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Industrial parks are essential for promoting regional economic development, yet
their linear growth model has become unsustainable. Hence, implementing the
industrial park recycling transformation (IPRT) is necessary and urgent. However,
the current literature on IPRT performance evaluation and improvement has not
kept up with practical developments. This study aims to evaluate the eco-
efficiency of IPRT and identify the variables and configurations that affect its
enhancement. To achieve this, the authors employed super-efficiency data
envelopment analysis and fuzzy set qualitative comparative analysis to analyze
data collected from 21 IPRT demonstration pilot parks. Drawing on the
Technology-Organization-Environment framework, this study identified three
configurations with high eco-efficiency and two configurations with non-high
eco-efficiency for IPRT. The findings indicate that eco-efficiency varies
significantly among different parks and is the result of multiple factors and
interactions, with environmental supervision playing a pivotal role. Additionally,
the results suggest that the local economic development level and the
technological capacity of parks are substitutable. Parks in regions with modest
economies tend to focus on environment-technology-oriented transformations,
while external factors drive IPRT of parks in areas with developed economies.
These findings offer guidance for parks to adopt appropriate strategy profiles and
provide policy options for governments.
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1 Introduction

Industrial parks have become an essential element for nurturing emerging industries,
promoting urbanization, boosting regional economic development, and strengthening the
global supply chain. However, despite their significant contribution to economic output,
industrial parks also have a significant impact on resource consumption and environmental
pollution (Mathews et al., 2018). In this context, Industrial Park Recycling Transformation
(hereafter referred to as IPRT) has emerged as a crucial strategy. IPRT is an integrated system
aimed at minimizing resource consumption and environmental pollution, which enhances
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land and resource productivity, promotes waste recycling, and
reduces energy and water consumption. Practical experience has
shown that IPRT, by enhancing resource recovery and reducing
emissions, contributes to the development of a circular economy
(CE) (Winans et al., 2017). However, theoretical research on IPRT
has yet to keep up with practical progress due to the complexity of
explanatory mechanisms, which include both inputs and outputs.

China boasts the largest number of industrial parks worldwide,
which have played a pivotal role in propelling the country’s
economy. However, the traditional linear growth model
characterized by intensive resource consumption and severe
pollution has rendered this development model unsustainable
(Feng and Yan, 2007; Mathews and Tan, 2016). To address this
issue and maximize the economic and environmental benefits of
industrial parks, China has implemented a series of top-down
initiatives to promote circularity, including the implementation of
IPRT. Since 2012, IPRT has been incorporated into the national CE
project, with seven batches of pilot projects covering 129 industrial
parks across the country launched by two national ministries from
2012 to 2017. By 2020, 69 parks had been approved for IPRT, leading
to a reduction of around 350million tons of carbon emissions. These
achievements have fueled further efforts. In the “Carbon Peak
Action Plan” unveiled in 2020, China pledged to further cut
emissions, with IPRT playing a critical role in achieving these
targets.

Previous literature on CE has predominantly focused on
institutional or corporate factors, with only limited attention paid
to factors at the industrial park level (Mathews et al., 2018). Existing
research on industrial parks has mainly centered on eco-industrial
parks (EIPs), rather than IPRTs, which have been identified as a
critical strategy to achieve industrial sustainability (Zhu et al., 2015).
While some scholars have addressed the performance evaluation of
IPRTs, a comprehensive evaluation based on ecological efficiency is
still lacking, and the evaluation methods need to be strengthened
(Zhu et al., 2015). Moreover, research on mechanisms for improving
IPRT performance tends to consider individual factors separately,
failing to reflect the integration of elements and the complex
interactions within the mechanism (Murray et al., 2017; Tang
and Liao, 2021). Additionally, existing research methods
primarily analyze the impact of a single factor on IPRT
performance (Neves et al., 2020), but fail to address the complex
pathways required for effectively improving eco-efficiency.
Therefore, given the complexity of explanatory factors and
mechanisms, it is timely and critical to focus on the performance
evaluation of IPRTs and their improvement methods.

Therefore, the author has chosen China as the research context
and adopted an analytical framework that covers an integration
perspective and different factors, based on the super-efficiency data
envelopment analysis (DEA) model and fuzzy-set qualitative
comparative analysis (fsQCA), to explain the factors and
mechanisms that lead to different levels of eco-efficiency in
IPRTs. The authors aim to answer two key research questions: 1)
What is the eco-efficiency level of each IPRT park? and 2) What are
the variables and configurations that affect the improvement of
IPRT eco-efficiency?

This study provides two main contributions to the existing
literature. Firstly, it adopts an integrated and configurational
perspective to characterize the concurrent and equifinal factors

that affect IPRT eco-efficiency. The findings suggest that multiple
factors drive the improvement paths of IPRT eco-efficiency through
three equivalent approaches. Additionally, the study highlights the
critical role of environmental factors in enhancing eco-efficiency
and the presence of a substitutable relationship between multiple
factors. Secondly, the study employs the TOE framework to
elucidate the intricate causality underlying the efforts to enhance
IPRT eco-efficiency, with a focus on technological, organizational,
and environmental factors. These contributions address the research
gaps in the existing literature, which has predominantly centered on
identifying the role of a single factor and overlooked the complex
and multifaceted mechanisms that drive IPRT. The findings can
inform policymakers and managers of industrial parks on how to
improve eco-efficiency in IPRTs by taking an integrated and holistic
approach.

