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neuroAIx-Framework: design of
future neuroscience simulation
systems exhibiting execution of
the cortical microcircuit model
20× faster than biological
real-time

Kevin Kauth*, Tim Stadtmann, Vida Sobhani and Tobias Gemmeke

Chair of Integrated Digital Systems and Circuit Design, RWTH Aachen University, Aachen, Germany

Introduction:Research in the field of computational neuroscience relies on highly

capable simulation platforms. With real-time capabilities surpassed for established

models like the cortical microcircuit, it is time to conceive next-generation

systems: neuroscience simulators providing significant acceleration, even for

larger networks with natural density, biologically plausible multi-compartment

models and the modeling of long-term and structural plasticity.

Methods: Stressing the need for agility to adapt to new concepts or findings

in the domain of neuroscience, we have developed the neuroAIx-Framework

consisting of an empirical modeling tool, a virtual prototype, and a cluster of FPGA

boards. This framework is designed to support and accelerate the continuous

development of such platforms driven by new insights in neuroscience.

Results: Based on design space explorations using this framework, we devised

and realized an FPGA cluster consisting of 35 NetFPGA SUME boards.

Discussion: This system functions as an evaluation platform for our framework.

At the same time, it resulted in a fully deterministic neuroscience simulation

system surpassing the state of the art in both performance and energy e�ciency.

It is capable of simulating the microcircuit with 20× acceleration compared to

biological real-time and achieves an energy e�ciency of 48nJ per synaptic event.

KEYWORDS

neuromorphic computing architectures, FPGA cluster, cortical microcircuit, spiking

neural networks (SNN), computational neuroscience, parallel computing, rapid

prototyping, accelerated simulation

1. Introduction

Computational neuroscience is a very broad and multi-faceted research field. Starting at

the molecular level up to the modeling of human behavior, a very wide scale in time and

space is spanned with no technical system capable of simulating the complete stack. While

tremendous progress has been made in recent years by the community, the question of how

the brain transforms information is still a puzzle. To gain deeper insights, the simulation of

neuronal network models of natural density is considered essential.

Today, there exist various neuroscience simulators targeting different resolutions and

abstraction levels. Examples include dedicated neuromorphic hardware systems such as

SpiNNaker (Furber et al., 2013), BrainScaleS (Schemmel et al., 2008), Bluehive (Moore et al.,

2012) or Loihi (Davies et al., 2018), and software frameworks like NEST (Gewaltig and

Diesmann, 2007) running on conventional CPU-based systems or GeNN (Yavuz et al., 2016)
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FIGURE 9

Memory bandwidth experiment: achieved mean memory bandwidth for di�erent numbers of parallel accesses and di�erent synaptic list lengths. The

neural network is configured to have unevenly distributed synapses and therefore more congestion in subsequent components of the system,

enabling this case to examine the ring bu�er bottleneck.

already perform neuroscience simulations, we want to investigate

which network configurations best support which complexity.

The characterization of individual nodes has already shown how

the additional latency and synchronization imposed by a small

cluster of independent nodes counteract the decreased nodal load

of off-chip memory accesses and compute. To further assess the

behavior of the system, we therefore perform strong and weak

scaling experiments.

In an effort to explore complex interactions between different

bottlenecks, we choose the cortical microcircuit as a realistic

benchmark (cf. Section 2.4). The example PyNEST implementation

lends itself as a suitable testcase as it allows scaling the number of

neurons with automatic adaptation of the connectivity to more or

less maintain the mean firing rate.

3.2.1. Strong scaling
In strong scaling benchmarks, the number of nodes is increased

while the problem size is fixed. If the required time for solving

the problem reduces linearly with increasing processing power,

the system is considered to show strong scaling behavior. Since

the simulation of biological neural networks is largely based on

communication between a large number of neurons, we don’t

expect strong scaling to apply here. On the contrary, in some

cases, we could even expect smaller clusters of highly utilized

nodes to achieve higher simulation speed, since this keeps a large

part of the communication within the nodes. The optimal cluster

size for computing a given neural network is a trade-off between

latencies introduced by the interconnect and local bottlenecks,

such as memory and computation, making it difficult to predict.

