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neuroAIx-Framework: design of
future neuroscience simulation
systems exhibiting execution of
the cortical microcircuit model
20× faster than biological
real-time

Kevin Kauth*, Tim Stadtmann, Vida Sobhani and Tobias Gemmeke

Chair of Integrated Digital Systems and Circuit Design, RWTH Aachen University, Aachen, Germany

Introduction:Research in the field of computational neuroscience relies on highly

capable simulation platforms. With real-time capabilities surpassed for established

models like the cortical microcircuit, it is time to conceive next-generation

systems: neuroscience simulators providing significant acceleration, even for

larger networks with natural density, biologically plausible multi-compartment

models and the modeling of long-term and structural plasticity.

Methods: Stressing the need for agility to adapt to new concepts or findings

in the domain of neuroscience, we have developed the neuroAIx-Framework

consisting of an empirical modeling tool, a virtual prototype, and a cluster of FPGA

boards. This framework is designed to support and accelerate the continuous

development of such platforms driven by new insights in neuroscience.

Results: Based on design space explorations using this framework, we devised

and realized an FPGA cluster consisting of 35 NetFPGA SUME boards.

Discussion: This system functions as an evaluation platform for our framework.

At the same time, it resulted in a fully deterministic neuroscience simulation

system surpassing the state of the art in both performance and energy e�ciency.

It is capable of simulating the microcircuit with 20× acceleration compared to

biological real-time and achieves an energy e�ciency of 48nJ per synaptic event.

KEYWORDS

neuromorphic computing architectures, FPGA cluster, cortical microcircuit, spiking

neural networks (SNN), computational neuroscience, parallel computing, rapid

prototyping, accelerated simulation

1. Introduction

Computational neuroscience is a very broad and multi-faceted research field. Starting at

the molecular level up to the modeling of human behavior, a very wide scale in time and

space is spanned with no technical system capable of simulating the complete stack. While

tremendous progress has been made in recent years by the community, the question of how

the brain transforms information is still a puzzle. To gain deeper insights, the simulation of

neuronal network models of natural density is considered essential.

Today, there exist various neuroscience simulators targeting different resolutions and

abstraction levels. Examples include dedicated neuromorphic hardware systems such as

SpiNNaker (Furber et al., 2013), BrainScaleS (Schemmel et al., 2008), Bluehive (Moore et al.,

2012) or Loihi (Davies et al., 2018), and software frameworks like NEST (Gewaltig and

Diesmann, 2007) running on conventional CPU-based systems or GeNN (Yavuz et al., 2016)

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1144143
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1144143&domain=pdf&date_stamp=2023-04-20
mailto:kauth@ids.rwth-aachen.de
https://doi.org/10.3389/fncom.2023.1144143
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1144143/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Kauth et al. 10.3389/fncom.2023.1144143

and NeuronGPU (Golosio et al., 2021) running on GPU-based

systems. Recent iterations of these systems target a broader

range of tasks for example in the area of Machine Learning,

and feature higher degrees of flexibility and efficiency (Mayr

et al., 2019; Billaudelle et al., 2020). In addition, recent dedicated

systems exist that target the simulation at higher degrees of

abstraction (Wang et al., 2018) or aim at solving Machine Learning

tasks (Panchapakesan et al., 2022). On one side, the mentioned

variety together with advances in computational capabilities and

the development of simulator-independent model description

languages (e.g., PyNN by Davison et al., 2009) pushed the domain

of computational neuroscience to study neural network models of

increasing complexity. These include large-scale models such as the

cortical mesocircuit (Senk et al., 2018) and multi-area model (van

Albada et al., 2020). On the other side, spiking networks are gaining

traction in industry to address technical problems as targeted by the

Loihi platform (Dey and Dimitrov, 2021).

Among the various neuroscience models, the cortical

microcircuit (Potjans and Diesmann, 2014) has become a widely-

used benchmark to evaluate simulators (Knight and Nowotny,

2018; van Albada et al., 2018; Rhodes et al., 2019; Knight et al., 2021;

Heittmann et al., 2022; Kurth et al., 2022), driving novel systems

toward innovative designs and higher performance. For instance,

an initial mapping on SpiNNaker was operating 20× slower than

biological real-time (van Albada et al., 2018). However, deeper

understanding including insights into the learning processes of the

human brain requires the simulation of long-term neurodynamical

processes, i.e., simulations at higher speed. Along this line,

solutions based on GPU-enhanced simulators reduced the slow-

down to 1.8× (here and in the following: with regards to biological

real-time) (Knight and Nowotny, 2018). Shortly thereafter, the

first real-time simulation of the cortical microcircuit was run on

SpiNNaker (Rhodes et al., 2019). To the best of our knowledge, the

fastest realization uses the IBM Neural Supercomputer achieving

an acceleration of 4.06× (Heittmann et al., 2022).

The major challenge in designing such a system lies within

the required flexibility to accommodate new insights from

the neuroscience domain that change the specification and

requirements. Some years back, simulation time was commonly

progressing in discrete steps of 1ms whereas nowadays, 0.1ms are

used to better capture the short delays along local axons (Potjans

and Diesmann, 2014). Similarly, a supported number of 1,000

synapses per neuron was assumed to be sufficient for many earlier

systems. Recent insights suggest the average fan-out to be higher,

causing major performance losses on these systems. The required

degree of biological realism is still under discussion including

seemingly simple questions such as required numeric precision

or suitable compartment size of dendrites. The resulting volatility

in biological models must be taken into account in the design

of new systems. More complex questions relate to the modeling

of plasticity. Nowadays, three-factor rules (Kuśmierz et al., 2017)

that modulate simple spike-timing-based learning mechanisms

are considered. These advances pose new requirements on the

computation and communication capabilities. To account for this

and other developments, computational neuroscience requires a

next-generation system to help to efficiently gain new insights.

In turn, these insights will redefine the technical specification for

FIGURE 1

The proposed development framework for accelerated

neuroscience simulations. (A) The static and dynamic simulators are

jointly used for exploring the design space. We calibrate the

dynamic simulator according to the performance analysis done by

the static simulator and then update our analytical model

considering the observed dynamic behaviors. (B) The dynamic

model will be validated and calibrated by the FPGA cluster.

Afterward, the bottlenecks of the design can be studied by both

simulation platforms available here. (C) The FPGA cluster is used for

both validating the dynamic simulation and fine-tuning its

parameters. For this, it can perform accelerated simulations of

biological neural networks.

this system. This chicken-and-egg problem is best addressed in an

evolutionary process relying on reciprocal advances on both sides.

In this ever-changing environment, we derive the need for

a flexible system, capable of performing simulations of large-

scale neuronal networks observable down to membrane potentials.

Its complexity has to reach realistic densities, simulated in

an accelerated fashion to also capture long-term effects, e.g.,

regarding synaptic plasticity. Furthermore, the system behavior

needs to be fully deterministic in order to reproduce results,

operate with intermittent system states and precisely capture

the impact of parameter variations in the neuroscience model

(as opposed to observing irrelevant variations relating to the

simulation environment). Finally, we target a scalable system that

is future-proof toward more complex or larger models. To achieve

appropriate speed-up at the same time, the problem needs to be

distributed over many compute nodes to overcome computation

and routing bottlenecks, among others.

In this work, we present our neuroAIx-Framework which is

suited to evaluate and benchmark prospective system architectures

in a highly flexible and performant manner. It consists of three

pillars as illustrated in Figure 1—(1) an empirical modeling

tool (static simulator) for fast design space exploration at a

coarse resolution, (2) a virtual prototyping platform (dynamic

simulator) for accurate performance estimations, and (3) a cluster

of interconnected FPGA boards (FPGA cluster) for evaluation and

simulator calibration.

In the following sections, the workflow using this framework

is illustrated with various examples. In particular, we focus on

steps B and C by realizing the FPGA cluster which should not

be considered a fixed, final solution to the quest of finding the

future neuroscience simulation platform. Instead, the cluster is an

evaluation platform that functions as a proof-of-concept for this

workflow. We use it to refine and calibrate the first two pillars

such that they provide more trustworthy quantitative results in

future explorations. While the third pillar is mainly intended as

an emulator of a future system, it is fully functional and already
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speeds up neuroscience simulations. More specifically, we are able

to simulate the cortical microcircuit model at an acceleration of

20× which is, to the best of our knowledge, the fastest solution

so far.

The proposed framework can be utilized to constrain the

design space of neuroscience simulation systems, identify the

costs and bottlenecks, explore solutions and validate ideas.

In our previous work, we studied suitable communication

architectures—a major bottleneck in accelerated simulation of

large-scale networks—utilizing the static and dynamic simulators

(Kauth et al., 2020). Similarly, Kleijnen et al. (2022) focused

on simulation regarding heterogeneous neural networks and

corresponding mapping algorithms. However, this work extends

this to the characterization of all relevant building blocks

that are necessary for a dedicated neuroscience simulation

system, and sketches their implementation in the presented

evaluation platform. We believe that the fast-prototyping feature

of our method is an essential aspect to close the gap between

system design and the fast-moving domain of computational

neuroscience, leading to even faster progress in both domains in

the future.

