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Recruitment mechanisms and
therapeutic implications of
tumor-associated macrophages
in the glioma microenvironment

Xianzhe Zhou, Guishan Jin, Junwen Zhang* and Fusheng Liu*

Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical
Materials, Beijing, China
As one of the main components of the glioma immune microenvironment,

glioma-associated macrophages (GAMs) have increasingly drawn research

interest. Primarily comprised of resident microglias and peripherally derived

mononuclear macrophages, GAMs are influential in a variety of activities such

as tumor cell resistance to chemotherapy and radiotherapy as well as facilitation

of glioma pathogenesis. In addition to in-depth research of GAM polarization,

study of mechanisms relevant in tumor microenvironment recruitment has

gradually increased. Suppression of GAMs at their source is likely to produce

superior therapeutic outcomes. Here, we summarize the origin and recruitment

mechanism of GAMs, as well as the therapeutic implications of GAM inhibition, to

facilitate future glioma-related research and formulation of more effective

treatment strategies.
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Introduction

Gliomas are one of the most common adult brain tumors. According to the WHO

classification of central nervous system tumors, gliomas are graded as levels 1, 2, 3 or 4 (1).

Over recent decades, the treatment of CNS tumors has greatly improved, with therapeutic

options currently including surgery, radiotherapy, chemotherapy, and targeted therapy (2,

3). However, median survival time among glioma patients continues to remain low relative

to that of patients suffering malignancies such as those of the thyroid or breast.

Unfortunately, the median survival of patients suffering glioblastoma (GBM), the most

malignant astrocytoma, was recently reported to be approximately 15 months (4, 5).

The tumor immune microenvironment (TME) has long been a focus in oncological

research. The TME mainly consists of tumor-associated macrophages, dendritic cells,

neutrophils, lymphocytes, astrocytes, and other non-tumor-related cells, and plays a

primary role in the promotion of glioma pathogenesis (Table 1) (13–16). Glioma-

associated macrophages (GAMs) comprise approximately 25% of tumor volume (17)
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and primarily consist of microglia and macrophages. The presence

of both cell types is understood to significantly positively correlate

with the malignant progression of glioma (18) and is associated

with the cellular acquisition of properties similar to the M2

macrophage phenotype (19, 20). Detailed study of GAM-TME

interaction is thus warranted to facilitate development of novel

glioma treatment methods and effectively improve glioma

patient prognosis.
The origin and physiological function
of glioma-associated macrophages in
the tumor microenvironment

As the pathogenesis of malignancy progresses, interactions

among tumor cells and adjacent tissues result in the formation of

the TME, especially in the case of solid malignancy (21, 22). The

TME provides a favorable environment for malignant cell growth

and enables more effective proliferation as well as resistance to

drugs and immunity (23). As the TME develops, a variety of

immune cells including tumor-associated macrophages (TAMs),

lymphocytes, dendritic cells, and neutrophils are recruited to the

vicinity of the tumor (24). However, alterations in molecular

interactions within the TME often result in an emergence of

many immunosuppressive cells [such as regulatory T cells (25)

and TAMs (26)] in and around the tumor. In concert with tumor-

promoting molecules, these cells accelerate tumor progression (27,

28). Similarly, GAMs are abundant in and around gliomas (29).

Prior studies have confirmed that GAMs in the central nervous

system primarily originate from brain-resident microglia and

peripherally-derived mononuclear macrophages that enter the

central nervous system due to breakdown of the blood-brain

barrier (Figure 1) (30). While peripherally-derived mononuclear

macrophages are mainly distributed in the core region of the tumor,

microglia are generally localized in the area surrounding the tumor

(17). Of course, this distribution may be related to the recruitment

characteristics of the corresponding cytokines. Studies have shown

that some cytokines are more likely to recruit macrophages derived

from monocytes in peripheral blood (31).
Frontiers in Immunology 02
Microglia, derived from yolk sac progenitor cells, appear in the

central nervous system at an early stage of ontogeny. The presence

of microglia is detected in the brain as early as the ninth embryonic

day (32). Traditionally, the distinction between microglia and

peripherally-derived mononuclear macrophages is made based on

differences in levels of CD45 expression; high levels of CD45

expression (CD45high) is considered a characteristic of

peripherally-derived cells while low levels of CD45 expression

(CD45low) is characteristic of microglia (33, 34). However,

microglial expression of CD45 was reported to be up-regulated in

the TME (35). Distinguishing between the two aforementioned cell

subtypes, collectively referred to as GAMs, can thus be challenging.