2 Literature review

In Section 2, the authors review the extant literature on IPRT
evaluation and factors influencing IPRT performance in terms of the
theoretical, methodological, and practical evolution and voids, thus
highlighting the necessity and significance of this research.

2.1 Evaluation of industrial park recycling
transformation

The increasing focus on sustainable development has prompted
a greater interest in evaluating the effectiveness of CE initiatives.
This has led to research on the economic benefits of firms
participating in CE practices (Chertow and Lombardi, 2005), as
well as on the role of eco-industrial parks (EIPs) in local economic
and social spheres (Paquin et al., 2015). However, research on
measuring sustainability achieved in IPRT is still in its early
stages, and the evaluation methods currently employed are limited.

Some scholars have used life cycle analysis to study
environmental outputs of IPRT such as CO2 and NOx (Grant
et al., 2010; van Capelleveen et al., 2018). Although methods
such as DEA, entropy weight method, analytical hierarchy
process (AHP), emergy, and multi-agent systems have been
widely used in eco-efficiency measurements, they have hardly
been applied in IPRT performance evaluations in complex input-
output scenarios. While a few studies have used the concept of eco-
efficiency to evaluate the performance of industrial parks (Liu et al.,
2015; Martín Gómez et al., 2018), the literature on evaluating the
eco-efficiency of IPRT is notably deficient compared to that of EIP
research.

Typically, existing studies employ indicators such as resource
productivity, energy productivity, and environmental performance,
which fail to systematically reflect the intricate material flows and
cannot accurately evaluate outcomes with multiple inputs and
outputs. As noted by Yang et al. (2022), IPRT is a complex
transformation that involves political, social, and economic
factors. Consequently, a more comprehensive and systematic
approach is required to assess the eco-efficiency of IPRT
practices and investigate the complex mechanisms involved
(Jessop and Sum, 2000).
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2.2 Factors influencing IPRT performance

The existing literature on the eco-efficiency of industrial parks
has mainly focused on examining the role of individual factors.
Previous studies have used quantitative methods such as Pearson
correlation analysis and the Tobit model to determine the
relationship between independent variables and eco-efficiency.
These studies have found that factors such as tourism
development (Peng et al., 2017), industrial structure (Cook and
Seiford, 2009), and technological capacity (Suchek et al., 2021) can
enhance eco-efficiency, while investment driven by profitability (Hu
et al., 2019) can harm it. However, these methods often treat
independent variables separately and assume their impact on
dependent variables are linear and cumulative (Li et al., 2021).

In reality, IPRT eco-efficiency is a complex non-linear system
that depends on interactions among various factors (Ribeiro et al.,
2018; Reuter et al., 2019). Studies using the contingency perspective
have mainly focused on a single factor (Mathews and Tan, 2011),
and research methods employed in prior studies could not provide
further insights into factor interactions (Taddeo et al., 2012; Dai
et al., 2022). As a result, the existing literature has led to
unsatisfactory conclusions (Genc et al., 2019; Panchal et al.,
2021). To improve eco-performance research, it is recommended
to incorporate elements from organizational management and the
external environment, recognizing that factors collectively impact
eco-efficiency rather than in isolation (Neves et al., 2020).

The integration perspective provides a more nuanced
understanding of the complex causality of how IPRT eco-
efficiency can be influenced compared to the contingency prism.
However, the current literature has yet to explore the complex
configurational features and the interplay of multiple factors.
Additionally, quantitative methods such as the Tobit model or
the stochastic frontier approach (SFA) often treat independent
variables as separate entities and assume their impact on

dependent variables is linear and cumulative (Li et al., 2021).
Therefore, there is a pressing need to combine quantitative and
qualitative analyses to address research gaps and investigate the
interactive influence of multiple factors on IPRT eco-efficiency (Lo
et al., 2020).

3 Model formulation

This section introduces the research models and variables used
in the study, followed by an exposition on the data sources, with a
focus on the 21 IPRT demonstration pilot industrial parks as the
research sample. In light of the study’s intricate and multi-level
design, we provide Figure 1 to present the research process.

3.1 Methodology

In Section 3.1, we describe the methodology used to evaluate the
eco-efficiency of IPRT and the configurational analysis of factors
influencing it. Two methods were employed: the input-oriented
super-efficiency DEA model and fuzzy set qualitative comparative
analysis.

3.1.1 Super-efficiency DEA model
The DEA model was utilized to calculate and rank the eco-

efficiency of the IPRT demonstration pilot parks. This non-
parametric method has received considerable attention in prior
literature (Charnes et al., 1978; Mardani et al., 2017). Typically,
multiple decision-making units (DMUs) appear simultaneously in
the production frontier. However, traditional DEA models only
distinguish between effective and ineffective DMUs and do not
evaluate the effective ones further. Andersen and Peterson. (1993)
proposed an input-oriented super-efficiency DEA model to address

FIGURE 1
Research process of the study.
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this limitation, which excludes the DMUi from the frontier when
efficiency analysis is performed for the ith DMU, enabling a
complete ranking of all DMUs.