Three different strong scaling experiments are shown in Figure 10.

In these examples, the speed of the simulation increases with

increasing cluster size, but significantly sub-linear, so that strong

scaling, in the strict sense, does not hold here.

3.2.2. Weak scaling
On the other hand, in weak scaling benchmarks, larger

problems should be solved in the same time by using more

hardware. This is a characteristic that we strictly demand from

simulators of biological neuronal networks. Specifically, the cortical

microcircuit with its size of about 1mm2 represents only a tiny part

of the whole brain. Thus, to meet our long-term goal of simulating

a significant portion of the human brain in an accelerated manner,

a benchmark of the microcircuit is only sufficient together with the

property of weak scalability.

To investigate weak scalability in our system, we performed

an experiment with multiple simulations on different cluster sizes,

each with 1,929 neurons per node, as shown in Figure 10. This

puts our system at a relatively high load which should represent

a realistic case. Network sizes below 2 × 2 were excluded since

they require less than two synchronizations and are therefore not

directly comparable. In general, investigating weak scaling requires

a large number of nodes since small decays of operation speed

can either continue or saturate with growing network sizes, e.g.,

when caused only by small deviations between the nodes. As can

be seen, while there is a slightly decreasing trend from 4 × 2

to 5 × 6, the acceleration factors in general all aggregate around

20× acceleration. Larger clusters are required to properly judge

whether weak scaling applies or not. Previous simulations have

shown, however, that the use of broadcasting prohibits scalability

to a large extend (Kauth et al., 2020). Firstly, network load
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FIGURE 10

Strong and weak scaling experiment: achieved acceleration factor of the simulation of fractions of the cortical microcircuit. First, with di�erent

scalings of respectively constant total problem size, last one with a fixed problem size per node.

increases proportional to the number of nodes, independent of

the neuronal fanout. Secondly, broadcasting requires postsynaptic

lookups, resulting in a higher number of smaller memory accesses

compared to unicasting. As shown in our previous work, long-

hop-based topologies with a dedicated, directed casting scheme are

suitable solutions for large scale networks. In a network of our

current size, however, this scheme would still be disadvantageous.

3.3. Testcase: microcircuit

To conclude the measurements on the hardware system,

we perform a full sweep over several orders of magnitude by

scaling the number of neurons in the cortical microcircuit model

(fanout is kept at full-scale) and simulating it on different

network configurations. This should answer the question how

our system performs for realistic use cases of varying complexity.

While previous experiments can be understood as ways to better

understand the limitations and behavior of our platform, this

experiment is relevant to neuroscientists who aim to accelerate

and parallelize their experiments - the faster the FPGA cluster

is at small- and large-scale experiments, the more usable it is to

aid neuroscience research in the future. The results are shown

in Figure 11.

The simulation of small neuronal networks works best on

small clusters, particularly in the case of a single node where

no external communication takes place, resulting in the highest

achievable acceleration factor for a 0.1% microcircuit of 124.36. At

larger scales, memory access starts to limit system speed. At this

point, distribution among several nodes becomes advantageous. In

contrast, large cluster configurations do not achieve significantly

larger acceleration factors even with smallest neural networks, since

synchronizations are a major limiting factor. Accordingly, scaling

up the neural network reduces the simulation speed only slightly.

For example, the cluster of 35 nodes reaches an acceleration factor

of 33.78 when simulating 77 neurons, while the∼1,000 times larger

full-scale microcircuit with 77,169 neurons can still be simulated

with 20.36×.

3.4. Correctness

The entire system was designed with reproducibility and

determinism as key features inmind. However, the exact simulation

results will still deviate from any ground truth generated on a

different system due to certain design decisions in hardware.

