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While there is an abundance of research on neural networks that are “inspired” 
by the brain, few mimic the critical temporal compute features that allow the 
brain to efficiently perform complex computations. Even fewer methods emulate 
the heterogeneity of learning produced by biological neurons. Memory devices, 
such as memristors, are also investigated for their potential to implement 
neuronal functions in electronic hardware. However, memristors in computing 
architectures typically operate as non-volatile memories, either as storage or as 
the weights in a multiply-and-accumulate function that requires direct access to 
manipulate memristance via a costly learning algorithm. Hence, the integration of 
memristors into architectures as time-dependent computational units is studied, 
starting with the development of a compact and versatile mathematical model 
that is capable of emulating flux-linkage controlled analog (FLCA) memristors and 
their unique temporal characteristics. The proposed model, which is validated 
against experimental FLCA LixNbO2 intercalation devices, is used to create 
memristive circuits that mimic neuronal behavior such as desensitization, paired-
pulse facilitation, and spike-timing-dependent plasticity. The model is used to 
demonstrate building blocks of biomimetic learning via dynamical memristive 
circuits that implement biomimetic learning rules in a self-training neural 
network, with dynamical memristive weights that are capable of associative 
lifelong learning. Successful training of the dynamical memristive neural network 
to perform image classification of handwritten digits is shown, including lifelong 
learning by having the dynamical memristive network relearn different characters 
in succession. An analog computing architecture that learns to associate input-
to-input correlations is also introduced, with examples demonstrating image 
classification and pattern recognition without convolution. The biomimetic 
functions shown in this paper result from fully ion-driven memristive circuits 
devoid of integrating capacitors and thus are instructive for exploiting the 
immense potential of memristive technology for neuromorphic computation in 
hardware and allowing a common architecture to be applied to a wide range of 
learning rules, including STDP, magnitude, frequency, and pulse shape among 
others, to enable an inorganic implementation of the complex heterogeneity of 
biological neural systems.
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1. Introduction

The von Neumann architecture has brought waves of advancement 
in computational technology for much of the past century, and record-
breaking improvements have been driven according to Moore’s law. 
However, the foreseeable end of Moore’s law has invoked widespread 
research on alternatives to the von Neumann computer architecture 
still being used today (Theis and Wong, 2017). Neuromorphic 
computing describes a non-von Neumann architecture with an 
information-processing system inspired by the mammalian brain 
(Mead, 1990), which utilizes massive parallelism that bypasses the 
speed and efficiency limitations of CMOS devices (Haron and 
Hamdioui, 2008). While the definition of a memristor has been 
widened to include other resistive devices, the memristor was 
originally defined as a resistive memory device with a conductance 
that changes depending on the input charge or flux-linkage (Chua, 
1971). Thus, the memristor is a biomimetic device capable of 
in-memory computation and can have biologically realistic temporal 
dynamics that have been rarely exploited (Zivasatienraj et al., 2020), 
making the memristor a promising solution to the realization of 
neuromorphic computing.

Memristors are being widely investigated to implement neural 
networks in hardware. By utilizing the energy-efficient memory to 
store synaptic weights, memristive neural networks can be trained to 
perform complex computations such as image classification. 
Memristors are typically assembled into a resistive crossbar array 
(RCA) to perform multiply-and-accumulate (MAC) operations in 
hardware (Chen et al., 2021). However, the RCA is still restricted by 
the von Neumann bottleneck due to the circuitry required to select 
individual memristors and avoid sneak paths (Cassuto et al., 2013). A 
key limitation in the crossbar architecture is the need to individually 
address and program each individual memristor, costing compute 
time and energy and functions in a non-biological manner. Biology 
never programs an individual synapse. Instead, signals are sent to a 
network of synapses and the temporal-magnitude relationships of the 
collective synapses program the synaptic weights, often resulting in 
weight dynamics that last well after the signal has passed. This 
temporal-magnitude biological relationship is directly analogous to 
flux-linkage dependent memristor behavior. In addition, 
backpropagation (BP) is traditionally used to program the memristive 
weights in the RCA, where a loss function is calculated and then used 
to address errors for each individual weight in the network. While 
being the dominant method for neural computation, BP and all 
methods of directly changing each and every memristor weight in a 
prescribed manner as defined by an algorithm is inherently 
non-biomimetic. Additionally, in hardware implementations, BP 
necessitates additional circuitry for signal processing, adding even 
more power consumption and latency to the system (Wilamowski, 
2009). Thus, research into alternative architectures for RCAs and the 
costly BP process that requires direct access to specific neural weights 
is warranted.