Of course, previous researches have shown that CXCR1+/CCR2-

can be used for marking microglia, and CXCR1-/CCR2+ mark

monocyte-derived macrophage. And this method is well accepted

by the researchers (36). Despite their different origins, both

microglia and peripherally-derived mononuclear macrophages

play roles in promoting glioma progression (37)

Cytokines promote GAM migration to the site of the glioma

and gradually increase the proportion of GAMs within brain tissue

from 10-15% to 30-50%, eventually resulting in GAMs becoming

the primary component of the glioma TME (20). Under the

influence of glioma immune microenvironment, the polarization

direction of Gams changed significantly, forming the GAM

population dominated by M2 type (38). And as the grade of

glioma increased, the proportion of M2 type GAM is also

increasing. This type of GAMs produce cytokines such as TGF-b
and IL-6, and generally promote tumor progression (39, 40). Such

pathologic changes facilitate cellular invasion and angiogenesis,

mediate tumor immune evasion, influence T cell infiltration and

function, and induce Treg responses, thus significantly promoting

malignant progression of glioma (26, 41). Furthermore, massive

GAM infiltration of glioma tissue correlates with a poor patient

prognosis; reduction of GAM infiltration often facilitates glioma

treatment (26, 42). However, the distinction between M1 and M2

GAMs remains unclear. Frequent co-expression of M1 and M2

genes in the same cell suggests that these two subtypes may not be

static (43). Furthermore, use of certain drugs (such as rapamycin),

decreased M2-type GAM activation, and increased M1-type GAM

activation were reported to restore GAM cytotoxic capabilities and
TABLE 1 Classification and function of immune cells in the immune microenvironment of brain tumors.

Cell Name Classification Function References

Glioma-Associated Macrophage (GAM) M1 Type
(Pro-inflammatory)
M2 Type
(anti-inflammatory)

(1) Inhibit T cell function;
(2) Promote glioma epithelial-mesenchymal transition;
(3) Promote glioma cell migration

(6, 7)

Dendritic Cells(DC) — (1) Antigen presentation;
(2) Forming tumor immunity

(8)

Tumor-Associated Neutrophils
(TAN)

N1 Type
(Anti-tumor)
N2 Type
(Tumor-promoting)

(1) Inhibit tumor growth;
(2) Promote tumor angiogenesis;
(3) Promote tumor growth and metastasis

(9, 10)

Lymphocytes Cytotoxic T cells (CD8+T Cell)
Natural Killer cells (NK Cell)

Antitumor Immune Response (11, 12)
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result in glioma cell destruction (44). Although inducing changes in

the polarization direction of macrophages may yield the greatest

therapeutic benefits, due to the complexity of the in vivo system, it is

difficult to simulate various conditions in vitro. Effectively reducing

the number of immune microenvironments in glioma may be a

more reasonable therapeutic strategy. However, a recent study on

Liposomal honokiol (Lip-HNK) indicated that Lip-HNK

repolarizes M2 macrophages into M1 phenotype, which effectively

enhances the tumor inhibitory ability of GAM. This may be more

reasonable and effective than simply inhibiting GAM. At present,

Lip-HNK has entered the phase I clinical trial stage for glioma

treatment, and various experiments for this drug are being

improved step by step, and its further clinical therapeutic effect is

also worth our expectation (45).
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GAM recruitment, activation,
and polarization

As mentioned above, 10-15% of brain tissue is normally

composed of microglia. Effectively regulate the development and

physiological functions of the central nervous system. As glioma

pathogenesis progresses, weakening of blood-brain barrier function

contributes to TME formation and significantly increased the

proportion of GAM in TME (46).

Within the TME, a variety of factors such as cytokines and

growth factors activate GAMs and influence cellular polarization.

GAMs are generally classified into M0, M1 and M2 subtypes; M2

GAM can be subclassified into functionally different M2a, M2b and

M2c cells. Interactions among the aforementioned GAMs

phenotypes and glioma cells influence tumor cell invasion and

migration, angiogenesis, the tumor-mesenchymal transition as well

as immunosuppression (Figure 2) (47).

Among the primary factors influencing glioma pathogenesis,

GAM accumulation within the TME has long been a research focus.

Chemokines, complement receptor ligands and miRNAs all

function to recruit macrophages toward the glioma (31, 48).

