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Purpose: To propose a five-category model for the automatic detection

of myopic macular lesions to help grassroots medical institutions conduct

preliminary screening of myopic macular lesions from limited number of color

fundus images.

Methods: First, 1,750 fundus images of non-myopic retinal lesions and four

categories of pathological myopic maculopathy were collected, graded, and

labeled. Subsequently, three five-classification models based on Vision Outlooker

for Visual Recognition (VOLO), EfficientNetV2, and ResNet50 for detecting

myopic maculopathy were trained with data-augmented images, and the

diagnostic results of the different trained models were compared and analyzed.

The main evaluation metrics were sensitivity, specificity, negative predictive value

(NPV), positive predictive value (PPV), area under the curve (AUC), kappa and

accuracy, and receiver operating characteristic curve (ROC).

Results: The diagnostic accuracy of the VOLO-D2 model was 96.60% with a

kappa value of 95.60%. All indicators used for the diagnosis of myopia-free

macular degeneration were 100%. The sensitivity, NPV, specificity, and PPV for

diagnosis of leopard fundus were 96.43, 98.33, 100, and 100%, respectively. The

sensitivity, specificity, PPV, and NPV for the diagnosis of diffuse chorioretinal

atrophy were 96.88, 98.59, 93.94, and 99.29%, respectively. The sensitivity,

specificity, PPV, and NPV for the diagnosis of patchy chorioretinal atrophy were

92.31, 99.26, 97.30, and 97.81%, respectively. The sensitivity, specificity, PPV,

and NPV for the diagnosis of macular atrophy were 100, 98.10, 84.21, and

100%, respectively.

Conclusion: The VOLO-D2 model accurately identified myopia-free macular

lesions and four pathological myopia-related macular lesions with high sensitivity

and specificity. It can be used in screening pathological myopic macular

lesions and can help ophthalmologists and primary medical institution providers

complete the initial screening diagnosis of patients.
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Introduction

Pathological myopia (PM) is one of the leading causes of
visual impairment worldwide (Jonas and Panda-Jonas, 2019). The
degree of myopia is usually classified as mild, moderate, or high,
which often tends to develop into PM (Lu et al., 2021). Currently,
myopia in children is growing rapidly worldwide, the prevalence
of high myopia is also increasing, and the number of people with
high myopia will increase further in the future (Morgan et al.,
2012; Holden et al., 2016; Chen et al., 2021). PM has evolved
from high myopia, accompanied by a series of changes, such
as optic disc changes, foveal position changes, and retinopathy
(Zhang et al., 2018; Meng et al., 2022). This degenerative
change in the retina and choroid, known as myopic macular
degeneration, is the main feature of PM. Myopic maculopathy
may also lead to vision loss in patients with PM (Cho et al.,
2016). Previously, the diagnosis of myopic macular degeneration
relied only on the physician’s analysis of the patient’s fundus
color photographs. For some underdeveloped areas, very few
ophthalmologists can diagnose myopic macular degeneration (Vela
et al., 2012; Resnikoff et al., 2020). The increasing number of
patients with high myopia also makes this method very inefficient
and urgently pushes us to find a convenient and efficient means of
diagnosis.

With the rapid development of artificial intelligence (AI)
technology with deep learning as the core, it is increasingly
being used in the field of ophthalmology, and many researchers
have used deep learning algorithms to detect common fundus
diseases on fundus color images (Holden et al., 2016; Yang
et al., 2019; Zhang et al., 2019, 2022; Wan et al., 2021; Zheng
et al., 2021; Zhu et al., 2022). In 2019, the Singapore Eye
Centre developed an AI-based deep learning system composed of
a convolutional neural network pre-trained using the XGBoost
algorithm to predict refractive error and myopic macular
degeneration using color fundus photographs. The final area
under the curve (AUC), sensitivity (SE), and specificity (SP)
of macular lesion detection were 0.955, 91.9, and 87.7%,
respectively (Tan et al., 2019). In 2020, a team from Japanese
and Singaporean eye centers developed deep learning algorithms
to identify myopic macular lesion features and automatically
classify myopic macular lesions, the correct identification rates for
diffuse atrophy, patchy atrophy, macular atrophy, and choroidal
neovascularization were 90.18, 95.28, 97.50, and 91.14%, and
an overall correct detection rate of 92.08% for PM (Du et al.,
2021).