To summarize, this paper presents the realization of a coherent

framework to explore future neuroscience simulation systems. It

allows to

1. Perform fast system exploration and precisely analyze

requirements of larger scale models emulating system behavior

in a cycle-accurate fashion,

2. Simulate the 1mm2 cortical microcircuit model at an

acceleration of more than 20×, and

3. Support computational neuroscience research, aiding the

evaluation of new neuron models, novel plasticity rules as well

as parameter sweeps in an accelerated fashion.

This contribution intends to establish a basis for

future interaction between the neuroscience community

and engineers working toward next-generation large-scale

neuromorphic accelerators.

2. Materials and methods

2.1. Static simulator

Expressing a platform’s performance as function of model and

system parameters in an analytical form leads to overly complex

equations, especially considering the stochastic instantiation of

synapses or spikes. As our goal is to build a flexible and,

importantly, scalable platform, this pillar focuses on guiding

the design of a suitable communication architecture. Hence,

we developed a C++-based numerical simulator to extrapolate

system performance in a highly efficient manner. It is used to

explore communication architectures, not yet accounting for other

bottlenecks such as memory and computation.

The simulation tool operates on the assumption of a

homogeneous network topology. One arbitrary node is used

as starting point in the calculations. According to a well-

defined average spike rate or based on the evaluation of some

existing simulation, the selected nodes emit spikes with a specific

probability. These spikes travel to a randomly distributed set

of target neurons. Based on an evaluation of the distance each

packet has to traverse, a numerical solver calculates bandwidth

requirements and speed-up as bounded by the communication.

This empirical approach has been cross-validated with examples

that are simple enough to be expressed in an analytical form. As one

example, the bandwidth requirement in a broadcast approach for a

mesh-like network topology is driven by the number of neurons per

node, the firing rate, the system’s acceleration factor, the number of

target nodes and the size of each spike message (Kauth et al., 2020).

The fast collection of quantitative data using this approach

enables quick architectural exploration and early pruning of

unsuitable directions. For example, the required number of

network hops to deliver a package severely constrains the choices

of suitable network topologies and routing schemes. The modeling

of the most promising candidates can be refined while larger

sample sets increase the confidence in the numeric results. This

approach considers average system loads only, i.e. there is no

notion of queuing, no unbalanced distribution of tasks nor any

other dynamics considered in the evaluation of the system.

Hence, we call this pillar static simulator. While it provides

a much simplified assessment of the capabilities of different

communication architectures, its key benefit is its speed—networks

from thousands to millions of compute nodes can be evaluated in

seconds, enabling the exploration of a vast design space.

2.2. Dynamic simulator

As many system architecture iterations will be necessary due

to the mentioned chicken-and-egg problem, rapid prototyping is

essential. Hence, it is necessary to virtually evaluate the prospective

system architectures before finalizing the specification or even

starting concrete design activities. For this, we developed a

generic virtual prototype modeling architectural components like

memories, routers and schedulers at varying levels of accuracy.

These range from coarse behavioral models down to bit and

cycle-true functional descriptions. It is an event-driven simulation

model that emulates hardware platforms to capture their dynamic

behaviors. In contrast to the static simulator, this dynamic simulator

incorporates dynamic behavior such as congestion, and not

only focuses on communication aspects but also on memory

and computation.

The dynamic simulator is written in SystemC, a C++ library

used to model functional aspects of hardware systems with a

high-level software language. The architectural components of the

hardware are encapsulated in corresponding modules—SystemC’s

basic building blocks—connected to each other using ports. In a

bottom-up perspective, the core module is the compute node that

updates the state variables during each timestep. It aggregates all

computations related to the neurons hosted on a specific node in

the system. Details of the actual computation are omitted. Instead,

only the computation latency is used to capture performance

capabilities as function of neuronal model complexity. For this,

the module absorbs spikes and generates new ones according to a

predefined statistical distribution. Furthermore, each node runs its

own synchronization process which is necessary for cycle-accurate
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behavior. Details on the synchronization process will be elaborated

in Section 2.3.1.5.

In the mid-level, the network module has been designed to

connect the instantiated nodes according to the specified topology

by cable modules. These cables are implemented as SystemC

channels. Relevant system properties such as transmission delay

and bandwidth are captured by specifying the cable length,

transceiver delay and bandwidth.

The top-level module covers the user interface, starts the

simulation, sets the configuration and calculates statistics at the

end of the simulation. Design parameters can be specified in

a configuration file at run-time, organized in four categories:

biological parameters (e.g., firing rate, number of neurons,

connectivity distribution), simulation parameters (e.g., number of

simulation steps), interconnect (e.g., topology, routing, bandwidth)

and hardware architecture parameters (e.g., number of neurons per

node, number of workers, buffer depths, pipeline stages).

The modular and hierarchical design of the dynamic simulator

allows to test varying scenarios, develop different network

topologies or even communication schemes without changing

the aforementioned modules, as it already contains all necessary

building blocks. Results of dynamic simulation are fed back to

the static simulator to improve accuracy by refining its empirical

models. At the same time, the dynamic simulator itself can be

refined using measurement results from the physical system.

2.3. FPGA cluster

As key component, the FPGA cluster is a fully operational

platform capable of running large-scale neural network

simulations. At the same time, the framework incorporates a

high degree of flexibility to evaluate alternative design choices.

On one side, these are triggered by the exploration and profiling

within the different pillars. On the other side, they emanate from

new learnings in neuroscience and the respective research in

modeling biological processes of the brain. Our objective is to

conceive and realize a platform that provides both the necessary

flexibility and adequate performance to evaluate meaningful test

cases. In the following, we will therefore elaborate general design

principles and hardware concepts needed to implement such a

flexible platform. For each component, we then sketch certain

design decisions employed in our evaluation system. Measurement

results on this system are used later to calibrate the dynamic and

static simulators, which then in turn allow for more realistic design

space explorations.

To this end, we designed a cluster of 35 FPGA boards.

field-programmable gate arrays (FPGAs), in contrast to dedicated

application-specific integrated circuits (ASICs), allow for rapid

prototyping, while at the same time offering a wider flexibility

and potential performance than GPU-based implementations. As

the basis of this cluster we chose the NetFPGA SUME board

(Zilberman et al., 2014) as it provides a high number of transceivers

with a theoretical total bandwidth of over 100Gbps and two

memory channels to the 8GB DDR3 with direct connections to

the programmable logic. In the current setup, 4 SFP+ ports with

each 6.25Gbps and 10 SATA ports with each 6Gbps are used

for interconnecting the FPGA boards and host communication.

Eight of these SATA ports are made available using a custom

PCIe breakout board. Although not all of these connections

are required for the 35 node setup, they are well suited for

evaluating different network topologies. For an even larger number

of nodes, reconfigurable switching solutions are recommended,

see e.g., Meyer et al. (2022). Figure 2A shows a picture of the

connected cluster.

In any case, the developed environment is not dependent

on any specific FPGA board, number of nodes, port count or

network topology. This flexibility is considered a key advantage

over fixed neuromorphic simulators in the context of exploring

future hardware architectures. Apparently, the added flexibility

leaves room for further improvements in performance once a

suitable architecture has been identified.

2.3.1. Node architecture
Due to the homogeneous network architecture of our system,

the neuron mapping to the individual nodes is irrelevant for neural

networks with roughly evenly-distributed connectivity. As this is

considered realistic (Potjans and Diesmann, 2014), our current

implementation distributes all neurons equally in a round-robin

fashion. The individual nodes handle all necessary processing

related to the local neurons and communication of spikes. The

simulation is time-driven (as opposed to event-driven)—each

neuron’s state variables are updated in successive discrete timesteps,

often 0.1 ms, set by the minimal synaptic latency (Brette et al.,

2007). In the following sub-section, we present the components of

a neuromorphic accelerator architecture. A high-level overview is

depicted in Figure 3.

2.3.1.1. Workers

The actual computation of the neuronal dynamics is scheduled

to the available workers at the node. Firstly, this computation

requires a fast memory for the state variables of each neuron

available at the worker. We opted for on-chip BRAM—blocks

of SRAM—since the required capacity is low while block RAMs

(BRAMs) offer a single-cycle access latency. Secondly, the worker

contains the implementation of a neuron model. This either

requires the computation of a simple matrix multiplication for

analytically-solvable models such as LIF neurons with CUBA

synapses (Rotter and Diesmann, 1999) or entails the execution

of a numeric ODE solver to determine the solution for more

complex neuron models such as Izhikevich (Izhikevich, 2003). As

the neuronmodel processing can be executed in parallel, increasing

the number of workers provides direct speed-up here. The interface

to these workers and their memories requires only input and output

streams of spikes, making the neuron model easily interchangeable.

The state update of a neuron can result in the creation of an

action potential. In that case, a corresponding network message

is created and forwarded to a router. Apparently, the router also

passes incoming spikes to the workers. Depending on the time

of origin and the synaptic delay, incoming spike messages are to

be considered in the computation in a specific timestep. Since

this timestep does not necessarily correspond to the current one,

spike messages have to be stored temporarily. The impact of

multiple spikes onto the same target neuron in the same timestep
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FIGURE 2

(A) Lab setup of physical cluster of 7 × 5 NetFPGA SUME boards. The boards are horizontally connected via black SFP+ cables and vertically

connected via red and yellow SATA 6G cables. The exact network topology will be discussed in chapter 3. (B) Protocol and physical links used in

node-to-node and node-to-host communication.