In this study, the two outputs of environmental pollution and
economic benefit pursued inconsistent goals, while the input
elements aimed to minimize the same goal (Amara et al., 2020).
Therefore, the authors opted for the input-oriented super-efficiency
DEA model. Additionally, since the input and output factors
included environmental considerations, the constant returns to
scale (CRS) models were unsuitable for this research (Buzzigoli
et al., 2010). Thus, the variable returns to scale (VRS) model was
used, which is as follows:

Min θ − ε ∑m
i�1
S−i +∑s

r�1
S+r⎛⎝ ⎞⎠

s.t.

∑n
j�1
j ≠ o

xijλj + S−i � θxio, i � 1, ..., m,

∑n
j�1
j ≠ o

yrjλj − S+r � yro, r � 1, ..., s,

λj ≥ 0, j � 1, ..., n, j ≠ o,
S−i , S

+
r ≥ 0,∀i, r.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Where x and y denote input and output variables; S−i and S

+
r refer

to the input and output slack variables, respectively; λj is the
multiplier of the effective DMU; ε is the non-archimedean
infinitesimal; j≠o means that the super-efficiency DEA model will
remove the DMUo being evaluated from the reference set. θ
represents the super-efficiency value. A DMU will be considered
efficient when θ ≥ 1; otherwise, inefficient.

3.1.2 Fuzzy set qualitative comparative analysis
As a qualitative comparative analysis (QCA) method based

on set theory, fuzzy-set qualitative comparative analysis (fsQCA)
is an analytical technique that utilizes Boolean algebra to
conceptualize the antecedents and outcomes of a study as
binary values (0–1) (Ragin, 2008; Meuer and Fiss, 2020). This
method explores the joint effect resulting from the interplay of
multiple factors in some instances. In this study, the authors
employed fsQCA to capture the impact of configurations
composed of different factors on IPRT eco-efficiency. The
decision was based on three main reasons. Firstly, the net
effect analysis of technological, organizational, or
environmental factors alone cannot fully interpret the complex
causality that influences eco-efficiency. In contrast, fsQCA can
tap into the joint effects of multiple factors from a more
integrated perspective, reflecting the idea that all roads lead to
Rome (Wagemann et al., 2016). Secondly, fsQCA can identify
multiple interaction effects characterized by conjunction,
equifinality, and causal asymmetry of multiple factors (Fiss,
2011; Kumar et al., 2022). Finally, fsQCA has less stringent
sample size requirements compared to econometric analysis
methods, while still requiring a sample size that outnumbers
the model(s) in case studies (Gupta et al., 2020).

In fsQCA, variables are first calibrated, followed by a necessity
analysis on individual conditions, and then a sufficiency analysis on
the configurations (Ragin, 2008). From a set theory perspective,
necessity analysis checks whether the set of outcomes is a subset of a

specific set of conditions. When certain conditions always lead to the
outcome, the conditions will be considered necessary.
Configurational analysis aims to test whether the configurations
of different factors are both necessary and sufficient for specific
outcomes. From a set theory perspective, the authors need to
examine whether the set represented by the structure composed
of multiple conditions is a subset of the outcome set.

3.2 Variables and measurement

Section 3.2 describes the dependent and independent variables
used in the study. The dependent variables consist of eco-efficiency
values obtained through the super-efficiency DEA model and
comprise a set of input and output indicators. The independent
variables are selected at the technological, organizational, and
environmental levels to identify the conditional variables that
make up the configurations.

3.2.1 Dependent variables
The dependent variables analyzed in this study are the eco-

efficiency values of each park, which are obtained using the super-
efficiency DEA model and comprise a set of input and output
indicators. This model has been widely applied in various fields
and provides a comprehensive performance evaluation, as indicated
by Fan et al. (2017). To identify the critical input and output factors
of typical industrial parks involved in IPRT, the authors conducted a
thorough review of prior literature and consulted with experts, as
reported by Liu et al. (2015). Subsequently, the authors selected three
input and four output indicators to construct the evaluation system,
which encompasses three dimensions: resources, environment, and
economy. Specifically, the output indicators represent economic
output (a desirable outcome) and environmental pollution (an
undesirable outcome), while the input indicators include
traditional inputs and resource consumption.

3.2.1.1 Input indicators
The literature on efficiency evaluation in other fields has

traditionally utilized capital and human resources as input
variables (Cook and Seiford, 2009). However, given the emphasis
on ecological benefits in the context of IPRT, the authors have
included resource consumption as an additional input variable in
the evaluation system. In doing so, the IPRT input variables consist
of two traditional inputs as well as resources. Specifically, the
economic input was calculated as the sum of the park’s annual
fixed asset investment and research and development (R&D)
expenses, while the human resource cost was measured by the
annual average of employees in the park. Resource input was
measured by the park’s total annual energy consumption, which
encompasses the park’s total annual consumption of coal, oil, and
natural gas.