The research and development of intelligent ophthalmology
has given birth to numerous automatic diagnostic systems for
fundus image analysis (Gulshan et al., 2016; Burlina et al., 2017;
Li et al., 2018; Zhao et al., 2022), which compensates for the
shortcomings of traditional methods; achieves rapid and accurate
screening of ophthalmic diseases; provides a reference for disease
prevention, diagnosis, and treatment; and has significant medical
value. Inspired by this, we developed an automatic macular
lesion recognition system based on deep learning using the vision
transformer model, which is not only efficient but also has
guaranteed accuracy (ACC). This is of great importance in reducing
the pressure on doctors and alleviating the shortage of medical
resources.

Materials and methods

Ethics statements

To prevent the disclosure of invasive patient privacy, personal
patient information was removed from the image collection;
therefore, all color fundus images were anonymized and no relevant
patient statistics were available.

Study design and population

In our cohort study, 1,750 color fundus images from patients of
different age groups and different sexes were collected from the Eye
Hospital of Nanjing Medical University. Fundus images are taken
by different types of non-discrete fundus cameras with the macula
at the center, and the images are selected through a professional
quality control process, and all images had a resolution range of
1,024× 1,024 to 2,992× 2,000.

Classification and labeling of fundus
images

We referenced the Meta-PM study classification system (Ohno-
Matsui et al., 2015). Fundus images were classified into five
categories according to myopic macular lesions: non-myopic
retinal lesions, leopard fundus, diffuse chorioretinal atrophy,
patchy chorioretinal atrophy, and macular atrophy, which were
labeled C0, C1, C2, C3, and C4, respectively. Among them,
diffuse choroidal retinal atrophy consisted of two types of diffuse
choroidal atrophy around the optic papilla in peripapillary diffuse
choroidal atrophy and diffuse choroidal atrophy in the macula
in macular diffuse choroidal atrophy, and patchy chorioretinal
atrophy consisted of patchy atrophy in the area of advanced diffuse
atrophy, development of patchy atrophy due to lacunar fissures,
the central concave center was rarely affected by enlargement and
fusion of patchy atrophy, and visible patchy atrophy at the edge
of posterior staphyloma. The four types of atrophy consisted of
macular neovascularization-associated macular atrophy and C3-
associated macular atrophy.

We labeled the color fundus images according to the
aforementioned grading, and the labeling categories ranged from
C0 to C4 in the five categories. All fundus images were authentically
labeled using a double-blind method, as determined by two
ophthalmologists with many years of experience in practice.

TABLE 1 Dataset division of five categories from C0 to C4.

Category Training dataset Test dataset Validation
dataset

C0 248 31 31

C1 448 56 56

C2 262 32 32

C3 316 39 39

C4 128 16 16
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FIGURE 1

Architecture of the VOLO networks. VOLO, vision outlooker for visual recognition.

When the two physicians provided the same determination for
a fundus image, it was considered the final result of that image
labeling. When the two doctors gave inconsistent determinations,
an additional ophthalmologist made the final judgment. The
fundus images obtained during the aforementioned process were
collated, and the grading results obtained were used as the reference
standard for this study. Among them, 310 were C0, 560 were C1,
326 were C2, 394 were C3, and 160 were C4. To exclude some
subjective factors, this study used random seeds to randomly divide
the dataset into independent training, testing, and validation sets.
During the training process, the training and validation datasets
were used for model tuning, and the test dataset was used to
evaluate the effects of the trained model. The datasets were divided
at a ratio of 8:1:1, and the final data were divided (Table 1).