FIGURE 3

Schematic illustrating the node of a generic distributed system for the simulation of biological neural networks. The left part represents the

communication interface of a node to the network. The center part depicts the internal structure of a node. Synaptic data commonly resides in an

external o�-chip memory (right part).

can typically be lumped into one synaptic input (Rotter and

Diesmann, 1999). This offers the possibility of not having to buffer

an arbitrarily large number of incoming messages. Instead, only

a single synaptic input for each neuron and any future timestep

has to be stored. Since the number of future timesteps which can

contain such synaptic inputs is limited by the largest synaptic

delay present in the neural network, it is usually implemented

as a ring buffer. Synaptic inputs are forwarded by the purely

combinational local router to the target ring buffers in a round-

robin fashion. In turn, the worker reads the synaptic inputs to all

neurons for the current timestep sequentially from the ring buffer.

As new spikes can be captured in the ring buffer asynchronously

at any time, the ring buffer and the worker are decoupled in terms

of congestion.

In our system, each worker can calculate up to 255 LIF neurons

with CUBA synapses, with 10 of these workers being instantiated

per FPGA. The number of neurons is largely limited by the available

BRAM which is used for the ring buffers. Thereby, models with

up to 89,600 neurons can be handled by the cluster of 35 FPGAs.

While more workers, and hence neurons, could potentially fit onto

the FPGA with further optimization, this is already sufficient for

simulating the cortical microcircuit model, and spending effort on

a highly specific and optimized realization is not in the focus of

the exploration. Running at a frequency of 189.383MHz (chosen to
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be synchronous to the DRAM memory to minimize clock domain

crossing) and 30 pipeline stages, the neuron dynamic computation

of a fully occupied node takes around 255+30
189.383MHz ≈ 1.5µs. In this

configuration, the corresponding ring buffers can store incoming

spikes of up to 64 future timesteps for excitatory and 32 future

timesteps for inhibitory synapses, as determined by the maximum

synaptic delays in the cortical microcircuit model.

2.3.1.2. Synapse lookup

Each neuron can be connected to many thousands of other

neurons. Hence, each node requires a mechanism to assign spikes

of presynaptic to postsynaptic neurons. This assignment is stored

in the form of so-called synaptic lists and contains information

about the assignment by means of unique neuron identifiers as

well as the weight and delay of all related synapses. Due to the

large number of synapses in natural-density neural networks, these

lists must typically be stored in an off-chip memory such as a

DRAM. The point in the system where these lists are accessed

(the lookup) depends on the used casting scheme. If the network

operates in broadcast mode, the presynaptic neuron ID of each

generated spike is simply distributed over the entire network. The

receiving nodes then lookup the synaptic information (weights,

delays, targets) for all synapses between the presynaptic neuron and

all local postsynaptic neurons for every incoming spike message.

On the other hand, when using unicast the lookup is performed

directly on the spike-emitting worker, prior to sending the spike

message to the outgoing router. In this scheme, all postsynaptic

neurons are addressed individually with a unicast message. In

a system with flexibility to support both casting schemes, the

hardware performing this lookup should be added both before and

behind the workers and then be bypassed depending on the used

casting scheme, as shown in Figure 3. Our lookup module was

designed with this flexibility in mind, as it supports varying the

number of prefetched words and parallel memory accesses at run-

time. This allows us to tune it based on bottleneck measurements

and simulation results from the dynamic simulator.

2.3.1.3. Router

In the present design, each FPGA node contains a dedicated

router unit. Given the application requirements, our router

is designed for ultra-low latency communications and high

bandwidth of more than 12Gbit/s per port while all ports can

operate fully in parallel. Since the cluster is a development platform,

it is also essential to be topology-agnostic, e.g., be flexible in

terms of number of inputs and outputs ports. Furthermore,

our router currently supports three different modes: emulation,

bottleneck measurements and debugging. The last two modes

follow simple routing algorithms, for example, forwarding packets

in a certain direction. The emulation mode supports both

unicasting and broadcasting, a variety of routing algorithms [e.g.,

best neighbor, windmill and xy routing (Kauth et al., 2020)], and

various mesh- and tree-based topologies. Based on the packet

type (synchronization packets, configuration packets or spike

packets), the router redirects packets to the correct target(s). In all

cases, a prioritized round-robin arbiter takes care of time-critical

messages first.

2.3.1.4. Memory

A significant amount of data has to be sent to and received

from such a simulation platform, comprising configuration data,

dynamic neuron state information and result data (spikes, voltage

traces, etc.). The on-chip BRAM is typically insufficient to hold

all of this. Larger off-chip storage (e.g., DRAM) offers plenty of

storage capacity but introduces potential throughput and latency

bottlenecks. In the present realization, the static and dynamic

state information of the neuron models is kept in the BRAM

providing a reasonable trade-off between performance and storage

requirement. With typically less than 1 kB needed for each neuron’s

state and ring buffer, the available 6.77MB BRAM on our system

can already accomodate many thousands of neurons. The memory

requirement for the connectome, however, is considerably higher.

In the case of the microcircuit with about 300 million synapses,

several gigabytes of data are anticipated. Although this amount of

data is distributed across all nodes, the sparse adjacencies require

a sophisticated form of organization. A simple approach is to store

the data in a single connection list per neuron. Since these lists have

different lengths, base addresses must additionally be stored in the

form of a lookup table. An alternative way is to pad the lists up to

a common length. Although this method wastes some memory, it

reduces latency by avoiding a second non-linear memory access.

In our case, each synapse consists of a 16 bit target neuron

identifier, an 8 bit delay, and a 32 bit fixed-point weight, resulting

in 2.1GB for themicrocircuit connectome. This connectome would

already fit into the DRAM of a single node, while it would not even

come close to fit into the BRAM of the complete cluster. Since we

are targeting a distributed system, the connectome is split over all

nodes and stored as padded synaptic lists with common length. On

the one hand, this padding causes synaptic lists to occupy 200MB

of DRAM memory on each node. On the other hand, the memory

address of any synaptic list can be calculated (using source neuron

identifier and fixed list length). On every incoming spike, a DRAM

read access is started to retrieve the corresponding synaptic data.

The amount of data requested depends on the neuronal fan-out.

Since the use of external memory not only limits the size

of the synaptic lists, but also drastically restricts the achievable

simulation speed due to bandwidth limitation and comparatively

high latency, any approach completely eliminating time-critical

external memory accesses would be preferable. For instance,

algebraic definitions of the connectivity pattern would allow to

compute synapse configuration data on-the-fly, which reduces

memory requirements significantly (Roth et al., 1995). When

combined with online computation of other parameters, such as

synaptic efficacy or axonal delay, based on deterministic random

distributions, external memory is no longer a critical resource

(Wang et al., 2014). However, as this precludes the implementation

of neuronal plasticity (where individual weights will have to be

adjusted and new synapses added) and the simulation of specific

connectomes (e.g., extracted from actual biological tissue) we

excluded this method in the current exploration.

2.3.1.5. Synchronization

Due to fluctuating loads, caused by local spike bursts or

coincidentally increased routing via certain nodes, the individual

nodes of the network can reach locally varying processing latencies.

A commonly used scheme to prevent the nodes from drifting apart
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are global barrier messages (e.g. Heittmann et al., 2022). Global

synchronization, however, causes the entire system to run at the

speed of the slowest node. Therefore, we use local synchronization

in our system. Instead of forcing all nodes in the network to

the same timestep, we limit the maximum time difference of

directly neighboring nodes to the minimum synaptic delay across

all synapses. This enables compensation of fluctuations in the

simulation speed, maximizing the overall speed of the system.

In our synchronization scheme, a synchronization message is

sent to each neighbor after each computation of the neuronal

dynamics (see Figure 4). This message is always sent after the last

generated spike for the corresponding direction. When a node

receives such a message, it can assume that it has received all

spikes for this timestep from the corresponding neighbor. Since

a computation is started only after all synchronization messages

have been received and either forwarded or consumed, it can

be guaranteed that each spike message has been forwarded by

at least one node. However, the topology we use has a worst

case latency of two hops (topology and routing algorithm will be

derived and explained in Section 3), while the microcircuit has

some synapses with a delay of only one timestep. Therefore, a

second synchronization per timestep is used, which, however, is not

initiated after completion of the computation, but after receiving

the first synchronization message of all neighbors. Accordingly, the

next computation is only started after all second synchronization

messages have been received.

In general, the number of synchronizations per timestep can

be set to the worst case number of network hops required by a

message, as each synchronization guarantees that a message will

travel at least one hop per synchronization step. This procedure is

sufficient for timely arrival of all spikes but not always necessary

depending on network bandwidth and load. Performing multiple

synchronizations increases the latency between timesteps and

consequently slows down the simulation. In our implementation,

this can be avoided by manually selecting a smaller number

of synchronizations and monitoring spikes arriving too late via

corresponding error registers. This highlights the trade-off between

correctness and reproducibility on the one hand, and speed-up on

the other.