Synaptic plasticity such as paired-pulse facilitation (PPF), where 
rapid consecutive stimuli invoke stronger neuronal responses (López, 
2001), and spike-timing-dependent plasticity (STDP), where temporal 
correlations between stimuli affect the direction and magnitude of 
synaptic weight changes (Markram et al., 2012), can be biomimetic 
alternatives to BP by updating memristive weights via associative self-
learning and puts the action of training into the signal timing instead 
of direct memristance manipulation. The application of Hebb’s 

postulate could allow memristive weights to train themselves without 
computing loss functions, relying instead on the temporal information 
within the timing of stimuli, and thus enabling energy-efficient and 
lifelong learning. Therefore, synaptic devices have shown great 
promise as a solution for implementing neuromorphic computing 
(Kwak et  al., 2022). Temporally dynamic memristors with analog 
behavior, such as FLCA LixNbO2 intercalation devices (Zivasatienraj 
et al., 2020), are well suited to implement PPF and STDP in memristive 
circuitry and can be  utilized for diverse learning rules, including 
frequency, phase, magnitude, and pulse shape-based learning, to 
emulate the diverse heterogeneity of neural signals and learning in 
nature. We focus on LixNbO2 memristors primarily because these 
devices have shown the ability to enable diverse engineering design 
options, including the static resistance (10 ohms to 10 Megaohms), the 
dynamic memresistance range (~90:1), and even static (~1,000x) and 
dynamic tuning (~10x) of the temporal response times, all by 
lithographic geometry configuration and Li ion intercalation with 
millivolt scale programing sensitivity comparable to biological neural 
systems (Zivasatienraj et al., 2020; Ghosh et al., 2023). Crucially, these 
devices can be  stimulated bipolarly to change memristance up or 
down without having to be reset a device, making them near-ideal ion 
integration, and thus displacement flux, storage elements.

Creating a practical memristor model that can be used in the 
design and analysis of circuit-level applications would accelerate the 
progression of memristive technology, integration of memristors into 
conventional circuitry, and investigation into novel computing 
architectures. An extraordinary number of proposed models exist, but 
many are derivatives of a few fundamental models (Strukov et al., 
2008; Biolek et al., 2009; Joglekar and Wolf, 2009; Pickett et al., 2009; 
Prodromakis et al., 2011; Yakopcic et al., 2011; Kvatinsky et al., 2013) 
that are adapted to be  applicable for specific device technologies. 
However, most of these models fail to capture the analog and temporal 
nature of some technologies, intercalation devices included, which can 
continuously integrate voltage pulses or even respond to DC biases. 
Additionally, although able to accurately and stably simulate circuits 
where the memristor interacts with other non-memristor devices, 
such as in RCAs emulating convolutional neural networks, when 
many of these models are used in networks where multiple memristors 
are connected together, such as in reservoir or recurrent neural 
networks, these models often fail to converge or due to internal 
complexity, require enormous simulation times, particularly when the 
network is sizable.

It is thus desirable for memristor models to be  compact and 
efficient for the simulation of large circuits so that practical learning 
applications can be studied (Biolek et al., 2018). Memristor models 
should have the ability to model experimental devices and address the 
associated non-linearities and asymmetries in device performance, 
including unique features such as temporal responsivity that could 
present new levels of complexity in computation (Zivasatienraj et al., 
2020). Herein, a minimally complex yet versatile, compact memristor 
model is introduced that is capable of emulating various memristive 
mechanisms while implementing temporal dynamics, such as in 
neuromorphic circuitry that mimic biological functions like 
desensitization, PPF, and STDP. These biomimetic functions are then 
used to implement self-training memristive neural networks and 
analog computing architectures that can perform image classification 
of the Extended Modified National Institute of Standards and 
Technology (EMNIST) dataset without using expensive 
learning algorithms.
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2. Materials and methods

2.1. Model equations

To achieve the goal of a minimally complex model capable of 
rapid convergence in large scale simulations, the current–voltage 
relation of an analog flux-controlled memristor is adapted from Chua’s 
original work (Chua, 1971) to be:

 ( ) ( ) ( )( )/=i t v t M tΦ
 

(1)

where M tΦ( )( ) , the memristance, is empirically defined as

 
( )( ) ∑

0

N
n

nM t = RΦ Φ
 

(2)

where the R sn′  are “resistance” related fitting parameters with 
units of Coulombs n−  chosen both for simplicity to aid convergence 
as well as for maximum diversity to widen impact for device 
agnosticism. In this work, the minimal number of Rn  parameters are 
used to sufficiently fit our device and undefined Rn  parameters are 
assumed to be equal to zero. Φ t( )  is the effective flux linkage which 

in its simplest form is Φ t v d
t

( ) = ( )
−∞
∫ τ τ , which in the case of LixNbO2 

is ion accumulation in a metallic electrode (Zivasatienraj et al., 2020). 
For practicality, Φ t( ) is calculated with an extra term to account for 
ion redistribution/relaxation diffusion effects in the intercalation 
memristor, which by analogy can be any internal hidden variable such 
as heat, spin polarity, charge, or ferroelectric/magnetic domain 
growth, that accumulates and diffuses to change device resistance 
(Shank, 2016). Φ t( )  is iteratively calculated from ′( )Φ t  by:

 ( ) ( ) ( )′ = −t Av t D tΦ Φ
 

(3)

where A is a unitless gain parameter for adjusting the sensitivity 
to stimulus. The parameter D controls the (diffusive for the 
intercalation device case) temporal response with units of s−1 , 
introducing an exponentially decaying transient to the system for 
controllable non-linearity. In the LixNbO2 case, parameters A and D 
emulate the device properties controlled by lithographically defined 
device size/geometry and intercalation state (Zivasatienraj et al., 2020; 
Ghosh et al., 2023). For a given Φ t( ) , M tΦ( )( )  is the incremental 
memresistance, which specifies the resistance of the memristor 
depending on the accumulated flux-linkage. Together, Eqs. (1)–(3) 
provide a versatile model for flux-controlled analog memristors with 
tunable parameters for volatility, non-linearity, dynamic range, 
temporal response, and sensitivity to stimulus.