3.2.1.2 Output indicators
To account for the impact of output on ecological benefit, the

authors included environmental pollution as one of the outputs in
the evaluation system. As such, the outputs considered in this study
comprised both desirable and undesirable outcomes. Specifically, the
former mainly referred to economic benefit, which was measured by
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the park’s annual gross product, while the latter represented
environmental pollution. To measure environmental pollution,
the authors used typical pollutants such as sulfur dioxide (SO2)
emissions, organic wastewater emissions, and solid waste output to
represent air pollution, wastewater emission, and solid waste
generated in the parks, respectively. It is worth noting that in the
DEA model, the output indicators should be as significant as
possible. However, CE aims to maximize desirable output while
minimizing undesirable output. Therefore, it was necessary to
transform the undesirable output in this study. To achieve this,
the authors used the monotonic decreasing transformation method,
which has been previously applied in CE evaluations (Seiford and
Zhu, 2002; Vencheh et al., 2005; Hua et al., 2008).

3.2.2 Independent variables
As previously mentioned, this study adopted a three-level

approach to identify the conditional variables that make up the
configurations (Sun et al., 2020; Ullah et al., 2021). The TOE
framework is a generalized and comprehensive model, with the
specific referents of T, O, and E varying depending on the research
context and field. Consequently, it is essential for scholars to tailor
the framework to their specific scenarios (Baker, 2012). In this study,
the authors selected resource recycling (RR) and industrial
transformation and upgrading (ITU) at the technological level,
Zone’s internal management (ZIM) at the organizational level,
and economic development level (EDL) and environmental
regulation intensity (ERI) at the environmental level as the five
conditional variables constituting the dependent variables.

3.2.2.1 Technological factors
Resource recycling (RR) refers to the practice of reusing

wastewater and recycling solid waste in IPRT (Geng et al., 2007).
In this study, resource recycling was measured by the industrial
wastewater reuse rate, which is calculated as the amount of water
recycled by water equipment divided by the total amount of water
used in production (Wang et al., 2021). This is because water
resource input and utilization are essential for all parks,
regardless of their type.

Industrial transformation and upgrading (ITU) refers to a firm’s
competitive edge in market and resource sharing, the creation of
specialized affiliated industries, and technology spillover. To
measure the focal park’s industrial transformation and upgrading,
the degree of CE industrial linkage was chosen. Scholars have
observed that a sustainable industrial network based on the CE
model and industrial symbiosis logic in the supply chain is
conducive to circular utilization and minimizing resource
consumption. The degree of CE industrial linkage was calculated
by dividing the total output value of firms in the CE industrial chain
by the industrial park GDP. This concept of industrial linkage draws
from the idea of a food chain in an ecological community, where
scholars have examined biological community linkages since the
1980s.

3.2.2.2 Organizational factors
Zone’s internal management (ZIM) plays a vital role in

facilitating industrial parks’ transition to a circular economy.
Effective internal management will be conducive to IPRT. It
facilitates the transformation to a circular economy. By fully

unleashing the potential of industrial parks, it will eventually
improve the eco-efficiency of the parks (Chembessi et al., 2022).
The internal management effectiveness can be manifested in
promoting the parks’ internal infrastructure construction and
information-based transformation (Hong and Gasparatos, 2020).
Given the role in reflecting internal management effectiveness (Zhu
et al., 2015), the authors selected the rate of completion and
compliance of major projects as a proxy indicator of the ZIM.

3.2.2.3 Environmental factors
Economic development level (EDL) can be indicated by GDP,

per capita income, and economic growth rate (Chong and Olesen,
2017; Ofterdinger et al., 2021). A higher economic development level
measured by GDP means a more solid material basis to underpin
IPRT and propel CE development (Liu et al., 2015). Therefore, the
authors chose local GDP to describe the EDL.

Environmental regulation intensity (ERI) is another critical
factor for industrial parks’ circularization efforts. Government
regulation can help solve environmental problems and
compensate for market failures (Porter and Linde, 1995). ERI not
only reflects local governments’ attentiveness to circular economy
development but also closely relates to technological innovation and
ZIM improvement (Zhu et al., 2021). To measure ERI, the authors
used energy consumption per unit of GDP, which indicates the
energy utilization in economic activities within the parks and the
intensity of local environmental supervision and inspection. The
calculation involved dividing total energy consumption by the GDP
of the industrial parks, lagging it by one period, and subtracting the
result from 1 to obtain ERI.

3.3 Data sources

The IPRT was introduced as a major demonstration pilot CE
project in China’s 12th Five-Year Plan for National Economy and
Society Development (2011–2015). Following this plan, many
provinces and cities in China began to promote the
demonstration pilot IPRT projects. Among these, Jiangsu
province was a forerunner with notable enlightenment in IPRT
implementation for its peers, and the demonstration pilot IPRT
parks in Jiangsu province of China were chosen as the sample for
this study. The IPRT of 36 industrial parks was approved by the
Jiangsu Provincial Development and Reform Commission, and the
authors of this study selected 21 of these parks after removing
samples with missing data. The primary data for this study were
obtained from assessment reports and supplemented by information
from the Economic Development Bureau, Environmental
Protection Bureau, Land and Resource Bureau Branch, and
statistical yearbooks of China.

4 Numerical results and analysis

Section 4 commences with an assessment of the eco-efficiency of
the IPRT, followed by the identification of potential avenues for
enhancing its eco-efficiency through configurational analysis. The
authors further substantiate the findings by conducting a
comprehensive robustness test.