In our case, we for example use 32 bit fixed-point for saving

and accumulating weights in the ring buffers before calculating

the neural state update in 32 bit floating-point. The resulting

deviations compared to a 64 bit floating-point operation are small,

yet accumulate over time, possibly leading to a neuron spiking

one timestep earlier or later, which in turn affects many other

neurons. As spiking neural networks are chaotic systems sensitive

to even small perturbations (van Vreeswijk and Sompolinsky,

1998), the resulting network activity on different systems can hardly

be compared on a spike-by-spike basis.

The most simple and direct comparison to NEST can be drawn

by regarding the total number of generated spikes. For a specific

microcircuit initialization, 222,545,972 spikes were generated on

the hardware platform, compared to 221,532,831 spikes generated

when running NEST on a HPC platform. The resulting deviation

of 0.46% is noticeably smaller than the difference between two

different microcircuit initializations executed on the same system,

which we observed to reach more than 1%. However, this

comparison is fairly limited as it does not capture any dynamic

behavior of the network.

To properly judge the correctness of a given simulation, we

follow the established way of comparing the network activity of

simulations on our system to some ground truth results, using

spike-based statistics. In our case, we take NEST simulations from a

high-performance computing cluster as ground truth. In particular,

we compare the following well-established statistics (Gutzen et al.,

2018):

• Time-average firing rates of single neurons.

• Coefficients of variation of inter-spike intervals.

• Pearson correlation coefficients between the spike trains of a

randomly sampled set of 200 neurons, binned at 2ms.

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2023.1144143
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Kauth et al. 10.3389/fncom.2023.1144143

FIGURE 11

Achieved acceleration factor for cortical microcircuit at di�erent scalings of neurons. Scaling of synapses is kept at 100%. Note that the 1 × 1

network has network synchronization disabled while 2 × 1 and 4 × 1 networks perform only a single synchronization per timestep. All other

networks require two synchronizations per timestep.

FIGURE 12

Comparison of spike-based statistics measured on our platform and 10 NEST simulations run with di�erent seeds (min-max values marked as gray

area). The simulations were run for 15 min of biological real-time.

In Figure 12, the spiking statistics of our largest experiment,

the full-scale cortical microcircuit, and the corresponding results

from the NEST ground truth are shown. In particular, we run 10

simulations in NEST for 15 min of biological time using different

seeds to estimate the range of acceptable deviation of neuronal

states and connectome (resulting min- and max values are plotted

as a gray corridor). Thereby, as is common in the literature, the

first 10,000 timesteps are ignored in order to exclude transient

effects. We can see that the deviation of results on our cluster

to the reference is minimal. Compared to second order statistics
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reported in other works (van Albada et al., 2018; Rhodes et al.,

2019; Heittmann et al., 2022), it can be seen that we are well

in the accepted range of deviation to the baseline. Neuroscience

research can therefore be safely conducted on the cluster as on any

other system.

3.5. State of the art

Before contextualizing our work within current state-of-the-art

systems, we want to highlight energy efficiency as an additional

metric for comparison.While not focus of the development effort of

this platform, energy efficiency is generally one key motivation for

developing brain-inspired algorithms and hardware. In particular,

the energy per synaptic event in the human brain has been

estimated to be in the range of 19–760 fJ (van Albada et al., 2018).

In light of these impressive values, the neuromorphic computing

community takes the human brain as a major inspiration for

novel computing architectures. To better assess how close or

far we are to these numbers, and to better compare to existing

systems, we derived the energy consumption per synaptic event for

our platform.