The flux-linkage controlled model also allows for non-volatile 
memristor behavior by completely removing the ion recovery effects 
( D s= −

0
1 ). Without any subtractive (D) term, all changes to flux-

linkage – and therefore resistance – would only be alterable by applied 
voltage and is persistent upon removal of the bias. However, Eqs. (1)–
(3) do not adequately describe experimental non-volatile devices due 
to the missing voltage-dependent flux-linkage saturation characteristic 

wherein the resistance tends to saturate to different values depending 
on the magnitude of the applied voltage (Zivasatienraj et al., 2020). 
Equations (1)–(3) alone suggest that any applied voltage would 
be integrated into the flux-linkage regardless of current state creating 
a problem analogous to integral windup in PID control theory where 
flux-linkage grows unconstrained for an applied steady state bias. Real 
devices have physical limits on the flux-linkage, for example from the 
maximum density of ions that can be intercalated. Thus, limitations 
are added on the calculation of flux-linkage that enable non-volatility 
regardless of parameter D, allowing for voltage-dependent flux-
linkage saturation as well as control of the temporal response from a 
non-volatile memristor. For non-volatile memristors, ′( )Φ t  is 
defined to be

 

( )
( ) ( )

( ) ( )/

.

 < <
= 
 −

′
0 0 Av t D t

t
Av t D t otherwise

Φ
Φ

Φ
 

(4)

The exponential relaxation from parameter D eventually negates 
the incorporation of a constant input voltage to flux-linkage, saturating 
to Φ t AV D→∞( ) = / . Therefore, the conditional limitations allow 
for voltage-dependent flux-linkage saturation and non-volatile 
voltage-dependent memristance as observed in experiments 
(Zivasatienraj et  al., 2020). Additionally, parameter D tunes the 
asymmetry in programming polarity often observed in physical 
devices, as negative voltage inputs decrease the flux-linkage faster than 
positive voltages increase the flux-linkage. In LixNbO2 devices, this 
may arise when the applied voltage opposes the electric field created 
by intercalated charge. In the negative input case, drift and diffusion 
work constructively whereas for positive inputs, drift and diffusion 
oppose each other. Furthermore, Φ t( )  can be  bounded to 
non-negative (as are the non-volatile memristors shown later) or 
arbitrary values for asymmetric operation.

Since Φ t( )  has both voltage and time integrated aspects, the 
proposed model can account for either or both computational 
schemes. Specifically, like most memristor models, the voltage can 
change the resistance and thus be the source of computation. But with 
temporal dynamics explicitly controlled and extending over large time 
scales (not merely pico/nanoseconds), the proposed model can also 
use time as an analog computational variable and accurately accounts 
for the extended time-dependent computational capabilities of real 
LixNbO2 devices. Thus, Eqs. (1)–(4) form a versatile memristor model 
capable of reproducing the behavior of volatile and non-volatile 
experimental memristors spanning wide temporal integration times 
and resistance dynamic ranges. This wide temporal “memory window” 
is critical for the implementation of frequency, phase, magnitude, and 
pulse shaped learning rules, including the synaptic plasticity for self-
training neural networks demonstrated here.

2.2. Model implementation

A memristor model implementing Eqs. (1)–(4) was built using a 
simulation program for integrated circuits emphasis (SPICE). The 
SPICE environment was chosen to emulate our FLCA memristors for 
seamless integration into electronic circuitry, while exploiting the 
dynamic time stepping built into SPICE for fast and efficient 
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simulation. SPICE also corroborates the later discussed transition to 
PyTorch implementations of memristive neural networks and 
computing architectures. As shown in Figure 1A, separate compact 
SPICE component models are created for volatile and non-volatile 
memristors and validated via parameter extraction of experimental 
LixNbO2 intercalation devices (Supplementary Figures  1–3; 
Zivasatienraj et al., 2020). The volatile decay of resistance as a function 
of time in Figure  1B is closely emulated by the model. Likewise, 
Figure 1C shows that the non-volatile resistance changes as a function 
of the pulse duration are replicated by the flux-linkage controlled 
model. Higher order Diffusive and Gain terms in Eq. (2) could be used 
for further accuracy at the cost of complexity and simulation time. 
Simulations of these devices converge equally as fast as a level 4 
MOSFET model, indicating that while slower than simpler traditional 
electronic component models (i.e., less than level 3 MOSFETs), the 
model is sufficient for modest scale simulations and elimination of 
higher order terms that slow the simulation is prudent. Having shown 
time efficient and sufficiently accurate simulation of real memristive 
devices, the memristor model was then used for developing 
memristive hardware, eventually serving as the basis for conversion to 
a PyTorch model for large-scale (>500 input) neural 
network simulations.