After the fundus images were grouped, a series of data
enhancement processes was performed on the training dataset to
prevent overfitting during the training process. First, the images
were normalized; panning, scaling, and rotation were performed;
the hue, saturation, and parametric brightness and contrast of the
input images were randomly changed; and the images were scaled
down to a resolution of 256 × 256 according to the optimal input
size for the model. The validation dataset was also subjected to
simple image cropping and normalization. Data enhancement can
effectively improve the adaptability of the network to images of the
same class, but with some differences, such as the generalization

ability of the network. Then, the image data were packaged and fed
into the network model.

Vision outlooker for visual recognition
model

Recently, deep learning technology has developed rapidly. Since
the early AlexNet (Vintch et al., 2012), the network has emerged in
the competition. Subsequently, a series of excellent convolutional
neural network models has been developed (Simonyan and
Zisserman, 2014; Zeiler and Fergus, 2014; Iandola et al., 2016;
Larsson et al., 2016; Bo et al., 2017; Szegedy et al., 2017). To date,
there has been an increase in the number of transformer models
(Dosovitskiy et al., 2020; Liu et al., 2021). For the development
of a vision transformer (Vaswani et al., 2017), we have conducted
a lot of research and selected the Vision Outlooker for Visual
Recognition (VOLO) (Yuan et al., 2022) model–a powerful model
architecture for visual recognition with better results so far–
for experimentation, which proposes a new lightweight attention
mechanism, the Outlooker, which can efficiently encode fine-level
information and is designed with a two-phase architecture that
considers more fine-grained encoding of token representations
and global information aggregation. We used the Pytorch (Paszke
et al., 2019) framework for model building and selected the
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FIGURE 2

Accuracy and loss curves of VOLO-D2. VOLO, vision outlooker for visual recognition; ACC, accuracy; Train, training; Val, validation; Epoch, train
once with all the samples in the training dataset.

EfficientNetV2 (Tan and Le, 2021) and ResNet50 (He et al.,
2016) models to compare the results with those of the VOLO-
D2 model. All models were trained with hyperparameters using
weights pretrained from the ImageNet dataset (Deng et al., 2009),
and used a unified approach to data enhancement.

During training, a smaller training dataset increases the
probability of overfitting problems. To prevent overfitting and
enhance the robustness of the model, we enhanced the training
data in several different ways, including random horizontal and
vertical flipping; random orientation rotation; and modification of
brightness, contrast, and saturation to cause color interference. In
each iteration, 80% of the total samples were used for training and
10% for validation. The total number of iterations in the training
process was 100, and we used the AdamW optimizer (Loshchilov
and Hutter, 2017) with a batch size of 32 and weight decay of
0.05 (Jiang et al., 2021). The initial learning rate was set to 0.0001,
and the learning rate was decayed using a cosine annealing decay
strategy. To quickly bring the ACC to a reasonable range, the first
10 iterations were linearly ascending (Touvron et al., 2021a). The
model structure and learning curve of VOLO-D2 are shown in
Figures 1, 2.

Experimental hardware: The central processing unit used
was a 2.80-GHz Intel R© Xeon

R©

E5-1603 version 4; the graphics
processing unit was the NVIDIA GeForce GTX1080 with 8-GB
RAM. Experimental software: The model was constructed using
PyTorch and Python.

Analysis of the effects of the model

In our study, which has a multicategorical problem, we used
two methods to evaluate the effects of the model. One of the
methods was to evaluate the overall effect using ACC with the
kappa coefficient as an evaluation metric. The kappa coefficient
was calculated based on the confusion matrix, which is generally

between 0 and 1. The higher its value, the better the ACC of
the model classification. The kappa coefficient was calculated as
follows:

k =
p0 − pe

1− pe
(1)

pe =
a1 × b1 + a1 × b1 + ...+ ac × bc

n × n
(2)

where p0 represents the total classification ACC, ai is the number
of true samples of class i, and bi is the number of predicted
samples of class i.