Numerous studies of chemokines have revealed them to play a

leading role in the directional migration of microglia. The most

extensively studied of these have been CC chemokine ligand 2

(CCL2; MCP-1), stromal cell-derived factor 1 (SDF-1), colony

stimulating factor 1 (CSF-1), granulocyte-macrophage colony

stimulating factor (GM-CSF), tumor necrosis factor (TNF) and

glial cell derived neurotrophic factor (GDNF). Some of these

chemokines additionally influence subsequent activation and

polarization of GAMs, thereby significantly affecting TME

function (49). In this review, major chemokines previously

identified to function in macrophage recruitment are summarized

to provide foundations for future research directions.
FIGURE 1

Glioma-associated macrophages are recruited by glioma cells to
accumulate in the tumor microenvironment. It mainly includes
resident macrophages in the brain and macrophages from
peripheral sources, which affect the malignant process of glioma.
(By Figdraw).
FIGURE 2

Under the influence of the glioma microenvironment and corresponding drugs, tumor-associated macrophages are recruited toward the tumor. And
under the action of certain cytokines, the polarization direction of tumor-associated macrophages changes, resulting in different physiological
functions. (By Biorender).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1067641
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1067641
Major immune cell recruitment factors
within the glioma microenvironment

I. CCL2/CCR2 axis

Also known as MCP-1, CCL2 plays an important role in tumor

growth and macrophage recruitment in the setting of a number of

malignancies (Figure 3A) (50). For example, breast cancer, gastric

cancer, ovarian cancer, etc. (51–53) CCL2 is also present in the

central nervous system. A potent chemoattractant, CCL2 is

produced by many central nervous system cells such as astrocytes,

endothelial cells and microglia (54). Glioma cells also express high

levels of CCL2 (17). This was reported to significantly positively

correlate with GAM quantity within the glioma TME. However,

whether CCL2 directly acts on tumor cells remains unclear. An

earlier study of the U87 glioma cell line utilized flow cytometry to

confirm that these cells lack CCR2, the CCL2 receptor. Moreover,

CCL2 did not appear to markedly influence proliferation or

migration of U87 cells (55). A different study of the U251 glioma

cell line, however, suggested differently: after CCL2 knockdown,

glioma cells exhibited significantly decreased proliferation and

migration, and significantly increased apoptotic activity, as

compared to control cells (56). Effects of CCL2 on glioma cells

thus warrant further clarification.
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A number of molecules also influence macrophage infiltration

of the central nervous system via interactions with CCL2 and

thereby affect glioma pathogenesis. Among these, MEX3A

expression was found to be significantly increased in the setting

of glioma and significantly positively correlated with the degree of

malignancy as well as poor prognosis. A likely downstream target of

MEX3A, CCL2 is also regulated by this protein. Possible relevant

pathways include PPARa/RXRa activation and AMPK signaling

(57). Under CCL2 knockout conditions, the tumor-promoting effect

of MEX3A was found to be significantly attenuated (56). Homeobox

C10 (HOXC10), known to induce angiogenesis via VEGFR

upregulation, is also highly expressed in the setting of glioma and

exerts a similar regulatory effect on CCL2 (58). As HOXC10

knockdown was confirmed to inhibit CCL2 expression, it thus

likely plays an important role in CCL2-mediated macrophage

recruitment (59). Proteins such as ELF-1 and Notch1 also exert

upstream regulatory effects on CCL2, thus affecting macrophage

recruitment (60–62).

Upon CCL2 interaction with CCR2, release of IL-6 frommicroglia

is promoted in addition to cellular recruitment. Greater IL-6 levels

further increase TME microglia, reduce cytotoxic CD8+ T cells within

the TME, and effectively promote malignant proliferation and

metastasis (63). Interestingly, a number of studies have reported that

CCL-7 (MCP-3) plays a more significant role in GAM infiltration in
FIGURE 3

Major recruitment factors of GAMs in the glioma immune microenvironment. (A) CCL2 secreted by glioma cells acts on its receptor CCR2 on
macrophages, effectively mediating the migration of macrophages to tumor sites and the secretion of tumor-promoting cytokines; (B) The three
main receptors of CXCL12 secreted by gliomas: CXCR4, CXCR7, ACKR3, exist on the surface of both tumor cells and macrophages. Mediates the
recruitment of macrophages, as well as tumor cell proliferation, metastasis and angiogenesis. (C) As ubiquitous cytokines, CSF-1 and IL-34 act on
the receptor CSF-1R to mediate the recruitment of macrophages and the proliferation and differentiation of macrophages. (D) OPN is secreted by
tumor cells and macrophages and induces the recruitment and polarization of macrophages. (By Biorender).
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glioma as compared to CCL2 (64). However, a relatively early