2.3.2. Interconnect
The design of an efficient interconnect architecture both

in between nodes and from nodes to host systems is crucial.

While the former can limit weak and strong scalability, the

latter is generally considered a challenging task for neuromorphic

platforms where large amounts of data need to be transferred

from and back to host systems regularly (Knight and Nowotny,

2018) causing the setup time to exceed simulation time in many

systems (Schemmel et al., 2008; Furber et al., 2013). For both

challenges, wireless links seem like a promising solution, being able

to deliver all spikes in one hop in-between nodes, and sending

results back to a number of hosts using the same technology.

But while there has been some work on wireless HPC with

technologies like free-space optic or 60GHz radio communication

(Li et al., 2020), the reduced energy-efficiency and high error

rates make this option at the current state infeasible. Suitable

alternatives and our respective implementation will be outlined in

the following.

2.3.2.1. Node to node

As a deterministic neural network simulation requires in-

time arrival of spike messages, it is clear that latency and

bandwidth are major factors determining system performance

- the less network hops a message needs to arrive at all

destinations, the better (Kauth et al., 2020). Communication

via SerDes MGT, coupled with 64/66b encoding, offer a good

tradeoff between low latency, high-speed and reliability, given a

suitable transceiver technology. However, the scalability of the

communication architecture is limited by the topology, routing

algorithms and casting methods used in the system. In our previous

work, we have assessed conventional electrical/optical toroidal

mesh topologies and showed how such connection schemes are

favorable for neighbor-only communication (Kauth et al., 2020).

We also demonstrated that they fail transferring spikes to non-

neighbor nodes in an accelerated fashion due to excessive latency,

especially when white matter connections are simulated. To tackle

this, we introduced so-called long hop connections—superimposed

meshes—and appropriate routing algorithms. The exact set of

communication methods employed in our system will be derived

from the dynamic simulator in Section 3. As mentioned before, the

presented FPGA cluster builds on dedicated SerDes transceivers as

available in modern off-the-shelf FPGAs.

As communication errors are inevitable, proper error handling

is essential. While biological neural networks are inherently noisy

(Rolls and Deco, 2010), the exact type and amplitude of this noise

must remain amodel parameter. In a deterministic system, we need

to be able to adjust the noise and turn it off at will, which is not

possible in the case of uncorrected communication errors. Given

the low bit error rate of state-of-the-art communication lines, an

acknowledgment-based flow control combining with CRC and re-

transmission can guarantee proper error detection and correction.

In our exploration platform, we employ an adapted Go-Back-N

ARQ algorithm where a received packet is only accepted if CRC

checks pass, correct packet order is given and receiving buffers

are free.

Lastly, deadlock handling is a crucial aspect. The common

topology-agnostic deadlock handling scheme—dropping packets

in critical cases—is not acceptable in deterministic simulators.

In the case of mesh-like topologies, even when containing long

hops, a combination of turn restricted routing and virtual channels

can avoid deadlocks from happening altogether (Sobhani et al.,

2022). In our system, we observed no deadlocks at all in a

multitude of large-scale neural network simulations, no matter

which topology and routing was used. However, we expect proper

deadlock handling to become ever more important in more

complex networks.

2.3.2.2. Host to system

A crucial aspect of the targeted exploration platform is the

connection from a host machine to the individual nodes. High

bandwidths are necessary as neuronal simulations require large

amounts of setup and connectivity data to be uploaded. For

instance, the cortical microcircuit model (Potjans and Diesmann,

2014) contains around 300 million synapses—with around 8 B per
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FIGURE 4

Synchronization across nodes using two neighbor-to-neighbor synchronization events per timestep.

synapse (considering synaptic weights, delays and IDs) this results

in 2.4GB of data to be uploaded. Most modern FPGAs contain

multi-gigabit transceivers (MGTs) which are able to handle this

amount of data in a few seconds at most. They can for example

be interfaced using Gigabit-Ethernet links, providing access to the

FPGA cluster over an existing network infrastructure.

However, the employed NetFPGA board does not contain a

dedicated TCP/IP stack. To avoid having to use precious FPGA

logic for this, we use a dedicated communication node as an

interface between the network and the cluster (see Figure 2B). We

opted for a Xilinx Zynq board (ZCU106) which contains both

an ARM processor and FPGA logic. A TCP server running on

the ARM sends data received on the RJ45 interface to the FPGA

logic via a dedicated AXI bus, and vice versa. The Zynq board

is programmed with the same reliability layer and SerDes MGT

that are used for communication between the nodes. Thus, no

additional logic is required on the simulation nodes.

2.3.3. Configuring and debugging
A system that is used to evaluate different architectures

should not only be designed for flexibility, but also be rapidly

reconfigurable. Most FPGA boards primarily support configuration

using a bitstream, which is transferred via JTAG either directly

to the device, or to an on-board flash memory for non-volatile

storage. Since this usually requires a direct connection to the

board using for example USB, it is not feasible for a large cluster.

Depending on whether the FPGA itself has read/write access to the

flash memory, two generic configuration schemes for a distributed

system are possible. Firstly, if flash access is available, a host

machine could directly transfer the bitstream to one connected

node, which then broadcasts it through the system. This concept

lends itself to our system as broadcast is a necessary feature for any

exploration anyway. Secondly, if no flash access is available, partial

reconfiguration can be utilized to load an initial design once into

the flash. Further modules can be loaded later in the exploration

process. However, as our system is still actively developed, we use

JTAG and UART over USB for programming and, importantly,

debugging individual boards (shown on the left in Figure 2B).

Regardless of the approach chosen, partial reconfiguration can

also be used to replace modules that change frequently, such as the

neuron model in the workers. This reconfiguration is considerably

faster in comparison to complete reconfiguration. In addition, the

rest of the system retains its state and can be used directly.

2.4. Neural network testcases

2.4.1. Background
The dynamics in biological neuronal networks happen in a wide

range in terms of time and space resolution - they are inherently

multi-scale (Silver et al., 2007). In the domain of biological neuron

models, the LIF model can be considered least complex as it focuses

mainly on sub-threshold behavior, while still providing meaningful

dynamics in large scale simulations. The existing broad variety

of models provides better plausibility (Izhikevich, 2004) with

extensions that divide the cell body into multiple compartments.

The rich variety of synapse behavior is reduced in most

simulations to the modeling of the PSC. The most basic model

assumes the transfer of a charge packet at the time of arrival of

a pre-synaptic action potential (delta function). Including some

essential temporal behavior the CUBA or COBA models (Vogels

and Abbott, 2005) induce an instantaneous rise combined with a

more plausible exponential decay.
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As much as solving the underlying differential equations of

the more complex models will start to impact performance from

a certain complexity, it is not part of the subsequent evaluation

that focuses on system bottlenecks with respect to handling the

spike messages. The regarded large-scale testcases only include LIF

neurons with CUBA synapses which can be efficiently solved in

a closed form—the so-called exact exponential integration (Rotter

and Diesmann, 1999).

2.4.2. Microcircuit
The cortical microcircuit model is a full-scale spiking network

model of a unit cell of early mammalian sensory cortex, covering

1mm2 of its surface. It consists of 77,169 LIF neurons organized

into four layers of inhibitory and excitatory populations (Potjans

and Diesmann, 2014, Figure 1). The details of the neuron

model and its simulation parameters are available in Potjans and

Diesmann (2014, Tables 4, 5). The neurons are connected randomly

via ∼0.3 billion synapses with population-specific connection

probabilities. The synaptic strengths as well as transmission delays

are distributed normally (Potjans and Diesmann, 2014, Table 5).

Besides synaptic connections internal to each neuronal population

and in between different populations, every neuron additionally

receives Poisson-distributed inputs. These emulate external cortical

or thalamic input.

The microcircuit belongs to the smallest networks of natural

density, i.e., modeling a realistic number of connections with

realistic connection probabilities. At the same time, it exhibits

firing rates and irregular activity that match experimental in-vivo

findings. Therefore, it poses constraints on communication,

computation andmemory bandwidth that are both challenging and

realistic at this scale. Hence, it has become a well-accepted model

by the computational neuroscience community and as a result a

benchmark to evaluate neuroscience simulators. While other tasks

have been used as benchmarks for individual systems in the past,

such as randomly-connected networks of 100k neurons (Stromatias

et al., 2013) or variations of the balanced Brunel network (Brunel,

2000), the cortical microcircuit is the most widely adopted and

commonly-used benchmark to the best of our knowledge. It will

therefore be the basis of later analyses and comparisons. It is

important to note that the cortical microcircuit is simulated with

a timestep of 0.1ms (as opposed to the 1ms frequently used in

the past) to properly account for small synaptic delays of local

axons, and a fanout of around 4,000 (instead of 1,000), increasing

its complexity compared to older benchmarks [see e.g. the works of

Moore et al. (2012) and Furber et al. (2014)].