Another approach is to convert the multi-classification problem
into multiple independent binary classification problems, i.e., to
identify myopia-free retinal lesions, class C0 is marked as a positive
sample, and the remaining classes (C1, C2, C3, and C4) of lesions
are negative samples. For the evaluation index of the dichotomous
problem, the numbers of true positive (TP), true negative (TN),
false positive (FP), and false positive (FN) samples were first
determined using a confusion matrix, and then the ACC, SE,
SP, positive predictive value (PPV), and negative predictive value
(NPV) were calculated. The specific calculation of each evaluation
index is as follows:

ACC =
TP + TN

TP + FN + TN + FP
(3)

SE =
TP

TP + FN
(4)

SP =
TN

TN + FP
(5)

PPV =
TP

TP + FP
(6)

NPV =
TN

TN + FN
(7)
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FIGURE 3

The test dataset results are shown as a confusion matrix in which the vertical axis represents the true labels and the horizontal axis represents the
predicted labels. (A) Confusion matrix of VOLO-D2. (B) Confusion matrix of EfficientNetV2-S. (C) Confusion matrix of ResNet50. VOLO, vision
outlooker for visual recognition.

To enable a detailed understanding of the performance of the
model for each type, we used receiver operating characteristic
(ROC) curves to evaluate the classification performance.
Additionally, the AUC values calculated using the ROC curve
were used to evaluate the performance of the classifier. The closer
the AUC is to 1.0, the better the classification performance.

Results

In this study, 174 fundus images (31 images of class C0,
56 images of class C1, 32 images of class C2, 39 images of
class C3, and 16 images of class C4) were randomly selected
for external testing. The VOLO-D2 model achieved an overall
recognition rate of 96.60% and kappa coefficient of 95.60% in the
test set, both of which proved that the model was significantly
effective in identifying pathologically related macular lesions.
The VOLO-D2 five-category model for 31 images of class C0
and 16 images of class C4 showed correct results, with the
remaining numbers of correctly diagnosed images of C1, C2, and

C3 being 54, 31, and 36, respectively. For the EfficientNetV2-
S five-category model for 56 images of class C1, the results
were correct; the numbers of correct diagnostic images for
C0, C2, C3, and C4 were 29, 30, 35, and 15, respectively. In
the ResNet50 five-category model for 31 images of class C0
and 56 images of class C1, the results were correct, and the
numbers of correct diagnosis images for C2, C3, and C4 were
31, 35, and 12, respectively. The confusion matrices of the
VOLO-D2, EfficientNetV2-S, and ResNet50 models are shown in
Figures 3A–C.

The aim of this study was to correctly diagnose non-myopic
retinal lesions and the four PM-related macular degeneration, for
which we show a comparison of the performance of the VOLO-D2
model and the other two models in recognizing each type of image.
The evaluation results are shown in Table 2. For the diagnosis
of images without myopic retinal degenerative lesions (C0), the
VOLO-D2 model had a very good performance of 100% in all
metrics.

For the diagnosis of leopard fundus images (C1), the model had
an AUC of 98.21%, an SE of 96.43%, and an NPV of 98.33%; both
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TABLE 2 Evaluation of the index results of the three models.