Due to the enormous amount of computational resources required 
to simulate thousands of time-dependent and interconnected circuit 
elements on a hardware level, a PyTorch model was developed to 
simplify transient current–voltage relationships into flux-linkage 
timesteps. Since flux-linkage is the core internal variable for our FLCA 
dynamical memristors, the overall memristance change per device is 
approximated to be  proportional to the total flux-linkage passed 
through the device for that timestep. This simplification can be made 
because the signal durations used in this work, during which the 
memristance would be physically transient, are short, typically 1 ms. 
Therefore, Eq. (1) is performed in discreet timesteps rather than being 
a continuous function. However, the total flux-linkage during training 
cycles is very significant, and characteristics such as magnitude 
dependence and voltage-dependent flux-linkage saturation must 
be accounted for. Thus, Eq. (4) is performed within the model by a 
rank 2 tensor in conjunction with the relevant conditional statements. 
Equation (2) only becomes relevant during predictions and is thus 
calculated after moving flux-linkage tensors from GPU memory back 

to memory that is accessible by the CPU. Separate tensors are used for 
input stimuli, flux-linkage for each dynamical memristor, as well as 
the tensor used to process Eq. (4). Both SPICE and PyTorch models 
are run on an inexpensive consumer-grade computer, highlighting 
compactness and efficiency.

3. Simulations of temporally dynamic 
neural circuits

The memristor model can thus be used to demonstrate memristive 
circuits that perform in-memory computation. Although many novel 
circuits were developed to showcase the usefulness of memristors in 
hardware, including the RCA and circuit logic that utilizes non-volatile 
passive memory (Supplementary Figures 4–7), this work will focus on 
time-dependent memristive circuits and their biologically inspired 
uses. Figure 2A shows the circuit schematic of the biasing architecture 
used to form Volatile AND Logic VoltagE Divided (VALVeD) 
computation. In this example, the two inputs are each serially 
connected to a volatile memristor ( A k D ks R= = =−

50 1 100
1

0, , ,Ω
and R kC3

1
500= − ) that then combine to form a current-summed 

output. The linked volatile memristors respond to the difference 
between their corresponding inputs, with the output voltage measured 
over a grounded resistive load. A circuit symbol for the VALVeD 
inputs (without the resistive load) is visualized in Figure 2B.

Using fixed resistors instead of volatile memristors results in the 
output transients in Figure 2C. When both inputs are identical, for 
example a digital HIGH (100 mV in this example), the resulting 
output is also identical to the inputs (digital HIGH). However, when 
Input 1 is digital LOW and Input 2 is digital HIGH, the dissimilar 
inputs result in a half-amplitude (50 mV) output due to voltage 
division over the fixed resistors. When volatile memristors are used, 
Figure 2D shows the output transients using VALVeD inputs and the 
same input signals as Figure 2C. Although the output for dissimilar 
inputs is initially half the input (50 mV) due to the instantaneous effect 
of the voltage divider, the volatile memristors quickly (tunable using 
parameter D) respond to the potential difference and suppress the rest 
of the pulse. Each input signal is a 1 ms rectangular pulse of 100 mV, 
or a flux-linkage of 100 μVs, which results in a 50 mV pulse of 1 ms 
duration at the output for the original implementation in Figure 2C 

A B C

FIGURE 1

(A) Circuit symbols for the volatile (top) and non-volatile (bottom) memristor packaged in SPICE. (B,C) Parameter extraction used to match 
experimental (B) volatile and (C) non-volatile memristors and their time-dependent characteristics.
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with only resistors and only one active input. Thus, the resistive 
voltage divider is only able to reduce the input by 50% with a total 
flux-linkage of 50 μVs. In contrast, the output from the VALVeD 
inputs is heavily suppressed, with a total flux-linkage of 3.2 μVs 
calculated from the area under the output voltage trace of the 2nd pulse 
in Figure 2D. Thus, when only one input is digital HIGH, the VALVeD 
inputs are able to suppress 96.8% of the original input, or effectively a 
digital LOW. The architecture functions as a leaky AND logic gate that 
allows similar analog signals pairs to pass while suppressing any other 
combination of inputs, essentially implementing a correlation 
function. The truth table demonstrating AND logic is shown below in 
Table 1. While the VALVeD inputs may be applicable as an AND gate 
for conventional digital circuitry, this work will demonstrate the use 
of VALVeD inputs in an analog, memristive neural network. When 
analog signals are used that are between the digital limits described 
here, the passed total flux-linkage is proportional to the correlation of 
the two signals.

The left side inset of Figure 3A shows the circuit schematic of a 
memristive circuit building block that consists of a volatile memristor 
in series with a non-volatile memristor (where for both the volatile 
and non-volatile devices, A D s R= = =−

1 1 100
1

0, , ,Ω and 
R MC1

1
1= −

) . This is a physically realistic case where both devices 
can be made on the same LixNbO2 chip with similar dimensions but 
different contact metals controlling (non-)volatility (Zivasatienraj 
et al., 2020). In this neuromorphic example, the volatile memristor 
enables desensitization of the non-volatile memristor to frequent 
stimuli. A stimulus source applies voltage pulses to the 

series-connected components and the resistance of the non-volatile 
memristor is measured as the output. The input stimulus consists of a 
pair of 1 V pulses, with a varied time separation between the two 
pulses, as shown in the right side inset of Figure 3A. Thus, the total 
input energy into the circuit is equal for each scenario. However, as 
shown in Figure 3A, the memristor’s final resistance differs for each 
temporal scenario as the initial pulse temporarily desensitizes the 
effect of subsequent pulses. Specifically, in response to the initial 
stimulus pulse, the volatile memristor is programmed to a higher 
resistance, which lowers the voltage and thus, total flux-linkage across 
the non-volatile memristor. The programmed resistance in the volatile 
memristor decays with time, thereby decreasing the desensitization 
effect for pulses with a larger time separation. If the time between each 
input pulse is sufficiently large, then desensitization does not occur. 
The temporal computation effect shown mimics the biological 
desensitization behavior seen in neurophysiology (Thesleff, 1959).

