 0 1605 641 + 16
√
d

3 0 381 1015 + 52
√
d

5 0 1173 137 + 4
√
d

7 0 141 95 + 8
√
d

1 1 77 9
2

+ 1
2

√
d

3 3 205 43
2

+ 3
2

√
d

5 5 21 5
2

+ 1
2

√
d

7 7 805 1447
2

+ 51
2

√
d

3 2 37 6 +
√
d ≡

7 2 101 10 +
√
d ≡

6 1 13 3
2

+ 1
2

√
d

6 5 53 7
2

+ 1
2

√
d

3 1 29 5
2

+ 1
2

√
d

7 5 5 1
2

+ 1
2

√
d

Table A.6: Examples of ε0 ≡ x+ yζ3 mod 8, the fundamental unit in OK for d ≡ 5
mod 8
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A.4 d ≡ 7 mod 8

a mod 8 b mod 8 d γ

0 1 399 −32 +
√
d

0 3 791 −88 + 3
√
d

0 5 791 88− 3
√
d

0 7 399 32−
√
d

4 1 1023 292 + 9
√
d

4 3 1239 388 + 11
√
d

4 5 1239 −388− 11
√
d

4 7 1023 −292− 9
√
d

1 0 799 1585 + 56
√
d

7 0 799 −1585− 56
√
d

1 4 399 241 + 12
√
d

7 4 399 −241− 12
√
d

Table A.7: Examples of γ = a + b
√
d with (γ) = I4 for some ideal I of order 4 in

OK for d ≡ 7 mod 8
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a mod 8 b mod 8 d ε0

0 1 31 1520 + 273
√
d

0 3 7 8 + 3
√
d

0 5 23 24 + 5
√
d

0 7 47 48 + 7
√
d

4 1 15 4 +
√
d

4 3 87 28 + 3
√
d

4 5 231 76 + 5
√
d

4 7 447 148 + 7
√
d

1 0 791 225 + 8
√
d

7 0 1271 32799 + 920
√
d

1 4 39 25 + 4
√
d

7 4 95 39 + 4
√
d

Table A.8: Examples of ε0 = a+ b
√
d, the fundamental unit in OK for d ≡ 7 mod 8
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