For the following benchmarks of our system, we use the cortical

microcircuit implementation Potjans_2014 from the PyNEST

framework (NEST:: v3.3) without any changes, except setting the

poisson_input switch to False (Eppler et al., 2009). This way,

the Poisson input to each neuron is emulated using DC input

instead, which was shown by Potjans and Diesmann (2014) to

be qualitatively equivalent. The PyNEST implementation is used

to initialize the connectome and neuron state variables of the

microcircuit as configuration for our cluster. Furthermore, NEST

simulations using the very same initializations are run on a

traditional HPC cluster, serving as a golden reference to compare

and verify the FPGA cluster results to. We run all simulations for

15 min of biological time.

3. Results

In this chapter, in accordance with the three pillars presented,

we first establish a network topology and routing scheme, based

on assessments with the static simulator. We then characterize the

hardware system resulting from this interconnect solution to get

an understanding of the system behavior. However, the dynamic

simulator consists of individual components, each modeling a

specific hardware unit that interacts with others, causing interfering

latencies. Therefore, it is important to extract isolated information

about their behavior to calibrate the dynamic simulator. For this

purpose, we systematically design neural networks which first

individually stress the different components of a single node and

later reveal the influence of the interconnect. Finally, the dynamic

simulator is calibrated using the measurements and compared

to the system’s real performance on the cortical microcircuit.

The overarching purpose of this analysis is to (1) showcase our

methodology, (2) analyze the speed and efficiency of our hardware

cluster, and (3) tune the dynamic simulator so that it can reliably

estimate changing system requirements posed by new neuroscience

insights and applications in the future (such as changing average

firing rates or more complex neuron models). This last point is

key in overcoming the chicken-and-egg problem of neuromorphic

simulator design described before.

We start this analysis by devising a baseline network topology

and corresponding routing algorithm using the static simulator.

In previous work, we found that long-hop connections are crucial

for accelerated, large-scale neuromorphic systems that contain

thousands of nodes (Kauth et al., 2020). However, for our case of

35 nodes, we have enough transceivers to realize a more closely-

connected topology that is simple to route through. While an all-

to-all connection would require too many transceivers, a simple

trade-off is the topology shown in Figure 5A. The nodes, arranged

in a homogeneous 2D mesh, are each connected to all nodes in the

same row (using 6.25Gbit/s SFP links) and column (using 6Gbit/s

SATA links). Spikes are broadcasted in a two-step fashion—firstly,

sent toward all nodes on the same x and y axes as the source node

(Figure 5B), and secondly, vertically (or horizontally) forwarded

from the nodes on the x (or y) axis (Figure 5C). This xy routing

algorithm restricts the possible turns, however deadlocks cannot

be eliminated (see Section 2.3.2.1). The static simulator estimates

the maximum network bandwidth requirement using this topology

to be <1 Gbps/node. This is suitable and therefore, the proposed

topology and routing algorithm will be used in the following.

In all following experiments, we measured the duration of the

simulation τ using a driver for the FPGA cluster running on a

host computer. The acceleration factor a is calculated based on the

time resolution h, which is set to 0.1ms in all simulations, and the

number of simulated time steps n according to Equation 1.

a =
n · h

τ
(1)
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FIGURE 5

Wiring and broadcasting of messages in our cluster. (A) Every node is connected to all nodes on the same x- and y-axis. (B) Stage 1 of broadcast: a

message is sent to all connected nodes. (C) Stage 2 of broadcast: every node with the same x-coordinate (except the source node) forwards the

message to all other nodes of the same y-coordinate.

3.1. Characterization of nodes and
interconnect

An effective way to showcase the workflow of our development

framework is the exploration of limitations and bottlenecks of

the compute nodes utilized in our FPGA implementation. The

outcome of this characterization can be later used to both finetune

the dynamic simulation and guide the development of larger

compute clusters. While we will provide an analysis tailored to

our compute nodes, the methodology can be generically applied to

other systems.

The major bottlenecks in any distributed system can broadly

be attributed to the areas of computation, communication, and

memory access. Their individual influence on system performance

depends on the computational load of the targeted simulation.

While the computation latency is a direct function of the pipeline

depth of the chosen implementation and the number of neurons

calculated per parallel worker (at least for analytically solvable

models), it is only expected to be a bottleneck in scenarios with

low network activity. The higher the neuronal firing rates, the more

synaptical information will have to be looked up. Furthermore, this

can lead to major challenges in system scalability as the required

communication bandwidth increases.

In this first step of characterization, we design a set of neural

networks that are intended to selectively exclude usage of certain

hardware components—for example, a network where no neuron

fires never accesses off-chip memory. The goal is to individually

explore limitations of the hardware components that are still used

in these cases. While not biologically accurate, these serve to gain

a better understanding of the systems bottlenecks. We implement

all neuronal networks in NEST:: (Gewaltig and Diesmann, 2007)

and extract information regarding neurons and synapses (neuronal

states, connectome, etc.) to configure the hardware cluster. We

use LIF neurons with CUBA synapses, initialized with the same

model constants as neurons in the cortical microcircuit (Potjans

and Diesmann, 2014). Subsequently, we obtain performance

parameters such as bandwidths or latencies of the remaining

components from the observed acceleration factors. These findings

can be used to create simplified system models and to calibrate the

dynamic simulator later on.

3.1.1. Computational bottleneck
In this first test, we want to investigate the influence of

computation. More precisely, we consider the time needed to

compute the dynamics of a single neuron. Therefore, all kinds

of inter-node communication and memory accesses should be

avoided. For the realization of this test, neurons are loaded onto

a single node. By setting the initial membrane potential below the

action potential threshold, they are prevented from generating any

spikes. However, local synchronization still starts the computation

of the neuronal dynamics of the next timestep. For this purpose,

each worker sends a message through the router to the scheduler

after completing its computation. This influence cannot be avoided

without fundamentally changing the behavior of the system. Here

and in the following, the system is set up as described in Section

2.3.1.1, i.e., each node contains 10 workers that can compute up to

255 neurons each.

The bars “1 × 1" of Figure 6 show the durations per timestep

of this scenario when computing different numbers of neurons per

worker NpW. The total duration of one timestep can be expressed

as τs = t0 + τneuron · NpW where τneuron is the time required to

calculate a single neuron and t0 the remaining, in this case constant,

duration of each timestep. The value of t0 entails all other latencies
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FIGURE 6

System performance without any spikes. Duration per timestep is limited by neuron computation and, depending on the cluster size, synchronization.

which will be investigated further in the following experiments.

By means of two different values of NpW and τ , τneuron can be

calculated by τneuron =
τ 255s −τ 1s

NpW255−NpW1 =
2,090 ns−755 ns

255−1 = 5.256 ns.

This fits the expected duration of one clock cycle of the worker

operating at a frequency of 189.383MHz.

3.1.2. Network latencies
In the next step, we measure transceiver latency. Again, there

is no possibility for a completely isolated observation, since not

all other influences can be excluded. However, the synchronization

messages of our system offer the possibility to observe transceiver

latency without having to generate spikes. These messages have the

same size as spike messages of 128 bit and, unlike spikes, do not

cause memory access. We therefore deploy a neural network that,

as before, never spikes. However, now it is simulated on multiple

nodes instead of just one to cause synchronization messages

between the nodes. Furthermore, for the sake of simplicity, only

measurements with one neuron per worker will be considered

below. All non-excludable influences such as local synchronization,

scheduling and clock domain crossings (CDCs) can be eliminated

by regarding the difference to the single node case.

The latency when sending a 128 bit packet is: τ 2×1
s − τ 1×1

s =

1,549 ns − 755 ns = 794 ns. This number does not represent the

round-trip time because messages can be sent in both directions

at the same time. However, the larger the network, the higher the

chance of nodes having to wait for each other, increasing total

latency. For example, the measured delay in a 5 × 1 network

increases to an average of 874 ns.

For the same network sizes in the y-dimension, latencies result

in 815 ns (1 × 2) and 944 ns (1 × 5), respectively. This difference

can be explained by the fact that the horizontal interconnects are

operated at a frequency of 6.25Ghz instead of 6GHz and the latency

of the solution is largely dependent on this. Due to the two-hop

synchronization required for the present topology, we expect the

duration of the largest network (5× 5) to be approximately doubled

to 1,888 ns, compared to 1 × 5. The measurement results indicate

a small additional overhead with a duration of 2,144 ns, which can

again be attributed to the larger network size.

3.1.3. Local communication
Next, the impact of spikes on system runtime must be

examined. A spike passes through multiple interacting hardware

components on each node that introduce additional latencies

and bandwidth limitations. This behavior has to be captured by

respective modules of the dynamic simulator. For this purpose, we

configure neurons to generate one action potential at each timestep.

This is achieved by changing the neuronal refractory period to

0.1ms and applying the maximum possible external input current.

Furthermore, we set each neuron’s fanout to zero to avoid lookups,

minimizing the influence of memory accesses.

Figure 7 shows the results of this experiment for different

numbers of neurons on one and two nodes. We now investigate

the overhead of a single spike generation, based on the first bar

in Figure 7. Compared to the simulation of a single neuron that

never spikes, a timestep now lasts 0.903 ns − 0.755 ns = 148 ns

longer. This time difference includes local routing and a single

memory lookup (which is always performed by the system to

retrieve the length of the synaptic list for each incoming spike).