As shown in Figure  3B, the same memristive circuit can 
be stimulated by two voltage sources, a presynaptic and postsynaptic 
signal, rather than the single source shown previously. The compact 
circuit symbol for the bidirectional memristive circuit is shown below 
the circuit schematic in Figure 3B and will later be used as a building 
block for higher complexity circuits. In the bidirectional mode of 
operation, initial pulses to the volatile memristor enables sensitization 
of the non-volatile memristor to the stimulus pulses from the other 
side of the circuit. As shown in Figure 3C, the first pulse, VPRE , 
temporarily programs the volatile memristor to a higher resistance. A 
response pulse, VPOST , is then sourced from the other side of the 
circuit while being within the temporal window of the volatile 
memristor. Effectively, VPRE  and VPOST , while of identical polarity, 
because of their locations in the circuit act on the memristive circuit 
as if they are of opposite polarity. Thus, the volatile memristor reacts 
by transitioning from a high resistance state, through its initial low 
resistance state, and then back to a higher resistance state. This 
behavior is consistent with memristive volatile operation that results 
in the pinched hysteretic current–voltage bow-tie curve (Chua, 2014). 
Due to the transition between resistance states, the overall transient 
resistance is reduced. As shown in Figure  3C, the non-volatile 

A

B

C D

FIGURE 2

(A) Circuit schematic for VALVeD inputs using volatile memristors. (B) Circuit symbol for VALVeD inputs. (C) Transients of Input 1, Input 2, and the 
resulting Output when the volatile memristors are replaced with fixed resistors, resulting in a half-amplitude output for dissimilar inputs due to voltage 
division. (D) Transients of the Output using VALVeD inputs showing a heavily suppressed output for dissimilar inputs, thereby behaving in the same way 
as a logic AND gate.

TABLE 1 Effective truth table for the VALVeD input architecture with the 
behavior of a leaky AND logic gate for analog signals.

Input A Input B Output Y

OFF OFF 0%

OFF ON 3.2%

ON OFF 3.2%

ON ON 100%
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memristor thus receives a higher flux-linkage and is programmed to 
a resistance state lower than its initial state prior to VPRE . The reverse 
can also be  shown: a VPOST  before VPRE pulse results in a net 
increase in the resistance of the non-volatile memristor. The dynamical 
memristive circuit thus demonstrates an enhanced response to 
consecutive pulses, mimicking synaptic facilitation phenomena such 
as PPF as seen in neurophysiology (López, 2001).

Utilizing the synaptic facilitation exhibited by the bidirectional 
memristive circuit in Figure 3B, the biological phenomenon of STDP 

is replicated and the renown anti-bell curve is shown in Figure 4. If 
VPRE precedes VPOST , the conductivity of the non-volatile 
memristor increases to strengthen the synaptic connection. 
Conversely, if VPOST  precedes VPRE , the synaptic connection is 
weakened by an increase of resistance in the non-volatile memristor. 
The magnitude of change in synaptic weight is dictated by the time 
between the pair of pulses. Shorter delays result in larger changes to 
the synaptic connectivity, while pulse pairs that fall outside the 
temporal window do not alter the synaptic weight. Importantly, this 
demonstration of STDP does not require pulses to overlap, nor is 
proper functionality contingent on the shape of each action potential. 
Generic rectangular voltage pulses are used for all voltage stimuli 
described in this work, but owing to its origins in flux-linkage, 
bio-realistic or even heterogeneous neural signals could be used as 
well as magnitude, frequency, phase, or pulse shape encoding. In 
addition, the memristive circuits mimic biological processes such as 
desensitization, PPF, and STDP without incorporating external 
elements such as capacitors or microprocessors. While the dynamical 
memristive circuits are diversely applicable to a broad range of leaning 
methods, STDP is demonstrated here given its widely 
understood function.

4. STDP-enabled physical neural 
networks with lifelong self-learning

STDP is a form of Hebbian learning that determines the weight of 
synaptic connections between neurons. When adopted as a learning 
algorithm in a spiking neural network (SNN), STDP provides a self-
learning process that enables computational weights within the SNN 

A B

C

FIGURE 3

(A) Resistance of the non-volatile memristor in the desensitization circuit (left inset) from two identical input pulses with varied time separation (right 
inset). (B) Bidirectional memristor temporal circuit diagram and circuit symbol. (C) Resistance of the non-volatile memristor in the memristive circuit 
from bidirectional pulses within the temporal window. The overall decrease in resistance due to the temporal relationship between the input pulses 
demonstrates the effect of sensitization or paired-pulse facilitation.

FIGURE 4

Spike-timing-dependent plasticity demonstrated using a 
bidirectional memristive circuit.
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to be individually self-updated via the temporal relationship between 
spikes exchanged by neurons. This is especially meaningful for 
physical neural networks because manually addressing and 
manipulating individual weights, such as in the process of BP, is an 
energy intensive process that also increases system latency and size. 
Thus, SNNs are garnering heavy interest as a low power and 
biomimetic neuromorphic solution (Kim et  al., 2021). Here, 
dynamical memristors are used to build an STDP-enabled self-
training physical SNN.