While running the full cortical microcircuit simulation, we

measured the power consumptions of multiple nodes using a

current clamp, averaged them, and verified these results inquiring

the on-board power management unit via IIC. Extrapolating the

resulting 26.54W to all 35 nodes, we arrive at a total power

consumption of P = 928.9W. Using the on-board power

management unit, we measured that less than half of this is

consumed by the FPGA itself—off-chip memories and periphery

draw most power. The resulting energy per synaptic event is

calculated, as usual, as the total energy consumption of the system

during simulation (given as measured power integrated over

simulation time 1t) divided by the number of all occurring spikes

S times the average neuronal fanout fo, resulting in the expression:

Esyn.ev. =
P·1t
S·fo

. With a total number of S = 222,545,972 occurring

spikes, an average fanout of fo = 3,880 and a simulation time

of 1t = 15 min/20.36, we arrive at an energy of 47.55 nJ per

synaptic event.

Table 1 shows the achieved acceleration and energy efficiency of

various recent state-of-the-art systems. We focus this comparison

on systems running the cortical microcircuit model. It has been

seen in the past that efficiency measurements compare poorly when

switching simulation benchmarks. For instance, while Stromatias

et al. (2013) reported SpiNNaker to have an energy consumption

of ∼ 20 nJ per synaptic event with a network of 200k randomly-

connected Izhikevich neurons, the simulation of the cortical

microcircuit drew on average 5,800 nJ per synaptic event on

the same system (van Albada et al., 2018)—a difference of over

two magnitudes. For this reason, comparisons to platforms not

simulating the same task is inconclusive. We focus our analysis on

the microcircuit due to its widespread adoption in the community

as a benchmark for neuroscience simulations. As can be seen, our

system compares favorably in both measures to existing platforms.

In terms of speed-up, we outperform the currently fastest platform

by more than 5×. Along the same line, our platform provides 10×

lower energy per synaptic event than the state of the art.

The energy efficiency of 48 nJ per synaptic event is mainly

driven by the achieved acceleration factor. Here, as well, it is

important to mention that this energy efficiency is not yet the final

frontier, even on our system. The off-the-shelf FPGA we use was

designed as an evaluation platform and is therefore not optimized

in terms of power consumption. Even in idle state, each board

requires almost the full power measured during the simulation.

Reasons for the performance can be manifold and the systems

are too complex to investigate exact differences. One of the

reasons is local synchronization. Some other systems use global

synchronization which requires packets to travel a longer distance

and pass through a central network node which potentially

becomes a bottleneck. Another possible reason is the network

topology. Due to our small cluster size relative to SpiNNaker

or CsNN, we can easily reach a high connectivity, reducing the

mean network latency. However, there are solutions to solve this

problems even for large cluster sizes by using long hop connections

(Kauth et al., 2020) instead of neighbor-only topologies like the

hexagonal mesh of SpiNNaker. Smaller systems like single GPU

simulators on the other side suffer from limitations of the compute

power. Memory integration also varies greatly between our system

and others. General purpose computers usually have an inherently

good memory interface, which is often surpassed many times

over by GPUs. With these systems, the bottlenecks are likely to

be elsewhere, such as in the network, which in turn creates a

massive impact on their scalability. Here, the freely distributable

MGTs of FPGAs are the decisive advantage over GPUs. On the

one hand, GPU-based simulators impress with their simplicity in

commissioning and configuration, as well as with high simulation

density due to their fast memory interface and the large number of

execution units. However, their communication capability, which

is designed for 1-to-1 transmission, makes it difficult to combine

them into larger systems. FPGA boards, on the other hand, usually

have more limited memory interfaces.

3.6. Simulator assessment

In this last step, the first iteration of our three-pillar approach

will be completed. After we used the results from our synthetic

measurements, presented in Section 3.1, to calibrate the dynamic

simulator, its accuracy will now be assessed. For this purpose, we

use the microcircuit measurements from Section 3.3 as a reference

and examine the simulator’s predictions for the same scenarios. It is

important to note that the measurements of the microcircuit were

not used in any way to calibrate the dynamic simulator further.