Frontiers in Environmental Science frontiersin.org05

Lei and Wei 10.3389/fenvs.2023.1170688

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1170688


4.1 Eco-efficiency evaluation

To effectively rank and conduct a comparative analysis in both
time and spatial dimensions, the authors used EMS (Version 1.3) to
measure the eco-efficiency of the demonstration pilot industrial
parks in China (Table 1). The results are as follows.

The analysis above indicates a steady increase in eco-efficiency
of IPRT across all parks from 2012 to 2015. However, the parks
exhibit considerable variation in average eco-efficiency values,
leading to their classification into three categories: high, medium,
and low. High eco-efficiency parks, namely, Z4, Z2, Z17, Z18, and
Z14, have an average value greater than 1.0, while medium eco-
efficiency parks (Z3, Z8, Z10, Z21, Z15, Z9, and Z1) have an average
value between 0.7 and 1.0. Low eco-efficiency parks (Z6, Z16, Z19,
Z7, Z11, Z20, Z12, Z13, and Z5) have an average value between
0.1 and 0.7.

Z4 and Z2, established in 2002 and beginning IPRT in 2012,
have achieved impressive CE growth through effective use of
geographic resources and high economic development levels. Z14,
in Nanjing, has achieved high eco-efficiency through significant
economic and technological transformations. Z17 and Z18 have
focused on developing high-end medical devices and new materials
industries, respectively, transforming traditional industries into
higher quality and more efficient high-end industries. In contrast,

Z5, Z6, and Z7 have low eco-efficiency due to severe pollution from
their coal chemical and energy industries, requiring immediate
attention to reduce waste and gas emissions. Z19 and Z20 have
experienced fluctuations in eco-efficiency, but improvements have
beenmade after implementing IPRT. Z16 and Z11 can improve their
eco-efficiency by leveraging their geographic location and
optimizing their resources.

4.2 Configurational analysis of eco-
efficiency

This subsection describes the configurational analysis of eco-
efficiency in the study. It includes the calibration of variables using
the direct method, necessity analysis, sufficiency configurations with
varying consistency and coverage using fsQCA 3.0, and a robustness
test with adjusted consistency level and anchor points thresholds.

4.2.1 Calibration of variables and necessity analysis
This study used the direct method of variable calibration

following previous research (Witt et al., 2022). Calibration is
required to transform raw data into set membership scores
ranging from 0 to 1. In this research, the authors first specified
the three anchor points: fully in, crossover point, and fully out of

TABLE 1 Eco-efficiency of the demonstration pilot industrial parks (2012–2015).

Name of the industrial parks Abbreviation 2012 2013 2014 2015 Mean

Binjiang Economic Development Zone Z1 0.752 0.664 0.604 1.032 0.763

Zhonglou Economic development Zone Z2 0.948 1.017 1.033 1.159 1.039

Changzhou Hi-Tech Industrial Development Zone Z3 0.959 0.966 1.026 1.034 0.996

Suzhou Economic Development Zone Z4 1.081 1.040 1.020 1.097 1.060

Shuyang Economic and Technological Development Zone Z5 0.158 0.187 0.224 0.255 0.206

Suqian Economic and Technological Development Zone Z6 0.633 0.636 0.591 0.553 0.603

Pizhou Economic Development Zone Z7 0.481 0.336 0.338 0.343 0.374

Xinyi Economic development Zone Z8 0.893 0.868 1.121 1.015 0.974

Dantu Economic Development Zone Z9 0.603 0.636 1.044 1.015 0.825

Huishan Economic Development Zone Z10 0.678 1.050 1.045 1.004 0.944

Yixing Environmental Protection Technology Industrial Park Z11 0.412 0.366 0.422 0.412 0.403

Jihu Economic Development Zone Z12 0.267 0.223 0.171 0.149 0.202

Hongze Economic Development Zone Z13 0.212 0.213 0.208 0.215 0.212

Nanjing Binjiang Economic Development Zone Z14 1.044 1.014 0.912 1.063 1.008

Lishui Development Zone Z15 0.544 0.566 1.037 1.056 0.801

Nantong Economic and Technological Development Zone Z16 0.536 0.562 0.587 0.601 0.571

Taizhou Gaogang Hi-Tech Industrial Development Zone Z17 1.017 1.037 1.028 1.009 1.023

Taizhou Medical and Pharmaceutical Hi-Tech Development Zone Z18 1.004 1.003 1.010 1.058 1.019

Dongtai Economic Development Zone Z19 0.254 0.392 0.573 0.822 0.510

Yancheng Economic and Technological Development Zone Z20 0.144 0.168 1.010 0.305 0.407

Suzhou Industrial Park Z21 0.860 0.867 0.890 0.917 0.884
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four conditional and one outcome variables except for ZIM, using
the 25th, 50th, and 75th percentiles in the sample values. Then, the
distribution of ZIM shows a notable right-skewed feature with
values representing 100% major project completion and
compliance rate. Hence, the authors set the three anchor points:
fully in, crossover point, and fully out of the variable, using the fifth,
mean, and 95th percentiles. Moreover, the authors replaced the
conditional values calibrated to 0.5 with 0.501, as a value of
0.5 would be automatically removed (Leppänen et al., 2023).
Table 2 presents the calibration values and descriptions of each
variable.