Figure 5 shows an abbreviated circuit schematic for a single layer 
memristive physical neural network. For N number of inputs, there 
are N dynamical memristor components that accept one input each 
before being pooled into an output node. Albeit a demonstration, this 
architecture is significantly smaller than typical neural network layers 
consisting of interconnected nodes. Each dynamical memristor in the 

network is comprised of one non-volatile and one volatile memristor, 
as shown previously in Figure  3B. Thus, no signal has direct 
connection to merely one electronic component, as is the case with 
RCA alternatives. The weight of a connection within the memristive 
neural network is determined by the conductivity of the non-volatile 
memristor, while the volatile memristor performs temporally dynamic 
calculations for learning. In the example of an image classifying 
perceptron, each input pixel, represented in hardware by a voltage 
source, is wired directly to a dynamical memristor circuit. All the 
memristive weights are then connected to a shared output node to 
result in a current-summed output for each image. For the 28×28-
pixel images of handwritten numerical digits from the EMNIST 
dataset (Cohen et al., 2017), the 784 pixels from each grayscale image 
is serialized into 784 voltage sources as inputs into the memristive 
neural network. Every input image translates to a 1 ms duration 
voltage pulse from all the inputs simultaneously. The input amplitude 
from each voltage source is scaled to the intensity of the represented 
pixel normalized between 0 V and 100 mV, with most inputs per image 
being zero as is the nature of written characters (there are more 
‘inactive’ pixels than there are pixels ‘actively’ forming the digit/letter). 
Every input image is then reciprocated by a system-wide training 
pulse that is timed within the temporal window for STDP. Thus, rather 
than BP, the network is trained by a singular 100 mV voltage signal at 
the output node that propagates throughout the entire SNN, 
bio-realistically implementing a multi (768) stimuli, single response 
neural network (see Supplementary Figure  7). Each memristive 
perceptron is trained on a numerical digit from the EMNIST dataset. 
As is the case for all stimuli within this network, every pulse is a 1 ms 
duration rectangular waveform. During the training phase, the timing 
of the training signal is reliant on whether the targeted digit is 
indicated in the labeled dataset. Using STDP, the memristive weights 
are self-trained to recognize the handwritten digits.

As an example, the digit “4” was self-trained on the dynamical 
memristive neural network. The timing of the response pulse for each 
training image thus depends on whether the labeled training data 
indicates that the target, the numerical digit “4,” is pictured in the 
input image. The time delay between the input and response stimuli 
is 250 ms for images that do not contain the target. In contrast, a 10 ms 
delay is used for training images that picture the digit “4,” thereby 
ensuring that the response pulse falls within the temporal window for 
STDP, as previously shown in Figure 4. This pairwise learning protocol 
is repeated for only a quarter of an epoch, or 60,000 of the 240,000 
training images from the randomized EMNIST dataset before 
convergence was achieved, indicating successful self-training of the 
SNN. As shown in Figure  6, the state of the neural network is 
visualized by arranging the 784 memristive weights back into a 28×28-
pixel array with normalized pixel intensities tied to the conductivity 
of each non-volatile memristor. The distinct shape of the numerical 
digit “4” is observed, indicating that the physical neural network was 
successfully trained. A conservative estimate of the energy required to 
train the network is calculated to be  1.6 μJ per training image by 
assuming the lowest resistance (and thus highest current) for each 
memristive weight in the network. Although more expensive per 
training image than some advanced training algorithms that have an 
energy consumption of 71.3 nJ per image (Choi et al., 2022), the more 
compact network and quicker learning rate of the dynamical 
memristive neural network results in an ultralow total training energy 
of 94 mJ before convergence. Conventional neural networks that use 

FIGURE 5

Abbreviated circuit schematic for a single layer memristive physical 
network capable of self-training via STDP.

FIGURE 6

Visualization of physical neural network trained on a handwritten 
numerical digit.
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backpropagation require hundreds of epochs to train a network 
towards convergence, resulting in a total energy consumption of 
1.7–6.4 J depending on the emphasis placed on energy efficiency. 
However, inference operations still cost between 53 nJ and 1 μJ for 
these large neural networks of >198 k weights. The dynamical 
memristive neural network is able to make predictions using only 
78 pJ per inference due to the use of analog MAC operations 
performed simultaneously. Using a simplified classification scheme as 
an example, input images containing the target digit will experience 
an overall lower resistance to the output node, allowing for binary 
classification of the target digit. In contrast, other input digits are 
forced to utilize untrained and thus more resistive paths to the output. 
By using a sufficiently small or fast (beyond the ion response 
bandwidth; Ghosh et al., 2023) test signal or AC test signals balanced 
in positive and negative flux-linkage, the overall network resistance 
can be sampled without modifying memristances while consuming 
ultralow energy. Adopting STDP as a learning rule, the memristive 
weights were able to efficiently self-train towards a desired outcome 
without manually addressing any of the individual weights, instead 
relying on the temporal relationship between the input pulses and the 
system-wide responses.