Figure 13 shows the comparison between hardware

measurement and the prediction of the dynamic simulator,

for the smallest and largest cluster configuration and different

scaling of the cortical microcircuit. While the uncalibrated

simulator allows qualitative comparisons, the absolute values

are far from reality. This is remarkable since the modules of the

simulator were adjusted using public specifications from data

sheets. After calibration, differences can still be observed, but

the results now allow quantitative predictions. Furthermore,

differences are to be expected, especially with small networks, since

compromises were made in the development of the simulator in
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TABLE 1 State-of-the-art of accelerated cortical microcircuit simulation.

Simulator Hardware Technology [nm] Speed-up Energy/Syn.Ev. [uJ]

This work 35 NetFPGAs 28 20.36 0.048

CsNN [1] 305 Xilinx Zynq-7000 SoCs 28 4.06 0.783∗

NEST [2] 2 AMD EPYC Rome 14 1.88 0.48

GeNN [3] 1 Nvidia Titan RTX 12 1.42 –

SpiNNaker [4] 318 ASICs (18×ARM9 each) 130 1.00 0.6

NeuronGPU [5] 1 Nvidia RTX 2080 Ti 12 0.95 0.18∗∗

GeNN [6] 1 Nvidia Tesla V100 12 0.54 0.47

NEST [7] 64 Intel Xeon E5-2680v3 32 0.22 5.8

SpiNNaker [7] 217 ASICs (18×ARM9 each) 130 0.05 5.9

Human Brain [7] – – 1.00 19×10−9 to 760×10−9

References: [1]: Heittmann et al. (2022); [2]: Kurth et al. (2022); [3]: Knight et al. (2021); [4]: Rhodes et al. (2019); [5]: Golosio et al. (2021); [6]: Knight and Nowotny (2018); [7]: van Albada

et al. (2018). Energy efficiency of the human brain roughly estimated in van Albada et al. (2018).
∗ Energy of [1] estimated using an assumed 10W/node, leading to P = 3050W.
∗∗ Energy of [5] estimated using an assumed 166W (based on [6], where an Nvidia Tesla V100 consumed 2/3 of its rated power for microcircuit simulation, and given a power for Nvidia RTX

2080 Ti of 250W). The bold values indicate the table entries of our work.

FIGURE 13

Comparison between actual measurement of the achieved acceleration factor for the cortical microcircuit on the hardware cluster against the

estimation of the dynamic simulator.

order to keep performance high. For example, small elements

such as certain FIFOs or the multiplexing of messages were

omitted, which only have a significant influence on the acceleration

factor for small networks. Most importantly, the digital twin has

to provide a good estimate for larger scenarios which can be

confirmed by the measurements shown here.

4. Discussion

Our research targets the development of hardware systems that

execute neuronal network models of natural density. A wide variety

of solutions exists today reaching from pure software solutions

running on HPC clusters over dedicated digital hardware systems

to approaches mapping the computations into the analog domain.

None of the existing solutions meet the future requirements

on computational capability in terms of model complexity and

simulation speed while, at the same time, offering the required

flexibility and determinism. Flexibility is a requirement in the

exploratory research as done in the domain of computational

neuroscience, and determinism offers the ability to reproduce

experiments and investigate noisy properties.

While being flexible, CPU or GPU based clusters are designed

to support scientific simulations with fundamentally different

requirements on the transformation of information, i.e., the way

computations are executed and how results are communicated.
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TABLE 2 Scenario examples: required framework adjustments when changing the testcase or hardware.

Change Static simulator Dynamic simulator FPGA cluster

Neuron model No change required since neuron

model is not part of the calculation

Throughput and latency parameters

have to be adapted in the configuration

file

For each neuron model following the same

interface (lumped synapse input, spike

output), the HLS implementation (in C++)

of the neuron model has to be adapted,

synthesis of the complete design has to be

executed

Network topology Topology can be defined in

configuration file

Topology can be defined in

configuration file

Cables can be connected arbitrarily.