publication year of this study, as well as a lack of relevant follow-up

research, necessitates verification.
II. The SDF-1 (CXCL12)-CXCR4/CXCR7 axis

Stromal cell-derived factor-1 (SDF-1), also known as

chemokine CXC ligand 12 (CXCL12), is expressed and secreted

by a variety of cells including myeloid, endothelial, epithelial and

tumor cells (Figure 3B) (65). CXCR4, expressed primarily by

monocytes and neutrophils in the immune microenvironment, is

the primary receptor for CXCL12, but there are others (66). For

example, CXCR7 and atypical chemokine receptor 3 (ACKR3) also

bind CXCL12 and exert corresponding downstream regulatory

effects. Signaling pathways such as the mitogen-activated protein

kinase ACCRA (MAPK)/extracellular signal-regulated kinase

(ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B

(PKB) are activated under the influence of the CXCL12-CXCR4/

CXCR7 axis, thus affecting cellular proliferation and metastasis (67,

68). The regulation of angiogenesis by the CXCL12-CXCR4/CXCR7

axis attracts increasing research attention. Studies have reported

that the CXCL12/CXCR4 axis effectively upregulates VEGF

expression within the TME, thereby promoting angiogenesis.

Inhibition of VEGF alone, however, is known to increase CXCR4

expression. Existing experimental treatment methods therefore

utilize CXCR4 and VEGF inhibitors in combination have

achieved good therapeutic effect (66). The CXCL12-CXCR4/

CXCR7 axis also influences resistance to radiotherapy and

chemotherapy, immune cell infiltration into the TME and tumor

stem cell proliferation. Although the relevant mechanisms of these

phenomena are not described in detail in this review, such activity

greatly affects malignant pathogenesis (69–73).

In glioma, CXCL12-CXCR4/CXCR7 was reported to be

significantly increased. Indeed, increased expression of CXCR4 is

considered to be one hallmark of malignant glioblastoma (74). Its

ligand CXCL12 was further identified as a potential biomarker of

cancer stem cell resistance to radiotherapy, likely via induction of

autophagy among malignant cells (75, 76). CXCR4 was preferentially

expressed in glioma stem cells. As the differentiation degree of glioma

increased, the expression level of CXCR4 decreased gradually,

instead, the expression level of CXCR7 increased (77, 78). This axis

is involved in malignant processes such as tumor angiogenesis,

inflammatory response, immunosuppression and reprogramming

(79). Recruitment of monocytes is one of the many tumor-

promoting effects exerted by CXCR4.

A study of tumor-associated fibroblast (CAF)-induced

monocyte migration revealed that CXCL12-supplemented media

significantly increased monocyte chemotaxis (80). In glioma, the

CXCL12-CXCR4/CXCR7 axis similarly plays a decisive role in

macrophage recruitment (77). CXCR4 and CXCR7 are highly

expressed on the surface of both microglia and glioma cells (78).

As CXCL12 concentration within the TME increases, microglia

(mainly M2 macrophages) are increasingly recruited toward the

vicinity of the malignancy.
Frontiers in Immunology 05
Hypoxia, an essential characteristic of the TME, results in

enhanced resistance to damage by tumor cells due to an adaptive

modulatory response (81). In the setting of glioma, hypoxia further

promotes malignant pathogenesis as well as drug resistance (82).

The hypoxic microenvironment upregulates members of the

hypoxia-inducible factor (HIF) family, which influence glioma

phenotype via effects on angiogenesis, cellular resistance to

therapy and enhanced metastasis (83). Members of the HIF

family also affect macrophage recruitment via CXCL12

regulation. An earlier study showed that HIF-1a, as an upstream

regulator of CXCL12, effectively influences CXCL12 release

(84).While HIF-1a regulates CXCL12, it is also activated by

CXCL12 via RAS/ERK1-2 and PI3K/AKT signaling (85). In

another study of a mouse model of astrocytoma revealed that

SDF-1 (CXCL12) effectively promotes GAM recruitment to the

vicinity of the malignancy in a concentration-dependent fashion

within the hypoxic TME. Co-localization of HIF-1 and CXCL12 by

immunofluorescence subsequent ly complemented the

aforementioned findings (86).