In addition, the self-learning properties of this physical SNN can 
be used to implement lifelong learning. Typically, a neural network is 
trained to perform a task and must be  expensively retrained to 
accommodate any changes, correct errors, or counter drifting 
parameters. In contrast, the dynamical memristive network 
continuously learns even as computations are being performed, 
provided that large enough input and training signals are used to 
program the dynamical memristors (small signals result in only 
predictions at the output without any training, much like typical 
neural networks). Thus, the target digit for training can be altered or 
completely changed and the memristive layer is able to quickly 
readjust. Using the visualization technique mentioned earlier, Figure 7 
shows the evolution of the memristive network as the training target 
is changed multiple times within the same training instance. For 
consecutive training targets, a video is formed of handwritten digits 
gradually morphing into other numbers as the dynamical memristive 
network readjusts itself on demand. The video can be viewed from the 
Supplementary Materials.

This implementation of the STDP-enabled physical neural 
network is only capable of learning one target (or one alphanumerical 
character) at a time. To resolve this limitation, multiple memristive 
layers were trained in parallel, each with different target digits from 
the EMNIST numerical dataset. The output from each memristive 

network layer is compared using a winner-take-all strategy that 
highlights the speed of training, resulting in >70% prediction accuracy 
after training for as little as ¼ an epoch. Since the focus of our work is 
on self-learning in hardware using newly envisioned architecture, 
we did not implement more complex classification approaches. The 
simplistic winner-take-all classification mechanism handicaps the 
present accuracy and future implementations will utilize more 
complex classification approaches. However, such simplified 
classification methods do not incorporate the benefits of the analog 
infrastructure of the physical network. Since the dynamical 
memristive SNN was designed with capability for bidirectional 
operation, the current-summed output may be embedded inside other 
layers. For example, the response signal can be  the output from 
another memristive layer, eventually establishing a cohesive self-
learning system. The use of system-wide and generic rectangular 
pulses provides flexibility in interlayer communication, and the 
temporal dynamics necessary for STDP can be achieved using volatile 
memristors or by encoding the transmission line delays that result 
from signals passing through layers of memristive hardware. Complex 
training approaches can also enhance the dynamical memristive 
neural network, such as the use of irregularly timed inputs that utilize 
the full temporal window of STDP. Although these endeavors are 
beyond the scope of this research, this work validates the foundation 
for using analog memristors as computing elements in a self-training 
neural network that is capable of self-learning without direct access to 
the individual weights.

5. Self-training architectures via 
introspective associative learning

Figure 8 shows the partial circuit schematic for the Paired Input 
Learning Layer (PILL) architecture which can perform a similar 
function as the STDP approach above but absent the use of STDP. Each 
input into the network, which represents a pixel of an input image in the 
exemplary task of image classification, is paired with every other input 
without duplicates, implementing the mathematical combination 
function, Cik , with i = 2  and k  equal to the number of pixels in the 
input image. The current of each input pair is summed using the 
VALVeD input circuit which feeds into a dynamical memristor before 
summing to the read output node. Figure 8 only shows a subset of the 
paired inputs, but the full layer would have all inputs paired with all 
other inputs and without any duplicate pairs, resulting in C

2

9
36=  

paired inputs in the simplified case of a 3 × 3 image. The pairing 

FIGURE 7

Visualizations of the memristive neural network demonstrating lifelong self-learning through successful training on different numerical digits 
consecutively.
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algorithm shown in Figure 8 does not show pairing of input 4 with any 
input numerically less than 4 to eliminate duplication of pairs. 
Importantly, a fully connected network has one or more internal hidden 
layer typically with more nodes than the input layer in order to increase 
prediction accuracy. The PILL approach dramatically lowers the 
number of memristors needed to implement the network, though larger 
than the previous example due to the additional functionality to 
be discussed shortly. For example, if a minimal size fully connected 
network with only one hidden internal layer and one output node has 
m  hidden layer nodes and there are k  inputs, the minimal number of 
memristor synaptic weights is m k +( )1 . Because the PILL architecture 
scales as Cik , the PILL network size is dramatically smaller than a 
typical fully connected network. For all examples studied here, only one 
PILL resides between the input layer and the output layer, although 
more PILLs would potentially enhance learning capability at the cost of 
computational complexity.

The PILL architecture can be operated using STDP with the same 
training protocol as described previously, where each input image 
receives a system-wide response pulse that is timed within the 
temporal window for STDP. To classify the 28×28-pixel images of 
handwritten numerical digits from the EMNIST dataset, the PILL 
would consist of only C

2

784
306 936= ,  sets of VALVeD inputs and 

memristive weights. STDP-based supervised training of the network 
results in visualized outputs of self-trained weights similar to that of 
the physical SNN shown previously in Figures 5, 6. Although the 
training and prediction results are comparable, the learning 
mechanism is different because of the more complex PILL architecture. 
Rather than learning the association between the individual input 
pixels and the desired pixel intensity, the input-paired network in the 
PILL architecture allows the dynamical memristors to associate pairs 
of input pixels to the overall target image, essentially implementing an 
inverse derivative function that highlights correlations in two pixels. 
Both inputs of the pair affect the training signal to the dynamical 
memristor due to the prior current summation, ultimately resulting 
in self-learned associations amongst memristor pairs within the same 
network layer. The introspective associative learning enables the PILL 
network to be  trained on a limited subset of multiple targets 
simultaneously. In addition, this computational feature originates 
from the PILL architecture and is not reliant on STDP.