However, a large part of this delay is consumed by the local

synchronization packets even without a spike, which is why this

difference cannot be broken down into individual contributions.

Presumably, however, the major part is due to the memory latency.

Scaling up to generating 20 spikes by 20 neurons, the impact per

spike is calculated to be 1.73µs−0.903µs
20−1 = 43.526 ns.

On two nodes, generating a single spike takes only 59 ns longer

than simulating without spikes, compared to the 148 ns overhead

on one node. This is expected given that some of the processes

involved in the spike handling can take place in parallel to the

synchronization between the nodes. Calculating the effects of a

spike with 20 neurons per node yields 2.984µs−1.608µs
40/2−1 = 72.421 ns.

This is significantly larger than the impact per spike on one

node because we use broadcasting. With two nodes, each node
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FIGURE 7

System performance with spikes, but without memory lookups. Acceleration factor is limited by neuron computation, synchronization and spike

transmission.

has to process locally generated spikes and incoming spikes from

other nodes.

3.1.4. Memory bandwidth
Now the memory connection, which has been largely ignored

up to now, will be measured to calibrate the simulator’s memory

model. Here, again, we will try to exclude as many other influences

as possible. Accordingly, the following experiments are carried out

on a single node only, such that no network communication takes

place. Furthermore, to avoid congestion after the memory lookup,

the target neurons of the synaptic lists are assigned in a round-robin

fashion and therefore evenly distributed over the workers.

In principle, memory accesses can be characterized by two

main factors: access latency and data transfer rate. To be able to

determine these two separately, different measurements have to be

carried out. We decided to vary both the number of accesses and

the amount of data requested per access. To measure the resulting

memory bandwidth, we count the number of memory accesses

during one simulation. Then, we divide the number of bytes read

from memory during the entire simulation by the simulation’s

runtime. This gives us an average memory bandwidth for one run.

However, the existing overheads for the computation of neuron

dynamics as well as the already described local synchronization are

part of these measurement results.

To conduct the experiments, each neuron is again configured

to generate an action potential in each timestep so that timesteps

without a lookup do not have to be accounted for in the calculation.

Our first variation parameter, the number of accesses, can be varied

by changing the number of neurons - each additional neuron

creates an additional parallel memory read request (e.g., four

neurons result in four parallel requests). The amount of requested

data per access is set by the neuronal fanout. The results of sweeping

both parallel accesses and request lengths is shown in Figure 8.

As expected, the average memory bandwidth utilization

increases with both the requested list length and the number of

requests. A single request can only use one of the two memory

channels and therefore results in less than half of the maximum

achievable data transfer rate. The experiment shows that in the

optimal case, the hardware achieves at least 90% of the theoretically

possible bandwidth for long synaptic lists. Consequently, there is

hardly any further potential for optimization in this case, given

that the memory is not utilized at all times. With shorter synaptic

lists, however, the achieved bandwidth drops drastically and can

only be compensated to a limited extent by the parallelization of

requests. For significantly larger clusters, a lookup in the target

node, as performed in the case of broadcast, becomes difficult.

Possible solutions to this problem have already been presented by

Kauth et al. (2020).

tmem = tlat +
nbytes

BWmax
=

nbytes

BWmean
(2)

Equation 2 shows the relationship between memory latency,

bandwidth and access time. In general, a certain time tlat elapses

between the memory request and the first byte received. In the case

of DDR-SDRAM, this is often one to several 100 ns. In a simplified

model, the requested data is then transferred with the available

maximum memory bandwidth BWmax. In our measurements,

besides the number of bytes requested, only the total access time is

available. Figure 8 shows the apparent average memory bandwidth

BWmean. Based on the measured data, the approximate memory

latency is calculated using Equation 2 as tlat = 1,000 Synapses ·
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FIGURE 8

Memory bandwidth experiment: achieved mean memory bandwidth for di�erent numbers of parallel accesses and di�erent synaptic list lengths. The

neural network is configured to have evenly distributed synapses and therefore less congestion in subsequent components of the system, enabling

this case to examine the lookup bottleneck.

8
Byte

Synapse · ( 1
5GB/s −

1
10GB/s ) = 800 ns. This value is far above the

real memory latency. It includes several other latencies occuring

during spike generation and lookup. Nevertheless, it can be used

for calibration of the dynamic simulator.

3.1.5. Local routing and ring bu�er
In the previous experiment, we assumed that the targets of

the synaptic lists read from memory are evenly distributed to

explore the memory’s capabilities. In practice, however, this may

not always be the case. Local routing, consisting of a simple round-

robin arbitration, can become a bottleneck if many spikes target

the same ring buffer. Consequently, if the targets of synaptic

lists are unevenly distributed to a significant extent, the data

transfer rate of the lookup is limited due to back-pressure. In the

following experiment, we will therefore determine the achievable

total bandwidth of the ring buffer for such poorly distributed

synaptic targets. For this purpose, the synaptic lists are generated

in such a way that each neuron has only synaptic connections to

itself (multiple autapses). As shown in Figure 9, the synaptic list

length and the number of neurons, and thus the number of parallel

requests, are varied, just like in the previous experiment.

Now, for a single access, the bandwidth converges as expected

to the bandwidth of a single ring buffer of ∼ 1.5GB/s. Similarly,

the total bandwidth of two parallel accesses converges to about

3GB/s. For more than two simultaneous accesses, an anomaly can

be observed. The total bandwidth increases rapidly to a list length

of 96 synapses, only to drop again significantly. While the increase

can be explained by the higher speed of the DRAM when fetching

longer lists, as already demonstrated in the previous experiment,

the subsequent drop is due to the poor distribution of synaptic

targets. With small synaptic list lengths, frequent switching of the

local router takes place. Internal FIFOs can thus compensate for

the limitation of individual ring buffers. However, this becomes

increasingly difficult in the case of longer synaptic lists due to

relatively small FIFOs.

The case demonstrated here is a worst-case scenario and

realistic neural networks have lower requirements. However,

depending on the degree of non-uniformity of the synaptic

lists, their length and the memory bandwidth, the achieved

memory bandwidth can still be significantly lowered by congestion

(compared to optimal case in Figure 8). To tackle this, for example,

the capacity of FIFOs prior to the ring buffers can be adjusted. It

is also possible, at the cost of higher latencies, to divide the lookup

of longer lists into several smaller memory requests and interlace

them. However, in the upcoming experiments we will focus on

the microcircuit model where the capacity of existing FIFOs were

designed to be sufficient to compensate any congestion.

3.2. Characterization of cluster

Now that we have all the data we need to calibrate the

dynamic simulator, we are interested in some other aspects of our

system. Scalability is a fundamental requirement for neuromorphic

simulators that want to study significant parts of the human

brain. As neuroscience experiments cover widely varying degrees

of network size and complexity, understanding how both small

and large workloads perform on different cluster sizes is crucial.

Our system serves as a validation and calibration basis for the

dynamic simulator, and is therefore not designed for scalability

by several factors. However, given that the hardware platform can
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FIGURE 9

Memory bandwidth experiment: achieved mean memory bandwidth for di�erent numbers of parallel accesses and di�erent synaptic list lengths. The

neural network is configured to have unevenly distributed synapses and therefore more congestion in subsequent components of the system,

enabling this case to examine the ring bu�er bottleneck.

already perform neuroscience simulations, we want to investigate

which network configurations best support which complexity.

The characterization of individual nodes has already shown how

the additional latency and synchronization imposed by a small

cluster of independent nodes counteract the decreased nodal load

of off-chip memory accesses and compute. To further assess the

behavior of the system, we therefore perform strong and weak

scaling experiments.

In an effort to explore complex interactions between different

bottlenecks, we choose the cortical microcircuit as a realistic

benchmark (cf. Section 2.4). The example PyNEST implementation

lends itself as a suitable testcase as it allows scaling the number of

neurons with automatic adaptation of the connectivity to more or

less maintain the mean firing rate.

3.2.1. Strong scaling
In strong scaling benchmarks, the number of nodes is increased

while the problem size is fixed. If the required time for solving

the problem reduces linearly with increasing processing power,

the system is considered to show strong scaling behavior. Since

the simulation of biological neural networks is largely based on

communication between a large number of neurons, we don’t

expect strong scaling to apply here. On the contrary, in some

cases, we could even expect smaller clusters of highly utilized

nodes to achieve higher simulation speed, since this keeps a large

part of the communication within the nodes. The optimal cluster

size for computing a given neural network is a trade-off between

latencies introduced by the interconnect and local bottlenecks,

such as memory and computation, making it difficult to predict.

Three different strong scaling experiments are shown in Figure 10.

In these examples, the speed of the simulation increases with

increasing cluster size, but significantly sub-linear, so that strong

scaling, in the strict sense, does not hold here.

3.2.2. Weak scaling
On the other hand, in weak scaling benchmarks, larger

problems should be solved in the same time by using more

hardware. This is a characteristic that we strictly demand from

simulators of biological neuronal networks. Specifically, the cortical

microcircuit with its size of about 1mm2 represents only a tiny part

of the whole brain. Thus, to meet our long-term goal of simulating

a significant portion of the human brain in an accelerated manner,

a benchmark of the microcircuit is only sufficient together with the

property of weak scalability.