The authors employed fsQCA 3.0 to conduct a necessity
analysis, with consistency and coverage being the two main
metric results (Zheng et al., 2021). Table 3 illustrates the
consistency levels of all conditions leading to high or non-high
eco-efficiency. Results show that no single variable constitutes a
necessary condition for achieving high eco-efficiency or avoiding
non-high eco-efficiency. Instead, multiple conditional variables
must interact and match to enhance the eco-efficiency of IPRT.

4.2.2 Sufficiency configurations
The sufficiency analysis examined various combinations of

multiple conditional variables, evaluated by consistency and

frequency thresholds. To meet best QCA application practices
(Schneider and Wagemann, 2012), while acknowledging that
different thresholds may be used in different research contexts
(Fainshmidt et al., 2022; Hartmann et al., 2022), the authors set
the consistency threshold to 0.8 and the frequency threshold to 1. To
avoid inappropriate counterfactual analysis due to the lack of
consensus on the relationships between five conditional variables
and eco-efficiency, the authors set the causal condition as “present or
absent” and used fsQCA 3.0 to produce three types of solutions with
varying complexity (Amara et al., 2020). The authors identified
conditional configurations by comparing intermediate and
parsimonious solutions in a nested manner, drawing on the
extant literature (Ding and Wu, 2022).

Table 4 presents diverse configurations that result in high or
non-high eco-efficiency. Each column represents a unique
configuration, and the consistency and coverage of both single
and overall solutions surpass the threshold, indicating that the
findings are valid. Among these configurations, four (M1, M2,
M3a, and M3b) lead to high eco-efficiency, with M3a and M3b
sharing core conditions (EDL*ERI) and, hence, forming a second-
order equivalent configuration. The overall solution reveals that
90.4% of industrial parks achieve relatively high IPRT eco-efficiency,
and all three equifinal solution paths together account for 60.3% of

TABLE 2 Variable calibrations and descriptions.

Variables Fully in Crossover point Fully out Mean Std. D Min Max

EE 0.996 0.801 0.407 0.706 0.301 0.202 1.060

RR 90.473 88.500 80.550 85.317 8.418 63.868 95.500

ITU 53.725 47.500 34.813 46.900 16.910 20.000 93.490

ZIM 100.000 89.951 50.000 89.951 16.386 44.444 100.000

EDL 5,369.523 4,626.450 3,078.020 4,914.020 2,942.907 1831.000 13,894.000

ERI 0.458 0.335 0.223 0.404 0.337 0.048 1.630

TABLE 3 Results of necessity analysis.

Conditions High eco-efficiency Non-high eco-efficiency

Consistency Coverage Consistency Coverage

RR 0.600 0.576 0.530 0.495

~RR 0.474 0.510 0.546 0.570

ITU 0.446 0.459 0.589 0.589

~ITU 0.601 0.601 0.459 0.446

ZIM 0.808 0.583 0.702 0.492

~ZIM 0.296 0.506 0.405 0.672

EDL 0.502 0.578 0.430 0.481

~EDL 0.549 0.498 0.623 0.549

ERI 0.800 0.812 0.321 0.316

~ERI 0.327 0.331 0.810 0.797
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cases with high eco-efficiency. The authors then provide detailed
explanations of the main configurations, with reference to Furnari
et al. (2021).

4.2.2.1 Configurational analysis of conditions leading to
high eco-efficiency

M1 (~RR*ZIM*~EDL*ERI) indicates that industrial parks
located in regions with a modest EDL, high ERI, and weak RR
can still achieve high eco-efficiency with effective ZIM is ensured.
RR (T) and ERI (E) are the core conditions, while ZIM (O) and EDL
(E) play complementary roles. In response to strict environmental
regulations, these parks tend to shift their focus towards resource
recycling and improving internal management, rather than solely
relying on outcome-oriented technologies. This configuration
covers two samples and can explain about 31% of the cases with
high IPRT eco-efficiency.

M2 (RR*ITU*~ZIM*~EDL*ERI) suggests that parks in regions
with low EDL, weak ZIM, and high ERI can achieve high eco-
efficiency through the benefits of ITU and RR. The core conditions
are ITU (T) and ERI (E), while other factors play supportive roles. In
response to stringent environmental regulations, such parks are
inclined to prioritize ITUs to strengthen the CE industrial chain and
inter-industrial linkage, promoting IPRT. M2 covers one case with a
unique coverage of 0.101. This configuration can account for
approximately 28% of the cases with high IPRT eco-efficiency.

M3 (ZIM*EDL*ERI) indicates that industrial parks in regions
with high ERI and EDL can achieve high eco-efficiency if a sound
ZIM is in place. EDL (E) and ERI (E) are the core, while ZIM (O)
plays a supporting role. It means that parks may utilize the
significantly-favorable external environment to compensate for
internal management and technology deficiency. This
configuration has the highest coverage, explaining approximately
36% of the cases with high IPRT eco-efficiency.