In-system soft processor automatically

identifies targets behind each cable

Different FPGA Boards No impact Clock frequencies of system and

transceivers, periphery like memory

type (e.g., DDR3, DDR4) can be defined

in configuration file

Neuronal accelerator is instantiated and

configured (number of workers, neurons) as

an IP block, peripherals (Aurora, memory

controller) have to be ported

Patchy connections Configuration file already supports

definition of number, size and

distance of patchy connectivity. For

other changes, the code of the

simulator has to be extended

The code of the simulator has to be

extended

No change required, connectivity list

contains complete network definition

Any analog and specific hardware realization of a neuromorphic

system defines its capabilities during the specification phase based

on the analysis of the biological requirements (e.g., average firing

rates, minimal synaptic delays, etc.) that are known at the time. As

much as this approach has the potential to reach high performance,

it is the source of the chicken-and-egg problem as a realized system

becomes outdated by the knowledge it helps to gain.

The neuroAIx-Framework overcomes these limitations by

relying on three pillars: a fast analytical static simulator for design

exploration, a slower, iterative dynamic simulator for accurate

estimation of system behavior, and the FPGA cluster itself. On

one side, learning in the first pillar will directly constrain the

design space in the next, more involved exploration of the second

pillar and so forth. On the other side, learnings, as well as

calibration data, feed back to the earlier pillars to calibrate the

models and thereby refine their quantitative assessment. The

inaccuracy of the predictions of our cycle accurate model based

on data-sheet specifications have shown the relevance for this

calibration. As the models of any analyzed system architecture

and neuroscience experiment are specified as code, modifications

are possible throughout. More specifically, Table 2 demonstrates

the flexibility of our framework by giving explicit examples of

possible revisions. Depending on latest biological requirements and

available hardware, the expense of adaptions of the three pillars can

be estimated. In general, we consider this strictly coupled, multi-

level prototyping most suitable to overcome the chicken-and-egg

problem by short iteration loops due to the ability of performing

rapid exploration, estimation and precise predictions.

As an application example of minimal complexity, the

microcircuit was considered as as baseline. Study of prior art

points to three potential bottlenecks in such hardware systems: (1)

communication of spikes, (2) computation of neuronal dynamics,

and (3) off-chip memory transactions. During the development

of the evaluation platform, we already followed the presented

methodology leading to the conclusion that a compute cluster with

a proprietary communication fabric (Kauth et al., 2020) would

be best suited to execute the emulation at an acceptable speed.

Following the microcircuit model, we realized support for the LIF

neuron model. The FPGA structure allows executing this with a

high degree of parallelism in time and space. Rather instrumental

are the many local memories providing on-chip storage for the

system state of the individual neuron models, which already

reduces the burden on the external memory interface. Evaluations

based on the first and second pillar indicated having two memory

channels directly attached to the programmable logic would match

the performance of the other system components. At the same

time, High-BandwidthMemories (HBM) appeared of no additional

benefit as the latency of random accesses is decisive. Performance

evaluations of the realized system confirmed this prediction. This

way, we avoided a transition to model-specific optimizations such

as on-the-fly generation of connectivity information, preserving the

option to upload predefined connectomes as well as the flexibility

to accommodate plasticity.

Just as HPC clusters get continuously updated, more recent

FPGA generations provide up to 8× faster transceivers, four

memory channels and more and faster logic resources. Hence, we

see a persistent advantage in using such FPGA clusters retaining

the demonstrated 20× speed-up w.r.t. biological real-time, i.e. 10×

speed-up over non-FPGA platforms. This comes on top of the

inherent flexibility and the deterministic operation of our system.

Even the energy per synaptic event of 48 nJ is 10× less than any

other platform although this was no optimization criterion during

the design of the system. In conclusion, an upscaled FPGA cluster

could act as an intermediate system solution before next-generation

neuroscience simulation platforms become available. As a next step,

we are realizing a high-level web-based interface to specify, execute

and analyze neuroscience simulations on the cluster.
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