To investigate weak scalability in our system, we performed

an experiment with multiple simulations on different cluster sizes,

each with 1,929 neurons per node, as shown in Figure 10. This

puts our system at a relatively high load which should represent

a realistic case. Network sizes below 2 × 2 were excluded since

they require less than two synchronizations and are therefore not

directly comparable. In general, investigating weak scaling requires

a large number of nodes since small decays of operation speed

can either continue or saturate with growing network sizes, e.g.,

when caused only by small deviations between the nodes. As can

be seen, while there is a slightly decreasing trend from 4 × 2

to 5 × 6, the acceleration factors in general all aggregate around

20× acceleration. Larger clusters are required to properly judge

whether weak scaling applies or not. Previous simulations have

shown, however, that the use of broadcasting prohibits scalability

to a large extend (Kauth et al., 2020). Firstly, network load
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FIGURE 10

Strong and weak scaling experiment: achieved acceleration factor of the simulation of fractions of the cortical microcircuit. First, with di�erent

scalings of respectively constant total problem size, last one with a fixed problem size per node.

increases proportional to the number of nodes, independent of

the neuronal fanout. Secondly, broadcasting requires postsynaptic

lookups, resulting in a higher number of smaller memory accesses

compared to unicasting. As shown in our previous work, long-

hop-based topologies with a dedicated, directed casting scheme are

suitable solutions for large scale networks. In a network of our

current size, however, this scheme would still be disadvantageous.

3.3. Testcase: microcircuit

To conclude the measurements on the hardware system,

we perform a full sweep over several orders of magnitude by

scaling the number of neurons in the cortical microcircuit model

(fanout is kept at full-scale) and simulating it on different

network configurations. This should answer the question how

our system performs for realistic use cases of varying complexity.

While previous experiments can be understood as ways to better

understand the limitations and behavior of our platform, this

experiment is relevant to neuroscientists who aim to accelerate

and parallelize their experiments - the faster the FPGA cluster

is at small- and large-scale experiments, the more usable it is to

aid neuroscience research in the future. The results are shown

in Figure 11.

The simulation of small neuronal networks works best on

small clusters, particularly in the case of a single node where

no external communication takes place, resulting in the highest

achievable acceleration factor for a 0.1% microcircuit of 124.36. At

larger scales, memory access starts to limit system speed. At this

point, distribution among several nodes becomes advantageous. In

contrast, large cluster configurations do not achieve significantly

larger acceleration factors even with smallest neural networks, since

synchronizations are a major limiting factor. Accordingly, scaling

up the neural network reduces the simulation speed only slightly.

For example, the cluster of 35 nodes reaches an acceleration factor

of 33.78 when simulating 77 neurons, while the∼1,000 times larger

full-scale microcircuit with 77,169 neurons can still be simulated

with 20.36×.

3.4. Correctness

The entire system was designed with reproducibility and

determinism as key features inmind. However, the exact simulation

results will still deviate from any ground truth generated on a

different system due to certain design decisions in hardware.

In our case, we for example use 32 bit fixed-point for saving

and accumulating weights in the ring buffers before calculating

the neural state update in 32 bit floating-point. The resulting

deviations compared to a 64 bit floating-point operation are small,

yet accumulate over time, possibly leading to a neuron spiking

one timestep earlier or later, which in turn affects many other

neurons. As spiking neural networks are chaotic systems sensitive

to even small perturbations (van Vreeswijk and Sompolinsky,

1998), the resulting network activity on different systems can hardly

be compared on a spike-by-spike basis.

The most simple and direct comparison to NEST can be drawn

by regarding the total number of generated spikes. For a specific

microcircuit initialization, 222,545,972 spikes were generated on

the hardware platform, compared to 221,532,831 spikes generated

when running NEST on a HPC platform. The resulting deviation

of 0.46% is noticeably smaller than the difference between two

different microcircuit initializations executed on the same system,

which we observed to reach more than 1%. However, this

comparison is fairly limited as it does not capture any dynamic

behavior of the network.

To properly judge the correctness of a given simulation, we

follow the established way of comparing the network activity of

simulations on our system to some ground truth results, using

spike-based statistics. In our case, we take NEST simulations from a

high-performance computing cluster as ground truth. In particular,

we compare the following well-established statistics (Gutzen et al.,

2018):

• Time-average firing rates of single neurons.

• Coefficients of variation of inter-spike intervals.

• Pearson correlation coefficients between the spike trains of a

randomly sampled set of 200 neurons, binned at 2ms.
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FIGURE 11

Achieved acceleration factor for cortical microcircuit at di�erent scalings of neurons. Scaling of synapses is kept at 100%. Note that the 1 × 1

network has network synchronization disabled while 2 × 1 and 4 × 1 networks perform only a single synchronization per timestep. All other

networks require two synchronizations per timestep.

FIGURE 12

Comparison of spike-based statistics measured on our platform and 10 NEST simulations run with di�erent seeds (min-max values marked as gray

area). The simulations were run for 15 min of biological real-time.

In Figure 12, the spiking statistics of our largest experiment,

the full-scale cortical microcircuit, and the corresponding results

from the NEST ground truth are shown. In particular, we run 10

simulations in NEST for 15 min of biological time using different

seeds to estimate the range of acceptable deviation of neuronal

states and connectome (resulting min- and max values are plotted

as a gray corridor). Thereby, as is common in the literature, the

first 10,000 timesteps are ignored in order to exclude transient

effects. We can see that the deviation of results on our cluster

to the reference is minimal. Compared to second order statistics

Frontiers inComputationalNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2023.1144143
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Kauth et al. 10.3389/fncom.2023.1144143

reported in other works (van Albada et al., 2018; Rhodes et al.,

2019; Heittmann et al., 2022), it can be seen that we are well

in the accepted range of deviation to the baseline. Neuroscience

research can therefore be safely conducted on the cluster as on any

other system.

3.5. State of the art

Before contextualizing our work within current state-of-the-art

systems, we want to highlight energy efficiency as an additional

metric for comparison.While not focus of the development effort of

this platform, energy efficiency is generally one key motivation for

developing brain-inspired algorithms and hardware. In particular,

the energy per synaptic event in the human brain has been

estimated to be in the range of 19–760 fJ (van Albada et al., 2018).

In light of these impressive values, the neuromorphic computing

community takes the human brain as a major inspiration for

novel computing architectures. To better assess how close or

far we are to these numbers, and to better compare to existing

systems, we derived the energy consumption per synaptic event for

our platform.

While running the full cortical microcircuit simulation, we

measured the power consumptions of multiple nodes using a

current clamp, averaged them, and verified these results inquiring

the on-board power management unit via IIC. Extrapolating the

resulting 26.54W to all 35 nodes, we arrive at a total power

consumption of P = 928.9W. Using the on-board power

management unit, we measured that less than half of this is

consumed by the FPGA itself—off-chip memories and periphery

draw most power. The resulting energy per synaptic event is

calculated, as usual, as the total energy consumption of the system

during simulation (given as measured power integrated over

simulation time 1t) divided by the number of all occurring spikes

S times the average neuronal fanout fo, resulting in the expression:

Esyn.ev. =
P·1t
S·fo

. With a total number of S = 222,545,972 occurring

spikes, an average fanout of fo = 3,880 and a simulation time

of 1t = 15 min/20.36, we arrive at an energy of 47.55 nJ per

synaptic event.

Table 1 shows the achieved acceleration and energy efficiency of

various recent state-of-the-art systems. We focus this comparison

on systems running the cortical microcircuit model. It has been

seen in the past that efficiency measurements compare poorly when

switching simulation benchmarks. For instance, while Stromatias

et al. (2013) reported SpiNNaker to have an energy consumption

of ∼ 20 nJ per synaptic event with a network of 200k randomly-

connected Izhikevich neurons, the simulation of the cortical

microcircuit drew on average 5,800 nJ per synaptic event on

the same system (van Albada et al., 2018)—a difference of over

two magnitudes. For this reason, comparisons to platforms not

simulating the same task is inconclusive. We focus our analysis on

the microcircuit due to its widespread adoption in the community

as a benchmark for neuroscience simulations. As can be seen, our

system compares favorably in both measures to existing platforms.

In terms of speed-up, we outperform the currently fastest platform

by more than 5×. Along the same line, our platform provides 10×

lower energy per synaptic event than the state of the art.

The energy efficiency of 48 nJ per synaptic event is mainly

driven by the achieved acceleration factor. Here, as well, it is

important to mention that this energy efficiency is not yet the final

frontier, even on our system. The off-the-shelf FPGA we use was

designed as an evaluation platform and is therefore not optimized

in terms of power consumption. Even in idle state, each board

requires almost the full power measured during the simulation.