Model Evaluation
indicators

C0 C1 C2 C3 C4

VOLO-D2 Sensitivity 100% 96.43% 96.88% 92.31% 100%

Specificity 100% 100% 98.59% 99.26% 98.10 %

PPV 100% 100% 93.94% 97.30% 84.21%

NPV 100% 98.33% 99.29% 97.81% 100%

AUC 100% 98.21% 97.73% 95.78% 99.05%

Kappa 95.60%

Accuracy 96.60%

EfficientNetV2-S Sensitivity 93.54% 100% 93.75% 89.74% 93.75%

Specificity 100% 97.46% 98.59% 98.52% 98.73%

PPV 100% 94.92% 93.75% 94.59% 88.24%

NPV 98.62% 100% 98.59% 97.08% 99.36%

AUC 96.77% 98.73% 96.17% 94.13% 96.24%

Kappa 93.30%

Accuracy 94.80%

ResNet50 Sensitivity 100% 100% 96.88% 89.74% 75%

Specificity 100% 99.15% 97.89% 97.04% 99.37%

PPV 100% 98.25% 91.18% 89.74% 92.31%

NPV 100% 100% 99.29% 97.04% 97.52%

AUC 100% 99.58% 97.38% 93.39% 87.18%

Kappa 93.30%

Accuracy 94.80%

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve;
VOLO, vision outlooker for visual recognition.

SP and PPV were 100%. For the diagnosis of diffuse chorioretinal
atrophy images (C2), the model had an AUC of 97.73, SE of
96.88, SP of 98.59, PPV of 93.94, and NPV of 99.29%. For
the diagnosis of patchy chorioretinal atrophy images (C3), the
model had an AUC of 95.78, SE of 92.31, SP of 99.26, PPV of
97.30, and NPV of 97.81%. For the diagnosis of macular atrophy
images (C4), the model had an AUC of 99.05, PPV of 84.21,
and NPV of 98.10%; it performed very well in terms of SP and
SE, both of which were 100%. These data illustrate the high
consistency of the VOLO-D2 model. The SE of the EfficientNetV2-
S model for diagnosing all categories was >89%, with a slightly
weaker overall performance and higher consistency. Although the
ResNet50 model had high SE and SP in the diagnosis of non-
myopic retinal degenerative lesions and leopard-eye fundus lesions,
the SE was only 75% in the diagnosis of macular atrophy lesions,
indicating poor performance.

As shown in Table 2, the VOLO-D2 model was better than the
EfficientNetV2-S and ResNet50 models in terms of SE and SP for
C0, C2, C3, and C4. The ROC curve between each model (Figure 4)
also shows that the VOLO-D2 model was excellent in diagnosing
non-myopic retinal degenerative lesions, diffuse choroidal retinal
atrophy, patchy choroidal retinal atrophy, and macular atrophy.

We also used gradient-weighted class activation mapping to
analyze the lesion areas in the fundus images, as shown in
Figures 5A, B. The warmer the colors in the heat map, the greater
is the impact on the classification prediction results.

Discussion

Myopia has become the most common public health problem
worldwide, and myopic macular lesions are common complications
caused by myopia. With the development of myopia, macular
lesions further trigger vision decline. Therefore, it is important
to detect PM at an early stage, as this has important clinical
significance. At present, because of the large number of patients
with myopia and the lack of ophthalmic myopia experts, the
initial diagnosis of this pathological myopic macular lesion is
extremely important.

In 2020, the Vision Transformer (ViT) was proposed, which
pioneered the application of Transformer in the computer vision
(CV) field, which have demonstrated its effectiveness on multiple
CV tasks. The visual Transformers have strong feature extraction
ability and achieve outstanding performance in multiple tests
compared with Convolution Neural Networks (CNNs). Based on
this research, a large number of excellent models of the visual
Transformers such as TNT (Salvatori et al., 2021), PVT (Wang
et al., 2021), CaiT (Touvron et al., 2021b), Swin Transformer and
VOLO have been proposed. In this study, the VOLO model was
selected to classify non-myopic retinal lesions and four categories of
pathological myopic maculopathy. Compared with other the visual
Transformers models, VOLO exhibits better feature extraction
ability and can improve the accuracy of classification recognition.
In this study, we compare two excellent CNNs models in order to
demonstrate that the visual Transformers model is very effective in
medical fundus image diagnosis.