A comparison of M1, M2, and M3 reveals that ERI is a common
factor in all configurations that trigger high eco-efficiency, and
serves as the core condition in conjunction with either economic

development level (E) or technology (T). The importance of ERI, as a
major external factor, in enhancing IPRT is highlighted. In contrast,
ZIM only plays a supporting role. Furthermore, parks’ technological
capacity and EDL are interchangeable. Parks in economically
disadvantaged areas tend to focus on process-oriented ITU or
abandon outcome-oriented resource recycling technology, both of
which are conducive to high eco-efficiency and demonstrate
environment-plus-technology-driven characteristics. In regions
with relatively high EDL, technological capacity is no longer the
core factor for achieving high eco-efficiency. Parks with
complementary conditions, including ERI and EDL, will also
achieve high eco-efficiency, but this pattern is mainly driven by
external environmental factors.

4.2.2.2 Configurational analysis of non-high eco-efficiency
conditions

M4 (~RR*~ERI) suggests that low ERI in industrial parks,
combined with inadequate RR, will lead to non-high eco-
efficiency. RR (T) and ERI (E) are the core conditions. It
indicates that IPRT driven by outcome-oriented resource
recycling technologies without an effective environmental
regulation will also meet Waterloo in realizing an ideal goal. This
configuration covers five samples and explains about 38% of the
cases.

M5 (ITU*~ZIM*EDL*~ERI) indicates that industrial parks with
a weak ERI and ZIM may achieve non-high eco-efficiency despite
having a high EDL and sound ITU. ZIM and ERI are the core
conditions, supported by ITU and EDL. Parks may struggle to
achieve their desired outcomes in IPRT if internal management
and environmental regulation are not improved. This configuration
covers three samples and explains about 51% of the cases.

The comparison of M4 and M5 reveals that insufficient
environmental regulation (~ERI) occurs in both configurations
leading to non-high eco-efficiency. It indicates that the absence
of environmental review will impede IPRT. Besides, among all the
configurations triggering non-high eco-efficiency, the park’s

TABLE 4 Results of configurational analysis.

Conditions High eco-efficiency Non-high eco-efficiency

M1 M2 M3a M3b M4a M4b M5

T RR ⊗ • • ⊗ ⊗

ITU C ⊗ • C

O ZIM • ⊗ • • • ⊗

E EDL ⊗ ⊗ C C ⊗ •

ERI C C C C ⊗ ⊗ ⊗

Consistency 0.837 0.987 0.931 0.981 0.922 0.935 0.948

Raw Coverage 0.313 0.279 0.114 0.243 0.377 0.263 0.245

Unique Coverage 0.161 0.101 0.081 0.017 0.157 0.146 0.118

Solution Coverage 0.603 0.641

Overall Consistency 0.904 0.953

Note: Following the outcome reporting format proposed by Ragin. (2008), black circles (”•“) indicate the presence of a condition, and circles with a cross-out (”⊗“) indicate its absence.
Moreover, large circles indicate core conditions, and small circles refer to peripheral conditions.
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technological conditions and organizational factors are
substitutable. Concretely, low ERI, the disregard for outcome-
oriented technologies such as RR, or the disappointing ZIM will
all lead to lower IPRT performance. Based on those mentioned
above, the lack of ERI alone does not directly lead to the failure;
parks’ unsatisfactory IPRT eco-efficiency is also the result of sluggish
technological conditions or organizational capacity.

4.2.3 Robustness test
Echoing Skaaning’s (2011) suggestions, the authors conducted a

robustness test from two aspects. First, the consistency level was
adjusted by redefining the consistency level of single condition
necessity analysis and configurational sufficiency analysis from
0.8 to 0.85 (Cui et al., 2017; Chen et al., 2021). The results of the
adjusted configurational analysis are presented in Table 5. In line

with the work by Fiss. (2011), the authors set the three anchor points
thresholds: fully in, crossover point, and fully out of the outcome and
conditional variables except for ZIM using 95%, 50%, and 5%
percentiles. For ZIM, the authors retained the former anchor
points. The findings are presented in Table 6. Additionally, the
authors evaluated the robustness of the results using the two criteria
proposed by Schneider and Wagemann. (2012). Overall, the study’s
findings are reliable and robust.

5 Conclusion

In Section 5, the authors provide a comprehensive conclusion to
the paper, encompassing the study’s theoretical and practical
contributions. Additionally, we provide a policy-making and

TABLE 5 Results of configurational analysis with an enhanced consistency level.

Conditions High eco-efficiency Non-high eco-efficiency

M1a M1 M2a M2b M3a M3b M4

T RR ⊗ • • ⊗ ⊗

ITU C C ⊗ C C

O ZIM • ⊗ • • • ⊗

E EDL ⊗ ⊗ C C ⊗ •

ERI C C C C ⊗ ⊗ ⊗

Consistency 0.871 0.931 0.987 0.981 0.922 0.935 0.948

Raw Coverage 0.076 0.114 0.279 0.243 0.377 0.263 0.245

Unique Coverage 0.047 0.081 0.100 0.073 0.157 0.146 0.118

Solution Coverage 0.490 0.641

Overall Consistency 0.972 0.953

TABLE 6 Results of Configurational Analysis with new Calibration Anchor Points Thresholds.