Reasons for the performance can be manifold and the systems

are too complex to investigate exact differences. One of the

reasons is local synchronization. Some other systems use global

synchronization which requires packets to travel a longer distance

and pass through a central network node which potentially

becomes a bottleneck. Another possible reason is the network

topology. Due to our small cluster size relative to SpiNNaker

or CsNN, we can easily reach a high connectivity, reducing the

mean network latency. However, there are solutions to solve this

problems even for large cluster sizes by using long hop connections

(Kauth et al., 2020) instead of neighbor-only topologies like the

hexagonal mesh of SpiNNaker. Smaller systems like single GPU

simulators on the other side suffer from limitations of the compute

power. Memory integration also varies greatly between our system

and others. General purpose computers usually have an inherently

good memory interface, which is often surpassed many times

over by GPUs. With these systems, the bottlenecks are likely to

be elsewhere, such as in the network, which in turn creates a

massive impact on their scalability. Here, the freely distributable

MGTs of FPGAs are the decisive advantage over GPUs. On the

one hand, GPU-based simulators impress with their simplicity in

commissioning and configuration, as well as with high simulation

density due to their fast memory interface and the large number of

execution units. However, their communication capability, which

is designed for 1-to-1 transmission, makes it difficult to combine

them into larger systems. FPGA boards, on the other hand, usually

have more limited memory interfaces.

3.6. Simulator assessment

In this last step, the first iteration of our three-pillar approach

will be completed. After we used the results from our synthetic

measurements, presented in Section 3.1, to calibrate the dynamic

simulator, its accuracy will now be assessed. For this purpose, we

use the microcircuit measurements from Section 3.3 as a reference

and examine the simulator’s predictions for the same scenarios. It is

important to note that the measurements of the microcircuit were

not used in any way to calibrate the dynamic simulator further.

Figure 13 shows the comparison between hardware

measurement and the prediction of the dynamic simulator,

for the smallest and largest cluster configuration and different

scaling of the cortical microcircuit. While the uncalibrated

simulator allows qualitative comparisons, the absolute values

are far from reality. This is remarkable since the modules of the

simulator were adjusted using public specifications from data

sheets. After calibration, differences can still be observed, but

the results now allow quantitative predictions. Furthermore,

differences are to be expected, especially with small networks, since

compromises were made in the development of the simulator in
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TABLE 1 State-of-the-art of accelerated cortical microcircuit simulation.

Simulator Hardware Technology [nm] Speed-up Energy/Syn.Ev. [uJ]

This work 35 NetFPGAs 28 20.36 0.048

CsNN [1] 305 Xilinx Zynq-7000 SoCs 28 4.06 0.783∗

NEST [2] 2 AMD EPYC Rome 14 1.88 0.48

GeNN [3] 1 Nvidia Titan RTX 12 1.42 –

SpiNNaker [4] 318 ASICs (18×ARM9 each) 130 1.00 0.6

NeuronGPU [5] 1 Nvidia RTX 2080 Ti 12 0.95 0.18∗∗

GeNN [6] 1 Nvidia Tesla V100 12 0.54 0.47

NEST [7] 64 Intel Xeon E5-2680v3 32 0.22 5.8

SpiNNaker [7] 217 ASICs (18×ARM9 each) 130 0.05 5.9

Human Brain [7] – – 1.00 19×10−9 to 760×10−9

References: [1]: Heittmann et al. (2022); [2]: Kurth et al. (2022); [3]: Knight et al. (2021); [4]: Rhodes et al. (2019); [5]: Golosio et al. (2021); [6]: Knight and Nowotny (2018); [7]: van Albada

et al. (2018). Energy efficiency of the human brain roughly estimated in van Albada et al. (2018).
∗ Energy of [1] estimated using an assumed 10W/node, leading to P = 3050W.
∗∗ Energy of [5] estimated using an assumed 166W (based on [6], where an Nvidia Tesla V100 consumed 2/3 of its rated power for microcircuit simulation, and given a power for Nvidia RTX

2080 Ti of 250W). The bold values indicate the table entries of our work.

FIGURE 13

Comparison between actual measurement of the achieved acceleration factor for the cortical microcircuit on the hardware cluster against the

estimation of the dynamic simulator.

order to keep performance high. For example, small elements

such as certain FIFOs or the multiplexing of messages were

omitted, which only have a significant influence on the acceleration

factor for small networks. Most importantly, the digital twin has

to provide a good estimate for larger scenarios which can be

confirmed by the measurements shown here.

4. Discussion

Our research targets the development of hardware systems that

execute neuronal network models of natural density. A wide variety

of solutions exists today reaching from pure software solutions

running on HPC clusters over dedicated digital hardware systems

to approaches mapping the computations into the analog domain.

None of the existing solutions meet the future requirements

on computational capability in terms of model complexity and

simulation speed while, at the same time, offering the required

flexibility and determinism. Flexibility is a requirement in the

exploratory research as done in the domain of computational

neuroscience, and determinism offers the ability to reproduce

experiments and investigate noisy properties.

While being flexible, CPU or GPU based clusters are designed

to support scientific simulations with fundamentally different

requirements on the transformation of information, i.e., the way

computations are executed and how results are communicated.
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TABLE 2 Scenario examples: required framework adjustments when changing the testcase or hardware.

Change Static simulator Dynamic simulator FPGA cluster

Neuron model No change required since neuron

model is not part of the calculation

Throughput and latency parameters

have to be adapted in the configuration

file

For each neuron model following the same

interface (lumped synapse input, spike

output), the HLS implementation (in C++)

of the neuron model has to be adapted,

synthesis of the complete design has to be

executed

Network topology Topology can be defined in

configuration file

Topology can be defined in

configuration file

Cables can be connected arbitrarily.

In-system soft processor automatically

identifies targets behind each cable

Different FPGA Boards No impact Clock frequencies of system and

transceivers, periphery like memory

type (e.g., DDR3, DDR4) can be defined

in configuration file

Neuronal accelerator is instantiated and

configured (number of workers, neurons) as

an IP block, peripherals (Aurora, memory

controller) have to be ported

Patchy connections Configuration file already supports

definition of number, size and

distance of patchy connectivity. For

other changes, the code of the

simulator has to be extended

The code of the simulator has to be

extended

No change required, connectivity list

contains complete network definition

Any analog and specific hardware realization of a neuromorphic

system defines its capabilities during the specification phase based

on the analysis of the biological requirements (e.g., average firing

rates, minimal synaptic delays, etc.) that are known at the time. As

much as this approach has the potential to reach high performance,

it is the source of the chicken-and-egg problem as a realized system

becomes outdated by the knowledge it helps to gain.

The neuroAIx-Framework overcomes these limitations by

relying on three pillars: a fast analytical static simulator for design

exploration, a slower, iterative dynamic simulator for accurate

estimation of system behavior, and the FPGA cluster itself. On

one side, learning in the first pillar will directly constrain the

design space in the next, more involved exploration of the second

pillar and so forth. On the other side, learnings, as well as

calibration data, feed back to the earlier pillars to calibrate the

models and thereby refine their quantitative assessment. The

inaccuracy of the predictions of our cycle accurate model based

on data-sheet specifications have shown the relevance for this

calibration. As the models of any analyzed system architecture

and neuroscience experiment are specified as code, modifications

are possible throughout. More specifically, Table 2 demonstrates

the flexibility of our framework by giving explicit examples of

possible revisions. Depending on latest biological requirements and

available hardware, the expense of adaptions of the three pillars can

be estimated. In general, we consider this strictly coupled, multi-

level prototyping most suitable to overcome the chicken-and-egg

problem by short iteration loops due to the ability of performing

rapid exploration, estimation and precise predictions.

As an application example of minimal complexity, the

microcircuit was considered as as baseline. Study of prior art

points to three potential bottlenecks in such hardware systems: (1)

communication of spikes, (2) computation of neuronal dynamics,

and (3) off-chip memory transactions. During the development

of the evaluation platform, we already followed the presented

methodology leading to the conclusion that a compute cluster with

a proprietary communication fabric (Kauth et al., 2020) would

be best suited to execute the emulation at an acceptable speed.

Following the microcircuit model, we realized support for the LIF

neuron model. The FPGA structure allows executing this with a

high degree of parallelism in time and space. Rather instrumental

are the many local memories providing on-chip storage for the

system state of the individual neuron models, which already

reduces the burden on the external memory interface. Evaluations

based on the first and second pillar indicated having two memory

channels directly attached to the programmable logic would match

the performance of the other system components. At the same

time, High-BandwidthMemories (HBM) appeared of no additional

benefit as the latency of random accesses is decisive. Performance

evaluations of the realized system confirmed this prediction. This

way, we avoided a transition to model-specific optimizations such

as on-the-fly generation of connectivity information, preserving the

option to upload predefined connectomes as well as the flexibility

to accommodate plasticity.

Just as HPC clusters get continuously updated, more recent

FPGA generations provide up to 8× faster transceivers, four

memory channels and more and faster logic resources. Hence, we

see a persistent advantage in using such FPGA clusters retaining

the demonstrated 20× speed-up w.r.t. biological real-time, i.e. 10×

speed-up over non-FPGA platforms. This comes on top of the

inherent flexibility and the deterministic operation of our system.

Even the energy per synaptic event of 48 nJ is 10× less than any

other platform although this was no optimization criterion during

the design of the system. In conclusion, an upscaled FPGA cluster

could act as an intermediate system solution before next-generation

neuroscience simulation platforms become available. As a next step,

we are realizing a high-level web-based interface to specify, execute

and analyze neuroscience simulations on the cluster.
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