In the setting of the hypoxic TME, HIF members play

regulatory roles in the CXCL12-CXCR4/CXCR7 axis along with

other cytokines such as VEGF and CD26 (87, 88). A 2006 study of

the U251 glioma cell line revealed that VEGF increases expression

of both SDF-1 and CXCR4 mRNA, thus effectively improving

metastatic capabilities (89). In addition, CXCL12 induces

macrophage polarization toward the M2 subtype, thus further

promoting malignant process (73).
III. The CSF-1/IL-34-CSF-1R axis

Colony-stimulating factor 1 (CSF-1) and IL-34 are ubiquitous

cytokines of great significance to the regulation of monocyte

function. Their common ligand, CSF-1R, is a transmembrane

tyrosine kinase receptor widely expressed on the surface of cells

such as monocytes and marrow-derived macrophages. Ligand-

receptor interaction results in effective promotion of monocyte

proliferation and differentiation via downstream signaling

pathways such as JAK-STAT and PI3K/AKT (Figure 3C) (90–93).

Expression of CSF-1 and IL-34 in various tumors is significantly

increased. In breast cancer, significant upregulation of CSF-1

effectively promotes migration of non-resident macrophages to

the TME and induces their polarization toward the M2 subtype

(94). In melanoma, the ERK pathway-mediated RUNX1

transcription factor promotes CSF-1R expression, increasing

tumor cell survival and malignancy (95).

In normal brain tissue, CSF-1 and IL-34 are respectively

secreted by resident microglia and neurons (96). Both cytokines

significantly affect microglial development, maturation and

function (97). However, in glioma, especially glioblastoma, these

cytokines influence tumor progression. While CSF-1R, CSF-1 and

IL-34 directly support tumor cell growth, CSF-1, highly expressed

by glioma cells, effectively promotes macrophage recruitment and

indirectly promotes malignant pathogenesis via GAM interactions

(98). One study of the SETDB1 enzyme revealed significantly
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increased expression in glioma and resultant promotion of CSF-1

secretion via AKT/mTOR signaling, thereby enhancing

macrophage recruitment and polarization (99). Inhibition of CSF-

1R signaling in vivo was similarly reported to reduce macrophage

infiltration of the TME, further validating the roles CSF-1 and IL-34

play in immune cell recruitment (100).

A number of studies have investigated macrophage recruitment

by CSF-1. Although administration of anti-CSF-1R therapy to

glioma experimental animals exhibited an excellent initial

reaction, nearly half of experimental animals eventually developed

drug resistance and tumor recurrence. PTEN/PI3K pathway

activation and increased levels of IGF-1 were found in the drug-

resistant glioma setting. As such, targeting of the above two

mechanisms with a combined therapeutic strategy involving CSF-

1R inhibition was reported to improve therapeutic outcome (101).

Although these findings suggest that CSF-1 and IL-34 are

susceptible to regulation, anti-CSF-1R therapy warrants further

study for effective use in glioma treatment.
IV. OPN/SPP1

Osteopontin (OPN), also known as secreted phosphoprotein-1

(SPP1), is highly expressed in microglia of the early postnatal brain

and injured adults (102). It is an exocrine immunoregulatory

protein involved in the inflammatory process, and also expressed

in fibroblasts, dendritic cells and macrophages. It is involved in both

physiological and pathological processes such as bone formation,

osteoarthritis, obesity and Alzheimer’s disease, as well as

carcinogenesis and metastasis (103–106). In the central nervous

system, OPN effectively monitors acute or chronic injuries in the

central nervous system, such as inflammation (102). In various

pathological settings, OPN plays roles in mediating inflammation,

inducing immune cell proliferation and attracting mature

macrophage migration to the vicinity of the lesion (Figure 3D)

(103, 107, 108).

A component of the extracellular matrix, OPN primarily binds

three receptors relevant in the TME including a4b1, avb3 and

CD44. Activation of corresponding pathways promotes

macrophage recruitment, angiogenesis and T cell inhibition,

thereby promoting malignant progression (109). Increased

expression of OPN in glioma was reported to significantly

positively correlate with the degree of malignancy (110). It has

been reported that the increased expression of OPN in glioma is

significantly positively correlated with the degree of malignancy,

and its expression is effective in maintaining the survival and

angiogenesis of glioma cells. Furthermore, OPN increases

secretion of metalloproteinase-2 (MMP-2), thereby promoting

glioma metastasis. OPN also effectively reduces glioma cell

sensitivity to the immune system (106, 111). Selective inhibition

of OPN expression in glioma was noted to significantly reduce

malignant cell proliferation (112).