Although machine learning has shown great potential, a
number of significant data-related problems plague the application
of machine learning in helping diagnosis and prognosis of
myopic maculopathy. Our research method involved collecting
the eyes of limited number of patients with myopia and data
training with various deep learning models. Our findings prove
that the VOLO-D2 model has high diagnostic ACC and SE.
Furthermore, the assessment of the test set proved that our PM
image classification system has good generalization capabilities.
Using our system, the patient’s symptoms can be preliminarily
determined from the perspective of medical ophthalmology, so
doctors can further diagnose and treat the disease and prevent
further development of blindness.

Some researchers had also done research on multiple macular
disorders. Li et al. (2022) used DCNN-DS model to detect no
myopic maculopathy, tessellated fundus, and pathologic myopia,
and the validation accuracies on the two external testing datasets
were 96.3 and 93.0%, respectively. Tang et al. (2022) used ResNet-
50 model to develop the META-PM study categorizing system, and
the mean accuracy was 0.9119 ± 0.0093 on the five categories. The
overall accuracy of the VOLO-D2 model in this study is 96.60%
on the five categories, but the number of images in the external
test set is small, only 176. In the experiments, the results were also
compared with two high-quality CNNs models.

Figure 3 and Table 1 show that the VOLO-D2 model performs
better in the overall recognition accuracy and kappa value of the test
set compared with the EfficientNetV2-S and ResNet50 models. It
can be demonstrated that the VOLO-D2 model has a deeper feature
understanding of the complexity of macular lesion images than the
CNNs model. These deeper features can improve the accuracy of
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FIGURE 4

ROC curves of the VOLO-D2, EfficientNetV2-S, and ResNet50 models for myopia-free macular lesions and four pathological myopia-related
macular lesions. (A) ROC curves and AUC value of C0. (B) ROC curves and AUC value of C1. (C) ROC curves and AUC value of C2. (D) ROC curves
and AUC value of C3. (E) ROC curves and AUC value of C4. (F) ROC curves and AUC value of the average of all categories. ROC, receiver operating
characteristic; VOLO, vision outlooker for visual recognition.

the model in recognizing macular lesion images. Figure 4 shows
visually that the VOLO-D2 model performs somewhat worse in
identifying leopard’s fundus compared to the EfficientNetV2-S and
ResNet50 models, misdiagnosis as other pathologies occurred.

According to the hot diagram of macular lesions shown in
Figure 5, the VOLO-D2 model’s interest in each lesion has laid the
foundation for us to further study the cutting and diagnosis of the
macular lesion area. As shown in the confusion matrix in Figure 3,
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FIGURE 5

Visualization-based diagnosis by the VOLO-D2 model. (A) Original
image. (B) Grad-CAM. Grad-CAM shows that the model focused on
the myopic maculopathy area. From left to right, we can see the
original fundus images of the four lesions along with the
corresponding gradient activation heat maps. Grad-CAM,
gradient-weighted class activation mapping.

there were several cases of identification errors in the VOLO-
D2 model, especially when the diagnosis of patchy chorioretinal
atrophy, and errors were also diagnosed as macular atrophy. It is
difficult to distinguish between the two when the colors are similar
to the sluggish areas. However, this is satisfactory for the overall
recognition rate. Therefore, our model can be used for preliminary
disease screening in cooperation with ophthalmologists.

Our study has certain limitations. First, owing to the difficulty
of data collection, the amount of data in this experiment is small,
and we cannot assess its generalization. Second, there is further
room for improvement in the incorrect diagnosis of some lesions.
Next, we will continuously improve the model to improve ACC, use
more new datasets for training and testing, and further use image
segmentation methods to determine the pathogen area to improve
auxiliary ophthalmologists for diagnosis.

Conclusion

Overall, the five-category model of VOLO-D2 has high SE and
SP for the diagnosis of non-myopic retinal lesions and four PM-
associated maculopathies. We hope that it can help identify and
treat patients early and protect them from low vision and blind

diseases caused by myopic macular lesions. Additionally, we hope
to help ophthalmologists reduce part of their work.
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