Conditions High eco-efficiency Non-high eco-efficiency

M1 M2 M3a M3b M4a M4b M4c

T RR ⊗ • • ⊗

ITU C ⊗ C ⊗ C

O ZIM • ⊗ • • •

E EDL ⊗ ⊗ C C ⊗ •

ERI C C C C ⊗ ⊗ ⊗

Consistency 0.854 0.961 0.945 0.955 0.922 0.800 0.856

Raw Coverage 0.442 0.216 0.390 0.357 0.450 0.371 0.431

Unique Coverage 0.147 0.084 0.050 0.003 0.089 0.199 0.088

Solution Coverage 0.681 0.758

Overall Consistency 0.895 0.830
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discussion subsection, highlighting the implications of the findings
for decision-makers. Finally, the authors propose future research
avenues to expand upon the current study’s insights.

5.1 Conclusion and discussion

Drawing on panel data collected from 21 IPRT demonstration
pilot industrial parks between 2012 and 2015, this study employs the
super-efficiency DEA model to evaluate and analyze IPRT eco-
efficiency. Subsequently, the TOE framework is utilized to identify
three distinct paths for promoting IPRT through fsQCA. Notably,
these paths underscore two noteworthy features: firstly, achieving a
common objective is feasible through different means, and secondly,
multiple paths can coexist simultaneously.

Specifically, this paper makes two contributions to the existing
literature. Firstly, the study characterizes the factors that influence
eco-efficiency as being concurrent and equifinal. As suggested by
Rihoux and Ragin. (2009), the “configurational perspective”
effectively comprehends complex causality. The research
findings indicate that a single factor cannot be deemed
necessary or sufficient in constituting a path that leads to high
eco-efficiency. Each path to promote eco-efficiency comprises
multiple concurrent factors. Moreover, multiple factors drive
the improvement of eco-efficiency through three equivalent
approaches. Additionally, the study reveals that a substitutable
relationship exists between the multiple factors, and
environmental factors are crucial in enhancing IPRT eco-
efficiency. These findings are a novel attempt to explain the
IPRT enhancement paths from an integrated perspective using
configurational analysis (Li et al., 2021).

Secondly, the study employs the TOE framework to explain the
complex causality underlying the work to enhance IPRT eco-
efficiency. While existing literature acknowledges the
mechanisms through which IPRT performance can be affected,
most studies have focused on identifying the role of a single factor,
ignoring the critical and complex mechanisms that drive
transformation. As noted by Kristensen and Mosgaard. (2020),
most indicators in research on circular economy concentrate on
economic benefits, and social, governmental, and environmental
factors receive less attention. Neves et al. (2020) also highlighted
these limitations and suggested that future research incorporate
factors that influence EIP performance, such as organizational
management and external environmental factors. To address this
gap, the authors selected dependent variables related to
technological, organizational, and environmental aspects to
explain causal relationships using the well-established TOE
framework. The study finds that parks in regions with modest
economic development prefer the route characterized by notable
“environment plus technology” features, whereas those in regions
with a booming economy are more likely to undergo an
environment-oriented transformation.

5.2 Implications for policy-making

The results of this study have significant implications for
government officials tasked with the development of industrial

parks with IPRT practices. Firstly, this study presents evidence
that achieving eco-efficiency in industrial parks requires a
multifaceted approach. Policymakers should therefore
acknowledge that no single factor can be deemed necessary or
sufficient in achieving high eco-efficiency, and thus implement
policies that promote the coordination of multiple factors,
including technological, organizational, and environmental
aspects (Luo and Leipold, 2022). This could be achieved through
financial incentives, technical assistance, and training programs to
assist parks in identifying and implementing eco-efficient practices
(Zhu et al., 2021).

Secondly, the study suggests that different paths may be
followed to enhance eco-efficiency in industrial parks,
depending on the local economic development level. In
regions with modest economic development, industrial parks
should focus on technological and environmental factors,
whereas those in regions with a booming economy should
prioritize environmental factors. Policymakers must consider
these regional differences when designing policies to support
the development of IPRT.

Finally, the study emphasizes the crucial role of local
governments in promoting IPRT. Local governments should
guide industrial parks in adopting suitable paths in line with
their technological capacity and organizational characteristics.
Additionally, they should provide targeted public services and
policies that support the development of eco-efficient industrial
parks, including environmental protection review and supervision,
technical assistance, and training programs (Ghisellini et al., 2016;
Suchek et al., 2021).

5.3 Avenues for future research

The findings also provide valuable avenues for future
research. First, some may criticize that the use of samples
from a single province could potentially make the findings
less generalizable. Therefore, future research could collect
samples from various sources and types to enrich the
arguments and uncover new paths for improving IPRT eco-
efficiency.

Apart from that, the authors drew on the TOE framework to
analyze the factors influencing IPRT eco-efficiency and took
technological (T), organizational (O), and environmental (E)
factors as the antecedent combination of conditions. However, it
must be acknowledged that the factors affecting IPRT
performance are complex and diverse, indicating that
some other effective paths are yet to be explored (Chembessi
et al., 2022). For instance, the TOE framework does not
fully consider the micro-level factors inside the industrial
parks (Zhu et al., 2015; Sun et al., 2020), which calls for
further explorations.

In closing, the authors selected 2012–2015 as the observation
interval; hence, the statistics are not up-to-date. This is because the
data were obtained from reports on the IPRT demonstration pilot
industrial parks evaluation organized by Jiangsu province of
China. Since then, no such evaluation has been conducted.
Thus, the statistics in this study did not include the latest data
after 2016.
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