As previously mentioned, in various diseases, the secreted

glycoprotein OPN effectively induces macrophage migration to

the lesion site in a dose-dependent manner (104). Recruitment of

M0 and M2 (but not M1) macrophages to tumor tissue via avb5-
Frontiers in Immunology 06
integrin signaling facilitates a continued increase in OPN secretion

and further enhances macrophage recruitment (111). Interestingly,

existing literature is inconsistent regarding effects of OPN on

macrophage polarization within the TME. Studies focusing on

obesity, liver cancer and colitis underscored that apart from

promoting macrophage recruitment, OPN effectively induces

macrophage polarization to the M2 phenotype via the avb3 and

CD44 receptors, and activates the downstream STAT3/PPARg

signaling pathway (103, 113, 114). However, a glioma study

reported that despite regulation of macrophage recruitment via

CD44, OPN does not significantly influence macrophage

polarization (111). Mechanisms relevant to the function of OPN

in malignancy thus require further study.

OPN offers unique immunotherapeutic prospects. After OPN

knockout, significantly decreased levels of M2 macrophages and

tumor cell expression of PD-L1 were reported. These phenomena

are not due to direct effects of OPN on tumor cells, but rather due to

indirect regulatory effects that induce secretion of CSF-1 by

macrophages via the PI3K/AKT/NF-kB/p65 pathway. After CSF-

1R inhibition, anti-PD-L1 treatment in a mouse model of OPN-

expressing malignancy was significantly improved (113). However,

these findings are limited to liver cancer, and CSF-1R inhibition

therapy needs further investigation.
Significance of macrophage-targeting
treatment in the management
of glioma

Although glioma treatment has significantly improved over

recent decades, surgical resection, adjuvant radiotherapy and

temozolomide-based chemotherapy remain gold-standard

treatments (115). Median patient survival time, however, has

continued to remain relatively low (4). Furthermore,

temozolomide treatment was reported to negatively influence

myeloid-derived suppressor cells within the glioma immune

TME, such as by increasing M2 macrophage phenotypic markers

(115). As such, strategies that target GAM recruitment factors in the

setting of glioma continue to draw increasing research interest.

Studies have confirmed that anti-CCL2 antibody treatment of

glioma effectively reduces immune cell accumulation within the

TME, improves the therapeutic effect of temozolomide and prolongs

survival among tumor-bearing mice (116). Inhibition of CCL2 was also

found to significantly reduce angiogenesis (117). In a study centered on

the combination of CCR2 inhibition and PD-1 blocking, the use of a

CCR2 antagonist (CCX872) in combination with anti-PD-1 therapy

further improved the median survival of tumor-bearing mice (118).

Focus on the therapeutic potential of the CXCL12-CXCR4/

CXCR7 axis revealed FTY720, an immunomodulatory drug used in

multiple sclerosis treatment, to possess therapeutic activity against

various tumors and improving sensitivity to temozolomide therapy

(119, 120). Importantly, FTY720 was found to effectively regulate

interactions between glioma cells and GAMs primarily via

promotion of CXCR4 uptake and inhibition of MAPK-mediated

IL-6 secretion.
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Significant decreases in glioma volume after administration of

CSF-1R inhibitors have also been reported (120, 121). As CSF-1R

promotes maintenance of malignant cellular characteristics in the

setting of glioma via ERK1/2 activation, use of the ERK1/2 inhibitor

SCH772984 was reported to effectively reduce subsequent

malignant progression (122).

Given the role of OPN/SPP1 on macrophage recruitment and

promotion of malignancy, OPN inhibition and antagonism of its

corresponding receptors (e.g. CD44) are potential therapeutic

strategies that warrant investigation in the context of glioma. The

proliferative capacity of glioma cells was reported to be significantly

reduced in the setting of CD44 knockout and OPN silencing (123).

Relevant upstream and downstream regulatory mechanisms

similarly warrant detailed study.
Conclusion

As knowledge concerning glioma pathology has advanced, the

role played by GAMs has drawn increasing interest. Although

significant progress regarding GAM origin, polarization and

function has been made, mechanisms involved in GAM

recruitment remain unclear. Here, we review known GAM

functions with the aim of facilitating development of future

research focused on elucidation of macrophage recruitment

mechanisms as well as effective therapeutic strategies.
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