To demonstrate the pixel-to-pixel introspective associative self-
learning, a simplified task of classifying vertical lines anywhere within 
a 3×3-pixel image is described. The single-layer PILL architecture thus 
consists of C

2

9
36=  VALVeD input pairs and memristive weights. To 

demonstrate alternative learning mechanisms, this example uses the 
mere presence of a system-wide response to train the SNN rather than 
STDP. The system-wide training signal is pulsed alongside input 
images that contain a vertical line. Input images that do not contain a 
2-pixel or 3-pixel vertical line anywhere within the image do not 
receive a response pulse. Figure 9 shows the programmed resistance 
transients of all the dynamical memristors in the PILL during training. 
All combinations of inputs are represented in each epoch and in a 
randomized sequence. The training signal amplifies the memristor 
programming for input images containing vertical lines. The clearly 
divergent resistance states shown in Figure 9 indicates that the training 
process has produced unequal changes within the dynamical 
memristive layer. The weights associated with the inputs forming 
vertical lines anywhere within the image were trained to higher 
resistance states than the weights that were not associated with vertical 
lines. To clarify, a subset of the memristive weights is driven by paired 
inputs for pixels that are associated with the formation of a 2-pixel or 
3-pixel vertical line in the input image. For example, in a 3×3 
formation the pixels 1, 4, and 7 form a vertical line in the left-most 
column, and thus the VALVeD pairing of these pixels (1–4, 4–7, and 
1–7) are represented as memristors that associate to that vertical line. 
These memristive weights, when an input image containing a line is 
processed by the PILL, experience amplified programming due to the 
training signal and are thus labeled as “associated weights” in Figure 9. 
Most of the weights in the layer are from input pairs that are not 
associated with the formation of a vertical line and are statistically 
suppressed from enhanced programming, thus resulting in a lower 
resistance state. This divergent memristance result was repeatedly 
confirmed using both 2 and 3-pixel lines, and with all permutations 
of singular and multiple vertical lines within the image.

FIGURE 8

Partial circuit schematic for the PILL architecture. Inputs are paired 
together to become VALVeD inputs for the memristive weights, 
which are then pooled into an output node.

FIGURE 9

Resistances of all the non-volatile memristors within the memristive 
PILL architecture being trained via multiple epochs. The separation 
of resistance states is indicative of successful training. Since there are 
only two groups of weights (resistances), two colors are used to 
represent two resistance values for associated and non-associated 
weights.
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Importantly, the PILL architecture was trained using generic 
system-wide pulses that were delivered through the output node 
whenever the input image contained a vertical line anywhere within 
the image and without the use of convolution. Since pixel-to-pixel 
associations are learned rather than the association between individual 
pixels to desired values, the training on a specific location of the 
vertical line within the 3×3-pixel image does not statistically overwrite 
any prior training of the network. Thus, all locations of the vertical line 
are trained simultaneously and within the same epoch. Although not 
required for successful operation, the VALVeD inputs bolster this 
learning mechanism by suppressing unintentional programming of 
dynamical memristors for input pairs that are unalike. In this 
simplified example, all weights associated with permutations of 2 or 
3-pixel vertical lines were trained to a higher resistance concurrently. 
Thus, the trained PILL can now perform useful computations, such as 
responding differently to images with and without lines anywhere 
within the image, without needing to convolve through a subset of the 
input image to recognize the pattern. Although this approach 
undoubtedly has limitations on the types of variation allowed between 
the multiple simultaneous training targets, the introspective 
associative learning allows for unique analog computations to 
be performed on the entire input vector in hardware without using 
expensive algorithms such as convolution or BP. Additionally, self-
learning in the PILL architecture is robust to noisy or corrupt data due 
to statistical averaging of the associated and unassociated memristive 
weight training.

6. Concluding remarks

A physical solution for non-von Neumann computation is 
discussed that exploits the in-memory computation and temporal 
versatility of intercalation-based memristors. A compact 
phenomenological memristor model is presented, including several 
tunable parameters that enable accurate emulation of non-linear 
and asymmetric behaviors found in experimental devices. 
Dynamical memristors were then simulated in neuromorphic 
circuitry to mimic biological processes, including desensitization, 
sensitization, PPF, and STDP. To demonstrate computational 
examples using dynamical memristive hardware, a self-training 
neural network was shown that uses dynamical memristors and 
STDP as a learning rule. The use of a neuromorphic learning rule 
such as STDP allowed the neural weights to self-update according 
to the temporal relationship between inputs and system-wide 
responses rather than training through the expensive process of 
backpropagation and individual memristor manipulation. The 
dynamical memristive SNN was used as an image-classifying 
perceptron trained on the EMNIST dataset to show lifelong self-
learning, showing no difficulty in continuously relearning different 
handwritten characters in succession. In addition, the PILL 
architecture was introduced, strengthened by VALVeD input 
architectures, to demonstrate introspective associative self-learning 
capable of classifying features in various locations of an image 
without convolution. Importantly, owing to the time integration 
implemented inside the dynamical memristor, these memristive 
architectures execute temporal computations using generic signal 
agnosticism. While simple rectangular pulses were used for 

demonstrations, heterogeneous and biologically relevant signals are 
compatible with the memristive computing infrastructure and 
could bring yet another level of computational ability. The examples 
in this work guide the design of neuromorphic hardware and 
validates the potential of using the in-memory computation ability 
featured in temporally dynamic memristors to perform complex 
functions for neuromorphic systems.
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